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Prefazione 
 

Questo testo raccoglie alcune lezioni di geometria da me svolte negli anni 

accademici 2008-2009 per gli studenti del corso di laurea in Matematica  

dell’ Università degli studi di Napoli  “ Federico II “. 

Il primo capitolo è dedicato alla geometria analitica del piano e dello spazio. 

Nel secondo capitolo , attraverso le nozioni di piano affine e proiettivo,  c’è un 

approccio ai  fondamenti della geometria del piano reale. 

Un approccio simile è dedicato allo spazio nel quinto capitolo.  

I capitoli terzo e quarto sono dedicati allo studio delle coniche del piano proiettivo 

complesso. 

 Il sesto capitolo è dedicato allo studio delle quadriche dello spazio proiettivo 

complesso di dimensione tre. 

L’ ultima parte è una sintetica esposizione delle nozioni più importanti di 

topologia generale. 

Il libro si conclude con una personale valutazione dei nuovi ordinamenti didattici. 

                                 

                                                        Prof. Domenico Olanda 
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Capitolo I 

 

La geometria analitica del piano e dello spazio 
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1. Introduzione 

 

In questo capitolo analizzeremo alcuni risultati di geometria analitica  utilizzati nelle 

applicazioni.  Spesso ci sarà il solo riferimento al risultato senza la  sua dimostrazione.  

Prima di addentrarci nell’esposizione ,allo scopo di  facilitare la lettura di questo argomento, 

è utile ricordare due risultati di algebra lineare acquisiti nella prima parte .    

 

Il primo risultato che richiamiamo  è un semplice,  ma molto utile teorema . 

 

Teorema.  Se in uno spazio vettoriale  h  vettori  { v1 , v2  ,…… vh }  sono indipendenti  mentre 

 {v1 , v2  ,…vh  , w}   sono dipendenti  allora il vettore  w  dipende dai vettori v1 , v2  ,…… vh .   

 

Il secondo risultato che richiamiamo è il seguente . 

 

Indichiamo con V =  R[ x, y ,z]   lo spazio vettoriale dei polinomi di grado al più uno nelle variabili  

x,y,z  a coefficienti reali. L’ applicazione 

                                               

                                                  ƒ  :  V  -----> R4 

 

                         (ax  +  by +  cz + d  )  ----->    (a ,  b ,  c , d  )   

 

che associa al polinomio   ax  +  by +  cz + d    la quaterna dei suoi coefficienti  è un isomorfismo 

tra gli spazi vettoriali   V   ed  R4  . 

 

Per tale ragione la dipendenza tra polinomi può essere ricondotta alla corrispondente 

dipendenza tra i vettori numerici dei loro coefficienti.  

 

Così a titolo di  esempio il polinomio  ax  +  by +  cz + d     dipende  dai   polinomi 

  a’x + b’y + c’z + d’    e     a”x + b”y + c”z + d”  se e solo se la quaterna  (a ,  b ,  c , d  )   dipende 

dalle due quaterne  (a’ ,  b’ ,  c’ , d’)   e  (a” ,  b” ,  c” , d”) .   

Il risultato che abbiamo ora richiamato vale ovviamente in generale , può essere cioè esteso allo 

spazio vettoriale dei polinomi in n variabili , e l’averlo ricordato per i polinomi a tre variabili è 

motivato dalla circostanza che ci troveremo  spesso in questa situazione . 
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Svilupperemo la nostra rassegna analizzando contemporaneamente risultati di geometria 

piana  e dello spazio allo scopo di evidenziare l’unità dei metodi usati nell’uno e nell’altro caso e  

l’ identità di risultati quando si ha a che fare con rette di un piano o  con piani dello spazio. 

Supporremo noto il concetto di riferimento cartesiano nel piano e nello spazio e la capacità di 

assegnare in un riferimento fissato le coordinate ai punti del piano  o dello spazio. Ricordiamo solo 

che nel piano le coordinate di un punto sono costituite da una coppia ordinata di numeri reali  

mentre nello spazio le coordinate di un punto sono una terna ordinata di numeri reali. 

Riterremo d’ora in poi che sia sempre fissato un riferimento monometrico ortogonale. 

 

Se  r   è una retta del piano  ed  A  e  B  sono due suoi punti distinti le  componenti  del vettore  

(AB) nel riferimento fissato sono date dai seguenti due numeri reali : 

 

                                         λ= xB – xA                       µ  = yB  - y A 

 

 

A

B

r

 

 

 

 

Questi due numeri reali non entrambi nulli (essendo A e B distinti ) forniscono la misura relativa  

dei segmenti  evidenziati in neretto in figura,  proiezioni di (AB) sugli assi del riferimento. Si noti 

che se si ruota “un poco“ (AB) questi due numeri cambiano e precisamente uno dei due aumenta e 

l’altro diminuisce. Pertanto questi due numeri aumentano entrambi o diminuiscono entrambi se e 

solo se si allunga o si accorcia (AB) ; di più esse ,ad esempio, si triplicano se  (AB) si triplica , si 

dimezzano se (AB) si dimezza e così via. 

 

 

 I numeri reali ( λ , µ )    vengono chiamati numeri direttori   della retta r  e la loro determinazione è 
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molto utile per le applicazioni . Se i punti A e B vengono sostituiti da altri due punti distinti C e D  

allora  è  (CD) =  ρ (AB) (dove ρ  è un numero reale non nullo ) e quindi è : 

 

        λ’= ( xD – xC ) = ρ (xB – xA  ) =  ρ λ        ,            µ’  = ( yD  - y C) = ρ (yB  - y A) = ρ µ 

 

 

Pertanto i numeri direttori di r sono una coppia  di numeri reali non entrambi nulli e definiti a 

meno di un fattore di proporzionalità non nullo. 

 

Analogamente se siamo nello spazio ed r è una sua retta  scelti due punti distinti  A e B su r , i tre 

numeri reali  ( non tutti e tre nulli  ) 

 

                               λ= xB – xA   ,           µ = yB  - yA        ,         ν   =    zB  - zA 

 

 

 

sono chiamati i   numeri direttori di r .    Per le stesse argomentazioni precedenti  i numeri 

 ( λ  ,   µ  ,    ν   )   numeri direttori di r   sono mai tutti e tre nulli contemporaneamente e sono definiti 

a meno di un fattore di proporzionalità non nullo . 

 

I numeri direttori , una volta noti , possono essere utilizzati per valutare l’eventuale parallelismo tra 

rette sia nel piano e sia nello spazio. Sussistono infatti le seguenti equivalenze : 

 

Teorema 1 .  Due rette  r ed r’ del piano sono parallele se e solo se esse hanno gli stessi numeri 

direttori (cioè i numeri direttori (  λ,  µ )  di r sono eguali o proporzionali ai numeri  (  λ ’,  µ’ )  

direttori di r’) . 

 

Teorema 2 .  Due rette  r ed r’ dello spazio sono parallele se e solo se esse hanno gli stessi numeri 

direttori (cioè i numeri direttori (  λ,  µ, ,  ν  )  di r sono eguali o proporzionali ai numeri direttori  

(  λ’,  µ’ , ,  ν’ )   di r’ )  . 

 

Ricordiamo che se (AB)  e  (CD) sono due vettori non nulli del piano o dello spazio, si 

definisce loro prodotto scalare il numero reale ξ che si ottiene  eseguendo il seguente calcolo 
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                                                            ξ   =   | AB | | CD | cosφ  

 

avendo indicato con | AB | e  | CD |   le lunghezze dei due segmenti e con  φ  l’angolo che essi 

formano. Ovviamente i due segmenti risultano tra loro ortogonali se e solo se il loro prodotto 

scalare si annulla . Avendo scelto il riferimento monometrico ed ortogonale allora è ben noto che 

risulta  

 

ξ   =   | AB | | CD | cosφ = λ λ’ + µ µ’ 

 

avendo indicato con (  λ , µ  )   le componenti di   (AB) e con     (λ’, µ’ ) le componenti di (CD).  

Analogamente se (AB) e (CD) sono vettori dello spazio risulta 

 

ξ   =   | AB | | CD | cosφ = λ λ’ + µ µ’ + ν v’ 

 

avendo indicato con (  λ , µ ,  ν )   le componenti di   (AB) e con     (λ’, µ’, v’ ) le componenti di 

(CD).   

 

I numeri direttori  una volta noti possono essere  quindi utilizzati per valutare l’eventuale 

ortogonalità tra rette sia nel piano e sia nello spazio.  

 

Sussistono infatti le seguenti equivalenze : 

 

Teorema I .  Due rette  r ed r’ del piano sono ortogonali se e solo se risulta : 

 

λ λ’ + µ µ’ = 0 

 

 

 

Teorema II .  Due rette  r ed r’ dello spazio sono ortogonali se e solo se risulta :  

 

λ λ’ + µ µ’ + ν ν’ = 0 

 

 

Questi teoremi mostrano come sia essenziale saper determinare di una retta i suoi numeri 
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direttori . Si possono dedurre tali numeri da una rappresentazione della retta ?   Vediamo. 

 

Intanto ,  come si rappresenta una retta ?  C’è un modo di rappresentare allo stesso modo 

una retta sia che essa sia una retta del piano o dello spazio. Vediamo come . 

 

 Sia r una retta  del piano e siano A e B due suoi punti distinti . Un punto P(x,y) del piano 

appartiene ad  r  se e solo se risulta 

 

(AP) =  ρ  (AB) 

 

o equivalentemente se e solo se : 

 

( x- xA    ,  y -  yA  ) =   ρ  (  xB – xA   , yB  - yA  ) 

 

 

Pertanto le coordinate di (x,y)  di  P  sono  espresse dalle seguenti relazioni 

                   

 

(1)                                         
⎩
⎨
⎧

 ) − (    +=
) − (    +=

Β

Β

AA

AA

yy      y  y  
xx        xx  

ρ
ρ

   

 

Le  (1)  forniscono al variare del parametro  ρ  nel campo reale le coordinate (x,y) dei punti di r e 

per questo motivo vengono chiamate le equazioni  parametriche di r . 

 

Si noti che nelle (1) i due numeri che accompagnano il parametro  ρ  sono  i numeri direttori di r. 

Pertanto se la retta r è rappresentata parametricamente i numeri direttori sono i due numeri che 

accompagnano il parametro  ρ   . 

 

Sia ora r una retta  dello spazio  e siano A e B due suoi punti distinti . Un punto P(x,y,z)) dello 

spazio appartiene ad r se e solo se risulta 

 

(AP) =  ρ  (AB) 

 

o equivalentemente se e solo se : 
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( x- xA  , y -  yA ,  z -  zA ) =   ρ  (  xB – xA  ,  yB  - yA  , zB -  zA) 

 

 

Pertanto le coordinate di (x,y,z)  di  P  sono  espresse dalle seguenti relazioni 

 

                         

 

(2)                                        
⎪
⎩

⎪
⎨

⎧

−+=
−+=
−+=

)zρ(z      z     z  
 )yρ(y      y   y    
)xρ(x         x  x  

ABA

ABA

ABA

 

 

   

 

Le  (2)  forniscono al variare del parametro  ρ  nel campo reale le coordinate (x,y,z) dei punti di r e 

per questo motivo vengono chiamate le equazioni  parametriche di r . 

 

Si noti che nelle (2) i tre  numeri che accompagnano il parametro  ρ   sono  i numeri direttori di r.  

Pertanto se la retta r è rappresentata parametricamente i numeri direttori sono i tre numeri che 

accompagnano il parametro  ρ   . 

  

 Sia r una retta del piano ed A e B due suoi punti distitnti . Un punto  P (x,y)  del piano appartiene 

ad r se e solo se risulta  (AP) =   ρ (AB)   cioè se e solo se  i due vettori AP ed  AB sono dipendenti . 

Poiché il passaggio alle componenti di un vettore è un isomorfismo allora la dipendenza dei due 

vettori (AP) ed (AB) equivale alla dipendenza dei vettori numerici   ( x- xA    ,  y -  yA  ) ,  

(  xB – xA   , yB  - yA  ) .  Questi due vettori numerici sono dipendenti se e solo se risulta : 

 

 

 (1*)                    det ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 y - y     ,  x- x
 y  -y       ,   x-x   

ABAB

AA    =  det
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1   y   x
1  y   x
1y     x      

BB

AA = 0 

 

 

Sviluppando tale determinante si ottiene un’equazione di primo grado in x ed y del tipo 

 



 10

 

(i)                                                             ax + by + c = 0 

 

soddisfatta da tutte e sole le coppie  (x, y)  coordinate dei  punti di r . La  (i) è detta la 

rappresentazione cartesiana   di r .  Ovviamente ogni equazione proporzionale alla (i) avendo le 

stesse soluzioni di  (i) rappresenta sempre la retta r . 

Si prova facilmente che , viceversa , un’equazione di primo grado in x e y rappresenta una retta del 

piano. 

Quindi una retta del piano può  essere rappresentata o in forma parametrica  o in forma cartesiana. 

Per esempio rappresentiamo la retta per i punti  A(2,5)  e  B (4 , 8) . 

Usando la  (1)  tale retta si rappresenta  con  

 

(a)                                                      
⎩
⎨
⎧

  +=
 +=

ρ
ρ

3      5  y  
2      2  x  

 

 

Usando  (1*)     

 

 

 

det
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1      8      4
1      5      2
1y      x      

=0 

   

si ha   :   

 

(b)                                                   3x - 2y +4  =0. 

 

 

Si noti che all’equazione (b)  si poteva pervenire anche usando  la rappresentazione parametrica (a). 

Infatti da  (a)  segue  

    

 

                                                    ρ  =  
2

2x −               ρ  = 
3

5y −  
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e quindi  eguagliando si ha l’equazione (b). 

 

Ora se la retta r  è rappresentata  con  l’equazione    

 

                                                     ax + by + c = 0 

 

come si possono calcolare i suoi  numeri direttori ?  Vediamo . 

Se  A  (xA  , yA )     e    B  (xB  ,  yB )  sono due punti di r  allora le loro coordinate verificano 

l’equazione    ax + by + c = 0   e pertanto si ha : 

 

                                                  a xB + b yB + c = 0 

 

                                                  a xA + b yA + c = 0 

 

 

Sottraendo membro a membro le due relazioni sopra scritte si ha : 

 

                                                      a (xB – xA ) + b (yB – yA )   =0 

 

o equivalentemente 

 

                                                        det ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 a               b-  

y - y       x- x ABAB = 0 

 

La relazione sopra scritta mostra che la coppia  ( - b , a )    è   proporzionale   alla coppia 

 (  xB – xA     ,    yB – yA    )   che è appunto una coppia di numeri direttori di r . Pertanto se la retta è 

rappresentata dall’equazione  ax + by + c = 0   allora una coppia di numeri direttori di r è data dalla 

coppia   (-b , a ). 

Possiamo allora riformulare i teoremi 1  ed  I   al seguente modo : 

 

Teorema 2 . Due rette del piano  r ed  r’ rappresentate da 

 

 r   :                                           ax + by + c = 0 
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r’   :                                          a’x + b’y + c’ = 0 

 

sono parallele se e solo se  risulta    (-b , a ) =   (-b’  , a’)   o equivalentemente    

 

( j )                                                   ( a , b ) =  ρ (a’ , b’ ) . 

 

 

A questa conclusione si poteva pervenire direttamente senza utilizzare il teorema 1 in quanto la 

condizione  (j)   equivale a   

 

                                                       det  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 b'      a'
 b       a

=0 

 

 

e tale condizione è necessaria e sufficiente affinché il sistema 

 

 

                                         
⎩
⎨
⎧

=++
=++
0c'y b' x a'  
0  c by   ax    

 

 

abbia infinite soluzioni o nessuna soluzione. 

 

 

                  Il teorema I può quindi  essere così altresì enunciato 

 

Teorema II ’ .    Due rette del piano  r ed  r’ rappresentate da 

 

 r   :                                           ax + by + c = 0 

 

r’   :                                          a’x + b’y + c’ = 0 

 

sono ortogonali se e solo se  risulta     

 

aa’ +  bb’ = 0 
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Concludiamo tale numero cercando di rappresentare tutte le rette che passino per un fissato punto 

A( xo  , yo ) .   Tale insieme di rette viene chiamato fascio di rette di centro A . 

 

Siano  r  ed  r’  due rette per  A ( xo  , yo )  rappresentate da : 

 

r   :                                           ax + by + c = 0 

 

r’   :                                          a’x + b’y + c’ = 0 

 

Poichè  A   appartiene sia ad r che ad  r’  le sue coordinate soddisfano entrambe le equazioni. Ne 

consegue che se consideriamo un’equazione del tipo 

 

(** )                                     α(ax + by + c)  +  β ( a’x + b’y + c’ )  =  0 

 

 

con  (  α  ,  β  )  ≠    ( 0 , 0  )    ottenuta  combinando linearmente le due equazioni date, essa 

rappresenta una retta ancora per il punto A in quanto le coordinate di A la soddisfano qualunque sia 

la scelta dei coefficienti  α   e  β   . Se ogni retta per A si ottiene mettendo nella  (**) un opportuno 

valore di  α   ed un opportuno valore di   β   allora al variare di questi due parametri α   e  β    la  

(**)  descrive tutte le rette per A e quindi rappresenta il fascio di rette di centro A. 

Sia quindi  r”  una qualunque retta per A  rappresentata dall’equazione : 

 

r”  :                                               a”x + b”y + c” = 0 

 

 Il sistema  formato dalle tre equazioni 

 

⎪
⎩

⎪
⎨

⎧

=++
=++
=++

0     c” b”y   a”x   
0      c' y  b' x  a'  
0       c by     ax     

 

 

risulta compatibile in quanto la coppia ( xo  , yo )  è una sua soluzione. Ne consegue che la matrice 

completa ha  lo stesso rango di quella incompleta  e quindi ha rango due . 
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Risulta allora 

 

                                                         det  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 c"    b"    a"
 c'     b'     a'
 c      b      a

=0 

 

Le tre righe di tale matrice sono quindi dipendenti e poiché le prime due sono indipendenti allora la 

terza è combinazione lineare delle prime due e così si ha l’asserto. 

Due rette per il punto A( xo  , yo )  di semplice rappresentazione sono quelle per A  parallele agli 

assi coordinati  cioè le rette   di equazione 

 

                                                  x  - xo = 0     ed    y -   yo  = 0   

 

e pertanto, per ciò che precede,  l’equazione 

 

                                       

                                                     α  ( x  - xo ) +  β  (y -   yo)  = 0  

 

 

al variare di   α  ,  β    rappresenta tutte le rette per A e per tale motivo viene chiamata l’equazione 

del fascio di rette di centro A.         

 

 

2. Rette e piani dello spazio. 

 

Sia ora  π   un piano dello spazio e siano  A, B , C  tre punti  di  π    distinti e non allineati. Un 

punto P(x,y,z) dello spazio appartiene al piano π   se e solo se i vettori  

(AP) , (AB), (AC)  sono dipendenti o equivalentemente se e solo se le tre terne 

 

( x- xA  ,  y -  yA , z -  zA ), ( xB – xA , yB  - yA  , zB -  zA) , (xC – xA  , yC  - yA  , zC -  zA) 

 

sono dipendenti. Ma allora il punto P(x,y,z) dello spazio appartiene al piano se e solo se risulta 
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det
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 -zz     -yy    -xx
-zz     -yy   -xx

   -zz     -yy      -xx

ACACAC

ABABAB

AAA

 = det 

 

= 0 

 

 

Sviluppando il determinante  sopra scritto si ottiene un’ equazione di primo grado in x, y , z del tipo 

 

ax + by + cz + d  = 0 

 

soddisfatta da tutte e sole le terne (x, y, z) coordinate dei punti P di   π  . Ovviamente ogni 

equazione proporzionale ad essa  avendo le stesse soluzioni rappresenta pur sempre il piano   π. 

Si prova facilmente che , viceversa , un’equazione di primo grado in x . y, z  rappresenta un piano 

dello spazio .  

 

A titolo di esempio si voglia rappresentare il piano π  per i tre punti   A ( 1 , 0 , 0 )    B ( 0 , 1 , 2 ) 

C(1 , 1 , 3).  Per le argomentazioni precedenti l’equazione di tale piano si ottiene sviluppando il 

determinante : 

 

                                                         det

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1      3      1      1
1     2      1      0
1     0      0      1
1    zy      x      

= 0 

 

 

   Si ha quindi che il piano richiesto ha equazione :   x + 3y – z – 1 = 0. 

 

 

Siano  π  e   π’    due piani dello spazio rappresentati rispettivamente da : 

 

π :                                              ax  +  by +  cz + d  = 0 

 

π’ :                                            a’x + b’y + c’z + d’  = 0 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1  z    y   x
1   z   y   x
1  z   y   x
1    zy      x      

CCC

BBB

AAA
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E’ ben noto che il sistema  S  

 

S :                                               
⎩
⎨
⎧

=+++
=+++

0d'  zc'y b' x a'  
0  d   cz  by ax   

 

 

 

 formato dalle due equazioni  che rappresentano i piani    π  e   π’     ha soluzioni se e solo se le due 

matrici 

                           A = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 c'     b'    a'
 c      b     a

               A’ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 d'    c'     b'    a'
 d    c      b     a

 

 

 

hanno lo stesso rango . 

 

Se il rango di A  è  due allora anche A’ ha rango due e quindi il sistema S ha infinite soluzioni. In 

questo caso quindi i due piani hanno una retta in comune ed il sistema  S fornisce una 

rappresentazione di tale retta . 

Se la matrice A ha rango  uno  allora  bisogna controllare il rango di A’ .  Se anche A’ ha rango uno 

allora le due righe di A’ sono proporzionali  e quindi i due piani dati coincidono e sono quindi 

paralleli ( impropriamente ) .  Se il rango di A’  è due il sistema S non ha soluzioni e quindi i due 

piani non avendo punti in comune sono tra loro paralleli  ( propriamente ). La conclusione delle 

nostre argomentazioni può essere riassunta nel seguente teorema  analogo al teorema 1.1  già 

stabilito per due rette di un piano . 

 

Teorema 2.1      Siano  π  e   π’    due piani dello spazio rappresentati rispettivamente da : 

 

π :                                              ax  +  by +  cz + d  = 0 

 

π’ :                                            a’x + b’y + c’z + d’  = 0 

 

I  piani    π  e   π’      sono paralleli se e solo se  risulta   

 

                                             ( a , b , c )  =   ρ ( a’ , b’  , c’ ) 
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Abbiamo così  visto che una retta  r dello spazio può essere rappresentata in due modi : in forma 

parametrica  oppure con un sistema di due equazioni rappresentative di due piani distinti che la 

contengono. 

 

 

Sia  r  una retta dello spazio rappresentata dal seguente sistema  S: 

 

 

                                                 r :  
⎩
⎨
⎧

=+++
=+++

0d'  zc'y b' x a'  
0  d   cz by ax   

 

 

Come si possono dedurre i numeri direttori di r da tale rappresentazione ?  Vediamo.  

Se   A (xA   ,      yA      ,   zA )     e   B ( xB  ,       yB  ,       zB  )    sono due punti di r   allora le loro 

coordinate verificano  il sistema S che rappresenta  r ,  e quindi valgono le seguenti relazioni : 

 

                                                a xB +  b yB  +  c zB + d  = 0 

                                                a xA +  b yA  +  c zA + d  = 0 

 

 

                                             a’ xB  +  b’ yB    +  c’ zB    + d’  = 0 

                                             a’ xA  +  b’ yA    +  c’ zA   + d’  = 0 

                                                 

 

Dalle relazioni sopra scritte , sottraendo membro a membro , si ha : 

 

 

(ii)                       
⎩
⎨
⎧

=++
=++

  0    )z - (z c'   ) y -  (y b'    )  x- (x a' 
0   )z - (z   c   ) y -  (y b    )   x- (x a 

ABABAB

ABABAB  

 

Le (ii)  mostrano che i tre numeri   direttori   ( xB - xA  ,   yB  - yA  ,   zB - zA )    che stiamo cercando 

sono una soluzione non nulla del sistema omogeneo  (nelle incognite  l , m n ) seguente : 

 

                                                     
⎩
⎨
⎧

=++
=++

0 n   c'     mb'    a'  
0 n   c      bm      a  

l

l
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e quindi essi possono ottenersi ( come già visto  nel capitolo III )  calcolando,  a segno alterno, i  

determinanti  delle matrici 

 

                                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 c'     b'   
 c      b   

       ,      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 c'     a'   
 c      a   

        ,           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 b'     a'
 b      a

 

 

ottenute dalla matrice  

 

                                                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 c'     b'    a'
 c      b     a

 

 

dei coefficienti cancellando la prima ,la  seconda e la terza colonna. 

 

 

Siano   r una retta dello spazio rappresentata   parametricamente da : 

 

 

r :                                                   
⎪
⎩

⎪
⎨

⎧

+=
+=
+=

       z     z  
        y  y    
         x  x  

o

o

o

ρυ
ρµ
ρλ

 

 

e     π    un piano rappresentato dall’ equazione  ax  +  by +  cz + d   =  0 .  Un punto  P della retta  r 

ha coordinate   (xo  +    ρ  λ   , yo  +    ρ µ  ,    zo  +    ρ ν   )  e tale punto appartiene anche al piano se 

le sue coordinate soddisfano l’equazione del piano cioè se vale la seguente eguaglianza : 

 

 

                                                   

(jjj)                      a (  xo  +    ρ  λ   )  +  b (yo  +    ρ µ  ) +  c (zo  +    ρ ν  ) + d   =  0 .   

 

 

Quindi  ogni valore di  ρ  che renda soddisfatta la  (jjj) dà luogo ad un punto della retta che giace 

anche nel piano. Bisogna quindi determinare le soluzioni della (jjj ) pensata come equazione in ρ   . 

La  (jjj)  come equazione in  ρ    è  di primo grado e del tipo  : 
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(jjj)                                             A ρ   +  B  =  0 

 

Avendo posto      : 

 

 

              A = a λ    +  b µ   +  c ν         e              B =  a xo  +  +  b yo  +  c zo  + d   . 

 

 

Ora se  risulta    A  ≠  0    l’equazione  (jjj)  ha una sola soluzione data da   ρ  =  
A

 B−   ed in tal caso 

il piano e la retta hanno un solo punto in comune quello corrispondente al valore   ρ  = 
A

 B−  

trovato.  

Se invece A = 0   ed  è  B =   0   allora ogni valore di   ρ    soddisfa  (jjj)  e quindi ogni punto della 

retta giace nel piano . Quindi  se A = 0   e  B =   0   la retta giace nel piano .  Se  A = 0  ma è B≠ 0 

allora la (jjj)  non ha soluzioni e quindi nessun punto della retta giace nel piano.  

 

Le argomentazioni sopra fatte portano quindi ad enunciare il seguente teorema. 

 

Teorema 2.2    Una retta  r dello spazio di numeri direttori  (  λ ,   µ  , ν   )     ed un piano π    

rappresentato dall’equazione      ax  +  by +  cz + d   =  0   sono paralleli se e solo se risulta : 

 

a λ    +  b µ   +  c ν  = 0. 

 

 

Sia  π  un piano passante per l’origine delle coordinate e sia  

 

ax  +  by +  cz = 0 

 

l’equazione che lo rappresenta .  

 



 20

 
 

 

 

Consideriamo il punto A ( a, b , c )   di coordinate  (a,b,c). Tale punto è distinto dall’origine, 

essendo  ( a, b , c )  ≠  (0,0,0 )  e non appartiene al piano π in quanto  aa +  bb +  cc > 0 .  

 Se  P (x , y , z )  è un punto del piano  π   risulta ax  +  by +  cz = 0 e ciò mostra che  i due 

vettori  OA   ed  OP  sono tra  loro ortogonali . Abbiamo così mostrato che il vettore OA è 

ortogonale ad ogni vettore OP  del piano e quindi OA  è ortogonale al piano .  La retta  OA   che ha 

numeri direttori    ( a, b , c )    è   quindi ortogonale al piano di  equazione   ax  +  by +  cz = 0 .   

Ovviamente un piano parallelo a  π  conserva gli stessi coefficienti  (a , b , c )   ed una retta parallela 

alla retta  OA  conserva gli stessi numeri direttori  e così è provato il seguente teorema : 

 

Teorema 2.3    Una retta  r  di numeri direttori   (  λ , µ ,  ν )    risulta ortogonale ad un 

piano di equazione     ax  +  by +  cz + d  = 0     se e solo se  risulta 

 

(   λ , µ ,  ν)    =  ρ  ( a, b , c ) 

 

 

Siano ora dati due piani  π  e  π’ distinti e non paralleli e sia  t  la retta ad essi comune.  

I  piani π  e  π’ siano rappresentati rispettivamente da  

 

π :                                                   ax  +  by +  cz + d   =  0 

 

π’ :                                                  a’x + b’y + c’z + d’  = 0 

 

Si consideri un punto A non appartenente ai due piani e siano r la retta per A ortogonale a π  ed r’ la 

retta per A ortogonale a  π’ .  La retta r essendo ortogonale a  π ha numeri direttori  (a , b , c )  ed  r’  

essendo ortogonale a  π’ ha numeri direttori  ( a’ , b’ , c’ ). Il piano determinato da r ed r’ è 
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ortogonale alla retta t e contiene il quadrilatero di lati  r, r’,s, s’ , avendo indicato con   s   la   retta  

 π ∩  π”   e con  s’ la retta    π’ ∩ π”  . 

 

 
 

 
 

Facendo riferimento alla figura gli angoli α   e  β opposti tra loro in questo quadrilatero sono 

ovviamente tra loro supplementari essendo retti gli altri due. Inoltre i piani   π  e   π’  sono tra loro 

ortogonali se e solo se  β   è un angolo retto. Valgono così le seguenti equivalenze : 

           

                                π  ┴  π’     < = >    β  =  
2
π   < = >    α  =  

2
π   < = >    r ┴  r’      

Ne segue che i due piani sono ortogonali se e solo se tali risultano le due rette  r ed r’. Tenendo 

conto del teorema II  di pagina 4 resta provato il seguente 

 

Teorema 2.4    Due  piani  π  e  π’   rappresentati rispettivamente da  

 

π :                                                   ax  +  by +  cz + d   =  0 

 

π’ :                                                  a’x + b’y + c’z + d’  = 0 

 

sono tra loro ortogonali se e solo se risulta  
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                                                  a a’  + b b’  +  c c’  = 0 

 

 

3. Fasci di piani  

 

Sia  r una retta rappresentata dal sistema  

 

 

r :                                           
⎩
⎨
⎧

=+++
=+++

0d'  zc'y b' x a'  
0 d  cz by ax   

 

 

l’ insieme di tutti i piani che contengono la retta  r  è chiamato fascio di piani di asse  r. 

Sia  P (xo  ,  yo  ,   zo )    un punto qualsiasi  di r . Allora  P con  le sue coordinate soddisfa entrambe le 

equazioni del sistema . Ne consegue che se consideriamo un’equazione del tipo 

 

(** )                   α(ax + by + cz + d )  +  β ( a’x + b’y + c’z + d’  )  =  0 

 

 

con  (  α  ,  β  )  ≠    ( 0 , 0  )    ottenuta  combinando linearmente le due equazioni date, essa 

rappresenta  ancora un piano per la retta r   in quanto le coordinate di P soddisfano tale equazione 

qualunque sia la scelta dei coefficienti  α   e  β   . Se ogni piano per r si ottiene mettendo nella  (**) 

un opportuno valore di  α   ed un opportuno valore di   β   allora al variare di questi due parametri α   

e  β    la  (**)  descrive tutti i piani per  r e quindi rappresenta il fascio di piani di asse  r . 

Sia quindi π” un qualunque piano  per r   rappresentato dall’equazione : 

 

 

π”                                 a’’x + b’’y + c’’z + d’’  = 0 . 

 

 

Il sistema  formato dalle tre equazioni  

 

                                     
⎪
⎩

⎪
⎨

⎧

=+++
=+++
=+++

0  d"  c”z b”y   a”x   
0   d'   zc' y  b' x  a'  
0   d    z c by    ax     
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ha infinite soluzioni fornite dalle coordinate dei punti di r  .  Pertanto le due matrici del sistema 

hanno lo stesso rango . Ora la matrice incompleta 

 

 

                                              A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 c"     b"    a"
  c'      b'     a'
 c      b      a

 

 

ha rango due altrimenti il sistema avrebbe una unica soluzione  e così anche quella completa 

 

                                       A’ =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

d"    c"    b"    a"
 d'     c'     b'     a'

d     c      b      a
 

deve avere rango due . Pertanto le tre righe di  A’ sono dipendenti e poiché le prime due sono 

indipendenti si ha che la terza riga è combinazione delle prime due. Si ha così l’asserto. 

 

 

4. – Stelle di piani . 

 

   In  tale numero cercheremo  di rappresentare tutti i piani  che passino per un fissato punto 

 A( xo , yo ,  zo) .   Tale insieme di piani  viene chiamato stella di piani  di centro A . 

 

Siano  π ,  π’  e  π”  tre piani per A  ed aventi in comune il  solo punto  A.  I piani  π ,  π’  e  π”   

siano rappresentati da  

 

 π  :                                           ax  +  by  +  cz  +  d   = 0 

 

π’   :                                         a’x + b’y + c’z + d’  = 0 

 

π”  :                                         a”x + b”y + c”z + d” = 0 

 

Poiché i tre piani dati hanno in comune il solo punto A allora il sistema formato dalle tre equazioni 

che rappresentano i tre piani  π ,  π’  e  π” ha una sola soluzione e quindi la sua matrice incompleta 
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ha il determinante diverso da zero.    

Inoltre poichè  A   appartiene sia a   π  sia  a   π’  e sia  a   π’’   le sue coordinate soddisfano tutte e 

tre  le equazioni. Ne consegue che se consideriamo un’equazione del tipo 

 

(*)              α(ax + by + cz + d )  + β ( a’x + b’y + c’ z + d’)+ γ ( a’’x + b’’y + c’’z + d’’) = 0  

 

con  (  α  ,  β , γ )  ≠    ( 0 , 0 , 0  )    ottenuta  combinando linearmente le tre equazioni date, essa 

rappresenta un piano, ancora per il punto A , in quanto le coordinate di A la soddisfano qualunque 

sia la scelta dei coefficienti  α   ,  β  e γ  . Se ogni piano  per A si ottiene mettendo nella  (*) un 

opportuno valore di  α   ,un opportuno valore di   β  ed un opportuno valore di  γ  allora al variare 

dei parametri α   ,   β  e  γ   la  (*)  descrive tutti i piani  per A e quindi rappresenta la stella di piani  

di centro A. 

Sia quindi  π0   un qualunque piano  per A  rappresentato dall’equazione : 

 

π0    :                                               aox + boy + coz + do = 0 

 

 Il sistema  formato dalle quattro  equazioni 

 

                                            

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+++
=+++
=+++
=+++

0   d  zc y b x a  
0   d"  c”z b”y  a”x   
0     d'  z c'  y b' x a'  
0     d   cz by     ax   

oooo

 

 

risulta compatibile in quanto la terna ( xo , yo  , zo )  è una sua soluzione. Ne consegue che la matrice 

completa ha  lo stesso rango di quella incompleta e quindi ha rango tre.  

Risulta allora 

 

                                                det

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

 d   c    b    a
d"    c"     b"     a"
 d'     c'      b'     a'

d      c      b      a

oooo

= 0 

 

Le quattro righe di tale matrice sono quindi dipendenti e poiché le prime tre sono indipendenti 

allora la quarta è combinazione lineare delle prime tre e così si ha l’asserto. 

Tre  piani  per il punto A(xo  , yo  , zo)  di semplice rappresentazione sono quelli per A  paralleli ai 
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piani  coordinati  cioè i piani  rappresentati da  :   

 

 

                               x  - xo = 0           y -   yo  = 0               z -   zo  = 0   

 

 

pertanto, per ciò che precede,  l’equazione 

 

                                       

α  ( x  - xo ) +  β  (y -   yo) + γ (z -   zo )  = 0 

 

 

al variare di   α   ,  β  e γ  rappresenta tutti i piani per A e per tale motivo viene chiamata l’equazione 

della stella di piani di centro A .         

         

Concludiamo con  alcuni esercizi .  Prima di far ciò  evidenziamo alcune 

semplici proprietà d'incidenza tra, punti , rette e piani dello spazio utili per le 

applicazioni . 

1. Siano dati un punto A ed una retta r non contenente A. 

a) C’ è una sola retta per A parallela ad r . 

b) C' è un sol piano che contiene A ed r . In tale piano giacciono tutte le rette  per 

A incidenti r .  

c) C' è un sol piano per A ortogonale ad r . In tale piano giacciono tutte le rette 

per A ortogonali ad r . 

 

2.  Siano dati un punto A ed un piano π   non contenente A. 

         a)     C'è un sol piano per A parallelo a π . Tale piano contiene tutte le rette  per 

A parallele a π . 

        b)      C’ è una sola retta per A ortogonale a  π . 

3. Siano dati una retta r ed un piano π  non contenente r . La retta r sia incidente il 
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piano ma non sia  ortogonale al piano 

                 a)    C’è un sol piano per r ortogonale  a   π   . 

4.   Siano date due rette r ed s tra loro sghembe. 

          a) C’ è un sol piano per  r  parallelo ad s . 

Concludiamo con qualche esercizio . 

Fissato nello spazio un riferimento monometrico ortogonale,  siano dati il punto 

A (1 , 1, 2)  il piano π rappresentato da   2x + y -3z + 1 = O    e la retta r rappresentata da 

r :                   
⎩
⎨
⎧

=+
=

0 2 - z   x 
0 2y   -  x 

 

 

Si rappresentino 

1. La retta per A parallela ad r . 

2. La retta per A ortogonale a π 

3. Il piano per A parallelo a  π . 

4. Il piano per A ortogonale ad r  

5. Il piano per A ed r . 

6. Il piano per r ortogonale a   π. 

7. La retta per A incidente r e parallela  a   π  . 

8. La retta per A incidente r ed ortogonale ad r . 

                     

 Soluzioni . 

Come già detto i numeri direttori di r si ottengono attraverso i minori (presi a segno 

alterno )   della matrice  

 

                                                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1      0        1
0      2-      1
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e pertanto sono (-2 , -1 , 2 ) o una terna  proporzionale  come ad esempio ( 2 ,  1 , -2 ). 

 

 Quesito 1. 

             La retta richiesta dovendo essere parallela ad r deve avere gli stessi numeri direttori 

di r quindi essa si rappresenta parametricamente al seguente modo: 

                                                           
⎪
⎩

⎪
⎨

⎧

−=
+=
+=

  2     2     z  
        1  y    

 2      1    x  

ρ
ρ

ρ
 

                    

Quesito 2 . 

          La retta richiesta per essere ortogonale a  π  deve avere numeri direttori 

proporzionali ai coefficienti (a,b,c)  dell’equazione del piano. Pertanto la retta richiesta si 

rappresenta parametricamente al seguente modo: 

                                                        
⎪
⎩

⎪
⎨

⎧

−=
+=
+=

 3     2     z  
        1  y    

 2      1    x  

ρ
ρ

ρ
 

 

Quesito 3. 

Il piano richiesto , dovendo passare per A ha una rappresentazione del tipo 

                               a(x-1) + b(y-1) + c(z-2) = 0     (stella di piani di centro A ) 

Inoltre tale piano dovendo essere parallelo a  π deve soddisfare la condizione di parallelismo 

tra piani. Bisogna pertanto scegliere  (a , b ,c)  proporzionali a   (2 , 1 , -3 ). Il piano 

richiesto ha quindi equazione  2(x-1) + (y-1) -3(z-2) = 0  cioè  2x + y -3z + 3 = 0. 

             

Quesito 4 . 

Il piano richiesto , dovendo passare per A ha una rappresentazione del tipo 

                            a(x-1) + b(y-1) + c(z-2) = 0           (stella di piani di centro A ) 

Inoltre tale piano dovendo essere ortogonale ad r deve avere i coefficienti (a ,b,c ) 

proporzionali ai numeri direttori di r che sono (2, 1, -2). Il piano richiesto ha quindi 

equazione 

                                       2(x-1) + (y-1) -2(z-2) = 0   

cioè                                        2x + y -2z + 1 = 0. 
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Quesito 5. 

Un qualunque piano per la retta r si rappresenta   ( al variare dei parametri  h e  k )   

con   l’equazione 

                                  h(x-2y) + k (x+z-2) =0 .  

 

Tale piano  (h+k)x -2hy + kz -2k = 0 contiene il punto A se le coordinate di A sono una sua 

soluzione quindi se  h+ k -2k +2k -2k = h-k = 0.  Quindi è  h=k   e pertanto il piano richiesto 

è  (scegliendo  h = k =1 )    2x-2y +z -2= 0. 

 

Quesito 6.   

Un qualunque piano per la retta r si rappresenta ( al variare dei parametri  h e  k )  

con  l’equazione 

                                              h(x-2y) + k (x+z-2) =0 .  

Tale piano  (h+k)x -2hy + kz -2k = 0 è ortogonale al piano  π  se è soddisfatta la condizione 

di ortogonalità tra piani  cioè se è 2(h+k) -2h -3k = -k=0 . Quindi è 

 k = 0 e pertanto il piano richiesto è  (scegliendo  h = 1)    x – 2y = 0. 

 

Quesito 7  

La retta  richiesta dovendo passare per A ed incidere r si trova sul piano che contiene 

A ed r. Dovendo inoltre passare per A ed essere parallela a  π si trova sul piano per A 

parallelo a π.   Quindi la retta richiesta dovendo stare su questi due piani è la retta comune a 

questi due piani e quindi si rappresenta con 

                                                  
⎩
⎨
⎧

=++
=+−

0    3  3z-y  x 2  
0   2- z 2y 2x    

 

Quesito 8 

La retta  richiesta dovendo passare per A ed incidere r si trova sul piano che contiene 

A ed r. Dovendo inoltre passare per A ed essere ortogonale ad r   si trova sul piano per A 

ortogonale a r.  Quindi la retta richiesta dovendo stare su questi due piani è la retta comune 

a questi due piani e quindi si rappresenta con 

 

                                                  
⎩
⎨
⎧

=++
=+−

0    1  2z-y  x 2  
0   2- z 2y 2x    
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Capitolo II 
 

Piani affini e proiettivi 
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1. Piani affini e proiettivi. 
 
 

Un  piano  affine  è  una coppia  (  α  , R  )   dove α   è un insieme non vuoto i cui elementi 

sono detti punti ed  R   è una famiglia di parti proprie, ognuna di cardinalità almeno due ,   i cui 

elementi sono detti  rette  verificante le seguenti proprietà : 

 

1. due punti appartengono ad una unica retta. 

2. dati una retta  l ed un punto  p non appartenente ad l  esiste una sola retta per p ad 

intersezione vuota con  l    ( unicità della parallela ) 

3. esistono tre punti non allineati. 

 

Sia  (  α  , R  )    un piano affine  . Due rette  r ed  r’   le diciamo  parallele se è  r  = r’ 

oppure  è   r ∩   r’ = ∅ .  Tale relazione è, come è facile controllare , una relazione 

d’equivalenza nell’insieme  R   delle rette del piano. 

Per la proprietà 2  (unicità della parallela ) una retta  r   insieme a tutte le sue parallele  

fornisce una partizione dei punti del piano. 

 Inoltre una retta r e tutte le sue parallele definiscono un   fascio improprio  di rette del 

piano.  

L’insieme di tutte le rette passanti per un fissato punto p viene chiamato fascio proprio di 

rette di centro p. 

 

Un  piano  proiettivo  è  una coppia  (  π, L )  dove  π  è un insieme non vuoto i cui elementi 

sono detti punti ed  L   è una famiglia di parti proprie di  π  i cui elementi sono detti  rette  

verificante le seguenti proprietà : 

 

a)   due punti appartengono ad una unica retta. 

b)  due rette distinte si intersecano  in un unico punto. 

c)  esistono quattro punti a tre a tre non allineati .  

 

Le proprietà  a) , b) , c) sono equivalenti ad  

 

a)   due punti appartengono ad una unica retta. 

b)  due rette distinte si intersecano  in un unico punto. 

c’)   ogni retta ha almeno tre punti .  



 31

 

Dimostrazione. 

Supponiamo che siano verificate le proprietà  a) , b) , c)  e siano A , B , C , D  i 

quattro punti a tre a tre non allineati che il piano possiede. Sia L una retta qualsiasi di π . 

Uno dei punti  A , B , C , D  non appartiene ad L e sia , per fissare le idee , il punto A. 

Poiché A , B , C , D  sono punti a tre a tre non allineati allora risultano distinte le tre rette 

AB , AC , AD . Tali rette intersecano L in tre punti distinti e così L ha almeno tre punti.  

Viceversa supponiamo siano verificate le proprietà  a) , b) , c’)  . Siano L ed L’ due 

rette distinte (esse esistono perché le rette sono parti proprie)  e sia O il punto che hanno in 

comune. Poiché ogni retta ha almeno tre punti possiamo scegliere su L – {O } due punti 

distinti A e B e su L’ – {O }   due punti distinti C e D . I quattro punti A, B, C , D  sono a tre 

a tre non allineati e l’asserto è così provato. 

 

 

Il primo risultato importante  relativo a tali strutture è il seguente : 

 

Proposizione  1.1.   Le rette di un piano affine sono equipotenti . Le rette di un piano 

proiettivo sono equipotenti. 

Dimostrazione .  Sia    (  α  , R  ) un piano affine  e siano  r ed r’  due sue rette tra loro 

incidenti. Sia  y il punto comune ad r ed r’. Siano  p un punto di  r distinto da y e sia  p’ un 

punto di r’ distinto da y . Sia  t   la retta  pp’.  Per ogni  punto x di r  sia  t’  la retta per x 

parallela  a  t  e sia x’ il punto di incontro tra  t’ ed  r’. La corrispondenza   x   x’  è biettiva 

onde è  |  r | = | r’ | . Se le rette  r ed r’ sono tra loro parallele si consideri la retta  t che unisce un 

punto  p di r con un punto p’ di  r’. Essendo  la retta  t incidente sia r che r’ risulta per ciò che 

precede  | r | = |  t |  e   | r’ | = | t  |  onde è ancora     |  r | = | r’ | . 

Sia  ora   (  π , L ) un piano proiettivo e siano r  ed  r’ due rette distinte incidenti tra loro nel 

punto y . Siano  p un punto di  r distinto da y e sia  p’ un punto di r’ distinto da y . Sia  t   la retta  

pp’.  Poiché  t  ha almeno tre punti c’è su t un punto z  distinto da p e p’. Il punto z  non 

appartiene quindi né  ad  r  né ad  r’ . Per ogni punto x di r  sia x’ il punto di r’  intersezione tra 

la retta  r’ e  la retta [x z]. La corrispondenza  x  x’  è  biettiva onde è  |  r | = | r’ | . 

 

Per gli scopi di questa trattazione supporremo che gli insiemi  α   e   π  sostegni dei due piani ,affine 

e proiettivo, siano infiniti e che tali risultino le loro rette.  
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Due piani affini     (  α  , R  )  e     (  α ’  , R ’ )  si dicono  isomorfi   se esiste una biezione  

f  :  α   α ’      tra i sostegni  α   ed   α ’   che trasforma  rette di  α   in rette di  α ’  .  

E’ facile controllare che se f è un isomorfismo anche la funzione inversa  f-1 è un 

isomorfismo in quanto trasforma le rette di α ’ nelle rette di  α  . 

Evidentemente se due piani affini sono isomorfi allora la cardinalità delle rette  di  α   

eguaglia  la cardinalità  delle rette di  α ’   

Due piani proiettivi    (  π , L )   e   (  π’ , L ‘)  si dicono  isomorfi   se esiste una biezione   

f :  π →    π’     tra i sostegni  π  ed   π’   che trasforma  rette di  π  in rette di  π’ .  

E’ facile controllare che se f è un isomorfismo,  anche la funzione inversa  f-1 è un 

isomorfismo in quanto trasforma le rette di π’ nelle rette di  π  . 

Evidentemente se due piani proiettivi sono isomorfi allora la cardinalità delle rette  di    π  

eguaglia  la cardinalità  delle rette di  π’   .  

Osservando le due definizioni date, di piano affine e piano proiettivo,  si osserva che la 

differenza di fondo è che in un piano affine ci sono rette ad intersezione vuota ( rette parallele 

tra loro ) mentre in un piano proiettivo due rette hanno sempre un punto in comune.  

L’ aspetto comune è che in entrambe le strutture per due punti passa una sola  retta. 

Mostreremo ora come ogni piano affine possa , con l’aggiunta di opportuni nuovi punti e 

nuove rette, essere trasformato in un piano proiettivo . E’ chiaro a priori che i punti che 

aggiungeremo dovranno far sì che due rette che nel piano affine hanno intersezione vuota nel 

nuovo piano abbiano un punto in comune. 

Vediamo come si effettua questa costruzione. 

Sia  r una retta del piano affine . Indichiamo con  Or  un oggetto da noi scelto e che 

chiamiamo punto improprio ed ampliamo la retta r aggiungendo ad essa questo nuovo punto  . 

Ogni retta del piano ha quindi un nuovo punto ed il criterio che seguiremo per tale attribuzione è 

il seguente : 

                                        Or  =  Os        ⇔         r  è parallela ad s  

 

(esplicitamente :  il punto Or    aggiunto ad r coincide col punto  Os  aggiunto ad s   se e solo se 

r ed s sono rette tra loro parallele ) 

Pertanto con tale criterio una retta  s parallela ad r sarà ampliata con lo stesso punto che 

abbiamo aggiunto ad  r ed in tal modo le due rette   r ed  s  , prima tra loro parallele,  risultano 

ora incidenti nel punto Or  che è ad esse comune . 

Indichiamo con  ∆   l’insieme  di tutti i punti impropri Or  al variare di r nel piano . Che 
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cardinalità ha   ∆   ?   Vediamo . 

Si consideri un punto p del piano e sia  Fp   il fascio proprio di rette di centro p . Per ogni 

retta  r  di   Fp   indichiamo sempre con  Or  il suo  punto improprio . E’ chiaro che i punti  Or  al 

variare di r in Fp sono tutti distinti tra loro ed esauriscono come ora vedremo l’insieme   ∆ .   

Infatti sia  t una retta del piano non passante per p . Se  r è l’unica retta per p parallela a t  allora 

il punto  Ot  aggiunto alla retta t coincide con il punto Or  aggiunto alla retta r.  

Pertanto i punti impropri sono tanti quante le rette per p . Chiameremo  ∆  retta impropria. 

Sia  r una retta del piano  e  pensiamola ampliata col suo punto improprio Or . Sia p un punto 

non appartenente ad r . Le rette per p sono tante quanti i punti di r ampliata . Infatti  la 

corrispondenza 

x ∈  r     →       [p,x] ∈  Fp   

che associa ad un punto x di r la retta  [p,x]  che unisce p ed x  è  biettiva.  

Pertanto anche una retta r del piano quando la si pensi ampliata col suo punto improprio ha 

tanti punti quante le rette di un fascio proprio. 

Si consideri ora l’insieme   π =   α   ∪   ∆    ottenuto aggiungendo ad  α   i nuovi punti , 

quelli impropri. Per distinguere i punti di  π  tra vecchi e nuovi , chiameremo propri i punti di π  

che sono punti di α   ed  impropri   i punti π  di  che sono punti di  ∆     .  Sia ora   L   la seguente 

famiglia di parti di   π  . Chiameremo  rette  gli elementi di  L   . Per ogni retta  r  del piano 

affine indichiamo con  r* = r  ∪ { Or }  il sottoinsieme di  π  ottenuto aggiungendo ad r il suo 

punto improprio  Or . Le rette di   π  elementi di  L   sono  ∆ , detta retta  impropria , e tutte le 

rette  ampliate  r*    al variare di r  nel piano affine  (  α  , R  ).   Le rette r* sono dette  proprie.  

Ora proveremo che la coppia  (  π  ,  L ) è un piano proiettivo.  

Siano  p  e  p’  due punti distinti di   π  .  Se  p e  p’ sono entrambi propri , detta r la retta di 

α  per essi,  allora r*  è l’ unica retta  di  π  che contiene tali due punti. Se p e p’ sono entrambi 

impropri allora  ∆  è l’unica retta che contiene tali due punti. Se p è proprio e  p’ = Os  è 

improprio allora detta r l’unica retta di  (  α  , R  )  per p parallela ad s si ha che  r*  è l’ unica 

retta  di  π  che contiene i due punti  p e  p’ . 

Siano ora  l   ed  l’  due rette distinte di   (  π  ,  L ). Se una delle due è la retta  impropria, per 

esempio sia   l’ =  ∆     allora  la retta  l  essendo propria possiede un solo punto improprio che è 

quindi l’unico punto che essa ha in comune con  l’  . Possiamo quindi supporre che entrambe le 

rette  l  ed  l’ siano proprie . Poniamo quindi  l  = r  ∪ { Or }  ed  l’ = s  ∪  {Os }   . Se le rette  r ed 

s del piano (  α  , R  )  sono parallele allora  è    Or  = Os     e quindi  l    ed  l’  hanno in comune 

tale punto  Or  . Se   r  incide  s  nel punto p  allora  p è il punto comune  ad   l    ed    l’ . 
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Poiché ogni retta  r   di (  α  , R  )   ha almeno due punti allora ogni retta  r*  ampliata ha 

almeno tre punti e così ogni fascio proprio di rette con centro un punto p di α   ha almeno tre 

rette. Ne segue che anche la retta ∆    ha almeno tre punti. 

Abbiamo così provato che la coppia   (  π  ,  L )   è un piano proiettivo. 

 

Il piano proiettivo così ottenuto viene chiamato l’ampliamento proiettivo del piano affine. 

 

Possiamo ora far vedere che ogni piano proiettivo è isomorfo ad uno ottenuto come 

ampliamento di un piano affine . Vediamo. 

Sia quindi (  π  ,  L )   un piano proiettivo e sia  Lo  una sua retta. Priviamo il piano proiettivo 

della retta  Lo  e di tutti i suoi punti . Quindi consideriamo ciò che rimane dopo questa 

depauperazione . Denotiamo con  α   l’insieme  ottenuto privando π  dei punti di  Lo . Le rette di    

α sono le rette L  di π ,  distinte da Lo , ciascuna privata del punto che essa ha in comune con  

Lo.  Indicando con  

                        R = { l  = L –  ( L ∩ Lo )  ,   L ≠  Lo   L ∈  L }  

 la famiglia di tali rette possiamo ora far vedere che la coppia  (   α   ,  R   ) è un piano affine . 

Siano  p  e p’ due punti distinti di  α  . Essendo p e p’ punti distinti  di π  c’è  una sola retta L nel 

piano proiettivo che contiene questi due punti . La retta   l  = L – ( L ∩ Lo ) è quindi l’unica retta 

di  α  per tali due punti. Sia ora  l  = L – L ∩ Lo    una retta di α  e  p un punto di α  non 

appartenente ad   l   . Sia L’ la retta del piano proiettivo che unisce i punti  p  e  po = L ∩ Lo    . 

La retta  l’  = L’ – {po} è l’unica retta di   α   per  p  parallela ad  l .  

Poiché in α esistono almeno due rette  esistono tre punti non allineati. La coppia ( α  ,  R ) è 

quindi un piano affine . 

Sia  po  un punto di  Lo   . Consideriamo tutte le rette L di  π   distinte da Lo  passanti per  po , 

Ognuna di tali rette , privata del punto  po  , dà luogo ad una retta   l  del piano affine. Ne segue 

che tutte le rette  l  ottenute in corrispondenza alle rette L per  po sono tra loro a due a due 

parallele e costituiscono quindi nel piano  α  un fascio improprio. Se si aggiunge ad ognuna di 

tali rette il punto  po come loro punto improprio si ottiene un piano proiettivo isomorfo al piano 

(  π  ,  L )  ( l’identità realizza infatti  un isomorfismo tra questi  due piani)  . 

 

Mostreremo ora due esempi . Il primo sarà un esempio di piano affine .Il secondo sarà un 

esempio di piano proiettivo. Per entrambi gli esempi ci serviremo del campo dei numeri reali 

(perché questo è utile ai nostri scopi ) ma la costruzione che faremo sarebbe possibile ed eguale  

se sostituissimo il campo reale con un altro campo . 
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2. Esempio di piano affine:   Il  piano affine numerico reale. 

 

Sia  R  il campo dei numeri reali . Sia    α   =  R2      l’insieme delle coppie ordinate di 

numeri reali . Chiameremo   punti   gli elementi di   α     . Se  p = ( x , y )  è un punto i due 

numeri  x  e  y  saranno chiamati le sue coordinate . Il   numero  x  è chiamato l’ascissa  di  p 

mentre il numero  y  è chiamato l’ordinata di p . 

Consideriamo una terna ordinata di numeri reali  ( a , b , c )  con  la condizione che  (a, b ) 

≠ ( 0 , 0 ). Con la nostra scelta , i tre numeri   ( a , b , c )  ci consentono di poter considerare la 

seguente equazione di primo grado nelle variabili  x ed y : 

                               

(1)                                              a x  +  b y  +  c  = 0 

 

Ci sono infinite coppie  ( x1 , y1 )  che sono soluzioni dell’equazione  (1) anzi tali coppie 

sono in numero pari alla cardinalità  | R | di  R . Infatti  se  è ad esempio  a ≠  0  le coppie 

soluzioni della (1) sono al variare di y in  R  tutte e sole  le seguenti   ( -by-c
a

  ,  y ). 

Tutte le soluzioni dell’equazione (1), essendo infinite coppie ordinate di numeri reali ,sono 

quindi un sottoinsieme infinito di  α    . Tale sottoinsieme r sarà chiamato retta  e l’equazione 

(1) che l’ha definito sarà chiamata la sua   equazione. Si dice anche che l’equazione (1) 

rappresenta tale retta. 

E’ chiaro che se   ( a’ , b’ , c’ )  è proporzionale ad  ( a , b , c )   e si ottiene da  ( a , b , c )   

moltiplicando questa per un numero diverso da zero allora le due equazioni  

 

                       a x  +  b y  +  c  = 0        e         a’ x  +  b’ y  +  c’  = 0 

 

    hanno le stesse soluzioni e quindi definiscono la stessa retta . 

La famiglia di tutte le rette  r di  R2  sarà indicata con   RR  . 

Se r è una retta ed       

(1)                                                      a x  +  b y  +  c  = 0 

è l’equazione che l’ha definita possiamo descrivere i punti di r  al seguente modo . Ricordiamo che i 

punti di r sono le coppie   ( x1 , y1 )  che sono soluzioni dell’equazione  a x  +  b y  +  c  = 0. 

Ora se  ( x0 , y0 )  è un punto di  r   allora  ( x0 , y0 )  è una soluzione dell’equazione   
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a x  +  b y  +  c  = 0 . Per quanto visto nel capitolo riguardante lo studio dei sistemi di equazioni 

lineari,  tutte le soluzioni  S dell’ equazione  (1) si ottengono aggiungendo ad una sua soluzione 

tutte le soluzioni dell’equazione  

(2)                                                      a x  +  b y    = 0 

omogenea associata. D’altra parte lo spazio delle soluzioni di  a x  +  b y    = 0  è un sottospazio So 

di   R2   di dimensione  uno e quindi tali soluzioni sono determinate tutte attraverso la conoscenza di 

una soluzione non nulla . La  coppia  (  -b , a )  è una soluzione non nulla dell’equazione  

                                                    a x  +  b y    = 0 

e quindi per quanto detto,  essa è una base dello spazio  So delle soluzioni , che sono quindi tutte del 

tipo  ρ ( -b , a )  con   ρ   numero reale . Per semplicità di scrittura poniamo 

 

                                    λ    =  -b                 µ    =  a 

e tale coppia  (  λ    ,  µ   )  ( base di  So )  sarà chiamata coppia di  numeri direttori di r .  E’ 

evidente che una coppia   (  λ ’  ,  µ ’  )  proporzionale a   (  λ    ,  µ   )  secondo un fattore di 

proporzionalità non nullo è anch’essa base di So e quindi  è anch’essa una coppia di numeri direttori 

di r . I numeri direttori di r  sono quindi  non unici , non entrambi nulli, e definiti a meno di un 

fattore di proporzionalità non nullo. 

Abbiamo ricordato che tutte le soluzioni dell’equazione  a x  +  b y  +  c  = 0  si ottengono 

sommando ad una sua soluzione ( x0 , y0 ) tutte le soluzioni dell’equazione   a x  +  b y    = 0    

omogenea associata. Conservando le notazioni sopra introdotte si ha allora  che le coppie  ( x , y )  

soluzioni dell’equazione  a x  +  b y  +  c  = 0    sono tutte descrivibili al seguente modo : 

 

                                    ( x , y ) =  ( x0 , y0 ) +  ρ ( λ  ,  µ  ) 

 

Si conclude quindi che i punti  ( x , y ) di r  si ottengono  al variare del parametro reale  ρ   con 

le seguenti formule    

(3)                                                   0

0

x  =    x   + ρλ    
y  =    y   + ρµ   

⎧
⎨
⎩

 

Quando si rappresentino i punti di una retta r in questo modo si dice che r è stata   rappresentata 

parametricamente ( in quanto è il parametro ρ   che variando in  R  permette di descrivere tutti i 

suoi punti ). 

E’ utile osservare  che le infinite coppie ( x, y ) che si ottengono al variare di  ρ   in  R  con 

formule del tipo    
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                                                    0

0

x  =    x   + ρλ    
y  =    y   + ρµ   

⎧
⎨
⎩

 

dove è  ( λ  ,  µ  )  ≠  ( 0 , 0 )  sono i punti di una retta in quanto  tali coppie sono le soluzioni di 

un’equazione  del tipo   ax + by + c = 0.  Infatti supposto  che sia ad esempio  λ  ≠   0   si ha : 

 

                                                        ρ   =  ox-x
λ

 

e quindi   

                                                        y = y0  + ox-x
λ

µ  

 

Pertanto le coppie  (x , y )  descritte  da   0

0

x  =    x   + ρλ    
y  =    y   + ρµ   

⎧
⎨
⎩

 sono le soluzioni dell’equazione 

 

                                        µ  x -  λ y  + λ  y0  - µ  x 0= 0 

 

e quindi sono i punti di una retta .  

 

Siano ora  r  ed  r’  due rette  e siano   

(1)                                                   a x  +  b y  +  c  = 0    

   ed   

(2 )                                                 a’ x  +  b’ y  +  c’  = 0   

 

 le equazioni che definiscono r ed r’ . Vogliamo stabilire quando  r incide r’  o   quando r è parallela 

ad r’ . Un  punto  ( x0 , y0 )  appartiene sia ad r che ad r’  se la coppia ( x0 , y0 )  è soluzione di 

entrambe le equazioni e quindi se essa è soluzione del sistema S formato dalle due equazioni 

assegnate. Viceversa una soluzione  di tale sistema S fornisce un punto comune alle due rette. 

Occorre quindi discutere il sistema  S  formato dalle due equazioni : 

                               S :        
a x  +  b y  +  c  = 0   
a' x  +  b' y  +  c'  = 0  

⎧
⎨
⎩

 

Siano   

 

                                A=  
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

                      A’ =  
a   b   c
a'  b'  c'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 



 38

 

le due matrici , incompleta e completa , del sistema S. 

Se 

                                                     det 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

≠  0 

 

allora il sistema S ha una sola soluzione e quindi le due rette  r  ed  r’  sono tra loro incidenti. 

Se   det 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 0   allora  il rango di A è uno . Se  A’ ha rango due il sistema S non ha 

soluzioni e quindi le due rette sono tra loro parallele. Se   A’  ha rango uno allora le sue righe sono 

proporzionali e quindi le due rette r  ed  r’  sono coincidenti e quindi pur sempre parallele. 

In ogni caso  detA = 0  comporta che r ed r’ sono parallele. Viceversa se  r  ed  r’ sono parallele, 

per ciò che precede , è necessariamente  det A = 0. 

Abbiamo così provato la seguente : 

 

Proposizione 2.1  Due rette   r  ed   r’  rappresentate da 

                                                        r :            a x  +  b y  +  c  = 0 

r’ :          a’ x  +  b’ y  +  c’  = 0 

sono parallele se e solo se risulta  det 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 0    o equivalentemente  se  e  solo se  la coppia 

 (a , b ) è proporzionale alla coppia ( a’ , b’ ). 

 

 Poichè  risulta  

 

                                          det 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

= det   
-b   a
-b'  a'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

allora ricordando che  (-b , a )  è una coppia di numeri direttori di r  e  (-b’ , a’ ) è una coppia di 

numeri direttori di  r’ possiamo riformulare la proposizione 1.1 al seguente modo : 

 

Proposizione 2.2  Due rette   r  ed   r’  rappresentate da 

 

r :            a x  +  b y  +  c  = 0 

r’ :          a’ x  +  b’ y  +  c’  = 0 
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sono  parallele   se e solo se esse hanno gli stessi numeri direttori.    

 

Sia  r  una retta rappresentata dall’equazione    ax +by + c = 0  . Per quanto precede 

l’equazione 

 

 (1.1)                                               ax + by + k = 0 

 

rappresenta ,al variare di k in R , tutte le rette parallele ad  r  . Per questa ragione essa rappresenta il 

fascio improprio costituito da r e da tutte le sue parallele. 

 

 

Concludiamo tale numero cercando di rappresentare tutte le rette che passino per un fissato punto  

P =( xo  , yo ) .   Tale insieme di rette viene chiamato fascio proprio di rette di centro P . 

 

Siano  r  ed  r’  due rette per  ( xo  , yo )  rappresentate da : 

 

r   :                                           ax + by + c = 0 

 

r’   :                                          a’x + b’y + c’ = 0 

 

Poichè il punto ( xo  , yo )   appartiene sia ad r che ad  r’  le sue coordinate soddisfano entrambe le 

equazioni. Ne consegue che se consideriamo un’equazione del tipo 

 

(** )                                     α(ax + by + c)  +  β ( a’x + b’y + c’ )  =  0 

 

 

con  (  α  ,  β  )  ≠    ( 0 , 0  )    ottenuta  combinando linearmente le due equazioni date, essa 

rappresenta una retta ancora per il punto ( xo  , yo )   in quanto le coordinate di tale punto la 

soddisfano qualunque sia la scelta dei coefficienti  α   e  β   . Se ogni retta per ( xo  , yo )  si ottiene 

mettendo nella  (**) un opportuno valore di  α   ed un opportuno valore di   β   allora al variare di 

questi due parametri α   e  β    la  (**)  descrive tutte le rette per ( xo  , yo )   e quindi rappresenta il 

fascio di rette di centro tale punto. 

Sia quindi  r”  una qualunque retta per ( xo  , yo )    rappresentata dall’equazione : 
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r”  :                                               a”x + b”y + c” = 0 

 

 Il sistema  formato dalle tre equazioni 

 

⎪
⎩

⎪
⎨

⎧

=++
=++
=++

0     c” b”y   a”x   
0      c' y  b' x  a'  
0       c by     ax     

 

 

risulta compatibile in quanto la coppia ( xo  , yo )  è una sua soluzione. Ne consegue che la matrice 

completa ha  lo stesso rango di quella incompleta  e quindi ha rango due . 

Risulta allora 

 

                                                         det  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 c"    b"    a"
 c'     b'     a'
 c      b      a

=0 

 

Le tre righe di tale matrice sono quindi dipendenti e poiché le prime due sono indipendenti allora la 

terza è combinazione lineare delle prime due e così si ha l’asserto. 

Due rette per il punto ( xo  , yo )  di semplice rappresentazione sono  

 

                                                  x  - xo = 0     ed       y -   yo  = 0   

 

e pertanto, per ciò che precede,  l’equazione 

                             

(3)                                              α(x  - xo)  +  β (y -   yo )  =  0 

 

al variare di  α  e   β    con (  α  , β  ) ≠  ( 0 , 0 )  rappresenta tutte le rette per il punto   ( xo  , yo ) .  

L’ equazione  (3)  è chiamata  l’equazione del fascio proprio di rette di centro ( xo  , yo ) . 

Siamo ora in grado di provare la seguente : 

 

Proposizione 2.2   La coppia  (   R2   ,   RR   )   è un piano affine.  

Dimostrazione.  Siano (x1 ,y1) e (x2 ,y2 ) due punti distinti. Una retta che contenga tali due 

punti deve essere rappresentata da una equazione  ax + by + c = 0  che abbia le due coppie   (x1 ,y1) 
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e (x2 ,y2 ) tra le sue soluzioni. Pertanto dovrà  essere : 

(**)                     1 1

2 2

a x   +  b y   +  c  = 0   
a x   +  b y   +  c  = 0  

⎧
⎨
⎩

 

Tale sistema omogeneo nelle incognite  ( a , b , c ) ha la matrice dei coefficienti  

1   1  

2   2  

x y 1
x y 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

di rango due in quanto i due punti (x1 ,y1) e (x2 ,y2 ) sono distinti . Le soluzioni  del sistema (**) 

sono quindi un sottospazio di R3  di dimensione uno ed una sua base si ottiene attraverso i minori 

d’ordine due della matrice  1   1  

2   2  

x y 1
x y 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

  presi  a segni alterni. 

Le terne ( a, b , c) non nulle da noi cercate sono quindi infinite e tutte proporzionali tra loro. Esse 

quindi definiscono tutte la stessa retta che è quindi l’unica passante per i due punti  (x1 ,y1) e  

(x2 ,y2 ) distinti assegnati. 

Sia ora  l   una retta definita dall’equazione   ax + by + c = 0  e sia  (xo , yo)   un punto non 

appartenente ad   l   . Per ciò che precede una qualunque retta per   (xo , yo)   è rappresentata da 

un’equazione del tipo  

                                                α(x  - xo)  +  β (y -   yo )  =  0 

Tra esse l’unica retta parallela ad  l   è quella che si ottiene scegliendo  α  e   β  proporzionali ad  a  e  

b . Pertanto c’è una sola retta per (xo , yo)  parallela ad  l   ed essa è rappresentata dall’equazione 

 

                                               a(x  - xo)  +  b (y -   yo )  =  0 

 

Poiché una retta r è un sottoinsieme proprio di   R2  allora tre punti , due scelti  su r ed uno 

fuori da r , sono tre punti non allineati del nostro piano  α  . 

Resta così provato che la coppia  (   R2   ,   RR   )   è un piano affine. Tale piano affine è 

detto  piano affine numerico reale. 

 

Per le applicazioni è molto utile la seguente osservazione .  

Dalla dimostrazione fatta segue che l’equazione della retta che congiunge i punti distinti  

(x1, y1)  e  (x2, y2)  si ottiene sviluppando il seguente determinante : 
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                                       det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1  y   x
1  y   x
1   yx     

 22

 11

 

 = 0 

                                             

 

3. Il piano affine numerico complesso. 

Abbiamo già detto che la costruzione fatta per ottenere il piano affine numerico reale  

 (   R2   ,   RR   ) è indipendente dal fatto che il campo usato sia quello dei numeri reali. Lo stesso 

risultato si ottiene se si considera al posto del campo reale un qualsiasi campo K. 

A noi interessa ora il caso in cui il campo K sia il campo dei numeri complessi C . 

Partendo dal campo complesso  C  possiamo quindi costruire un piano affine  

 (   C 2   ,   RC   )   che ha come punti  le coppie ordinate ( a, b ) di numeri complessi e come rette i 

sottoinsiemi di  C 2     ognuno dei quali è l’insieme delle soluzioni di un’equazione   

                                               

                                ax + by + c = 0           a , b , c  ∈  C    , (a , b) ≠   ( 0 , 0 ) 

 

di primo grado non identica a coefficienti complessi. 

Un punto (a,b) di  C 2   si dirà  reale  se  ( a, b) sono entrambi numeri reali . Il punto (a,b) di  

C 2   si dirà immaginario  se i due numeri complessi non sono entrambi reali 

Osserviamo che il piano affine reale  (   R2   ,   RR   )  è contenuto nel piano affine  

 (   C 2   ,   RC   )  nel senso ora precisato. 

Sia   

                              ax + by + c = 0           a , b , c  ∈  R    , (a , b) ≠   ( 0 , 0 ) 

un’ equazione  a coefficienti reali . Essa determina  due rette   l  ed   L  la prima del piano 

 (   R2   ,   RR   )   e la seconda del piano (   C 2   ,   RC   )    a seconda che si vogliano considerare le 

sue soluzioni reali o le sue soluzioni complesse.  

 

                                  l   = { ( x , y ) ∈  R2    ,  ax +by + c = 0   }      

                                 L   = { ( x , y ) ∈  C2    ,  ax +by + c = 0   }         

   

 E’ ovvio che è   l  ⊂  L  quindi ogni retta del piano reale è parte di una retta del piano complesso. 

La retta L si può quindi pensare come un   “allungamento”   di   l    .  Non tutte le rette del piano 

complesso sono allungamenti di quelle reali. Vediamo. 
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Una retta L del piano complesso rappresentata dall’equazione  

                         ax +by + c = 0           a , b , c  ∈  C    , (a , b) ≠   ( 0 , 0 ) 

si dirà   reale   se (a , b , c ) è proporzionale  ad una terna di numeri reali. Quando la retta è reale 

essa ha quindi  infiniti punti reali ed infiniti punti immaginari. 

 

E’ ben noto che il campo complesso è dotato di un automorfismo non identico detto 

coniugio che si ottiene associando ad ogni numero complesso  z = a + ib    il numero complesso   

z  = a - ib . 

Quando z è un numero reale (cioè  è  b = 0)  allora risulta  z = z  . Viceversa se risulta z = z  allora  

è  2ib =0  e quindi  b = 0   e pertanto  z  è reale .  

Associando ad ogni punto  ( z1 , z2)   del piano complesso C2  il punto di  ( 1z , 2z  )  si ottiene un 

isomorfismo del piano complesso in sé . Tale isomorfismo trasforma la retta  

                               

                      L :      ax +by + c = 0           a , b , c  ∈  C    , (a , b) ≠   ( 0 , 0 ) 

 

nella retta L  ,  detta coniugata di  L , seguente : 

                      

                                 L     :       a x + b y + c  = 0 

Ricordiamo ora che l’equazione della retta che congiunge i punti distinti  (x1, y1)  e  (x2, y2)  

si ottiene sviluppando il seguente determinante : 

 

                                 

                                       det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1  y   x
1  y   x
1   yx     

 22

 11

 

 = 0 

Pertanto è facile controllare che la retta che congiunge due punti reali è reale ed è reale altresì la 

retta che congiunge due punti  complessi e coniugati. 

Da ciò segue allora facilmente che: 

 

Proposizione 3.1 Una retta è reale se e solo se essa coincide con la sua complessa 

coniugata. 

 

Se una retta L non è reale essa , per ciò che precede , ha al più un punto reale.  
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Facilmente si ha che : 

 

Proposizione 3.2 Una retta L non reale ha un punto reale se e solo se essa incide la sua 

complessa coniugata.  

 

A titolo di esempio la retta  

 

                                      L :             i x  - y = 0 

 

ha (0,0) come suo unico punto reale . Infatti se x ≠  0  è reale ,  y = ix  è non reale e quindi  (x, y )  è 

immaginario. Se x è non reale ancora (x, y )  è immaginario.  

 

Sempre per esemplificare la retta    x + y + i = 0   non ha punti reali ed è infatti parallela alla sua 

coniugata   x + y – i = 0 . 

    

 

4. Nozione di riferimento reale . 

In questo numero col simbolo (  α o , R o )   rappresenteremo il piano della geometria elementare 

che viene sempre nella nostra mente identificato coi punti e le rette di una qualunque superficie 

piana che ricada sotto i nostri sensi. Questi punti e rette (che sono parti proprie del piano) si 

assumono come concetti primitivi e non vengono definiti ma si ritiene che essi abbiano le due 

proprietà seguenti. 

 

a) due punti distinti appartengono ad una unica retta. 

b) Dati una retta  r  e un punto p fuori di r  c’è una unica retta per p ad intersezione vuota con  

r.  

Pertanto l’idea di piano che abbiamo   “interiorizzato”   è  quella di piano affine. L’unico 

problema che spesso si ha è  che per tracciare delle linee o dei cerchi , per misurare angoli, 

segmenti   etc .su tale piano  occorre avere a disposizione  degli strumenti (riga , compasso, 

goniometro, metro etc. ) . Sembra quindi utile disporre di un piano affine isomorfo a   

(α o , R o)    in cui queste stesse operazioni si possano eseguire solo attraverso l’utilizzo di regole 

di calcolo che ci preoccuperemo appunto di acquisire. Vediamo come si procede. 

Per realizzare il nostro scopo occorre intanto introdurre la nozione di riferimento su una retta , e 

la nozione di riferimento in un piano . 
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Iniziamo col definire un riferimento su una  retta. 

Sia r una retta del piano. Scegliamo come positivo uno dei due versi in cui si può percorrere 

la retta  r .Scegliamo poi un punto O sulla retta e fissiamo una unità di misura  u .Il verso scelto 

sia indicato con  v
→

 . La terna  R = ( O , u ,  v
→

  ) è detta un riferimento reale  della retta  r .  

Il punto O è chiamato origine del riferimento. 

A che serve fissare un riferimento su  r ?   Vediamo. 

Se A e B sono due punti di r indicheremo con   ׀AB׀   la misura assoluta del segmento  AB fatta 

rispetto all’ unità  u .  

 

Nel disegno fatto i punti  A e B scelti hanno, nei due casi,  posizioni reciproche diverse e però 

individuano entrambi un segmento di lunghezza due . 

Pertanto la conoscenza della lunghezza assoluta del segmento AB  non ci fornisce informazioni 

sulla posizione reciproca dei due punti. Per ovviare a questa difficoltà si introduce il concetto di 

misura relativa di un segmento. Siano quindi A e B due punti della retta r. Quando A=B il 

segmento AB è detto nullo ed ad esso si attribuisce misura nulla. Supponiamo quindi  A  

distinto da B . La misura relativa del segmento AB che viene indicata con (AB)  è il numero 

reale seguente : 

(AB ) =  ׀ AB ׀     se A precede B nel verso fissato 

(AB) = - ׀ AB ׀    se A segue B nel verso fissato. 

Riferendoci sempre al disegno fatto si ha quindi nel primo caso  (AB ) =  2     e nel secondo 

caso   (AB ) = - 2. 

 

Sussiste la seguente proprietà di cui omettiamo la dimostrazione . 

 

Per ogni terna A , B , C  di punti di r si ha : 

 

(4.1)                                       (AB ) + (BC ) = (AC )  . 

 u 

A B

B A
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Introdotta la nozione di misura relativa  di un segmento , possiamo ora associare ad ogni punto  

P della retta  r  il  numero reale   xP = (OP)  che chiamiamo l’ ascissa di P nel riferimento R. 

Per la definizione data il punto O  ha ascissa zero i punti che seguono O hanno ascissa positiva 

e quelli che precedono O hanno ascissa negativa. E’ evidente che la corrispondenza introdotta 

                             

                                           c :      P ∈   r    →    xP ∈  R 

 

è biettiva ed è chiamata coordinazione della retta  r . 

Si osservi esplicitamente che l’utilizzo del riferimento ha reso possibile istituire la 

corrispondenza  c .  

Utilizzando la proprietà (1.1) si ha  

 

                                             (OA ) + (AB ) = (OB)   

da cui segue : 

(4.2)                            (AB ) = (OB)  - (OA ) =    xB  -  xA . 

 

Conoscendo l’ ascissa di ogni punto è possible quindi calcolare la misura relativa di un segmento 

utlizzando la formula (4.2). 

Parliamo ora di riferimento del piano. 

Siano x ed  y due rette del piano incidenti tra loro. Sia  O  il punto comune alle due rette 

 x ed y . Fissiamo su x un verso xv
→

 positivo e su y un verso yv
→

  positivo . Fissiamo infine  una unità 

di misura  u . 

La terna  Rx = ( O , u ,  xv
→

  )  è un riferimento della retta x  ed analogamente la terna  

Ry = ( O , u ,  yv
→

  )  è un riferimento della retta y . 

 

La quaterna R= ( x , y ,  Rx  , Ry )  è chiamata   riferimento reale  ( monometrico)  del piano. 

Quando le due rette  x  ed  y  sono ortogonali il riferimento è detto ortogonale. 

 

Per ogni punto P del piano indichiamo con  Px  la proiezione di P su  x  lungo la direzione di 

y e con Py la proiezione di P su  y lungo la direzione di x . 
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La corrispondenza  

 

                                        P  ∈   α o       →       (   Px  ,   Py ) ∈  x x y 

è ovviamente biettiva. 

Ma   Px  che sta su x , determina un numero reale a = (O Px)  ( la sua ascissa nel riferimento   

Rx )  e Py  che sta su y , determina un numero reale b  = (O Py)  ( la sua ascissa nel riferimento   Ry 

di y ).  

Pertanto possiamo associare al punto P la coppia ordinata di numeri reali  ( a , b) corrispondente alla 

coppia di punti  (Px  ,   Py ). 

La corrispondenza     

                                              (Px  ,   Py ) →    (  a  ,   b) ∈  R2    

 

  è ovviamente biettiva e quindi  la corrispondenza 

 

  (*)                              c :    P  ∈   α o       →       (  a  ,   b) ∈  R2 

 

è anch’essa biettiva. I due numeri  a e b associati a  P  sono chiamati le coordinate di P nel 

riferimento R . Il numero  a = (O Px)   è detto l’ascissa di P , il numero b  = (O Py)  è detto 

l’ordinata di P . 

Mostreremo più in avanti che quando P descrive una retta del piano le sue coordinate (x,y) sono 

tutte e sole le soluzioni di un’equazione di primo grado non identica in due variabili del tipo  

P

Px 

Py 

O 
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                                                           ax + by + c = 0 

 

Quando avremo acquisito questo risultato la corrispondenza (*)  diviene un isomorfismo tra il piano 

affine  (  α o , R o )    ed il piano affine numerico reale α (R) = (  R2 , R R )    ampiamente descritto in 

precedenza.  

Osserviamo inoltre che attraverso l’isomorfismo c  descritto in (*) ad ogni isomorfismo ψ  del piano  

(  α o , R o )  in sè  corrisponde un isomorfismo    c°ψ °c-1    del piano (  R2 , R R ) in sè  e viceversa ad 

ogni isomorfismo   φ  del piano   (  R2 , R R )   in sè  corrisponde un isomorfismo    c-1 ° φ  ° c  del 

piano  (  α o , R o )  in sé. 

Pertanto l’aver descritto tutti gli isomorfismi del piano   (  R2 , R R )  in sè    consente altresì una 

rappresentazione del gruppo degli isomorfismi del piano (  α o , R o ) in sé. 

 

5. Le coordinate omogenee. 

Abbiamo già visto che un piano affine può divenire , con l’aggiunta di nuovi punti ( i punti 

impropri ) ed una nuova retta ( retta impropria )  un piano proiettivo. 

Nel piano reale della geometria elementare che indicheremo sempre con (  α o , R o ) se si 

fissa un riferimento reale ogni punto determina  due coordinate ( x , y ) che sono due numeri 

reali . Viceversa ogni coppia  ( x, y ) di numeri reali determina un punto del piano. In tale 

rappresentazione i punti del piano sono in corrispondenza biettiva con le coppie ordinate di 

numeri reali ed i punti di una retta sono in corrispondenza biettiva con le soluzioni di una 

equazione  di primo grado del tipo  ax + by + c = 0. 

Ora se aggiungono i punti impropri come si può estendere  la coordinazione anche ai nuovi 

punti ?   Come si rappresentano le rette ampliate col loro punto improprio ?  Vediamo. 

Bisogna per far ciò introdurre le coordinate omogenee di un punto sia esso proprio o improprio 

in un riferimento reale R fissato. 

Sia  P  un punto proprio e supponiamo che nel riferimento R esso abbia coordinate  (2 , 3 ) . 

Chiameremo  coordinate omogenee  di P nel riferimento  R  una terna ordinata (x1 , x2 , x3 ) di 

numeri reali con   x3 ≠   0  e tale che sia  : 

 

 (*)                                    
3

1

x
x

 = 2               
3

2

x
x

 = 3 

 

Ovviamente una terna  (x1 , x2 , x3 )  “ facile “   che verifica la proprietà (*)  è la terna  ( 2, 3 , 1 ) 
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ma anche ( 4 , 6 , 2 ) va bene  e così ogni terna  del tipo  (2ρ    , 3ρ    ,  ρ  )  con  ρ ≠  0 . Una 

qualsiasi di queste terne attraverso le formule (*) restituisce la coppia (2,3 ) e quindi il punto P . 

Pertanto le coordinate omogenne di un punto proprio P di coordinate (xo , yo) sono tre numeri 

(x1 , x2 , x3 )  con x3 ≠   0 e verificanti la seguente proprietà : 

 

(*)                                    
3

1

x
x

 = xo              
3

2

x
x

 = yo 

 

 

La terna (x1 , x2 , x3 ) avendo  x3 ≠  0  è non nulla e dovendo verificare  le (*)  è non unica ma 

determinata a meno di un fattore di proporzionalità non nullo.  

Se il punto P=Or  è improprio ed è quello aggiunto alla retta r  di equazione  ax + by + c = 0  

allora si definiscono coordinate omogenee di P  tre numeri  (x1 , x2 , x3 )  con    x3 =  0  e con    

(x1 , x2) =  (  λ  ,  µ  )  eguali ad una coppia di numeri direttori di  r . Tenendo conto che anche i 

numeri direttori di una retta sono non entrambi nulli e definiti a meno di un fattore di 

proporzionalità non nullo, allora anche le terne  ( λ  , µ  , 0)  usate per rappresentare P 

(improprio)  sono non nulle e definite a meno di un fattore di proporzionalità non nullo.  

Ricordando che (-b ,a) è una coppia di numeri direttori di r , il punto improprio di r si 

rappresenta con la terna ( -b , a , 0 )  o una ad essa proporzionale.  

E’ facile controllare che si passa a tale rappresentazione per i punti del piano ampliato allora 

anche le rette vengono rappresentate in modo diverso . 

Si consideri un’equazione omogenea di primo grado  non identica ed  in tre variabili  

(x , y , t )  del tipo  

(**)                                                    ax + by + ct = 0 

E’ chiaro che se (x1 , x2 , x3 ) è una soluzione non nulla dell’equazione ax + by + ct = 0  anche la 

terna  (ρ x1 , ρ x2 , ρ x3 )  con  ρ ≠  0 , è soluzione della stessa equazione per cui ha senso dire 

che un punto del piano ampliato  verifica con le sue coordinate omogenee l’equazione data. E’ 

altresì evidente che due equazioni ax + by + ct = 0  ed  a’x + b’y + c’t = 0  hanno le stesse 

soluzioni se e solo se esse sono proporzionali.  

Ciò premesso,   se risulta ( a, b ) =  ( 0 , 0 )   l’ equazione ax + by + ct = 0  diventa 

                                                               t = 0 

Tale equazione  ha come soluzioni tutte le terne ( h , k , 0)  e queste rappresentano tutti i punti 

impropri del piano . Quindi   t = 0  rappresenta la retta impropria del piano .  

Se invece è  ( a, b ) ≠   ( 0 , 0 ) allora l’equazione ax + by + c = 0  rappresenta una retta r del 
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piano non ampliato . I punti di tale retta r quando siano rappresentati in coordinate omogenee 

verificano l’equazione omogenea  

                                                ax + by + ct = 0. 

 Poiché soddisfa tale equazione anche la terna  ( -b , a , 0 )  allora l’equazione omogenea  

                                                ax + by + ct = 0. 

rappresenta   la retta  r   ampliata col suo punto improprio. 

                                  

 

6. I punti immaginari. 

Il piano della geometria elementare  sarà ancora denotato con  (αo , Ro). 

Se nel piano (αo , Ro) si fissa un riferimento R  reale ad ogni coppia ordinata ( x , y ) di numeri reali 

corrisponde un punto p di  αo  e la corrispondenza ,  che indichiamo con   ω    ,  

                                        ω     :  (x,y)  ∈R2    →    p ∈  αo  

diventa un isomorfismo tra   il piano affine numerico reale ( R2, RR) ed  (αo , Ro)  .  

I punti p di   αo  hanno per coordinate due numeri reali e per tale motivo  vengono detti  reali. 

Così come il piano affine (   R2   ,   RR   )   è  parte del piano affine complesso (   C2   ,   RC   )  , 

ci chiediamo se sia possibile aggiungere nuovi punti al piano (αo , Ro)  in modo da ottenere un 

nuovo piano (α*o , R*o) ( di cui  (αo , Ro) è una parte ) e che risulti isomorfo al piano (C2   ,   RC). 

Faremo vedere che ciò è possibile purchè si aggiungano al piano (αo , Ro) dei nuovi punti che 

chiameremo immaginari.  

Di più mostreremo  che  fissato  un riferimento  R  reale  nel piano (αo , Ro) , si può costruire una 

funzione  biettiva 

                                        Ω  :  (x,y)  ∈C2    →    p ∈  α*o 

che risulta un isomorfismo  tra  i piani  ( C2 , RC )   e   (α*o , R*o)  e  la cui restrizione a R2 coincide 

con  ω    . 

Dobbiamo quindi introdurre il concetto di   punto immaginario. Vediamo. 

Cerchiamo una possibile definizione per un punto reale. I punti reali non sono definiti 

perché sono  assunti come concetti  primitivi . 

 Se  p   è un punto reale cioè è un punto di  αo   ed abbiamo fissato un riferimento R   ad esso 

corrisponde una coppia di numeri reali ( le sue coordinate ) . Supponiamo ad  esempio che a p 

corrisponda    la coppia (2 , 3).  Per pensare al punto   p  non basta nominare la coppia (2,3) ma 

occorre anche precisare il riferimento  R   che ha determinato tale coppia. Infatti cambiando il 

riferimento R   con un  nuovo riferimento R’  e ponendo ad esempio l’origine coincidente con p 
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allora a p corrisponderebbe ora nel nuovo riferimento R’  la coppia (0,0) e non più la coppia (2,3). 

Pertanto la coppia (2,3) nel riferimento R’  non ci farebbe più pensare a p  ma ad un punto diverso 

da p.  Per pensare a p nel riferimento   R’   serve la coppia (0,0) 

Pertanto  p  è  identificato sia attraverso la coppia  ( (2,3) , R  )  e sia attraverso la coppia  

 ( (0,0) , R’  )  .Ci sono delle formule che consentono di conoscere le coordinate di un punto p in un 

riferimento R’  note che siano le coordinate dello stesso punto in un altro riferimento R  . Tali 

formule dette di passaggio da un riferimento all’altro sono di questo tipo : 

 

(*)                                     
x' = ax + by + c
y' = a'x + b'y + c'

⎧
⎨
⎩

        con     det
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≠  0 

Pertanto se tali formule sono quelle di passaggio tra R  ed  R’     allora se al posto di  x ed y  si 

sostituiscono i numeri 2 e 3 ,coordinate di p nel riferimento  R  , si  otterrà  x’ =0 ed  y’ = 0  che 

sono appunto le coordinate di p nel riferimento  R’  .  

Due coppie   (( x0 , y0) ,  R  )   ed  (( x’0 , y’0) ,  R ‘ )   si dicono equivalenti se sostituendo nelle 

formule (*) di passaggio da   R ad  R ‘    al posto di x ed y i numeri  x0  ed y0  si ottengono a primo 

membro x’0 ed  y’0 .Tale relazione è come è facile vedere , d’equivalenza e pertanto si possono 

considerare le relative classi d’equivalenza. Ritornando all’esempio fatto possiamo dire che la 

classe       [ (( 2 , 3) ,  R  )  ]  può essere identificata col punto  p . Nella classe [ (( 2 , 3) ,  R  )  ]   a 

fianco di ogni riferimento reale si trovano le coordinate di p in quel riferimento. La classe 

[ (( 2 , 3) ,  R  )  ]   potrebbe quindi essere assunta come definizione di p. 

Questa idea ci suggerisce come introdurre i nuovi punti quelli che chiameremo immaginari. 

Nel seguito C  è il campo dei numeri complessi,  e    (  C2,  RC  )    è  il piano affine numerico che C  

ci consente di costruire. 

 

Consideriamo  le coppie  ( (a , b) ,   R   )  dove  (a , b)  è una coppia ordinata di numeri 

complessi non entrambi reali    ed  R   è un riferimento reale del piano   α  .  

Due siffatte coppie ( (a , b) ,   R   )  ed  ( (a’ , b’) ,   R’   )  le diremo equivalenti  se  

sostituendo nelle formule di passaggio da R  ad  R’    

 

(**)                         
x' = mx + ny + c
y' = m'x + n'y + c'

⎧
⎨
⎩

        con     det
m   n
m'  n'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≠  0 
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al posto di x ed y i numeri  a  e  b si ottiene  x’ = a’  ed  y’ = b’. 

Tale relazione è d’equivalenza e così ogni classe d’equivalenza   [( (a , b) ,   R   )]   sarà 

chiamata  punto immaginario. Indichiamo con  I  l’insieme di tutti i punti immaginari. 

Si noti che poiché nelle formule (**)  i coefficienti 
m   n  c
m'  n' c'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 sono numeri reali  allora se le coppie 

( (a , b) ,   R   )  ed  ( (a’ , b’) ,   R’   )  sono equivalenti anche i due numeri  (a’ , b’) sono complessi 

e non entrambi reali .  

Se  p* = [( (a , b) ,   R   )]    è un punto immaginario chiameremo i due numeri complessi  

 (a , b) le sue coordinate  nel riferimento   R  .   Se ( (a’ , b’) ,   R’   )   è equivalente a 

 ( (a , b) ,   R   )  allora (a’ , b’) sono le coordinate di  p*  nel riferimento    R’  . 

  Quando si fissi un riferimento reale  allora ogni punto p di   α*  = α ∪ I  determina una 

coppia di numeri complessi (a ,b) i quali sono entrambi reali se  p ∈   α   cioè è reale , e sono 

complessi e non entrambi reali se  p ∈   I  , cioè  p è immaginario. 

Fissato un riferimento reale   R    abbiamo così  una biezione  

 

                                  Ω            :   (a , b )   C x C   →   p ∈   α*   

 

Chiamiamo  retta di  α*   l’immagine tramite   Ω     di una retta del piano affine numerico 

 (  C2,  RC  ). Così facendo  si dà una struttura di piano affine anche all’insieme   α*   . Inoltre la 

funzione  Ω            diventa un isomorfismo tra questi due piani affini. 

 

 

7. Il piano proiettivo numerico  reale. 

  

In tale numero daremo un esempio di piano proiettivo. Per la sua costruzione useremo il 

campo dei numeri reali (perché ciò è utile ai nostri scopi) ma la costruzione , come si vede , può 

esser fatta a partire da un qualsiasi campo. 

Quando si usi il campo dei numeri reali il piano proiettivo che si ottiene con questa 

costruzione è chiamato  piano proiettivo numerico reale. 

Quando si usi il campo dei numeri complessi il piano proiettivo che si ottiene con questa 

costruzione è chiamato  piano proiettivo numerico complesso. 

 

Passiamo alla sua costruzione. 
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Consideriamo lo spazio vettoriale reale  R3 . Priviamo tale spazio del vettore nullo (0,0,0). 

Nell’insieme    R3 - (0,0,0)   introduciamo la seguente relazione  ~  . 

Due terne non nulle (y1, y2 , y3 )  ed  (z1 , z2, z3)   le diciamo in relazione  ~   tra loro se sono 

proporzionali tra loro , se esiste quindi un numero reale   k ≠  0   tale che sia 

                                                

                                                 (z1 , z2, z3)   = k (y1, y2 , y3 )   

  

La relazione  ~    è evidentemente una relazione d’equivalenza  nell’ insieme    R3 - (0,0,0)  .  

Denotiamo con   

                                                   π  =   R3 - (0,0,0) / ~     

 l’insieme quoziente   R3 - (0,0,0) / ~     . Chiamiamo   punti   gli elementi di   π  . 

Se   p= [(y1, y2 , y3 )]   è la classe d’equivalenza della terna (y1, y2 , y3 )  allora essa è per definizione 

un punto e poiché la terna   (y1, y2 , y3 )  determina tale punto allora i numeri (y1, y2 , y3 )  sono 

chiamati  le   coordinate omogenee o proiettive di  p .  

Poiché una terna non nulla e proporzionale a ( y1, y2 , y3 )   determina lo stesso punto p allora le 

coordinate omogenee di p  non sono uniche e sono definite a meno di un fattore non nullo di 

proporzionalità. Poiché la terna (y1, y2 , y3 )   determina la classe p= [(y1, y2 , y3 )]    allora per 

rappresentare il punto p useremo spesso semplicemente una terna (y1, y2 , y3 ) delle sue coordinate 

senza indicare esplicitamente la classe [(y1, y2 , y3 )]    che tale terna determina. 

Sia ora  

 

(1) a x1 + b x2 + c x3 = 0 

 

un’equazione omogenea a coefficienti reali, di primo grado,  e non identica. 

Le soluzioni di tale equazione costituiscono un sottospazio di dimensione due di R3. Pertanto  se  

(y1, y2 , y3 ) è una soluzione non nulla dell’equazione (1) anche tutte le terne non nulle ad essa 

proporzionale sono ancora soluzione dell’equazione  (1). Se pertanto un punto p= [(y1, y2 , y3 )]    

soddisfa con le sue coordinate l’equazione (1) ciò non dipende dalle coordinate scelte per 

rappresentare il punto p. Ha senso così considerare i punti di  π  che soddisfano con le loro 

coordinate l’equazione (1). Si ottiene così un sottoinsieme  l  di  π   che chiameremo  retta. 

L’ equazione           ax1 + bx2 + cx3 = 0      che ci ha permesso di definire il sottoinsieme  l  è detta 

l’equazione  della retta  l  . 

Riepilogando . Assegnata una terna non nulla (a , b , c) di numeri reali si definisce retta di 
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equazione  ax1 + bx2 + cx3 = 0      il seguente sottoinsieme   l(a , b , c)  di    π  : 

 

l(a , b , c)     =   {  [(y1, y2 , y3 )]  ∈  π    :    ay1 + by2 + cy3 = 0   }    

 

E’ ovvio che se  (a , b , c)  ed  (a’ , b’ , c’)  sono due terne non nulle e proporzionali tra loro allora le 

due equazioni   ax1 + bx2 + cx3 = 0      ed    a’x1 + b’x2 + c’x3 = 0   hanno le stesse soluzioni e così 

esse definiscono la stessa retta.  Viceversa se due rette coincidono allora le due equazioni che le 

rappresentano sono proporzionali.  Pertanto anche le rette sono tante quante le classi di equivalenza 

di R3 - (0,0,0) / ~ .  

Indichiamo con   L   la famiglia di tutte le rette  l(a , b , c)    di  π   al variare di (a , b , c)  in   

R3 - (0,0,0). Possiamo ora provare che : 

 

 

Proposizione 7.1     La coppia (  π  ,  L  )   è un piano proiettivo. 

Dimostrazione. Siano p1  e p2  due punti distinti e siano (y1, y2 , y3 ) e  (z1, z2 , z3 )  le loro 

coordinate proiettive. Una retta  l(a , b , c)    di  π    conterrà i due punti  p1  e p2    se risulta : 

                                          S : 1 2 3

1 2 3

ay  + by  + cy  = 0   
az  + bz  + cz  = 0   

⎧
⎨
⎩

 

Tale sistema inteso come sistema nelle incognite (a, b, c)  ha la seguente matrice dei coefficienti 

1 2 3

1 2 3

y  ,  y  , y  
z  ,  z  , z

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

che ha rango due ,essendo p1  e p2  due punti distinti . Pertanto le soluzioni del sistema omogeneo S 

costituiscono un sottospazio di dimensione uno di  R3   . Una terna non nulla (a , b ,c ) che è 

soluzione di S si ottiene in corrispondenza ai minori d’ordine due , presi a segni alterni , della 

matrice 1 2 3

1 2 3

y  ,  y  , y  
z  ,  z  , z

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Ci sono quindi infinite terne (a , b ,c ) non nulle che verificano il sistema S 

e però esse sono tutte proporzionali tra loro. Tali terne definiscono così una unica retta che contiene 

i punti   p1  e  p2   . 

Siano ora  l(a , b , c)    ed   l(a’ , b’ , c’)    due rette distinte . Un punto  p = [(y1, y2 , y3 )]   appartiene ad 

entrambe se risulta : 

S :    1 2 3

1 2 3

ay   + by  +  cy  = 0   
a'y  + b'y  + c'y  = 0   

⎧
⎨
⎩

 

Il sistema S è omogeneo  e la matrice  
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a ,  b ,  c
a' , b' , c'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

dei coefficienti di  tale sistema ha rango due , essendo le due rette distinte. Pertanto le soluzioni di 

tale sistema costituiscono un sottospazio di dimensione uno di  R3  . Ci sono quindi infinite terne 

non nulle (y1, y2 , y3 ) che soddisfano S e sono tutte proporzionali tra loro. Una terna non nulla  

(y1, y2 , y3 ) che soddisfa S può ottenersi in corrispondenza ai minori d’ordine due, presi a segni 

alterni,  della matrice
a ,  b ,  c
a' , b' , c'

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Ma se le terne non nulle (y1, y2 , y3 ) sono infinite e tutte 

proporzionali tra loro allora esse definiscono un unico punto che è il punto comune alle due rette 

assegnate. 

Sia   l  una retta rappresentata dall’equazione  ax1 + bx2 + cx3 = 0  .Poichè tale equazione è non 

identica uno dei suoi coefficienti è non nullo . 

Supposto sia  a ≠  0   fanno parte della retta i tre punti distinti  

                       (  
a
b−   , 1 , 0 ) ,    (  

a
c−  , 0 , 1) ,     ( 

a
cb −−     , 1 , 1). 

E’ così  provato che ogni retta ha almeno tre punti e che quindi la coppia (  π  ,  L  ) è un piano 

proiettivo . L’asserto è così provato. 

 

Per le applicazioni è molto utile la seguente osservazione .  

 

Dalla dimostrazione fatta segue che l’equazione della retta che congiunge i punti distinti  

(y1, y2 , y3 ) e  (z1, z2 , z3 )  si ottiene sviluppando il seguente determinante : 

 

                                 

(7.1)                                          det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

32 1

32 1

32 1

z  z   z
y  y   y

  x   xx
 = 0 

 

 

Le rette di un piano proiettivo possono essere rappresentate anche parametricamente . 

Vediamo come. 

Sia  L  una retta del piano e sia 

 

(1) ax1 + bx2 + cx3 = 0 
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la sua equazione. 

Una terna  (x1 , x2 , x3 )  non nulla , soluzione di tale equazione , fornisce le coordinate 

proiettive di un punto di tale retta L . Ora tutte le soluzioni  (x1 , x2 , x3 )  dell’equazione  (1) , che è 

omogenea , costituiscono un sottospazio di dimensione due di   R3 . Pertanto esse sono note quando 

siano determinate due sue soluzioni indipendenti. Siano quindi  A (y1 , y2 , y3 )  e B (z1 , z2 , z3 )    

due punti distinti della retta L. Poiché  A e B sono distinti le due terne (y1 , y2 , y3 )  e (z1 , z2 , z3 )  

sono non nulle e non proporzionali e quindi forniscono due soluzioni indipendenti dell’equazione  

( 1) . 

Ne segue che ogni altra soluzione (x1 , x2 , x3 )  dell’equazione (1)  risulta una loro 

combinazione lineare . Si ha così che ogni altra soluzione (x1 , x2 , x3 )  dell’equazione (1)   è del 

tipo : 

(*)                   (x1 , x2 , x3 )   =  λ  (y1 , y2 , y3 )  +  µ  (z1 , z2 , z3 )  . 

 

Poiché  le due terne (y1 , y2 , y3 )  e (z1 , z2 , z3 )   sono indipendenti nella  (*)  si avrà   

(x1 , x2 , x3 )  = (0 , 0 , 0 )  soltanto ponendo    λ = 0   e   µ  = 0 .  

Così se nella (*) si sceglie la coppia  ( λ , µ ) ≠   ( 0 , 0)   si ottiene una terna 

 (x1 , x2 , x3 )  ≠  (0 , 0 , 0 )  e quindi rappresentativa di un punto della retta. 

Una coppia  ( λ ’, µ ’)  proporzionale alla coppia ( λ , µ ) fornirà una terna (x’1 , x’2 , x’3 )  

proporzionale alla precedente e quindi rappresentativa dello stesso punto. 

I punti della retta L hanno quindi coordinate proiettive (x1 , x2 , x3 )  espresse dalla formula (*)   o 

esplicitamente  da : 

 

⎪
⎩

⎪
⎨

⎧

+=
+=
+=

333

222

111

µzλyx
µzλyx
µzλyx

 

 

Quando i punti della retta L sono rappresentati in questo modo si dice che la retta è 

rappresentata parametricamente. 

 

Osserviamo esplicitamente che alla stessa conclusione si poteva pervenire ricordando che un 

punto  appartiene alla retta L se e solo se le sue coordinate (x1 , x2 , x3 ) verificano la ( 7.1 ). 

 

Importante osservazione. 
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Quando il piano reale  della geometria elementare è ampliato con i punti impropri esso 

diventa proiettivo e se si fissa un riferimento reale e si assegnano ai suoi punti   propri ed impropri 

le coordinate omogenee si realizza un isomorfismo tra tale piano ed il piano proiettivo numerico 

reale ora descritto. 

 

Proviamo infine a fare un quadro riassuntivo delle cose dette per avere una visione chiara 

d’assieme. 

Oggetto fisico Tipo di piano               Modello matematico ad esso isomorfo 
 
 
Piano reale  

 
 
Piano affine  

 
                   (   R2   ,   RR   )   
          Piano affine numerico reale  
 

 
Piano reale  + 
punti impropri 

 
Piano proiettivo 

 

                   (   R3 - (0,0,0) / ~ ,  L   )   
          Piano proiettivo numerico reale 
 

 
 
Piano reale  + 
punti immaginari 

 
 
 
Piano affine 

 
                    
                      (   C2   ,   RC   )   
          Piano affine numerico complesso 
 

Piano reale + 
punti immaginari+  
punti impropri 

 
Piano proiettivo                    (   C3 - (0,0,0) / ~ ,  L   )   

          Piano proiettivo numerico complesso 
 

 
 

Alcune precisazioni . 

Col termine piano reale si intende una qualunque superficie piana che ricada sotto i nostri 

sensi e della quale si considerino i punti e le rette in essa contenute. 

Nel testo tale piano è stato chiamato spesso il piano della geometria elementare ed è stato 

indicato col simbolo   (αo , Ro).       

L’isomorfismo col modello numerico si ottiene sempre attraverso l’uso di un riferimento 

reale. 
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8. Le questioni metriche del piano affine numerico reale (   R2   ,   RR   )  . 

Questo numero è dedicato ad un approfondimento delle proprietà del piano affine numerico 

reale (   R2   ,   RR   )  .Tali proprietà si riflettono in proprietà del piano reale che è ad esso isomorfo 

quando in esso sia stato fissato un riferimento reale . Di più riterremo ,ma le ragioni di tale ipotesi 

appariranno chiare più avanti , che il riferimento scelto sia monometrico ortogonale. 

 Per quello che ora tratteremo è utile ricordare alcune cose . L’ insieme   R2  sostegno del 

nostro piano affine numerico è altresì uno spazio vettoriale reale di dimensione due che riterremo 

munito del prodotto scalare  s  (definito positivo)  euclideo,  

 

                                            s ( (a ,b) , (a’ , b’) ) = aa’ + bb’ 

 

Siano L  ed  L’  due rette rappresentate da : 

 

L   :                                           ax + by + c = 0 

 

L’   :                                         a’x + b’y + c’ = 0 

 

Per quanto precede le due rette  l  ed  l’  rappresentate da : 

 

l   :                                           ax + by = 0 

 

l ’   :                                         a’x + b’y = 0 

 

sono parallele la prima ad L e la seconda ad L’ . I punti  (x,y)  della retta   l  sono un sottospazio So 

di dimensione uno dello spazio vettoriale  R2  ed i punti  (x , y )  della retta  l’   sono anch’essi un 

sottospazio S’o  di dimensione uno dello spazio vettoriale   R2 .  I  vettori di So  sono la coppia (-b , a 

) e tutte le coppie  proporzionali ad essa .  I  vettori di S’o  sono la coppia (-b’ , a’ ) e tutte le coppie  

proporzionali ad essa. Se le coppie  (-b , a ) e (-b’ , a’ )  sono ortogonali tra loro cioè risulta : 

                                                    aa’ + bb’ = 0 

 allora i due sottospazi So   e  S’o  sono ortogonali tra loro e precisamente ognuno dei due è il 

complemento ortogonale dell’altro. 

 Le due rette  L  ed  L’   le diremo  ortogonali   se le due rette  l ed   l’   ad esse parallele e 

pensate come sottospazi di  R2  sono tra loro ortogonali .  
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Riepilogando :  due rette L  ed  L’  rappresentate da : 

 

L   :                                           ax + by + c = 0 

 

L’   :                                         a’x + b’y + c’ = 0 

 

sono ortogonali se e solo se  risulta : 

                                          

    (1*)                                           aa’ + bb’ = 0. 

 

Se  r   è una retta rappresentata da : 

 

r   :                                             ax + by + c = 0 

 

allora   

                                              

(2*)                                          -bx + ay + k = 0   

 

rappresenta , al variare di k  in  R , il fascio improprio costituito da  tutte le rette ortogonali ad  r . 

 

Per ciò che segue occorre introdurre alcune nozioni riguardanti uno spazio vettoriale reale che sia 

munito di un prodotto scalare definito positivo. 

Sia  V  uno spazio vettoriale reale dotato di un prodotto scalare definito positivo s. 

Indicheremo al solito per ogni vettore   v   di V  con    ׀  v ׀  la sua lunghezza definita  come 

sappiamo attraverso  

 .    s(v,v) = ׀ v  ׀                                                       

Siano ora  v  e  w  due vettori.  Per ogni numero reale  t  consideriamo il vettore   v + t w ,  che si 

combinazione lineare di v e w con i numeri reali 1 e  t  . 

Qualunque sia  t  risulta  : 

                                          s (v + t w   ,  v + t w  ) ≥   0 

Si ha allora  per ogni  t  

                                 s (w ,  w) t2  + 2 s (v , w ) t  +  s (v,  v) ≥   0. 

Ma se tale polinomio nella variabile t  non assume valori negativi il suo discriminante è minore o 

eguale a zero . 
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Si ha quindi  : 

                                      [ s (v , w ) ] 2   - s (v ,  v) s (w,  w) ≤  0. 

Da cui segue  

                                   [ s (v , w ) ] 2   ≤   s (v ,  v) s (w,  w) 

Cioè : 

                                        [ s (v , w ) ] 2   ≤     2 ׀ w  2 ׀ v׀    

Da cui  infine : 

(*)               

                                           s (v , w ) ≤     ׀ w׀  ׀ v׀    

 

 

Definiamo ora   distanza tra  v  e w   la lunghezza del vettore  v-w. 

Si ha quindi    

                                          d (v ,  w) =  ׀v-w ׀ = s(v-w, v-w)    . 

La funzione   

                                d  :   V x V    →     [ 0 ,  ∞  [     

 

ora definita è una metrica in V in quanto verifica le seguenti tre proprietà : 

 

1.   d (v ,  w) = 0    ⇔      v = w 

2.   d (v ,  w) = d (w,  v)  

3.   d (v ,  w) ≤   d (v ,  z)  +  d (z ,  w) 

 

Le proprietà  1  e  2  sono evidenti . Basta quindi provare la proprietà 3.  

Tenendo conto della disuguaglianza (*) si ha : 

 

׀   v-w 2׀ =  s (v-w , v-w ) = s (v-z +z -w,  v-z +z -w) = s (v-z , v-z) + s (z-w , z-w) +  

+ 2 s (v-z , z -w)   ≤ z-w׀  +׀  v-z  ׀ ) = ׀ z-w׀׀  v-z׀  2  +  2׀ z-w׀  + 2׀ v-z׀   ׀   ) 2   

 

Si ha quindi    

≥ ׀  v-w׀                                          ׀ z- w׀  +׀  v-z׀  

 

e cioè la proprietà 3. 
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Lo spazio ( V , d) è quindi uno spazio metrico . 

 

Siano infine x=( x1  , y1 )  e   y =( x2  , y2 )  due punti distinti del piano  α   .  Pensando 

sempre   R2  come spazio vettoriale munito del prodotto scalare euclideo, possiamo considerare il 

vettore  x  - y = (x1  - x2    ,  y1  - y2 )  la cui lunghezza  è la distanza tra i due vettori x  ed  y  e che 

sarà assunta come distanza tra i punti  ( x1  , y1 )   e   ( x2  , y2 )    . Quindi chiamiamo 

 

                   d (( x1  , y1 )   ,  ( x2  , y2 )    )  =  ׀  x  - y 2 =   ׀ 2
2 1 2 1(x   - x )   +  (y   - y  )        

 

La funzione  d :   α  x  α  →   R      ora introdotta è una  metrica  nel piano α in quanto 

verifica le seguenti tre  proprietà : 

 

 

(1)    d ( p1  ,  p2 )  =  0    ⇔     p1  =  p2  

(2)   d ( p1  ,  p2 )  = d ( p2  ,  p1 ) 

(3)   d ( p1  ,  p3 )  ≤  d ( p1  ,  p2 )  + d ( p2  ,  p3 )   

 

Pertanto   (R2 , d) è quindi uno spazio metrico . 

 

 

9.  Il gruppo strutturale del piano affine  (   R2   ,   RR   )  . 

In questo numero troveremo una descrizione di tutti gli isomorfismi del piano affine 

numerico reale  (   R2   ,   RR   )  . 

 Ricordiamo che un isomorfismo del piano (   R2   ,   RR   )  è una biezione  

                                          

                                  f :  (x , y ) ∈   R2  → (x’ , y’ )  ∈   R2 

 

tra i punti del piano che trasformi rette in rette. 

Un  punto (a , b)  è detto unito nell’affinità  f se risulta  f (a , b) = (a , b) . 

Ogni isomorfismo del piano è detto un’ affinità del piano. Evidentemente componendo due 

affinità si ottiene una affinità. Inoltre poiché l’ identità è una affinità e  l’inversa di una affinità è 

una affinità tutte le affinità del piano costituiscono un gruppo, il gruppo delle affinità ,  che 

indicheremo con  G (  R2 ). 

Ricordiamo ora che le matrici quadrate d’ordine due ad elementi reali e non degeneri cioè 
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                                                             A = 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

   

che abbiano il determinante diverso da zero quando si esegua tra esse il prodotto (righe per 

colonne) costituiscono un gruppo che viene indicato usualmente con  GL(2 , R). 

Abbiamo già visto nel capitolo riguardante gli endomorfismi di uno spazio vettoriale che gli 

isomorfismi dello spazio vettoriale R2  in sè  sono soltanto le funzioni di  R2   in sè   che ogni 

matrice A  non degenere induce. 

 Precisamente se  A = 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

    è una matrice quadrata non degenere la funzione , che 

indichiamo sempre con A 

 

 (*)                              A :     ( x , y ) ∈   R2  →      ( ax +by ,   a’x + b’y) ∈  R2   

 

è un isomorfismo di R2   in sè   . Un qualunque isomorfismo di   R2   in sè  è di questo tipo ,  si 

ottiene cioè  in corrispondenza ad una matrice A non degenere . 

La funzione  A descritta in (*) quando la si pensi come corrispondenza tra i vettori di R2  è un 

isomorfismo di R2 in sè , quando la si pensi come una corrispondenza tra i punti del piano è un 

isomorfismo del piano che ha unito il punto (0 , 0). Per dar corpo alla nostra affermazione occorre 

provare che la corrispondenza tra i punti del piano che al punto (x, y ) fa corrispondere il punto 

(x’,y’)  dato da :  

 

(**)                                   
x' = ax + by
y' = a'x + b'y

⎧
⎨
⎩

        con     det
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≠  0 

è un isomorfismo del piano,  cioè è biettiva e trasforma rette in rette . Poiché det
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≠  0  allora 

la corrispondenza descritta in (**)  è biettiva. Sia ora  r   una retta definita dall’equazione  

 

 (+)                                                       mx + ny + p = 0 

 

Attraverso l’uso della matrice inversa si possono invertire le formule (**) ottenendo relazioni di 

questo tipo : 

(***)                                                     
x = cx' + dy'
y = c'x' + d'y'

⎧
⎨
⎩

 

Sostituendo in (+) le espressioni trovate in (***) si riconosce che anche i punti (x’ , y’) 
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corrispondenti dei punti (x,y) sono anch’essi soluzione di un’equazione del tipo 

                                                            m’x + n’y + p’ = 0 

e quindi sono i punti di una retta r’  che è la trasformata della retta r . 

 

Riepilogando per ogni matrice A =
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

  non degenere la corrispondenza  

 

                                           A :     
x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

     →    
x' a  b x

=
y' a' b' y

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

   

 

 

è una affinità  del piano e tale affinità trasforma il punto (0,0) in sé .     

 

Ci sono affinità che non lasciano fisso (0 , 0) e che quindi non possono essere legate ad isomorfismi 

di  R2  in sè.  Vediamo . 

 Fissiamo una coppia ordinata di numeri reali  ( m , n )  con  m ed n non entrambi nulli . 

Consideriamo la seguente corrispondenza tra i punti del piano      

 

                               T(m,n) :     ( x , y ) ∈   R2  →  ( x’ , y’ )   ∈   R2    

 

con 

(++)                                              
x' =  x + m
y' =  y + n                       

⎧
⎨
⎩

   

       

La corrispondenza    T(m,n)   è ,come ora proveremo una affinità . Essa trasforma (0,0) nel punto 

(m,n) .    La corrispondenza    T(m,n)    è  detta  traslazione  del piano .   E’  evidente che    la 

corrispondenza   T(m,n)   è biettiva  .    Inoltre se r è una retta  rappresentata dall’equazione  

 ax +by + c = 0     si ha ,  da (++)  , 

 

                                          x  =  x’ – m   ed   y = y’ - n     

 e quindi  si ha   

                                        a (x’ – m) + b (y’ - n )  + c  = 0      

 

e così i punti (x’ , y’) sono le soluzioni dell’equazione 
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                                          ax’ + by’ +  c’ = 0 

con  c’ = -am –bn +c    . 

 

Pertanto i punti (x’ , y’) trasformati dei punti (x, y ) di r sono anch’essi punti di una retta r’  che 

come si vede dalla sua rappresentazione è parallela ad r . La corrispondenza  T(m,n) è quindi 

un’affinità priva di punti uniti e che trasforma ogni retta in una ad essa parallela.   

Quando si  assuma  m=0  ed  n=0  la corrispondenza  T(0,0)   è l’identità . In tal modo l’identità può 

far parte delle traslazioni del piano.     

Se  A = 
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 è una matrice quadrata non degenere  possiamo considerare l’affinità da essa 

indotta e se  (m , n )   è  una coppia ordinata di numeri reali , possiamo considerare la traslazione 

T(m,n)  . 

La funzione   T(m,n)  °   A     che si ottenga componendo tra loro le due affinità  è una affinità del 

piano che al punto ( x, y )   fa corrispondere il punto (x’ , y’ )  dove è : 

 

(**)                            
x' = ax + by + m
y' = a'x + b'y + n

⎧
⎨
⎩

        con     det
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≠  0 

 

Proveremo ora  il seguente importante : 

 

Teorema I  Una qualunque affinità del piano si ottiene componendo una traslazione ed 

un’affinità A indotta da un  isomorfismo di  R2  in sè . 

 

Prima di fare la dimostrazione occorre introdurre una definizione . Una terna ordinata di 

punti non allineati del piano è detta un riferimento del piano.  

E’ chiaro che un’ affinità del piano trasforma un riferimento in un riferimento. 

La terna ordinata  

 

                            R 0   =  (    (0 , 0) , (1 , 0 ) , (0 , 1 )  ) 

è detta   riferimento fondamentale . 

Proveremo in appendice il seguente teorema   ( la cui dimostrazione, non banale, è esposta 

in appendice per quegli studenti che avessero interesse a conoscerla ) 
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Teorema fondamentale . 

L’ unica affinità che trasforma in sé il riferimento fondamentale è l’identità. 

 

Possiamo ora provare il Teorema I. 

 Dimostrazione.  Sia   

 

                                          ϕ  :  R2    →       R2 

una affinità del piano. Se  ϕ   lascia fisso il riferimento fondamentale allora per il teorema 

fondamentale    è l’identità  e quindi  è  :     

                                   ϕ  = I = T(0,0)  °   I       ( I essendo la matrice identica)    

Possiamo supporre quindi che l’affinità  ϕ  non lasci unito il riferimento fondamentale. 

Se è :                       

                           ϕ  (0,0) = ( 0, 0)   ,   ϕ  (1,0) = ( a, a’)   , ϕ  (0,1) = ( b, b’)    

Le rette distinte y=0 ed x=0  le quali contengono (1,0) e (0,1) vengono trasformate in due rette 

distinte per (0,0) e queste contengono la prima ( a, a’)   e la seconda ( b, b’)   . Ne segue che (b,b’) 

non è proporzionale ad (a, a’)  e quindi la matrice  

                         A  =    
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

                è non degenere  cioè è     det
a   b
a'  b'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ≠  0 

L’ affinità A trasforma come l’affinità  ϕ   anch’essa il riferimento fondamentale nel riferimento 

( (0,0) , (a, a’) , (b , b’ ) ). Ne segue che   l’ affinità   A -1 ° ϕ   trasforma in sé il riferimento 

fondamentale e quindi essa , per il teorema fondamentale,  è l’identità  I . 

Da  A -1 ° ϕ  = I   segue    ϕ  =  A = T(0,0)  °   A. 

Possiamo infine supporre che sia ϕ  (0,0) = ( m , n) ≠  (0,0). 

Consideriamo la traslazione  T -1  inversa della traslazione T(m,n)  . L’ affinità    T -1   ° ϕ     

trasforma  (0 , 0)  in sé e quindi è per quanto precede  T -1   ° ϕ     = A   da cui segue    

ϕ     = T(m,n )  ° A      e cioè l’asserto . 

 

Abbiamo così caratterizzato il gruppo delle affinità  del piano affine reale . 

 

Sia  F una figura del piano e supponiamo che F abbia una certa proprietà “ p “ . La proprietà 

“ p “  si dirà una  proprietà affine  se è  invariante  rispetto al gruppo delle affinità cioè se per ogni 

affinità  ϕ  del piano anche la figura ϕ (F)  ha  la proprietà “p”.  

La geometria affine del piano consiste nella determinazione delle proprietà affini delle figure del 
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piano .  

 

Quando il piano reale venga ampliato con i suoi punti immaginari ed i punti impropri esso 

come visto diventa proiettivo. Usando le coordinate omogenee,  i punti di tale piano, che 

indichiamo con π, sono rappresentabili , in un riferimento reale fissato , con terne non nulle  

(x1, x2 , x3 ) di numeri complessi e definite a meno di un fattore di proporzionalità non nullo. Inoltre 

con tale rappresentazione un punto proprio è rappresentabile con una terna del tipo  (y1, y2 , 1 ) ed 

un punto improprio con  (y1, y2 , 0 ). 

Quando si consideri una matrice quadrata d’ordine tre ad elementi reali e non degenere  

 

                                                      A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

aaa
aaa
aaa

     det A ≠   0 

 

 

si può definire  la seguente funzione del piano in sé : 

 

                    ωA    :   P( x1, x2 , x3 ) ∈  π        →        P’(x’1,  x’2 ,  x’3  ) ∈  π 

 

con  

                               

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

=

3 33232131
'
3

3 23222121
'
2

3 13212111
'
1

xa +     xa +  xa    x

xa +     xa +  xa    x

 xa +     xa +  xa    x

2

2

2

 

Tale funzione è , come facilmente si verifica, un isomorfismo del piano in sé, chiamato proiettività 

reale. E’ evidente che una matrice B proporzionale  ad A secondo un fattore reale non nullo 

definisce la stessa  proiettività. Pertanto le proiettività reali costituiscono , rispetto alla usuale legge 

di composizione di funzioni, un gruppo isomorfo ad un quoziente di GL(3,R). 

 

Quando si considerino le matrici di  GL(3,R)   del tipo : 

                                                

                                                 A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
aaa
aaa

232221

131211

        detA = det ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211

a  a
a  a

 ≠   0 
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si ottiene un sottogruppo A(3,R) del gruppo GL(3,R) , e le proiettività da esse definite costituiscono 

un sottogruppo, che indicheremo con A (3,R) ,  del gruppo delle proiettività  reali. Le proiettività 

definite dalle matrici del sottogruppo A(3,R)  sono quindi rappresentate da equazioni  del tipo : 

          

                                               

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

=

3
'
3

3 23222121
'
2

3 13212111
'
1

  x   x

xa +     xa +  xa    x

 xa +     xa +  xa    x

2

2

 

 

Una tale proiettività viene chiamata  affinità  del piano per queste ragioni .  

Essa trasforma punti propri in punti propri , punti impropri in punti impropri , punti reali in punti 

reali e punti immaginari in punti immaginari. La sua restrizione al piano affine è pertanto un’affinità 

di tale piano. Per tale ragione il gruppo delle proiettività definite dalle matrici di A(3,R) sarà ancora 

chiamato gruppo delle affinità del piano. 

               

 

La geometria affine del piano proiettivo consiste nella determinazione delle proprietà delle 

figure del piano che siano invarianti rispetto a tale gruppo. 

 

Nel seguito riterremo che sul piano proiettivo agiscano soltanto tali affinità reali . 

 

 

 

 

Appendice. 

 

Ricordiamo preliminarmente il seguente risultato relativo al campo dei numeri reali . 

Teorema . L’ unico automorfismo del campo reale è l’identità. 

Accenniamo alla dimostrazione di questo teorema. Sia quindi 

                                          γ:  R  →  R    

un  automorfismo del campo reale . L’applicazione   γ  è quindi  biettiva ed ha le seguenti 

due proprietà 

1. γ (a + b) = γ (a) + γ (b) 

2. γ (a b) = γ (a) γ (b) 
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Da  1  e 2 segue subito che  è  γ (0) = 0  ,  γ (1) = 1  e conseguentemente 

                       γ (-a) = - γ (a)                         γ (
a
1 )  =  

 )( aγ
1    ( a ≠  0 ) 

Sia  m un intero positivo . Possiamo scrivere  

                                  m = 1 + 1+ .. +1    (m volte) 

e quindi  è   γ (m) = γ (1 + 1+ .. +1) = γ (1) + γ (1) + ….+ γ (1)= 1 + 1+ .. +1 = m. 

Pertanto γ  fissa i numeri interi non negativi. 

Si ha allora  

                                       γ (- m) = - . γ (m) =  - m . 

e così  γ  fissa i numeri interi relativi .  

Si ha allora  che ,  per ogni numero razionale  
n
m    risulta :  

                     γ (
n
m ) = γ (m 

n
1 ) = γ (m) γ (

n
1 ) =    γ (m) 

)( nγ
1    =  

n
m  

 

Pertanto  γ  fissa  i numeri razionali. 

Se  x  è un numero irrazionale ed è rappresentato dalla successione (y 1, y2,…..    ,yn ,…) di numeri 

razionali allora  è  : 

                          γ (x)= (γ (y 1), γ (y2),…..    , γ (yn) ,…) = ( y 1, y2,…..    ,yn ,…) = x. 

 

L’ automorfismo γ  è quindi l’identità e si ha così l’asserto. 

 

Ora  come annunciato proveremo il seguente. 

 

 

Teorema fondamentale . 

L’ unica affinità che trasforma in sé il riferimento fondamentale è l’identità. 

Dimostrazione . 

Sia quindi  f : R2  →  R2   un’ affinità del piano che trasforma in sé il riferimento 

fondamentale cioè : 

                         f (0,0) = (0,0)      ,        f (1,0) = (1,0)    ,     f (0,1) = (0,1) 

 

Useremo spesso la seguente ovvia  proprietà dell’affinità  f  : 

( * ) 

 Se  r ed  r’ sono due rette parallele tali risultano altresì le rette trasformate f ( r )  ed  f ( r’ ) . 
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Per rendere più semplice l’ esposizione indicheremo : 

con  x  la retta d’equazione  y = 0  che congiunge (0,0) ed (1,0),  

con  y  la retta d’equazione  x = 0  che congiunge (0,0) ed (0,1) 

con  u  la retta d’equazione  x +y = 1  che congiunge (1,0) ed (0,1).  

 

Poiché i tre punti (0,0) , (1, 0) , (0, 1) sono uniti in f  tali risultato le rette  x  , y ,  u . 

 

Si ha quindi  : 

                                          f (x) = x  ,     f (y) = y  ,      f (u) = u .    

 

Sia  a   un numero reale  e sia  ( a , 0 ) il punto dell’asse  x  di coordinate ( a, 0 ). Poiché  f  

trasforma in sé la retta x  il punto ( a, 0 ) sarà trasformato da f   in un punto (a’ , 0) sempre dell’ asse 

x  . 

Possiamo allora considerare la seguente corrispondenza   φ  del campo reale   R  in  sé  : 

 

                                       φ   :     a ∈   R  →     a’ ∈  R 

 

 Tale funzione φ  è ovviamente biettiva . Inoltre essendo  f(0,0) = (0,0) e  f(1,0)= (1,0),  si ha 

  φ(0) = 0   e   φ(1) = 1 .Proveremo che tale funzione  φ  è un automorfismo del campo reale R. 

Vediamo. 

                          

Abbiamo posto  

                                                  f (a , 0 ) = (  φ(a) , 0 ) .  

 

Osserviamo ora che la retta  l   parallela ad  u   passante per il punto (a, 0)  ha equazione  x + y = a . 

Tale retta interseca la retta  y  nel punto  ( 0 , a ). Poiché  l   è parallela ad  u  allora  f(l ) è parallela 

ad f(u) = u  e quindi ad  l   . Poiché  f(l ) deve contenere il trasformato di ( a , 0 ) allora  f(l )   

contiene il punto (  φ(a) , 0 ) e  quindi essa interseca l’ asse  y  nel punto ( 0 , φ(a) ) . Pertanto il 

punto (0,a) di y , che sta su  l ,  è trasformato in punto di y  che deve appartenere a    f(l ) . Si ha 

quindi    : 

                                               

                                                   f ( 0 , a ) = ( 0 , φ(a) ) 
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Sia ( a, b ) un punto del piano . Siano   t  la retta per  ( a, b )  parallela ad  y   e  t’   la retta per   

( a, b )  parallela ad x  . La retta  t   che ha equazione  x –a = 0  e la retta  t’   ha equazione  y –b =0. 

La retta   t  contiene il punto (a , 0)  di x  e così la sua trasformata contiene il trasformato di tale 

punto e cioè contiene (  φ(a) , 0 ). Analogamente la retta   t’ contiene il punto (0 , b)  di y  e così la 

sua trasformata f( t’ )  contiene il trasformato di tale punto e cioè contiene (  0, φ(b) ). 

Poiché  t  ed  y  sono parallele  allora anche le loro trasformate f( t )  ed  f(y ) = y  sono parallele. 

Poiché  t’ ed  x  sono parallele  allora anche le loro trasformate f( t’ )  ed  f(x ) = x  sono parallele. 

Si conclude che f( t )  è parallela ad  y  e contiene il punto (  φ(a) , 0 ).Pertanto   f( t )   ha equazione 

x -  φ(a)    = 0 .  

Analogamente  f( t’ )  è parallela ad  x  e contiene il punto ( 0,  φ(b))  e così f( t’ ) ha equazione 

y  -  φ(b)    = 0 .  

Poiché (a , b )  è un punto di  t ∩  t’   allora il trasformato di tale punto appartiene alle trasformate  

f( t )   ed   f( t’ )  . Abbiamo così provato che è : 

 

                                               f ( a , b ) =  (  φ(a) , φ(b)). 

 

La retta  s  per (a,b) parallela ad u   ha equazione  x + y = a + b ed essa interseca  x   nel punto  

(a+b , 0). Poiché  s  è parallela ad u allora  f(s) è parallela ad f(u) = u  e contiene il trasformato del 

punto (a,b).Pertanto   f(s)   è la retta parallela ad  u  e passante per il punto   (  φ(a) , φ(b))  . 

La retta    f(s)    ha quindi equazione  x + y  =φ(a) +φ(b) e quindi essa interseca la retta  x  nel punto  

(φ(a) +φ(b) , 0 ) . Il punto (a+b , 0).  comune ad  s ed x è traformato quindi nel punto comune alle 

rette trasformate f(s)    ed  f(x ) = x  cioè nel punto (φ(a) +φ(b) , 0 )   . 
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 Si ha quindi : 

 

                                           f( a+b , 0) =  (φ(a)+φ(b) , 0 )    

 

la quale mostra che è :  

                                                φ ( a+b) =  φ(a) + φ(b). 

 

Consideriamo due numeri  a e b e consideriamo i due punti  (a, 0)  e  (0, b). I loro trasformati per 

quanto precede sono i punti (φ(a) , 0 )   e  ( 0 , φ(b))  . 

La retta  l  che unisce (0 ,1 )  con  ( a , 0 )  ha equazione   x  + ay = a . La retta  m  per (0, b) ad essa 

parallela ha quindi equazione  x + a ( y –b) = x + ay – ab = 0. La retta  m  interseca quindi la retta  x 

nel punto  (ab , 0 ). 

Le rette   l  ed  m  sono tra loro parallele e quindi tali risultano anche le loro trasformate f(l  )  ed  

 f(m ). 

Poiché la retta  l  contiene  (0 ,1 )  ed ( a , 0 )  allora la sua trasformata deve contenere i trasformati 

di tali punti e cioè essa è la retta che unisce  ( 0 , 1 )  e  (φ(a) , 0 )  . Pertanto   f(l  )   ha equazione  

x  + φ(a) y = φ(a). La  retta   m   contiene  il punto (0,b) e quindi  la retta f(m) deve contenere il suo 

trasformato (0 ,  φ(b)) . Dovendo inoltre risultare f(m) parallela ad f(l  ) si ha che la sua equazione 

 è :        x + φ(a) ( y - φ(b)) =  x + φ(a) y  - φ(a) φ(b) = 0 . 

La retta f(m)  interseca quindi la retta  x  nel punto   (φ(a) φ(b)  , 0 ). 

(a,b) 

(0,0) 
(1,0) 

(0,1) 

(a,0) 

(0,b) 

(a+b,0) 

(φ(a),0) 

(φ(a) +φ(b),0) 

(φ(a), φ(b)) (0,φ(b)) 
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Il punto (ab , 0 ) comune ad  m   ed   x  è quindi trasformato nel punto comune alle loro trasformate 

f(m) ed  f(x) = x  cioè nel punto  (φ(a) φ(b)  , 0 ). 

 
 

 

 

Si ha quindi  

                                               f (ab , 0 ) = (φ(a) φ(b)  , 0 ). 

 

e questa mostra che è : 

                                              φ(ab)  =   φ(a) φ(b)  . 

 

La funzione  φ  costruita è quindi un automorfismo di R . La funzione  φ  è quindi l’identità e così 

l’ affinità f , risultando  

                                         f(a , b) = (φ(a) , φ(b)) = ( a , b )  

è l’identità. 

L’ asserto è così provato. 
 

 

 

 

 

(0,0) (a,0) 

(0,1) 

(0,b) 

(0,φ(b)) 

(φ(a),0) 

(ab,0) 

(φ(a)φ(b),0) 

l

m 

f(l ) 

f(m) 
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Capitolo III 

 

Circonferenza , ellisse , iperbole , parabola 
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1. La circonferenza. 

 

Fissiamo nel piano reale un riferimento monometrico ed ortogonale R . 

 Siano  Po ( xo , yo )  un punto del piano ed  r  un  numero reale positivo. 

Si chiama   circonferenza di centro Po  e raggio r    l’insieme dei punti P del piano che hanno 

distanza  r  da  Po  . Indichiamo con  C  tale insieme di punti e cerchiamo una sua rappresentazione 

analitica . Sussistono le seguenti ovvie equivalenze : 

                 

  P ( x , y )∈  C  ⇔   d ( P ,  Po ) = r  ⇔  2 2( x - xo)  + ( y- yo)   = r  ⇔ ( x – xo) 2 + ( y– yo) 2 = r2 

 

Da queste segue quindi che appartengono alla circonferenza tutti e soli i punti del piano le cui 

coordinate verificano l’equazione  : 

 

 (1)                                                    ( x – xo) 2 + ( y– yo) 2 = r2 

 

la quale può scriversi così : 

                                                                

(2)                                                     x2  +  y2 + ax + by + c = 0 

 

avendo indicato con   a , b , c   le seguenti  quantità : 

 

                                     a = -2 xo      ,    b =  -2 yo     ,   c =  xo
 2 +  yo

 2 - r2 

 

L’ equazione   

                                                         x2  +  y2 + ax + by + c = 0    

 

rappresenta quindi la circonferenza C nel riferimento  R    fissato. 

E’ evidente che un’equazione proporzionale ad essa secondo un fattore di proporzionalità non nullo  

avendo le stesse soluzioni,  rappresenta lo stesso insieme di punti. 

 

L’equazione x2  +  y2 + ax + by + c = 0    che rappresenta C nel riferimento scelto è quindi di 

secondo grado ,  manca del termine misto xy  ed ha   eguali  i coefficienti di   x2  e  y2 . 

 

Non sempre però un’equazione di questo tipo rappresenta una circonferenza . Vediamo perché. 



 75

Sia quindi assegnata l’equazione  

x2  +  y2 + ax + by + c = 0 

 

essa rappresenta una circonferenza di centro  Po ( xo , yo )   e  raggio  r  (positivo)  se risulta : 

 

(3)                                x2  +  y2 + ax + by + c = ( x – xo) 2 + ( y– yo) 2 -  r2 

 

L’eguaglianza (3) sussiste se risulta  : 

  

                                  a = -2 xo      ,    b =  -2 yo     ,   c =  xo
 2 +  yo

 2 - r2 

 

Si ha quindi  

   

xo    =  -  a
2

     ,     yo  = -  b
2

 

 

 

 

(4) r2  =  xo
 2 +  yo

 2 – c  =  
2a

4
 +  

2b
4

  - c 

 

Dalla (4) segue quindi che si troverà un numero  r  positivo ,raggio della circonferenza cercata , 

se si ha : 

 

(5)                                                  
2a

4
 +  

2b
4

  - c   >  0 

 

 

Riassumendo :  

l’equazione         x2 + y2 + ax + by + c = 0    che abbia    a , b , c  verificanti la proprietà (5)   è 

l’equazione della circonferenza con centro nel punto   Po  = ( - a
2

   ,  - b
2

 )  e raggio  r  dato da : 

 

 (6)                                                  r  =   
2 2a b +     - c   

4 4
. 
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 Sia  C  una circonferenza del piano con centro nel punto   Po ( xo , yo )   e raggio  r  positivo e sia  

 

x2 + y2 + ax + by + c = 0 

 

l’equazione che rappresenta    C   in un  riferimento fissato . Sia  P ( x   ,  y  )  un punto della 

circonferenza. Esiste una sola retta per P che incontra  C  nel solo punto P essa è chiamata la  retta 

tangente a  C  nel punto P . E’ noto  che tale retta   tP    coincide con la retta per P ortogonale alla 

retta   l  che unisce P al centro  Po  . 

                                      
 

I numeri direttori della retta  l   sono  ( x  -  xo ,  y - yo  )  e quindi la retta   tP   ha equazione : 

 

 

         tP    :                           ( x  -  xo ) ( x - x   )  +  ( y - yo  ) ( y -  y ) = 0. 

 

Quando il piano reale venga ampliato con i punti immaginari anche la circonferenza  C  

rappresentata dall’equazione a coefficienti reali  

                                                      x2 + y2 + ax + by + c = 0  

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta .  

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di 

C  propri ed  impropri occorre che l’equazione   x2 + y2 + ax + by + c = 0   di  C  sia resa  

omogenea. 

Pertanto l’equazione  

                                           x2 + y2 + a x t + b y t  + ct2 = 0   

 

rappresenta  tutta la circonferenza  C  inclusi i  suoi punti impropri.  

P

P0 tP 
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Ma quali sono i punti impropri di C ?  Vediamo.  

 

E’ chiaro che i punti impropri di  C  sono quelli che essa ha in comune con la retta impropria 

del piano  che si rappresenta con l’equazione   t = 0 . I punti impropri di C corrispondono quindi 

alle soluzioni non nulle del seguente sistema  S : 

                                          S : 
2 2 2x  + y  + a x t + b y t  + ct  = 0

t = 0  
⎧
⎨
⎩

 

Le soluzioni cercate si ottengono quindi attraverso le soluzioni non nulle di : 

                                                     S : 
2 2x  + y  = 0

t = 0  
⎧
⎨
⎩

 

E sono quindi  ottenute  attraverso le soluzioni di  

                                                                  S :  
(x + iy)(x -iy) = 0
t = 0  

⎧
⎨
⎩

 

che equivale a  

                                                  
(x + iy) = 0
t = 0  

⎧
⎨
⎩

             ,              
(x -iy) = 0
t = 0  

⎧
⎨
⎩

 

 

Pertanto i punti  impropri  della circonferenza C  sono due  e sono  immaginari e coniugati  e sono 

i punti      

                              A∞ =( i , 1 , 0)             e                'A∞  =( -i , 1 , 0 ) 

 

 punti impropri delle rette complesse   x + i y = 0    e     x -i y = 0 . 

 

I punti   A∞ =( i , 1 , 0)      e  'A∞  = ( -i , 1 , 0 )   sono chiamati i   punti ciclici   del piano . 

 

Abbiamo così provato che una  qualunque circonferenza reale    quando la si pensi 

immersa nel piano proiettivo complesso ha in comune con la retta impropria i punti ciclici del 

piano. 

 

Quando si assegni nell’insieme dei punti del piano reale una proprietà “p” si può considerare 

il sottoinsieme che tale proprietà determina.  Si può inoltre cercare di descrivere il luogo F dei punti 

P del piano che godono della proprietà assegnata attraverso l’uso di  una sua rappresentazione 

analitica in un riferimento assegnato.  
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Abbiamo  appena  visto un primo esempio di questo problema. Infatti la proprietà  

 “p”                              P  ha  distanza  r  dal punto Po 

è una proprietà definita tra i punti del piano  ed il sottoinsieme C che essa determina è una 

circonferenza della quale abbiamo trovato in un riferimento ortogonale una sua semplice 

rappresentazione.  Usando tale rappresentazione è stato poi più facile indagare sulle proprietà 

dell’insieme C . 

Percorrendo questa idea descriveremo ora altri ben noti insiemi di punti :  

                                       ellisse ,     iperbole ,    parabola  

ognuno dei quali è definito attraverso una ben precisa proprietà . Ciò che accomuna tali luoghi è che 

essi al pari della circonferenza sono rappresentati tutti in un riferimento fissato da una equazione di 

secondo grado .Vediamo. 

 

 

2. Ellisse. 

Siano  F ed  F’  due punti distinti del piano e sia  2c  la loro distanza. Fissato un numero 

  a > c    consideriamo i punti P del piano che hanno la seguente proprietà : 

                                          

                                                 d ( P , F ) +  d ( P , F’) = 2a 

 

Tale insieme di punti è chiamato  ellisse  e sarà ora denotato con  E  .  I due punti F ed F’ sono detti 

i   fuochi   dell’ellisse.   

Cerchiamo ora una rappresentazione di tale insieme   E  . Per fare ciò disponiamo il 

riferimento che sceglieremo ortogonale, in modo che l’asse  x  coincida con la retta  che congiunge 

F’ ed F  e l’origine  O col punto medio del segmento [F’ , F]  . Orientamo gli assi in modo che F  

abbia coordinate (c , 0)  ed   F’  abbia coordinate ( -c, 0).  
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Con tale scelta del riferimento si ha  

  

P ( x , y )∈  E     ⇔         d ( P , F ) +  d ( P , F’ ) = 2a        ⇔  

 

                               2 2( x - c)  +  y    +  2 2( x + c)  +  y   =  2a 

 

Poniamo     b2 = a2 – c2  .  

 

Si hanno le seguenti equivalenze : 

 

2 2( x - c)  +  y    +  2 2( x + c)  +  y   =  2a   ⇔  

 

2 2( x - c)  +  y   =   2a    - 2 2( x + c)  +  y    ⇔  

 

( x –c)2 + y2 – 4 a2 – (x + c) 2 – y2  =  -4a 2 2( x + c)  +  y    ⇔  

 

( c2 – a2)x2 –a2y2 = a2  (c2 –a2 )                  ⇔  

 

b2x2 –a2y2 = a2  b2      ⇔  

 

                                                
2

2

x
a

  +  
2

2

y
b

 =  1      ( essendo  c2 = a2 – b2 ) 

 

Pertanto fanno parte dell’ellisse tutti e soli i punti P (x,y) del piano le cui coordinate soddisfano 

l’equazione   

                                                     
2

2

x
a

  +  
2

2

y
b

 =  1  

o equivalentemente   

                                                  

                                                    b2x2 + a2y2 –a2b2 = 0     

 

che rappresenta quindi l’ellisse nel riferimento scelto. 
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Quando il piano reale venga ampliato con i punti immaginari anche l’ellisse  E rappresentata 

dall’equazione a coefficienti reali  

                                                      b2x2 + a2y2 –a2b2 = 0     

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta.  

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di E  

propri ed  impropri occorre che l’equazione   b2x2 + a2y2 –a2b2 = 0    di   E  sia resa  omogenea. 

Pertanto l’equazione  

                                                        b2x2 + a2y2 –a2b2 t2 = 0 

     

rappresenta tutti i punti propri ed impropri dell’ ellisse  E .  

I punti impropri dell’ellisse sono i punti che l’ellisse ha in comune con la retta impropria e 

quindi si ottengono in corrispondenza alle soluzioni non nulle del seguente sistema S : 

 

S 
2 2 2 2 2 2 2b x  + a y  -a b  t  = 0

 t = 0
⎧
⎨
⎩

 

Il sistema S è equivalente a : 

 

S 
2 2 2 2b x  + a y   = 0

 t = 0
⎧
⎨
⎩

 

Che può scriversi così 

              
2 2 2 2 2b x  - i  a y   = 0

 t = 0
⎧
⎨
⎩

 

 

Si ha quindi  

 

(bx- iay)(bx + iay)  = 0
 t = 0

⎧
⎨
⎩

 

Da cui  segue : 

bx- iay = 0
 t = 0

⎧
⎨
⎩

                 ,                       
bx + iay  = 0
 t = 0

⎧
⎨
⎩
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I punti impropri dell’ellisse sono i seguenti due punti  

 

A∞ ( ia , b , 0 )         'A∞  (- ia , b , 0 )      

 

immaginari e coniugati.   La retta impropria è quindi  esterna  all’ellisse. 

 

 

3. Iperbole. 

Siano  F  ed  F’  due punti distinti del piano e sia  2c  la loro distanza. Fissato un numero 

  a  <  c    consideriamo i punti P del piano che hanno la seguente proprietà : 

                                          

                                                | d ( P , F ) -  d ( P , F’) | = 2a 

 

Tale insieme di punti è chiamato  iperbole  e sarà ora denotato con  I  . I due punti F ed F’ sono 

detti i   fuochi  dell’iperbole .   

Cerchiamo ora una rappresentazione di tale insieme I.  Per fare ciò disponiamo il 

riferimento che sceglieremo ortogonale, in modo che l’asse  x  coincida con la retta  che congiunge 

F’  ed   F  e l’origine  O col punto medio del segmento [F’ , F]  . Orientamo gli assi in modo che F  

abbia coordinate (c , 0)  ed   F’  abbia coordinate ( -c, 0).  

 
 

 

Con tale scelta del riferimento si ha  

  

P ( x , y )∈  I    ⇔       | d ( P , F ) -  d ( P , F’) | = 2a        ⇔  

       

 

     ⇔                           | 2 2( x - c)  +  y    -  2 2( x + c)  +  y   | =  2a 
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Poniamo     b2 = c2 – a2  .  

 

Con calcoli del tutto simili  a quelli già illustrati per l’ellisse si trova che : 

 

                                      P ( x , y )∈  I    ⇔     
2

2

x
a

  –  
2

2

y
b

 =  1 

 

 

Pertanto fanno parte dell’iperbole  tutti e soli i punti P (x,y) del piano le cui coordinate soddisfano 

l’equazione   

                                                     
2

2

x
a

  – 
2

2

y
b

 =  1  

o equivalentemente   

                                                  

                                                    b2x2 –  a2y2 – a2b2 = 0     

 

che rappresenta quindi l’iperbole  nel riferimento scelto. 

Quando il piano reale venga ampliato con i punti immaginari anche l’iperbole  I rappresentata 

dall’equazione a coefficienti reali  

                                                      b2x2 –  a2y2 – a2b2 = 0     

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta.  

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di I 

propri ed  impropri occorre che l’equazione   b2x2 – a2y2 –a2b2 = 0    di I  sia resa  omogenea. 

Pertanto l’equazione  

                                                        b2x2 -  a2y2 –a2b2 t2 = 0 

     

rappresenta tutti i punti propri ed impropri dell’ iperbole  I.  

I punti impropri dell’ iperbole sono i punti che l’ iperbole  ha in comune con la retta 

impropria e quindi si ottengono in corrispondenza alle soluzioni non nulle del seguente sistema S : 

 

S :    
⎩
⎨
⎧

=
=

0 t 
0   tba  - ya  - xb 2222222
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Il sistema S è equivalente a : 

 

S 
⎩
⎨
⎧

=
=

0 t 
0   ya  - xb 2222

 

che può scriversi così 

 

                
⎩
⎨
⎧

=
=+

0 t 
0  )ay   )(bx ay   -(bx  

        

 

Da cui  segue : 

⎩
⎨
⎧

=
=

0 t 
0 ay     -bx  

                 ,                       
⎩
⎨
⎧

=
=+

0 t 
0 ay    bx  

 

 

I punti impropri dell’iperbole  sono quindi   i seguenti due punti reali e distinti 

 

A∞ ( a , b , 0 )         'A∞  (- a , b , 0 )      

 

  La retta impropria è quindi  secante  l’iperbole . 

 

 

 

4. Parabola. 

Siano  F  un punto  e  r  una retta  non contenente  F.  Sia  2p  la distanza di F dalla retta  r .  

Consideriamo i punti P del piano che hanno la seguente proprietà : 

                                          

                                                 d ( P , F ) = d ( P , r )  

 

Tale insieme di punti è chiamato  parabola   e sarà ora denotato con  P  . Il punto F è detto fuoco 

mentre la retta  r  è chiamata  direttrice . 

Cerchiamo ora una rappresentazione di tale insieme   P .  

Per fare ciò disponiamo il riferimento che sceglieremo ortogonale, in modo che l’asse  x  

coincida con la retta  m  per F ortogonale ad  r  e l’origine  O col punto medio del segmento [F , M]  

M  essendo il punto d’intersezione di  m  con  r . Orientiamo gli assi in modo che F  abbia 
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coordinate (p , 0) .  

 

 
 

Con tale scelta del riferimento si ha  

  

P ( x , y )∈  P    ⇔      d ( P , F ) = d ( P ,  r)   ⇔   

 

                                           2 2( x - p)  +  y  ׀ x + p ׀  =  

 

Da questa elevando al quadrato segue  : 

 

  (**)                                            y2  - 2 p x  =  0 

 

e tale equazione   rappresenta quindi  la parabola  P    nel riferimento scelto. 

Quando il piano reale venga ampliato con i punti immaginari anche la parabola  P    rappresentata 

dall’equazione a coefficienti reali  

                                                      y2  - 2 p x  =  0 

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta.  

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di P 

propri ed  impropri occorre che l’equazione   y2  - 2 p x  =  0  di   P  sia resa  omogenea. 

Pertanto l’equazione omogenea 

                                                        y2  - 2 p x t  =  0 
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rappresenta tutti i punti propri ed impropri della parabola  P    . 

Quali sono i punti impropri della parabola  P ?   Vediamo . 

I punti impropri della parabola  P  sono i punti che la parabola ha in comune con la retta 

impropria e quindi si ottengono in corrispondenza alle soluzioni non nulle del seguente sistema  S  : 

 

S : 
2y   - 2 p x t  =  0

t = 0
⎧
⎨
⎩

 

 

Tale sistema è equivalente a  

 

S :    
2y 0

t = 0
⎧ =
⎨
⎩

 

 

che ha nella terna  ( 1 , 0 , 0)  due soluzioni  coincidenti  . 

 Pertanto la parabola ha un solo punto improprio reale. 

La retta impropria è quindi   tangente   alla parabola. 

 

Le curve reali descritte in precedenza  circonferenza , ellisse , iperbole , parbola sono anche 

chiamate  coniche  per la ragione seguente. 

 

Nello spazio scegliamo un piano πo  e su di esso consideriamo una circonferenza C  di 

raggio r da noi scelto che abbia il centro in un punto di πo  che chiamiamo Po. Consideriamo la retta  

m  per Po   ortogonale a   πo   e su tale retta scegliamo un punto  V  distinto da   Po  . 

 L ‘ unione di tutte le rette VP  ( generatrici ),  al variare di P su C , è detto  cono ( circolare 

retto )  di vertice V e  direttrice  C . 

Sia ora  π  un piano dello spazio   non passante   per il vertice V.  

L’intersezione di π  col cono  è : 

 

a)   una  circonferenza  se  π  è ortogonale  ad   m . 

b)   una  ellisse se  π  incide  tutte le generatrici  ma non è ortogonale ad  m . 

c)  una  iperbole  se  π  incide tutte le generatrici  tranne due . 

d)  una   parabola  se π  incide tutte le generatrici tranne una. 
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Se il piano  π  passa per V allora l’intersezione di   π  col cono è : 

 

1. una sola retta  ( piano tangente ) 

 

oppure 

 

2. due rette distinte   ( piano secante ) 

 

Le curve reali che abbiamo descritto in questo capitolo    ( circonferenza , ellisse , iperbole ,  

parabola ) vengono chiamate  coniche  ( non degeneri )  in quanto ottenibili come sezioni piane di 

un cono .  

Inoltre tali curve reali  ( circonferenza , ellisse , iperbole , parabola ) come già abbiamo 

osservato quando le pensiamo immerse nel piano proiettivo complesso sono tutte rappresentate da 

una 

 

                     equazione omogenea di secondo grado in tre variabili a coefficienti reali . 

 

Nel piano reale ampliato coi punti immaginari e coi punti impropri si scelga un riferimento 

reale e si scelgano poi  due rette reali  r  ed   s   rappresentate nel riferimento scelto dalle seguenti 

equazioni a coefficienti reali : 
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r :   ax  +  by  + ct  = 0 

s :   a’x + b’y + c’t = 0 

 

E’ chiaro che l’equazione omogenea di secondo grado  

 

                                    (ax  +  by  + ct  )( a’x + b’y + c’t ) = 0 

 

che si ottenga come prodotto delle due equazioni date rappresenta l’insieme  r ∪  s . Mentre 

l’equazione omogenea di secondo grado  

 

                                               (ax  +  by  + ct  )2 = 0 

 

rappresenta sempre la retta  r  ( contata due volte ). 

Una equazione omogenea a coefficienti reali in tre variabili può quindi essere la 

rappresentazione  di : 

 

una circonferenza reale , di una ellisse , di una iperbole , di una parabola e  di una coppia di rette 

distinte o coincidenti . 

 

 ( e queste come visto sono tutte le possibili sezioni di un piano col cono ). 

 

Nel capitolo che segue daremo la definizione di  conica  e poi studieremo a fondo tali 

insiemi di punti del piano. 

Nello studio che faremo ci imbatteremo spesso a dover ricercare le soluzioni non nulle di 

un’equazione omogenea di secondo grado in due variabili ( che qui indichiamo con  λ  e   µ  ) del 

tipo : 

 

(++)                                           a λ 2  +  b λ µ    +  c µ 2  = 0 . 

 

ed  è  quindi utile sapere  come si trovano le sue soluzioni non nulle. 

 

E’ chiaro che se la coppia  ( λ o ,   µ  o )   verifica l’equazione  (++)  anche la coppia  

 (  ρ λ o ,  ρ  µ  o )   con ρ ≠  0    verifica l’equazione  (++) . 

Ora se  è   a  ≠  0  e  (   λ o ,   µ  o )    è una soluzione  non può essere   µ  o = 0  perché ciò 
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comporterebbe anche  λ o = 0  . Pertanto  è  µ  o ≠  0   ed allora possiamo assumere  µ  o = 1 e 

determinare λ o  attraverso le soluzioni di  

 (+)                                               a λ 2  +  b λ    +  c  = 0 . 

ottenuta appunto dalla   (++)   ponendo    µ  = 1. 

Se  λ 1  e  λ 2  sono le soluzioni dell’equazione  (+)  le due coppie (  λ 1  , 1 )  e  (  λ 2  , 1 )  sono le 

soluzioni cercate  dell’equazione (++). 

Se   a = 0   allora l’equazione  (++) diviene  

                                      

                               b λ µ    +  c µ 2  =  µ  (  b λ    +  c µ   ) = 0 . 

 

e quindi le soluzioni sono  ( 1 , 0 )   e   ( -c , b ). 
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Capitolo IV 

 

Le coniche 
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1. Le coniche del piano proiettivo complesso. 

 

Nel piano proiettivo complesso che indicheremo con  π  ( nel quale sia fissato un riferimento 

reale R  )  si chiama  conica  

l’insieme dei punti  P  del piano verificanti con le loro coordinate omogenee un’equazione non 

identica omogenea di secondo grado in tre variabili ( x , y, t ) a coefficienti complessi  del tipo . 

 

(1) a11x 2 + a22 y 2 + a33 t2   + 2 a12  xy  +  2 a13 xt  +  2 a23 yt  = 0. 

 

Quando i coefficienti  aij  dell’equazione (1)  sono numeri reali ( o proporzionali a numeri reali) la 

conica è detta reale . 

 

E’ chiaro che ogni equazione proporzionale all’equazione (1) secondo un fattore di proporzionalità 

non nullo , avendo le stesse soluzioni della (1) , rappresenta lo stesso insieme di punti.  

E’ chiaro inoltre che poiché l’equazione (1) è omogenea se la terna non nulla ( y1, y2, y3 ) verifica 

l’equazione (1) anche la terna  (  ρ y1,   ρ y2,   ρ y3  ) con ρ ≠  0  verifica l’equazione  (1) sicchè ha 

senso dire che un punto del piano  soddisfa con le sue coordinate omogenee l’equazione (1). 

Alla conica  Г   rappresentata nel riferimento scelto dall’equazione : 

                  

                       a11x 2 + a22 y 2 + a33 t2   + 2 a12  xy  +  2 a13 xt  +  2 a23 yt  = 0. 

 

si può associare la seguente matrice quadrata d’ordine tre simmetrica ottenuta utilizzando i 

coefficienti  aij   dell’equazione della conica . 

 

                                                  A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

aaa
aaa
aaa

         (  aij = aji ) 

 

Si osservi ora esplicitamente che nell’equazione :  

 

 il numero che accompagna  xy   è il doppio di  a12 

 

il numero che accompagna  xt   è il doppio di  a13 
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il numero che accompagna  yt   è il doppio di  a23 

 

pertanto una certa attenzione va posta quando si scrive la matrice A associata alla conica . 

 

Ad esempio la matrice associata alla conica reale  Г  rappresentata da : 

 

                                   2x2 + 3 y2 + 2xt  + 4 y t = 0 
 
è la seguente : 
 

                                             A  =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

021
230
102

 

 
 

Vedremo in seguito che nella matrice  A associata alla conica sono contenute molte 

informazioni sulla conica stessa e per tale ragione   occorre scriverla in modo corretto. 

 

 

Studieremo ora in modo approfondito le coniche del piano già consapevoli che tra quelle 

reali dovremo ritrovare quelle descritte in precedenza . 

 

  ( coppia di rette distinte o coincidenti , circonferenza , ellisse , iperbole e parabola ). 

 

Ma  queste già descritte sono le uniche coniche reali o ce ne sono anche altre ?  Vediamo. 

 

Sia   Г  una conica rappresentata in un riferimento fissato dall’equazione  

a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3   = 0 

 

Ci è utile osservare che tale equazione  può scriversi nei seguenti modi : 

 

 

(a11 x1 + a12 x2    + a13 x3  )  x1  + 

(a21 x1 + a22 x2    + a23 x3  )  x2   + 
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 (a31 x1 + a32 x2    + a33 x3  )  x3   =  0 

 

∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )              (nella sommatoria gli indici i e j variano da 1 a  3) 

 

Xt A X = 0     dove   è     X  = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

x
x
x

          ed        A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

aaa
aaa
aaa

         (  aij = aji ) 

 

 

Porremo inoltre a volte per semplicità :  

 

f (  x1 , x2   , x3  )  = a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3    

 

f1 (  x1 , x2   , x3  )  = a11 x1 + a12 x2    + a13 x3   

f2 (  x1 , x2   , x3  )  = a21 x1 + a22 x2    + a23 x3   

f3 (  x1 , x2   , x3  )  = a31 x1 + a32 x2    + a33 x3   

 

Per la  simmetria della matrice A  sussiste questa utile eguaglianza che useremo spesso in seguito : 

per ogni coppia di terne  non nulle  (  y1 , y2   , y3  )   e  (  z1 , z2   , z3  )   si ha che sono eguali le 

seguenti due quantità  che indicheremo con   

                                          f ( y   /  z )            e                  f ( z   /  y )       

 

dove è :     

 

f ( y   /  z )     = (a11 y1 + a12 y2    + a13 y3  )  z1  + 

                         (a21 y1 + a22 y2    + a23 y3  )  z2   + 

                         (a31 y1 + a32 y2    + a33 y3  )  z3                                             
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f ( z   /  y )   = (a11 z1 + a12 z2    + a13 z3  )  y1  + 

                       (a21 z1 + a22 z2    + a23 z3  )  y2   + 

                        (a31 z1 + a32 z2    + a33 z3  )  y3                                              
 

 

 

 2.  Intersezione di una retta con una conica.                    

Sia  Г una conica del piano π  rappresentata, nel riferimento reale scelto,  dall’equazione  

a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3   = 0 

 

e sia   r   una retta del piano passante per i punti  Y  e   Z   di coordinate  (  y1 , y2   , y3  )   e  

 (  z1 , z2   , z3  )  . Quando si rappresenti  r  in forma parametrica si riconosce che i punti di  r hanno, 

al variare dei parametri (  λ   ,  µ  )   ≠ ( 0  , 0 ) ,   coordinate  del tipo  

 

                            (x1 , x2 , x3 )   =  λ  (y1 , y2 , y3 )  +  µ  (z1 , z2 , z3 )       

Cioè :   

                       (x1 , x2 , x3 ) =  ( λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   ) 

 

Ci chiediamo per quali valori dei parametri  (λ   ,  µ  ) ≠ ( 0  , 0 )  il punto  

( λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   )  della retta   r  appartenga anche alla conica   Г . 

 

Ora il  punto (λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   )  della retta  r  appartiene  alla conica   Г   

se risulta  : 

 

(2.1)                           ∑ =
ji,

jjiiji      0    ) zµ   + λy ( )zµ   + λy (a   

L’ equazione  (2.1)  è una equazione omogenea di secondo grado nelle incognite  λ  e  µ  del tipo 

 

(2.2)                                      a λ 2 +  2 b λ µ  +  c µ 2     = 0 
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avendo posto   

 

a   =  ∑
ji,

jiji       y ya ,                             b =   ∑
ji,

jiji       z ya ,                              c   =  ∑
ji,

jiji       z za  

 

 

Se  l’equazione  (2.2) è identicamente nulla  cioè risulta    a = b = c = 0   allora  per ogni 

scelta dei parametri     λ   e   µ    il punto di  r    di  coordinate  

 ( λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   )     appartiene alla conica e qundi la retta  r  è contenuta 

nella conica    Г  .   

Se l’equazione (2.2) non è identicamente nulla allora essa ammette due soluzioni (distinte o 

coincidenti ) in corrispondenza delle quali si trovano due punti (distinti o coincidenti) comuni alla  

retta   r  ed alla conica  Г .  

Abbiamo così stabilito il seguente risultato: 

 

Proposizione 2.1.  Una retta del piano non contenuta nella conica  ha in comune con essa 

al più due punti . 

 

Da tale risultato segue ovviamente che : 

 

una retta che abbia  almeno tre punti in comune con la conica è contenuta nella conica . 

 

 

3. Le coniche degeneri. 

Sia  Г una conica del piano π  rappresentata, nel riferimento reale scelto,  dall’equazione  

a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3   = 0 

Se il polinomio       

     f (  x1 , x2   , x3  )  = a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3   

 
è  riducibile  esso  è il prodotto di due polinomi omogenei di primo grado (distinti o coincidenti) e 

risulta quindi : 

 

a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3  =    
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( a x1 +  b x2  + c  x3) ( a’ x1 +  b’ x2  + c’ x3)      

 

In tal caso   la conica  Г  rappresentata dall’equazione  

             a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3   = 0 

 
è l’unione delle due rette  r  ed  s   (distinte o coincidenti )   rappresentate rispettivamente  da   : 

 

r  :       a x1 +  b x2  + c  x3   =  0 

s  :       a’x1 +  b’x2  + c’x3   =  0 

 

Quando la conica è unione di due rette essa  è detta   degenere ,   semplicemente degenere   

se le due rette sono distinte e  doppiamente degenere  se le due rette sono coincidenti. 

Come si può valutare se una conica è degenere ?  Vediamo. 

Per fare ciò occorre introdurre la nozione di   punto doppio. 

Sia  Г  una conica.  Un punto  P   della conica  è detto doppio  se esso ha la seguente 

proprietà   : 

 

(*)       ogni  retta passante per P ha in comune con la conica il  solo  punto P oppure è contenuta          

nella conica. 

 

Un punto che non sia doppio è detto semplice. 

 

Quando una conica è degenere essa possiede punti doppi . Infatti , riferendosi alle figure , 
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Se la conica è semplicemente degenere  ed è l’unione delle due rette distinte r ed s  allora , 

detto  V il punto comune alle due rette esso è doppio per la conica ed è l’ unico punto doppio della 

conica . 

 

Se la conica è doppiamente degenere allora  ogni suo punto è doppio. 

Questa proprietà esaminata per le coniche degeneri caratterizza le coniche degeneri come mostra la 

seguente 

 

Proposizione 3.1.   Una conica Г  è degenere se e solo se essa possiede punti doppi. 

 

Dimostrazione.  Abbiamo già osservato che se la conica è degenere essa possiede punti 

doppi. Supponiamo quindi che la conica possegga almeno un punto V  doppio e proviamo che essa 

è degenere. Sia  P  un punto della conica distinto da V . La retta  r  per  V  e P  è contenuta nella 

conica in quanto V è doppio.  Se  risulta   Г  =  r   allora   Г  è doppiamente degenere . Se  invece 

  Г  ⊃    r   scegliamo  un punto  T   di     Г  -   r  .  La retta   s    che unisce  V e T  , è distinta da r 

ed è contenuta in  Г  essendo V   un punto doppio.  Proviamo ora che risulta    Г  =   r  ∪    s . 

Supponiamo per assurdo che risulti  Г  ⊃  r  ∪    s .   

Sia    T  un punto di   Г   non appartenente alle rette  r  ed   s .  Ogni retta l  per T  è 

contenuta in  Г  .  

Infatti  ciò è ovvio se   l   passa per V  ( che è doppio)  ed è altrettanto vero se  l  non passa per V in 

quanto in tal caso la retta l  ha in comune con la conica  Г  i  tre punti distinti   T  ,  M = l  ∩   r , 

N = l  ∩   s .   

Se ogni retta per  T   è contenuta nella conica  allora ogni punto del piano appartiene alla conica è 

ciò è assurdo in quanto l’equazione che rappresenta  la conica è non identica e quindi la conica è un 

r 

V 

s r =s 
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sottoinsieme proprio del piano. 

  

Dalla proposizione ora provata seguono  le seguenti  ovvie proprietà : 

 

a) se una conica possiede un sol punto doppio essa è semplicemente degenere. 

 

b) se una conica possiede almeno due punti doppi  A  e  B  allora essa è doppiamente 

degenere riducendosi alla retta  che unisce A e B. 

 

La proposizione 3.1  ora provata  e che caratterizza le coniche degeneri sposta l’attenzione sulla 

ricerca degli eventuali punti doppi della conica .  

 Ma come si trovano i punti doppi di una conica ? Vediamo . 

 

Il teorema che segue fornisce la risposta al quesito posto. 

 

Proposizione 3.2.  Un punto  P   del piano è doppio per la conica Г  rappresentata 

dall’equazione  

           Г   :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )   

 se e solo se le sue coordinate   (  y1 , y2   , y3  )   verificano le seguenti eguaglianze : 

                                 a11 y1 + a12 y2    + a13 y3    = 0 

(3.1)                         a21 y1 + a22 y2    + a23 y3    = 0 

                                 a31 y1 + a32 y2    + a33 y3    = 0         

 

Dimostrazione.  Cominciamo a provare che se un punto ha coordinate verificanti le 

eguaglianze (3 . 1) esso è un punto della conica ed è doppio per essa . Abbiamo già osservato che 

risulta  

∑ =
ji,

jiji       y ya ( a11 y1 + a12 y2    + a13 y3 )  y1  +  (a21 y1 + a22 y2    + a23 y3)  y2  + 

                  +      (a31 y1 + a32 y2    + a33 y3)  y3   
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e pertanto , se valgono le (3.1),  si ha  ∑ =
ji,

jiji     0  y ya , il che prova che  P è un punto della conica. 

Proviamo ora che esso è doppio per   la conica   Г  . 

Sia  Z  un punto qualsiasi del piano distinto dal punto P e sia  r  la retta che unisce P con Z . 

Siano  (  z1 , z2   , z3  )  le  coordinate di  Z  e sia   

                        (  x1 , x2   ,x3  )   =  (λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   )    

la rappresentazione  parametrica della retta  r .   

Abbiamo già visto ( al numero 2 di questo capitolo)  che gli eventuali punti comuni alla retta  r ed 

alla conica si trovano attraverso le soluzioni  non nulle dell’equazione  

                                             a λ 2 +  2 b λ µ  +  c µ 2     = 0 

 

dove è : 

 

a   =  ∑
ji,

jiji       y ya ,                             b =   ∑
ji,

jiji       z ya ,                              c   =  ∑
ji,

jiji       z za  

 

Stante le (3.1) si ha allora    a = 0  e   b = 0   e pertanto l’ equazione  

                                          

                                                a λ 2 +  2 b λ µ  +  c µ 2     = 0  

diventa  

  

                                                c µ 2     = 0 

Se  anche   c = 0  allora la retta  r è contenuta nella conica  se invece è   c ≠  0   allora 

l’equazione    c µ 2  = 0      fornisce come sua unica soluzione la coppia  ( 1 , 0 ) cui corrisponde il 

punto P  che diventa quindi l’unico punto che r ha in comune con   Г .  

Abbiamo provato così che se valgono le (3.1) allora P appartiene alla conica ed inoltre (vista 

l’arbitrarietà del punto Z )  ogni   retta per P   o   è contenuta in  Г   o ha in comune con Г   il solo 

punto P e ciò prova che P è doppio per Г .  

Viceversa supponiamo che un punto  P ( y1 , y2   ,y3  )  della conica   Г  sia doppio per essa e 

proviamo che le sue coordinate ( y1 , y2   ,y3  )  verificano le  (3 . 1 ). 
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 Al solito sia Z  un punto qualsiasi del piano distinto dal punto P e sia  r  la retta che unisce P 

con Z . Siano  (  z1 , z2   , z3  )  le  coordinate di  Z  e sia   

(  x1 , x2   ,x3  )   =  (λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   ) 

la rappresentazione  parametrica della retta  r .   

I  punti comuni alla retta  r ed alla conica si trovano attraverso le soluzioni  non nulle dell’equazione  

                                             a λ 2 +  2 b λ µ  +  c µ 2     = 0 

dove è  : 

 

a   =  ∑
ji,

jiji       y ya ,           b = ∑
ji,

jiji       z ya ,           c   = ∑
ji,

jiji       z za  

 

Poiché P è un punto della conica  allora  è   a = 0 . L’ equazione   

 

a λ 2 +  2 b λ µ  +  c µ 2     = 0 

diventa così : 

µ  ( 2 b λ  +  c µ )     = 0 

Si ha quindi  la soluzione ( attesa )  (1 , 0)  cui corrisponde P  e  l’altra  soluzione si ottiene da  

( 2 b λ  +  c µ )     = 0. 

Poiché  P è doppio  la retta  PZ  è contenuta  in   Г  oppure ha in comune con  Г  il solo punto P e 

quindi l’ equazione   ( 2 b λ  +  c µ )     = 0     deve o essere identicamente nulla o deve fornire 

ancora come soluzione la coppia  ( 1, 0 ) . In entrambi i casi  ciò comporta che è   b  = 0 . 

Pertanto qualunque sia  Z (  z1 , z2   , z3  )   risulta allora che è : 

                       

                                              b =   ∑
ji,

jiji       z ya = 0 

Esplicitamente è  :  

b =  (a11 y1 + a12 y2    + a13 y3  )  z1  +(a21 y1 + a22 y2    + a23 y3  )  z2 + (a31 y1 + a32 y2    + a33 y3  )  z3                                            

 

ed esso è nullo , per ogni scelta del punto Z , e quindi per ogni scelta  della terna ( z1 , z2   , z3  ).  
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Scegliendo   

 

(  z1 , z2   , z3  ) = ( 1, 0 , 0 ) ,        (  z1 , z2   , z3  ) = ( 0, 1 , 0 ) ,      (  z1 , z2   , z3  ) = ( 0, 0 , 1 )  

 

si hanno le (3.1)  e l’asserto è così provato. 

 

La proposizione ora provata ha mostrato che determinare gli eventuali punti doppi della 

conica equivale a determinare le eventuali  soluzioni non nulle del seguente sistema  omogeneo  

(3.2)                         S  :  
⎪
⎩

⎪
⎨

⎧

=++

=++

=++

  0     xa      xa   xa
0     xa      xa   xa
0     xa      xa   xa

333232131

332222121

331212111

 

che ha per matrice la matrice A della conica . 

Pertanto , tenendo conto delle proposizioni ( 3. 1) e  (3. 2 ) , si ha questa utilissima  
 

Proposizione 3.3    Una conica Г  rappresentata dall’equazione  

           Г   :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )   

è degenere se e solo se risulta  

                                       det A  = 0 . 

Dimostrazione. Se Г è degenere essa possiede almeno un punto doppio P. Le coordinate dì P sono  
quindi una soluzione  non nulla  del sistema omogeneo (3 .2) e così è det A = 0.  

Viceversa se detA=0   il sistema (3 .2) ha soluzioni non nulle ed in corrispondenza a tali soluzioni si
hanno punti doppi per  Г   la quale è così degenere. 

 

 

4. Coniche non degeneri . Tangente in un punto. 

 
Sia  Г  una conica  non degenere rappresentata da  
 
                                                        ∑ =

ji,
jiji      0   xxa   (  aij  =  aji  ) 

 
 
e  sia P( y1 , y2   ,y3  )   un suo punto . Poiché  è non degenere il punto P è semplice e così almeno una 

delle tre relazioni (3 .1) è diversa da zero. Sia Z (  z1 , z2   , z3  )   un punto del piano distinto da P e 

sia r la retta PZ . Come già visto i punti comuni alla retta PZ , rappresentata parametricamente da  
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                               (  x1 , x2   ,x3  )   =  ( λ y1 +  µ z1,    λ y2 +  µ z2 ,  λ y3 +  µ z3   )    

si trovano attraverso le soluzioni  non nulle dell’equazione  

  (4.1)                                       a λ 2 +  2 b λ µ  +  c µ 2     = 0 

dove è  : 

                a   =  ∑
ji,

jiji       y ya ,           b = ∑
ji,

jiji       z ya ,           c   = ∑
ji,

jiji       z za  

 

Essendo   a   =  0   in quanto     P   ∈   Г , l’equazione  (4.1) diventa : 

 ( 4 .2)                  µ  (  2 b λ  +  c µ )     = 0 

Tale equazione fornisce la soluzione (1 , 0) in accordo col fatto che  P    è comune ad r  e  Г  . La 

soluzione (1 , 0) sarà soluzione doppia della (4.2 ) e cioè la retta  r interseca   Г  solo nel punto P  se 

e solo se risulta  

                                                                                         b = ∑
ji,

jiji       z ya =0            

Abbiamo così provato che i punti Z del piano per cui la retta PZ incontri Г nel solo punto P sono 

tutti e soli quelli per cui risulti : 

                          (a11 y1 + a12 y2    + a13 y3  )  z1  + 

                         (a21 y1 + a22 y2    + a23 y3  )  z2   + 

                         (a31 y1 + a32 y2    + a33 y3  )  z3       = 0                                      

 

cioè sono tutti e soli i punti del piano le cui coordinate sono soluzione dell’equazione seguente 

(4.3) 

 (a11 y1 + a12 y2    + a13 y3  )  x1  +(a21 y1 + a22 y2    + a23 y3  )  x2   + (a31 y1 + a32 y2    + a33 y3  )  x3 = 0                                      
 
 
Tale equazione,  che non è identica perchè P è semplice ,  rappresenta quindi l’unica retta per P che 

interseca la conica Г  nel solo punto P . Tale retta è chiamata  retta tangente nel punto P. 
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5. Coniche reali non degeneri. 

 

In questo numero  tratteremo le coniche reali non degeneri cercando una loro classificazione. 

Sia Г una conica reale non degenere rappresentata in un riferimento reale assegnato dall’equazione 

a coefficienti reali seguente : 

  

Г   :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  ) 

 

Supporremo inoltre che essa sia dotata di punti reali. 

 

(nota bene :    la conica  x2 + 2y2 + 3t2 = 0   pur essendo reale non ha punti reali . 

Al contrario se essa ha un punto reale ogni retta reale per tale punto e che sia secante 

intersecherà la conica in  un altro punto reale e così la conica ha infiniti punti reali) 

 

Poiché la conica  Г   è non degenere essa non contiene rette e così ogni retta del piano la   

interseca in due punti distinti o coincidenti. Se la retta è   reale   allora i due punti di intersezione 

sono entrambi reali o immaginari e coniugati. 

In particolare ciò accade per i suoi  punti impropri  che sono i punti che la conica ha in comune 

con la retta impropria che è una retta  reale . 

 

La conica   Г   è detta   ellisse  se possiede  due punti impropri immaginari e coniugati. 

 

La conica  Г è detta   iperbole  se possiede  due punti impropri reali e distinti. 

 

La conica Г  è detta   parabola   se possiede  un sol  punto improprio ( reale ). 

 

Per stabilire se una conica  è una ellisse , una iperbole o una parabola occorre quindi determinare 

i suoi punti impropri e quindi occorre studiare le soluzioni non nulle del sistema S formato 

dall’equazione della conica e da quella della retta impropria : 

 

                                                S :
⎪⎩

⎪
⎨
⎧

=

=∑
0   x

0    x xa 

3

ji,
jiij
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Il sistema S è equivalernte al sistema  seguente : 

 

 

                                        S : 
⎩
⎨
⎧

=
=++

0   x
0  xa  xx2a xa 

3

2
2222112

2
111  

 

Le soluzioni non nulle di tale sistema saranno reali o  immaginarie a seconda che il discriminante 

           

                                                 ∆  =  4 ( ) aa a 2211
2
12−  

 

dell’equazione  0  xa  xx2a xa 2
2222112

2
111 =++    sia  maggiore o eguale a zero o minore di zero.  

Tenendo conto che nella matrice A  della conica è : 

 

                                                  2
122211  a  aa −  =  A 33 

 

Si ha                                                ∆   =  - 4 A 33    

 

Ne segue che risulta : 

 

              Г   è una    ellisse         se  è        ∆  < 0      ⇔           A 33  >  0 

              Г   è una   parabola     se  è        ∆  = 0      ⇔           A 33  =  0 

              Г   è una    iperbole     se  è        ∆  >  0     ⇔           A 33  <  0 

 

 

Ricordiamo  che agiscono sul piano le affinità  ( reali )  che sono le applicazioni del piano 

in sé descrivibili con equazioni del tipo 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

=

3
'
3

3 23222121
'
2

3 13212111
'
1

 x   x

xm +     xm +  xm    x

 xm +     xm +  xm    x

2

2

 

 con         mij        numeri reali        e         det ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211

m   m
m   m

≠ 0 
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Tali isomorfismi del piano trasformano  punti propri in punti propri , punti impropri in punti 

impropri , punti reali in punti reali e punti immaginari in punti immaginari . 

Per una conica avere due punti impropri , immaginari e coniugati , reali e coincidenti o reali 

e distinti è quindi  una proprietà invariante rispetto al gruppo delle affinità ed è quindi una 

proprietà affine. 

Per tale ragione la suddivisione delle coniche reali non degeneri in  ellissi , parabole o 

iperboli è chiamata la classificazione affine delle coniche reali non degeneri. 

 

6. Polarità definita da una conica non degenere. 

      Sia Г una conica non degenere rappresentata in un riferimento reale assegnato dall’equazione 

seguente : 

  

                                   Г   :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  ) 

 

Poiché la conica  è non degenere la sua matrice A(aij ) è non degenere e quindi è  det A  ≠ 0. 

 

Sia  P( y1 , y2, y3 )   un punto del piano. L’ equazione  

 

(a11 y1 + a12 y2    + a13 y3  )  x1  +(a21 y1 + a22 y2    + a23 y3  )  x2   + (a31 y1 + a32 y2    + a33 y3  )  x3 = 0   

 

( costruita utilizzando le coordinate ( y1 , y2, y3 )   di P )  è una equazione non identica  

( altrimenti  P sarebbe doppio e la conica sarebbe degenere)  e quindi rappresenta una retta del 

piano . Tale retta è chiamata la   polare  del punto P e sarà denotata col simbolo   pP      .  

Associando al punto P la retta  pP    si  realizza una applicazione  p   tra i punti del piano e le 

rette del piano . Tale applicazione  

                                    p  :      P    →         pP 

è  chiamata   polarità   indotta dalla conica non degenere  Г   . Il punto P è chiamato il  polo della 

retta    pP   .  

Le proposizioni che seguono illustrano alcune importanti proprietà della polarità   p  indotta dalla  

conica   Г  . 

 

Proposizione 6.1   La polarità è un’applicazione biettiva. 
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Dimostrazione. Sia  r  una retta del piano rappresentata da : 

 

(6.1)                  r :                         ax + by + ct = 0 

 

Un punto   P (  y1 , y2, y3  )   del piano ha per polare la retta   r  se risulta  pP =  r   cioè se  

l’equazione  

 

(a11 y1 + a12 y2    + a13 y3  )  x1  +(a21 y1 + a22 y2    + a23 y3  )  x2   + (a31 y1 + a32 y2    + a33 y3  )  x3 = 0   

 

è l’equazione della retta  r . Si ha  quindi che P (  y1 , y2, y3  )  è polo di  r  se e solo se risulta : 

 

 (**)                                  
⎪
⎩

⎪
⎨

⎧

=++
=++
=++

 c   y a    y a  y a  
b   y a    y a  y a  
a    y a    y a  y a  

333232131

323222121

313212111

 

 

Tale sistema inteso nelle incognite  (  y1 , y2, y3  )   ha una sola soluzione (  z1 , z2, z3  ) in quanto, 

essendo la conica non degenere,   è  det A ≠  0.  Sostituendo alla terna  ( a, b , c ) la  terna 

proporzionale     (ρ a,  ρ b , ρ c )   con  ρ  ≠    0   si otterrà in corrispondenza la  soluzione  

 ( ρ z1 , ρ z2, ρ z3 ). Pertanto in corrispondenza a tutte le terne ( ρ z1 , ρ z2, ρ z3 ) soluzioni di (**)  

si ha un solo punto P del piano avente per polare la retta  r . La corrispondenza p  è quindi 

biettiva come si voleva provare. 

 

 Proposizione 6.2.  Un punto  P  appartiene alla sua polare se e solo se esso appartiene alla 

conica . In tal caso la sua polare coincide con la retta tangente in P . 

Dimostrazione . Se P(y1 , y2, y3  )  è un punto della conica allora la sua polare   pP  

che è rappresentata da : 

 

(a11 y1 + a12 y2    + a13 y3  )  x1  +(a21 y1 + a22 y2    + a23 y3  )  x2   + (a31 y1 + a32 y2    + a33 y3  )  x3 = 0   

 

coincide con la retta tangente nel punto  P  (cfr. (4.3) )  . In tal caso quindi P appartiene alla sua 

polare in quanto è    

(a11 y1 + a12 y2    + a13 y3  )  y1  +(a21 y1 + a22 y2    + a23 y3  )  y2   + (a31 y1 + a32 y2    + a33 y3  )  y3 = 0   

essendo P un punto della conica . 

Viceversa se P(y1 , y2, y3  )   appartiene alla sua polare  
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(a11 y1 + a12 y2    + a13 y3  )  x1  +(a21 y1 + a22 y2    + a23 y3  )  x2   + (a31 y1 + a32 y2    + a33 y3  )  x3 =0 

allora è  

(a11 y1 + a12 y2    + a13 y3  )  y1  +(a21 y1 + a22 y2    + a23 y3  )  y2   + (a31 y1 + a32 y2    + a33 y3  )  y3 = 0   

e questa prova che P è un punto della conica.  

 

Abbiamo così provato che : 

(6.3)                                    P ∈   Г      ⇔        P ∈     pP 

 

Una importante proprietà della polarità    p   è espressa dal seguente : 

 

Teorema di reciprocità.  Se  P(y1 , y2, y3  )    e Q (z1 , z2,  z3  )  sono due punti distinti del 

piano, . si ha   

(6.4)                                         Q∈   pP       ⇔     P∈   pQ                 

Dimostrazione.   

 La polare di P è : 

(a11 y1 + a12 y2    + a13 y3  )  x1  +(a21 y1 + a22 y2    + a23 y3  )  x2   + (a31 y1 + a32 y2    + a33 y3  )  x3 =0 

 

che può scriversi sinteticamente ,  usando le notazioni introdotte al numero 1 , così : 

                                                       f ( y   /  x )  = 0     

 

La polare di Q è : 

(a11 z1 + a12 z2    + a13 z3  )  x1  +(a21 z1 + a22 z2    + a23 z3  )  x2   + (a31 z1 + a32 z2    + a33 z3  )  x3 =0 

 

che può scriversi sinteticamente ,  usando le notazioni introdotte al numero 1 , così : 

                                                       f ( z   /  x )  = 0    

Abbiamo, sempre al numero 1  , già osservato che poiché la matrice A della conica è simmetrica  si 

ha  per ogni coppia di terne (y1 , y2, y3  )  e   (z1 , z2,  z3  )   

                                      

(6.5)                                  f ( y   /  z )  =  f ( z   /  y )   

 

Dalla (6.5) segue quindi 
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                                        f ( y   /  z )  = 0     ⇔     f ( z   /  y ) = 0  

 

e questa  prova l’asserto. 

 

Siamo ora in grado di descrivere per ogni retta del piano quale sia il suo polo. 

 

Sia  r   una retta del piano . Distinguiamo i due casi possibili : 

 

  

a )     r  è tangente alla conica . 

b )     r è secante la conica . 

 

Caso a) .  Se  la retta   r  è tangente alla conica nel punto P  allora la polare di P è r e quindi P è il 

polo di r . Nel caso in esame quindi il polo di r  è il punto di contatto di r con la conica . 

 

Caso b) .   Se la retta  r  è secante  la conica  siano  M  e  N  i punti  di intersezione di r con la 

conica . 

 
 

 

Sia m  la retta tangente a  Г  nel  punto M  e sia  n  la retta tangente a  Г  nel  punto N. 

N 

P

r 
 

M 

m

n
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Sia  P   il punto comune alle rette distinte  m ed n . Per ciò che precede è : 

 

                  m  =  pM                   ed                            n  =  pN                    

Ora è    P =  m ∩  n  =  pM  ∩  pN                    

e quindi  P appartiene alla polare di M ed alla polare di N .  

Per il teorema di reciprocità M ed N appartengono alla polare di P . Quindi la polare di P è la 

retta  r = MN  e così P   è il polo di r . 

 

Per la biettività della polarità abbiamo così provato la seguente proposizione : 

 

Proposizione 6.3. La polare di un punto P è la tangente in P se P è un punto della conica . 

Se P non appartiene alla conica la sua polare è la retta che unisce i due punti di contatto delle 

due rette tangenti che si possono condurre da P alla conica. 

 

Dal teorema di reciprocità segue facilmente la seguente: 

 

Proposizione 6.4. Quando  un punto P descrive una retta m la sua polare descrive un fascio 

di rette con centro il polo M della retta  m . 

 

 

7. Centro,  diametri , asintoti , assi.  Le equazioni canoniche. 

 

Sia  Г una conica non degenere reale e con punti reali  rappresentata, nel riferimento reale 

scelto,  dall’equazione  

a11
2
1x  + a22

2
2x  + a33

2
3x  + 2 a12 x1 x2    + 2 a13 x1 x3    +  2 a23 x2 x3   = 0 

 

Si chiama   centro   il    polo della retta impropria. 

Se la conica è una iperbole o una ellisse la retta impropria è secante e quindi non contiene il suo 

polo. Pertanto per l’iperbole e per l’ellisse il centro è un punto proprio. 

Se la conica è una parabola  la retta impropria è tangente e quindi il suo polo è il punto di 

tangenza . Pertanto per la parabola il centro è un punto improprio e coincide col suo unico 

punto improprio. Indichiamo con  C   il centro della conica    Г . 

Per determinare le coordinate del centro di una iperbole o di una ellisse si può far uso del 

teorema di reciprocità. 
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Poiché la retta impropria è per definizione la polare di C allora ogni punto improprio ha la polare 

che passa per C.  

Due punti impropri  “ facili”   sono (1  0  0 )  e  (0  1  0 )  e le loro polari sono le rette distinte  

                                              a11 x1 + a12 x2    + a13 x3  = 0 

                                              a21 x1 + a22 x2    + a23x   =  0 

le quali , come detto ,  passano per il centro  . Pertanto le  coordinate del centro si ottengono 

attraverso le soluzioni del sistema  

                                             
⎩
⎨
⎧

=++
=++

0    xa      xa   xa
0    xa      xa  xa

323222121

313212 111
 

Tale sistema  è omogeneo e  di rango due e quindi le sue soluzioni si ottengono attraverso i 

minori d’ordine due e presi a segno alterno della matrice dei coefficienti 

                                              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

232221

131211

a  a  a
a   a  a

 

Utilizzando quindi le prime due righe della matrice A della conica si possono determinare le 

coordinate del centro. 

Diametri. 

Si chiama  diametro della conica  la retta  d   polare di un punto improprio δ   non 

appartenente alla conica. 

Quando il punto improprio appartiene alla conica la polare di tale punto ( la tangente in tale 

punto )  è chiamato asintoto. 

La retta impropria è la polare del centro e quindi , per reciprocità , i diametri e gli asintoti 

essendo polari di punti impropri   passano tutti per il centro.  

Se la conica è una iperbole o una ellisse allora i diametri formano un fascio proprio essendo per 

tali coniche il centro un punto proprio. Se la conica è una parabola allora i diametri formano un 

fascio improprio essendo per tali coniche il centro un punto improprio. 

Nel caso della parabola quindi  i    diametri  sono tra loro paralleli. 

 

Sia  r una retta reale e sia  δ   il suo punto improprio . Supposto che  tale punto non 
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appartenga alla conica possiamo considerare il diametro d  ad esso corrispondente . Poiché δ   

non appartiene alla conica la retta  d  non contiene δ   e quindi la retta  d   non è parallela ad  r .  

Se  d  è ortogonale ad r  allora  d  è detto  asse . 

Gli assi sono quindi   particolari diametri . 

 
Come si trovano gli assi ?  Vediamo. 

 

Se la conica  Г  è una parabola  allora i diametri hanno una direzione fissa perché passano 

tutti per il centro che coincide con  l’unico punto improprio della parabola  Г.  

Pertanto se il punto improprio di  Г    ha coordinate  ( l  , m , 0 )  l’asse  della parabola  è  la 

retta   d   polare del punto improprio  ( -m ,  l  , 0 ). Tale asse interseca la parabola in un punto 

proprio ,  detto vertice  della parabola  e nel suo punto improprio. 

Disponendo il riferimento in modo che l’asse  x coincida con la retta  d e l’origine nel 

vertice della parabola  l’equazione della parabola  

 

                           a11x 2 + a22 y 2 + a33 t2   + 2 a12  xy  +  2 a13 xt  +  2 a23 yt  = 0. 

 

diviene più semplice. Vediamo. 

La polare del punto  (0, 1 , 0)  è la retta  

                                                   a21 x + a22 y   + a23 t  =  0 

d 

r 
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e tale retta,  per la scelta fatta sul riferimento ,  è la retta  y  =  0   . Pertanto  è   : 

                                                              a12 = a23  = 0 

Poiché l’origine (0  0  1)  è un punto della parabola è anche  a33  = 0. 

                

La conica  Г  ha allora la seguente matrice  

                                          A = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0      0   a
0   a      0

a     0   a

31

22

1311

 

Essendo Г  una parabola  è     A33 =  a11 a22   = 0    e   detA ≠   0   e quindi è    a11 = 0 .     

L’equazione di   Г   nel riferimento scelto è quindi del tipo   

                                                           a22 y 2 + 2 a13 xt  = 0 

I punti propri della parabola sono quindi rappresentati dall’equazione  : 

                                                          a22 y 2 + 2 a13 x  = 0 

che è chiamata  l’equazione canonica    della parabola  Г  . 

                                 
 

Supponiamo quindi che  la conica  Г   sia una  iperbole o una ellisse. 

Consideriamo un qualsiasi punto improprio e siano  ( λ ,  µ   , 0 )  le sue coordinate  e sia  r una 

retta che passa per esso.  

La polare di tale punto improprio è la retta  d   rappresentata da:  

  

  d  :                 (a11 λ  + a12 µ   )  x1  + (a21 λ + a22 µ   )  x2   + (a31 λ  + a32 µ     )  x3 =0 

 

I  numeri direttori di tale retta sono . 

 

                       (  λ'   , µ'  )  =  ( - (a21 λ + a22 µ   )  ,   (a11 λ  + a12 µ   )   ) 

 

Pertanto le rette  d  ed  r   sono ortogonali se risulta   λ λ ’ +  µ µ ’ = 0  cioè : 

 

( 7 . 1)                   - λ  (a21λ + a22 µ   )  +  µ (a11 λ  + a12 µ   )   = 0   
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La (7.1)  sviluppata  : 

 

(7 .2 )                        - a21 λ 2  
  +   (a11  -  a22 ) λ µ   +   a12 µ 2  = 0   

 

è un’equazione omogenea di secondo grado e le sue soluzioni non nulle forniscono le “direzioni”   

( λ ,  µ   , 0 )  le cui polari sono gli assi della conica. 

Ora il discriminante dell’equazione (7.2) è : 

 

                                          ∆  =   (a11  -  a22 ) 2  + 4 a12 
2  

 

Se    a11  =  a22 = a12 = 0   la conica è una circonferenza  e la (7.2) è identicamente nulla . Nel caso 

della circonferenza ogni diametro è quindi un  asse. 

Se la conica non è una circonferenza allora è    ∆  > 0  e quindi la (7.2) fornisce due soluzioni 

reali e distinte . 

Ci sono quindi due rette reali d  e  d’ che sono assi  della conica se  Г   è una iperbole o una 

ellisse.  Gli assi   d  e  d’ sono inoltre , per il teorema di reciprocità,   ortogonali tra loro. 

Disponendo il riferimento in modo che l’asse x sia la retta  d  e l’asse y sia la retta  d’  

l’equazione della conica  diventa più semplice . Infatti sia  

             

                           a11x 2 + a22 y 2 + a33 t2   + 2 a12  xy  +  2 a13 xt  +  2 a23 yt  = 0. 

 

l’equazione di    Г . 

La polare di   ( 1, 0, 0 )  è la retta     

                                                     a11 x + a12 y   + a13 t  = 0 

e tale retta per le scelte fatte è la retta  x  =  0   . Pertanto  è    

                                                              a12 = a13  = 0 

La polare di   ( 0, 1, 0 )  è la retta     

                                        a21 x + a22 y   + a23 t  =  0 

e tale retta per le scelte fatte è la retta  y  =  0   . Pertanto  è   : 

                                                              a12 = a23  = 0 
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Con la scelta fatta per il  riferimento l’ equazione  diventa : 

                                              

                                                   a11x 2 + a22 y 2 + a33 t2     = 0 . 

 

e questa viene chiamata  l’equazione canonica della conica  Г  . 

Essendo  la conica non degenere è         det A = a11a22 a33 ≠   0     e quindi è   : 

                                            a11 ≠   0  ,    a22 ≠   0   ,     a33 ≠   0   

Dei tre numeri reali  a11, a22 , a33   valutiamo quali sono positivi e quali negativi . 

Avendo supposto che la conica è  dotata di punti reali  le possibilità per i segni dei  numeri reali   

a11, a22 , a33   sono riassunti nella seguente tabella  

 

a11 

 

a22 a33      Equazione di  Г  in coordinate non omogenee 

+ +   - b2x 2 + a2
 y 2 = 1  (ellisse) o (circonferenza  se  a= b) 

+ - - b2x 2 - a2
 y 2 = 1  (iperbole) 

 - + - a2y 2 -  b2
 x 2 = 1  (iperbole) 

 

Attraverso le equazioni canoniche abbiamo così riconosciuto che la parte reale e propria di  una 

conica reale non degenere e che sia dotata di punti reali è : 

               una  “vera”  circonferenza ,  una  “vera”  ellisse ,     una  “vera”  iperbole  

               una “vera”  parabola . 

nel senso descritto nel capitolo II .  

L’aver chiamato ellisse , parabola o iperbole una conica reale non degenere e con punti reali è 

quindi coerente con le nostre attese. 
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Capitolo  V 
 

 
Lo spazio proiettivo complesso di dimensione tre. 
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1. Lo spazio affine reale e complesso. 

 

In questo numero  S  rappresenterà lo spazio reale tridimensionale . La famiglia delle rette di  

S sarà rappresentata col simbolo  L    mentre col simbolo   P   rappresenteremo la famiglia dei piani 

di S.    

Due rette    l  ed  l ’  di  S   si dicono  parallele  se coincidono oppure, nel caso siano distinte, 

esse giacciono in uno stesso piano ed hanno intersezione vuota.  

Due piani  α  e  α’   si dicono paralleli se coincidono oppure , nel caso siano distinti , se 

hanno intersezione vuota. 

Una retta  l   ed un piano  α  sono paralleli  se la retta è contenuta nel piano oppure , nel caso 

non sia contenuta , essa ha intersezione vuota col piano. 

Tre punti distinti si dicono allineati se essi appartengono ad una stessa retta, non allineati in 

caso contrario. 

La terna  (S , L , P )  è chiamata spazio affine reale tridimensionale e per essa sono verificate 

le seguenti proprietà : 

 

1. Due punti distinti appartengono ad una unica retta. 

2. Tre punti distinti e non allineati appartengono ad un unico piano. 

3. Due piani distinti hanno intersezione vuota o si intersecano in una retta. 

4. Una retta  l  non contenuta nel piano α  o è parallela ad α  oppure interseca  α  in un 

unico punto. 

5. Data una retta  l  ed un punto p non appartenente ad l  esiste una sola retta l ’ per  p  

parallela ad  l. 

6. Dato un piano α  ed un punto p non appartenente ad  α  esiste un sol piano α’  per p 

parallelo ad   α . 

 

Le proprietà sopra elencate sono  equivalenti  alle seguenti : 

 

1.   Due punti distinti appartengono ad una unica retta. 

2’. Una retta ed un punto che non si appartengano sono contenuti in un unico piano. 

3. Due piani distinti hanno intersezione vuota o si intersecano in una retta. 

4’. Una retta  l   che unisce due punti di un piano è tutta contenuta nel piano. 
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5. Data una retta  l  ed un punto p non appartenente ad l  esiste una sola retta l ’ per  p  

parallela ad  l. 

6. Dato un piano α  ed un punto p non appartenente ad  α  esiste un sol piano α’  per p 

parallelo ad   α . 

 

Le proprietà sopra elencate mostrano che ogni piano dello spazio  rispetto alle rette in esso 

contenute è un piano affine. 

 

Abbiamo già provato che quando nello spazio (S , L , P )  si introduca un riferimento reale R 

e monometrico allora i suoi punti , le sue rette ed i suoi piani possono essere rappresentati al 

seguente modo. 

Ad ogni  punto  p si può associare una terna ordinata ( x, y, z) di numeri reali che si chiama 

la terna delle coordinate di p nel riferimento R  e tale corrispondenza , detta coordinazione dello 

spazio , è biettiva . 

Ogni  piano  si rappresenta con un’equazione  

                          ax + by + cz + d = 0        con       ( a , b , c)  ≠  (0 , 0, 0 ) 

di primo grado e non identica in tre variabili. 

 

Ogni retta  si rappresenta o in modo parametrico con relazioni del tipo  

                                

                             l  :     
⎪
⎩

⎪
⎨

⎧

−+=

−+=
−+=

)zρ(z      z     z  
 )yρ(y         y    y

)xρ(x      x     x  

ABA

ABA

ABA

 

(dove il parametro ρ  varia nel campo reale) 

 

o con un sistema del tipo :  

                                l  :      
⎩
⎨
⎧

=+++
=+++

0d'  zc'y b' x a'  
0  d   cz  by ax   

 

 

a seconda se si pensi l  come la retta che congiunge i punti distinti   A( xA  ,yA  ,  z A)   e   

B ( xB  ,yB  ,  z B)  oppure si pensi la retta  l  come la retta comune ai due piani   α  e  α’   distinti tra 

loro e rappresentati rispettivamente da  : 

 

                 α  :   ax + by + cz + d = 0     e     α’:   a’x + b’y + c’z + d’ = 0                    . 
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Attraverso tali rappresentazioni abbiamo visto che è facile riconoscere se due rette sono tra 

loro parallele , se due piani sono tra loro paralleli , se una retta ed un piano sono tra loro paralleli. 

Così come il piano affine reale è stato da noi arricchito di nuovi punti , i punti immaginari , 

lo stesso procedimento può essere eseguito nello spazio (S , L , P )  .  

Senza ripetere le motivazioni che portano alla  definizione di punto immaginario (sarebbero 

le stesse esposte nel caso del piano)  puntiamo direttamente alla sua introduzione. 

Anche nello spazio,  quando si siano scelti due riferimenti reali R ed  R’ ,   ci sono delle 

formule che consentono di conoscere le coordinate di un punto p nel  riferimento R’   note che siano 

le coordinate dello stesso punto nel  riferimento R. Tali formule ,dette di passaggio da un 

riferimento all’altro,    sono di questo tipo : 

 

 

(*)                                     

⎪
⎩

⎪
⎨

⎧

+++=

+++=

+++=

3333231

2232221

1131211

c   za   ya  xa  z'
               c  z a   ya xa  y'

c   za   ya  xa  x'
 

 

 dove i numeri aij  e  ci   sono reali ed inoltre è :       det 0≠
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

a  a a 
  a  a a 

a a  a 
 

 

Consideriamo ora le coppie del tipo ( ( a , b , c) ; R )  dove la prima coordinata ( a , b , c) è 

una terna ordinata di numeri complessi non tutti e tre reali  e la seconda coordinata R  è un 

riferimento reale dello spazio. 

Due siffatte coppie ( ( a , b , c) ; R )   e  ( ( a’ , b’ , c’) ; R’ )  le diremo equivalenti se 

sostituendo nelle formule (*) di passaggio da  R ad   R’ al posto di x , y , z  i numeri  a, b , c si 

ottengono a primo membro i numeri   a’ , b’ , c’ . 

Tale relazione , come è facile controllare, è d’equivalenza ed  ogni classe d’equivalenza  è 

chiamata  punto immaginario.  

Se    p* = [( ( a , b , c) ; R ) ]   è un punto immaginario i numeri complessi e non tutti reali  

(a , b , c) vengono chiamati le coordinate di  p*   nel riferimento  R . 

              Indichiamo con  I  l’insieme di tutti i punti immaginari e con  S* = S  ∪  I  lo spazio 

ottenuto aggiungendo ai punti reali i punti immaginari. 
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Quando si fissi un riferimento R reale dello spazio ogni punto p di S*  ha le sue coordinate 

(x, y , z) . 

Tali coordinate sono tre numeri reali quando il punto p è reale e sono tre numeri complessi e 

non tutti e tre reali quando il punto p è immaginario. 

Utilizzando il coniugio ( c : x+iy  →     x-iy )  del campo complesso si può nello spazio S*  

introdurre una biezione  

                                      c  :   p ∈  S*   →   
_
p  ∈  S* 

che chiameremo egualmente   coniugio   la quale fa corrispondere al punto p di coordinate (x, y, z) 

il punto 
_
p   le cui coordinate sono i numeri complessi e coniugati dei numeri x , y, z.. 

Il punto 
_
p  è chiamato il punto complesso e coniugato del punto p . 

 Evidentemente un punto è reale se e solo se coincide col suo complesso coniugato. 

 

Se p non è un punto reale esso è distinto dal suo complesso coniugato e la retta che 

congiunge  p  e 
_
p   ha numeri direttori reali come è facile controllare . 

Nello spazio S* si possono stabilire le stesse formule già provate per lo spazio reale. Noi 

non faremo però la dimostrazione di queste formule. Un primo esempio è il seguente. 

 

Se  A( xA  ,yA  ,  z A)   ,  B ( xB  ,yB  ,  z B)  , C( xC  ,yC  ,  zC)   sono tre punti distinti e non 

allineati di  S*  il piano α   che li congiunge è costituito dai punti  p le cui coordinate (x, y , z)  

verificano la seguente relazione : 

 

                                              det 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
1
1

 z    yx
 z    yx

z    yx
1   z         yx

CCC

BBB

AAA  = 0 

 

Sviluppando tale determinante lungo gli elementi della prima riga si riconosce che i punti 

del piano α  hanno coordinate (x, y , z)   che sono tutte e sole le soluzioni di un’equazione di primo 

grado non identica nelle variabili x , y, z  del tipo 

 (**)                                             ax + by + cz + d = 0 

con a , b , c , d  numeri complessi e con  (a, b , c ) ≠  ( 0,0,0). 

L’equazione (**)  si dice che rappresenta il piano  α . E’ evidente che un’equazione 
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proporzionale ad essa secondo un fattore complesso non nullo , ha le stesse soluzioni e quindi 

rappresenta lo stesso piano. 

Quando i coefficienti a , b , c , d   sono reali o proporzionali a numeri reali il piano è detto 

reale  .In tal caso i punti reali di tale piano costituiscono allora un piano reale dello spazio S.  

Tra i piani dello spazio S*  ci sono quindi i vecchi piani di S arricchiti ciascuno di infiniti 

nuovi punti immaginari. 

Per ogni piano  α  rappresentato da :  

                                      α   :     ax + by + cz + d = 0 

si può considerare il piano 
_

α   complesso e coniugato ottenuto considerando i punti complessi e 

coniugati dei punti di  α . Il piano  
_

α   è rappresentato da : 

                                        
_

α  :     
_

a x + 
_

by + 
_

c z + 
_

d = 0 

cioè dall’equazione complessa e coniugata dell’equazione di  α   . 

 

E’ facile controllare che sussiste la seguente equivalenza : 

 

Proposizione 1.1  Un piano è reale se e solo se coincide col suo complesso coniugato. 

 

Ci sono però piani nello spazio S*  che non sono reali e quindi non riconoscibili come un 

ampliamento di quelli di S . Tali piani ovviamente non possono possedere tre punti reali e non 

allineati.  Consideriamo quindi un piano α  non reale . 

 E’ evidente che un eventuale punto reale di tale piano appartiene anche al piano complesso 

e coniugato. Quindi gli eventuali punti reali del piano α vanno ricercati nell’intersezione di  α  con  
_

α   . Se  α  è parallelo ad  
_

α    allora esso non ha punti reali 

Ad esempio il piano  rappresentato  da 

                                                x – i = 0 

è parallelo ad   
_

α   rappresentato da  x  + i = 0  ed è privo di punti reali in quanto i suoi punti sono 

del tipo ( i , h , k ).  

Se  α  possiede un punto  po   reale allora α   ed  
_

α    avendo in comune  po  hanno in comune 

una retta l  . Sia ora  A  un punto della retta  l  distinto da  po e sia   
_

A   il suo complesso coniugato 

che apparterrà anch’esso alla retta  l .  Se A =  
_

A    allora il punto A è reale e quindi la retta   l   

possedendo due punti reali è reale . Se A ≠  
_

A    allora i numeri direttori di  l  sono reali e quindi la 
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retta  l  è pur sempre reale. Ad esempio  il piano   rappresentato da  

                                                x + iy = 0 

ha come unici punti reali  i punti  allineati  (0 , 0 , k)  con k reale .  

 

Concludendo, abbiamo mostrato che nello spazio S*  ci sono tre tipi di piani : 

 

a) Piani reali che sono i piani di S ampliati ciascuno con i punti immaginari. 

b) Piani totalmente immaginari . 

c) Piani immaginari dotati di una retta reale. 

 

Vediamo ora le rette di S*. 

I punti della retta  l*  che unisce i due punti distinti   A( xA  ,yA  ,  z A)   e  B ( xB  ,yB  ,  z B)  di  

S*  hanno coordinate ( x, y , z )  espresse da 

                             l*  :     
⎪
⎩

⎪
⎨

⎧

−+=

−+=
−+=

)zρ(z      z     z  
 )yρ(y        y    y
)xρ(x      x     x  

ABA

ABA

ABA

 

(dove il parametro ρ  varia ora nel campo complesso). 

Queste formule, che rappresentano parametricamente la retta  l*, mostrano che quando i 

punti A e B sono reali , la sua parte reale , ottenuta in corrispondenza ai valori reali del parametro ρ  

coincide con la retta reale di S congiungente A  e  B.  

In tal modo si riconosce che alcune rette dello spazio complesso S* sono “un allungamento” 

di quelle reali le quali si sono anch’esse arricchite di infiniti nuovi punti immaginari.  

Vedremo però ora che nello spazio S*  ci sono rette “nuove” che non sono di questo tipo. 

Tali rette evidentemente hanno al più un punto reale. 

Vediamo. 

La retta   l   rappresentata da   

                                          l    :   
⎩
⎨
⎧

=

=+

0  z
0  iy  x

             

ha un solo punto reale coincidente con (0 , 0, 0 ) . 

 

La  retta  l   rappresentata da   

                                          l    :   
⎩
⎨
⎧

=
=
0  z
i   x
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non ha punti reali.  

 

Concludendo nello spazio S*  ci sono tre tipi di rette : 

 

a) Rette reali cioè quelle che posseggono due punti reali e quindi infiniti punti 

reali. 

b) Rette complesse prive di punti reali. 

c) Rette complesse con un unico punto reale. 

 

Denotiamo con   L*  l’insieme delle rette di  S*  e  con  P*  l’insieme dei piani di S*. 

La terna  (S* , L* , P* ) è chiamata spazio affine complesso tridimensionale e per esso continuano a 

valere le proprietà  geometriche   1,2,3,4,5,6    già espresse per lo spazio affine reale   (S , L , P ).   

 

2. Lo spazio proiettivo reale e complesso di dimensione tre. 

 

In questo numero mostreremo che lo spazio affine reale (S , L , P ) può essere ampliato con 

l’aggiunta di nuovi punti , detti punti impropri.  Aggregando tali nuovi punti in modo opportuno 

alle rette di S  ed ai piani di S ed agiungendo alcune nuove rette ed un nuovo piano si ottiene una 

nuova struttura geometrica  (S^ , L^ , P^ )  per la quale proveremo che valgono le seguenti 

proprietà : 

 

I. Due punti distinti appartengono ad una unica retta. 

II. Due piani distinti si intersecano in una retta. 

III. Una retta ed un punto che non si appartengano sono contenuti in unico piano. 

IV. Una retta incontra un piano che non la contenga in un unico punto. 

 

Lo spazio geometrico  (S^ , L^ , P^) sarà chiamato spazio proiettivo reale tridimensionale. 

Vediamo come si effettua questa costruzione. 

 

Diamo prima alcune definizioni. 

Nello spazio affine reale  (S , L , P ) tutte le rette passanti per un fissato punto p  definiscono 

una stella propria di rette di centro p.  

Tutte le rette parallele ad una retta  l  fissata costituiscono ( per la proprietà 5) una partizione 

dei punti di S e tale famiglia di rette viene detta  stella impropria di rette. 
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Dato un piano  α   e scelto un suo punto p  si possono considerare  tutte le rette per p 

contenute in α    . Tale famiglia di rette è detta   fascio di rette ci centro p. 

Tutti i piani passanti per un fissato punto p definiscono una  stella di piani di centro p. 

Tutti i piani passanti per una fissata retta  l  definiscono un  fascio proprio di piani di asse  l. 

Tutti i piani paralleli ad un fissato piano α    costituisco, per la proprietà 6 , una partizione 

dei punti di S e definiscono un   fascio improprio di piani .. 

 

Vediamo ora come si costruisce lo spazio proiettivo. 

 

Sia  r una retta dello spazio affine reale (S , L , P )  . 

 Indichiamo con  Or  un oggetto da noi scelto e che chiamiamo punto improprio ed 

ampliamo la retta r aggiungendo ad essa questo nuovo punto  . Ogni retta dello spazio ha quindi 

un nuovo punto ed il criterio che seguiremo per tale attribuzione è il seguente : 

 

                                        Or  =  Os        ⇔         r  è parallela ad s  

 

(esplicitamente :  il punto Or    aggiunto ad r coincide col punto  Os  aggiunto ad s   se e solo se 

r ed s sono rette tra loro parallele ) 

Pertanto con tale criterio una retta  s parallela ad r sarà ampliata con lo stesso punto che 

abbiamo aggiunto ad  r ed in tal modo le due rette   r ed  s  , prima tra loro parallele,  risultano 

ora incidenti nel punto Or  che è ad esse comune . 

Indichiamo con  ∆   l’insieme  di tutti i punti impropri Or  al variare di r nello spazio . Che 

cardinalità ha   ∆   ?   Vediamo . 

Si consideri un punto p dello spazio e sia  Sp   la stella  di rette di centro p . Per ogni retta  r  

di   Sp   indichiamo sempre con  Or  il suo  punto improprio . E’ chiaro che i punti  Or  al variare 

di r in Sp  sono tutti distinti tra loro ed esauriscono come ora vedremo l’insieme   ∆ .   

Infatti sia  t una retta dello spazio non passante per p . Se  r è l’unica retta per p parallela a t  

allora il punto  Ot  aggiunto alla retta t coincide con il punto Or  aggiunto alla retta r.  

Pertanto i punti impropri sono tanti quante le rette di Sp  per p . Chiameremo  ∆  piano   

improprio. 

Anche i piani , oltre alle rette , vengono ampliati al seguente modo. Sia  α  un piano e sia r una 

retta del piano  . Aggiungiamo ai punti del piano il punto improprio Or della retta r. Se p è un 

punto di  α  ed  Fp  è il fascio di rette di centro p  allora i punti impropri aggiunti al piano α  sono 

evidentemente tutti e soli i punti impropri  Or al variare di r in  Fp . Tali punti  Or costituiscono 
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la retta impropria del piano affine  α  e tale  retta sarà denotata col simbolo   ∆α   .E’ evidente 

che due piani tra loro paralleli hanno la stessa retta impropria. Consideriamo ora   il seguente 

spazio geometrico   (S^ , L^, P^ ) : 

 

I   punti  di   S^  :   sono i punti di S  ( punti propri )  e l’insieme  di tutti i punti impropri . 

 

Le  rette  di  L^  : sono le rette di L  ciascuna ampliata col suo punto improprio e le rette                   

improprie    ∆α     al variare di  α  in  P   . 

 

I  piani di   P^  :   sono il piano improprio ∆ ed  i piani di  P  ciascuno ampliato con i suoi punti 

impropri e la sua retta impropria. 

 

E’  non difficile ora controllare ( e tale verifica viene volutamente lasciata al lettore ) che lo 

spazio  (S^ , L^, P^ )  ora definito ha le proprietà  I , II , III , IV  già annunciate . 

 

E’ evidente, inoltre ,  sulla base della costruzione fatta,  che ogni piano del nuovo spazio è un 

piano proiettivo. 

 

 Noi sappiamo che quando nello spazio reale ( S , L,  P )  si sceglie un riferimento reale, i 

suoi punti , le sue rette , i suoi piani possono essere rappresentati algebricamente e ciò consente 

di tradurre e risolvere, con l’aiuto del calcolo algebrico,  i molti problemi geometrici che si 

possono porre. 

 

L’ ampliamento ora fatto non fa perdere questa opportunità, in quanto saremo ancora una 

volta in grado,  fissato un riferimento reale , di rappresentare algebricamente i punti , le rette ed 

i piani di  (S^ , L^,  P^ )  .  

Vediamo come.  

Per fare ciò occorre introdurre il concetto di  coordinate omogenee  di un punto. 

Sia  P  un punto proprio e supponiamo che nel riferimento reale  R  fissato  abbia coordinate  

(2 , 3 , 5) . Chiameremo  coordinate omogenee  di P nel riferimento  R  una quaterna ordinata  

      (x1 , x2 , x3, x4 ) di numeri reali con   x4 ≠   0  e tale che sia  : 

 

 (*)                                    
4

1

x
x

 = 2               
4

2

x
x

 = 3                 
4

3

x
x

= 5 



 124

 

Ovviamente una quaterna  (x1 , x2 , x3, x4 )  “ facile “   che verifica la proprietà (*)  è la quaterna  

( 2, 3 , 5, 1 ) ma anche ( 4 , 6 , 10 , 2 )   va bene  e così ogni   quaterna  del tipo  

 (2ρ  , 3ρ ,  5ρ ,  ρ )  con  ρ ≠  0 . Una qualsiasi di queste quaterne attraverso le formule (*) 

restituisce la terna  (2, 3, 5  ) e quindi  individua  il punto P . 

 

Pertanto le coordinate omogenee di un punto proprio P di coordinate (xo , yo , zo) sono 

quattro numeri (x1 , x2 , x3, x4 )  con  x4 ≠   0   e   verificanti la seguente proprietà : 

 

(*)                                    
4

1

x
x

 = xo     ,        
4

2

x
x

 = yo        ,           
4

3

x
x

  = zo 

 

 

La quaterna (x1 , x2 , x3, x4 )  avendo  x4 ≠   0   è non nulla e dovendo verificare  le (*)  è non 

unica ma determinata a meno di un fattore di proporzionalità non nullo.  

 

Se  P  è un punto improprio ed esso è il punto Or aggiunto alla retta  r , chiameremo coordinate 

omogenee di  P una quaterna ordinata (x1 , x2 , x3, x4 )  con  x4 =  0   e con la terna 

(x1 , x2 , x3) coincidente con una terna  (λ , µ ,  ν)  di numeri direttori della retta  r. Poiché i     

numeri direttori della retta r sono non tutti nulli e definiti anch’essi a meno di un fattore di 

proporzionalità non nullo , allora ancora una volta le coordinate omogenee del punto P sono una 

quaterna non nulla  e definita a meno di un fattore di proporzionalità non nullo. 

 

Nell’insieme R4 – (o,o,o,o)  delle quaterne ordinate e non nulle di numeri reali diciamo 

equivalenti due quaterne (y1 , y2 , y3, y4 )  e (z1 , z2 , z3, z4 )   se e solo se sono tra loro proporzionali 

secondo un fattore di proporzionalità non nullo. Tale relazione,  che indichiamo con σ , è 

manifestamente d’equivalenza  e  ripartisce quindi l’insieme  R4 – (o,o,o,o)   in classi d’equivalenza.  

Per quanto precede, quando nello spazio proiettivo reale si fissa un riferimento reale, quando 

si associ ad ogni punto di S^  la quaterna delle sue coordinate omogenee si costruisce una biezione 

tra i   punti di  S^   e  le classi  [ (y1 , y2 , y3, y4 ) ]  d’equivalenza dell’insieme quoziente   R4 – 

(o,o,o,o) /  σ   .  

L’insieme quoziente R4 – (o,o,o,o) /  σ    viene anche indicato col simbolo P3(R)  e viene 

chiamato  sostegno dello spazio proiettivo numerico reale di dimensione tre. 

Le ragioni di tale denominazione saranno più chiare in seguito attraverso l’introduzione degli spazi 
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proiettivi numerici su un campo K e di dimensione n  ( n  intero positivo ) qualsiasi. 

Abbiamo visto quindi come si rappresentano i punti di S^  quando si sia fissato un riferimento reale. 

Vediamo ora come si rappresentano i suoi piani. Supporemo sempre che nello spazio sia stato 

fissato un riferimento reale   R . 

Proveremo ora  che ad ogni piano π  di  P^  si può associare un’equazione di primo grado non 

identica ed omogenea in quattro variabili del tipo  

(j)                      a x1 + b x2 + c x3 + d x4 = 0    

che lo “rappresenta” nel riferimento R . In che senso lo rappresenta ?  Precisiamo questo aspetto. 

 

Intanto è evidente che se una quaterna (y1 , y2 , y3, y4 ) non nulla è soluzione dell’equazione 

 a x1 + b x2 + c x3 + d x4 = 0   anche la quaterna   ρ (y1 , y2 , y3, y4 )   con  ρ ≠  0  è soluzione 

dell’equazione e così ha significato affermare che un punto verifica con le sue coordinate omogenee 

l’equazione   a x1 + b x2 + c x3 + d x4 = 0   . 

 L’affermazione :  l’equazione  a x1 + b x2 + c x3 + d x4 = 0    rappresenta il piano  π   ha il 

seguente doppio significato. 

 

2.1    Un punto p di  π  fornisce con le sue coordinate omogenee una soluzione dell’equazione. 

2.2   Ogni soluzione non nulla dell’equazione fornisce le coordinate omogenee di un punto p di    π 

. 

 

E’ chiaro che i punti rappresentati dall’equazione sono quelli corrispondenti alle sue soluzioni non 

nulle e quindi ogni equazione proporzionale ad essa ,secondo un fattore di proporzionalità non nullo 

, avendo le stesse soluzioni , rappresenta lo stesso insieme di punti . 

Pertanto quando diremo che l’equazione a x1 + b x2 + c x3 + d x4 = 0    rappresenta il piano  π  

sottointenderemo che ogni equazione ad essa proporzionale , secondo un fattore di proporzionalità 

non nullo, rappresenta pur sempre  lo stesso piano  π . 

 

Sia  ora  π   un piano dello spazio proiettivo (S^ , L^ , P^)  . Se  π  è il piano improprio allora esso è 

rappresentato dall’equazione  

                                                     x4   =  0 

       Se  π  non è il piano improprio  allora esso è del tipo  : π =  α ∪  ∆α    con  α   piano di S cui sono 

stati aggiunti i suoi punti impropri.  I punti impropri di π sono i punti impropri delle rette contenute 

nel piano  α  .  Sia ora  

(§)                                   a x + b y + c z + d = 0 
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l’equazione che rappresenta il piano α  nel riferimento   R .Vogliamo ora far vedere che la stessa 

equazione che rappresenta in S il piano  α  quando la si renda omogenea rappresenta il piano  α  

ampliato coi suoi punti impropri cioè il piano  π  . Vogliamo quindi mostrare che l’equazione 

omogenea nelle variabili    x, y, z , t  

 

  (§§)            .                 a x + b y + c z + d t = 0 

 

rappresenta il piano  π .Occorre controllare che siano soddisfatte le due condizioni  2.1  e  2.2. 

Sia  p un punto del piano  π .  Se  p  è un punto di   α  , cioè , proprio, esso  ha coordinate  

( xo, yo, zo ) che verificano l’equazione (§)  e quindi le sue coordinate omogenee ( xo, yo, zo, 1 ) 

verificano l’equazione (§§).  

Se p è improprio esso  è il punto improprio di una retta  r contenuta in α  Sia (λ , µ ,  ν) una 

terna  di numeri direttori della retta  r. Poiché r  è parallela ad  α  si ha , come sappiamo , 

 

                                      a λ + b µ + c ν  = 0 

 

da cui segue che  le coordinate omogenee ( λ , µ ,  ν  , 0 ) di p  verificano l’equazione (§§). 

La condizione  2.1  è quindi verificata. Proviamo la 2.2. 

Sia quindi ( y1, y2, y3, y4 ) una soluzione non nulla dell’equazione (§§) e vediamo se tale 

quaterna è la quaterna delle coordinate omogenee di un punto  p di  π . Se  è  y4 ≠ 0  possiamo 

considerare la quaterna  ( z1, z2, z3, 1 ) ottenuta moltiplicando la quaterna ( y1, y2, y3, y4 )  per    
4y

1 . 

Poiché l’equazione (§§) è omogenea e ( y1, y2, y3, y4 )  è una sua soluzione allora anche la quaterna  

( z1, z2, z3, 1 ) è una sua soluzione . Si ha quindi 

                                            a z1  + b z2  + c z3 + d  = 0 

e ciò mostra che il punto proprio p di coordinate ( z1, z2, z3 ) è un punto di   α ed ( y1, y2, y3, y4 )  

sono le sue coordinate omogenee.  

             Se è  y4 = 0  poniamo, per rendere meglio l’idea ,  ( y1, y2, y3, 0 )  = ( λ , µ ,  ν  , 0 ).  

Poiché per ipotesi la quaterna  ( y1, y2, y3, 0 )  = ( λ , µ ,  ν  , 0 )  verifica l’equazione (§§) si 

ha :            

                                                a λ + b µ + c ν  = 0. 

 

Questa eguaglianza mostra che una retta  di numeri direttori  ( λ , µ ,  ν  )  risulta parallela al 

piano α  e che quindi la quaterna ( λ , µ ,  ν  , 0 )   è la quaterna delle coordinate omogenee di punto 
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improprio di  α  .L’ asserto è così  provato. 

Avendo trovato la rappresentazione dei piani dello spazio proiettivo vediamo come si 

rappresentano le sue rette . 

Sia  quindi  l  una retta dello spazio proiettivo e siano π   e  π’  due piani che si intersecano 

nella retta  l . Siano inoltre   a x + b y + c z + d t = 0   ed     a’x + b’y + c’z + d’t = 0. Ovviamente le 

soluzioni non nulle del sistema  

                                            l  :   
⎩
⎨
⎧

=+++

=+++

   0  td'  zc'  yb'  xa'
 0   t d   z c   yb  x a

 

forniscono le coordinate omogenee dei punti della retta   l . 

Ricordiamo che tale sistema è omogeneo e le sue soluzioni costituiscono un sottospazio di 

dimensione due essendo le nostre due equazioni indipendenti.Per descrivere quindi le sue soluzioni 

è sufficiente trovare due sue soluzioni non nulle ed indipendenti. Ma ciò è facile. Infatti siano  p1 e 

p2  due punti distinti della retta  l  e siano  ( y1, y2, y3, y4 )   ed  ( z1, z2, z3, z4 )  le loro coordinate 

omogenee. Le due quaterne  ( y1, y2, y3, y4 )   ed  ( z1, z2, z3, z4 )   sono non proporzionali in quanto 

rappresentative di due punti distinti e forniscono quindi due soluzioni indipendenti del sistema 

                                               
⎩
⎨
⎧

=+++

=+++

   0  td'  zc'  yb'  xa'
 0   t d   z c   yb  x a

 

Ogni altro punto p della retta l  ha per coordinate omogenee una quaterna ( x1, x2, x3, x4 )       

che è una soluzione non nulla del sistema . La quaterna ( x1, x2, x3, x4 ) sarà esprimibile come 

combinazione lineare delle due quaterne indipendenti    ( y1, y2, y3, y4 )   ed  ( z1, z2, z3, z4 )  che 

costituiscono una base dello spazio delle soluzioni del sistema .        

Attraverso la conoscenza delle coordinate    ( y1, y2, y3, y4 )   ed  ( z1, z2, z3, z4 )   di due punti 

della retta siamo stati in grado di ricostruire come sono le coordinate dei punti di  l.. I punti di  l 

sono tutti e soli quelli le cui coordinate omogenee    ( x1, x2, x3, x4 )   sono descritte dalle seguenti 

formule : 

 

(*)     ( x1, x2, x3, x4 )    =   λ ( y1, y2, y3, y4 )  +  µ ( z1, z2, z3, z4 )    con  ( λ , µ ) ≠   ( 0 , 0) 

 

dove   i parametri  λ  e   µ  variano nel campo reale. Le formule (*) possono essere scritte in modo 

equivalente al seguente modo : 
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(**)                                      

⎪
⎪
⎩

⎪
⎪
⎨

⎧
≠

                   z µ  + λ y   = x
                   z µ  + λ y   = x

 0)  ,0 (    )  µ  λ ,  (con               z µ  + λ y   = x
 z µ  + λ y   = x

444

333

222

111

 

 

e  vengono chiamate le equazioni parametriche della retta  l  . 

E’ evidente che se scelgono due valori   ( λo , µo)   dei parametri non tutti e due nulli si ottengono in 

corrispondenza,  nelle formule (**),   le coordinate di un punto della retta  l . Tale punto non cambia 

se al posto di   ( λo , µo) si scegliesse la coppia   ( ρλo ,  ρµo)     con  ρ   ≠ 0  . Pertanto le formule 

(**)  vanno usate con questa unica attenzione.  

Dalle rappresentazioni trovate seguono queste utili equivalenze : 

 

Proposizione 2.1  I punti  A( a1, a2, a3, a4 )   , B ( b1, b2, b3, b4 ) ,   C( c1, c2, c3, c4 )    dello 

spazio proiettivo S^  sono allineati  se e solo se le quaterne ( a1, a2, a3, a4 )   , ( b1, b2, b3, b4 ) ,   

 ( c1, c2, c3, c4 ) delle loro coordinate sono linearmente dipendenti. 

 

Siano ora   A( a1, a2, a3, a4 )   , B ( b1, b2, b3, b4 ) ,   C( c1, c2, c3, c4 )    tre punti non allineati dello 

spazio. Tali punti determinano un piano che ha un’equazione  del tipo 

                                                  ax + by + cz + dt = 0 

la quale deve essere quindi soddisfatta dalle coordinate dei punti assegnati. Si hanno così le seguenti 

relazioni : 

                                                a a1+ b a2 + c a3 + d a4 = 0 

 (k)                                          a b1+ b b2 + c b3 + d b4 = 0 

                                                a c1+ b c2 + c c3 + d c4 = 0 

 

Essendo i punti A , B , C  non allineati la matrice delle loro coordinate 

  

                                                L =     
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 c     c    c     c
 b    b    b    b
 a     a    a    a

4321

4321

4321

 

 

ha rango tre e quindi le relazioni (k) , intese come sistema nelle incognite a , b , c, d permette di 

determinare i coefficienti del piano. Per quanto visto sui sistemi di equazioni lineari la quaterna 

 (a, b , c ,d )  dei coefficienti del piano cercato  può ottenersi utilizzando  i determinanti dei minori 
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d’ordine tre , presi a segni alterni , della matrice  L . 

Ciò detto è provato che l’equazione del piano cercato possa ottenersi direttamente attraverso 

il calcolo del seguente determinante : 

 

                                              det

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

 c     c    c     c
 b    b    b    b

 a     a    a    a
t        z            yx

4321

4321

4321
4 = 0 

 

 

La costruzione fatta per passare dallo spazio affine reale allo spazio proiettivo reale può 

essere ripetuta allo stesso modo passando così dallo spazio affine complesso allo spazio proiettivo 

complesso. La differenza unica è che le coordinate omogenee di un punto saranno ora quattro 

numeri complessi non tutti nulli e definiti al solito a meno di un fattore di proporzionalità non 

nullo. Un piano si rappresenterà con un’equazione omogenea di primo grado non identica in 

quattro variabili ed a coefficienti complessi e nelle formule che esprimono la rappresentazione 

parametrica di una retta i parametri variano ovviamente nel campo complesso. 

 

3. Sfera coni e cilindri dello spazio affine reale. 

 

a)  La sfera.  

Fissiamo nello spazio affine  reale un riferimento monometrico ed ortogonale R . 

 Siano  Po ( xo , yo  , zo)  un punto dello spazio ed  r  un  numero reale positivo. 

 

 
 

Si chiama   superficie sferica di centro Po  e raggio r    l’insieme dei punti P dello spazio che hanno 

distanza  r  da  Po  . Indichiamo con Ω  tale insieme di punti e cerchiamo una sua rappresentazione 

analitica . Sussistono le seguenti ovvie equivalenze : 

                 

Po 
r 
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  P ( x , y, z )∈  Ω    ⇔   d ( P ,  Po ) = r  ⇔  2 2 2
o o o( x - x )  + ( y- y ) + (z -z )   = r   

⇔ ( x – xo) 2 + ( y– yo) 2 + ( z– zo) 2  =  r2 

 

Da queste segue quindi che appartengono alla superficie sferica tutti e soli i punti dello spazio le cui 

coordinate verificano l’equazione  : 

 

 (1)                                    ( x – xo) 2 + ( y– yo) 2 + ( z– zo) 2  =  r2 

 

 

la quale può scriversi così : 

                                                                

(2)                                            x2  +  y2 +  z2  + ax + by + cz + d  = 0 

 

avendo indicato con   a , b , c , d   le seguenti  quantità : 

 

                        a = -2 xo      ,    b =  -2 yo     ,  c = -2 zo    ,       d =  xo
 2 +  yo

 2 +  zo
 2    -  r2 

 

L’ equazione   

                                                       x2  +  y2 +  z2  + ax + by + cz + d  = 0 

 

rappresenta quindi la superficie sferica   Ω  nel riferimento  R    fissato. 

E’ evidente che un’equazione proporzionale ad essa secondo un fattore di proporzionalità non nullo  

avendo le stesse soluzioni,  rappresenta lo stesso insieme di punti. 

 

L’equazione   x2  +  y2 +  z2  + ax + by + cz + d  = 0  che rappresenta   Ω  nel riferimento 

scelto è quindi di secondo grado ,  manca dei termini  misti  xy , xz , yz   ed ha   eguali  i 

coefficienti di   x2  e  y2   e  z2. 

 

Non sempre però un’equazione di questo tipo rappresenta una superficie sferica. Vediamo perché. 

Sia quindi assegnata l’equazione  

x2  +  y2 +  z2  + ax + by + cz + d  = 0   

essa rappresenta una superficie sferica di centro  Po ( xo , yo , zo )   e  raggio  r  (positivo)  se risulta : 

 

(3)                    x2  +  y2 +  z2  + ax + by + cz + d  = ( x – xo) 2 + ( y– yo) 2 + ( z– zo) 2  -  r2 
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L’eguaglianza (3) sussiste se risulta  : 

  

                      a = -2 xo      ,    b =  -2 yo     , c = -2 zo    ,      d =  xo
 2 +  yo

 2 +  zo
 2    -  r2 

 

Si ha quindi  

   

xo    =  -  a
2

     ,     yo  = -  b
2

   ,       zo  = -  c
2

 

 

 

 

(4)                                r2  =  xo
 2 +  yo

 2 +  zo
 2  –  d  =  

2a
4

 +  
2b

4
  +  

2c
4

  - d 

 

Dalla (4) segue quindi che si troverà un numero  r  positivo , raggio della superficie sferica  

cercata , se si ha : 

 

(5)                                                  
2a

4
 +  

2b
4

  +  
2c

4
  - d   >  0 

 

 

Riassumendo :  

 

L ’ equazione         x2  +  y2 +  z2  + ax + by + cz + d  = 0   

 

che abbia    a , b , c , d      verificanti la proprietà (5)   è l’equazione della superficie sferica  con 

centro nel punto   Po  = ( - a
2

   ,  - b
2

 ,  - c
2

   )  e raggio  r  dato da : 

 

 (6)                                            r  =   
2 2 2a b c    +    +     - d      

4 4 4
. 

 

 Sia  Ω  una superficie sferica  dello spazio  con centro nel punto   Po ( xo , yo  , zo)  e  raggio  r  

positivo e sia  
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x2  +  y2 +  z2  + ax + by + cz + d  = 0   

 

l’equazione che rappresenta    Ω   in un  riferimento monometrico ed ortogonale fissato .  

Sia  P ( x   ,  y  ,  z )  un punto della superficie  Ω.  

Tutte le rette per  P che intersecano Ω nel solo punto P sono chiamate le rette tangenti ad   Ω nel 

punto P . Tali rette giacciono tutte in uno stesso piano   πP,  detto piano tangente ad  Ω  nel punto P.  

Tale piano è noto che sia il piano per P ortogonale alla retta Po P.   

I numeri direttori della retta  Po P   sono  ( x  -  xo ,  y - yo ,  z - zo  )  e quindi il piano tangente   πP   

ha equazione : 

 

         πP    :             ( x  -  xo ) ( x - x   )  +  ( y - yo  ) ( y -  y ) + (z - zo  ) ( z -  z )  = 0. 

 

 

Quando lo spazio  reale venga ampliato con i punti immaginari anche la superficie Ω 

rappresentata dall’equazione a coefficienti reali  

                            x2  +  y2 +  z2  + ax + by + cz + d  = 0   

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta .  

Quando allo spazio  si aggiungano anche i punti impropri allora per rappresentare tutti i 

punti di  Ω  propri ed  impropri occorre che l’equazione   x2  +  y2  +  z2  + ax + by + cz + d  = 0  di  

Ω  sia resa  omogenea. 

Pertanto l’equazione  

                                           x2  +  y2 +  z2  + a x t + b y t  + cz t + dt2 = 0   

 

rappresenta  tutta la superficie sferica   inclusi i  suoi punti impropri.  

Ma quali sono i punti impropri di  Ω ?  Vediamo.   

 

E’ chiaro che i punti impropri di  Ω  sono quelli che essa ha in comune con il piano 

improprio dello spazio   che si rappresenta con l’equazione   t = 0 .  

I punti impropri di  Ω  corrispondono quindi alle soluzioni non nulle del seguente sistema  S 

: 
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                                          S : 
2 2 2 2x + y + z + axt + byt  +czt + dt  = 0

t = 0  
⎧
⎨
⎩

 

Le soluzioni cercate si ottengono quindi attraverso le soluzioni non nulle di : 

                                                     S : 
2 2 2x  +  y  + z  = 0

t = 0  
⎧
⎨
⎩

 

 

La curva Г del piano improprio rappresentata da    

                               Г :  
2 2 2x  +  y  + z  = 0

t = 0  
⎧
⎨
⎩

 

 è una conica totalmente immaginaria e raccoglie tutti i punti ciclici delle circonferenze che i piani 

dello spazio tagliano su Ω .   Tale conica è chiamata  l’ assoluto dello spazio e per essa passano 

tutte le superfici sferiche dello spazio.  

 

b) Il cono. 

Si consideri nello spazio reale un piano  π   e sia  Г  una sua conica non degenere. Sia inoltre V 

un punto non appartenente al piano  π  . L’ unione di tutte le rette VP  al variare di P su  Г  è  

 

chiamato cono quadrico di vertice V  

e  direttrice  Г  . 

 

Vediamo come si rappresenta  il cono che indicheremo con C di vertice V e direttrice  Г  . Per 

rendere semplice l’esposizione  supporremo che V abbia coordinate ( 0 , 0 , 1 )  e  Г     sia la 

conica (ellisse) del piano z=0  di  equazione  
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                                              Г  : 
⎩
⎨
⎧

=

=+

0  z 
0 1- y2x 22

 

 

Sia  P (α ,  β ,  γ   )  un punto di   Г  .  

Poiché  P  è un punto di  Г    si ha   γ = 0    e     2 α2 + β2 -  1= 0 

 La retta  VP  è allora rappresentata  parametricamente al seguente modo : 

                                            VP  :  
⎪
⎩

⎪
⎨

⎧

   ρ - 1 =  z
β ρ = y

  α ρ = x
 

da cui segue 

ρ  = 1 – z   e  quindi    α =   
z-1

x        e    β  =  
z-1

y
  

 

Sostituendo tali valori di  α  e   β   in   2 α2 + β2- 1 =  0    si ha : 

 

                           C :              2 x2 + y2 – (1-z) 2 = 0 

o  equivalentemente  

                           C :              2 x2 + y2 - z2 + 2z – 1 =  0. 

 

L’equazione  

                                           2 x2 + y2 - z2 + 2z – 1 =  0 

 

 rappresenta quindi il nostro cono nel riferimento assegnato. 

L’equazione trovata mostra che anche il cono, al pari della superficie sferica ,  si rappresenta 

con un’equazione di secondo grado in x , y , z. 

Quando lo spazio  reale venga ampliato con i punti immaginari anche il cono  C 

rappresentato dall’equazione a coefficienti reali  

                                      

                                            2 x2 + y2 - z2 + 2z – 1 =  0 

 

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta .  

Quando allo spazio  si aggiungano anche i punti impropri allora per rappresentare tutti i punti di   

C  propri ed  impropri occorre che l’equazione   2 x2 + y2 - z2 + 2z – 1 =  0 
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di  C  sia resa  omogenea.  Pertanto l’equazione  

                                            2 x2 + y2 - z2 + 2z t – t2 =  0 

rappresenta tutti i punti del cono propri ed impropri. I punti impropri essendo quelli comuni a C ed 

al piano improprio sono i punti della conica Σ del piano improprio  rappresentata da. 

                                           Σ  :   
⎩
⎨
⎧

=

=+

0  t
0  z -  y x 2 222

 

       

Tale conica  impropria  Σ  è  non degenere e dotata di punti reali.      

 

 

 

 

c) il cilindro.         

Si consideri nello spazio reale un piano  π   e sia    una sua conica non degenere. Sia inoltre  l 

una retta non parallela al piano  π  . Sia P  un punto Г   di e sia  lP  la retta per P parallela alla 

retta  l . L’ unione di tutte le rette lP   al variare di P su  Г  è chiamato cilindro  di direttrice  Г e 

generatrici parallele ad  l   . 

 
 

 

 

Vediamo come si rappresenta  il cilindro  che indicheremo con C . Per rendere semplice 

l’esposizione  supporremo che la retta  l  sia la retta rappresentata da : 

l   

π Г 
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                                                         l   :   
⎩
⎨
⎧

 = 

=

zy
y x

                                                   

                                                            

 

e la  conica  Г  sia la conica (ellisse) del piano z=0  di  equazione  

 

                                              Г  : 
⎩
⎨
⎧

=

=+

0  z 
0 1- y2x 22

 

 

Sia  P (α ,  β ,  0   )  un punto di   Г  . La retta   lP   è   rappresentata  da :   

                                            lP   :       
⎪
⎩

⎪
⎨

⎧
+
+

   ρ  =  z
ρ β  = y

 ρ   α  = x
 

da questa segue  α  = x – z   e    β = y – z . Poiché  P  è un punto di  Г  si ha : 

                                               

                                                2 α2 + β2 – 1 = 0 

Sostituendo in essa i valori  α  = x – z   e    β = y – z   si ha  : 

 

                           C :         2 ( x-z) 2 + ( y – z ) 2-1 = 0 

o equivalentemente : 

                    C :           2 x 2 + y2  + 3 z 2  – 2y z  - 2x z  - 1 = 0 

 

 

che rappresenta quindi il cilindro C  nel riferimento scelto. 

L’equazione trovata mostra che anche il cilindro , al pari della superficie sferica e del cono si 

rappresenta con un’equazione di secondo grado in x , y , z. 

Quando lo spazio reale venga ampliato con i punti immaginari anche il cilindro  C 

rappresentato dall’equazione a coefficienti reali  

                                      

                           2 x 2 + y2  + 3 z 2  – 2y z  - 2x z  - 1 = 0 

 

 si arricchisce di ulteriori punti  ( immaginari ) corrispondenti alle soluzioni complesse 

dell’equazione che la rappresenta .  

Quando allo spazio  si aggiungano anche i punti impropri allora per rappresentare tutti i punti di  
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C  propri ed  impropri occorre che l’equazione    2 x 2 + y2  + 3 z 2  – 2y z  - 2x z  - 1 = 0    di  C  sia 

resa  omogenea.  Pertanto l’equazione  

 

                                            2 x 2 + y2 + 3 z 2 – 2y z  - 2x z  – t2 =  0 

 

rappresenta tutti i punti del cono propri ed impropri. I punti impropri essendo quelli comuni a C ed 

al piano improprio sono i punti della conica Σ del piano improprio  rappresentata da. 

                                           Σ  :   
⎩
⎨
⎧

=

=−++

0  t
0  2xz- yz3z  y x 2 222 2

 

       

Tale conica  impropria  Σ  essendo 

 

 

2 x 2 + y2 + 3 z 2 – 2y z  - 2x z  =  [ 2 ( x-z) ] 2 – i2 ( y – z ) 2  
 

è  degenere ed è l’unione delle seguenti rette complesse e coniugate. 

 

r  :
⎪⎩

⎪
⎨
⎧

0 =  t   
0 =   ) z -  y( i + z)-x (2          r’ :  

⎪⎩

⎪
⎨
⎧

0 =  t   
0 =   ) z -  y( i - z)-x (2   

 

                                      

 

 

 

 

 

 

 

 

 

 



 138

 

 

 

 

 

 

 

 

 

Capitolo VI 

 

Le quadriche 
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1.  Le quadriche  dello spazio  proiettivo complesso. 

 

Nello spazio proiettivo complesso di dimensione tre che indicheremo con  P  ( nel quale sia 

fissato un riferimento reale R  )  si chiama  quadrica  

l’insieme Q dei punti   dello spazio  verificanti con le loro coordinate omogenee un’equazione non 

identica omogenea di secondo grado in quattro  variabili ( x , y, z, t ) a coefficienti complessi ,cioè 

una equazione del tipo   

 

(1)  a11x 2 + a22 y 2 + a33 z2   + a44 t2  + 2 a12 xy + 2a13 xz  + 2 a14 xt + 2 a23 yz + 2 a24yt +  2a34 zt  = 0. 

 

Quando i coefficienti  aij  dell’equazione (1)  sono numeri reali ( o proporzionali a numeri reali) la 

quadrica  è detta reale . 

 

Poiché l’equazione (1) è omogenea se la quaterna non nulla ( y1, y2, y3, y4 ) verifica l’equazione (1) 

anche la quaterna  (ρ y1,  ρ y2,  ρ y3 ,  ρ y4)  con ρ ≠  0  verifica l’equazione  (1) sicchè ha senso 

dire che un punto dello spazio soddisfa con le sue coordinate omogenee l’equazione (1).  

 

E’ chiaro inoltre che ogni equazione proporzionale all’equazione (1) secondo un fattore di 

proporzionalità non nullo , avendo le stesse soluzioni della (1) , rappresenta lo stesso insieme di 

punti.  

 

Quando le variabili (x , y, z, t ) vengano indicate  con ( x1, x2, x3, x4 ) l’equazione (1) sarà scritta 

nella forma : 

 

a11x1 2 + a22 x2 2 + a33 x3 
2  + a44 x4 

2  + 2 a12 x1 x2 + 2a13 x1 x3  + 2 a14 x1 x4 + 2 a23 x2 x3 + 2 a24 x2 x4 +  

2a34 x3 x4 = 0. 

 

Se   π  e π’  sono due piani dello spazio rappresentati rispettivamente da : 

 

    π      :     ax + by + cz + dt = 0      

    π’    :     a’x + b’y + c’z + d’t = 0 

 

allora l’equazione omogenea di secondo grado , non identica ,  
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B1=B2 

                                  (  ax +  by +  cz  +  dt  ) (a’x + b’y + c’z + d’t  ) = 0 

 

ottenuta moltiplicando tra loro le due equazioni , rappresenta ovviamente l’unione dei due piani . 

Pertanto tra le quadriche dello spazio ci sono quelle che siano l’unione di due piani distinti o 

coincidenti. Tali quadriche sono dette riducibili, doppiamente se i due piani sono coincidenti e 

semplicemente se i due piani sono distinti. 

 

 

 

 

 

 

 

 

 

 

 

 

Una quadrica riducibile è quindi rappresentata da una equazione  

 

a11x 2 + a22 y 2 + a33 z2   + a44 t2  + 2 a12 xy + 2a13 xz  + 2 a14 xt + 2 a23 yz + 2 a24yt +  2a34 zt  = 0. 

 

nella quale  il polinomio  

 

   a11x 2 + a22 y 2 + a33 z2   + a44 t2  + 2 a12 xy + 2a13 xz  + 2 a14 xt + 2 a23 yz + 2 a24yt +  2a34 zt  

  

è  riducibile  cioè è prodotto di due polinomi di primo grado distinti o coincidenti. 

 

Abbiamo anche visto nei numeri precedenti che tra le quadriche reali dello spazio ci sono 

anche le sfere i  coni ed i  cilindri che sono appunto rappresentati, come abbiamo provato , in un 

riferimento reale da equazioni omogenee di secondo grado non identiche  in quattro variabili. 

Alla quadrica  Q   rappresentata nel riferimento scelto dall’equazione : 

                  

a11x 2 + a22 y 2 + a33 z2   + a44 t2  + 2 a12 xy + 2a13 xz  + 2 a14 xt + 2 a23 yz + 2 a24yt +  2a34 zt  = 0. 
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si può associare la seguente matrice quadrata d’ordine quattro simmetrica ottenuta utilizzando i 

coefficienti  aij   dell’equazione della quadrica  . 

 

 

                                        A = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

44434241

34333231

24232221

14131211

a a a a
a a a a
a a a a
a a a  a

                  (  aij = aji ) 

 

Si osservi ora esplicitamente che nell’equazione :  

 

 il numero che accompagna  xy   è il doppio di  a12 

il numero che accompagna  xz   è il doppio di  a13 

il numero che accompagna  xt   è il doppio di  a14 

il numero che accompagna  yz  è il doppio di  a23 

il numero che accompagna  yt   è il doppio di  a24 

il numero che accompagna  zt   è il doppio di  a34 

 

 

 

pertanto una certa attenzione va posta quando si scrive la matrice A associata alla quadrica. 

 

Ad esempio la matrice associata alla quadrica  reale  Q  rappresentata da : 

 

                                   2x2 +  y2 + 4zt  + 6xy  + 4yz  + z2  + 4t2   = 0 
 
è la seguente : 
 

                                             A  =  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

      42     0     0
2      1     2     0
0      2     1     3
0      0     3     2

 

 
 

Vedremo in seguito che nella matrice  A associata alla quadrica sono contenute molte 

informazioni sulla quadrica stessa e per tale ragione   occorre scriverla in modo corretto. 
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Studieremo ora in modo approfondito le quadriche dello  spazio già consapevoli che tra 

quelle reali dovremo ritrovare : 

 

  ( coppia di piani  distinti o coincidenti , sfera  , coni e cilindri ). 

 

Ma  queste già descritte sono le uniche quadriche  reali o ce ne sono anche altre ?  Vediamo. 

 

Alcune notazioni sono ora introdotte al fine di rendere più semplice l’esposizione. 

 

Sia   Q  una quadrica rappresentata in un riferimento reale fissato dall’equazione  

 

a11x1 2 + a22 x2 2 + a33 x3 
2  + a44 x4 

2  + 2 a12 x1 x2 + 2a13 x1 x3  + 2 a14 x1 x4 + 2 a23 x2 x3 + 2 a24 x2 x4 +  

2a34 x3 x4 = 0. 

Tale equazione  può scriversi nei seguenti modi : 

 

 

  (a11 x1 + a12 x2    + a13 x3 + a14 x4  )  x1  + 

  (a21 x1 + a22 x2    + a23 x3  + a24 x4  )  x2   + 

(i)                                               (a31 x1 + a32 x2    + a33 x3 + a34 x4  )  x3   + 

      (a41 x1 + a42 x2    + a43 x3 + a44 x4  )  x4  =  0 

 

 (ii)                          ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )              (nella sommatoria gli indici i e j variano da 1 a  4) 

 

   (iii)                       Xt A X = 0     dove   è     X  = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

4

3

2

1

x
x
x
x

       ed        A=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

44434241

34333231

24232221

14131211

a a a a
a a a a
a a a a
a a a  a

      (  aij = aji ) 
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Porremo inoltre a volte per semplicità :  

 

f (  x1 , x2   , x3  , x4  )  = a11x1 2 + a22 x2 2 + a33 x3 
2  + a44 x4 

2  + 2 a12 x1 x2 + 2a13 x1 x3  + 2 a14 x1 x4 +  

+2 a23 x2 x3 + 2 a24 x2 x4 +  2a34 x3 x4 

 

f1 (  x1 , x2   , x3  , x4  )  = a11 x1 + a12 x2    + a13 x3  + a14 x4   

f2 (  x1 , x2   , x3  , x4  )  = a21 x1 + a22 x2    + a23 x3  + a24 x4   

f3 (  x1 , x2   , x3  , x4  )  = a31 x1 + a32 x2    + a33 x3  + a34 x4   

f4 (  x1 , x2   , x3  , x4  )  = a41 x1 + a42 x2    + a43 x3 + a44 x4   

 

Per la  simmetria della matrice A  sussiste questa utile eguaglianza che useremo spesso in seguito : 

per ogni coppia di quaterne  non nulle  ( y1, y2, y3, y4 )   e  ( z1 , z2   , z3  ,  z4 )   si ha che sono eguali 

le seguenti due quantità  che indicheremo con   

                                          f ( y   /  z )            e                  f ( z   /  y )       

dove è :     

 

f ( y   /  z )     = (a11 y1 + a12 y2    + a13 y3  + a14 y4  )  z1  + 

                         (a21 y1 + a22 y2    + a23 y3  + a24 y4  )  z2   + 

                         (a31 y1 + a32 y2    + a33 y3  + a34 y4  )  z3  + 

                                    (a41 y1 + a42 y2    + a43 y3  + a44 y4  )  z4   

                                                                             

 

f ( z   /  y )   = (a11 z1 + a12 z2    + a13 z3  + a14 z4  )  y1  + 

                       (a21 z1 + a22 z2    + a23 z3 + a24 z4  )  y2   + 

                        (a31 z1 + a32 z2    + a33 z3 + a34 z4  )  y3   

                       (a41 z1 + a42 z2    + a43 z3  + a44 z4  )  y4      
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2. Intersezione di una retta con una quadrica.      

               

Sia  Q  una quadrica dello spazio proiettivo rappresentata, nel riferimento reale scelto,  

dall’equazione  

    ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )              (gli indici variano da 1  a   4) 

e sia   r   una retta dello spazio passante per i punti  Y  e   Z   di coordinate  (  y1 , y2   , y3  , y4  )   e  

 ( z1 , z2   , z3 , z4 )  . Quando si rappresenti  r  in forma parametrica si riconosce che i punti di  r 

hanno, al variare dei parametri (  λ   ,  µ  )   ≠ ( 0  , 0 ) ,   coordinate  del tipo  

 

                            (x1 , x2 , x3 , x4)   =  λ  (  y1 , y2   , y3  , y4  )   +  µ  ( z1 , z2   , z3 , z4 )   

Cioè :   

                       (x1 , x2 , x3 , x4)   =  ( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4  ) 

 

Ci chiediamo per quali valori dei parametri  (λ   ,  µ  ) ≠ ( 0  , 0 )  il punto  

( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4 )  della retta   r  appartenga anche alla 

quadrica   Q  . 

 

Ora il  punto ( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4 )  della retta  r  appartiene  alla 

quadrica   Q  se risulta  : 

 

(2.1)                           ∑ =
ji,

jjiiji      0    ) zµ   + λy ( )zµ   + λy (a   

L’ equazione  (2.1)  è una equazione omogenea di secondo grado nelle incognite  λ  e  µ  del tipo 

 

(2.2)                                      a λ 2 +  2 b λ µ  +  c µ 2     = 0 

 

avendo posto   

 

a   =  ∑
ji,

jiji       y ya ,                             b =   ∑
ji,

jiji       z ya ,                              c   =  ∑
ji,

jiji       z za  
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Se  l’equazione  (2.2) è identicamente nulla  cioè risulta    a = b = c = 0   allora  per ogni 

scelta dei parametri     λ   e   µ    il punto di  r    di  coordinate  

( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4 )  appartiene alla quadrica e qundi la retta  r  è 

contenuta nella quadrica   Q  .   

Se l’equazione (2.2) non è identicamente nulla allora essa ammette due soluzioni (distinte o 

coincidenti ) in corrispondenza delle quali si trovano due punti (distinti o coincidenti) comuni alla  

retta   r  ed alla quadrica   Q  .  

Abbiamo così provato la seguente : 

Proposizione 2.1.  Una retta dello spazio non contenuta nella quadrica   Q  ha in comune 

con essa al più due punti . 

 

Da tale risultato segue ovviamente che : 

 

una retta che abbia  almeno tre punti in comune con la quadrica è contenuta nella quadrica. 

 

 

3. Intersezione di un piano con una quadrica. 

Sia  Q  una quadrica dello spazio proiettivo  e sia  π  un piano reale dello spazio.Al fine di 

studiare la natura dell’insieme  π  ∩   Q   possiamo ovviamente supporre che il piano non sia 

contenuto nella quadrica. Inoltre per rendere facile la nostra indagine disponiamo il riferimento in 

modo che π   sia il piano z = 0 . Con tale scelta del riferimento sia  

a11x 2 + a22 y 2 + a33 z2   + a44 t2  + 2 a12 xy + 2a13 xz  + 2 a14 xt + 2 a23 yz + 2 a24yt +  2a34 zt  = 0. 

l’ equazione che rappresenta la quadrica   Q .  

Ovviamente i punti comuni al piano ed alla quadrica hanno coordinate che soddisfano il seguente 

sistema 

 

⎩
⎨
⎧

=

=++++++++

0  z
0.   yta 2   xt a 2   xy a 2   t a   ya   xa 241412

2
44

2
22

2
11  

e  cioè sono i punti di una conica . 

 

Resta così provato che : 

 

Proposizione 3.1  Un piano dello spazio che non sia contenuto in una quadrica interseca la 

quadrica in una conica. 
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4. Le quadriche degeneri. 

 

Abbiamo già osservato che l’unione di due piani distinti o coincidenti è una quadrica.  

Inoltre come già visto , se si considera una conica non degenere Г  di un piano e poi un punto V 

fuori dal piano , l’unione di tutte le rette Vp  al variare di p sulla conica  Г    è una quadrica . Tale 

quadrica che è un cono quadrico di vertice V e direttrice Г  sarà chiamata cono se V è un punto 

proprio e cilindro se  V è un punto improprio. 

Questi quattro tipi di quadriche: 

 

a)  unione di due piani coincidenti 

b) unione di due piani distinti 

c) cono 

d) cilindro 

 

sono dette degeneri .Più precisamente i tipi a) e b) degeneri e riducibili mentre i tipi c) e  d) 

degeneri ma non riducibili. 

Al fine di trovare una caratterizzazione delle quadriche degeneri è importante la seguente 

definizione. 

 

Sia  Q  una quadrica dello spazio proiettivo.  Un punto P della quadrica  Q  è detto doppio 

 

  se ogni retta per P  o  è contenuta nella quadrica o interseca la quadrica nel solo punto  P . 

 

Un punto che non sia doppio è detto semplice. 

 

Le quadriche degeneri sono tutte dotate di punti doppi.  

 

Precisamente : 

 

se la quadrica è l’unione di due piani coincidenti   ogni suo punto è doppio : tale quadrica 

possiede quindi almeno  tre punti doppi non allineati. 
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se la quadrica è l’unione di due piani distinti  i punti doppi della quadrica sono i punti  della 

retta comune ai due piani :   tale quadrica possiede più di un punto doppio ma i suoi  punti doppi 

sono allineati. 

 

Se la quadrica è un cono o un cilindro il vertice  V  è l’unico punto doppio. 

 

La situazione ora descritta caratterizza tali quadriche come le proposizioni che seguono mostrano. 

 

Proposizione 4.1  Se una quadrica  Q  possiede almeno tre punti doppi non  allineati essa è 

l’unione di due piani coincidenti. 

Dimostrazione.  Siano  A , B , C  tre punti della quadrica   Q  e siano doppi e non allineati.  

Sia  π   il piano  determinato dai tre punti  A , B , C .  Le tre rette AB ,  AC , BC  costituiscono i lati 

di un triangolo e sono contenute nella quadrica in quanto i punti A , B , C  sono doppi. 

Per questa ragione il piano  π  avendo in comune con la quadrica tali rette non ha  in comune con la 

quadrica una conica ed  è quindi  contenuto nella quadrica  . Se proviamo che la quadrica  coincide 

col piano  π  si ha l’asserto. Supponiamo per assurdo che  contenga propriamente il piano π ed 

esista quindi un punto T  di  Q  fuori dal piano   π .  Poiché A  , B , C  sono doppi le rette TA , TB , 

TC  sono contenute nella quadrica .  

Segue allora che i piani γ = < TAB > , β  = < TAC > ,  α = < TBC >   sono contenuti nella quadrica 

in quanto ciascuno di essi ha in comune con la quadrica tre rette. Sia  K un punto dello spazio non 

appartenente ai piani  π ,  α ,  β , γ  e sia   π’  un piano per K  e non passante per T . Siano  l , l’ , l’’  

le rette  che il piano π’  ha in comune con i piani  α ,  β , γ    . Il  piano  π’   avendo in comune con 

la quadrica le tre rette l , l’ , l’’   è contenuto nella quadrica e così  K  è un punto di Q .Ma allora 

ogni punto dello spazio fa parte di  Q  e ciò non è possibile in quanto essendo l’equazione  che 

rappresenta  Q non identica essa non può rappresentare tutti i punti dello spazio. 

 

Proposizione 4.2   Se i punti doppi di una quadrica  Q sono almeno due e tutti allineati 

allora la quadrica  Q  è l’unione di due piani distinti. 

Dimostrazione.  Siano A e B due punti doppi distinti della quadrica  Q  . La retta l  che 

congiunge A e B è allora contenuta nella quadrica. Poiché  Q   contiene propriamente la retta l  è 

possibile scegliere un punto  T   su  Q  fuori dalla retta   l  . Le rette TA  e TB   fanno parte della 

quadrica in quanto A e B  sono doppi. Il piano π  che unisce T ed  l  è quindi contenuto nella 

quadrica avendo con essa in comune le tre rette distinte  l , TA , TB.  Se  Q  coincidesse col piano π   

allora  Q avrebbe almeno tre punti doppi non allineati contro il supposto. Quindi la quadrica Q 
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contiene propriamente il piano  π  ed è quindi possibile determinare un punto  T’  su Q fuori da  π.   

Per le stesse ragioni esposte per il punto T  il piano  π’  che congiunge  l  e   T’   è contenuto  nella 

quadrica Q  . Proviamo ora che risulta   Q =  π  ∪  π’   .   

Supponiamo per assurdo che esista un punto K  su  Q  e non appartenente ai piani  π  e   π’.    

Proveremo  ora che ogni retta per K è contenuta nella quadrica il che è assurdo in quanto la 

quadrica è un sottoinsieme proprio dello spazio. 

Il piano  α  che congiunge  l   con K è contenuto nella quadrica avendo in comune con essa le 

rette  l  , KA  e  KB . Quindi ogni retta per  K  che incida la retta   l , essendo conenuta nel piano   α , 

è contenuta nella quadrica. D’altra parte una retta per K che non incida la retta   l  interseca i piani  

π  e   π’ in due punti distinti ed è quindi contenuta nella quadrica avendo con essa in comune tre 

punti distinti. 

 

   Proviamo la seguente : 

 

Proposizione 4.3  Se una quadrica  Q contiene un piano essa è unione di due piani distinti o 

coincidenti.  

Dimostrazione. Supponiamo che  la quadrica Q  contenga un piano π  . Se  è  Q = π  si ha 

l’asserto.Supponiamo quindi che Q  contenga propriamente  π  e sia T un punto di  Q  fuori dal 

piano  π . 

Sia  l   una retta di   π  e sia   α   il piano che congiunge  T e la retta   l   .Se  il piano α  non è 

contenuto in  Q    esso interseca  la quadrica in una conica che è degenere ed è composta dalla retta  

l   e da un’altra retta  t   per  T . Sia   A  il punto  comune a   π   ed alla retta  t  . Si scelga ora una 

retta  r in π  non passante per  il punto  A   e sia  β   il piano determinato da T  ed r . Tale piano β se 

non è contenuto in  Q  interseca Q  in una conica che è degenere ed è costituita dalla retta  r ed 

un’altra retta t’ per T . Il piano γ determinato dalle rette  t  e  t’  è allora contenuto in  Q  in quanto 

ha in comune con Q le tre rette distinte  γ ∩  π  ,   t , t’  . In ogni caso abbiamo provato che la 

quadrica  Q contiene l’unione di due piani distinti  di cui uno è  π   e l’altro è  α   oppure    β  oppure    

γ .     

Sia  π’   il piano diverso da  π    contenuto in  Q   e sia l   la retta comune ai piani  π  e  π’.  

Possiamo ora provare che è  Q =  π  ∪  π’   .  

Supponiamo per assurdo che esista un punto K  su  Q  e non appartenente ai piani  π  e   π’.   

Si scelga un punto L  sulla retta  l  e sia  r  una retta per K  distinta dalla retta  s = [KL] e che  

interseca i piani  π  e   π’   in due punti distinti. La retta r  è contenuta in  Q  avendo in comune con 

Q  tre punti distinti. 
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Il piano α  determinato dalle rette  s  ed  r  è allora contenuto nella quadrica  Q  in quanto ha 

in comune con  Q  le tre rette   α ∩  π ,  α ∩  π’    ed   r .  

Abbiamo così provato che la retta  s = [KL]   è contenuta nella quadrica Q  qualunque sia L 

scelto su  l  . D’ altra parte ogni retta per K che non incida  l  interseca i due piani  π  e   π’   in due 

punti distinti e quindi  fa parte di Q avendo con essa in comune tre punti distinti . Ma se ogni retta 

per  K  è contenuta in Q allora  Q coincide con tutti i punti dello spazio il che è assurdo.  

 

 Possiamo ora provare la seguente utile : 

 

Proposizione 4.4  Se una quadrica  Q contiene un solo punto doppio V  essa è un cono 

quadrico di vertice V . 

Dimostrazione.  Sia V l’unico punto doppio della quadrica Q  e sia  π  un piano non 

passante per  V . Per la proposizione precedente il piano  π  non è contenuto nella quadrica Q e 

quindi interseca la quadrica in una conica Г  .  La conica  Г  è non degenere in quanto se contenesse 

una retta  t  il piano β determinato da  V  e  t  sarebbe contenuto in  Q   essendo  V  doppio. 

Consideriamo il cono C  di vertice  V  e direttrice  Г  e proviamo che  è  C = Q  .  E’ evidente che 

ogni retta Vp  al variare di p su  Г   è contenuta in Q  essendo V doppio. Pertanto è  C  ⊆   Q .   

Proviamo ora che ogni punto di Q è un punto del cono C  e che è quindi Q = C .  

Sia  M  un punto di  Q  che possiamo supporre  diverso da V  e non appartenente a   Г   .  La 

retta  VM  è contenuta in Q  , essendo V  doppio,  ed interseca il piano π  in un punto p 

necessariamente appartenente a   Г   .  

Pertanto M  giace su una delle generatrici del cono ( la retta Vp)  e quindi appartiene al 

cono. L’ asserto è così provato.  

Possiamo riassumere tutte le proposizioni precedenti nella seguente : 

 

Proposizione 4.5  Una quadrica  Q  è degenere se e solo se possiede almeno un punto 

doppio. 

  

Una quadrica priva di punti doppi sarà quindi chiamata non degenere.  

 

Le proposizioni provate  e che caratterizzano  le quadriche degeneri spostano  l’attenzione sulla 

ricerca degli eventuali punti doppi della quadrica .  

 Ma come si trovano i punti doppi di una quadrica  ? Vediamo . 
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La proposizione  che segue fornisce la risposta al quesito posto. 

 

Proposizione 4.6  Un punto  P  dello spazio è doppio per la quadrica  Q  rappresentata 

dall’equazione  

           Q   :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )   

 se e solo se le sue coordinate   (  y1 , y2   , y3 ,  y4  )   verificano le seguenti eguaglianze : 

a11 y1 + a12 y2    + a13 y3  + a14 y4  = 0 

a21 y1 + a22 y2    + a23 y3  + a24 y4  = 0 

(4.1)                                             a31 y1 + a32 y2    + a33 y3  + a34 y4  = 0 

a41 y1 + a42 y2    + a43 y3  + a44 y4  = 0 

                                                                             

 

Dimostrazione.  Cominciamo a provare che se un punto ha coordinate verificanti le 

eguaglianze (4 . 1) esso è un punto della quadrica  ed è doppio per essa . Abbiamo già osservato che 

risulta  

∑ =
ji,

jiji       y ya ( a11 y1 + a12 y2    + a13 y3 + a14 y4 )  y1  +  (a21 y1 + a22 y2    + a23 y3 + a24 y4)  y2  + 

                  +      (a31 y1 + a32 y2 + a33 y3+ a34 y4)  y3  + (a41 y1 + a42 y2    + a43 y3  + a44 y4  ) y4 

 

e pertanto , se valgono le (4.1),  si ha  ∑ =
ji,

jiji     0  y ya , il che prova che  P è un punto della 

quadrica .  Proviamo ora che esso è doppio per   la quadrica  . 

Sia  Z  un punto qualsiasi dello spazio  distinto dal punto P e sia  r  la retta che unisce P con Z . 

Siano  (  z1 , z2   , z3  )  le  coordinate di  Z  e sia   

                        (x1 , x2 , x3 , x4)   =  ( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4  ) 

la rappresentazione  parametrica della retta  r .   

Abbiamo già visto che gli eventuali punti comuni alla retta  r ed alla quadrica si trovano attraverso 

le soluzioni  non nulle dell’equazione  

                                             a λ 2 +  2 b λ µ  +  c µ 2     = 0 
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dove è : ( con  gli indici  i  e  j  variabili  tra  1  e 4 ) 

 

a   =  ∑
ji,

jiji       y ya ,                             b =   ∑
ji,

jiji       z ya ,                              c   =  ∑
ji,

jiji       z za  

 

Stante le (4.1) si ha allora    a = 0  e   b = 0   e pertanto l’ equazione  

                                          

                                                a λ 2 +  2 b λ µ  +  c µ 2     = 0  

diventa  

  

                                                c µ 2     = 0 

Se  anche   c = 0  allora la retta  r è contenuta nella quadrica   se invece è   c ≠  0   allora 

l’equazione    c µ 2  = 0      fornisce come sua unica soluzione la coppia  ( 1 , 0 ) cui corrisponde il 

punto P  che diventa quindi l’unico punto che r ha in comune con  la quadrica .  

Abbiamo provato così che se valgono le (4.1) allora P appartiene alla quadrica ed inoltre 

(vista l’arbitrarietà del punto Z )  ogni   retta per P   o   è contenuta in  Q  o ha in comune con Q   il 

solo punto P e ciò prova che P è doppio per Q .  

Viceversa supponiamo che un punto  P ( y1 , y2   ,y3 , y4  )  della quadrica Q   sia doppio per 

essa e proviamo che le sue coordinate (y1 , y2   ,y3 , y4  )  verificano le  (4. 1 ). 

 Al solito sia Z  un punto qualsiasi dello  spazio  distinto dal punto P e sia  r  la retta che 

unisce P con Z . Siano  (  z1 , z2   , z3,  z4    )  le  coordinate di  Z  e sia   

                     (x1 , x2 , x3 , x4)   =  ( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4  ) 

la rappresentazione  parametrica della retta  r .   

I  punti comuni alla retta  r ed alla quadrica si trovano attraverso le soluzioni  non nulle 

dell’equazione  

                                             a λ 2 +  2 b λ µ  +  c µ 2     = 0 

dove è  : ( con  gli indici  i  e  j  variabili  tra  1  e 4 ) 
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a   =  ∑
ji,

jiji       y ya ,           b = ∑
ji,

jiji       z ya ,           c   = ∑
ji,

jiji       z za  

 

Poiché P è un punto della quadrica   allora  è   a = 0 . L’ equazione   

 

a λ 2 +  2 b λ µ  +  c µ 2     = 0 

diventa così : 

µ  ( 2 b λ  +  c µ )     = 0 

Si ha quindi  la soluzione ( attesa )  (1 , 0)  cui corrisponde P  e  l’altra  soluzione si ottiene da  

2 b λ  +  c µ   = 0. 

Poiché  P è doppio  la retta  PZ  è contenuta  in   Q  oppure ha in comune con  Q  il solo punto P e 

quindi l’ equazione   2 b λ  +  c µ   = 0     deve o essere identicamente nulla o deve fornire ancora 

come soluzione la coppia  ( 1, 0 ) . In entrambi i casi  ciò comporta che è   b  = 0 . 

Pertanto qualunque sia  Z (  z1 , z2   , z3  , z4  )   risulta allora che è : 

 

                       

b =  zya j
ji,

iij∑ = 0 

Esplicitamente è  :  

 

b =  (a11 y1 + a12 y2    + a13 y3  + a14 y4  )  z1  +( a21 y1 + a22 y2    + a23 y3  + a24 y4  )  z2 + 

 (a31 y1 + a32 y2    + a33 y3  + a34 y4  )  z3   + (  a41 y1 + a42 y2    + a43 y3  + a44 y4   )  z4                                         

 

ed esso è nullo , per ogni scelta del punto Z , e quindi per ogni scelta  della quaterna  

( z1 , z2   , z3 , z4  ).  

 

Scegliendo   

 

( z1 , z2   , z3 , z4  ) = ( 1, 0 , 0 ,0 ) ,        ( z1 , z2   , z3 , z4  ) = ( 0, 1 , 0, 0 ) ,      

( z1 , z2   , z3 , z4  ) = ( 0, 0 , 1 ,0 ) ,        ( z1 , z2   , z3 , z4  ) = ( 0, 0 , 0, 1 ) ,      
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si hanno le (4.1)  e l’asserto è così provato. 

 

La proposizione ora provata ha mostrato che determinare gli eventuali punti doppi della 

quadrica  equivale a determinare le eventuali  soluzioni non nulle del seguente sistema  omogeneo  

 

 

(4. 2)                       

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+++
=+++
=+++
=+++

0   x a   x a     x a  x a
0   x a   x a     x a  x a
0   x a   x a     x a  x a
0   x a    xa    x a  x a

444343242141

434333232131

424323222121

414 3 13 212111

 

                                                                             
 

che ha per matrice la matrice A della quadrica  . 

Pertanto , tenendo conto delle proposizioni precedenti  , si ha questa utilissima  
 

Proposizione 4.7  Una quadrica  Q    rappresentata dall’equazione  

           Q  :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )   

è degenere se e solo se risulta  

                                                det A  = 0 . 

Dimostrazione. Se Q   è degenere essa possiede almeno un punto doppio P. Le coordinate dì P sono  

quindi una soluzione      non nulla     del sistema omogeneo (4 .2)  e  così  è   det A = 0.  

Viceversa se  detA = 0   il sistema (4.2)  ha soluzioni non nulle ed in corrispondenza a tali 

soluzioni si hanno punti doppi per  Q   la quale è così degenere. 

 

5. Piano tangente ad una quadrica  in un suo punto semplice.  

 
Sia  Q una quadrica  (  non riducibile )   rappresentata da  

 
                                                        ∑ =

ji,
jiji      0   xxa   (  aij  =  aji  ) 

 
 
e  sia P( y1 , y2   ,y3 , y4  )   un suo punto semplice . Poiché  il punto P è semplice almeno una delle 

quattro  relazioni (4 .1)  è diversa da zero. Sia Z (  z1 , z2   , z3 , z4 )   un punto dello spazio  distinto 

da P e sia r la retta PZ . Come già visto i punti comuni alla retta PZ , rappresentata 
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parametricamente da  

                        (x1 , x2 , x3 , x4)   =  ( λ y1 +  µ z1,  λ y2 +  µ z2 ,  λ y3 +  µ z3 ,  λ y4 +  µ z4  ) 

si trovano attraverso le soluzioni  non nulle dell’equazione  

  (5 .1)                                       a λ 2 +  2 b λ µ  +  c µ 2     = 0 

dove è  : 

                a   =  ∑
ji,

jiji       y ya ,           b = ∑
ji,

jiji       z ya ,           c   = ∑
ji,

jiji       z za  

 

Essendo   a   =  0   in quanto     P   ∈   Q , l’equazione  (5.1) diventa : 

 ( 5 .2)                                 µ  (  2 b λ  +  c µ )     = 0 

Tale equazione fornisce la soluzione (1 , 0) in accordo col fatto che  P    è comune ad r  e  Q  . Ora se 

è 

                                                                                         b = ∑
ji,

jiji       z ya =   0            

ed è  c ≠  0  la soluzione (1 , 0) sarà soluzione doppia della (5. 2 ) e cioè la retta  r interseca   Q  solo 

nel punto P  , se invece è anche  c = 0  l’equazione (5. 2 )  è identicamente nulla e  la retta r  è 

contenuta in Q  . 

Abbiamo così provato che i punti Z dello  spazio  per cui la retta PZ incontri Q nel solo punto P  o 

sia contenuta in Q sono tutti e soli quelli per cui risulti : 

 (a11 y1 + a12 y2    + a13 y3  + a14 y4  )  z1  +   (a21 y1 + a22 y2    + a23 y3  + a24 y4  )  z2   + 

 (a31 y1 + a32 y2    + a33 y3  + a34 y4  )  z3  + (a41 y1 + a42 y2    + a43 y3  + a44 y4  )  z4  =   0            

                                                                             

 

cioè sono tutti e soli i punti dello spazio  le cui coordinate sono soluzione dell’equazione seguente 
 

(5.3)           (a11 y1 + a12 y2    + a13 y3  + a14 y4  )  x1  +   (a21 y1 + a22 y2    + a23 y3  + a24 y4  )  x2   + 
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                  (a31 y1 + a32 y2    + a33 y3  + a34 y4  )  x3  + (a41 y1 + a42 y2    + a43 y3  + a44 y4  )  x4  =   0            

                                                                             
 
Tale equazione,  che non è identica perchè P è semplice ,  rappresenta quindi un piano per P che è 

chiamato  piano  tangente nel punto P. 

Sia P un punto e sia  πP  il piano tangente in P . Per la sua stessa definizione se Z è un punto 

di πP  diverso da  P  la retta PZ  è tangente a Q in P (incontra cioè Q nel solo punto P) oppure è 

tutta contenuta nella quadrica. Q .  

Poiché la sezione di un piano con una quadrica è una conica allora l’intersezione del piano  

πP  con la quadrica fornirà una conica che è  necessariamente degenere .  

Viceversa se in un punto P semplice  della quadrica c’è un piano per P che interseca  Q in 

una conica degenere costituita da due rette per P  o da una sola retta  allora tale piano è 

necessariamente il piano tangente a Q nel punto  P . 

 

 

6. Il gruppo strutturale. 

 

Sia  GL(4,R) il gruppo delle matrici reali quadrate d’ordine quattro non degeneri ad elementi 

reali . 

Sia  A = ( aij )  una matrice non degenere elemento di  GL(4,R) . La matrice A  induce nello spazio 

proiettivo complesso P  un’ applicazione  ωA   biettiva  quando si faccia corrispondere al punto P  

di coordinate   ( x1, x2, x3, x4 )    il punto  P’  di coordinate   (x '
1 , x '

2  , x '
3 , x '

4 )    con 

 (x '
1 , x '

2  , x '
3 , x '

4 )   date da : 

 

       x '
1  = a11 x1 + a12 x2    + a13 x3  + a14 x4   

                                                   x '
2  = a21 x1 + a22 x2    + a23 x3  + a24 x4   

                                                   x '
3  = a31 x1 + a32 x2    + a33 x3  + a34 x4   

                                                   x '
4 = a41 x1 + a42 x2    + a43 x3  + a44 x4   

Ovviamente se si moltiplica la matrice A per un fattore  ≠ρ 0  diverso da zero si ottiene una matrice  

A’ che induce la stessa funzione indotta su P  dalla matrice A . La funzione    ωA  indotta da A  è 

detta  omografia  reale  ed essa è un isomorfismo dello spazio proiettivo in quanto essa è biettiva  e 
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trasforma  con la sua inversa rette in rette e piani in piani. 

Nel gruppo GL(4 , R )  si considerino ora  tutte le matrici A  del seguente tipo : 

 

          A=  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1     0     0    0
a a a a
a a a a
a a a a

34333231

24232221

14131211

                          con      det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 a a a
 a a a
 a a a

333231

232221

131211

≠ 0   

                                                                             

 

Denotiamo con  A(4 , R)  l’inisieme di tutte le matrici del tipo sopra esposto. L’insieme A(4 , R)   è 

anch’esso un gruppo detto gruppo affine reale . Le applicazioni che le matrici  A  di  A(4 , R)   

inducono nello spazio proiettivo sono quindi di questo tipo 

                                                   x '
1  = a11 x1 + a12 x2    + a13 x3  + a14 x4   

                                                    x '
2  = a21 x1 + a22 x2    + a23 x3  + a24 x4   

                                                   x '
3  = a31 x1 + a32 x2    + a33 x3  + a34 x4   

                                                   x '
4 = x4   

 

 

e sono chiamate affinità reali. Ogni affinità reale è un isomorfismo che  trasforma punti reali in 

punti reali, punti immaginari in punti immaginari ,  punti propri in punti propri  e punti impropri in 

punti impropri.  

Noi riterremo che sullo spazio P   agiscano tali affinità e le proprietà delle figure dello spazio 

invarianti   rispetto a tali trasformazioni saranno chiamate proprietà affini. 

Sia  Q  una quadrica reale non degenere rappresentata in un riferimento reale da : 

    

                                                            Xt A X = 0 

Sia  X’ = MX  un’affinità dello spazio . Da  X’ = MX   segue , essendo  detM ≠   0  ,   

X = M-1 X’   e   quindi     X t = X’ t (M-1)t 

 Si ha : 

                                       Xt A X = X’ t (M-1)t A M-1 X’ = 0 
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e quindi la quadrica  Q  viene allora trasformata nella quadrica  Q’ rappresentata da : 

 

                                                   X’ t A’X’   = 0 

 

avendo posto  A’ =   (M-1)t A M-1  .         

La quadrica  Q’  trasformata   della quadrica  Q   ha quindi una matrice  A’  il cui determinante ha 

lo stesso segno del determinante di A  in quanto è : 

 

                                                det A’ = ( detM-1 )2 detA                   

 

Il segno del determinante di A  ha quindi un  significato geometrico essendo invariante per affinità.  

 

 

7. Quadriche reali. 

 

Nel presente numero Q rappresenterà una quadrica reale e cioè rappresentabile con un’equazione 

 

                                                                        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  ) 

i  cui  coefficienti  aij  sono numeri reali. Supporremo che la quadrica Q sia dotata di punti reali. 

Sia  P  un punto semplice e reale   della quadrica Q  e sia   πP  il piano tangente in  P . Tale piano è 

al pari di P  reale ed interseca quindi Q in una conica γ  reale. Tale conica γ  , come abbiamo già 

osservato,  è degenere e quindi sono possibili tre eventualità : 

 

a) γ  è doppiamente degenere e cioè è una sola retta reale  per P . 

b) γ  è semplicemente degenere ed è costituita da  una coppia di rette reali per P. 

c) γ  è semplicemente degenere e è costituita da  una coppia di rette complesse e coniugate  per P. 

 

Quando si verifica la circostanza a)   il punto P  è detto   parabolico.  

Quando si verifica la circostanza b)   il punto P  è detto   iperbolico.  

Quando si verifica la circostanza c)   il punto P  è detto   ellittico.  

 

Proveremo ora che le uniche quadriche che posseggono punti parabolici sono i coni ed i cilindri 

mentre le quadriche non degeneri hanno soltanto punti iperbolici o ellittici. 
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Riassumendo : 

 

quando un punto P  è parabolico c’è una sola  retta passante per P  e contenuta nella quadrica. 

 

quando un punto P  non è parabolico ci sono due rette distinte  per  P  contenute nella quadrica. 

 

Possiamo provare ora la seguente : 

 

Proposizione 7.1   Sia Q una quadrica  reale dotata di punti reali  e non riducibile. Se Q 

possiede un punto parabolico ogni altro suo punto semplice e reale è parabolico e Q possiede 

altresì un punto doppio  V e così Q  è un cono o un cilindro a seconda che V sia proporio o 

improprio. 

Dimostrazione.  Sia  P   un punto reale semplice  e   parabolico di Q .Esiste quindi una sola 

retta per P  ,sia t , passante per P e contenuta in Q. La retta  t   è intersezione di Q col piano tangente   

πP  nel punto P. Sia  P’  un punto reale e semplice di Q  e non appartenente al piano   πP  . Proviamo 

che anche il punto P’ è parabolico. Se  P’ fosse non parabolico  per P’ passerebbero due rette 

distinte  r ed r’ contenute in Q. Tali rette intersecherebbero il piano  πP  in due punti distinti della 

retta t . Il piano determinato dalle rette  r  ed  r’  avrebbe quindi in comune con la quadrica Q le tre 

rette  r, r’ e t  e sarebbe quindi contenuto in Q  che invece  per ipotesi non è riducibile. 

Pertanto anche P’ è parabolico e quindi per esso passa una sola retta  t’  contenuta in Q. Il piano 

tangente  πP’   nel punto P’ interseca quindi Q nella sola retta  t’ . Ovviamente  πP   non contiene  t’  

e  πP’  non contiene  t  . Sia  V  il punto della retta   t  in cui la retta  t’ interseca il piano   πP      

Ovviamente poiché  πp    non contiene  t’  e  πp’  non contiene  t   i punti di  t – { V }  sono tutti 

parabolici ed i punti di  t’ – { V }  sono tutti parabolici.  Sia  α   il piano determinato dalle rette   t  e  

t’ e sia  M  un punto reale e semplice della quadrica  fuori da tale piano . Ovviamente poiché  M  

non appartiene alla retta  t  esso non sta sul piano πP  e quindi per ciò che precede esso è parabolico. 

La retta  m  per M contenuta in Q  interseca il piano  α    necessariamente nel punto V in quanto , 

come osservato , i punti di t – { V }  e  di  t’ – { V }  sono parabolici. Quindi per il punto V passano 

tre rette distinte ( t , t’ , m) contenute in Q  e ciò mostra che esso è doppio. Si ha quindi l’asserto. 

 

Osserviamo esplicitamente quanto segue :  

 

  Se Q è un cono reale allora esso  ha un unico punto doppio V che è proprio. Per tale ragione 
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la conica impropria del cono è non degenere in quanto se tale conica contenesse una retta  r  il 

piano congiungente  V ed  r sarebbe contenuto nella quadrica.  

Se invece Q è un cilindro reale  il suo unico punto doppio è improprio ed esso è quindi doppio 

anche per la conica impropria  Г che è così degenere. Se Г  si riduce ad una sola retta il cilindro è 

detto parabolico .Se  Г è unione di due rette reali e distinte il cilindro è detto iperbolico. Se Г  è 

unione di due rette immaginarie coniugate il cilindro è detto ellittico. 

 

 

8. Quadriche reali non degeneri. 

 

In questo numero considereremo le quadriche reali non degeneri e che siano dotate di punti 

reali.  

I punti reali di  una quadrica reale non degenere sono tutti semplici e  non parabolici e  risultano 

quindi iperbolici o ellittici . Noi ora mostreremo che essi sono tutti iperbolici o tutti ellittici.  

Sussiste infatti la seguente : 

 

Proposizione 8.1  Sia Q una quadrica reale non degenere e dotata di punti reali. Se la 

quadrica Q ha un punto reale iperbolico ogni suo altro punto reale è iperbolico. 

Dimostrazione.  Sia  P un punto reale ed iperbolico della quadrica  Q  e siano  r  ed  r’ le due 

rette reali passanti per  P  e contenute in  Q . E’ chiaro che gli altri punti reali di r  ed  r’ sono 

iperbolici. Sia quindi  P’  un punto reale della quadrica Q  fuori dal piano tangente  πP  . Il piano che 

unisce  P’  ed  r  è   reale ed interseca quindi Q in una conica reale . Tale conica è degenere ed è 

l’unione della retta  r  e di un’ altra retta reale  t  per P’ . Analogamente il piano che congiunge  r’ 

con P’ è reale  ed interseca quindi Q in una conica reale. Tale conica è degenere ed è l’unione della 

retta  r’  e di un’ altra retta reale  t’  per P’. Abbiamo provato così che P’  è iperbolico. 

 

Si può provare che sussiste la seguente proposizione di cui omettiamo la dimostrazione. 

 

Proposizione 8.2  Sia Q una quadrica reale non degenere e dotata di punti reali 

rappresentata da  

∑ =
ji,

jiji      0   xxa   (  aij  =  aji  ) 

 

 La quadrica Q ha i punti reali  iperbolici se e solo se risulta   
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det A > 0. 

 

Dalla proposizione 8.2  segue ovviamente la seguente: 

 

Proposizione 8.3  Sia Q una quadrica reale non degenere e dotata di punti reali 

rappresentata da  

∑ =
ji,

jiji      0   xxa   (  aij  =  aji  ) 

 

 La quadrica Q ha i punti reali  ellittici  se e solo se risulta   

 

                                                        det A <  0 . 

 

Le proposizioni 4.7 , 8.1 ed 8.2  confermano che il segno del determinante della matrice 

della quadrica ha un significato geometrico. 

 

Sia  Q  una quadrica reale non degenere  . I punti impropri della quadrica sono i punti che la 

quadrica Q  ha in comune con il piano improprio. Poiché il piano improprio interseca Q  in una 

conica,  tali punti sono quindi i punti di una conica , detta conica impropria e che indicheremo col 

simbolo γ ∞  . 

Poiché la quadrica è reale ed il piano improprio è un piano reale la conica  γ ∞    è reale e 

quindi per tale conica si hanno le seguenti possibilità : 

 

γ ∞    è degenere  
⎩
⎨
⎧

coniugate e eimmaginari rette duein    
distinte e reali rette duein    

 

 

 

γ ∞    è non degenere  e dotata di   punti reali 

γ ∞    è non degenere e priva di punti reali   (totalmente immaginaria). 

 

Quando  la conica  γ ∞   è  degenere   a quadrica Q  è detta  paraboloide. 

Quando la conica  γ ∞  è non degenere e dotata di punti reali la quadrica Q è detta  

iperboloide . 
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Quando la conica γ ∞  è non degenere e totalmente immaginaria la quadrica Q è detta 

ellissoide. 

 
 

L’ essere per una quadrica un paraboloide , un iperboloide o un ellissoide è una proprietà 

invariante per affinità e per tale ragione la suddivisione delle quadriche reali e non degeneri in 

queste tre famiglie viene chiamata la classificazione affine delle quadriche reali. 

Una retta reale contenuta nella quadrica Q ha un punto improprio reale  e tale punto  sarà un 

punto reale della conica impropria. Da ciò segue che i punti reali di  un ellissoide  sono 

necessariamente ellittici. 

 

Ci sono invece due tipi di paraboloidi : 

 

 (  paraboloide   a   punti ellittici  ) 
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(  paraboloide   a   punti iperbolici ) 

 

 

 
 

 

E ci sono due tipi di iperboloidi :   

 

iperboloide a punti iperbolici    ( iperboloide ad una falda) 
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Iperboloide a punti ellittici  ( iperboloilde a due falde ). 

 

 

 
 

 

 

Le quadriche non degeneri contengono rette , rette reali se i punti sono iperbolici e rette 

immaginarie se i punti sono ellittici. Vediamo come sono disposte tali rette sulla quadrica.  

Consideriamo un punto P  della quadrica e siano  r  ed  s le due rette passanti per P e 

contenute nella quadrica Q . Indichiamo con  πP  il piano tangente in P  che  contiene le due rette r 

ed s . Per ogni punto  x  di  r-{ P }  indichiamo con  sx  l’altra retta per x  contenuta nella quadrica. 

La retta s e tutte le rette sx ( al variare di x ) sono evidentemente a due a due sghembe e definiscono 

una schiera di rette che indicheremo con   Σ .  

 Analogamente per ogni punto  y  di s-{ P }  sia ry l’ulteriore retta per y contenuta nella 

quadrica . La retta r  e  le rette  ry ( al variare di y ) definiscono l’altra schiera di rette che sarà 

indicata con   Σ ’   . Ogni retta contenuta nella quadrica diversa da r ed s interseca il piano πP   in 

un punto di   r ∪  s   differente da P e quindi  appartiene ad una delle due schiere. 

Sia  sx   una retta di  Σ   ed  ry  una retta di  Σ ’  .  Il piano tangente πx  in x  che contiene le 

rette  r  ed  sx  non contiene la retta  ry  . La  retta ry  interseca quindi il piano πx in punto che è 

necessariamente un punto si  sx essendo r ed  ry  sghembe tra loro.  

Abbiamo così mostrato  che tutte le rette di una quadrica non degenere si ripartiscono in due 

famiglie di rette,  dette schiere di rette, e tali schiere hanno la proprietà che rette della stessa schiera 

risultano sghembe tra loro mentre rette di schiere diverse sono incidenti tra loro. 
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9. Polarità definita da una quadrica non degenere. 

      Sia Q una quadrica  non degenere rappresentata in un riferimento reale assegnato 

dall’equazione : 

  

                                   Q   :        ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  ) 

 

Poiché la quadrica   è non degenere la sua matrice A(aij ) è non degenere e quindi è  det A  ≠ 0. 

 

Sia  P( y1 , y2, y3 , y4)   un punto dello spazio  . L’ equazione  

 

(a11 y1 + a12 y2    + a13 y3  + a14 y4  )  x1  +(a21 y1 + a22 y2   + a23 y3 + a24 y4    )  x2   +  

(a31 y1 + a32 y2    + a33 y3 + a34 y4  )  x3 +(a41 y1 + a42 y2   + a43 y3 + a44 y4    )  x4   = 0 

 

( costruita utilizzando le coordinate  ( y1 , y2, y3 , y4)   di P )  è una equazione non identica  

( altrimenti  P sarebbe doppio e la quadrica  sarebbe degenere)  e quindi rappresenta un piano 

dello spazio. Tale piano è chiamato piano polare  del punto P e sarà denotata col simbolo πp  .  

Associando al punto P il suo piano polare si  realizza una applicazione  p   tra i punti dello 

spazio ed i piani dello spazio. Tale applicazione  

                                    p  :      P    →         πp 

è  chiamata   polarità   indotta dalla quadrica  non degenere  Q   . Il punto P è chiamato il  polo del 

piano   πp .  

Le proposizioni che seguono illustrano alcune importanti proprietà della polarità   p  indotta dalla  

quadrica  Q   . 

 

Proposizione 9.1    La polarità è un’applicazione biettiva. 

Dimostrazione. Sia  π  un piano dello spazio rappresentato da : 

 

(9.1)                  π :                         ax + by + cz  + dt = 0 

 

Un punto   P( y1 , y2, y3 , y4)   dello spazio  ha per piano polare il piano  π   se risulta  πP =  π  cioè 

se  l’equazione  
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(a11 y1 + a12 y2    + a13 y3  + a14 y4  )  x1  +(a21 y1 + a22 y2   + a23 y3 + a24 y4    )  x2   +  

(a31 y1 + a32 y2    + a33 y3 + a34 y4  )  x3 +(a41 y1 + a42 y2   + a43 y3 + a44 y4    )  x4   = 0 

 

è l’equazione del piano π   . Si ha  quindi che P( y1 , y2, y3 , y4)   è polo di  π  se e solo se risulta : 

 

 (**)                                  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+++

=+++

=+++

=+++

  d   ya    ya     ya   ya 
c   ya    ya     ya   ya  
b   ya    ya     ya   ya  
a    ya    ya     ya   ya  

444343242141

434333232131

424323222121

414313212111

 

 

Tale sistema inteso nelle incognite  ( y1 , y2, y3 , y4)   ha una sola soluzione (  z1 , z2, z3 , z4  ) in 

quanto, essendo la quadrica  non degenere,   è  det A ≠  0.   

Sostituendo alla quaterna  ( a, b , c, d )  con la  quaterna proporzionale    (ρ a,  ρ b , ρ c , ρ d)   

con  ρ  ≠    0   si otterrà in corrispondenza la  soluzione   (ρ z1 , ρ z2, ρ z3 , ρ z4 ).  

Pertanto in corrispondenza a tutte le quaterne ( ρ z1 , ρ z2, ρ z3 , ρ z4 ). soluzioni di (**)  si ha un 

solo punto P dello spazio avente per piano polare il piano π . La corrispondenza p  è quindi 

biettiva come si voleva provare. 

 

 Proposizione 9.2  Un punto  P  appartiene al suo piano  polare se e solo se esso appartiene 

alla quadrica . In tal caso il suo piano polare  coincide con il  piano tangente in P.  

Dimostrazione . Se P( y1 , y2, y3 , y4)   è un punto della quadrica  allora il suo piano polare   

che è rappresentata da : 

 

(a11 y1 + a12 y2    + a13 y3  + a14 y4  )  x1  +(a21 y1 + a22 y2   + a23 y3 + a24 y4    )  x2   +  

(a31 y1 + a32 y2    + a33 y3 + a34 y4  )  x3 +(a41 y1 + a42 y2   + a43 y3 + a44 y4    )  x4   = 0 

 

coincide con il piano  tangente nel punto  P  . In tal caso quindi P appartiene a tale piano in 

quanto è    

 

(a11 y1 + a12 y2    + a13 y3  + a14 y4  )  y1  +(a21 y1 + a22 y2   + a23 y3 + a24 y4    )  y2   +  

(a31 y1 + a32 y2    + a33 y3 + a34 y4  )  y3 +(a41 y1 + a42 y2   + a43 y3 + a44 y4    )  y4   = 0 

 

essendo P un punto della quadrica. 

Viceversa se P( y1 , y2, y3 , y4)   appartiene al suo piano polare si ha : 
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(a11 y1 + a12 y2    + a13 y3  + a14 y4  )  y1  +(a21 y1 + a22 y2   + a23 y3 + a24 y4    )  y2   +  

(a31 y1 + a32 y2    + a33 y3 + a34 y4  )  y3 +(a41 y1 + a42 y2   + a43 y3 + a44 y4    )  y4   = 0 

 

e questa prova che P è un punto della quadrica .  

 

Abbiamo così provato che : 

 

(9.3)                                            P ∈    πP   ⇔     P ∈   Q          

 

Una importante proprietà della polarità    p   è espressa dal seguente : 

 

Teorema di reciprocità.  Se  A(y1 , y2, y3 , y4 )    e   B(z1 , z2,  z3,  z4 )  sono due punti distinti 

dello spazio ,  si ha   

(9.4)                                         B∈   πA      ⇔     A∈   πB                 

Dimostrazione.   

Il piano  polare di A  è : 

(a11 y1 + a12 y2    + a13 y3  + a14 y4  )  x1  +(a21 y1 + a22 y2   + a23 y3 + a24 y4    )  x2   +  

(a31 y1 + a32 y2    + a33 y3 + a34 y4  )  x3 +(a41 y1 + a42 y2   + a43 y3 + a44 y4    )  x4   = 0 

che può scriversi sinteticamente ,  usando le notazioni introdotte al numero 1 , così : 

                                                       f ( y   /  x )  = 0     

 

Il piano polare di B è  : 

 

(a11 z1 + a12 z2    + a13 z3  + a14 z4  )  x1  +(a21 z1 + a22 z2   + a23 z3 + a24 z4    )  x2   +  

(a31 z1 + a32 z2    + a33 z3 + a34 z4  )  x3 +(a41 z1 + a42 z2   + a43 z3 + a44 z4    )  x4   = 0 

 

che può scriversi sinteticamente ,  usando le notazioni introdotte al numero 1 , così : 

                                                       f ( z   /  x )  = 0    

Abbiamo, sempre al numero 1  , già osservato che poiché la matrice A della quadrica è simmetrica  

si ha  per ogni coppia di quaterne non nulle  (y1 , y2, y3 , y4 )    e   (z1 , z2,  z3,  z4 )   
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(9.5)                                  f ( y   /  z )  =  f ( z   /  y )   

 

Dalla (9.5) segue quindi 

 

                                        f ( y   /  z )  = 0     ⇔     f ( z   /  y ) = 0  

 

e questa  prova l’asserto. 

 

Proposizione 9.3  I piani polari dei punti di una retta  r  formano un fascio di asse una retta 

r’ che dicesi coniugata della retta r. Le rette   r  ed  r’  sono ognuna il luogo dei poli dei piani per 

l’altra. 

Dimostrazione.  Siano  A  e  B   due punti distinti della retta  r . I piani polari  πA e πB                   

sono distinti e quindi si intersecano in una retta   r’ . Siano  C   e  D   due punti distinti  della retta  

r’. Poiché  C   e   D   appartengono ad    r’ = πA ∩  πB       per il teorema di reciprocità  A  e  B   

appartengono ai piani polari  πA  e  πB    . Si ha quindi   r = πC ∩  πD   e  l’ asserto segue tenendo conto 

del teorema di reciprocità. 

 

Dalla proposizione ora provata segue che : 

 

Proposizione 9.4  I piani polari di tre punti A , B , C  non allineati formano una stella con 

centro il polo del piano determinato dai punti A , B , C . 

 

Possiamo ora fornire una  descrizione  geometrica del  piano polare di un punto p. 

 

Se il punto P è un punto della quadrica il piano polare di P è il piano tangente in P . Se il 

punto P non appartiene alla quadrica il piano polare non passa per P ed è secante la quadrica . Detta  

Г la conica non degenere comune a Q  e  πp   si ha quanto segue.  Per ogni punto y  di  Г   possiamo 

considerare il piano tangente  πy.  Poiché  y appartiene a  Г  e quindi a  πp ,  per  il teorema di 

reciprocità,   πy    passa per p e quindi la retta  yp  è tangente . 

Viceversa sia  t  una retta per P e tangente a  Q nel punto  y. Poiché  P  sta sul piano polare 

di y , per reciprocità  il punto y sta sul piano polare di  P  ed è  quindi un punto di   Г . 

 

 La conica  Г  è quindi il luogo dei punti di contatto delle rette tangenti che si possono 

condurre da p  a   Q   ed il piano  πp  è il piano che contiene tali punti. 
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10. Centro e piani diametrali. 

 

In questo numero  la quadrica Q è non degenere e reale  ed è rappresentata nel riferimento 

reale ortogonale monometrico scelto  da : 

                                         ∑ =
ji,

jiji      0   xxa   (  aij  =  aji  )               

 

Si chiama centro della quadrica il polo del piano improprio. Se la quadrica è un paraboloide il 

piano improprio è tangente ed allora il centro è un punto improprio e coincide col punto di contatto 

che il piano improprio ha con Q. Se la quadrica è un ellissoide o un iperboloide allora il piano 

improprio è secante Q e quindi non contiene il suo polo. Nel caso dell’ellissoide e dell’iperboloide 

il centro è quindi un punto proprio.  

Per determinare le coordinate del centro si può far uso del teorema di reciprocità e della 

proposizione 9.4. Pertanto  i piani polari  dei punti impropri e non allineati  (1,0,0,0) (0,1,0,0) 

(0,0,1,0) formano una stella di piani con centro il polo del piano improprio. 

Pertanto le coordinate del centro si ottengono attraverso la soluzione del seguente sistema 

omogeneo: 

                                           
⎪
⎩

⎪
⎨

⎧

=+++
=+++

=+++

   0    x a   x a     x a  x a 
  0    x a   x a     x a  x a 

0   x a   x a     x a  x a 

434333232131

424323222121

414313212111

 

 

 

che può ottenersi attraverso il calcolo dei minori d’ordine tre e presi a segni alterni della matrice 

                                                             

                                                        
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

34333231

24232221

14131211

a a a a
a a a a
a a a  a

 

 

dei suoi coefficienti. Ne segue che  se  det A44 = det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 a  a a
 a  a a
 a a  a

333231

232221

131211

=0    il centro è improprio e 

quindi si tratta di un paraboloide.  

 

Se  detA44 ≠  0   allora  la quadrica è un ellissoide o un iperboloide.  
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Si consideri nello spazio una retta reale r  e sia δ   il suo punto improprio che supponiamo non 

appartenga alla quadrica. Il piano polare πδ   di tale punto è reale ed è chiamato piano diametrale 

coniugato alla direzione  δ   . Quando il piano polare πδ       risulta ortogonale alla retta  r   esso è 

detto piano assiale.  

Per la ricerca degli eventuali piani assiali procediamo al seguente modo. Consideriamo un punto 

reale ed  improprio ( λ , µ , ν , 0 )  . Il piano polare di tale punto è : 

 

(a11 λ  + a12 µ     + a13 ν   )  x1  +(a21 λ  + a22 µ    + a23 ν )  x2   + (a31 λ  + a32 µ    + a33 ν )  x3 + 

+ (a41 λ  + a42 µ   + a43 ν )  x4   = 0 

 

Tale piano è ortogonale alla direzione considerata se esiste   ≠ρ 0   per cui risulti : 

 

a11 λ  + a12 µ     + a13 ν    =  ρ  λ  

a21 λ  + a22 µ    + a23 ν   =   ρ µ  

a31 λ  + a32 µ    + a33 ν   =   ρ ν  

 

o   equivalentemente : 

 

                                                  (a11 -ρ ) λ  + a12 µ     + a13 ν    =  0 

a21 λ  + ( a22 - ρ ) µ    + a23 ν   =   0 

a31 λ  + a32 µ    + (a33 - ρ )ν   =   0 

 

questo sistema ha soluzioni non nulle se risulta  : 

     

                                        det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

ρa        a             a
a         ρa          a
a            a       ρa

333231

232221

131211

= 0 

 

Poiché la matrice  A44 = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

 a  a a
 a  a a
 a a  a

333231

232221

131211

  è simmetrica  e  reale  il polinomio   caratteristico   



 170

det (  A44 - Iρ )   = 0  ha tre soluzioni reali, determinate le quali , si possono poi determinare le 

direzioni  ( λ , µ , ν , 0 )  cercate.  

Perché tanta attenzione al centro ed ai piani assiali ?  Vediamo . 

Il centro della quadrica quando esso è un punto proprio risulta centro di simmetria per la 

quadrica. 

Infatti supposto che il centro sia proprio disponiamo il riferimento in modo che il centro 

coincida con l’origine del riferimento. In tal modo il centro ha coordinate  (0,0,0,1)  e quindi il 

sistema  

⎪
⎩

⎪
⎨

⎧

=+++
=+++

=+++

   0    x a   x a     x a  x a 
  0    x a   x a     x a  x a 

0   x a   x a     x a  x a 

434333232131

424323222121

414313212111

 

 

che fornisce le coordinate del centro deve essere soddisfatto dalla quaterna (0,0,0,1)  .Ciò 

comporta allora  a14 = a24 = a34 = 0   e quindi nel riferimento scelto l’equazione della quadrica è : 

 

         a11x 2 + a22 y 2 + a33 z2   + a44 t2  + 2 a12 xy + 2a13 xz  + 2 a23 yz = 0. 

 

Tale equazione mostra che se un punto proprio di coordinate non omogenee ( x , y , z ) è punto della 

quadrica anche il suo simmetrico ( -x . –y , -z )  rispetto all’origine è un punto della quadrica. 

 

                Sia   δ   una direzione  reale e  sia   π  il piano assiale coniugato a tale direzione. 

Disponiamo il riferimento in modo che l’asse  z  abbia la direzione  δ  ed il piano  xy  sia il piano  π   

.Con tale scelta  le  coordinate di  δ   sono  ( 0 , 0 , 1 , 0)  e  così  π  che è il suo piano polare è: 

         

                                  a31x + a32y + a33z + a34 t = 0 

 

tale equazione deve essere la rappresentazione del piano  xy  che ha equazione  z = 0  e quindi si ha 

: 

                                               a31= a32 =  a34 = 0     

 

Nel riferimento scelto l’equazione della quadrica è allora   (in coordinate non omogenee) : 

 

                   a11x 2 + a22 y 2 + a33 z2   + a44  + 2 a12 xy + 2 a14 x  + 2 a24y  = 0. 
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Tale equazione mostra che se un punto proprio di coordinate (x, y, z) è un punto della quadrica 

anche il suo simmetrico ( nella simmetria ortogonale di asse il piano  π )  che ha coordinate  

( x , y , -z)  è anch’esso un punto della quadrica.  

 

La nostra conclusione è che il centro se è un punto proprio è centro di simmetria ed i piani assiali 

sono piani di simmetria per la quadrica. 

 

Concludiamo con qualche semplice esercizio. 

 

Si classifichino le quadriche rappresentate ( in coordinate non omogenee)  da : 

 

  (a)       Q  :   x2 - 4y2 + 2x -4z = 0 

 

  (b)       Ω  :   -2y2 + 2xy - 4xz + 4yz  = 0 

 

Svolgimento (a)  :  l’equazione di Q in coordinate omogenee è   x2 - 4y2 + 2xt -4zt = 0  

e la matrice della quadrica  Q  è : 

 

                                                 A =   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0      2-   0     1
2-    0     0     0
0      0     4-   0
1      0     0     1

 

 

Sii ha   det A = 16  e quindi la quadrica è non degenere.  La sua conica impropria è rappresentata 

da: 

                                          
⎩
⎨
⎧

=

=+

0  t
0  4zt- 2xt   4y- x 22

 

 

che è degenere ed è  costituita dalle due seguenti rette reali e distinte  :   

 

                                r : 
⎩
⎨
⎧

=

=

0  t
0  2y-x

                         s : 
⎩
⎨
⎧

=

=+

0  t
0  2y  x

 

 

si conclude che la quadrica Q  è un  paraboloide  a  punti  iperbolici. 
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Svolgimento (b)  :  l’equazione di Ω  è   -2y2 + 2xy - 4xz + 4yz  = 0 

e la matrice della quadrica  Ω  è : 

 

                                                 A =   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0      0      0      0
0      0      2    2-
0      2      2-    1
0      2-     1     0

 

 

Sii ha   det A = 0  e quindi la quadrica è degenere.  La  quadrica possiede quindi punti doppi . Il 

rango della matrice A  è due  in quanto risulta  

 

                                                  det 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

   0      2    2-
   2      2-    1
  2-     1     0

= 0 

 

Pertanto i punti doppi della quadrica  Q sono i punti della retta  rappresentata da : 

 

                                                  r : 
⎩
⎨
⎧

=+

=

0  2z 2y- x
0   2z - y

 

 

La quadrica è quindi unione di due piani passanti per la retta r .   La retta  s  rappresentata da : 

 

 

                                                     s  :    
⎩
⎨
⎧

=
=
0  z
1   x

 

interseca la quadrica nei due punti  A = ( 1 , 0 , 0 )  e     B = ( 1 , 1 , 0)  . I piani che uniscono r con 

A e B forniscono  i due piani che compongono la nostra quadrica. Il piano  y-2z = 0  

manifestamente contiene  r  ed  A . Determiniamo il piano per  r  e  B. 

Un qualunque piano per  r  è  del tipo   ( y -2z ) + k (x -2y + 2z ) = 0  ( al variare del parametro k) 

Tale piano passa per  il punto B    se  è  k = 1. Pertanto l’altro piano è il piano  x – y = 0. 

Per controllare la correttezza del risultato trovato basta osservare che è : 

 

                               -2y2 + 2xy - 4xz + 4yz  = 2( y -2z )( x – y ). 
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Capitolo VII 

Note di topologia generale 
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1. Spazi topologici. 
 
Sia S un insieme non vuoto .  Una famiglia A  di parti di S i cui elementi sono chiamati   

aperti   è una   topologia   per S se essa verifica le seguenti proprietà : 

 

1.    Φ ∈  A ,  S ∈   A  

 

2.     A ∈   A   ed   A’ ∈  A     allora     A ∩   A’  ∈   A 

 

3.     Per ogni famiglia { Ai } i∈ I    di aperti si ha   ∈
∈
U

Ii
iA  A 

 

Si richiede quindi che : 

 

il vuoto ed S siano aperti , che l’intersezione di un numero finito di aperti sia ancora un 

aperto e che l’unione di un numero qualsiasi di aperti sia ancora un aperto. 

 

La famiglia  A  i cui unici aperti siano il vuoto ed S è una topologia detta topologia banale.  

La famiglia  A  i cui aperti siano tutti i sottoinsiemi di S è una topologia detta topologia 

discreta.   

 

A parte questi casi estremi , non sempre è facile la realizzazione di una famiglia A di parti di S 

con le proprietà ora richieste per cui è utile la seguente: 

 

Proposizione 1.1    Sia S un insieme e sia B   una famiglia di parti di S che abbia le seguenti 

proprietà : 

a) B è un ricoprimento di S 

b) l’intersezione non vuota di due elementi di  B è unione di elementi di  B.   

 

La famiglia  A   di parti di S contenente il vuoto ed i sottoinsiemi che si possono ottenere 

attraverso tutte le possibili unioni degli elementi di  B   è  allora una topologia per S.  

 

 Dimostrazione. Per semplicità di esposizione precorrendo il risultato chiamiamo aperti gli 

elementi di  A .  
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Poiché  B  è un ricoprimento allora  è   S = U
 ∈BX

X   e quindi  S è un aperto  . Siano  A  ed  A’ 

due aperti , elementi di   A . Per definizione esistono due sottofamiglie  F  ed   F’  di elementi 

di  B  per cui risulta : 

                         A = U
FX

X
∈

                        A’ = U
F'Y

Y
∈

         

Si ha allora . 

                       A ∩  A’ = (U
FX

X
∈

 )  ∩   (U
F'Y

Y
∈

)   =   )U
Y X,

Y(X ∩    

Per la proprietà b)  anche   X  ∩  Y   è unione di elementi di   B  e così A ∩  A’  risultando 

unione di elementi di  B  appartiene ad   A  e quindi è un aperto.  

E’ evidente infine che per ogni famiglia { Ai } i∈ I    di aperti si ha   ∈
∈
U

Ii
iA  A 

in quanto essendo ogni  Ai  una  unione di elementi di  B  anche U
Ii

iA
∈

  risulta unione di 

elementi di   B . Poiché  anche il vuoto fa parte della famiglia  A allora tale famiglia è , come 

si voleva provare ,  una topologia per S. 

  

 La situazione favorevole descritta dalla proposizione ora provata si ha quando l’insieme S è  

munito di una  metrica  ,  nozione  di cui ora ci occupiamo. 

 Sia S un insieme non vuoto . Una  metrica   in S è una funzione  

 

d  :   S x S   →    [ 0 ,    + ∞  [ 

 

verificante le seguenti proprietà : 
 
α .   d ( x, y) = 0    se e solo  se  è  x = y                    (proprietà di coincidenza ) 

β .   d ( x, y) = d ( y, x)                                              ( proprietà di simmetria ) 

γ .   d ( x, y) + d ( y, z)  ≥  d ( x, z)                            ( proprietà triangolare ) 

 

Chiameremo il numero reale non negativo d ( x, y)   distanza  di  x  da  y. Se  d  è una metrica 

in S  la coppia  ( S , d)  è chiamato spazio metrico, ed  S  è detto il sostegno dello spazio 

metrico. 

  Se ( S , d)  è uno spazio metrico allora utilizzando la metrica d possiamo costruire 

per S una topologia A    e tale topologia si dice  indotta    dalla    metrica   d .  

Vediamo come si procede.  
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Sia quindi ( S , d)  uno spazio metrico.  Siano  y  un elemento di  S  ed  r  un numero reale 

positivo. Si chiama   cerchio aperto di centro y e raggio  r   il seguente sottoinsieme    

C(y , r)  di S : 

 

                                    C(y , r)  =  { x ∈  S   : d ( x, y) < r } 

 

Poiché  d(y , y) = 0 allora l’insieme C(y , r) non è vuoto in quanto  y∈ C(y , r). Sia  ora  B  la 

famiglia di tutti i cerchi aperti  C(y , r) al variare di y in S ed r tra i numeri reali positivi. 

Proveremo ora che la famiglia  B  verifica le proprietà a) e b) della proposizione 1.1  ed è 

quindi in grado di generare una topologia. Per fare ciò è utile la seguente  

  Proposizione 1.2.  Sia  C = C(y , r)  un cerchio aperto e sia  z un suo punto . Esiste 

un cerchio aperto C’ = C(z , r’)  di centro z contenuto nel cerchio C.  

  Dimostrazione . Poiché  z  è un punto del cerchio  C= C(y , r)  si ha  

                                                  d ( z , y) < r. 

Sia  r’   un numero positivo  tale che risulti 

 

     (*)                                       r’ <  r - d ( z , y)   

 

Proviamo che il cerchio aperto C’ con centro in z  e raggio r’ è contenuto nel cerchio C.   Sia 

quindi   x  un punto di  C’  e proviamo che è  x appartiene a  C.   Si ha   infatti , tenendo conto 

di (*) e della proprietà triangolare ,  

 

                       d ( x, y) ≤  d ( x, z)  + d ( z , y)   <  r’ +  d ( z , y) <  r                       

 

Dalla proposizione ora provata segue che : 

  Proposizione 1.3    L’intersezione di due cerchi aperti se è non vuota è unione di 

cerchi aperti. 

  Dimostrazione. Siano C e C’  due cerchi aperti ad intersezione non vuota. Sia x un 

punto di  C ∩  C’   . Per la proposizione 1.2  esiste  un cerchio aperto I di centro  x e raggio  r 

contenuto in C  ed un cerchio aperto I ’ di centro x e raggio  r’ contenuto in C’. Supposto ad 

esempio  r ≤  r’  si ha  I  ⊆  I’  e quindi  I  contiene  x ed è contenuto in   C ∩  C’  . L’ asserto 

è così provato. 

   Abbiamo cosi provato che la famiglia  B  di tutti i cerchi aperti dello spazio metrico 

( S , d )  verifica le proprietà a) e b) della proposizione 1.1.  
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Pertanto la famiglia Ad  di parti di S costituita dal vuoto e da tutti i sottoinsiemi di S che siano 

ciascuno una unione di cerchi aperti costituisce una topologia per S.  

Tale topologia  ”generata”  dai cerchi aperti è detta topologia indotta dalla metrica. Tenendo 

conto della proposizione 1.2 si ha facilmente la seguente caratterizzazione degli aperti di tale 

topologia Ad . 

 Un sottoinsieme A di S è un aperto di tale topologia se e solo se esso ha la seguente proprietà 

: 

 

(**)   Per ogni  y  di A  esiste  un cerchio aperto di centro y contenuto in A. 

 
 
Analizzeremo in seguito molte proprietà importanti di tale topologia Ad . 

 

E’ evidente che se  ( S , d ) è uno spazio metrico allora ogni suo sottoinsieme X è a sua volta 

uno spazio metrico quando lo si munisca della stessa metrica d  pensata ristretta ad esso .  

  

  Un esempio importante di spazio metrico è il seguente . 

 

  Sia n un intero positivo e sia  Rn  lo spazio vettoriale delle n-ple ordinate di numeri 

reali.  Come abbiamo gia provato al n.8 cap.VII (fondamenti di geometria piana)  si può 

definire nello spazio  Rn  una distanza  al seguente  modo .  

  Siano x = ( x1, x2, …, xn )  ed  y= ( y1, y2, …, yn ) due elementi di  Rn . Si definisce 

distanza  euclidea  di  x  da  y   il seguente numero reale   

 

(+)          d( x , y )  =  2
nn

2
22

2
11 )y- (x.. )y- (x  )y-(x +++  

 

Quando si pensa  Rn munito di tale distanza euclidea,   Rn è uno spazio metrico e la topologia 

indotta da tale  metrica euclidea è chiamata la topologia naturale di  Rn   

 
Quando  è  n = 1  siamo nel campo R dei numeri reali  e  la  (+) diviene 
 
                                             d ( x, y ) =   ׀ x – y ׀ 
 
e così  il cerchio aperto di centro y  e raggio r  è : 
 
 C ( y , r ) = { x ∈  R   : d ( x, y ) < r } = { x ∈  R :    ׀ x – y ׀ < r  } = 
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   =  { x ∈  R   :  -r  <  x – y  <  r }  =    { x ∈  R   :  y - r  <  x   <  y +  r }   
 
l’intervallo aperto                     
                                              ] y-r  ,  y+r [. 
 
 
  Se  n = 2  ed  è  y = ( y1, y2 )  ed  r  è il raggio allora il cerchio aperto di centro y  e 

raggio r  è , usando una rappresentazione piana di  R2   attraverso l’uso di un riferimento 

monometrico cartesiano, è davvero il cerchio racchiuso dalla circonferenza di centro y e 

raggio r . 

 
 

 Se  n=3   ed è  y = ( y1, y2, y3 )  ed  r  è il raggio allora il cerchio aperto di centro y  e raggio r  

è , usando una rappresentazione  di R3   attraverso l’uso di un riferimento monometrico 

cartesiano,   è la sfera aperta con centro in y  e raggio  r. 

 
 

y 
r 

r
y 
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2. Chiusi di uno spazio topologico. 

 

Sia  (S ,A)    uno spazio topologico . Come detto gli aperti elementi di   A verificano le seguenti 

proprietà : 

 

1.    Φ ∈  A ,  S ∈   A  

 

2.     A ∈   A   ed   A’ ∈  A     allora     A ∩   A’  ∈   A 

 

3.     Per ogni famiglia { Ai } i∈ I    di aperti si ha   ∈
∈
U

Ii
iA  A 

 

I complementari degli aperti vengono chiamati chiusi . Denotata con  C  la famiglia dei chiusi 

di S si ha subito che la famiglia  C   ha le seguenti proprietà : 

 

I. Φ ∈ C,     S ∈   C 

II. C ∈   C   ed   C’ ∈   C    allora     C ∪   C’  ∈   C 

III. Per ogni famiglia { Ci } i∈ I    di chiusi si ha   I
I

iC
∈i

∈ C 

 

Esprimendo tali proprietà a parole : il vuoto ed  S  sono chiusi , l’unione di un numero finito di 

chiusi è un chiuso e l’intersezione di un qualsiasi numero di chiusi è un chiuso. 

 

  E’ evidente che se  C  è una famiglia di parti di S con le proprietà I , II, III  allora la 

famiglia   A  dei complementari degli elementi di   C   verifica le proprietà 1, 2 , 3  e quindi 

costituisce una topologia per S . Inoltre per lo spazio topologico ( S ,  A )  la famiglia  C  

diventa la famiglia dei chiusi. 

Sia S uno spazio topologico e siano  A  e   C   le famiglie degli aperti e dei chiusi di S. 

Utilizzando tali famiglie si possono definire le nozioni di interiore e di chiusura di un 

sottoinsieme. Vediamo di che si tratta. 

 Sia  X un sottoinsieme di S si definisce  interno o interiore di X il più grande aperto 

contenuto in X . Tale interiore si ottiene attraverso  l’unione di tutti gli aperti contenuti  in 

X e viene indicato col simbolo 
°

X .  Si ha quindi per definizione : 
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°

X  =    U
XA
A

⊆

           A  aperto 

E’ facile controllare la seguente proprietà che caratterizza i sottoinsiemi aperti  di S. 

  Proposizione 2.1  Un sottoinsieme A di S è aperto se e solo se coincide col suo 

interiore. 

 

  Tenendo conto che da  X  ⊆  Y   segue    
°

X ⊆  
°

Y  si ha facilmente la seguente 

proprietà : 

                                            ( X ∩ Y )° =  
°

X ∩
°

Y  

 

 

  Sia  X un sottoinsieme di S si definisce  chiusura  di X  il più piccolo chiuso  

contenente X . Tale chiusura si ottiene attraverso l’intersezione  di tutti gli chiusi  

contenenti X  e viene indicato col simbolo  
−

X . Si ha quindi per definizione : 

                                     
−

X  =  I
XC
C

⊇

              C  chiuso 

  

  E’ facile controllare la seguente proprietà che caratterizza i sottoinsiemi chiusi di S. 

 

  Proposizione 2.2  Un sottoinsieme C  di  S è chiuso  se e solo se coincide con la sua 

chiusura.  

 

  Tenendo conto che da  X  ⊆  Y   segue    
−

X ⊆  
−

Y  si ha facilmente la seguente 

proprietà : 

                                             
−−−−−−−

∪  Y  X    =   
−

X ∪  
−

Y  

 

  Utilizzando la definizione non sempre è facile il calcolo della chiusura e 

dell’interiore di un sottoinsieme assegnato. Un modo alternativo e a volte più agevole si 

ottiene attraverso l’uso dei punti  interni ad X  o dei punti  aderenti ad X. Vediamo di che si 

tratta. 

   

  Per fare ciò ci serve però un concetto semplice ma fondamentale in topologia : il 
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concetto di intorno di un punto. Vediamo. 

 

     Sia quindi  (S ,A) uno spazio topologico . Sia  y  un punto di  S . Si definisce intorno 

di y   un qualunque sottoinsieme  I  contenente un aperto contenente y. 

  

          In simboli : 

 

                 I ⊆  S   intorno  di  y       se e solo se     esiste      A ∈  A   :  y ∈  A ⊆  I. 

 

        Denoteremo col simbolo  I(y)    la  famiglia di tutti gli intorni  del punto y.  

 

  Per la definizione data è chiaro che un aperto che contenga y è un intorno di y. 

  Poiché l’intersezione di un numero finito di aperti è un aperto allora evidentemente 

l’intersezione di un numero finito di intorni del punto y è anch’essa un intorno del punto y. 

 

      Nel seguito denoteremo con  A(y)  la famiglia di tutti gli aperti contenenti y. 

 

Molto importante per il seguito è la seguente osservazione : 

 

Una proprietà  “p”  è verificata in ogni intorno di y  se e solo se essa è verificata in ogni 

aperto che contiene y . 

 

Per questa ragione quando dovremo verificare la validità di un certa proprietà utilizzeremo 

anziché la famiglia  I(y)  la famiglia   A(y) . 

 

  Più in generale una famiglia H(y)  di intorni di y  è detta   sistema fondamentale d’ 

intorni per il punto y  se in ogni intorno di y  c’ è  un intorno di y che faccia parte della 

famiglia   H(y)  . 

 

  Evidentemente la famiglia  A(y)  costituisce per il punto y un sistema fondamentale di 

intorni . 

 

Utilizzando tale concetto anche l’osservazione fatta sopra può essere generalizzata al seguente 

modo: 
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Una proprietà  “p”  è verificata in ogni intorno di y se e solo se essa è verificata in ogni 

intorno di un sistema fondamentale di intorni di  y . 

 

Siamo ora in grado di introdurre la nozione di punto interno ad un sottoinsieme e di punto 

aderente ad un sottoinsieme. 

 

Un punto y  di un sottoinsieme X si dice   interno ad X   se esiste un intorno di y contenuto in 

X  o equivalentemente se esiste un aperto contenente y e contenuto in X.  

 

Poiché l’interiore di X è un aperto contenuto in X allora ogni punto che appartenga all’ 

interiore è punto interno ad X . Viceversa un punto che sia interno ad X appartiene ad un 

aperto contenuto in X e quindi appartiene all’interiore di X.  Pertanto l’interiore di X è 

costituito da tutti e soli i punti interni ad X. 

 

  Un punto y  di S si dice   aderente al sottoinsieme  X   se ogni intorno di y contiene 

almeno un punto di X o equivalentemente se ogni aperto contenente y contiene almeno un 

punto di X. 

 

Utilizzando tale concetto possiamo caratterizzare la chiusura di un sottoinsieme provando la 

seguente : 

  Proposizione. 2.3  La chiusura di un sottoinsieme X coincide con l’insieme dei punti 

aderenti ad X. 

  Dimostrazione. Proveremo l’asserto mostrando che sono equivalenti le seguenti 

affermazioni : 

 

i) y  non appartiene alla chiusura di X 

ii) y  non è aderente ad  X. 

 

Proviamo che i) implica ii).  

Se  y ∉ 
−

X  =  I
XC
C

⊇

   allora esiste un chiuso  Co  contenente X cui y non appartiene . Detto  

Ao  l’aperto   S - Co   si ha    y ∈  Ao   ed inoltre è    

Ao ∩ X  = Φ  e questo prova che y non è aderente ad X. 
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Proviamo che    ii) implica i). 

Se  y  non è aderente ad X esiste un aperto  Ao   contenente y e disgiunto da X.   Il chiuso 

         Co = S - Ao   contiene X e non contiene y . Pertanto y  non appartiene alla chiusura di X. 

 

Un’altra caratterizzazione della chiusura di un sottoinsieme X si ottiene attraverso l’uso della 

nozione di  punto di accumulazione. Vediamo. 

 

  Un punto y di S si dice  d’accumulazione per il sottoinsieme X  se in ogni intorno di 

y c’è almeno un punto di X diverso da y  o equivalentemente se in ogni aperto contenente y 

c’è almeno un punto di X diverso da y.  

 

  L’insieme di tutti i punti di accumulazione per il sottoinsieme X è chiamato il   

derivato di X    ed è indicato con il simbolo  D(X). 

 

E’ evidente che i punti di accumulazione per X sono aderenti ad X ed è altresì evidente che 

un punto aderente ad X e che non faccia parte di X è d’accumulazione per X. Pertanto si ha 

la seguente eguaglianza : 

 

                                    
−

X   =   X  ∪   D(X) 

 

la quale  fornisce un’altra caratterizzazione  della chiusura di X.  

 

Un punto aderente ad X ed al complementare di X è detto di frontiera per X. 

L’ insieme dei punti di frontiera viene denotato con  Fr(X)  e viene chiamato la 

frontiera di X.  Si ha facilmente la seguente eguaglianza : 

                                                
−

X   =   X  ∪   Fr(X) 

 

la quale  fornisce un’altra caratterizzazione  della chiusura di X. 

 

 

3. Funzioni continue. 

Un isomorfismo tra due spazi topologici  (S ,A)  ed  (S’ ,A ‘)   è  una applicazione  

                                 f :   S  →   S’ 
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biettiva   tra i sostegni S ed S’ che  con la sua inversa trasforma gli aperti dell’uno negli aperti 

dell’altro e cioè abbia le seguenti due proprietà : 

 

j)     f (A) ∈  A ‘                        per ogni aperto A di S 

jj)   f-1(A’) ∈  A                        per ogni aperto A’ di  S’. 

  

Un isomorfismo tra due spazi topologici viene anche chiamato omeomorfismo. 

 

            Se  (S , A )  è uno spazio topologico . Indichiamo con  Ω (S)  l’insieme di tutti i suoi  

omeomorfismi . Rispetto alla composizione di applicazioni l’insieme Ω (S) è un gruppo detto  

gruppo strutturale  dello spazio topologico   (S , A ) . 

           Una proprietà   “p”  di una parte Y  di S  si dice  topologica  se per ogni omeomorfismo f  di 

S anche  f(Y)  ha la proprietà   “p” .  

Se ciò accade si dice che la proprietà   “p”  è    invariante   per omeomorfismi.  

Lo studio dello spazio topologico (S , A ) consiste nella ricerca delle proprietà topologiche  

delle figure di S . 

 

Una applicazione   

 

                                 f :   S  →   S’ 

 

tra due spazi topologici  (S ,A)  ed  (S’ ,A ‘)  è detta   continua   se  

 

              le  controimmagini  degli aperti di S’ sono aperti di S . 

 

In simboli  se  per ogni  aperto  A’ di S’ risulta  aperto  il sottoinsieme di S  

 

                                   f-1(A’)   =  { x  ∈S    :    f (x )  ∈  A’  }   

 

Un omeomorfismo tra due spazi topologici  (S ,A)  ed  (S’ ,A ‘) è quindi una funzione biettiva 

tra i sostegni che risulti  continua  insieme alla sua inversa.  

C’è una nozione di continuità in un punto ( continuità locale ) che è connessa alla nozione di 

continuità globale  ora data . Vediamo.  
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Siano (S ,A)  ed  (S’ ,A ‘) due spazi topologici e sia   

 

                                      f :   S  →   S’ 

 

una funzione di  S in S’ .  

Sia  xo  un punto di S e sia  yo = f(xo) il suo trasformato . La funzione f  si dice continua nel 

punto  xo  se  

  

C1)          per ogni intorno I’  di  yo esiste  un intorno I di  xo  tale che  risulti : 

                                           f ( I )  ⊆  I’ 

 

E’ come dire : 

 

    “ punti vicini ad yo   provengono da punti vicini ad  xo .” 

 

La proprietà C1)  è ovviamente equivalente alla seguente proprietà : 

 

C2)         Per ogni aperto A’  contenente  yo  esiste un aperto A contenente  xo  per cui si abbia  : 

                               f(A)  ⊆   A’  

o ancora 

 

C3)                  la controimmagine di un intorno di yo è un intorno di xo  . 

 

C4)                la controimmagine di ogni aperto A’  contenente  yo è un intorno di  xo . 

 

Le due nozioni date , di continuità locale e globale , sono connesse tra loro come mostra la 

seguente : 

 

Proposizione 3.1.  Siano (S ,A)  ed  (S’ ,A ‘)  due spazi topologici .  Una funzione   

                                 f :   S  →      S’ 

di S in S’  è continua se e solo se  essa è continua in ogni punto di S. 

Dimostrazione. Supponiamo che f sia continua e proviamo che è continua in ogni punto di 

S. Sia  xo  un punto qualsiasi di S e sia  yo = f(xo) il suo trasformato. Poiché f è continua la 
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controimmagine di un aperto  A’  contenente  yo  è un aperto e tale aperto contiene xo e quindi è un 

intorno di xo  . Vale quindi la proprietà c4)  e così la funzione f  è continua in  xo .  

Viceversa supponiamo che f sia continua in ogni punto di S e proviamo che è continua . Sia  

A’ un qualsiasi aperto di S’ e sia  A = f-1(A’)    la sua  

controimmagine. Supposto A non vuoto , per provare che A è aperto è sufficiente provare che ogni 

suo punto è interno. Sia quindi  xo un punto di A e sia  yo = f(xo)   il suo trasformato.  

Poiché  A = f-1(A’)  allora  è   yo ∈  A’  e poiché f è continua in  xo   per la proprietà   c4)  la sua 

controimmagine  che è  A  è intorno di  xo. 

 

 Le proposizioni che seguono forniscono delle condizioni necessarie e sufficienti affinché 

una assegnata funzione tra due spazi topologici sia continua. 

 

 Proposizione 3.2  Una funzione    f :   S  →  S’  tra due spazi topologici (S ,A)  ed 

  (S’ ,A ‘)  è continua se e solo se la controimmagine di un chiuso di  S’  è un chiuso di S. 

Dimostrazione.  Sia  f continua e sia  C’ un chiuso di S’. Sia A’ l’aperto di S’ per cui è   

C’ = S’ – A’.     Si ha   f-1 ( C’) =  f-1 ( S’ – A’) = S - f-1 ( A’).  

Poichè  f è continua si ha che  f-1 ( A’) è un aperto di S e così f-1 ( C’) è un chiuso come si 

voleva provare.  

Viceversa supponiamo che la controimmagine di un chiuso sia un chiuso e proviamo che f è 

continua. Occorre quindi provare che se A’  è un aperto di S’ allora  

f-1 ( A’) è un aperto di S . Infatti da  

                                    S - f-1 ( A’) = f-1 ( S’ – A’)  

e dall’ipotesi fatta segue che  S - f-1 ( A’) è un chiuso e conseguentemente  f-1 ( A’) è un aperto. 

  

Proposizione 3.3  Una funzione    f :   S  →    S’  tra due spazi topologici (S ,A)  ed  (S’ ,A ‘)  è 

continua se e solo se trasforma punti aderenti ad un sottoinsieme X  in punti aderenti al 

sottoinsieme f(X). 

Dimostrazione. Supponiamo f sia continua e sia xo un punto aderente al sottoinsieme X. Sia 

yo = f(xo) il trasformato di  xo  e proviamo che yo è aderente ad f(X). Occorre quindi provare che in 

ogni aperto A’ contenente yo c’è almeno un elemento di f(X). Poiché f è continua nel punto  xo , in 

corrispondenza dell’aperto A’ intorno di yo , c’è un aperto A contenente  xo tale che  f(A) ⊆   A’ . 

Poiché  xo è aderente ad X nell’intorno A di xo  c’è almeno un punto x di X . Si ha allora che f(x) 

appartiene ad A’ e  ad  f(X).  

Viceversa supponiamo che risulti  f (
---

X ) ⊆  
------
 X) ( f  per ogni sottoinsieme X . 
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Sia C’ un chiuso di S’  e sia  C = f-1(C’) . Si ha  f(C) ⊆  C’ da cui , essendo C’ chiuso, 
------
 C) ( f ⊆  C’ . Si ha allora f (

---
C ) ⊆  

------
 C) ( f ⊆  C’   e così è   

---
C  ⊆  f-1(C’)= C. Pertanto è  C = 

---
C   il 

che prova che C è un chiuso . Avendo provato che la controimmagine di un chiuso è un chiuso la 

funzione è continua. 

 

Al fine di individuare un’altra importante proprietà delle funzioni continue ci è utile 

richiamare la nozione di successione convergente. 

Sia  ( S , A ) uno spazio topologico e sia  l  un punto di S. Una successione  

x1, x2,…,xn ,…. di elementi di S  è convergente ad  l  se 

per ogni intorno I di   l   esiste un  intero m tale risulti  xn  ∈  I    per ogni n ≥   m. 

 

o equivalentemente  

 

per ogni aperto A contenente   l   esiste un  intero m tale risulti  xn  ∈  A    per ogni 

 n ≥   m. 

 

L’elemento  l   cui la successione converge è anche detto limite della successione. Non sempre una 

successione è convergente e non sempre il limite quando esiste è unico. Si ha unicità del limite se lo 

spazio topologico è  separato o di Hausdorff  cioè gode della seguente proprietà : 

 

H :   Per ogni coppia di punti distinti  x ed y esistono due intorni I  ed I’ di x ed y tra loro disgiunti. 

 

o equivalentemente 

 

H :   Per ogni coppia di punti distinti  x ed y esistono due aperti A  ed A’ contenentiil primo  x ed il 

secondo  y tra loro disgiunti. 

 

 

Possiamo infatti ora provare la seguente 

Proposizione 3.4 Sia (S, A ) uno spazio topologico di Hausdorff. Una successione x1, x2,…,xn 

,…. di elementi di S  che sia convergente ammette un unico limite. 

Dimostrazione. Supponiamo per assurdo che la successione x1, x2,…,xn ,…. ammetta due 

limiti l  ed  l’   distinti tra loro. Siano I ed I’ due intorni di l  ed  l’    disgiunti tra loro. Poiché  l  è 
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limite della successione x1, x2,…,xn ,…. 

 

esiste  un  intero  m  tale che risulti  xn  ∈  I    per ogni n ≥   m.  

 

Poiché  anche l’  è limite della successione x1, x2,…,xn ,…. 

 

esiste  un  intero  m’   tale che risulti  xn  ∈ I’    per ogni n ≥   m’.  

 

Si ha allora che    xn  ∈  I  ∩   I’     per ogni     n ≥   max { m , m’}  ,   il che contraddice il 

fatto che    I  ed   I’    siano disgiunti. 

 

Un’ altra importante proprietà delle funzioni continue è espressa dalla seguente  

Proposizione 3.5    Una funzione continua   f :   S  →  S’  tra due spazi topologici (S ,A)  ed  

(S’ ,A ‘)  trasforma una successione convergente in una successione convergente.  

Dimostrazione. Sia  x1, x2,…,xn ,…. una successione di elementi di S convergente ad  xo . 

Proviamo che la successione corrispondente 

                             f ( x1), f ( x2),…, f ( xn) ,…. 

converge al punto  f(xo).   Sia  A’ un aperto contenente f(xo).  Poiché f è continua in  xo  esiste un 

aperto A contenente  xo  tale che risulti   f( A )  ⊆   A’. Ma poiché la successione  x1, x2,…,xn ,….    

ha per limite xo  ed  A è un intorno di tale punto si ha che  

                   esiste un intero m   tale che risulti  xn  ∈  A    per ogni n≥   m. 

Ma allora per ogni  n ≥  m  risulta    f ( xn) ∈  f( A )  ⊆   A’  e ciò prova che la successione f ( x1), f ( 

x2),…, f ( xn) ,…. ha per limite  f(xo).   

 

Concludiamo questo numero provando alcune semplici proprietà valide in uno spazio 

topologico di Hausdorff . 

 

 

Proposizione 3.4 Ogni punto di uno spazio topologico (S, A ) di Hausdorff è chiuso.  

Dimostrazione.  Sia  y  un punto di  S  e sia   z  un punto distinto da y e cioè un punto del 

complementare di y . Poiché  lo spazio è di  Hausdorff   esiste un aperto A contenente z e non  y . 

L’aperto  A è contenuto in  S -  y    e  ciò prova che  z  è interno ad  S -  y. 

Ogni punto di S -  y  è interno e quindi S -  y   è un aperto il che prova che y è un chiuso.   
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Proposizione 3.5 Sia (S, A ) uno spazio topologico  di Hausdorff  i cui aperti non vuoti siano 

infiniti. Sia y un punto di accumulazione per il sottoinsieme X. In ogni intorno del punto y  ci sono 

allora infiniti punti di X diversi da y. 

Dimostrazione. Possiamo ovviamente  limitarci  a verificare la proprietà in un aperto A che 

contenga y . Poiché y è d’accumulazione per X nell’aperto A c’è un punto x1 di X diverso da y. 

Poiché  x1  è un chiuso l’insieme   

                            A1 = A – x1 =  A  ∩  (S – x1)  

è un aperto che contiene y. Poiché y è d’accumulazione per X nell’aperto A1 c’è un punto x2  di X 

diverso da y  e però esso è distinto anche da x1. 

Posto   

                             A2 = A - {x1  ,  x2} = A ∩  (S – {x1  ,  x2})   

Essendo  {x1  ,  x2} un  chiuso l’insieme  A2  è un aperto e contiene il punto y . Pertanto poiché y è 

d’accumulazione per X nell’aperto A2  c’è un puno x3 di X diverso da y e che risulterà però distinto 

anche da  x1    e   x2 . 

  Procedendo induttivamente si costruisce nell’ aperto A una successione  

x1,x2, ….,xn …di punti di X  distinti tra loro e distinti da y e l’asserto è così provato. 

   

 

4. Basi ed assiomi di numerabilità.Spazi separabili. 

 

In questo numero daremo alcune nozioni topologiche utili per il seguito.  

Sia  (S ,A)    uno spazio topologico . Una famiglia  B  di aperti di S è detta  base   per la topologia  A    

se  ogni aperto non  vuoto di S è unione di elementi di  B .  

Essendo S aperto la famiglia  B  è un ricoprimento di S. Inoltre l’intersezione di due elementi di  B , 

essendo tale intersezione un aperto,  è unione di elementi di  B. 

Lo spazio topologico è detto a base numerabile se ammette una base che sia finita o numerabile.  

 

Uno spazio topologico è detto localmente a base numerabile se ogni suo punto ha un sistema 

fondamentale di intorni che sia finito o numerabile. 

 

Infine uno spazio topologico si dice  separabile se possiede un sottoinsieme D finito o 

numerabile che sia  denso in S   cioè tale che risulti              
−−

D  = S. 

 



 190

 La proposizione che segue mostra che le nozioni ora date sono connesse tra loro. 

 

                      Proposizione 4.1  Uno spazio topologico  ( S ,A ) che sia a base numerabile è anche  

localmente a base numerabile  e  separabile.  

                     Dimostrazione.  Denotiamo con  B =  {Bn }n∈ N   la base numerabile che lo spazio possiede.  

Cominciamo a provare che lo spazio è localmente a base numerabile. Sia quindi  y un suo punto e 

proviamo che per tale punto esiste un sistema fondamentale di intorni finito o numerabile. Poiché  B 

è un ricoprimento di S ci sono elementi di  B  che contengono y . Indichiamo tale famiglia  con     

                                        B y = { B ∈  B  :    y ∈ B}. 

 Tale famiglia di aperti è una famiglia di intorni di y ed è fondamentale oltre ad essere 

ovviamente finita o numerabile. Infatti sia  A  un aperto  che contenga  y . Poiché  B  è una base 

esiste una sua sottofamiglia  F di  B  tale che risulti 

                                          A =   U
FB

B
∈

       

Poiché y appartiene ad  A  allora esso appartiene ad un elemento Bo della famiglia   F . Poiché   

Bo ∈ B y    e   Bo  è contenuto in A si ha l’asserto. 

Proviamo ora che lo spazio è separabile. Facendo uso dell’assioma della scelta scegliamo un 

elemento  xn  in ogni aperto non vuoto Bn della base  B . 

Indichiamo con  D  l’insieme degli elementi  xn  selezionati. L’insieme D è ovviamente 

finito o numerabile ed è denso in S come ora proveremo.  Sia  y un punto di S e sia  A  un aperto 

contenente  y . Poiché A è aperto e  B è una base l’aperto A è unione di elementi di   B . In ognuno 

di tali elementi  è stato selezionato un elemento 

di  D quindi nell’aperto A ci sono elementi di D . Pertanto  y  è aderente a D e si ha quindi l’asserto. 

 

 

5.  Proprietà della topologia indotta da una metrica .  

 

Sia  ( S , d ) uno spazio metrico con metrica d. Abbiamo già visto che la metrica d consente di 

introdurre in S una topologia Ad che viene detta indotta dalla metrica ed i cui aperti sono le unioni 

di cerchi aperti. Vogliamo ora illustrare alcune importanti proprietà di tale topologia  Ad . 

Proposizione 5.1   Lo spazio topologico ( S , Ad  )  è di   Hausdorff. 

Dimostrazione.  Siano  x ed y due punti distinti e sia r un numero reale positivo minore di  

2
y)d(x, . I cerchi aperti C(x , r)  e  C(y, r )  sono disgiunti . Se infatti per assurdo esistesse  un punto 
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z  comune ai due cerchi avremmo, per la proprietà triangolare ,  : 

   d ( x , y )   ≤   d ( x , z )  + d ( z , y ) < r  +  r < 
2

y)d(x,  + 
2

y)d(x,  = d ( x , y )   

e ciò è assurdo.  

Proposizione 5.2  Lo spazio topologico ( S , Ad  )  è localmente a base numerabile. 

Dimostrazione.  Denotiamo per ogni punto y di S con Cy = { C (y , 
n
1 )} la famiglia numerabile 

di intorni del punto y  costituita dai cerchi aperti di centro y e raggio 
n
1  . Mostrando che tale 

famiglia è fondamentale si ha l’asserto. Sia  A un aperto contenente y e sia C ( y , r ) un cerchio 

aperto di centro y e raggio r contenuto in A. Fissato un intero m tale che  risulti  
m
1    <  r   si ha   

                         C (y , 
m
1 ) ⊆  C ( y , r )  ⊆  A 

e  l’ asserto è provato. 

Proposizione 5.3  Lo spazio topologico ( S , Ad  )  è a base numerabile se e solo se è separabile.  

Dimostrazione. Abbiamo già visto che se lo spazio è a base numerabile esso è separabile. 

Occorre quindi provare che  se ( S , Ad  ) è separabile esso è a base numerabile. Sia quindi  D  un 

sottoinsieme finito o numerabile denso in S cioè tale che risulti ad esso aderente ogni punto di S. 

Denotiamo con  

                                B = { C (y , q)   y ∈ D  ,  q ∈  Q+} 

 la famiglia dei cerchi aperti aventi centro in un punto  y di D e raggio razionale positivo. Tale 

famiglia di aperti è ovviamente numerabile ed è come ora proveremo una base per la topologia  Ad  . 

Per provare ciò è sufficiente mostrare che ogni cerchio aperto è unione di elementi di   B .  Sia  

quindi  C ( x , r )  un cerchio aperto e  z  un suo punto . Se mostreremo che z appartiene ad un 

aperto di  B  tutto contenuto nel cerchio  C ( x , r )     si avrà l’asserto.  

Abbiamo già visto nella proposizione    del n. che è possibile determinare un cerchio aperto  

C( z , ρ  )  contenuto nel cerchio C ( x , r )  . Consideriamo il cerchio C( z , 
2
ρ

 )  In tale cerchio 

aperto c’è un punto  y  di D in quanto z è aderente al sottoinsieme D . Poiché  y ∈  C( z , 
2
ρ

 )  si ha 

: 

                                        d ( y , z ) < 
2
ρ

 

Sia ora  q  un numero razionale  tale che  
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                                       d ( y , z ) <  q   <  
2
ρ

  

Il cerchio C ( y , q ) appartiene alla famiglia B contiene  z  e come ora proveremo è contenuto nel 

cerchio C( z , ρ  )  . Sia quindi  t  un elemento del cerchio C ( y , q ) e proviamo che t appartiene al 

cerchio C( z , ρ  ) . 

Si ha infatti, usando la proprietà triangolare ,  

 

                       d ( t , z ) ≤   d ( t , y) +  d ( y , z )   <  q  +  q  <  
2
ρ

 + 
2
ρ

 = ρ  

L’ asserto è così provato. 

 

Poichè uno spazio metrico è di Hausdorff allora come già visto una successione x1, x2,…,xn 

,….    di punti di S,  se è convergente ,  ammette un unico limite. 

 

In uno spazio metrico ha significato per una successione anche tale definizione. 

 

Una successione x1, x2,…,xn ,….    di punti dello spazio metrico  (S , d)  è detta di  Cauchy  

se è soddisfatta la seguente proprietà : 

 

Per ogni  ε > 0   esiste  un  intero m   tale  per ogni  p, q  ≥   m  , si ha 

                                        d (xp , xq) <  ε  

 

La proposizione che segue lega tra loro le due nozioni di convergenza e di essere di Cauchy 

per una successione. 

 

Proposizione 5.2  Una successione x1, x2,…,xn ,….    di punti dello spazio metrico  (S , d) che 

sia convergente è di Cauchy. 

Dimostrazione. Sia  l  il limite della successione  x1, x2,…,xn ,…. . Sia  ε  un numero positivo e 

sia C ( l ,  
2
ε   )   il cerchio aperto di centro l e raggio  

2
ε   . Per definizione di limite esiste un intero 

m tale che  per ogni  n  ≥  m  risulta  

 

                                    xn  ∈  C ( l ,  
2
ε   ) 
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Pertanto per ogni  p, q  ≥  m   si ha , utilizzando la proprietà triangolare,  

   

                  d (xp , xq) ≤  d (xp , l ) + d ( l , xq ) <  
2
ε  + 

2
ε  = ε 

e ciò prova l’asserto.  

 

Osserviamo esplicitamente che esistono spazi metrici dotati di successioni di Cauchy ma 

non convergenti  come mostra il seguente esempio . Sia R+  l’insieme dei numeri reali positivi 

dotato della metrica euclidea  d(a , b) = | a - b |  .In tale spazio la successione   xn = 
n
1   è di Cauchy 

in quanto ,come successione di R è convergente,  ma non è convergente in  R+  risultando 

convergente a zero in R.  

Uno spazio metrico in cui ogni successione di Cauchy risulta convergente è detto completo.  

È ben noto che l’insieme dei numeri reali dotato della metrica euclidea è uno spazio metrico 

completo.  

Pertanto per una successione di numeri reali x1, x2,…,xn ,…. vale la seguente equivalenza . 

x1, x2,…,xn ,….  convergente     se e solo se          x1, x2,…,xn ,…. è di Cauchy. 

 

La proposizione che segue caratterizza i sottospazi completi di uno spazio metrico completo.  

 

Proposizione 5.3  Sia ( S , d ) uno spazio metrico completo . Un suo sottoinsieme  X  è 

anch’esso completo se e solo se  X è chiuso.  

Dimostrazione. Supponiamo che lo spazio metrico ( X , d )  sia completo e proviamo che 

esso è chiuso. Sia  y  un punto di aderenza per X. Per ogni n , sia  xn  un punto di X scelto nel 

cerchio aperto  C ( y ,   
n
1   ) . La successione  x1, x2,…,xn ,….converge manifestamente al punto y e 

quindi è di Cauchy. Ma poiché è di Cauchy ed X è completo essa converge ad un punto di X . Per 

l’unicità del limite  y  è un punto di X. Pertanto contenendo tutti  punti aderenti l’insieme X è un 

chiuso. 

Viceversa supponiamo che X sia chiuso e mostriamo che esso è completo. Occorre quindi 

che provare che ogni sua successione di Cauchy  è convergente ad un punto di X. Sia quindi x1, 

x2,…,xn ,… una successione di punti di X e supponiamo sia di Cauchy. Poiché  lo spazio S è 

completo la successione  di Cauchy  x1, x2,…,xn ,… converge ad un punto  y  . Per  definizione di 

limite in ogni intorno di y  ci sono punti della successione e quindi di  X . Pertanto  y è aderente ad 

X. Ma poiché X è chiuso il punto y appartiene ad X . Avendo provato che la successione di Cauchy   
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x1, x2,…,xn ,… converge ad un punto di X  resta provato che lo spazio metrico X è completo. 

 

  Uno spazio topologico  ( S ,A )  si dice  metrizzabile   se esiste una metrica d in S tale che 

risulti  Ad = A   cioè che induce su S la topologia  A .   

 

6. Esempi di spazi topologici. 

 

                Al fine di controllare la comprensione delle nozioni finora date è opportuno fornire un pò 

di esempi. Sia  R  l’insieme dei numeri reali . 

 

Esempio 1.  

Come già visto , assumendo come aperti di R , il vuoto , R  e tutti gli intervalli del tipo  

                  

                                      ]a ,    b [  con  a ,b ∈ R.  

 

e tutte le loro unioni si ottiene una topologia (indotta dalla metrica) che denoteremo con N  per 

l’insieme R ( essa è detta topologia naturale di R ). 

 

Esempio 2.  

Assumendo come aperti di R , il vuoto , R  e tutti gli intervalli del tipo  

                  

                                      ]- ∞  ,    a [  con  a  ∈ R.  

 

si ottiene una topologia  che denoteremo con S  per l’insieme R ( detta delle semirette sinistre 

aperte ). 

Essendo evidente che l’intersezione di due aperti è un aperto basta controllare che l’unione di aperti 

è un aperto. Sia quindi 

                 Ai =   ]- ∞  ,    ai [              con  ai  ∈ R,   i ∈ I  

una famiglia di aperti . Detto    a = sup ai      è  facile verificare che risulta : 

                      

                              U
i

 ]- ∞  ,    ai [  =  ]- ∞  ,    a [   

e ciò prova che l’unione di aperti è un aperto. Pertanto la famiglia S  è una topologia per l’insieme 

R .  
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Esempio 3.  

Assumendo come aperti di R , il vuoto , R  e tutti gli intervalli del tipo  

                  

                                      ] a ,    ∞  [    con  a  ∈ R.  

 

si ottiene una topologia  che denoteremo con D  per l’insieme R ( detta delle semirette destre aperte 

). 

Essendo evidente che l’intersezione di due aperti è un aperto basta controllare che l’unione di aperti 

è un aperto. Sia quindi 

                 Ai =   ] ai ,    ∞  [              con  ai  ∈ R,   i ∈ I  

una famiglia di aperti . Detto    a = inf ai      è  facile verificare che risulta : 

                      

                              U
i

] ai ,    ∞  [   =   ] a ,    ∞  [ 

e ciò prova che l’unione di aperti è un aperto. Pertanto la famiglia D  è una topologia per l’insieme 

R . 

 

 

Esempio 4.  

Assumendo come aperti di R , il vuoto , R  e tutti gli intervalli del tipo  

                  

                                      ] -a ,    a [    con    a ∈ R ,   a  > o  

 

si ottiene , come è facile verificare , una topologia per l’insieme R che denoteremo con Ω o . 

 

Esercizio 1. Si consideri il sottoinsieme   X = [ 2 ,  7 [  . Si calcoli la sua chiusura ed il suo 

interiore in ognuno degli spazi topologici  

( R ,   N ) ,   ( R ,   S ) ,  ( R ,   D ) ,  ( R , Ω o)     sopra  descritti.   

 

Esercizio 2.   Si consideri ora la seguente successione di punti di R  

                                  xn  =  3 +  
n
1           n ∈ N 
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Si determinino per essa i punti di convergenza  negli spazi topologici   

( R ,   N ) ,   ( R ,   S ) ,  ( R ,   D ) ,  ( R , Ω o)  sopra  descritti.     

 

Esercizio 3. Si consideri la funzione  f : R  →    R     che associa al numero   x   il numero  

 x2 + 4 . 

Si assuma che il codominio sia munito della topologia D . Si stabilisca con quale topologia delle 

quattro topologie  N  ,  S  ,  D ,  Ω o sopra descritte , deve essere munito il dominio R  per rendere 

continua la nostra funzione. 

Si faccia  poi lo stesso controllo per la funzione  g : R  →    R     che associa al numero   x   

il numero  x + 4 . Si dica se in qualche caso  g è un isomorfismo. 

 

 

Esercizio4.  Si stabilisca quale spazio topologico tra questi 

                        ( R ,   N ) ,   ( R ,   S ) ,  ( R ,   D ) ,  ( R , Ω o)    

da noi descritti è di Hausdorff.  

 

 

 

7.  Sottospazi di uno spazio topologico.  

   

Sia ( S ,  A  ) uno spazio topologico. Sia  Y   un sottoinsieme di S . La famiglia  

                      

                                     AY   =  { Y ∩  A       ,   A  ∈  A }  

           

 di parti di  Y   i cui elementi sono le intersezioni di Y con gli aperti di  Sè evidentemente una 

topologia per Y  che viene detta  indotta da S su Y.  

Quando si munisca Y di tale topologia AY lo spazio topologico ( Y ,  AY ) è detto  sottospazio  

dello spazio topologico   ( S ,  A  ) . 

Quando l’insieme Y è un aperto gli aperti dello spazio topologico ( Y ,  AY ) coincidono con gli 

aperti di S contenuti in Y e quindi ogni aperto di Y è un aperto di S . Se  Y  non è aperto non tutti 

i suoi aperti sono aperti di S.  

Ad esempio sia  R  munito della topologia naturale N  e sia  Y = [ 3  ,    7 ]. 

L’insieme  ] 5 ,   7 ] =   [ 3  ,    7 ] ∩ ] 5 ,   9 [     è un aperto di  Y  ma non è aperto di   N  .  
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Per questa ragione non tutte le proprietà della topologia  A  vengono ereditate dalla topologia   AY  

.  

 

8. Spazi topologici connessi. 

 

In questo numero ci occuperemo di una importante nozione topologica : la connessione . 

Vediamo di che si tratta. Sia  ( S ,  A  ) uno spazio topologico . Lo spazio topologico è detto 

sconnesso  se esistono due aperti A ed A’ non vuoti e disgiunti la cui unione sia S. Se  S è 

sconnesso esso è quindi l’unione di due suoi aperti non vuoti e disgiunti. Uno spazio topologico non 

sconnesso è   connesso. 

In maniera “ intuitiva “ se è sconnesso si può  spezzare  se è connesso è  

“ tutto un pezzo”.  

E’ evidente che se  ( S ,  A  )  è sconnesso ed è 

                                      S  =   A  ∪  A’      

 

con   A , A’   aperti non vuoti e disgiunti, allora  si  A  che A’  sono sottoinsiemi propri di S che 

risultano  sia aperti che chiusi , risultando per essi : 

                       

                       A’ = S – A          ed         A = S – A’ . 

 

Per questa ragione nella definizione data la parola aperto può essere sostituita con la parola 

chiuso.  

Così  in modo equivalente  lo spazio topologico ( S ,  A  ) è  sconnesso  se esistono due 

chiusi C e  C’ non vuoti e disgiunti la cui unione sia S. 

 

Ovviamente  la presenza di un sottoinsieme  A   proprio di S che sia contemporaneamente 

aperto e chiuso garantisce che S è sconnesso risultando 

  

                              S  =   A   ∪   ( S – A ) 

 

Un sottoinsieme  Y   dello spazio topologico S  è detto connesso se risulta  connesso lo 

spazio topologico  ( Y ,  AY ). 

E’ evidente ma utile la seguente proprietà : 
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(*)  se  S  è sconnesso ed è l’unione dei due aperti non vuoti disgiunti A ed  A’ allora è sconnesso 

ogni sottoinsieme Y  che intersechi sia A che A’ in quanto si ha : 

Y =  Y   ∩   S  =   Y   ∩    ( A  ∪  A’) = (Y  ∩   A )  ∪   (Y  ∩  A’) 

 

Per stabilire se uno spazio è connesso risulta molto utile la seguente 

Proposizione 8.1    Uno spazio topologico  ( S ,  A  ) è connesso se e sole se 

vale la seguente proprietà : 

 

©    per ogni coppia  x , y di punti d stinti di S esiste un sottoinsieme Y connesso che 

contiene i punti x ed y. 

 

Dimostrazione . Se lo spazio è connesso la proprietà ©  è manifestamente soddisfatta in 

quanto basta scegliere  Y = S . Supponiamo quindi valga la proprietà © e proviamo che lo spazio è 

connesso. 

Per assurdo sia  S   sconnesso . Esistono allora due aperti  A ed A’  non vuoti e disgiunti la 

cui unione è S . Sia  x un punto di A ( che è non vuoto )  ed  y  un punto di A’ (che è non vuoto) e 

sia  Y il sottoinsieme connesso che li contiene entrambi. 

Si  ha   : 

     Y =  Y   ∩   S  =   Y   ∩    ( A  ∪  A’) = (Y  ∩   A )  ∪   (Y  ∩  A’) 

Ora  gli insiemi    Y  ∩   A   ,   Y  ∩  A’    sono non vuoti , il primo contiene x ed il secondo 

y , sono disgiunti perché tali sono A ed A’ e sono aperti di Y . 

Pertanto Y risulta sconnesso e ciò è assurdo. 

 

Dalla proposizione ora provata segue la seguente : 

Proposizione 8.2   Sia  ( S ,A )  uno spazio topologico e siano Y1 ed Y2 due suoi sottoinsiemi 

connessi. Se  Y1   ed  Y2  hanno intersezione non vuota allora anche  Y1 ∪ Y2    è un sottoinsieme 

connesso. 

Dimostrazione.  Supponiamo per assurdo che l’insieme  T = Y1 ∪ Y2   sia sconnesso. 

Esistono allora due aperti di S e siano A1 ed  A2  tali che risulti : 

                          

(**)                         T = ( T ∩  A1 )  ∪  ( T  ∩  A2 ) 

 

con   ( T ∩  A1 )  e   ( T  ∩  A2 )   non vuoti  e disgiunti. 
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Poiché  è   Y1  ⊆   T    ed   Y2  ⊆   T    si ha  : 

          

(a) Y1  =  Y1   ∩   T  =  Y1   ∩  [ ( T ∩  A1 )  ∪  ( T  ∩  A2 )] = (Y1 ∩  A1 )  ∪  (Y1 ∩  A2 ) 

                           

(b) Y2  =  Y2   ∩   T  =  Y2   ∩  [ ( T ∩  A1 )  ∪  ( T  ∩  A2 )] = (Y2 ∩  A1 )  ∪  (Y2 ∩  A2 ) 

 

Sia yo un punto comune ad Y1  ed Y2 . Il punto  yo  stante (a)  appartiene ad  

Y1 ∩  A1  o   ad  Y1 ∩  A2   . Supponiamo che appartenga ad   Y1 ∩  A1  . Deve essere allora vuoto  

Y1 ∩  A2    altrimenti  Y1 sarebbe sconnesso.  

Poiché  yo  appartiene anche ad Y2 ed ad A1 da (b) segue che è non vuoto   

Y2 ∩  A1   e quindi deve essere vuoto  Y2 ∩  A2   altrimenti Y2 sarebbe sconnesso. Ma se sono vuoti  

Y1 ∩  A2   e  Y2 ∩  A2    risulta anche vuoto T  ∩  A2   mentre esso è non vuoto.  

Supponendo che yo appartenga Y1 ∩  A2  avremmo, con eguale ragionamento,  che sarebbe 

vuoto  T ∩  A1  il che è assurdo . L’ asserto è così provato. 

 

 Utile è anche la seguente : 

Proposizione 8.3   Sia  ( S ,A )  uno spazio topologico. La chiusura di un sottoinsieme Y 

connesso è anch’essa un sottoinsieme connesso. 

Dimostrazione. Supponiamo per assurdo che la chiusura 
--

Y   di  Y sia sconnessa. Esistono 

allora due aperti di S e siano A1 ed  A2  tali che risulti : 

                          

(i)                         
--

Y   = (
--

Y ∩  A1 )  ∪  (
--

Y ∩  A2 ) 

con   (
--

Y ∩  A1 )  e  (
--

Y ∩  A2 )   non vuoti e disgiunti . Da  (i)  segue : 

                       

    (ii)                             Y =  Y  ∩  
--

Y  = (Y  ∩  A1 )  ∪  ( Y  ∩  A2 ). 

 

Poiché (
--

Y ∩  A1 ) e (
--

Y ∩  A2 )   sono disgiunti tali risultano anche (Y  ∩  A1 )  e 

 ( Y  ∩  A2 ). Poiché  (
--

Y ∩  A1 ) e (
--

Y ∩  A2 )    sono non vuoti esistono due punti  a1 ed a2 con a1  in  
--

Y ∩  A1  ed  a2 in  
--

Y ∩  A2  . Ma se  a1   appartiene ad 
--

Y    allora esso è aderente ad  Y  e poiché  A1  

è un aperto che contiene  a1  allora in A1 c’è almeno un punto di Y . Abbiamo così provato che 

  Y  ∩  A1  è  non vuoto . Con la stessa argomentazione fatta sul punto a2   si prova che    Y  ∩  A2  è  

non vuoto .Abbiamo così provato , stante (ii) che Y è sconnesso contro il supposto. 
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La proprietà di essere connesso è una proprietà topologica in quanto si conserva per 

omeomorfismi. Più in generale sussiste la seguente  

 

Proposizione 8.4   Sia     f :   S  →  S’    una funzione continua tra due spazi topologici (S ,A)  

ed  (S’ ,A ‘) . Se  X è un sottoinsieme connesso di S  allora  f(X) è un sottoinsieme connesso di  S’ .  

Dimostrazione. Supponiamo per assurdo che f(X)  sia sconnesso. Sia ha allora che esistono 

due aperti di S’ e siano  A '
1   ed   A '

2   tali che risulti  

                      f(X) = (f(X)  ∩  A '
1  ) ∪  ( f(X) ∩  A '

2 ) 

con  f(X)  ∩  A '
1    ed   f(X) ∩  A '

2    non vuoti e disgiunti. Denotiamo con  

 

                              A1 =  f -1 (A '
1  )      ed         A2  =  f -1 (A '

2 ) 

 

Gli insiemi A1 ed A2  sono aperti perché f è continua ed inoltre  (X  ∩  A1)  e 

(X  ∩  A2) sono disgiunti  perché tali risultano f(X)  ∩  A '
1    ed   f(X) ∩  A '

2 . 

Sia  f(x1)   appartenente  ad   f(X)  ∩  A '
1     e sia    f(x2)   appartenente  ad  f(X) ∩  A '

2 . 

Quindi  x1 appartiene  ad   X ∩  A1    ed  x2   appartiene  ad   X ∩  A2 . 

Da   

                                f(X) = (f(X)  ∩  A '
1  ) ∪  ( f(X) ∩  A '

2 ) 

segue, passando alla  controimmagine,   e chiamando T  la controimmagine di f(X) : 

 

                                  T =  (T  ∩  A1) ∪  ( T ∩  A2  )  

 

Poiché  T  contiene X  si ha  :  

 

            X =  X  ∩    T  =  X  ∩  [(T  ∩  A1) ∪  ( T ∩  A2  )] = 

= (X  ∩  T  ∩  A1) ∪   (X  ∩  T  ∩  A2) = (X  ∩  A1) ∪  (X  ∩  A2) 

 

e ciò prova che X è sconnesso in quanto i due  aperti   (X  ∩  A1)  e   (X  ∩  A2) 

sono non vuoti e disgiunti.  

 

  Ogni spazio topologico ( S ,  A  ) che sia sconnesso è unione di parti connesse. 

Vediamo perché.  
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 Sia quindi  ( S ,  A  )  uno spazio topologico. Nell’ insieme   S definiamo la seguente 

relazione  ≈  : 

 

due punti distinti  x ed  y  li diciamo equivalenti se esiste un sottoinsieme Y  connesso di S che li 

contiene.  

 

La proposizione 8.2 assicura che tale relazione è di equivalenza e pertanto essa ripartisce S 

in classi d’equivalenza ognuna delle quali viene chiamata componente connessa.  

Sia  Y = [ y ] una componente connessa .Evidentemente Y è un connesso ed è il più grande 

connesso che contiene il punto y . Poiché la chiusura di un connesso è un connesso allora l’insieme 

Y  risulta anche chiuso.  

E’ evidente infine che se lo spazio è connesso se solo se c’ è una sola classe d’equivalenza e 

quindi una sola componente connessa.  

 

 

 

9.   I connessi  di  ( R ,  N  ). 

In questo numero caratterizzeremo i sottoinsiemi connessi di R che penseremo munito della 

topologia naturale. 

Richiamiamo preliminarmente un risultato relativo ad una caratterizzazione degli intervalli 

di R . Un sottoinsieme  I  di R  è un intervallo se e solo se esso ha la seguente proprietà : 

(j)  per ogni coppia di punti distinti  x ed y di  I  con   x <y  l’ intervallo chiuso [ x , y ] è 

contenuto in  I . 

Proviamo ora la seguente importante : 

 

Proposizione 9.1  Ogni intervallo chiuso  [ a , b ]  di R è connesso .  

Dimostrazione. Supponiamo per assurdo che l’intervallo  [ a , b ]   sia sconnesso. Esistono 

allora due chiusi C1 e C2 non vuoti e disgiunti tali che risulti  

                                           [ a , b ]   = C1 ∪  C2 

Poiché [ a , b ]   è chiuso i  chiusi  C1 e C2  sono chiusi di R. Potendoli rinominare possiamo 

supporre che  il numero  b   appartenga  a  C2. Poiché  C1 è parte di [ a , b ]    esso è limitato e  b  è 

un suo maggiorante. Sia  c = sup C1.   Essendo c  l’estremo superiore si ha che : 

          per ogni  numero ε  positivo esiste un elemento di C1  tra  c- ε   e   c   

e ciò prova che c è aderente a C1. Poiché C1 è chiuso allora  c appartiene a C1 .  
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Si ha c ≤  b . se fosse c=b  allora C1 e C2 non sarebbero disgiunti. Quindi è 

 c < b e  l’intervallo ] c , b ] è allora  contenuto in C2.  Ne segue che c è anche aderente a C2  

Pertanto c  è comune a C1 e C2  e ciò è assurdo essendo C1 e C2 disgiunti. 

 Siamo ora in grado di fornire una caratterizzazione dei sottoinsiemi connessi di R munito 

della topologia naturale. Sussiste infatti la seguente : 

 

Proposizione 9.2  I sottoinsiemi connessi  di R sono tutti e soli gli intervalli.  

Dimostrazione. Se  I  è un intervallo esso ha la proprietà (j)  e quindi esso è connesso 

quando si tenga conto delle proposizioni 8.1 e 9.1. 

Viceversa supponiamo che I sia connesso e proviamo che esso è un intervallo.Se per assurdo 

I  non è un intervallo esistono due punti distinti a  e  b di I con a < b tali che [ a , b ]   non sia 

contenuto in  I . Esiste allora  z  :   

                                   a < z < b   e   z  ∉ I . 

 

Posto  A1 = I  ∩   ]- ∞    ,  z [  ed    A2 = I  ∩   ] z   ,  + ∞  [   si ha 

                                        I  =   A1 ∪  A2 

e ciò prova  che I è sconnesso essendo  A1 e A2  aperti non vuoti ( a ∈ A1  e  b ∈ A2 ) e disgiunti. 

 

 10. I connessi di Rn dotato della topologia naturale. 

 

          Siano y = ( y1 , y2 ,…, yn)  e  z = ( z1 , z2 ,…, zn)  due punti distinti di Rn. 

Si definisce retta per i punti  y e z  l’insieme dei punti  x (t) = ( x1(t)  , x2(t)  ,…, xn(t))  così descritto 

: 

                                    x1(t)  = y1 + t (z1 – y1) 

                                    x2(t)  = y2 + t (z2 – y2)  

                                     …. 

                                    xn(t)  = yn + t (zn – yn) 

 

dove il parametro  t  varia in R.  Quando  t  varia tra  0 ed  1 il punto x (t)  descrive il segmento  di 

estremi  y  e  z . Poiché la funzione   

                              f  :       t  ∈  R  →       x (t) ∈  Rn 

è una funzione continua,  allora il segmento di estremi  y  e  z  è un connesso in quanto immagine 

tramite f  dell’intervallo  [ 0 ,1 ]  che è un connesso. 

Assegnata  in  Rn  una (n+1)-pla ordinata di punti  (z0 , z1 ,…., zn)  si chiama  poligonale di vertici 
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(z0 , z1 ,…., zn)  il sottoinsieme P di Rn che si ottiene come unione dei segmenti  [ zi-1 , zi] ,   i = 1,2, 

.., n.  

Con un semplice ragionamento, tenendo conto della proposizione 8.2 ,si vede facilmente che ogni 

poligonale è un connesso di  Rn . 

Possiamo allora dare la seguente definizione . Un sottoinsieme  Y  di  Rn si dice connesso 

per poligonali se per ogni coppia di punti distinti  y  e  z di  Y  esiste una poligonale di estremi  y  e  

z  contenuta in Y. 

Per la proposizione 7.1 quando si tenga conto che la poligonale è un connesso è immediato 

che un sottoinsieme che risulti connesso per poligonale è connesso. 

Ci sono però sottoinsiemi connessi che non sono connessi per poligonale. Ad esempio se 

n=2  si consideri la circonferenza  Г di centro (0,0) e raggio 1 i cui punti 

 ( x , y) sono descrivibili al seguente modo  

                           x(t) = cost 

                           y(t) = sent 

dove   t  varia nell’intervallo  [ 0 , 2π].   La funzione   

 

                   f :       t  ∈  [ 0 , 2π]  →     ( cost , sent ) ∈  R2 

 

è continua e quindi  Г= f ( [ 0 , 2π] )  è un connesso  ma non è connesso per poligonale. 

 Proveremo ora che le due nozioni di essere connesso o connesso per poligonale sono 

equivalenti per gli insiemi aperti di  Rn .  

 Sussiste infatti la seguente : 

 Proposizione 10.1  Un sottoinsieme  A  aperto di  Rn  è connesso se e solo se esso è 

connesso per poligonali. 

 Dimostrazione. Sia  A un insieme aperto di Rn. Se A è connesso per poligonali allora come 

già osservato esso è connesso . Supponiamo quindi che sia connesso e proviamo che esso è anche 

connesso per poligonali. Supponiamo per assurdo che A non sia connesso per poligonali . Esistono 

quindi due punti  distinti   y  e   z  di A tali che ogni poligonale di estremi  y  e   z  non è contenuta 

in A. 

Denotiamo con A1  ed  A2   i seguenti due sottoinsiemi di A .  

 

     A1 =  { x ∈ A :  esiste una poligonale di estremi  y  ed  x  contenuta in A } 

 

A2 = A – A1={ x ∈ A :  non esiste una poligonale di estremi  y ed  x  contenuta in A } 
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I due sottoinsiemi  A1  e  A2  sono non vuoti in quanto A1 contiene y ed  A2 contiene  z. 

Proveremo ora che essi sono entrambi aperti e quindi si avrà un assurdo perché ciò comporterà che 

A è sconnesso. 

Proviamo che A1  è aperto. Sia x  un punto di  A1. Poiché  A è aperto esiste un cerchio 

aperto C di centro x tutto contenuto in A. Per ogni punto  t  di tale cerchio il segmento di estremi x e 

t è contenuto in C e quindi in A. Poiché  x  è congiungibile con y con una poligonale contenuta in A 

allora anche  t  è congiungibile con y con una poligonale contenuta in A . Pertanto il cerchio aperto 

C è tutto contenuto in A1 che è quindi un aperto essendo intorno di ogni suo punto. 

Proviamo che A2  è aperto. Sia x  un punto di  A2. Poiché  A è aperto esiste un cerchio 

aperto C di centro x tutto contenuto in A. Per ogni punto  t  di tale cerchio il segmento di estremi x e 

t è contenuto in C e quindi in A. Se  t  fosse congiungibile con y con una poligonale contenuta in A 

allora anche x risulterebbe congiungibile con y con una poligonale contenuta in A . Pertanto il 

cerchio aperto C è tutto contenuto in A2 che è quindi un aperto essendo intorno di ogni suo punto. 

 

11 . Spazi topologici compatti. 

 

Un’altra nozione toplogica importante è la compattezza. Vediamo di che si tratta. 

Uno spazio topologico ( S ,  A )    è detto compatto se ha la seguente proprietà : 

 

(k) da ogni ricoprimento di aperti di S si può estrarre un ricoprimento finito. 

 

In simboli : 

Per ogni famiglia { Ai }  i∈ I  di aperti tali che  S =   UAi   esiste  F  ⊆  I  con F  finito   

tale che sia   

                                S =  UAj  ,    j ∈  F 

 

Un sottoinsieme  Y  dello spazio topologico ( S ,  A )    è detto compatto se  risulta compatto 

lo spazio topologico ( Y ,   A Y  ).   

E’ facile riconoscere  che il sottoinsieme Y  è compatto se e solo se è verificata la seguente 

proprietà : 

(k’)     Per ogni famiglia { Ai }  i∈ I  di aperti tali che  Y ⊆  UAi   esiste  F  ⊆  I  con F  finito   
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tale che sia   

                                Y ⊆  UAj   ,   j ∈  F 

La compattezza è una proprietà topologica in quanto si conserva per omeomorfismi . Più in 

generale sussiste la seguente : 

 

Proposizione 11.1  Sia     f :   S  →  S’    una funzione continua tra due spazi topologici (S ,A)  

ed  (S’ ,A ‘) . Se  X è un sottoinsieme compatto  di S  allora  f(X) è un sottoinsieme compatto di  S’ . 

Dimostrazione.  Per provare che f(X)  è compatto basterà verificare la proprietà (k’) . Sia 

quindi  { A '
i  }  i∈ I  una famiglia di aperti di  S’  tali che  

                                         f(X)  ⊆  U  A '
i   . 

Da questa segue,  passando alla controimmagine , e chiamando per ogni  i∈ I  

 Ai =  f-1 (A '
i )    

 

                                X ⊆  f-1 [f(X)]  ⊆  UAi   ,   i∈ I   

Ora essendo f continua,  per ogni i∈ I   l’insieme  Ai è un aperto e poiché X  è compatto 

esiste  F  ⊆  I  con F  finito   tale che sia  

                                          X ⊆  UAj   ,   j ∈  F  

Da questa segue  

 

                              f(X)  ⊆  f ( UAj  ) ⊆  U f(Aj )  ⊆  U  A '
j    ,  j ∈  F 

e si ha quindi l’asserto. 

 

Sono molto utili le proprietà espresse dalle due proposizioni che seguono. 

 

Proposizione 11.2  Sia  (S ,A)    uno spazio topologico compatto. Un sottoinsieme Y chiuso di 

S risulta compatto. 

Dimostrazione.  Sia  { Ai },   i∈ I  una famiglia di aperti tali che  sia  

                                        Y ⊆  UAi  , i∈ I  . 
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Poiché  Y  è chiuso  S-Y  è un aperto e si ha ovviamente : 

 

                                  S  =  ( S – Y ) ∪   UAi  ,       i∈ I  . 

Poiché   S  è compatto esiste  F  ⊆  I  con F  finito   tale che sia  

                                   

                               S  =  ( S – Y ) ∪   UAj   ,   j ∈  F  

e da questa segue  che è   

                                            Y  ⊆   UAj   ,   j ∈  F 

e ciò prova che Y è compatto.  

 

Non sempre però un sottoinsieme compatto di uno spazio topologico è chiuso.  

         Sia ad esempio ( R ,  S  ) lo spazio topologico ottenuto considerando come aperti di R , il vuoto, R e 

tutte le semirette  ] ∞  ,   a [ ,  a ∈  R  sinistre aperte . In tale spazio un sottoinsieme  Y   ridotto ad 

un singolo punto è compatto ma non è chiuso. 

 

Sussiste però la seguente : 

Proposizione 11.3  Sia  (S ,A)    uno spazio topologico di Hausdorff. Un sottoinsieme Y  

compatto  di  S  risulta chiuso. 

Dimostrazione.  Per provare che  Y  è chiuso basterà controllare che S-Y è aperto. Sia 

quindi y un punto di  S – Y .  Per ogni punto  x  di Y si ha ovviamente  

 x  ≠  y  e quindi ,  essendo lo spazio di Hausdorff ,  esistono due aperti Ax  e  V x
y   l’uno contenente  

x  e l’ altro contenente  y tra loro disgiunti. Si ha ovviamente : 

 

                                                         Y  ⊆   U
Yx

xA
∈

     

         

Essendo  Y   compatto  esistono  x1 , x2 , …, xn  in Y  tali che sia : 

                                   Y  ⊆   
1xA  ∪   

2XA   ∪  …  ∪  
nXA  

 

Siano  :   V1
y   l’ aperto contenente y e disgiunto da  

1xA  

               V 2
y   l’ aperto contenente y e disgiunto da  

2XA  
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                   …… 

               V n
y   l’ aperto contenente y e disgiunto da  

nXA  

 

L’insieme    Vy  =   V1
y  ∩  V 2

y  ∩ ….  ∩  V n
y    è quindi un aperto contenente  y  ed esso come ora 

proveremo , è disgiunto da  Y .  

Infatti se esiste  z  in   Y ∩  Vy     allora z appartenendo a Vy  appartiene ad ognuno degli 

aperti  V1
y , V 2

y  ,….  , V n
y    ed   appartenendo ad Y  ( Y  ⊆   

1xA  ∪   
2XA   ∪  …  ∪  

nXA    )  esiste  

j  tra  1  ed  n   tale che il  punto  z  appartiene ad XjA  . Pertanto  z  appartiene  a     

V j
y  ∩  XjA   il che è assurdo perché  V j

y  e XjA   sono disgiunti . 

  L’aperto Vy  è quindi contenuto in S- Y e così l’insieme  S-Y  ,  essendo intorno di ogni suo 

punto, è un aperto  e si ha così l’asserto. 

 

   Significativa è la seguente proprietà degli spazi compatti . 

                   

Proposizione 11.4   Ogni sottoinsieme infinito di uno spazio topologico compatto ha almeno 

un punto di accumulazione. 

    Dimostrazione.  Sia (S ,A ) uno spazio topologico compatto e sia  Y  un sottoinsieme infinito 

di S Supponiamo per assurdo che Y non abbia punti di accumulazione. Per ogni x di S è allora 

possibile trovare un  aperto Ax tale che sia   Ax  ∩  Y = ∅     oppure    Ax  ∩  Y  = { x  }.   

Si ha  ovviamente  S =  U xA    è poiché  S è compatto esistono n  punti x1,x2,..,xn  di S per cui sia  

S = 
1xA  ∪   

2XA   ∪  …  ∪  
nXA . 

Si ha : 

 

Y = Y ∩   S = Y   ∩   (
1xA  ∪   

2XA   ∪  …  ∪  
nXA ) =  

= ( Y  ∩  
1xA ) ∪   ( Y  ∩  

2XA )  ∪  … ∪  ( Y  ∩  
nXA ) 

 

da cui segue che Y  è finito essendo  ,  per ogni  i= 1,..,n       | Y   ∩
ixA  | ≤  1  . 

 

12. I compatti di R dotato della topologia naturale. 

Indichiamo con  N  la topologia naturale di R . ricordiamo che gli aperti di tale topologia 

sono il vuoto , R , gli intervalli aperti e tutte le loro unioni.  
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Così come abbiamo caratterizzato i sottoinsiemi connessi di  ( R ,  N ) proviamo a 

caratterizzare i suoi sottoinsiemi compatti.  

Premettiamo alcune nozioni . Un sottoinsieme  Y  di R si dice  limitato  se è contenuto in un 

intervallo chiuso  [ a , b ]. Perverremo alla caratterizzazione dei sottoinsiemi compatti di R dopo 

aver acquisito la seguente : 

 

Proposizione 12.1  Ogni intervallo chiuso e limitato  [ a , b ]  è compatto. 

Dimostrazione. Sia  { Ai } , i∈ I  una famiglia di aperti di R la cui unione contiene   

[ a , b ]   .   Sia  T  il seguente sottoinsieme di  [ a , b ]     

                     

   T =  {x ∈  [ a , b ]  :  esiste  F  ⊆  I  con F  finito :  [ a , x ]  ⊆   UAj   ,   j ∈  F } 

L’ insieme  T  è non vuoto perché  a ∈ T  e perverremo all’ asserto se mostreremo che  b  ∈  T.  

Poiché  T  è una parte di [ a , b ]  esso  è limitato superiormente e quindi possiamo considerare il 

suo estremo superiore che indichiamo con  c .  

Risulta quindi      a  ≤   c  ≤   b . Poiché    [ a , b ]  ⊆  UAi   allora  esiste un aperto Ah della 

famiglia  { Ai }  che contiene  a . Esiste allora un intervallo aperto ] a -δ   ,  a +δ   [  di centro a 

contenuto in  Ah  . Fanno allora parte di  T  tutti i punti di   [ a , b ]  ∩   [ a , a +δ  [ .  

Quindi  è  a < c . Poiché c appartiene ad   [ a , b ]  ⊆  UAi    esiste  un aperto Aj  della famiglia  

 { Ai }  che contiene c . Conseguentemente  esiste un intervallo aperto  I δ  = ] c -δ   ,  c +δ  [  

contenuto in  Aj  . Essendo c = sup T   esiste  y ∈ T   tale che sia   c -δ   < y  ≤   c .  

Quindi  c ∈  T .  

Se fosse per assurdo   c < b   ogni punto  z  maggiore di c e minore di b ed appartenente ad   

I δ   ∩  ] c   , b]   farebbe parte di T .  

 

La  proposizione che segue  fornisce una caratterizzazione dei sottoinsiemi compatti di  

( R ,  N ). 

Proposizione 12.2  Un sottoinsieme Y di  ( R ,  N ) è compatto se e solo se esso è chiuso e 

limitato.  

Dimostrazione. Supponiamo che  Y   sia chiuso e limitato e proviamo che è compatto . 

Poiché è limitato esso è contenuto in un intervallo chiuso [ a , b ]  . Ma tale intervallo è un compatto 

e quindi Y essendo un suo chiuso ( perché [ a , b ] è chiuso ) è un compatto (cfr. Proposizione 11.2). 
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Viceversa supponiamo che Y sia compatto e proviamo che è chiuso e limitato. Poiché   

( R ,  N )  è di Hausdorff allora Y essendo compatto  è chiuso per la proposizione 11.3. Inoltre esso 

è limitato.  

Infatti sia  y un punto di  Y  e sia R =  { An }   la famiglia di aperti  così definita : 

 per ogni n intero sia   

                                    An  =  ] y –n ,   y + n [ 

 

E’ chiaro che è   Y⊆  UAn ,  n ∈ N  e  poiché Y è compatto  Y è contenuto nell’unione di un 

numero finito 
1mA  , 

2mA  ,… , 
tmA    di tali aperti.  

Detto  m = max { m1 ,m2,..,mt }   si ha 

 

              Y ⊆  
1mA ∪

2mA ∪ …. ∪  
tmA   = ] y –m,   y + m [ ⊆   [ y –m,   y + m ] 

 

e ciò prova che Y è limitato. 

 

Il teorema ora provato per i sottoinsiemi di R è un caso particolare di un teorema generale 

che caratterizza i sottoinsiemi compatti di Rn dotato della topologia naturale. Proveremo infatti 

successivamente con argomentazioni del tutto simili , che i sottoinsiemi compatti di Rn , dotato 

della topologia naturale , sono tutti e soli i sottoinsiemi chiusi e limitati.  

Per fare ciò dobbiamo però prima introdurre la nozione di spazio prodotto di due spazi 

topologici. 

 

 

13. Spazio topologico prodotto. 

 

Siano  ( S1 ,  A1 )    ed   ( S2 ,  A’2 )  due spazi topologici.  Sia S =  S1 x  S2     il prodotto 

cartesiano degli insiemi  S1   ed   S2  . Gli elementi di S sono quindi le coppie ordinate ( x1, x2 ) con  

x1 ∈ S1  ed  x2 ∈ S2  .  La famiglia  B  di parti di  S  i cui elementi sono tutti i possibili prodotti  

 A1 x A2  con   A1∈ A1   ed   A2 ∈ A’2 verifica , come facilmente si controlla , le proprietà   a)  e  b)  

della proposizione 1.1 ed è quindi in grado di generare una topologia A  su S i cui aperti sono il 

vuoto , e tutte le possibili unioni di elementi di  B  . La topologia A  di  S così ottenuta è detta la 

topologia prodotto delle due topologie  A1  ed   A’2  e lo spazio topologico ( S ,  A ) cosi ottenuto è 

chiamato spazio topologico prodotto.  
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Evidentemente la definizione di spazio prodotto può essere estesa al caso in cui i fattori 

siano un numero finito maggiore o eguale a due.  

Lo spazio prodotto “eredita” le eventuali buone proprietà topologiche dei due spazi che lo 

hanno generato. Noi per brevità non mostreremo in dettaglio questo aspetto anche se molte 

dimostrazioni sono piuttosto semplici. Ci limitiamo quindi solo ad elencare  alcune  proprietà dello 

spazio prodotto.  

 

a) le due funzioni naturali  ( proiezioni ) 

   

              p1  :  ( x1, x2 ) ∈  S1 x  S2   →      x1 ∈ S1     

   

              p2  :  ( x1, x2 ) ∈  S1 x  S2   →      x2 ∈ S2      

 

che legano lo spazio prodotto ai singoli spazi sono entrambe continue. 

 

b) lo spazio prodotto di due spazi di Hausdorff  è  di Hausdorff. 

c) Lo spazio prodotto di due spazi a base numerabile è a base numerabile. 

 

d) lo spazio prodotto di due spazi connessi è connesso. 

e) lo spazio prodotto di due spazi compatti  è compatto.  

 

 

14. I compatti di Rn dotato della topologia naturale. 

 

In questo numero forniremo alcune caratterizzazioni dei sottoinsiemi compatti  di  Rn  

munito della topologia naturale. Preliminarmente diamo alcune definizioni. 

Sia y = ( y1,y2,…,yn)  un punto di   Rn   e siano   d1,d2,…,d n    n numeri reali positivi. 

Si definisce  n-rettangolo aperto  di centro y e semidimensioni (d1,d2,…,d n ) 

il seguente sottoinsieme di   Rn  .  

 

K (y ,(d1,d2,…,d n )) =] y1 – d1 , y1 + d1 [ x ] y2– d2  , y2 + d2 [ x.. … x  ] yn – d n,  yn + d n [ 

 

L’ n-rettangolo chiuso di centro y  e   semidimensioni (d1,d2,…,d n ) è 

il seguente sottoinsieme di   Rn  .  
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K (y ,(d1,d2,…,d n )) = [ y1 – d1 , y1 + d1 ] x  [y2– d2  , y2 + d2 ] x.. … x [ yn – d n,  yn + d n]  

 

 

Quando è   d1=d2= …=d n  = d    l’n-rettangolo viene chiamato n-cubo di centro  y    e  di lato 

2d.  

Non è difficile provare che fissato un cerchio aperto C (  y  , r ) di centro y  e raggio r  si 

possono trovare due  n-rettangoli aperti  di centro   y   ed opportune semidimensioni ,   uno 

contenuto nel cerchio C e l’altro contenente il cerchio C.  

Gli n-rettangoli  aperti di  Rn  al pari dei cerchi aperti hanno le proprietà a) e b)  della 

proposizione 1.1 e quindi definiscono anch’essi una topologia di   Rn  . Per l’osservazione fatta 

prima un sottoinsieme che sia unione di cerchi aperti è anche unione di n-rettangoli aperti e 

viceversa. Pertanto gli n-rettangoli aperti ed i cerchi aperti definiscono la stessa topologia su  Rn  .  

La topologia naturale di  Rn  che è quella indotta dalla metrica euclidea può quindi anche 

pensarsi come la topologia che si ottiene su  Rn  quando si faccia il  prodotto di  ( R ,  N  )  n –volte. 

Gli n-rettangoli chiusi essendo prodotto di intervalli chiusi di R sono prodotto di spazi 

compatti e sono quindi anch’essi compatti. 

 

Un sottoinsieme  Y  di  Rn  è detto  limitato  se esso è contenuto in un  n-rettangolo o 

equivalentemente in un cerchio.  

 

Siamo ora in grado di provare la seguente : 

 

Proposizione 13.1   Un sottoinsieme  Y  di  Rn  è compatto se e solo se esso è chiuso e 

limitato. 

Dimostrazione.  Supponiamo che Y sia chiuso e limitato . Poiché esso è limitato allora esso 

è contenuto in n-rettangolo chiuso K . Ma  K  , come già osservato , è  un  compatto e quindi Y 

essendo un suo chiuso è anch’esso compatto. 

Viceversa supponiamo che Y sia compatto. Poiché lo spazio  Rn è di Hausdorff Y è chiuso. 

Proviamo che è anche limitato. Infatti sia  y  un punto di  Y  e sia  

R =  { Cn } n ∈ N ,   la famiglia di cerchi aperti  con centro in  y   e raggio n intero positivo.  

E’ chiaro che è   Y ⊆  U Cn , n ∈ N  e  poiché Y è compatto  Y è contenuto nell’unione di un 

numero finito 
1mC  , 

2mC  ,… , 
tmC  di tali cerchi  aperti.  
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Detto  m = max { m1 ,m2,..,mt }   si ha   

                

                     Y ⊆    
1mC ∪

2mC  ∪ … ∪  
tmC = Cm 

e ciò prova che Y è limitato. 

 Un’altra caratterizzazione dei sottoinsiemi compatti di   è fornita dalla seguente 

 

Proposizione 14.2 Un sottoinsieme K di Rn è compatto se e solo se ogni suo sottoinsieme Y 

infinito ha almeno un punto di accumulazione in K. 

Dimostrazione. Supponiamo  K  compatto ( quindi chiuso e limitato ) e sia Y un suo 

sottoinsieme infinito.Per la proposizione 11.4 , Y ha almeno un punto di accumulazione e sia  z  tale 

punto. Il punto  z essendo di accumulazione per  Y  è aderente ad Y e quindi anche a K che contiene 

Y . Ma  K è chiuso e quindi il punto z appartiene a K.  

Supponiamo che ogni sottoinsieme infinito di K abbia un punto di accumulazione in K e 

proviamo che K è compatto. Sarà ovviamente sufficiente provare che K è chiuso e limitato. Prima 

di provare ciò ricordiamo un risultato che abbiamo già provato ( Proposizione  3.5 )  ma del quale 

faremo ora uso : 

  Poiché Rn  è di Hausdorff ed i suoi aperti sono infiniti allora: 

 

 se z è un punto di accumulazione per il sottoinsieme X , in ogni aperto che contenga  z  ci 

sono infiniti punti di X. 

 

Proviamo quindi che K è chiuso  e limitato nell’ipotesi che ogni suo sottoinsieme infinito 

abbia un punto di accumulazione in K .  

Cominciamo a provare che è limitato. Supponiamo per assurdo che K non sia limitato . 

Fissiamo un punto  y  di K . Per ogni intero n , consideriamo il cerchio aperto di centro  y e raggio  

n . poiché K non è limitato esiste almeno un punto xn di K fuori dal cerchio C ( y , n) . Si ha quindi  

 

                           per ogni n   ,    d (  xn  ,  y ) > n 

 

inoltre è sempre possibile fare in modo che risulti 

 

                                    d (  xn+1  ,  y ) > d (  xn  ,  y ). 

 

In tal modo gli elementi della successione    x1,x2,..,xn,..  di punti di K  sono tutti distinti tra loro e 
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costituiscono quindi un sottoinsieme X  infinito di K . Il punto y non è d’accumulazione per  X  in 

quanto nel cerchio aperto C( y,  
2
1  )  non c’è alcun punto di X .Sia z un punto di K diverso da y  e 

sia  C ( z , r )  un cerchio aperto di centro z e raggio r . Scelto un intero  m  tale che sia  

                                            m  >  d(y,z) + r 

il cerchio C ( y , m )  di centro  y e raggio m  contiene il cerchio C ( z , r ). Infatti per ogni punto  t  

di   C ( z , r )  si ha : 

                            

                        d( t , y ) ≤   d(t , z ) + d(z , y ) < r + d(z , y ) < m 

 

Poichè tutti i  punti   xm,xm+1,..,xn,..  della  successione  sono fuori dal cerchio C(y, m)  nel 

cerchio C ( z , r ) ci sono al più un numero finito di elementi di X e così z non è d’accumulazione 

per X. Il sottoinsieme X di K è infinito ma è privo di punti di accumulazione in K  e ciò è contro 

l’ipotesi.  

Proviamo ora che K è chiuso. Sia z un punto di accumulazione per K. Per ogni intero n 

consideriamo il cerchio aperto di centro z e raggio  
n
1   . Poiché z è d’accumulazione esiste in tale 

cerchio un punto xn di K distinto da z . Si ha quindi  

per ogni n            d(  xn , z )  <  
n
1  

Possiamo inoltre fare in modo che risulti altresì  

                  

per ogni n           d ( xn+1  ,  z)  <  d (  xn  ,  z ). 

 

In tal modo gli elementi della successione    x1,x2,..,xn,..  di punti di K così costruita ,  sono 

tutti distinti tra loro e costituiscono quindi un sottoinsieme X  infinito di K. Poiché per ogni n,  è      

d(  xn , z )  <  
n
1    allora la successione x1,x2,..,xn,..   converge manifestamente al punto z .  

Poiché  X  è infinito, per l’ ipotesi in cui siamo , esso ammette un punto  y di accumulazione 

in K . Se  proviamo che  z=y  allora  z è un punto di K e quindi K è chiuso in quanto contiene i suoi 

punti di accumulazione.  

Supponiamo per assurdo che sia  z ≠  y . Poiché lo spazio è di Hausdorff esistono due cerchi 

aperti C ( z , r )  e  C ( y , r’ )  di centro z ed y disgiunti tra loro. 

Poiché  x1,x2,..,xn,..   converge al punto z  esiste un intero m tale che i punti 

xm,xm+1,..,xn,..  siano tutti nel cerchio C ( z , r )  . Conseguentemente nel cerchio  
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C(y , r’)  ci sono solo un numero finito di elementi di X e ciò contraddice la proprietà che abbiamo 

richiamato all’inizio relativa ai punti di accumulazione di uno spazio di Hausdorff.  

 

 

15.  Spazio topologico quoziente. 

 

Concludiamo queste note con la nozione di  spazio topologico quoziente. Vediamo di che si 

tratta.  Sia ( S ,  A ) uno spazio topologico . Sia  R  una relazione d’equivalenza definita 

nell’insieme S . Lo spazio quoziente  S/ R   è come è noto, l’insieme  i cui elementi  sono le 

classi di equivalenza che  R  crea. 

Possiamo munire l’insieme    S/ R    di una topologia al seguente modo. Indichiamo con   p  

la funzione  che associa ad ogni punto x di S la classe d’equivalenza di x  che indichiamo con  

 [ x ].  

 

                         p :  x  ∈  S   →      [ x ] ∈  S/ R    

 

Ora  una classe  d’equivalenza   [ x ]    è un elemento di S/ R    ma è anche un sottoinsieme 

di S quando si pensa agli elementi che di essa fanno parte cioè quando si faccia la sua 

controimmagine tramite  p . Selezioniamo in  S/ R     una famiglia A ‘di parti al seguente modo.  

Un sottoinsieme A’  di   S/ R    appartiene  ad  A ‘  e  viene chiamato aperto  se   p-1 ( A’)  è 

un aperto di S. In sostanza bisogna considerare le classi che fanno parte di A’ come sottoinsiemi di 

S  e controllare che la loro unione dia un sottoinsieme aperto di S.  Si controlla immediatamente che  

la famiglia   A ‘   ora definita è una topologia per l’insieme  S/ R  . Quando l’insieme  S/ R    si 

munisca di questa topologia A ‘ lo spazio topologico che si ottiene viene chiamato  spazio 

topologico quoziente. 

Per la definizione data,  la funzione suriettiva 

                   p :  x  ∈  S   →      [ x ] ∈  S/ R    

quando la si pensi come funzione tra i due spazi topologici ( S ,  A ) ed  (  S/ R  , A‘ ) è una funzione 

continua . 

 Come conseguenza  si ha allora che se ( S ,  A ) è connesso o compatto tale risulta anche lo 

spazio quoziente (  S/ R  , A‘ ).  

Facciamo un esempio . Consideriamo lo spazio  topologico  R2  dotato della topologia 

naturale.  

Due punti (x1 , y1)  ed   (x2 , y2)  li diciamo R - equivalenti se risulta  x1  = x2   . 
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Tale relazione R  è d’equivalenza e nella classe  [ ( a , b ) ]   ci sono quindi tutte le coppie del tipo  

 ( a , y ) .  

Rappresentando R2  nel piano facendo uso di un riferimento monometrico ortogonale si ha 

che le classi d’equivalenza sono le rette parallele all’asse  y. Conseguentemente gli aperti dello 

spazio topologico quoziente  R2 / R   sono strisce aperte del tipo   ] a , b [ x  R  o unioni di strisce di 

questo tipo. 

La relazione R  introdotta ha voluto identificare tutte le coppie del tipo (a , y)   ( con a fisso 

ed y variabile in R)  col singolo numero  a . La funzione  

                                   f  :  a ∈  R →      [( a , y )] ∈ R2 / R   

diventa quindi un  omeomorfismo tra  R   (dotato della topologia naturale )   e lo spazio quoziente    

R2 / R   . 
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Quando io ero studente universitario i tempi dedicati all’insegnamento non erano 

contingentati.  I corsi duravano un tempo ragionevole e non c’erano difficoltà a fare 

qualche lezione in più rispetto all’orario previsto. Tutto ciò favoriva l’apprendimento e 

non c’era nessuna vessazione. I testi erano per lo più consigliati e si poteva attraverso la 

loro consultazione ricostruire ed approfondire quanto ascoltato a lezione. 

Ora pare che il tempo scorra più rapidamente e tutto questo non si può più realizzare. 

Questo cambiamento di ritmi rende utile la stesura di questo libretto di appunti in cui si 

riassumono sinteticamente i contenuti del corso di  Geometria II  da me tenuto questo anno 

accademico. 

Certo ci vorrebbero degli approfondimenti , ma questi vengono lasciati a quegli studenti 

che trovano in queste note gli stimoli ed il gusto di una conoscenza più profonda . 

                                                           Prof.  Domenico Olanda 

 

                                                                                      
 
 “ Ascoltare senza ritenere  

                                                                                         non è sapere” 
                                                                                   Dante  Alighieri 
 

 

 

 

 

 

 



 217

 

Indice 

 
Capitolo I -  Geometria analitica del piano e dello spazio.                         Pagina 
 

1. Introduzione ………………………………………………………  4 
2. Rette e piani dello spazio ………………………………………… 14 
3. Fasci di piani ……………………………………………………    22 
4. Stelle di piani …………………………………………………       23 

 
Capitolo II  - Piani affini e proiettivi                                                                              
 

1. Piani affini e proiettivi……………………………………………………30 
2. Il piano affine numerico reale…………………………………………… 35 
3. Il piano affine numerico complesso………………………………………42 
4. Nozione di riferimento reale ……………………………………………. 44 
5. Le coordinate omogenee …………………………………………………48 
6. I punti immaginari ……………………………………………………….50 
7. Il piano proiettivo numerico reale ……………………………………….52 
8. Le questioni metriche del piano affine numerico reale ………………….58 
9. Il gruppo strutturale del piano affine numerico reale ……………………61 

 
Capitolo III – Circonferenza , Ellisse , Iperbole , Parabola . 
  

1 . La circonferenza …………………………………………………………74 
2.  L’ ellisse………………………………………………………………….78 
3.  L’iperbole…………………………………………………………………81 
4.  La parabola ……………………………………………………………….84 
 

Capitolo IV –  Le  coniche . 
 

1. Le coniche del piano proiettivo complesso……………………………….90 
2. Intersezione di una retta con una conica …………………………………93 
3. Le coniche degeneri ………………………………………………………94 
4. Le coniche non degeneri . Tangente in un punto…………………………100 
5. Le coniche reali non degeneri ……………………………………………102 
6. Polarità definita da una conica non degenere……………………………  104 
7. Centro,  diametri , asintoti , assi. Le equazioni canoniche………………  108 

 
        Capitolo V – lo spazio proiettivo complesso di dimensione tre 
 

1. Lo spazio affine reale e complesso …………………………      115 
2. Lo spazio proiettivo reale e complesso di dimensione tre………121 
3. Sfera coni e cilindri dello spazio affine reale …………………   129 
 

 
        Capitolo VI – le quadriche 
 

1. Le quadriche dello spazio proiettivo complesso……………. 139 
2. Intersezione di una retta con una quadrica …………………  144 
3. Intersezione di un piano con una quadrica …………………  145 
4. Le quadriche degeneri ……………………………………… 146 
5. Piano tangente ad una quadrica in un suo punto semplice …  153 
6. Il gruppo strutturale ………………………………………… 155 
7. Quadriche reali ………………………………………………157 
8. Quadriche reali non degeneri ………………………………  159 
9. Polarità definita da una quadrica non degenere……………   164 
10. Centro e piani diametrali …………………………………     168 



 218

 
 
 
       Capitolo VII – Note di topologia generale 
 

1. Spazi topologici ………………………………………………174 
2. Chiusi di uno spazio topologico ……………………………   179 
3. Funzioni continue …………………………………………… 183 
4. Basi ed assiomi di numerabilità. Spazi separabili…………… 189  
5. Proprietà della topologia indotta da una metrica ……………  190 
6. Esempi di spazi topologici ……………………………………194 
7. Sottospazi di uno spazio topologico ………………………… 196 
8. Spazi topologici connessi……………………………………  197 
9. I connessi di R dotato della topologia naturale………………  201 
10. I connessi di Rn dotato della topologia naturale  ……………   202 
11. Spazi topologici compatti ……………………………………  204 
12. I compatti  di R dotato della topologia naturale……………… 208 
13. Spazio topologico prodotto……………………………………209 
14. I compatti di Rn dotato della topologia naturale  ……………  210 
15. Spazio topologico quoziente…………………………………  214 

 

 

 
 
 
 


