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Capitolo I

La geometria analitica del piano e dello spazio



1. Introduzione

In questo capitolo analizzeremo alcuni risultati di geometria analitica utilizzati nelle
applicazioni. Spesso ci sara il solo riferimento al risultato senza la sua dimostrazione.
Prima di addentrarci nell’esposizione ,allo scopo di facilitare la lettura di questo argomento,

¢ utile ricordare due risultati di algebra lineare acquisiti nella prima parte .
I1 primo risultato che richiamiamo ¢ un semplice, ma molto utile teorema .

Teorema. Se in uno spazio vettoriale h vettori {v; v ,...... vy} sono indipendenti mentre

{vi va,..vy, w} sono dipendenti allora il vettore w dipende dai vettori v, v; ,...... V.
Il secondo risultato che richiamiamo ¢ il seguente .

Indichiamo con V = R[ X, y ,z] lo spazio vettoriale dei polinomi di grado al pit uno nelle variabili

x,y,z a coefficienti reali. L’ applicazione

(ax + by+ cz+d ) ---—-- > (a, b, c,d)

che associa al polinomio ax + by + cz+d la quaterna dei suoi coefficienti ¢ un isomorfismo

tra gli spazi vettoriali V ed R* .

Per tale ragione la dipendenza tra polinomi puo essere ricondotta alla corrispondente

dipendenza tra i vettori numerici dei loro coefficienti.

Cosi a titolo di esempio il polinomio ax + by + cz+d dipende dai polinomi
a’x+by+cz+d e a’x+b’y+c’z+d” seesoloselaquaterna (a, b, ¢,d ) dipende
dalle due quaterne (a’, b>, ¢’,d’) e (a”, b’, ¢”,d”).
Il risultato che abbiamo ora richiamato vale ovviamente in generale , pud essere cio¢ esteso allo
spazio vettoriale dei polinomi in n variabili , e I’averlo ricordato per i polinomi a tre variabili ¢

motivato dalla circostanza che ci troveremo spesso in questa situazione .



Svilupperemo la nostra rassegna analizzando contemporaneamente risultati di geometria
piana e dello spazio allo scopo di evidenziare 1’unita dei metodi usati nell’'uno e nell’altro caso e
1’ identita di risultati quando si ha a che fare con rette di un piano o con piani dello spazio.
Supporremo noto il concetto di riferimento cartesiano nel piano e nello spazio e la capacita di
assegnare in un riferimento fissato le coordinate ai punti del piano o dello spazio. Ricordiamo solo
che nel piano le coordinate di un punto sono costituite da una coppia ordinata di numeri reali
mentre nello spazio le coordinate di un punto sono una terna ordinata di numeri reali.

Riterremo d’ora in poi che sia sempre fissato un riferimento monometrico ortogonale.

Se r ¢ una retta del piano ed A e B sono due suoi punti distinti le componenti del vettore

(AB) nel riferimento fissato sono date dai seguenti due numeri reali :

A= Xp — XA L =YB -YaA

v

Questi due numeri reali non entrambi nulli (essendo A e B distinti ) forniscono la misura relativa
dei segmenti evidenziati in neretto in figura, proiezioni di (AB) sugli assi del riferimento. Si noti
che se si ruota “un poco* (AB) questi due numeri cambiano e precisamente uno dei due aumenta e
I’altro diminuisce. Pertanto questi due numeri aumentano entrambi o diminuiscono entrambi se e
solo se si allunga o si accorcia (AB) ; di piu esse ,ad esempio, si triplicano se (AB) si triplica , si

dimezzano se (AB) si dimezza e cosi via.

I numeri reali (A, 1) vengono chiamati numeri direttori della rettar e la loro determinazione ¢



molto utile per le applicazioni . Se i punti A e B vengono sostituiti da altri due punti distinti C e D

allora ¢ (CD)= p (AB) (dove p ¢ un numero reale non nullo ) e quindi ¢ :

NV=(xp—Xc)=p(xB—Xa )= ph , W =(yp -yo)=p(yB -ya)=pHu

Pertanto i numeri direttori di r sono una coppia di numeri reali non entrambi nulli e definiti a

meno di un fattore di proporzionalita non nullo.

Analogamente se siamo nello spazio ed r ¢ una sua retta scelti due punti distinti Ae Bsur, i tre

numeri reali ( non tutti e tre nulli )

A= X —Xa , L=YB -Ya V = Zp -Za

s

sono chiamati i numeri direttori dir . Per le stesse argomentazioni precedenti i numeri
(A, n . v ) numeridirettori di r sono mai tutti e tre nulli contemporaneamente e sono definiti

a meno di un fattore di proporzionalita non nullo .

numeri direttori , una volta noti , possono essere utilizzati per valutare I’eventuale parallelismo tra
| direttori , It ti, tilizzat lutare I’ tual llel t

rette sia nel piano e sia nello spazio. Sussistono infatti le seguenti equivalenze :

Teorema 1. Due rette r ed v’ del piano sono parallele se e solo se esse hanno gli stessi numeri
direttori (cioe i numeri direttori ( 4, p ) dir sono eguali o proporzionali ai numeri ( 2°, u’)

direttoridir’) .

Teorema 2 . Due rette r ed r’ dello spazio sono parallele se e solo se esse hanno gli stessi numeri

direttori (cioe i numeri direttori ( 2, mu, ,v ) dir sono eguali o proporzionali ai numeri direttori

(X @, V') dir’) .

Ricordiamo che se (AB) e (CD) sono due vettori non nulli del piano o dello spazio, si

definisce loro prodotto scalare il numero reale £ che si ottiene eseguendo il seguente calcolo



§ = |AB||CD|coso
avendo indicato con | AB | e | CD | Ile lunghezze dei due segmenti e con ¢ 1’angolo che essi
formano. Ovviamente i due segmenti risultano tra loro ortogonali se e solo se il loro prodotto
scalare si annulla . Avendo scelto il riferimento monometrico ed ortogonale allora ¢ ben noto che
risulta

& = |AB||CD|coso=AN +pW

avendo indicato con ( A, ) le componentidi (AB)econ (A’, u ) le componenti di (CD).

Analogamente se (AB) e (CD) sono vettori dello spazio risulta

& = |AB||CD|coso=AN +pp +vv’

avendo indicatocon ( A, pnu, v) lecomponentidi (AB)econ (A, u’, v’ ) lecomponenti di

(CD).

I numeri direttori una volta noti possono essere quindi utilizzati per valutare I’eventuale

ortogonalita tra rette sia nel piano e sia nello spazio.

Sussistono infatti le seguenti equivalenze :

Teorema I . Due rette redr’ del piano sono ortogonali se e solo se risulta :

AN+ =0

Teorema I . Due rette r ed r’ dello spazio sono ortogonali se e solo se risulta :

AN +ppw +vv =0

Questi teoremi mostrano come sia essenziale saper determinare di una retta i suoi numeri



direttori . Si possono dedurre tali numeri da una rappresentazione della retta ? Vediamo.

Intanto , come si rappresenta una retta ? C’¢ un modo di rappresentare allo stesso modo

una retta sia che essa sia una retta del piano o dello spazio. Vediamo come .

Sia r una retta del piano e siano A e B due suoi punti distinti . Un punto P(x,y) del piano

appartiene ad r se e solo se risulta
(AP)=p (AB)
o equivalentemente se e solo se :

(X-Xa , ¥y-yYa)= p(XB—Xa ,¥YB -Ya )

Pertanto le coordinate di (x,y) di P sono espresse dalle seguenti relazioni

1) {X:XA + p(x5-X,)

Y=Yat P (Ys—Ya)

Le (1) forniscono al variare del parametro p nel campo reale le coordinate (x,y) dei punti di r e

per questo motivo vengono chiamate le equazioni parametriche di r .
Si noti che nelle (1) i due numeri che accompagnano il parametro p sono i numeri direttori di r.
Pertanto se la retta v é rappresentata parametricamente i numeri direttori sono i due numeri che

accompagnano il parametro p

Sia ora r una retta dello spazio e siano A e B due suoi punti distinti . Un punto P(x,y,z)) dello

spazio appartiene ad r se e solo se risulta
(AP)= p (AB)

o equivalentemente se e solo se :



(X-XA , Y- YA, Z-2a)= p ( XB—XA , ¥YB - YA ,ZB- ZA)

Pertanto le coordinate di (x,y,z) di P sono espresse dalle seguenti relazioni

X = X, + p(Xg—x,)
(2) y=Yat pP(Ys—Ya)

z= 2z, + p(zg—2,)

Le (2) forniscono al variare del parametro p nel campo reale le coordinate (x,y,z) dei puntidir e

per questo motivo vengono chiamate le equazioni parametriche di r .

Si noti che nelle (2) i tre numeri che accompagnano il parametro p sono i numeri direttori di r.
Pertanto se la retta r e rappresentata parametricamente i numeri direttori sono i tre numeri che

accompagnano il parametro p

Sia r una retta del piano ed A e B due suoi punti distitnti . Un punto P (x,y) del piano appartiene
ad r se e solo serisulta (AP)= p (AB) cio¢ se e solo se i due vettori AP ed AB sono dipendenti .
Poiché il passaggio alle componenti di un vettore ¢ un isomorfismo allora la dipendenza dei due
vettori (AP) ed (AB) equivale alla dipendenza dei vettori numerici (X-Xas , Y- ya ),

( xB—Xa ,¥YB -ya ). Questi due vettori numerici sono dipendenti se e solo se risulta :

x y 1
X -X,, -
(1%) det( ar Y y/‘] — det| x, y, 1]=0
Xp~Xa> YB~Ya
Xg Yp 1

Sviluppando tale determinante si ottiene un’equazione di primo grado in x ed y del tipo
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(1) ax +by+c=0

soddisfatta da tutte e sole le coppie (X, y) coordinate dei punti di r . La (i) ¢ detta la
rappresentazione cartesiana di r . Ovviamente ogni equazione proporzionale alla (i) avendo le
stesse soluzioni di (i) rappresenta sempre la rettar .

Si prova facilmente che , viceversa , un’equazione di primo grado in X e y rappresenta una retta del
piano.

Quindi una retta del piano pud essere rappresentata o in forma parametrica o in forma cartesiana.
Per esempio rappresentiamo la retta per i punti A(2,5) ¢ B (4,8).

Usando la (1) tale retta si rappresenta con

Xx =24+ 2p
(a)
y=5+ 3p
Usando (1%*)
x y 1
det|2 5 1]=0
4 8 1
siha :
(b) 3x - 2y +4 =0.

Si noti che all’equazione (b) si poteva pervenire anche usando la rappresentazione parametrica (a).

Infatti da (a) segue
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e quindi eguagliando si ha I’equazione (b).

Ora se larettar ¢ rappresentata con 1’equazione

ax +tby+c=0

come si possono calcolare 1 suoi numeri direttori ? Vediamo .

Se A (xa ,ya) e B (xg , ys) sono due punti di r allora le loro coordinate verificano

I’equazione ax +by+c=0 e pertantosiha:

axgt+tbyg+tc=0

axA+byA+c=0

Sottraendo membro a membro le due relazioni sopra scritte si ha :

a(xp—Xa)+b(ys—ya) =0

o equivalentemente

Il
S

det {XB_XA YB_YAJ
-b a
La relazione sopra scritta mostra che la coppia (-b,a) ¢ proporzionale alla coppia
( xs—Xa , ys—Yya ) che ¢ appunto una coppia di numeri direttori di r . Pertanto se la retta ¢
rappresentata dall’equazione ax + by + ¢ =0 allora una coppia di numeri direttori di r ¢ data dalla
coppia (-b,a).

Possiamo allora riformulare i teoremi 1 ed I al seguente modo :
Teorema 2 . Due rette del piano r ed r’ rappresentate da

ro: ax+by+c=0
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ro: a’x+by+c’ =0
sono parallele se e solo se risulta (-b,a)= (-b’ ,a’) o equivalentemente

(j) (a,b)=p(,b").

A questa conclusione si poteva pervenire direttamente senza utilizzare il teorema 1 in quanto la

condizione (j) equivale a

e tale condizione € necessaria e sufficiente affinché il sistema
ax +by +c¢ =0
a'x+by+c'=0

abbia infinite soluzioni o nessuna soluzione.

Il teorema I puo quindi essere cosi altresi enunciato
Teorema II . Due rette del piano red r’ rappresentate da
r ax tby+c=0
o ax+by+c =0
sono ortogonali se e solo se risulta

aa’+ bb’=0
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Concludiamo tale numero cercando di rappresentare tutte le rette che passino per un fissato punto

A(Xo ,Vo). Taleinsieme di rette viene chiamato fascio di rette di centro A .

Siano r ed r’ due rette per A (X, ,Yo ) rappresentate da :

ro: ax+by+c=0

ro a’x+by+c’ =0

Poich¢ A appartiene sia ad r che ad 1’ le sue coordinate soddisfano entrambe le equazioni. Ne

consegue che se consideriamo un’equazione del tipo

(%) a(ax +by+¢c) + B(ax+by+c’) =0

con (a, B )# (0,0 ) ottenuta combinando linearmente le due equazioni date, essa
rappresenta una retta ancora per il punto A in quanto le coordinate di A la soddisfano qualunque sia
la scelta dei coefficienti @ e B . Se ogni retta per A si ottiene mettendo nella (**) un opportuno
valore di o ed un opportuno valore di  allora al variare di questi due parametria e B la
(**) descrive tutte le rette per A e quindi rappresenta il fascio di rette di centro A.

Sia quindi r” una qualunque retta per A rappresentata dall’equazione :

r” : a’QX + b”y + C” — O

Il sistema formato dalle tre equazioni

ax + by +c =0
a'x +b'y +¢' =0
a’x+b’y +¢” =0

risulta compatibile in quanto la coppia ( X, , Yo ) € una sua soluzione. Ne consegue che la matrice

completa ha lo stesso rango di quella incompleta e quindi ha rango due .
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Risulta allora

a b ¢
det |a' b ¢ |=0
a" b" CH

Le tre righe di tale matrice sono quindi dipendenti e poiché le prime due sono indipendenti allora la
terza ¢ combinazione lineare delle prime due e cosi si ha ’asserto.

Due rette per il punto A( X, , Yo ) di semplice rappresentazione sono quelle per A parallele agli
assi coordinati cioe le rette di equazione

X -X=0 ed y- y, =0

e pertanto, per cio che precede, 1’equazione

o (X -X )t B (y- yo) =0

al variare di o , B rappresenta tutte le rette per A e per tale motivo viene chiamata /’equazione
del fascio di rette di centro A.

2. Rette e piani dello spazio.

Sia ora m un piano dello spazio e siano A, B, C tre punti di m distinti e non allineati. Un

punto P(x,y,z) dello spazio appartiene al piano m se e solo se 1 vettori

(AP), (AB), (AC) sono dipendenti o equivalentemente se e solo se le tre terne

(X-XA, Y- YA,Z- Za),(XB—XA,YB -YA »ZB- Za),(Xc—Xa ,YC - YA »ZC - ZA)

sono dipendenti. Ma allora il punto P(x,y,z) dello spazio appartiene al piano se e solo se risulta
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X=Xy Y¥Ya Z-Z,
det| X3-X, VYp-Ya Zp-z, |=det

XcXa Yo ¥Ya  ZcZy
x y z 1
Xo Ya Za 1
Xg ¥p Zp |
1

Xe Yo Zc

=0

Sviluppando il determinante sopra scritto si ottiene un’ equazione di primo grado in x, y , z del tipo

ax tby+cz+d =0

soddisfatta da tutte e sole le terne (X, y, z) coordinate dei punti P di m . Ovviamente ogni
equazione proporzionale ad essa avendo le stesse soluzioni rappresenta pur sempre il piano 7.
Si prova facilmente che , viceversa , un’equazione di primo grado in X . y, Z rappresenta un piano

dello spazio .

A titolo di esempio si voglia rappresentare il piano peritrepunti A(1,0,0) B(0,1,2)
C(1, 1, 3). Per le argomentazioni precedenti 1’equazione di tale piano si ottiene sviluppando il

determinante :

x y z 1
1 0 0 1
det =0
0 1 2 1
1 1 3 1

Si ha quindi che il piano richiesto ha equazione: x+3y—-z—1=0.

Siano m ¢ ©’ due piani dello spazio rappresentati rispettivamente da :

m: ax + byt cz+d =0

o a’x+by+tcz+d =0
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E’ ben noto che il sistema S

ax+by+ cz +d =0
a'x+b'y+c'z+d=0

formato dalle due equazioni che rappresentano ipiani m ¢ n°  ha soluzioni se e solo se le due

a b ¢ a b ¢ d
A= A=
a b a b ¢ d

matrici

hanno lo stesso rango .

Se il rango di A ¢ due allora anche A’ ha rango due e quindi il sistema S ha infinite soluzioni. In
questo caso quindi i due piani hanno una retta in comune ed il sistema S fornisce una
rappresentazione di tale retta .

Se la matrice A ha rango uno allora bisogna controllare il rango di A’ . Se anche A’ ha rango uno
allora le due righe di A’ sono proporzionali e quindi i due piani dati coincidono e sono quindi
paralleli ( impropriamente ) . Se il rango di A’ ¢ due il sistema S non ha soluzioni e quindi i due
piani non avendo punti in comune sono tra loro paralleli ( propriamente ). La conclusione delle
nostre argomentazioni pud essere riassunta nel seguente teorema analogo al teorema 1.1 gia

stabilito per due rette di un piano .

Teorema 2.1  Siano w e ©’ due piani dello spazio rappresentati rispettivamente da :

T ax + by+ cz+d =0

T ax+by+tcz+d =0

I piani 7w e n'  sono paralleli se e solo se risulta

(a,b,c)= p(a’,b ,c)
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Abbiamo cosi visto che una retta r dello spazio puo essere rappresentata in due modi . in forma

parametrica oppure con un sistema di due equazioni rappresentative di due piani distinti che la

contengono.
Sia r una retta dello spazio rappresentata dal seguente sistema S:
ax+by+cz +d =0
r:
a'x+by+c'z+d=0
Come si possono dedurre i numeri direttori di r da tale rappresentazione ? Vediamo.
Se A(xa . ya .za) e B(xg. ys. zs ) sonoduepuntidir allorale loro
coordinate verificano il sistema S che rappresenta r, e quindi valgono le seguenti relazioni :
axgt byB+ CZB+d =0

axat byA+ CZA+d =0

a’xB+b’yB + C’ZB +d =0

a’xA + b’yA + C’ZA +d =0

Dalle relazioni sopra scritte , sottraendo membro a membro , si ha :

.. {a(XB_xA)+b(yB -ya)t+ ¢ (z5-2,) =0
(i)

a'(Xg-X,) + b'(yg -ya)+ ¢'(z5-2,) =0

Le (i1) mostrano che i tre numeri direttori (Xg-Xa , YB-YA , Zs-Za) che stiamo cercando

sono una soluzione non nulla del sistema omogeneo (nelle incognite ¢, m n ) seguente :

al/ +bm + cn =0
al +bm + c'n =0
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e quindi essi possono ottenersi ( come gia visto nel capitolo IIl ) calcolando, a segno alterno, i

determinanti delle matrici

ottenute dalla matrice

dei coefficienti cancellando la prima ,la seconda e la terza colonna.

Siano r una retta dello spazio rappresentata parametricamente da :

X=X, + pi
r: Y=Y, t PH
z=12z,+ po

€ m un piano rappresentato dall’ equazione ax + by+ cz+d = 0. Unpunto P dellaretta r
ha coordinate (xo + p A ,¥yo + pH, Z, + pvVv ) e talepunto appartiene anche al piano se

le sue coordinate soddisfano 1’equazione del piano cio¢ se vale la seguente eguaglianza :

Gi7) a(Xxo+ pA)+b(yo+t pp)tc(zm+ pv)+d =0.

Quindi ogni valore di p che renda soddisfatta la (jjj) da luogo ad un punto della retta che giace
anche nel piano. Bisogna quindi determinare le soluzioni della (jjj ) pensata come equazione in p

La (jjj) come equazionein p ¢ di primo grado e del tipo :
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Gip) Ap +B=0

Avendo posto

A=al +bp +tcv e B=ax, + + by, + cz, +d .
Orase risulta A # 0 [D’equazione (jjj) hauna sola soluzione datada p = % ed in tal caso
o . : -B
il piano e la retta hanno un solo punto in comune quello corrispondente al valore p = a

trovato.

Seinvece A=0 ed ¢ B= 0 alloraognivaloredi p soddisfa (jjj) e quindi ogni punto della
retta giace nel piano . Quindi se A=0 e B= 0 laretta giace nel piano. Se A=0 mae B#0
allora la (jjj) non ha soluzioni e quindi nessun punto della retta giace nel piano.

Le argomentazioni sopra fatte portano quindi ad enunciare il seguente teorema.

Teorema 2.2 Una retta r dello spazio di numeri direttori ( A, u ,v ) edunpianon

rappresentato dall’equazione  ax + by + cz+d = 0 sono paralleli se e solo se risulta :

al +bp +cv=0.

Sia m un piano passante per 1’origine delle coordinate e sia

ax + by+ cz=0

I’equazione che lo rappresenta .
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Consideriamo il punto A (a, b, ¢ ) di coordinate (a,b,c). Tale punto ¢ distinto dall’origine,
essendo (a,b,c) # (0,0,0) e non appartiene al piano m in quanto aa+ bb+ cc>0.

Se P(x,y,z) ¢unpunto del piano n risulta ax + by + cz =0 e cid0 mostra che i due
vettori OA ed OP sono tra loro ortogonali . Abbiamo cosi mostrato che il vettore OA ¢
ortogonale ad ogni vettore OP del piano e quindi OA ¢ ortogonale al piano . Laretta OA che ha
numeri direttori  (a,b,c) ¢ quindi ortogonale al piano di equazione ax + by+ cz=0.
Ovviamente un piano parallelo a © conserva gli stessi coefficienti (a,b,c) ed una retta parallela

alla retta OA conserva gli stessi numeri direttori e cosi € provato il seguente teorema :

Teorema 2.3  Una retta r di numeri direttori ( A, u, v) risulta ortogonale ad un

piano di equazione ax + by+ cz+d =0 seesolose risulta

( A,p,v) =p(ab,c)

Siano ora dati due piani m e =’ distinti e non paralleli e sia t la retta ad essi comune.

I piani ® e 7’ siano rappresentati rispettivamente da

T ax + by+ cz+d =0

T a’x+by+cz+d =0

Si consideri un punto A non appartenente ai due piani e siano r la retta per A ortogonale anw edr’ la

retta per A ortogonale a m’ . La retta r essendo ortogonale a m ha numeri direttori (a,b,c) ed r’

essendo ortogonale a m’ ha numeri direttori ( a’ , b’ , ¢’ ). Il piano determinato da r ed r’ ¢



21

ortogonale alla retta t e contiene il quadrilatero di lati r, r’,s, s’ , avendo indicato con s la retta

nN © econ s’ laretta @ N=n” .

A
aL
T
S b
T
-
t s’ ,
T

Facendo riferimento alla figura gli angoli @ e [ opposti tra loro in questo quadrilatero sono
ovviamente tra loro supplementari essendo retti gli altri due. Inoltre i piani w e =’ sono tra loro

ortogonali se e solo se B ¢ un angolo retto. Valgono cosi le seguenti equivalenze :

T T
TLmT <=> B=—<=> o= — <=> r.71

2 2
Ne segue che 1 due piani sono ortogonali se e solo se tali risultano le due rette r ed r’. Tenendo
conto del teorema II di pagina 4 resta provato il seguente
Teorema 2.4 Due piani © e ' rappresentati rispettivamente da
T ax + by+t cz+d =0

T a’x+by+cz+d =0

sono tra loro ortogonali se e solo se risulta
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aa’ +bb +cc’ =0

3. Fasci di piani

Sia r una retta rappresentata dal sistema

ax+by+cz+d=0
r:
a'x+by+c'z+d=0

I’ insieme di tutti i piani che contengono la retta r & chiamato fascio di piani di asse r.
Sia P(Xo,Yo. Zo) unpunto qualsiasi dir. Allora P con le sue coordinate soddisfa entrambe le

equazioni del sistema . Ne consegue che se consideriamo un’equazione del tipo

(**) a(ax +by+cz+d) + B(a’x+by+c’z+d ) =0

con (o, B )# (0,0 ) ottenuta combinando linearmente le due equazioni date, essa
rappresenta ancora un piano per la retta r in quanto le coordinate di P soddisfano tale equazione
qualunque sia la scelta dei coefficienti oo e B . Se ogni piano per r si ottiene mettendo nella (**)
un opportuno valore di a ed un opportuno valore di [ allora al variare di questi due parametri a
e B la (**) descrive tutti i piani per r e quindi rappresenta il fascio di piani di asse r.

Sia quindi ” un qualunque piano perr rappresentato dall’equazione :
TE” a”X+b”y+C”Z+d” :O.

Il sistema formato dalle tre equazioni

ax + by +cz +d =0
a'x +b'y +c'z +d' =0
a’x+b’y +¢”z+d"=0
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ha infinite soluzioni fornite dalle coordinate dei punti di r . Pertanto le due matrici del sistema

hanno lo stesso rango . Ora la matrice incompleta

a b ¢
A=la b ¢
a” b" CH

ha rango due altrimenti il sistema avrebbe una unica soluzione e cosi anche quella completa

a b ¢ d
A7 — al b' CV d'
a" b" C" d"

deve avere rango due . Pertanto le tre righe di A’ sono dipendenti e poiché le prime due sono

indipendenti si ha che la terza riga ¢ combinazione delle prime due. Si ha cosi I’asserto.

4. — Stelle di piani .

In tale numero cercheremo di rappresentare tutti i piani che passino per un fissato punto

A(Xo, Yo, Zo) . Tale insieme di piani viene chiamato stella di piani di centro A4 .

Siano m, m’ e =w” tre piani per A ed aventi in comune il solo punto A. Ipiani n, T e =«

siano rappresentati da

T ax + by +cz+d =0
T a’x+by+cz+d =0
TE” : a”x+b’9y+c’iz+d”zo

Poiché i tre piani dati hanno in comune il solo punto A allora il sistema formato dalle tre equazioni

che rappresentano i tre piani ©, n° e 7~ ha una sola soluzione e quindi la sua matrice incompleta
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ha il determinante diverso da zero.
Inoltre poich¢ A appartienesiaa 7 sia a @ esia a m le sue coordinate soddisfano tutte e

tre le equazioni. Ne consegue che se consideriamo un’equazione del tipo

*) a(ax +by +cz+d) +B(ax+by+c z+d)Fy(a”x +b y+cz+d’)=0

con (a,PB,y)# (0,0,0 ) ottenuta combinando linearmente le tre equazioni date, essa
rappresenta un piano, ancora per il punto A , in quanto le coordinate di A la soddisfano qualunque
sia la scelta dei coefficienti a , B ey . Se ogni piano per A si ottiene mettendo nella (*) un
opportuno valore di o ,un opportuno valore di [ ed un opportuno valore di y allora al variare
dei parametria , P e y la (*) descrive tutti i piani per A e quindi rappresenta la stella di piani
di centro A.

Sia quindi my un qualunque piano per A rappresentato dall’equazione :

Il sistema formato dalle quattro equazioni

ax+ by +cz +d =0
a'x+b'y+ c'z+d =0
a’x+b’y+c’z+d" =0
ax+by+cz+d, =0

risulta compatibile in quanto la terna ( X, , Yo ,Zo ) € una sua soluzione. Ne consegue che la matrice
completa ha lo stesso rango di quella incompleta e quindi ha rango tre.

Risulta allora

a b ¢ d
aa b ¢ d
det =0
a" b” C" d"
a() b() C() d()

Le quattro righe di tale matrice sono quindi dipendenti e poiché le prime tre sono indipendenti
allora la quarta ¢ combinazione lineare delle prime tre e cosi si ha 1’asserto.

Tre piani per il punto A(X, , Yo .Zo) di semplice rappresentazione sono quelli per A paralleli ai
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piani coordinati cio¢ i piani rappresentati da :

X -X,=0 y- Yo =0 z- 7z, =0

pertanto, per cio che precede, 1’equazione

o0 (X -X)+t B - yo)Tv(z- %) =0

al variare di o , B ey rappresenta tutti i piani per A e per tale motivo viene chiamata /’equazione

della stella di piani di centro A .

Concludiamo con alcuni esercizi . Prima di far cid0 evidenziamo alcune
semplici proprieta d'incidenza tra, punti , rette e piani dello spazio utili per le

applicazioni .

1. Siano dati un punto A ed una retta r non contenente A.

a) C’ e una sola retta per A parallela ad r .

b) C'e un sol piano che contiene A ed r . In tale piano giacciono tutte le rette per

A incidenti r .
c¢) C'e un sol piano per A ortogonale ad r . In tale piano giacciono tutte le rette

per A ortogonali ad r .

2. Siano dati un punto A ed un piano © non contenente A.

a) C'eun sol piano per A parallelo a m . Tale piano contiene tutte le rette per

A parallele a 7 .

b)  C’ e una sola retta per A ortogonale a .

3. Siano dati una retta r ed un piano ® non contenente r . La retta r sia incidente il
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piano ma non sia ortogonale al piano

a) C’eun sol piano per r ortogonale a m .

4. Siano date due rette r ed s tra loro sghembe.

a) C’ é un sol piano per r parallelo ad s .
Concludiamo con qualche esercizio .

Fissato nello spazio un riferimento monometrico ortogonale, siano dati il punto

A (1,1,2) il piano & rappresentato da 2x +y-3z+1=0 e laretta r rappresentata da

x-2y =0
X+z-2=0

Si rappresentino

1. La retta per A parallela ad r .

2. La retta per A ortogonale a &

3. Il piano per A parallelo a .

4. 1l piano per A ortogonale ad r

5. 1l piano per A ed r .

6. 1l piano per r ortogonale a .

7. La retta per A incidente r e parallela a 7 .

8. La retta per A incidente r ed ortogonale ad r .

Soluzioni .

Come gia detto 1 numeri direttori di r si ottengono attraverso i minori (presi a segno

alterno ) della matrice
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e pertanto sono (-2, -1, 2 ) o una terna proporzionale come ad esempio (2, 1,-2).

Quesito 1.

La retta richiesta dovendo essere parallela ad r deve avere gli stessi numeri direttori

di r quindi essa si rappresenta parametricamente al seguente modo:

x=14+ 2p
y=1+ p
z=2-2p

Quesito 2 .
La retta richiesta per essere ortogonale a m deve avere numeri direttori
proporzionali ai coefficienti (a,b,c) dell’equazione del piano. Pertanto la retta richiesta si

rappresenta parametricamente al seguente modo:

x=1+ 2p
y=1+ p
z=2-3p

Quesito 3.
Il piano richiesto , dovendo passare per A ha una rappresentazione del tipo
a(x-1) + b(y-1) + c(z-2) =0 (stella di piani di centro A )
Inoltre tale piano dovendo essere parallelo a m deve soddisfare la condizione di parallelismo
tra piani. Bisogna pertanto scegliere (a , b ,c) proporzionalia (2,1, -3 ). Il piano

richiesto ha quindi equazione 2(x-1) + (y-1) -3(z-2) =0 cio¢ 2x +y-3z+3=0.

Quesito 4 .
Il piano richiesto , dovendo passare per A ha una rappresentazione del tipo
a(x-1) + b(y-1) + ¢(z-2) =0 (stella di piani di centro A )
Inoltre tale piano dovendo essere ortogonale ad r deve avere i coefficienti (a ,b,c )

proporzionali ai numeri direttori di r che sono (2, 1, -2). Il piano richiesto ha quindi

equazione
2(x-1) + (y-1) -2(z-2) =0

cioe 2x+y-2z+1=0.



Quesito 5.
Un qualunque piano per la retta r si rappresenta ( al variare dei parametri he k)
con I’equazione

h(x-2y) + k (x+z-2) =0 .

Tale piano (h+k)x -2hy + kz -2k = 0 contiene il punto A se le coordinate di A sono una sua
soluzione quindi se h+ k -2k +2k -2k =h-k = 0. Quindi ¢ h=k e pertanto il piano richiesto
¢ (scegliendo h=k=1) 2x-2y+z-2=0.

Quesito 6.
Un qualunque piano per la retta r si rappresenta ( al variare dei parametri he k)
con l’equazione
h(x-2y) + k (x+z-2) =0 .
Tale piano (h+k)x -2hy + kz -2k = 0 ¢ ortogonale al piano 7 se ¢ soddisfatta la condizione
di ortogonalita tra piani cio¢ se ¢ 2(h+k) -2h -3k = -k=0 . Quindi ¢

k = 0 e pertanto il piano richiesto ¢ (scegliendo h=1) x-2y=0.

Quesito 7
Laretta richiesta dovendo passare per A ed incidere r si trova sul piano che contiene
A ed r. Dovendo inoltre passare per A ed essere parallela a = si trova sul piano per A
parallelo a . Quindi la retta richiesta dovendo stare su questi due piani ¢ la retta comune a
questi due piani e quindi si rappresenta con
2x =2y+z-2 =0
{ 2x+y-3z+3 =0
Quesito 8
La retta richiesta dovendo passare per A ed incidere r si trova sul piano che contiene
A ed r. Dovendo inoltre passare per A ed essere ortogonale ad r si trova sul piano per A
ortogonale a r. Quindi la retta richiesta dovendo stare su questi due piani ¢ la retta comune

a questi due piani e quindi si rappresenta con

2x —2y+z-2 =0
2x+y-2z+1 =0

28
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1. Piani affini e proiettivi.

Un piano affine ¢ unacoppia ( o, ® ) dove o ¢ un insieme non vuoto i cui elementi
sono detti punti ed ® ¢ una famiglia di parti proprie, ognuna di cardinalita almeno due , 1 cui

elementi sono detti rette verificante le seguenti proprieta :

1. due punti appartengono ad una unica retta.
2. dati una retta ¢ ed un punto p non appartenente ad ¢ esiste una sola retta per p ad
intersezione vuota con ¢ (unicita della parallela )

3. esistono tre punti non allineati.

Sia ( o, ® ) unpiano affine . Due rette red r’ le diciamo parallelese ¢ r =1’
oppure ¢ r N r = . Tale relazione &, come ¢ facile controllare , una relazione
d’equivalenza nell’insieme ® delle rette del piano.

Per la proprieta 2 (unicita della parallela ) una retta r insieme a tutte le sue parallele
fornisce una partizione dei punti del piano.

Inoltre una retta r e tutte le sue parallele definiscono un fascio improprio di rette del
piano.

L’insieme di tutte le rette passanti per un fissato punto p viene chiamato fascio proprio di

rette di centro p.

Un piano proiettivo ¢ una coppia ( m, £) dove m ¢ un insieme non vuoto i cui elementi
sono detti punti ed £ ¢ una famiglia di parti proprie di m 1 cui elementi sono detti rette

verificante le seguenti proprieta :

a) due punti appartengono ad una unica retta.
b) due rette distinte si intersecano in un unico punto.

c) esistono quattro punti a tre a tre non allineati .
Le proprieta a), b), c) sono equivalenti ad
a) due punti appartengono ad una unica retta.

b) due rette distinte si intersecano in un unico punto.

c’) ogni retta ha almeno tre punti .
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Dimostrazione.

Supponiamo che siano verificate le proprieta a) ,b),c) esiano A,B,C,D i
quattro punti a tre a tre non allineati che il piano possiede. Sia L una retta qualsiasi di & .
Uno dei punti A, B, C, D non appartiene ad L e sia , per fissare le idee , il punto A.
Poich¢ A, B, C, D sono punti a tre a tre non allineati allora risultano distinte le tre rette
AB, AC, AD . Tali rette intersecano L in tre punti distinti e cosi L ha almeno tre punti.

Viceversa supponiamo siano verificate le proprieta a), b), c’) . Siano L ed L’ due
rette distinte (esse esistono perché le rette sono parti proprie) e sia O il punto che hanno in
comune. Poiché ogni retta ha almeno tre punti possiamo scegliere su L — {O } due punti
distintiAeBesuL’—{O } due puntidistinti C e D . I quattro punti A, B, C, D sono a tre

a tre non allineati e ’asserto ¢ cosi provato.

Il primo risultato importante relativo a tali strutture ¢ il seguente :

Proposizione 1.1. Le rette di un piano affine sono equipotenti . Le rette di un piano
proiettivo sono equipotenti.

Dimostrazione . Sia ( o , ® ) un piano affine e siano r ed r’ due sue rette tra loro
incidenti. Sia y il punto comune ad r ed r’. Siano p un punto di r distinto da y e sia p’ un
punto di r’ distinto day . Sia t la retta pp’. Per ogni punto x dir sia t’ la retta per x
parallela a t e sia x’ il punto di incontro tra t” ed r’. La corrispondenza x = x’ ¢ biettiva
onde¢ | r|=]|r’|.Selerette redr’ sono tra loro parallele si consideri la retta t che unisce un
punto p dir con un punto p’ di r’. Essendo la retta t incidente sia r che r’ risulta per cid che
precede |r|=| t| e |r'|=|t | onde¢ancora | r|=|r"|.

Sia ora ( m, £)un piano proiettivo e siano r ed r’ due rette distinte incidenti tra loro nel
punto y . Siano p un punto di r distinto day e sia p’ un punto di r’ distinto day . Sia t la retta
pp’. Poiché t ha almeno tre punti c’¢ su t un punto z distinto da p e p’. Il punto z non
appartiene quindi né ad r né ad r’ . Per ogni punto x dir sia x’ il punto di r’ intersezione tra

laretta r’ e laretta [x z]. La corrispondenza x=> x’ ¢ biettivaondee | r|=|r"|.

Per gli scopi di questa trattazione supporremo che gli insiemi o e m sostegni dei due piani ,affine

e proiettivo, siano infiniti e che tali risultino le loro rette.
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Duepianiaffini (o, ®R)e ( o’ ,®R’) sidicono isomorfi se esiste una biezione

f: a—>a” traisostegni oo ed a’ che trasforma rettedi o inrettedi o’ .

E’ facile controllare che se f & un isomorfismo anche la funzione inversa f' & un
isomorfismo in quanto trasforma le rette di o’ nelle rette di o .

Evidentemente se due piani affini sono isomorfi allora la cardinalita delle rette di a
eguaglia la cardinalita delle rette di o’

Due piani proiettivi ( w,£) e ( n’, L) sidicono isomorfi se esiste una biezione

f: m > w traisostegni m ed ©’ che trasforma rettedi m inrettedi n’ .

E’ facile controllare che se f ¢ un isomorfismo, anche la funzione inversa f "¢ un
isomorfismo in quanto trasforma le rette di n’ nelle rette di « .

Evidentemente se due piani proiettivi sono isomorfi allora la cardinalita delle rette di =
eguaglia la cardinalita delle rette di =

Osservando le due definizioni date, di piano affine e piano proiettivo, si osserva che la
differenza di fondo ¢ che in un piano affine ci sono rette ad intersezione vuota ( rette parallele
tra loro ) mentre in un piano proiettivo due rette hanno sempre un punto in comune.

L’ aspetto comune ¢ che in entrambe le strutture per due punti passa una sola retta.

Mostreremo ora come ogni piano affine possa , con I’aggiunta di opportuni nuovi punti e
nuove rette, essere trasformato in un piano proiettivo . E’ chiaro a priori che i punti che
aggiungeremo dovranno far si che due rette che nel piano affine hanno intersezione vuota nel
nuovo piano abbiano un punto in comune.

Vediamo come si effettua questa costruzione.

Sia r una retta del piano affine . Indichiamo con O, un oggetto da noi scelto e che
chiamiamo punto improprio ed ampliamo la retta r aggiungendo ad essa questo nuovo punto .
Ogni retta del piano ha quindi un nuovo punto ed il criterio che seguiremo per tale attribuzione ¢
il seguente :

O; = O = r ¢ parallela ad s

(esplicitamente : il punto O, aggiunto ad r coincide col punto O, aggiunto ad s se e solo se
r ed s sono rette tra loro parallele )

Pertanto con tale criterio una retta s parallela ad r sara ampliata con lo stesso punto che
abbiamo aggiunto ad r ed in tal modo le due rette red s , prima tra loro parallele, risultano
ora incidenti nel punto O; che ¢ ad esse comune .

Indichiamo con A T’insieme di tutti 1 punti impropri O, al variare di r nel piano . Che
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cardinalitaha A ? Vediamo .

Si consideri un punto p del piano e sia F, il fascio proprio di rette di centro p . Per ogni
retta r di F, indichiamo sempre con O il suo punto improprio . E’ chiaro che i punti O; al
variare di r in Fp sono tutti distinti tra loro ed esauriscono come ora vedremo I’insieme A .
Infatti sia t una retta del piano non passante per p . Se r ¢ ’unica retta per p parallela at allora
il punto O, aggiunto alla retta t coincide con il punto O, aggiunto alla retta r.

Pertanto 1 punti impropri sono tanti quante le rette per p . Chiameremo A retta impropria.
Sia r una retta del piano e pensiamola ampliata col suo punto improprio O, . Sia p un punto
non appartenente ad r . Le rette per p sono tante quanti i punti di r ampliata . Infatti la
corrispondenza

xer — [px]ekF,
che associa ad un punto x di r la retta [p,x] che unisce p ed x ¢ biettiva.

Pertanto anche una retta r del piano quando la si pensi ampliata col suo punto improprio ha
tanti punti quante le rette di un fascio proprio.

Si consideri ora I’insieme m= o U A ottenuto aggiungendo ad o i nuovi punti,
quelli impropri. Per distinguere i punti di © tra vecchi e nuovi , chiameremo propri 1 punti di ©
che sono puntidi o ed impropri ipuntim di chesonopuntidi A . Siaora £ laseguente
famiglia di parti di =n . Chiameremo rette gli elementi di £ . Per ogni retta r del piano
affine indichiamo con r* =r U { O; } il sottoinsieme di © ottenuto aggiungendo ad r il suo
punto improprio O, . Le rette di =n elementidi £ sono A, detta retta impropria , e tutte le
rette ampliate r* al variare di r nel piano affine ( o , ® ). Le rette r* sono dette proprie.
Ora proveremo che la coppia ( © , £) ¢ un piano proiettivo.

Siano p e p’ due puntidistintidi © . Se pe p’ sono entrambi propri , detta r la retta di
a per essi, allorar* ¢ 1’ unica retta di m che contiene tali due punti. Se p e p’ sono entrambi
impropri allora A ¢ l’unica retta che contiene tali due punti. Se p ¢ proprio e p’ = O ¢
improprio allora detta r 'unica retta di ( o , ® ) per p parallela ad s si ha che r* ¢ I’ unica
retta di m che contiene i due punti pe p’.

Siano ora ¢ ed ( due rette distinte di ( m , £). Se una delle due ¢ la retta impropria, per
esempio sia = A allora laretta { essendo propria possiede un solo punto improprio che ¢
quindi I’'unico punto che essa ha in comune con { . Possiamo quindi supporre che entrambe le
rette ¢ ed ¢ siano proprie . Poniamo quindi ¢ =r U {O;} ed f =s U {Os} .Selerette red
s del piano ( o , ® ) sono parallele allora ¢ O, =0 equindi ¢ ed ¢ hanno in comune

tale punto O; . Se r incide s nel punto p allora p ¢ il punto comune ad ¢ ed (.
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Poiché ogniretta r di( o, ® ) ha almeno due punti allora ogni retta r* ampliata ha
almeno tre punti e cosi ogni fascio proprio di rette con centro un punto p di a ha almeno tre
rette. Ne segue che anche la retta A ha almeno tre punti.

Abbiamo cosi provato che la coppia ( m , £) ¢ un piano proiettivo.

Il piano proiettivo cosi ottenuto viene chiamato ’ampliamento proiettivo del piano affine.

Possiamo ora far vedere che ogni piano proiettivo ¢ isomorfo ad uno ottenuto come
ampliamento di un piano affine . Vediamo.

Sia quindi ( @ , £) un piano proiettivo e sia L, una sua retta. Priviamo il piano proiettivo
della retta L, e di tutti i suoi punti . Quindi consideriamo cid che rimane dopo questa
depauperazione . Denotiamo con a [’insieme ottenuto privando m dei punti di L, . Le rette di
a sono le rette L di m, distinte da L, , ciascuna privata del punto che essa ha in comune con
L,. Indicando con

R={t=L-(LnLy), L#L, Le}
la famiglia di tali rette possiamo ora far vedere che la coppia ( o , ® ) ¢ un piano affine .
Siano p e p’ due punti distinti di o . Essendo p e p’ punti distinti di @ ¢’¢ una sola retta L nel
piano proiettivo che contiene questi due punti . Laretta ¢ =L — (L NnL,) ¢ quindi I’unica retta
di o per tali due punti. Sitaora { =L —-L NnL, wunarettadio e pun puntodi o non
appartenente ad ( . Sia L’ la retta del piano proiettivo che unisce i punti p € p,=L NnL,
Laretta {f =L’ — {po} ¢ 'unicarettadi o per p parallelaad ¢.
Poiché in a esistono almeno due rette esistono tre punti non allineati. La coppia (o , R )¢
quindi un piano affine .
Sia p, un punto di L, . Consideriamo tutte le rette L di m distinte da L, passanti per p, ,
Ognuna di tali rette , privata del punto p, , da luogo ad una retta ¢ del piano affine. Ne segue
che tutte le rette ( ottenute in corrispondenza alle rette L per p, sono tra loro a due a due
parallele e costituiscono quindi nel piano « un fascio improprio. Se si aggiunge ad ognuna di
tali rette il punto p, come loro punto improprio si ottiene un piano proiettivo isomorfo al piano

( m , £) (Pidentita realizza infatti un isomorfismo tra questi due piani) .

Mostreremo ora due esempi . Il primo sara un esempio di piano affine .Il secondo sara un
esempio di piano proiettivo. Per entrambi gli esempi ci serviremo del campo dei numeri reali
(perché questo ¢ utile ai nostri scopi ) ma la costruzione che faremo sarebbe possibile ed eguale

se sostituissimo il campo reale con un altro campo .
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2. Esempio di piano affine: Il piano affine numerico reale.

Sia R il campo dei numeri reali . Sia o = R? I’insieme delle coppie ordinate di
numeri reali . Chiameremo punti glielementidi o .Se p=(x,y) ¢un puntoidue
numeri X e y saranno chiamati le sue coordinate . Il numero x ¢ chiamato ’ascissa di p
mentre il numero y ¢ chiamato 1’ordinata dip .

Consideriamo una terna ordinata di numeri reali (a, b, c) con la condizione che (a, b)
#(0,0). Con la nostra scelta , i tre numeri (a,b,c) ciconsentono di poter considerare la

seguente equazione di primo grado nelle variabili xedy :

(1) ax + by +c¢c =0

Ci sono infinite coppie ( X;,y; ) che sono soluzioni dell’equazione (1) anzi tali coppie

sono in numero pari alla cardinalita | R|di R . Infatti se ¢ ad esempio a # 0 le coppie

soluzioni della (1) sono al variare diy in R tutte e sole le seguenti ( “by-c
a

, V)

Tutte le soluzioni dell’equazione (1), essendo infinite coppie ordinate di numeri reali ,sono
quindi un sottoinsieme infinito di o . Tale sottoinsieme r sara chiamato refta e 1’equazione
(1) che I’ha definito sara chiamata la sua equazione. Si dice anche che 1’equazione (1)
rappresenta tale retta.

E’ chiaro chese (a’,b’,c’) ¢ proporzionalead (a,b,c) esiottieneda (a,b,c)

moltiplicando questa per un numero diverso da zero allora le due equazioni
ax + by +c=0 e ax +tby+c =0

hanno le stesse soluzioni e quindi definiscono la stessa retta .
La famiglia di tutte le rette r di R? sara indicata con Rr .
Se r ¢ una retta ed

(1) ax + by + ¢ =0

¢ I’equazione che 1’ha definita possiamo descrivere 1 punti di r al seguente modo . Ricordiamo che i

punti di r sono le coppie ( x;,y;) che sono soluzioni dell’equazione ax + by + ¢ =0.

Orase (Xo,yo) ¢unpuntodi r allora (Xo,Yyo) € una soluzione dell’equazione
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ax + by + ¢ =0. Per quanto visto nel capitolo riguardante lo studio dei sistemi di equazioni
lineari, tutte le soluzioni § dell’ equazione (1) si ottengono aggiungendo ad una sua soluzione
tutte le soluzioni dell’equazione
2) ax + by =0
omogenea associata. D’altra parte lo spazio delle soluzionidi ax + by =0 ¢ un sottospazio S
di R® didimensione uno e quindi tali soluzioni sono determinate tutte attraverso la conoscenza di
una soluzione non nulla . La coppia ( -b, a) ¢ una soluzione non nulla dell’equazione
ax + by =0
e quindi per quanto detto, essa ¢ una base dello spazio S. delle soluzioni , che sono quindi tutte del

tipo p(-b,a) con p numero reale . Per semplicita di scrittura poniamo

A =-b p =a
e talecoppia ( A , pu ) (basedi S.) sara chiamata coppia di numeri direttori di r . E’
evidente che una coppia ( A’ , u’ ) proporzionalea ( A , p ) secondo un fattore di

proporzionalita non nullo ¢ anch’essa base di &. € quindi ¢ anch’essa una coppia di numeri direttori
di r . I numeri direttori di r sono quindi non unici , non entrambi nulli, e definiti a meno di un
fattore di proporzionalita non nullo.

Abbiamo ricordato che tutte le soluzioni dell’equazione ax + by + ¢ =0 si ottengono
sommando ad una sua soluzione ( X¢ , yo ) tutte le soluzioni dell’equazione ax + by =0
omogenea associata. Conservando le notazioni sopra introdotte si ha allora che le coppie (x,y)

soluzioni dell’equazione ax + by + ¢ =0 sono tutte descrivibili al seguente modo :
(X,y)= (X0,y0)+ p( A, 1)

Si conclude quindi che i punti (x,y ) dir siottengono al variare del parametro reale p con
le seguenti formule

3) {x = X, tph

Y= Yo Tpu
Quando si rappresentino 1 punti di una retta r in questo modo si dice che r € stata rappresentata
parametricamente (in quanto é il parametro p che variando in R permette di descrivere tutti i
suoi punti ).
E’ utile osservare che le infinite coppie ( X, y ) che si ottengono al variare di p in R con

formule del tipo



X, T pA
Yo TPH

b
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dovee (A, p) # (0,0) sonoipunti di una retta in quanto tali coppie sono le soluzioni di

un’equazione del tipo ax + by + ¢ = 0. Infatti supposto che sia ad esempio A # 0 siha:

_ XX,
P A
e quindi
_ o XX
Yy=Yo N B
) . X = X, tpAr
Pertanto le coppie (x,y ) descritte da
Y= Yo TPH

LX- Ay TAyo-puxo=0

e quindi sono 1 punti di una retta .

Siano ora r ed r’ due rette e siano
(1) ax +by+c=0
ed
2) ax +by+c =0

sono le soluzioni dell’equazione

le equazioni che definiscono r ed r’ . Vogliamo stabilire quando r incide r’ o quando r ¢ parallela

adr’ . Un punto (X0, Yo ) appartiene sia ad r che ad r’ se la coppia ( X, yo ) ¢ soluzione di

entrambe le equazioni e quindi se essa ¢ soluzione del sistema S formato dalle due equazioni

assegnate. Viceversa una soluzione di tale sistema S fornisce un punto comune alle due rette.

Occorre quindi discutere il sistema S formato dalle due equazioni :

+by+c=0
S {ax y + ¢

ax +by+c =0

Siano

ab abc
= A’ =
a'b a'bc
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le due matrici , incompleta e completa , del sistema S.

Se
ab
det( j;t 0
a'b

allora il sistema S ha una sola soluzione e quindi le due rette r ed r’ sono tra loro incidenti.

b
Se det (al b'j: 0 allora il rango di A ¢ uno . Se A’ ha rango due il sistema S non ha
a

soluzioni e quindi le due rette sono tra loro parallele. Se A’ ha rango uno allora le sue righe sono
proporzionali e quindi le due rette r ed r’ sono coincidenti e quindi pur sempre parallele.

In ogni caso detA =0 comporta che r ed 1’ sono parallele. Viceversa se r ed r’ sono parallele,
per cio che precede , ¢ necessariamente det A = 0.

Abbiamo cosi provato la seguente :

Proposizione 2.1 Due rette r ed r’ rappresentate da
r: ax + by +c =0

r: a’x +by +c =0
. a b . :
sono parallele se e solo se risulta det | b =0 o equivalentemente se e solo se la coppia
a

(a, b ) e proporzionale alla coppia (a’, b’ ).

Poiché risulta

ab b a
det = det
a'b' -b' a'

allora ricordando che (-b, a) ¢ una coppia di numeri direttori dir e (-b’, a’ ) ¢ una coppia di

numeri direttori di r’ possiamo riformulare la proposizione 1.1 al seguente modo :
Proposizione 2.2 Due rette r ed r’ rappresentate da

r: ax +by +c =0

r: ax+b'y+c =0
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sono parallele se e solo se esse hanno gli stessi numeri direttori.

Sia r wuna retta rappresentata dall’equazione  ax +by + ¢ = 0 . Per quanto precede

I’equazione

(1.1) ax+by+k=0

rappresenta ,al variare di k in R , tutte le rette parallele ad r . Per questa ragione essa rappresenta il

fascio improprio costituito da r e da tutte le sue parallele.

Concludiamo tale numero cercando di rappresentare tutte le rette che passino per un fissato punto

P=(x, ,¥o). Tale insieme di rette viene chiamato fascio proprio di rette di centro P .

Siano r ed r’ due rette per (X, ,yo) rappresentate da :

ro: ax+by+c=0

o ax+by+c =0

Poich¢ il punto ( X, , Yo ) appartiene sia ad r che ad r’ le sue coordinate soddisfano entrambe le

equazioni. Ne consegue che se consideriamo un’equazione del tipo

(**) a(ax +by+c) + B(a’x+by+c’) =0

con (o, B )# (0,0 ) ottenuta combinando linearmente le due equazioni date, essa
rappresenta una retta ancora per il punto ( X, , Yo ) in quanto le coordinate di tale punto la
soddisfano qualunque sia la scelta dei coefficienti a e B . Se ogni retta per ( X, , Yo ) si ottiene
mettendo nella (**) un opportuno valore di a ed un opportuno valore di [ allora al variare di
questi due parametria e B la (**) descrive tutte le rette per ( X, , Yo ) € quindi rappresenta il
fascio di rette di centro tale punto.

Sia quindi r” una qualunque retta per (X, ,y,) rappresentata dall’equazione :
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r” : a”X + b)’y + C” — 0

Il sistema formato dalle tre equazioni

ax + by +c =0
a'x +b'y +¢' =0
a’x+b’y +¢” =0

risulta compatibile in quanto la coppia ( X, , Yo ) € una sua soluzione. Ne consegue che la matrice
completa ha lo stesso rango di quella incompleta e quindi ha rango due .

Risulta allora

a b ¢
det |a' b ¢ |=0
a” b" n

Le tre righe di tale matrice sono quindi dipendenti e poiché le prime due sono indipendenti allora la
terza ¢ combinazione lineare delle prime due e cosi si ha ’asserto.

Due rette per il punto ( X, , ¥, ) di semplice rappresentazione sono
X -X,=0 ed VY- Vo =0
e pertanto, per cio che precede, 1’equazione
3) wX -Xo)) T P(y- ¥o) =0
al variaredi a e p con( a ,B ) # (0,0) rappresenta tutte le rette per il punto (X, , Vo ) -

L’ equazione (3) ¢ chiamata [’equazione del fascio proprio di rette di centro (x, , y, ) -

Siamo ora in grado di provare la seguente :

Proposizione 2.2 La coppia ( R° , % ) ¢éun piano affine.
Dimostrazione. Siano (x; ,y;) € (X2 ,y2 ) due punti distinti. Una retta che contenga tali due

punti deve essere rappresentata da una equazione ax +by +c¢ =0 che abbia le due coppie (x;,y1)
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e (X2,y2 ) tra le sue soluzioni. Pertanto dovra essere :
(*%) {axl +by +c¢=0
ax, +by, +¢c=0

Tale sistema omogeneo nelle incognite (a, b, c) ha la matrice dei coefficienti

[Xl Yi lj
X, ¥, 1
di rango due in quanto i due punti (X; ,y;) € (X2 ,y2 ) sono distinti . Le soluzioni del sistema (**)

sono quindi un sottospazio di R’ di dimensione uno ed una sua base si ottiene attraverso i minori

X 1
d’ordine due della matrice ( LN j presi a segni alterni.
X2 Y2

Le terne ( a, b, c¢) non nulle da noi cercate sono quindi infinite e tutte proporzionali tra loro. Esse
quindi definiscono tutte la stessa retta che ¢ quindi [’unica passante per i due punti (x;,y;) e
(x2 ,y2 ) distinti assegnati.
Sia ora ¢ una retta definita dall’equazione ax + by +c¢ =0 e sia (X, , Yo) un punto non
appartenente ad ¢ . Per ci0 che precede una qualunque retta per (X, , Yo) € rappresentata da
un’equazione del tipo

ax -X) ¥ By- ¥o) =0
Tra esse I’unica retta parallela ad ¢ ¢ quella che si ottiene scegliendo a e [ proporzionaliad a e

b . Pertanto ¢’¢ una sola retta per (X, , yo) parallelaad ¢ ed essa ¢ rappresentata dall’equazione

aX -Xo) + b(y- yo) =0

Poiché una retta r & un sottoinsieme proprio di R’ allora tre punti , due scelti su r ed uno
fuori da r, sono tre punti non allineati del nostro piano a .
Resta cosi provato che la coppia ( R*> , ®g ) ¢ un piano affine. Tale piano affine &

detto piano affine numerico reale.

Per le applicazioni e molto utile la seguente osservazione .
Dalla dimostrazione fatta segue che 1’equazione della retta che congiunge i punti distinti

(X1, y1) € (x2,¥y2) siottiene sviluppando il seguente determinante :
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x y 1
det | X, y, 1[=0

X, ¥, 1

3. Il piano affine numerico complesso.

Abbiamo gia detto che la costruzione fatta per ottenere il piano affine numerico reale
( R* , Qg )¢ indipendente dal fatto che il campo usato sia quello dei numeri reali. Lo stesso
risultato si ottiene se si considera al posto del campo reale un qualsiasi campo K.

A noi interessa ora il caso in cui il campo K sia il campo dei numeri complessi C .

Partendo dal campo complesso C possiamo quindi costruire un piano affine
( C? , Q¢ ) chehacome punti le coppie ordinate ( a, b ) di numeri complessi e come rette i

sottoinsiemi di C*>  ognuno dei quali & I’insieme delle soluzioni di un’equazione
ax+by+c=0 a,b,c e C ,(a,b)= (0,0)

di primo grado non identica a coefficienti complessi.

Un punto (a,b) di C? sidira reale se (a,b) sono entrambi numeri reali . I punto (a,b) di
C? sidira immaginario seidue numeri complessi non sono entrambi reali

Osserviamo che il piano affine reale ( R* , ®g ) ¢ contenuto nel piano affine
( C?, ¢ ) nelsenso ora precisato.

Sia

ax+by+c=0 a,b,ceR ,(a,b)= (0,0)

un’ equazione a coefficienti reali . Essa determina due rette ¢ ed L la prima del piano
( R , ®r ) elasecondadel piano( C? , ®R¢ ) aseconda che si vogliano considerare le

sue soluzioni reali o le sue soluzioni complesse.

¢ ={(X,y)eR2 , axtby+c=0 }
L ={(X,y)eC2 , axtby +c=0 }

E’ ovvioche ¢ ¢ < L quindi ogni retta del piano reale ¢ parte di una retta del piano complesso.
La retta L si puo quindi pensare come un “allungamento” di ¢ . Non tutte le rette del piano

complesso sono allungamenti di quelle reali. Vediamo.
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Una retta L del piano complesso rappresentata dall’equazione
ax tby +c=0 a,b,c eC ,(a,b)= (0,0)
si dira reale se (a,b,c) ¢ proporzionale ad una terna di numeri reali. Quando la retta ¢ reale

essa ha quindi infiniti punti reali ed infiniti punti immaginari.

E’ ben noto che il campo complesso ¢ dotato di un automorfismo non identico detto
coniugio che si ottiene associando ad ogni numero complesso z=a+1ib il numero complesso
Z=a-1ib.

Quando z ¢ un numero reale (cio¢ ¢ b= 0) allorarisulta z= Z . Viceversa se risulta z = Z allora
¢ 2ib=0 e quindi b=0 e pertanto z ¢ reale .
Associando ad ogni punto ( z; , z,) del piano complesso C* il punto di (z,,z, ) si ottiene un

isomorfismo del piano complesso in s¢ . Tale isomorfismo trasforma la retta
L: ax+by+c=0 a,b,c eC ,(a,b)= (0,0)

nellaretta L , detta coniugata di L , seguente :
L : ax+by+c=0
Ricordiamo ora che 1’equazione della retta che congiunge 1 punti distinti (x;, y;) € (X2, y2)

si ottiene sviluppando il seguente determinante :

x y 1
det | X, y, 1 [=0

X, ¥y, 1

Pertanto ¢ facile controllare che la retta che congiunge due punti reali ¢ reale ed ¢ reale altresi la
retta che congiunge due punti complessi e coniugati.

Da ci0 segue allora facilmente che:

Proposizione 3.1 Una retta é reale se e solo se essa coincide con la sua complessa

coniugata.

Se una retta L non ¢ reale essa , per cio che precede , ha al piu un punto reale.
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Facilmente si ha che :

Proposizione 3.2 Una retta L non reale ha un punto reale se e solo se essa incide la sua

complessa coniugata.

A titolo di esempio la retta

L: ix -y=0

ha (0,0) come suo unico punto reale . Infatti se x # 0 ¢reale, y=1x ¢ nonreale e quindi (x,y) ¢

immaginario. Se X € non reale ancora (X, y ) ¢ immaginario.

Sempre per esemplificare la retta x +y +1=0 non ha punti reali ed ¢ infatti parallela alla sua

coniugata x+y—1=0.

4. Nozione di riferimento reale .
In questo numero col simbolo ( a,, R, ) rappresenteremo il piano della geometria elementare
che viene sempre nella nostra mente identificato coi punti e le rette di una qualunque superficie
piana che ricada sotto i nostri sensi. Questi punti e rette (che sono parti proprie del piano) si
assumono come concetti primitivi € non vengono definiti ma si ritiene che essi abbiano le due

proprieta seguenti.

a) due punti distinti appartengono ad una unica retta.

b) Dati una retta r e un punto p fuori di r c’e una unica retta per p ad intersezione vuota con
r.

Pertanto 1’idea di piano che abbiamo  “interiorizzato” ¢ quella di piano affine. L unico

problema che spesso si ha ¢ che per tracciare delle linee o dei cerchi , per misurare angoli,

segmenti etc .su tale piano occorre avere a disposizione degli strumenti (riga , compasso,

goniometro, metro etc. ) . Sembra quindi utile disporre di un piano affine isomorfo a

(a0, Ro) 1n cui queste stesse operazioni si possano eseguire solo attraverso 1’utilizzo di regole

di calcolo che ci preoccuperemo appunto di acquisire. Vediamo come si procede.

Per realizzare il nostro scopo occorre intanto introdurre la nozione di riferimento su una retta , €

la nozione di riferimento in un piano .
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Iniziamo col definire un riferimento su una retta.
Sia r una retta del piano. Scegliamo come positivo uno dei due versi in cui si puo percorrere

la retta r .Scegliamo poi un punto O sulla retta e fissiamo una unita di misura u .Il verso scelto

sia indicato con : .Laterna =(0,u, : ) ¢ detta un riferimento reale della retta r .

I1 punto O ¢ chiamato origine del riferimento.

A che serve fissare un riferimento su r ? Vediamo.

Se A e B sono due punti di r indicheremo con |AB| la misura assoluta del segmento AB fatta

rispetto all’ unita u .

u

—

A B
—t— >
B A

—t—i >

Nel disegno fatto i punti A e B scelti hanno, nei due casi, posizioni reciproche diverse e pero
individuano entrambi un segmento di lunghezza due .

Pertanto la conoscenza della lunghezza assoluta del segmento AB non ci fornisce informazioni
sulla posizione reciproca dei due punti. Per ovviare a questa difficolta si introduce il concetto di
misura relativa di un segmento. Siano quindi A e B due punti della retta r. Quando A=B il
segmento AB ¢ detto nullo ed ad esso si attribuisce misura nulla. Supponiamo quindi A
distinto da B . La misura relativa del segmento AB che viene indicata con (AB) ¢ il numero
reale seguente :

(AB)= 1 AB| se A precede B nel verso fissato

(AB)=-1AB | se A segue B nel verso fissato.

Riferendoci sempre al disegno fatto si ha quindi nel primo caso (AB )= 2 e nel secondo

caso (AB)=-2.

Sussiste la seguente proprieta di cui omettiamo la dimostrazione .

Per ogniterna A, B, C dipuntidirsiha:

4.1) (AB)+ (BC)=(AC) .
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Introdotta la nozione di misura relativa di un segmento , possiamo ora associare ad ogni punto
P dellaretta r il numero reale xp = (OP) che chiamiamo I’ ascissa di P nel riferimento K.
Per la definizione data il punto O ha ascissa zero 1 punti che seguono O hanno ascissa positiva

e quelli che precedono O hanno ascissa negativa. E’ evidente che la corrispondenza introdotta
¢c: Per — xpeR

¢ biettiva ed ¢ chiamata coordinazione della retta r .
Si osservi esplicitamente che 1’utilizzo del riferimento ha reso possibile istituire la
corrispondenza c .

Utilizzando la proprieta (1.1) si ha

(OA )+ (AB)=(0OB)
da cui segue :

(4.2) (AB)=(OB) -(OA)= Xp - Xa.

Conoscendo 1’ ascissa di ogni punto ¢ possible quindi calcolare la misura relativa di un segmento
utlizzando la formula (4.2).
Parliamo ora di riferimento del piano.

Siano x ed y due rette del piano incidenti tra loro. Sia O il punto comune alle due rette

- -
x ed y . Fissiamo su X un verso v, positivo e suy un verso v, positivo . Fissiamo infine una unita

di misura u.

Laterna Rx=(O,u, v, ) ¢unriferimento dellaretta x ed analogamente la terna

N
Ry=(0,u, v, ) ¢unriferimento dellarettay .

La quaterna R= (x,y, Rx , Ry) ¢ chiamata riferimento reale ( monometrico) del piano.

Quando le due rette x ed y sono ortogonali il riferimento ¢ detto ortogonale.

Per ogni punto P del piano indichiamo con Py la proiezione di P su x lungo la direzione di

y e con Py la proiezione di P su y lungo la direzione di x .
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La corrispondenza

P e a, -  ( Px, Py)exxy

¢ ovviamente biettiva.

Ma Py che sta su x , determina un numero reale a = (O Py) ( la sua ascissa nel riferimento
Rx ) e Py che stasuy, determina un numero reale b = (O Py) (la sua ascissa nel riferimento R
diy).
Pertanto possiamo associare al punto P la coppia ordinata di numeri reali ( a, b) corrispondente alla
coppia di punti (Px , Py).
La corrispondenza

(Px, Py) > (a, b)eR’
¢ ovviamente biettiva e quindi la corrispondenza
(*) ¢c: Peo, — (a, beR

¢ anch’essa biettiva. I due numeri a e b associati a P sono chiamati le coordinate di P nel
riferimento R . Il numero a = (O Py) ¢ detto I'ascissa di P , il numero b = (O Py) ¢ detto
I’ordinata di P .

Mostreremo piu in avanti che quando P descrive una retta del piano le sue coordinate (x,y) sono

tutte e sole le soluzioni di un’equazione di primo grado non identica in due variabili del tipo
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ax +by+c=0

Quando avremo acquisito questo risultato la corrispondenza (*) diviene un isomorfismo tra il piano
affine ( a,, R, ) edil piano affine numerico reale o (R) = ( R?, ®Rr) ampiamente descritto in
precedenza.
Osserviamo inoltre che attraverso 1’isomorfismo ¢ descritto in (*) ad ogni isomorfismo y del piano
( 0o, ®R,) insé corrisponde un isomorfismo sy -c”  del piano ( R*, ®g ) in sé e viceversa ad
ogni isomorfismo ¢ del piano ( R*, ®g) insé corrisponde un isomorfismo ¢!« ¢ - ¢ del
piano ( o,, R, ) insé.

Pertanto ’aver descritto tutti gli isomorfismi del piano ( R*, ®g ) ins¢ consente altresi una

rappresentazione del gruppo degli isomorfismi del piano ( o, , R, ) in sé.

5. Le coordinate omogenee.

Abbiamo gia visto che un piano affine puo divenire , con I’aggiunta di nuovi punti ( i punti
impropri ) ed una nuova retta ( retta impropria ) un piano proiettivo.

Nel piano reale della geometria elementare che indicheremo sempre con ( o, , R, ) se si
fissa un riferimento reale ogni punto determina due coordinate ( X , y ) che sono due numeri
reali . Viceversa ogni coppia ( X, y ) di numeri reali determina un punto del piano. In tale
rappresentazione 1 punti del piano sono in corrispondenza biettiva con le coppie ordinate di
numeri reali ed i punti di una retta sono in corrispondenza biettiva con le soluzioni di una
equazione di primo grado del tipo ax + by + ¢ =0.

Ora se aggiungono 1 punti impropri come si puo estendere la coordinazione anche ai nuovi
punti ? Come si rappresentano le rette ampliate col loro punto improprio ? Vediamo.

Bisogna per far cio introdurre le coordinate omogenee di un punto sia €sso proprio o improprio
in un riferimento reale R fissato.

Sia P un punto proprio e supponiamo che nel riferimento R esso abbia coordinate (2,3 ).
Chiameremo coordinate omogenee di P nel riferimento R una terna ordinata (x; , X, , X3 ) di

numeri reali con x3 # 0 e tale che sia :

*) 2= 22 =3

Ovviamente una terna (x; , X2, X3) “facile “ che verifica la proprieta (*) ¢laterna (2,3,1)
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ma anche (4, 6,2 ) va bene e cosi ogni terna del tipo 2p ,3p , p ) con p# 0.Una

qualsiasi di queste terne attraverso le formule (*) restituisce la coppia (2,3 ) e quindi il punto P .
Pertanto le coordinate omogenne di un punto proprio P di coordinate (X, , y,) sono tre numeri

(x1,X2,x3) conxz # 0 e verificanti la seguente proprieta :

*) — T Xo — =Y

La terna (x; , X2, X3) avendo x3 # 0 ¢ non nulla e dovendo verificare le (*) ¢ non unica ma
determinata a meno di un fattore di proporzionalita non nullo.

Se il punto P=0O, ¢ improprio ed ¢ quello aggiunto alla retta r di equazione ax + by +c =0
allora si definiscono coordinate omogenee di P tre numeri (x;,X,X3) con x3= 0 econ

(x1,%x2)= ( A, p) eguali ad una coppia di numeri direttori di r . Tenendo conto che anche i

numeri direttori di una retta sono non entrambi nulli e definiti a meno di un fattore di

proporzionalita non nullo, allora anche le terne (A , p , 0) usate per rappresentare P

(improprio) sono non nulle e definite a meno di un fattore di proporzionalita non nullo.
Ricordando che (-b ,a) ¢ una coppia di numeri direttori di r , il punto improprio di r si
rappresenta con la terna ( -b, a, 0 ) o una ad essa proporzionale.

E’ facile controllare che si passa a tale rappresentazione per 1 punti del piano ampliato allora
anche le rette vengono rappresentate in modo diverso .

Si consideri un’equazione omogenea di primo grado non identica ed in tre variabili

(x,y,t) deltipo

(**) ax +by +ct=0

E’ chiaro che se (x; , Xz, X3 ) ¢ una soluzione non nulla dell’equazione ax + by + ct =0 anche la

terna (px;, pX2, px3) con p # 0, ¢ soluzione della stessa equazione per cui ha senso dire

che un punto del piano ampliato verifica con le sue coordinate omogenee 1’equazione data. E’
altresi evidente che due equazioni ax + by +ct =0 ed a’x + b’y + ¢’t = 0 hanno le stesse
soluzioni se e solo se esse sono proporzionali.
Cio premesso, serisulta(a,b)= (0,0) I’ equazione ax + by +ct=0 diventa

t=0
Tale equazione ha come soluzioni tutte le terne ( h , k , 0) e queste rappresentano tutti i punti
impropri del piano . Quindi t=0 rappresenta la retta impropria del piano .

Seinvece¢ (a,b) = (0, 0)allora’equazione ax + by + ¢ = 0 rappresenta una retta r del
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piano non ampliato . I punti di tale retta r quando siano rappresentati in coordinate omogenee
verificano 1’equazione omogenea

ax + by +ct=0.
Poiché soddisfa tale equazione anche la terna (-b,a, 0) allora I’equazione omogenea

ax + by + ct=0.

rappresenta la retta r ampliata col suo punto improprio.

6. I punti immaginari.
Il piano della geometria elementare sara ancora denotato con (0, , Ro).

Se nel piano (a, , Ro) si fissa un riferimento XK_ reale ad ogni coppia ordinata ( x , y ) di numeri reali

corrisponde un punto p di a, e la corrispondenza, che indichiamocon ® ,
o :xYy) eR? > p € oo
diventa un isomorfismo tra il piano affine numerico reale ( R?, Rg) ed (a0, Ro) .
[ punti pdi o, hanno per coordinate due numeri reali e per tale motivo vengono detti reali.
Cosi come il piano affine ( R* , ®g ) ¢ parte del piano affine complesso ( C* , R¢ ) ,
ci chiediamo se sia possibile aggiungere nuovi punti al piano (o, , R,) in modo da ottenere un
nuovo piano (a*, , R*,) (di cui (ao , Ro) & una parte ) e che risulti isomorfo al piano (C> , Rc).
Faremo vedere che cio ¢ possibile purche si aggiungano al piano (o, , R,) dei nuovi punti che
chiameremo immaginari.
Di pitt mostreremo che fissato un riferimento R_ reale nel piano (a, , Ro) , si puod costruire una
funzione biettiva
Q: (xy) eC’ > peak
che risulta un isomorfismo tra i piani ( C? ,Rc) e (a*,,R*) e lacuirestrizione a R? coincide
con ®
Dobbiamo quindi introdurre il concetto di  punto immaginario. Vediamo.
Cerchiamo una possibile definizione per un punto reale. I punti reali non sono definiti
perché sono assunti come concetti primitivi .

Se p ¢ un punto reale cio¢ ¢ un punto di @, ed abbiamo fissato un riferimento & _ad esso

corrisponde una coppia di numeri reali ( le sue coordinate ) . Supponiamo ad esempio che a p
corrisponda  la coppia (2, 3). Per pensare al punto p non basta nominare la coppia (2,3) ma

occorre anche precisare il riferimento  R_ che ha determinato tale coppia. Infatti cambiando il

riferimento &_ con un nuovo riferimento K_ e ponendo ad esempio I’origine coincidente con p
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allora a p corrisponderebbe ora nel nuovo riferimento KR la coppia (0,0) e non piu la coppia (2,3).
Pertanto la coppia (2,3) nel riferimento K non ci farebbe pil pensare a p ma ad un punto diverso
da p. Per pensare a p nel riferimento  R_ serve la coppia (0,0)

Pertanto p ¢ identificato sia attraverso la coppia ((2,3), R_) e sia attraverso la coppia

((0,0), R.) .Ci sono delle formule che consentono di conoscere le coordinate di un punto p in un
riferimento R note che siano le coordinate dello stesso punto in un altro riferimento R_ . Tali

formule dette di passaggio daun riferimento all’altro sono di questo tipo :

x'=ax+by+c ab
*) con det =0
yl — aIX + be + C! a' b'

Pertanto se tali formule sono quelle di passaggio tra R ed K  allora se al posto di x edy si
sostituiscono i numeri 2 e 3 ,coordinate di p nel riferimento K_, si otterra x”=0ed y’ =0 che
sono appunto le coordinate di p nel riferimento K’ .
Due coppie ((Xo,¥yo), R.) ed ((x’0,y%0), R.) sidicono equivalenti se sostituendo nelle
formule (*) di passaggio da K.ad R al posto dix edyinumeri xo edyo siottengono a primo
membro x’g ed y’o .Tale relazione ¢ come ¢ facile vedere , d’equivalenza e pertanto si possono
considerare le relative classi d’equivalenza. Ritornando all’esempio fatto possiamo dire che la
classe [((2,3), R ] puo essere identificata col punto p . Nellaclasse [ ((2,3), R) ] a
fianco di ogni riferimento reale si trovano le coordinate di p in quel riferimento. La classe
[((2,3), R) ] potrebbe quindi essere assunta come definizione di p.

Questa idea ci suggerisce come introdurre i nuovi punti quelli che chiameremo immaginari.
Nel seguito C ¢ il campo dei numeri complessi, ¢ ( C%, R¢ ) ¢ il piano affine numerico che C

ci consente di costruire.

Consideriamo le coppie ((a,b), K ) dove (a,b) ¢ una coppia ordinata di numeri
complessi non entrambi reali ed R_ ¢ un riferimento reale del piano o .
Due siffatte coppie ((a,b), R_ ) ed ((a’,b’), R’ ) lediremo equivalenti se

sostituendo nelle formule di passaggio da R_ad R_

X'=mx+ny+c m n
(**) con det # 0
m' n

y'=m'x+n'y+c' [N
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al posto dix ed y i numeri a e bsiottiene x’=a’ ed y’=Db".
Tale relazione ¢ d’equivalenza e cosi ogni classe d’equivalenza [((a,b), R_ )] sara
chiamata punto immaginario. Indichiamo con § I’insieme di tutti i punti immaginari.

. . - 1 . . .(mnc . . .
Si noti che poiché nelle formule (**) i coefficienti | | sono numeri reali allora se le coppie
m' n'c

((a,b), R )ed ((a,b), KR ) sonoequivalenti anche i due numeri (a’, b’) sono complessi
e non entrambi reali .

Se p*=[((a,b), KR_)] ¢unpuntoimmaginario chiameremo i due numeri complessi
(a, b) le sue coordinate nel riferimento K_. Se((a’,b’), R’ ) ¢equivalente a
((a,b), R_) allora(a’,b’)sono le coordinate di p* nel riferimento R’ .

Quando si fissi un riferimento reale allora ogni punto p di a* =a US determina una
coppia di numeri complessi (a ,b) i quali sono entrambi reali se p € o cio¢ ¢ reale , e sono
complessi e non entrambi realise p € § , cio¢ p € immaginario.

Fissato un riferimento reale &_ abbiamo cosi una biezione
Q : (a,b) CxC — pe a*

Chiamiamo retta di a* 1’immagine tramite € di una retta del piano affine numerico
( C%, Rc¢ ). Cosi facendo si da una struttura di piano affine anche all’insieme a* . Inoltre la

funzione 2  diventa un isomorfismo tra questi due piani affini.

7. Il piano proiettivo numerico reale.

In tale numero daremo un esempio di piano proiettivo. Per la sua costruzione useremo il
campo dei numeri reali (perché cio ¢ utile ai nostri scopi) ma la costruzione , come si vede , pud
esser fatta a partire da un qualsiasi campo.

Quando si usi il campo dei numeri reali il piano proiettivo che si ottiene con questa
costruzione € chiamato piano proiettivo numerico reale.

Quando si usi il campo dei numeri complessi il piano proiettivo che si ottiene con questa

costruzione ¢ chiamato piano proiettivo numerico complesso.

Passiamo alla sua costruzione.
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Consideriamo lo spazio vettoriale reale R® . Priviamo tale spazio del vettore nullo (0,0,0).
Nell’insieme R® - (0,0,0) introduciamo la seguente relazione ~ .
Due terne non nulle (yi, y2,y3 ) ed (z1, z2, z3) le diciamo in relazione ~ tra loro se sono

proporzionali tra loro , se esiste quindi un numero reale k # 0 tale che sia

(z1,22,23) =k(y1,y2,¥3)

La relazione ~ ¢ evidentemente una relazione d’equivalenza nell’ insieme R - (0,0,0) .
Denotiamo con
n = R*-(0,0,0),~

I’insieme quoziente R®-(0,0,0),~ .Chiamiamo punti glielementidi @ .

Se p=1[(y1,y2,y3)] ¢laclassed’equivalenza della terna (yi, y», y3 ) allora essa & per definizione
un punto e poiché la terna (y, y2, y3 ) determina tale punto allora i numeri (y;, y2 , y3 ) sono
chiamati le coordinate omogenee o proiettive di p .

Poich¢ una terna non nulla e proporzionale a ( yi, y2 , y3 ) determina lo stesso punto p allora le
coordinate omogenee di p non sono uniche e sono definite a meno di un fattore non nullo di
proporzionalita. Poiché la terna (y;, y» , y3 ) determina la classe p= [(y1, y2, y3 )] allora per
rappresentare il punto p useremo spesso semplicemente una terna (yj, y2 , y3 ) delle sue coordinate
senza indicare esplicitamente la classe [(y1, y2,y3 )] che tale terna determina.

Sia ora

(D) ax;+tbx,+tecx3=0

un’equazione omogenea a coefficienti reali, di primo grado, e non identica.

Le soluzioni di tale equazione costituiscono un sottospazio di dimensione due di R®. Pertanto se
(Y1, Y2 , ¥3 ) € una soluzione non nulla dell’equazione (1) anche tutte le terne non nulle ad essa
proporzionale sono ancora soluzione dell’equazione (1). Se pertanto un punto p= [(y1, Y2 , ¥3 )]
soddisfa con le sue coordinate 1’equazione (1) cid non dipende dalle coordinate scelte per
rappresentare il punto p. Ha senso cosi considerare i punti di @ che soddisfano con le loro
coordinate 1’equazione (1). Si ottiene cosi un sottoinsieme ¢ di w che chiameremo retta.

L’ equazione ax; +bx, +cx3=0 che ci ha permesso di definire il sottoinsieme ¢ ¢ detta
[’equazione della retta ¢ .

Riepilogando . Assegnata una terna non nulla (a , b , ¢) di numeri reali si definisce retta di
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equazione ax;+bxo+cx3=0 il seguente sottoinsieme fa p,¢) di 7 :

lav.o = {[(yLy2,y3)]l em : ayi+tbya+tcy;=0 }

E’ ovviochese (a,b,c) ed (a’,b’,c’) sono due terne non nulle e proporzionali tra loro allora le
due equazioni ax; +bx; +cx3=0 ed a’x;+b’x,+c¢’x3=0 hanno le stesse soluzioni e cosi
esse definiscono la stessa retta. Viceversa se due rette coincidono allora le due equazioni che le
rappresentano sono proporzionali. Pertanto anche le rette sono tante quante le classi di equivalenza
di R*-(0,0,0), ~.

Indichiamo con Z la famiglia di tutte le rette fa b,y di @ alvariaredi(a,b,c) in

R* - (0,0,0). Possiamo ora provare che :

Proposizione 7.1 La coppia ( @ , Z ) e un piano proiettivo.
Dimostrazione. Siano p; e p, due punti distinti e siano (yi, y2,y3) € (z1, 22, z3 ) le loro
coordinate proiettive. Unaretta £, ) di @ conterraidue punti p; ep, serisulta:
_Jay, +by, +cy, =0
3 '{azl +bz, +cz, =0

Tale sistema inteso come sistema nelle incognite (a, b, ¢) ha la seguente matrice dei coefficienti

[Y1 » Y253 j

Zy 5 2y 574

che ha rango due ,essendo p; e p, due punti distinti . Pertanto le soluzioni del sistema omogeneo S
costituiscono un sottospazio di dimensione uno di R’ . Una terna non nulla (a , b ,c ) che &
soluzione di S si ottiene in corrispondenza ai minori d’ordine due , presi a segni alterni , della

Yis Y2 Y;s

matrice
V4

j . Ci sono quindi infinite terne (a , b ,c¢ ) non nulle che verificano il sistema S
Z,,Z
2243

1
e perd esse sono tutte proporzionali tra loro. Tali terne definiscono cosi una unica retta che contiene
ipunti p; € p2
Siano ora fu b,y ed fa v,y due rette distinte . Un punto p = [(y1, y2,y3 )] appartiene ad
entrambe se risulta :

~Jay, +by, + cy; =0
> {a'Y1 +bly, +cly; =0

Il sistema S ¢ omogeneo e la matrice
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a,b,c
a,b,c

dei coefficienti di tale sistema ha rango due , essendo le due rette distinte. Pertanto le soluzioni di
tale sistema costituiscono un sottospazio di dimensione uno di R’ . Ci sono quindi infinite terne
non nulle (yi, y2 , y3 ) che soddisfano S e sono tutte proporzionali tra loro. Una terna non nulla

(Y1, y2 , y3 ) che soddisfa S puo ottenersi in corrispondenza ai minori d’ordine due, presi a segni

b, c

1

. . a
alterni, della matrice
a,b,c

j. Ma se le terne non nulle (y;, y2 , y3 ) sono infinite e tutte
proporzionali tra loro allora esse definiscono un unico punto che ¢ il punto comune alle due rette
assegnate.

Sia ¢ una retta rappresentata dall’equazione ax; + bx, + cx3 = 0 .Poiche tale equazione ¢ non
identica uno dei suoi coefficienti ¢ non nullo .

Supposto sia a # 0 fanno parte della retta i tre punti distinti

-b-c

(=2 10y, (=%,0.1), ( 1),
a a

E’ cosi provato che ogni retta ha almeno tre punti e che quindi la coppia ( @ , Z ) € un piano

proiettivo . L asserto € cosi provato.
Per le applicazioni e molto utile la seguente osservazione .

Dalla dimostrazione fatta segue che 1’equazione della retta che congiunge i punti distinti

(y1,y2,y3) ¢ (z1,22, 23 ) siottiene sviluppando il seguente determinante :

X X, X3
(7.1) det| ¥, Y, ¥;|=0
Zy Z, Z;

Le rette di un piano proiettivo possono essere rappresentate anche parametricamente .
Vediamo come.

Sia L una retta del piano e sia

(1) ax; +bxy +¢cx3=0
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la sua equazione.

Una terna (X; , X2 , X3 ) non nulla , soluzione di tale equazione , fornisce le coordinate
proiettive di un punto di tale retta L . Ora tutte le soluzioni (X, , Xz, Xx3) dell’equazione (1), che ¢
omogenea , costituiscono un sottospazio di dimensione due di R’ . Pertanto esse sono note quando
siano determinate due sue soluzioni indipendenti. Siano quindi A (y1,¥2,V¥3) €eB (21,2, 73)
due punti distinti della retta L. Poiché A e B sono distinti le due terne (y1,y2,y3) €(z1, 22, Z3)
sono non nulle e non proporzionali e quindi forniscono due soluzioni indipendenti dell’equazione
(1).

Ne segue che ogni altra soluzione (x; , X , X3 ) dell’equazione (1) risulta una loro
combinazione lineare . Si ha cosi che ogni altra soluzione (x; , X, , X3 ) dell’equazione (1) ¢ del
tipo :

(*) (X1,X2,%3) = A (Y1,¥2,¥3) T u(z1,22,23) .

Poiché le due terne (y1,y2,y3) €(z1,22,23) sono indipendenti nella (*) siavra
xX1,%X2,%x3) =(0,0,0) soltantoponendko A=0 e pn=0.

Cosi se nella (*) si sceglie la coppia ( A, p) # (0,0) siottiene una terna
(X1,%X2,x3) # (0,0,0) e quindi rappresentativa di un punto della retta.
Una coppia ( A’°, u’) proporzionale alla coppia ( A, p) fornira una terna (X’; , X2 , X’3 )
proporzionale alla precedente e quindi rappresentativa dello stesso punto.
I punti della retta L hanno quindi coordinate proiettive (X; , X, , X3 ) espresse dalla formula (*) o

esplicitamente da :

X, =Ly, +pz,
X, =AY, + 1z,
X3 = Ay; +z;

Quando 1 punti della retta L sono rappresentati in questo modo si dice che la retta ¢

rappresentata parametricamente.

Osserviamo esplicitamente che alla stessa conclusione si poteva pervenire ricordando che un

punto appartiene alla retta L se e solo se le sue coordinate (x; , X, , X3) verificano la ( 7.1).

Importante osservazione.
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Quando il piano reale della geometria elementare é ampliato con i punti impropri esso

diventa proiettivo e se si fissa un riferimento reale e si assegnano ai suoi punti propri ed impropri

le coordinate omogenee si realizza un isomorfismo tra tale piano ed il piano proiettivo numerico

reale ora descritto.

Proviamo infine a fare un quadro riassuntivo delle cose dette per avere una visione chiara

d’assieme.

Oggetto fisico

Tipo di piano

Modello matematico ad esso isomorfo

Piano reale

Piano affine

(R, Ri)

Piano affine numerico reale

Piano reale +
punti impropri

Piano proiettivo

( R*-(0,00)/~, L)
Piano proiettivo numerico reale

Piano reale +
punti immaginari

Piano affine

(C, Re)

Piano affine numerico complesso

Piano reale +
punti immaginari+
punti impropri

Piano proiettivo

( C*-0,00)/~, L)

Piano proiettivo numerico complesso

Alcune precisazioni .

Col termine piano reale si intende una qualunque superficie piana che ricada sotto i nostri

sensi e della quale si considerino 1 punti e le rette in essa contenute.

Nel testo tale piano ¢ stato chiamato spesso il piano della geometria elementare ed ¢ stato

indicato col simbolo (a, , Ro).

L’isomorfismo col modello numerico si ottiene sempre attraverso 1’uso di un riferimento

reale.
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8. Le questioni metriche del piano affine numerico reale ( R, %% ).

Questo numero ¢ dedicato ad un approfondimento delle proprieta del piano affine numerico
reale ( R’ , %z ) .Tali proprieta si riflettono in proprieta del piano reale che & ad esso isomorfo
quando in esso sia stato fissato un riferimento reale . Di piu riterremo ,ma le ragioni di tale ipotesi
appariranno chiare piu avanti , che il riferimento scelto sia monometrico ortogonale.

Per quello che ora tratteremo ¢& utile ricordare alcune cose . L’ insieme R? sostegno del
nostro piano affine numerico ¢ altresi uno spazio vettoriale reale di dimensione due che riterremo

munito del prodotto scalare s (definito positivo) euclideo,

s((a,b),(a’,b’))=aa’ +bb’

Siano L ed L’ due rette rappresentate da :

L : ax+by+c=0

L : ax+by+c =0

Per quanto precede le due rette ¢ ed ¢ rappresentate da :

L ax +by =0

[ a’x+by=0

sono parallele la prima ad L e la seconda ad L’ . I punti (x,y) della retta ¢ sono un sottospazio S,
di dimensione uno dello spazio vettoriale R? ed i punti (x,y) dellaretta ¢ sono anch’essi un
sottospazio S', di dimensione uno dello spazio vettoriale R*. I vettori di S, sono la coppia (-b , a
) e tutte le coppie proporzionali ad essa . I vettori di &', sono la coppia (-b’ , a’ ) e tutte le coppie
proporzionali ad essa. Se le coppie (-b,a)e(-b’,a’ ) sono ortogonali tra loro cio¢ risulta :
aa’ +bb’ =0

allora i1 due sottospazi &, e &, sono ortogonali tra loro e precisamente ognuno dei due ¢ il
complemento ortogonale dell’altro.

Le duerette L ed L’ le diremo ortogonali se le due rette ted ¢ ad esse parallele e

pensate come sottospazi di R* sono tra loro ortogonali .
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Riepilogando : due rette L ed L’ rappresentate da :

L : ax+by+c=0

L : a’x+by+c’ =0

sono ortogonali se e solo se risulta :

(1%) aa’+bb’=0.

Se r ¢ una retta rappresentata da :

ro: ax+by+c=0
allora
(2%) -bx+ay+k=0

rappresenta , al variare di k in R, il fascio improprio costituito da tutte le rette ortogonali ad r.

Per cio che segue occorre introdurre alcune nozioni riguardanti uno spazio vettoriale reale che sia
munito di un prodotto scalare definito positivo.

Sia V uno spazio vettoriale reale dotato di un prodotto scalare definito positivo s.
Indicheremo al solito per ogni vettore v diV con | v 1 lasua lunghezza definita come

sappiamo attraverso

I vI=4/s(v,v) .

Siano ora v e w due vettori. Per ogni numero reale t consideriamo il vettore v +tw, che si
combinazione lineare dive w coninumerireali l e t .
Qualunque sia t risulta :
s(vttw , v+tw )> 0
Si ha allora per ogni t
s(w, w)t? +2s(v,w)t + s(v, v) = 0.
Ma se tale polinomio nella variabile t non assume valori negativi il suo discriminante ¢ minore o

eguale a zero .



Si ha quindi :

[s(v,w)]? -s(v, v)s(w, w) <0.
Da cui segue

[s(v,w)]® < s(v, V)s(w, W)
Cioe :

[s(v,w)]? < IvI
Da cui infine :
(*)

s(v,w)< vl Wl

Definiamo ora distanza tra v e w la lunghezza del vettore v-w.

Si ha quindi

dv, w)= Iv-w | = {/s(v-w, v-w) .

La funzione

d: VxV —> [0, o]
ora definita ¢ una metrica in V in quanto verifica le seguenti tre proprieta :
1. d(v, w)=0 < v=w
2. d(v, w)=d(w, v)

J.div,w)<d(v,2z) +d(z, w)

Le proprieta 1 e 2 sono evidenti . Basta quindi provare la proprieta 3.

Tenendo conto della disuguaglianza (*) si ha :

lv-w 1= s (v-W, v-W ) =s (V-2 +Z -W, v-z+z-W) =5 (v-z, v-Z) + s (z-W , z-W) +

+2s(v-z,z-W) < Iv-zIP+ 1zzw I* + 2 Iv-z llzZw = (1| v-z I+ Iz-wl )*

Si ha quindi

Iv-w | < |v-Z |+ |z-w |

e cio¢ la proprieta 3.
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Lo spazio ( V, d) ¢ quindi uno spazio metrico .

Siano infine x=(x; ,y;) ¢ Y=(X» ,y2) due punti distinti del piano o . Pensando
sempre R? come spazio vettoriale munito del prodotto scalare euclideo, possiamo considerare il
vettore X -y=(X; -X2 , Y1 -Yy2) lacuilunghezza ¢ la distanza tra i due vettori X ed y e che

sara assunta come distanza traipunti (x; ,y;) € (X2 ,y2) .Quindi chiamiamo

d((x1,y1) 5> (% ,y) )=1x-31 =& -x)P + (¥, -, )

La funzione d: o x a — R ora introdotta ¢ una metrica nel piano o in quanto

verifica le seguenti tre proprieta :

() d(pr,p2)=0 < pr=pm
(2) d(p1, p2) =d(p2, p1)
(3) d(p1,p3) <d(p1,p2) +d(p2, p3)

Pertanto (R? , d) € quindi uno spazio metrico .
q P

9. 1l gruppo strutturale del piano affine ( R, %% ).
In questo numero troveremo una descrizione di tutti gli isomorfismi del piano affine
numericoreale ( R* , Ry ) .

Ricordiamo che un isomorfismo del piano ( R* , ®g ) & una biezione
f: x,y)e R 5(x’,y’) € R?

tra i punti del piano che trasformi rette in rette.

Un punto (a, b) ¢ detto unito nell’affinita fse risulta f(a,b)=(a,b).

Ogni isomorfismo del piano € detto un’ affinita del piano. Evidentemente componendo due
affinita si ottiene una affinita. Inoltre poiché I’ identita ¢ una affinita e 1’inversa di una affinita ¢
una affinita tutte le affinitd del piano costituiscono un gruppo, il gruppo delle affinita , che
indicheremo con G ( R?).

Ricordiamo ora che le matrici quadrate d’ordine due ad elementi reali e non degeneri cio¢
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[a bj
A=
a'b

che abbiano il determinante diverso da zero quando si esegua tra esse il prodotto (righe per
colonne) costituiscono un gruppo che viene indicato usualmente con GL(2, R).

Abbiamo gia visto nel capitolo riguardante gli endomorfismi di uno spazio vettoriale che gli
isomorfismi dello spazio vettoriale R* in sé sono soltanto le funzioni di R* insé che ogni
matrice A non degenere induce.

ab

Precisamente se A =
a'b

j ¢ una matrice quadrata non degenere la funzione , che

indichiamo sempre con A
(*) A: (x,y)e R® »> (ax+by, a’x+b’y) e R’

¢ un isomorfismo di R ins¢ . Un qualunque isomorfismo di R® insé ¢ di questo tipo , si
ottiene cio¢ in corrispondenza ad una matrice A non degenere .

La funzione A descritta in (*) quando la si pensi come corrispondenza tra i vettori di R? & un
. . 2 . N . . . . . . N
isomorfismo di R” in s¢ , quando la si pensi come una corrispondenza tra i punti del piano ¢ un
1somorfismo del piano che ha unito il punto (0, 0). Per dar corpo alla nostra affermazione occorre
provare che la corrispondenza tra 1 punti del piano che al punto (x, y ) fa corrispondere il punto

(x’,y’) datoda:

x'=ax + by ab
(**) con det =0
yv =3a'x + bvy a b

. . R . .1 a
¢ un isomorfismo del piano, cio¢ ¢ biettiva e trasforma rette in rette . Poiché det[

b
‘ ‘j # 0 allora
a

la corrispondenza descritta in (**) ¢ biettiva. Sia ora r una retta definita dall’equazione
(+) mx+ny+p=0

Attraverso 1’uso della matrice inversa si possono invertire le formule (**) ottenendo relazioni di

questo tipo :

(*%%) {X = cx' + dy'

y= c'x' + dvyv

Sostituendo in (+) le espressioni trovate in (***) si riconosce che anche i punti (x’ , y’)
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corrispondenti dei punti (x,y) sono anch’essi soluzione di un’equazione del tipo
mx+ny+p =0

e quindi sono 1 punti di una retta r’ che ¢ la trasformata della retta r .

' 'j non degenere la corrispondenza
a

a
Riepilogando per ogni matrice A =(

¢ una affinita del piano e tale affinita trasforma il punto (0,0) in sé .

Ci sono affinita che non lasciano fisso (0, 0) e che quindi non possono essere legate ad isomorfismi
. 2 . N .
di R ins¢. Vediamo .
Fissiamo una coppia ordinata di numeri reali ( m,n) con m ed n non entrambi nulli .

Consideriamo la seguente corrispondenza tra 1 punti del piano
Tow: (X,y)e R® > (x,y") € R’

con

X'=X+m
(+) {
y=y+n

La corrispondenza  T(mn € ,come ora proveremo una affinita . Essa trasforma (0,0) nel punto
(m,n) . La corrispondenza  Tmn ¢ detta traslazione del piano. E’ evidente che la
corrispondenza Ty, ¢ biettiva . Inoltre se r € una retta rappresentata dall’equazione

ax +tby +¢=0 siha, da(++) ,
x=x-m ed y=y -n
e quindi si ha

ax’-m)+b(y’-n) +¢c =0

e cosi 1 punti (x’,y’) sono le soluzioni dell’equazione
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ax’+by’+ ¢’=0

con ¢’ =-am -bn +c

Pertanto 1 punti (x’ , y’) trasformati dei punti (X, y ) di r sono anch’essi punti di una retta r’ che
come si vede dalla sua rappresentazione ¢ parallela ad r . La corrispondenza Ty, € quindi
un’affinita priva di punti uniti e che trasforma ogni retta in una ad essa parallela.

Quando si assuma m=0 ed n=0 la corrispondenza T, ¢ I’identita . In tal modo I’identita puo

far parte delle traslazioni del piano.

a b : : : s
Se A= ( ' b'] ¢ una matrice quadrata non degenere possiamo considerare I’affinita da essa
a

indotta e se (m,n) ¢ una coppia ordinata di numeri reali , possiamo considerare la traslazione
Tnn) -

La funzione Tmga ° A  che si ottenga componendo tra loro le due affinita ¢ una affinita del
piano che al punto ( x,y ) fa corrispondere il punto (x’,y’ ) dove ¢ :

(%) {X‘Zax+by+m

ab
con det =0
y'=ax+by+n (a’ b'j

Proveremo ora il seguente importante :

Teorema 1 Una qualunque affinita del piano si ottiene componendo una traslazione ed

) N . . . 2 . ‘
un’affinita A indotta da un isomorfismo di R~ in sé .

Prima di fare la dimostrazione occorre introdurre una definizione . Una terna ordinata di
punti non allineati del piano ¢ detta un riferimento del piano.
E’ chiaro che un’ affinita del piano trasforma un riferimento in un riferimento.

La terna ordinata

&y =( (0,0,(1,0),(0,1))
¢ detta riferimento fondamentale .
Proveremo in appendice il seguente teorema ( la cui dimostrazione, non banale, ¢ esposta

in appendice per quegli studenti che avessero interesse a conoscerla )
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Teorema fondamentale .

L’ unica affinita che trasforma in sé il riferimento fondamentale e l’identita.

Possiamo ora provare il Teorema .

Dimostrazione. Sia

p: R > R
una affinita del piano. Se ¢ lascia fisso il riferimento fondamentale allora per il teorema

fondamentale ¢ I’identita e quindi ¢ :
@ =1=Tpoe © I  (Iessendo la matrice identica)
Possiamo supporre quindi che I’affinita ¢ non lasci unito il riferimento fondamentale.
See:
¢ (0,00=(0,0) , ¢ (1,0)=(a,a’) , ¢ (0,1)=(b,b’)
Le rette distinte y=0 ed x=0 le quali contengono (1,0) e (0,1) vengono trasformate in due rette
distinte per (0,0) e queste contengono la prima ( a, a’) e la seconda (b, b’) . Ne segue che (b,b’)

non ¢ proporzionale ad (a, a’) e quindi la matrice

ab ) ab
A = ¢ non degenere cio¢ ¢  det =0
a'b' a'b'

L’ affinita A trasforma come I’affinitd ¢ anch’essa il riferimento fondamentale nel riferimento
((0,0), (a, a’), (b, b )). Ne segue che I’ affinita A "' - ¢ trasforma in sé il riferimento
fondamentale e quindi essa , per il teorema fondamentale, ¢ 1’identita 1.

Da A7l =1 segue ¢ = A=Tpo ° A.

Possiamo infine supporre che sia ¢ (0,0) =(m,n) = (0,0).

Consideriamo la traslazione T ' inversa della traslazione Tmn . L affinita T o @
trasforma (0, 0) in sé e quindi & per quanto precede T ° ¢ =A da cui segue
@ =Tmn) °A  ecioe ’asserto .

Abbiamo cosi caratterizzato il gruppo delle affinita del piano affine reale .

Sia F una figura del piano e supponiamo che F abbia una certa proprieta “ p “ . La proprieta

13 13

p “ sidira una proprieta affine se ¢ invariante rispetto al gruppo delle affinita cio¢ se per ogni

e

affinitd ¢ del piano anche la figura ¢ (F) ha la proprieta “p”.

La geometria affine del piano consiste nella determinazione delle proprieta affini delle figure del
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piano .

Quando il piano reale venga ampliato con i suoi punti immaginari ed i punti impropri esso
come visto diventa proiettivo. Usando le coordinate omogenee, 1 punti di tale piano, che
indichiamo con =, sono rappresentabili , in un riferimento reale fissato , con terne non nulle
(X1, X2 , X3 ) di numeri complessi e definite a meno di un fattore di proporzionalita non nullo. Inoltre
con tale rappresentazione un punto proprio ¢ rappresentabile con una terna del tipo (yi, y2, 1) ed
un punto improprio con (yi, y2,0).

Quando si consideri una matrice quadrata d’ordine tre ad elementi reali e non degenere

4, a4 ap
A=la, a, a, detA = 0

a3 a3 agy

si puo definire la seguente funzione del piano in sé :
owar : P(x,Xx,X3)em — P’(x’1, X, X3 )en

con

Xp=a; X, ta;, X, Ta;X;

X, =8y X tay, X, tanX;

X3=a5 X, Ta; X, +a;X;

Tale funzione ¢ , come facilmente si verifica, un isomorfismo del piano in s¢, chiamato proiettivita
reale. E> evidente che una matrice B proporzionale ad A secondo un fattore reale non nullo
definisce la stessa proiettivita. Pertanto le proiettivita reali costituiscono , rispetto alla usuale legge

di composizione di funzioni, un gruppo isomorfo ad un quoziente di GL(3,R).

Quando si considerino le matrici di GL(3,R) del tipo :

a4 ap A
A= detA=det | " M2 |+ 0
= azl a22 323 (] = dc *

0 0 1 ay Ay
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si ottiene un sottogruppo A(3,R) del gruppo GL(3,R), e le proiettivita da esse definite costituiscono

un sottogruppo, che indicheremo con # (3,R) , del gruppo delle proiettivita reali. Le proiettivita

definite dalle matrici del sottogruppo A(3,R) sono quindi rappresentate da equazioni del tipo :

X =a;; X, ta, X, Ta;X,
X, =8y X tay, X, tagX;

X3 = X3

Una tale proiettivita viene chiamata affinita del piano per queste ragioni .

Essa trasforma punti propri in punti propri , punti impropri in punti impropri , punti reali in punti
reali e punti immaginari in punti immaginari. La sua restrizione al piano affine ¢ pertanto un’affinita
di tale piano. Per tale ragione il gruppo delle proiettivita definite dalle matrici di A(3,R) sara ancora

chiamato gruppo delle affinita del piano.

La geometria affine del piano proiettivo consiste nella determinazione delle proprieta delle

figure del piano che siano invarianti rispetto a tale gruppo.

Nel seguito riterremo che sul piano proiettivo agiscano soltanto tali affinita reali .

Appendice.

Ricordiamo preliminarmente il seguente risultato relativo al campo dei numeri reali .

Teorema . L’ unico automorfismo del campo reale e [’identita.

Accenniamo alla dimostrazione di questo teorema. Sia quindi

v: R > R

un automorfismo del campo reale . L’applicazione vy ¢ quindi biettiva ed ha le seguenti
due proprieta

I y(@a+b)=y()+y(b)

2. y@@b)=y )y b
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Da 1 e 2 seguesubitoche ¢ y(0)=0 , y(1)=1 e conseguentemente

Y (@) =-7 @) v<§)= (a%0)

v(a)
Sia m un intero positivo . Possiamo scrivere
m=1+1+. +1 (mvolte)
equindi ¢ y(m)=y(l+1+. .+t)=y(D)+y(D+...+y()=1+1+.+1=m.
Pertanto y fissa 1 numeri interi non negativi.
Si ha allora
y(-m)=-.y(m=-m.

e cosi y fissa i numeri interi relativi .

. . . m .
Si ha allora che, per ogni numero razionale — risulta :

n
m 1 1 1 m
V(D)=ymo)=ymy(=)= ym —— = —
n n n vy (n) n
Pertanto y fissa inumeri razionali.
Se x ¢ un numero irrazionale ed ¢ rappresentato dalla successione (y 1, y2,.....  ,¥n ,...) di numeri
razionali allora ¢ :
Y=Y YO )= (YL Y20 S Ynse) =X

L’ automorfismo y ¢ quindi I’identita e si ha cosi 1’asserto.

Ora come annunciato proveremo il seguente.

Teorema fondamentale .
L’ unica affinita che trasforma in sé il riferimento fondamentale e l’identita.
Dimostrazione .
Sia quindi f: R® — R?* un’ affinitd del piano che trasforma in sé il riferimento

fondamentale cioée :

£(0,0)=(0,0) , £(1,00=(1,00 , £(0,1)=(0,1)

Useremo spesso la seguente ovvia proprieta dell’affinita f :
(*)

Se r ed r’ sono due rette parallele tali risultano altresi le rette trasformate f(r) ed f(r’).
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Per rendere piu semplice I’ esposizione indicheremo :
con x laretta d’equazione y =0 che congiunge (0,0) ed (1,0),
con y laretta d’equazione x =0 che congiunge (0,0) ed (0,1)

con u laretta d’equazione x +y =1 che congiunge (1,0) ed (0,1).

Poiché i tre punti (0,0) , (1, 0), (0, 1) sono uniti in f tali risultato le rette x ,y, u.

Si ha quindi :
fo=x, fy=y, f=u.

Sia a un numero reale e sia (a,0) il punto dell’asse x di coordinate ( a, 0 ). Poiché¢ f
trasforma in sé la retta x il punto ( a, 0 ) sara trasformato da f in un punto (a’, 0) sempre dell’ asse
X .

Possiamo allora considerare la seguente corrispondenza ¢ del campo reale R in sé :

¢ : ae R > a eR

Tale funzione ¢ ¢ ovviamente biettiva . Inoltre essendo f(0,0) = (0,0) e f(1,0)=(1,0), si ha
¢(0)=0 e o(1)=1 .Proveremo che tale funzione ¢ ¢ un automorfismo del campo reale R.

Vediamo.

Abbiamo posto
f(@,0)=(o@),0).

Osserviamo ora che la retta £ parallela ad u passante per il punto (a, 0) ha equazione x +y=a.
Tale retta interseca la retta y nel punto (0, a). Poiché { ¢& parallela ad u allora f(¢) ¢ parallela
ad f(u) =u e quindi ad ¢ . Poiché f(f) deve contenere il trasformato di (a, 0 ) allora f(¢)
contiene il punto ( ¢(a) , 0 ) e quindi essa interseca I’ asse y nel punto ( 0, ¢(a) ) . Pertanto il
punto (0,a) di y, che sta su f, ¢ trasformato in punto di y che deve appartenere a  f(¢) . Si ha

quindi

f(0,a)=(0,0())
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Sia (a, b ) un punto del piano . Siano t larettaper (a,b) parallelaad y e t* laretta per
(a,b) parallelaad x . Laretta t che ha equazione x —a=0 elaretta t* ha equazione y—b =0.
La retta t contiene il punto (a, 0) di x e cosi la sua trasformata contiene il trasformato di tale
punto e cio¢ contiene ( ¢(a) , 0 ). Analogamente la retta t’ contiene il punto (0, b) diy e cosila
sua trasformata f( t’ ) contiene il trasformato di tale punto e cio¢ contiene ( 0, ¢(b) ).

Poiché t ed y sono parallele allora anche le loro trasformate f( t) ed f(y )=y sono parallele.
Poiché t’ ed x sono parallele allora anche le loro trasformate f( t* ) ed f(x )= x sono parallele.

Si conclude che f( t) ¢ parallela ad y e contiene il punto ( ¢(a), 0 ).Pertanto f(t) ha equazione

x- ¢o(a) =0.
Analogamente f( t’) ¢ parallela ad x e contiene il punto ( 0, ¢(b)) e cosi f( t’ ) ha equazione
y - ob) =0.

Poiché (a,b) ¢unpuntodi t N t> allora il trasformato di tale punto appartiene alle trasformate

f(t) ed f(t>) . Abbiamo cosi provato che ¢ :

f(a,b)= (o), o).

Laretta s per (a,b) parallela ad u ha equazione x +y =a+ b ed essa interseca x nel punto
(atb, 0). Poiché¢ s ¢ parallela ad u allora f(s) ¢ parallela ad f(u) = u e contiene il trasformato del
punto (a,b).Pertanto f(s) ¢ la retta parallela ad u e passante per il punto ( ¢(a), ¢(b)) .

Laretta f(s) ha quindi equazione x +y =o¢(a) +@(b) e quindi essa interseca la retta x nel punto
(p(a) +o(b) , 0 ) . Il punto (a+b , 0). comune ad s ed x ¢ traformato quindi nel punto comune alle

rette trasformate f(s) ed f(x)=x cio¢ nel punto (¢(a) +¢(b),0) .
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(¢(a), (b))

(0,9(b))
(a,b)
(0,b)
()
(¢(),0)
(1,0) (a,0) (a+b,0) (0(a) +¢(b),0)
(0,0)

Si ha quindi :

f(atb, 0) = (p(a)te(b),0)

la quale mostra che ¢ :

¢ (atb) = o(a) + o(b).

Consideriamo due numeri a e b e consideriamo i due punti (a, 0) e (0, b). I loro trasformati per
quanto precede sono i punti (¢(a),0) e (0, (b)) .

Laretta £ che unisce (0,1 ) con (a,0) haequazione x +ay=a.Laretta m per (0, b) ad essa
parallela ha quindi equazione x +a (y—-b)=x+ay—ab=0. Laretta m interseca quindi la retta x
nel punto (ab,0).

Lerette ¢ ed m sono tra loro parallele e quindi tali risultano anche le loro trasformate f(¢ ) ed
f(m ).

Poiché¢ la retta ¢ contiene (0,1 ) ed (a,0) allora la sua trasformata deve contenere i trasformati
di tali punti e cio¢ essa ¢ la retta che unisce (0, 1) e (¢(a),0) . Pertanto (¢ ) ha equazione

x +¢(a)y=¢(a). La retta m contiene il punto (0,b) e quindi la retta f(m) deve contenere il suo
trasformato (0, @(b)) . Dovendo inoltre risultare f(m) parallela ad f(¢ ) si ha che la sua equazione
¢:  xt0o@)(y-o9b)=x+0(@)y -¢@) eb)=0.

La retta f(m) interseca quindi la retta x nel punto (¢p(a) @(b) , 0).
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Il punto (ab, 0 ) comune ad m ed x ¢ quindi trasformato nel punto comune alle loro trasformate

f(m) ed f(x) =x cio¢ nel punto (¢(a) e(b) ,0).

(0,0(b))
(0,b)

0,1

(0,0) (p(2)9(b),0)

Si ha quindi

f(ab,0)=(o(a) @) ,0).

e questa mostra che ¢ :

o(ab) = o¢(a) o(b) .

La funzione ¢ costruita ¢ quindi un automorfismo di R . La funzione ¢ ¢ quindi I’identita e cosi
I’ affinita f, risultando

f(a,b) = (¢(a), o(b)) =(a,b)
¢ I’identita.

L’ asserto € cosi provato.



Capitolo I11

Circonferenza , ellisse , iperbole , parabola

73



74

1. La circonferenza.

Fissiamo nel piano reale un riferimento monometrico ed ortogonale &_.

Siano P, ( X0, Yo,) un punto del piano ed r un numero reale positivo.
Si chiama circonferenza di centro P, e raggio r 1’insieme dei punti P del piano che hanno
distanza r da P, . Indichiamo con C tale insieme di punti e cerchiamo una sua rappresentazione

analitica . Sussistono le seguenti ovvie equivalenze :

P(x,y)e C < d(P,P)=r < {(x-%0) > +(y-y0)> =1 < (x—%x) +(y—yo) =1

Da queste segue quindi che appartengono alla circonferenza tutti e soli i punti del piano le cui

coordinate verificano 1’equazione :
(1) (X=%0)*+ (y-yo) =1’
la quale puo scriversi cosi :
) X+ y+ax+by+c=0
avendo indicato con a,b,c le seguenti quantita :
2

2 2
=-2Xo =2y, , =X, ty, -r

L’ equazione

x> + y*+ax+by+c=0

rappresenta quindi la circonferenza C nel riferimento &K_ fissato.

E’ evidente che un’equazione proporzionale ad essa secondo un fattore di proporzionalita non nullo

avendo le stesse soluzioni, rappresenta lo stesso insieme di punti.

L’equazione x° + y>+ax+by+c=0 che rappresenta C nel riferimento scelto & quindi di

secondo grado , manca del termine misto xy ed ha eguali i coefficienti di X e yz .

Non sempre perd un’equazione di questo tipo rappresenta una circonferenza . Vediamo perché.



Sia quindi assegnata I’equazione

x> + y*+ax+by+c=0

essa rappresenta una circonferenza di centro P, ( X,,yo,) € raggio r (positivo) se risulta :

3) X+ Y Fax+by+e=(x-x) +(y=yo) - 1’

L’eguaglianza (3) sussiste se risulta :

a=-2x, , b=-2y, , C:XOZ"'yoz'r2
Si ha quindi
. =.2 __b
0 5 Yo >
2 b2
4 rr=x, 2+ 02_C23_+__C
4) Y 4 4

Dalla (4) segue quindi che si trovera un numero r positivo ,raggio della circonferenza cercata ,

se si ha:
a’ b’
5 —+ — -¢c >0
() 2 2
Riassumendo :
I’equazione xX*+y*+ax+by+c=0 cheabbia a,b,c verificantila proprieta (5) ¢&
I’equazione della circonferenza con centro nel punto P, = ( - % y - g ) eraggio r datoda:

2 2

a b
6 r= ., S+ > -c
(©) \/4 4
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Sia C una circonferenza del piano con centro nel punto P, ( X,, Yo) € raggio r positivo e sia

xX*+y +ax+by+c=0

I’equazione che rappresenta C inun riferimento fissato . Sia P ( X , ¥y ) un punto della
circonferenza. Esiste una sola retta per P che incontra C nel solo punto P essa ¢ chiamata la retta

tangente a C nel punto P . E’ noto che tale retta tp coincide con la retta per P ortogonale alla

retta ¢ che unisce P al centro P, .

tp

I numeri direttori dellaretta ¢ sono ( X - X,, Y-V, ) equindilaretta tp haequazione :

tp : (X- %) (x-X )+ (y-¥ )(y- y)=0.

Quando il piano reale venga ampliato con i1 punti immaginari anche la circonferenza C

rappresentata dall’equazione a coefficienti reali
xX*+y +ax+by+c=0

si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse
dell’equazione che la rappresenta .

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di
C propri ed impropri occorre che ’equazione x* +y* +ax + by +c=0 di C sia resa
omogenea.
Pertanto 1’equazione

X+y'+axt+tbyt +ct?=0

rappresenta tutta la circonferenza C inclusi i suoi punti impropri.
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Ma quali sono i punti impropri di C ? Vediamo.

E’ chiaro che 1 punti impropri di C sono quelli che essa ha in comune con la retta impropria
del piano che si rappresenta con I’equazione t = 0 . I punti impropri di C corrispondono quindi
alle soluzioni non nulle del seguente sistema S :

S. x> +y’ +axt+byt +ct’ =0
t=0
Le soluzioni cercate si ottengono quindi attraverso le soluzioni non nulle di :
2 2
x"+y =0
S: Y
t=0
E sono quindi ottenute attraverso le soluzioni di
g [rincy =0
Ct=0
che equivale a

(x+iy)=0 (x-1y)=0
t=0 t=0

Pertanto i punti impropri della circonferenza C sono due e sono immaginari e coniugati e sono
1 punti

A,=(i,1,0) e A, =(-i,1,0)
punti impropri delle rette complesse x+iy=0 e x-iy=0.
Ipunti A4, =(i,1,0) e A =(-i,1,0) sonochiamatii punti ciclici del piano.

Abbiamo cosi provato che una qualunque circonferenza reale quando la si pensi
immersa nel piano proiettivo complesso ha in comune con la retta impropria i punti ciclici del
piano.

Quando si assegni nell’insieme dei punti del piano reale una proprieta “p” si pud considerare
il sottoinsieme che tale proprieta determina. Si puo inoltre cercare di descrivere il luogo & dei punti
P del piano che godono della proprieta assegnata attraverso 1’uso di una sua rappresentazione

analitica in un riferimento assegnato.
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Abbiamo appena visto un primo esempio di questo problema. Infatti la proprieta
“p” P ha distanza r dal punto P,
¢ una proprieta definita tra 1 punti del piano ed il sottoinsieme C che essa determina ¢ una
circonferenza della quale abbiamo trovato in un riferimento ortogonale una sua semplice
rappresentazione. Usando tale rappresentazione ¢ stato poi piu facile indagare sulle proprieta
dell’insieme C .

Percorrendo questa idea descriveremo ora altri ben noti insiemi di punti :

ellisse, iperbole, parabola

ognuno dei quali ¢ definito attraverso una ben precisa proprieta . Cio che accomuna tali luoghi ¢ che

essi al pari della circonferenza sono rappresentati tutti in un riferimento fissato da una equazione di

secondo grado .Vediamo.

2. Ellisse.
Siano F ed F’ due punti distinti del piano e sia 2¢ la loro distanza. Fissato un numero

a>c¢ consideriamo i punti P del piano che hanno la seguente proprieta :

d(P,F)+ d(P,F)=2a

Tale insieme di punti ¢ chiamato ellisse e sara ora denotato con & . I due punti F ed F’ sono detti
1 fuochi dell’ellisse.

Cerchiamo ora una rappresentazione di tale insieme & . Per fare cido disponiamo il
riferimento che sceglieremo ortogonale, in modo che I’asse x coincida con la retta che congiunge

F’ed F e I’origine O col punto medio del segmento [F’ , F] . Orientamo gli assi in modo che F

abbia coordinate (¢, 0) ed F’ abbia coordinate ( -c, 0).

Yy

L |
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Con tale scelta del riferimento si ha

P(x,y)e6 <  d(P,F)+d(P,F’)=2a <o

\/(><-c)2+y2 + \/(>(+(:)2+y2 = 2a
Poniamo b?=a’—¢? .

Si hanno le seguenti equivalenze :

\/(x-c)2+y2 + \/(x+c)2+y2 =22 &

J(x-02+y =22 -(x+t0’+y <

(x—)Y+y* —4a’—(x+c)’ -y = -4&1\/(x+c)2 +y o
(- ) —a’y’ =& () -
by’ =2 b o

2 2
:—2 + %= 1 (essendo c¢*=a’—b?)

Pertanto fanno parte dell’ellisse tutti e soli 1 punti P (x,y) del piano le cui coordinate soddisfano
I’equazione
2 2
X—z + y_2 =1
a b

o equivalentemente
b’x” + a’y* —a’b’* =0

che rappresenta quindi I’ellisse nel riferimento scelto.
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Quando il piano reale venga ampliato con i punti immaginari anche D’ellisse & rappresentata
dall’equazione a coefficienti reali
b’x” + a’y* —a’b’* =0

si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse
dell’equazione che la rappresenta.

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di &
propri ed impropri occorre che I’equazione b’x” +a’y* —a’b*=0 di & siaresa omogenea.
Pertanto 1’equazione

b2+ a%y? —a?b* £ =0

rappresenta tutti i punti propri ed impropri dell’ ellisse & .
I punti impropri dell’ellisse sono 1 punti che 1’ellisse ha in comune con la retta impropria e

quindi si ottengono in corrispondenza alle soluzioni non nulle del seguente sistema S :

S b’x* +a’y’ -a’d’ t* =0
t=0

Il sistema S ¢ equivalente a :

q b2x> +azyz -0
t=0

Che puo scriversi cosi
b2X2 _ i2 a2y2 — O
t=0

Si ha quindi

(bx- iay)(bx + iay) =0
t=0

Da cui segue :

bx-iay =0 bx +iay =0
t=0 t=0
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I punti impropri dell’ellisse sono i seguenti due punti

A4 (ia,b,0) A (-ia,b,0)

immaginari e coniugati. La retta impropria ¢ quindi esterna all’ellisse.

3. Iperbole.
Siano F ed F’ due punti distinti del piano e sia 2¢ la loro distanza. Fissato un numero

a < ¢ consideriamo i punti P del piano che hanno la seguente proprieta :

|d(P,F)- d(P,F’)|=2a

Tale insieme di punti ¢ chiamato iperbole e sara ora denotato con § . I due punti F ed F’ sono
dettii fuochi dell’iperbole .

Cerchiamo ora una rappresentazione di tale insieme §. Per fare cio disponiamo il
riferimento che sceglieremo ortogonale, in modo che 1’asse x coincida con la retta che congiunge
F’ ed F el’origine O col punto medio del segmento [F’, F] . Orientamo gli assi in modo che F

abbia coordinate (¢, 0) ed F’ abbia coordinate ( -c, 0).

Con tale scelta del riferimento si ha

P(x,y)eS < |d(P,F)-d(P,F)|=2a <

o [J(x-0) 7 +y - J(x+o) +y |=2a
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Poniamo b’=c¢*—a’ .
Con calcoli del tutto simili a quelli gia illustrati per 1’ellisse si trova che :

XZ y2
P(x,y)eS§ & — — =—=1
(x,y) i o

Pertanto fanno parte dell’iperbole tutti e soli 1 punti P (x,y) del piano le cui coordinate soddisfano
I’equazione

¥y

a b’

2
2
o equivalentemente
2.2 2.2 212
bx"— ay —ab =0

che rappresenta quindi I’iperbole nel riferimento scelto.

Quando il piano reale venga ampliato con i1 punti immaginari anche 1’iperbole § rappresentata
dall’equazione a coefficienti reali

b’x* — a’y*—a’b’ =0

si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse
dell’equazione che la rappresenta.

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di §
propri ed impropri occorre che I’equazione b’x* —a’y’ —a’b*=0 di § siaresa omogenea.
Pertanto 1’equazione

b2 - a%y? —a?b? =0

rappresenta tutti i punti propri ed impropri dell’ iperbole §.
I punti impropri dell” iperbole sono i1 punti che I’ iperbole ha in comune con la retta

impropria e quindi si ottengono in corrispondenza alle soluzioni non nulle del seguente sistema S :

S b’x*-a’y* - a’b*t’? =0
~|t=0
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Il sistema S ¢ equivalente a :

S b’x*-a’y’ =0
t=0

che puo scriversi cosi

(bx - ay )(bx+ ay)=0
t=0

Da cui segue :

bx-ay =0 bx + ay =0
t=0

I punti impropri dell’iperbole sono quindi 1 seguenti due punti reali e distinti
Aoo(aabao) A;o(-aabao)

La retta impropria € quindi secante 1’iperbole .

4. Parabola.
Siano F un punto e . unaretta non contenente F. Sia 2p la distanza di F dalla retta ..

Consideriamo i punti P del piano che hanno la seguente proprieta :
d(P,F)=d(P,.)

Tale insieme di punti ¢ chiamato parabola e sara ora denotato con & . Il punto F ¢ detto fuoco
mentre la retta . ¢ chiamata direttrice .

Cerchiamo ora una rappresentazione di tale insieme & .

Per fare cio disponiamo il riferimento che sceglieremo ortogonale, in modo che ’asse x
coincida con la retta m per F ortogonale ad . e I’origine O col punto medio del segmento [F , M]

M essendo il punto d’intersezione di m con . . Orientiamo gli assi in modo che F abbia
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coordinate (p , 0) .

Con tale scelta del riferimento si ha

P(x,y)e? < d(P,F)=d(P,.) <

J(x-p)?+y =ix+pl
Da questa elevando al quadrato segue :
(**) y -2px =0

e tale equazione rappresenta quindi la parabola @ nel riferimento scelto.

Quando il piano reale venga ampliato con i1 punti immaginari anche la parabola ¢ rappresentata
dall’equazione a coefficienti reali

v -2px =0

si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse
dell’equazione che la rappresenta.

Quando al piano si aggiungano anche i punti impropri allora per rappresentare tutti i punti di ¢
propri ed impropri occorre che I’equazione y* -2px = 0 di @ siaresa omogenea.

Pertanto 1’equazione omogenea

y2 -2pxt =0
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rappresenta tutti i punti propri ed impropri della parabola &
Quali sono 1 punti impropri della parabola ¢? Vediamo .
I punti impropri della parabola ¢ sono i punti che la parabola ha in comune con la retta

impropria e quindi si ottengono in corrispondenza alle soluzioni non nulle del seguente sistema S :

g. y> -2pxt=0
t=0

Tale sistema ¢ equivalente a

2 _
S: y =0
t=0

che hanella terna (1,0, 0) due soluzioni coincidenti .
Pertanto la parabola ha un solo punto improprio reale.

La retta impropria ¢ quindi tangente alla parabola.

Le curve reali descritte in precedenza circonferenza , ellisse , iperbole , parbola sono anche

chiamate coniche per la ragione seguente.

Nello spazio scegliamo un piano 7, e su di esso consideriamo una circonferenza C di
raggio r da noi scelto che abbia il centro in un punto di @, che chiamiamo P,. Consideriamo la retta
m per P, ortogonalea m, e su tale retta scegliamo un punto V distinto da P, .

L  unione di tutte le rette VP ( generatrici ), al variare di P su C, ¢ detto cono ( circolare
retto ) divertice V e direttrice C .
Sia ora 7 un piano dello spazio nomn passante per il vertice V.

L’intersezione di @ col cono ¢€:

a) una circonferenza se m ¢ ortogonale ad m.
b) una ellisse se m incide tutte le generatrici ma non ¢ ortogonale ad m .
¢) una iperbole se m incide tutte le generatrici tranne due .

d) una parabola se m incide tutte le generatrici tranne una.
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Se il piano & passa per V allora ’intersezione di 7 col cono ¢ :

1. una sola retta ( piano tangente )

oppure

2. due rette distinte ( piano secante)

Le curve reali che abbiamo descritto in questo capitolo ( circonferenza , ellisse , iperbole ,
parabola ) vengono chiamate coniche ( non degeneri) in quanto ottenibili come sezioni piane di
un cono .

Inoltre tali curve reali ( circonferenza , ellisse , iperbole , parabola ) come gia abbiamo

osservato quando le pensiamo immerse nel piano proiettivo complesso sono tutte rappresentate da

una

equazgione omogenea di secondo grado in tre variabili a coefficienti reali .

Nel piano reale ampliato coi punti immaginari € coi punti impropri si scelga un riferimento
reale e si scelgano poi due rette reali r ed s rappresentate nel riferimento scelto dalle seguenti

equazioni a coefficienti reali :
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r: ax + by +ct =0

s: ax+by+ct=0

E’ chiaro che I’equazione omogenea di secondo grado

(ax + by +ct )(a’x+b'y+c’t)=0

che si ottenga come prodotto delle due equazioni date rappresenta I’insieme r U s . Mentre

I’equazione omogenea di secondo grado

(ax + by +ct y=0

rappresenta sempre la retta r ( contata due volte ).
Una equazione omogenea a coefficienti reali in tre variabili pud quindi essere la

rappresentazione di :

una circonferenza reale , di una ellisse , di una iperbole , di una parabola e di una coppia di rette

distinte o coincidenti .

( e queste come visto sono tutte le possibili sezioni di un piano col cono ).

Nel capitolo che segue daremo la definizione di conica e poi studieremo a fondo tali
insiemi di punti del piano.
Nello studio che faremo ci imbatteremo spesso a dover ricercare le soluzioni non nulle di

un’equazione omogenea di secondo grado in due variabili ( che qui indichiamo con A e p ) del

tipo :

(++) ar? +bip +cp’=0.

ed ¢ quindi utile sapere come si trovano le sue soluzioni non nulle.

E’ chiaro che se la coppia (A,, p,) verifical’equazione (++) anche la coppia
(pro, p Lo) conp = 0 verifical’equazione (++).

Orase ¢ a # 0 e ( Ao, MWo) ¢ unasoluzione non pud essere [ ,= 0 perché cid
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comporterebbe anche A, =0 . Pertanto ¢ p, # 0 ed allora possiamo assumere p ,=1¢

determinare A, attraverso le soluzioni di
+) ar?+br +c=0.
ottenuta appunto dalla (++) ponendo p =1.

Se A; e A, sono le soluzioni dell’equazione (+) le due coppie ( A; ,1) e ( A2, 1) sonole
soluzioni cercate dell’equazione (++).
Se a=0 alloral’equazione (++) diviene

bap +cp’=pu(br +cp)=0.

e quindi le soluzioni sono (1,0) e (-c,b).



Capitolo IV

Le coniche

&9
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1. Le coniche del piano proiettivo complesso.

Nel piano proiettivo complesso che indicheremo con @ ( nel quale sia fissato un riferimento

reale K_) sichiama conica

l’insieme dei punti P del piano verificanti con le loro coordinate omogenee un’equazione non

identica omogenea di secondo grado in tre variabili (x, y, t ) a coefficienti complessi del tipo .

(D) a11x2+a22y2+a33t2 +2ap xy + 2ap3xt + 2a;yt =0.

Quando i coefficienti a;; dell’equazione (1) sono numeri reali ( o proporzionali a numeri reali) la

conica ¢ detta reale .
E’ chiaro che ogni equazione proporzionale all’equazione (1) secondo un fattore di proporzionalita
non nullo , avendo le stesse soluzioni della (1) , rappresenta lo stesso insieme di punti.

E’ chiaro inoltre che poiché I’equazione (1) ¢ omogenea se la terna non nulla ( yj, y2, y3 ) verifica

I’equazione (1) anche laterna ( py;, py2 pys )con p # 0 verifica ’equazione (1) sicche ha

senso dire che un punto del piano soddisfa con le sue coordinate omogenee I’equazione (1).

Alla conica I" rappresentata nel riferimento scelto dall’equazione :

a11X2+a22y2+a33t2 +2ap xy + 2apxt + 2apyt =0.

si pud associare la seguente matrice quadrata d’ordine tre simmetrica ottenuta utilizzando i

coefficienti a;; dell’equazione della conica .

A=la, a, ay ( aj=aj)

Si osservi ora esplicitamente che nell’equazione :

il numero che accompagna xy e il doppio di a;;

il numero che accompagna xt e il doppio di a;;
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il numero che accompagna yt e il doppio di ay;

pertanto una certa attenzione va posta quando si scrive la matrice A associata alla conica .

Ad esempio la matrice associata alla conica reale I' rappresentata da :

2x*+3y +2xt +4yt=0

¢ la seguente :

>
I
=2 )
DWW o
R

Vedremo in seguito che nella matrice A associata alla conica sono contenute molte

informazioni sulla conica stessa e per tale ragione occorre scriverla in modo corretto.

Studieremo ora in modo approfondito le coniche del piano gia consapevoli che tra quelle

reali dovremo ritrovare quelle descritte in precedenza .

( coppia di rette distinte o coincidenti , circonferenza , ellisse , iperbole e parabola ).

Ma queste gia descritte sono le uniche coniche reali o ce ne sono anche altre ? Vediamo.

Sia T' una conica rappresentata in un riferimento fissato dall’equazione

2 2
anx; tanx, +333x§ +2apx1X2 t2aixix3 +2ax3xyxy3 =0

Ci ¢ utile osservare che tale equazione puo scriversi nei seguenti modi :

(anxitanx: tanxs) X+

(a2 X1 +tapnxy tanxs)X +
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(3.31 X1 tazp X +azxs ) X3 = 0

zai,xi x;=0 (&= a) (nella sommatoria gli indici i e j variano da 1 a 3)
J
L]
Xy ) ap Ay
XiAX=0 dove ¢ X =[x, ed A=la, a, ay ( aj=aj)
X3 a3 a3 Ay

Porremo inoltre a volte per semplicita :

2
f( x1,X2 ,X3 :3,11X2 +anXx -1-2133X2 +2ap XX t2ai XX + 2a3xx3
b ’ 1 2 3

fi( xi1,x2 ,X3) =anxitanx: tapnxs
H(xi,X2,X3) =ay X1 tapX Taxnxs

f(x1,Xx2 ,X3) =a31 X1 Tanxy taysxs

Per la simmetria della matrice A sussiste questa utile eguaglianza che useremo spesso in seguito :

per ogni coppia di terne non nulle ( y1,y2 ,y3) e ( z1,2Z ,2z3 ) sihache sono egualile

seguenti due quantita che indicheremo con

f(x /z) e f(z /y)

dove ¢ :

f(y /z) =(uyitany: tanys)z+
(a2ryrtany, tasys)z +

(asryrtany: tanys)z
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f(z /y) =@nuztapz +tazz)y
(anzitanz: +taxnzz)y: +

(as1z1tanz +taz;)ys

2. Intersezione di una retta con una conica.

Sia T una conica del piano 7 rappresentata, nel riferimento reale scelto, dall’equazione

2 2
anx; tanx; +a33x§ +2apx1X2 t2anxix3 + 2axxxxs3 =0

esia r unaretta del piano passante peripunti Y e Z dicoordinate ( y;,y2 ,y3) €

( z1,272 ,73) .Quando si rappresenti r in forma parametrica si riconosce che i punti di r hanno,

al variare dei parametri( A , p) #(0 ,0), coordinate del tipo

xX1,%2,X3) = A(Yi,Y2,y3) + pn(z1,22,23)
Cioe€ :

(x1,X2,%X3)= (Ay1+ pz;, Ay,+ pzo, Ays+ uzz )

Ci chiediamo per quali valori dei parametri (A , p ) #(0 ,0) il punto

(Ay1+ pz, Aya+ pz;, Ays+ pzz ) dellaretta r appartenga anche alla conica I'.

Orail punto (Ay; + pz;, Aya+ pz, Ays+ pzz ) dellaretta r appartiene alla conica T’

se risulta :

2.1 Doa;(hy + uz) (hy;+ puz) =0

Lj

L’ equazione (2.1) ¢ una equazione omogenea di secondo grado nelle incognite A e p del tipo

(2.2) ari+2bAip+cep’ =0
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avendo posto

a = Zaini Y; , b= Zaini Z; , ¢ = Zaijzi Z;
L] L)

Lj

Se I’equazione (2.2) ¢ identicamente nulla cio¢ risulta a=b =¢ =0 allora per ogni
scelta dei parametri A e p ilpuntodi r di coordinate
(Ay1+ pzi, Aya+ pza, Ays+ pzz ) appartiene alla conica e qundi la retta r ¢ contenuta

nella conica T .

Se I’equazione (2.2) non ¢ identicamente nulla allora essa ammette due soluzioni (distinte o
coincidenti ) in corrispondenza delle quali si trovano due punti (distinti o coincidenti) comuni alla
retta r ed alla conica IT".

Abbiamo cosi stabilito il seguente risultato:

Proposizione 2.1. Una retta del piano non contenuta nella conica ha in comune con essa

al piu due punti .

Da tale risultato segue ovviamente che :

una retta che abbia almeno tre punti in comune con la conica é contenuta nella conica .

3. Le coniche degeneri.

Sia I' una conica del piano m rappresentata, nel riferimento reale scelto, dall’equazione

alle +3,22X§ +a33x§ +2apx1Xy t2apx1x3 + 2a3xx3 =0
Se il polinomio

2 2
f(x1,X2,X3) =anx, +tanx; Tanx; +2apxiXs +2a3xx3 + 2 a3 X2Xs

¢ riducibile esso ¢ il prodotto di due polinomi omogenei di primo grado (distinti o coincidenti) e

risulta quindi :

2 2 2
a1 X, +322X2 +a33x3 +2312X1X2 +2313 X1 X3 + 23,23 X2 X3 =
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(ax;+ bxy +c x3)(a’x;+ b’ xy +¢’x3)

In tal caso la conica I' rappresentata dall’equazione

2 2
a1 X, tanx, +a33x§ +2apx1Xy t2ax1x3 + 2ax3xx3 =0

¢ ’'unione delle due rette r ed s (distinte o coincidenti ) rappresentate rispettivamente da

r: ax;t+tbxy +tcx3=0

Il
(=)

S a’x;+ b’xy +¢’x3

Quando la conica ¢ unione di due rette essa ¢ detta degenere , semplicemente degenere
se le due rette sono distinte e doppiamente degenere se le due rette sono coincidenti.

Come si puo valutare se una conica ¢ degenere ? Vediamo.

Per fare ci0 occorre introdurre la nozione di punto doppio.

Sia ' una conica. Un punto P della conica ¢ detto doppio se esso ha la seguente

proprieta

(™) ogni retta passante per P ha in comune con la conica il solo punto P oppure e contenuta

nella conica.

Un punto che non sia doppio ¢ detto semplice.

Quando una conica ¢ degenere essa possiede punti doppi . Infatti , riferendosi alle figure ,
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r=s

Se la conica ¢ semplicemente degenere ed ¢ I'unione delle due rette distinte r ed s allora ,
detto V il punto comune alle due rette esso ¢ doppio per la conica ed ¢ I” unico punto doppio della

conica .

Se la conica ¢ doppiamente degenere allora ogni suo punto é doppio.
Questa proprieta esaminata per le coniche degeneri caratterizza le coniche degeneri come mostra la

seguente

Proposizione 3.1. Una conica I e degenere se e solo se essa possiede punti doppi.

Dimostrazione. Abbiamo gia osservato che se la conica ¢ degenere essa possiede punti
doppi. Supponiamo quindi che la conica possegga almeno un punto V doppio e proviamo che essa
¢ degenere. Sia P un punto della conica distinto da V. Laretta r per V e P ¢ contenuta nella
conica in quanto V ¢ doppio. Se risulta I' = r allora I" ¢ doppiamente degenere . Se invece

I' o r scegliamo unpunto T di I' - r . Laretta s cheunisce VeT , ¢ distintadar
ed ¢ contenuta in I' essendo V un punto doppio. Proviamo oracherisulta I' = r U s.
Supponiamo per assurdo cherisulti I' > r U s.

Sia T un punto di I' non appartenente alle rette r ed s. Ogniretta¢ per T ¢
contenutain I" .

Infatti cio ¢ ovvio se ¢ passaper V ( che ¢ doppio) ed ¢ altrettanto vero se ¢ non passa per V in
quanto in tal caso la retta ¢ ha in comune con la conica I' i tre puntidistinti T , M=¢ N r,
N=¢ N s.

Se ogni retta per T ¢ contenuta nella conica allora ogni punto del piano appartiene alla conica ¢

cio ¢ assurdo in quanto I’equazione che rappresenta la conica ¢ non identica e quindi la conica ¢ un
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sottoinsieme proprio del piano.
Dalla proposizione ora provata seguono le seguenti ovvie proprieta :
a) se una conica possiede un sol punto doppio essa ¢ semplicemente degenere.

b) se una conica possiede almeno due punti doppi A e B allora essa ¢ doppiamente

degenere riducendosi alla retta che unisce A e B.

La proposizione 3.1 ora provata e che caratterizza le coniche degeneri sposta I’attenzione sulla
ricerca degli eventuali punti doppi della conica .

Ma come si trovano i punti doppi di una conica ? Vediamo .
Il teorema che segue fornisce la risposta al quesito posto.

Proposizione 3.2. Un punto P  del piano é doppio per la conica I' rappresentata

dall’equazione

I Z%Xi x;=0 (Qij = 4qji )
L
se e solo se le sue coordinate ( y;,y, ,ys;) verificano le seguenti eguaglianze :

apyirtany: tasys =0
3.1 ayy1tany: taasy; =0

az y1 tany, tapy; =0

Dimostrazione. Cominciamo a provare che se un punto ha coordinate verificanti le
eguaglianze (3 . 1) esso ¢ un punto della conica ed ¢ doppio per essa . Abbiamo gia osservato che

risulta
Z:aijyi y;= (any tapy, tapys)yi1t@yrtany: tasysy:+
Lj

+ (aryrtany: taxsys) ys
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e pertanto , se valgono le (3.1), si ha zaijyi y;=0 il che prova che P ¢ un punto della conica,
Proviamo ora che esso ¢ doppio per laléonica r.
Sia Z un punto qualsiasi del piano distinto dal punto P e sia r la retta che unisce P con Z .
Siano ( z;,7, ,73 ) le coordinate di Z e sia
(x1,%X2,x3) = (Ay1+ pzi, Aya+ puzy, Ays+ pzz )
la rappresentazione parametrica della retta r.
Abbiamo gia visto ( al numero 2 di questo capitolo) che gli eventuali punti comuni alla retta r ed

alla conica si trovano attraverso le soluzioni non nulle dell’equazione

ari+2bAip+cep’ =0

dove ¢ :
a = Zaini Y , b= Zaini Z; , ¢ = Zaijzi Z;
L] i,j ij

Stante le (3.1) sihaallora a=0 e¢ b=0 e pertanto I’ equazione

ali+2bip+ep® =0

diventa

Se anche ¢ =0 allora la retta r € contenuta nella conica se invece ¢ ¢ # 0 allora

I’equazione ¢ u° =0  fornisce come sua unica soluzione la coppia ( 1, 0 ) cui corrisponde il

punto P che diventa quindi I’unico punto che r ha in comune con T".

Abbiamo provato cosi che se valgono le (3.1) allora P appartiene alla conica ed inoltre (vista
I’arbitrarieta del punto Z ) ogni rettaper P o ¢ contenutain I' o ha in comune con I' il solo

punto P e cio prova che P ¢ doppio per I .

Viceversa supponiamo che un punto P (y;,y2 ,y3 ) dellaconica I' sia doppio per essa e

proviamo che le sue coordinate (y;,y2 ,y3 ) verificanole (3.1).
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Al solito sia Z un punto qualsiasi del piano distinto dal punto P e sia r la retta che unisce P

conZ.Siano ( z;,2, ,z3 ) le coordinate di Z e sia
(x1,% x3) = (Ayi+ pz, Ayat pz, Ays+ pzz )
la rappresentazione parametrica della retta r .
I punti comuni alla retta r ed alla conica si trovano attraverso le soluzioni non nulle dell’equazione
ar?+2bip+cep’ =0

dove ¢ :

a = Qayy; . bP=Xagyiz € =Xz
ij ij i,

Poiché P ¢ un punto della conica allora ¢ a=0.L’ equazione

al+2bAip+cep’ =0
diventa cosi :
p(2bA+cpu) =0
Si ha quindi la soluzione (attesa ) (1,0) cui corrisponde P e I’altra soluzione si ottiene da
(2bA+cpn) =0.
Poiché P ¢ doppio laretta PZ ¢ contenuta in I' oppure ha in comune con I' il solo punto P e

quindi I’ equazione (2b A + ¢ pn) =0 deve o essere identicamente nulla o deve fornire

ancora come soluzione la coppia ( 1, 0) . In entrambi i casi cido comportache¢ b =0.

Pertanto qualunque sia Z ( z;,2z, , z3 ) risulta allora che ¢ :

b= Zai iYiZ =0
L)
Esplicitamente ¢ :

b= (anyi tany: tazy;)zi+(@uyitany: tasys)zt@y tany: taisys)z

ed esso ¢ nullo , per ogni scelta del punto Z , e quindi per ogni scelta della terna (z;, z; , 73 ).
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Scegliendo
(219Z2 723):(19090)7 (ZlaZZ 723):(09170)7 (Z],Z2 923):(09071)
si hanno le (3.1) e I’asserto ¢ cosi provato.

La proposizione ora provata ha mostrato che determinare gli eventuali punti doppi della

conica equivale a determinare le eventuali soluzioni non nulle del seguente sistema omogeneo

a; X, +ap X, +apx; =0
(3.2) S :Ja, x,+ay,x, +a,x; =0

ay; X, ta; X, +a;x; =0
che ha per matrice la matrice A della conica .

Pertanto , tenendo conto delle proposizioni ( 3. 1) e (3.2 ), si ha questa utilissima

Proposizione 3.3 Una conica I rappresentata dall’equazione

1771

I : Za"X'XJ’:O (Qij = aji )
Lj
e degenere se e solo se risulta

det A =0.

Dimostrazione. Se I' ¢ degenere essa possiede almeno un punto doppio P. Le coordinate di P sono
quindi una soluzione non nulla del sistema omogeneo (3 .2) e cosi ¢ det A =0.
Viceversa se detA=0 il sistema (3 .2) ha soluzioni non nulle ed in corrispondenza a tali soluzioni si

hanno punti doppi per I la quale ¢ cosi degenere.

4. Coniche non degeneri . Tangente in un punto.

Sia I' una conica non degenere rappresentata da

Dla X x;=0 (a5~
¥

e siaP(y;,y2 ,y3) unsuo punto.Poiché ¢ non degenere il punto P € semplice e cosi almeno una
delle tre relazioni (3 .1) ¢ diversa da zero. SiaZ ( z;,2z> ,z3 ) un punto del piano distinto da P e

siar la retta PZ . Come gia visto i punti comuni alla retta PZ , rappresentata parametricamente da
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( X1, X2 9X3) = (xy] + nzi, 7\‘yz—’— nzz, XY3+ LA] )
si trovano attraverso le soluzioni non nulle dell’equazione
4.1 ari+2bAip+cep’® =0

dove € :

a = 2ayy; . bP=Xayz €= Xazz
ij ij ij

Essendo a = 0 inquanto P e I',’equazione (4.1) diventa :
(4.2) pn(2bi+cp) =0

Tale equazione fornisce la soluzione (1, 0) in accordo col fatto che P ¢ comuneadr ¢ I' . La
soluzione (1, 0) sara soluzione doppia della (4.2 ) e cio¢ la retta r interseca I' solo nel punto P se

e solo se risulta
b= Zaini Z; =0
1)

Abbiamo cosi provato che 1 punti Z del piano per cui la retta PZ incontri I' nel solo punto P sono

tutti e soli quelli per cui risulti :
(anyitany: tanys)z +

(azryrtany, tasys)z +

(az1y1 tany, tapsy;)z =0

cioe sono tutti e soli i punti del piano le cui coordinate sono soluzione dell’equazione seguente
(4.3)

(Auyirtany: tasy;)xi+(@uayitany: taxsy;) X2 +(@nyitany: ta;ys)x3=0

Tale equazione, che non é identica perche P e semplice , rappresenta quindi I’unica retta per P che

interseca la conica I' nel solo punto P . Tale retta ¢ chiamata retta tangente nel punto P.
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5. Coniche reali non degeneri.

In questo numero tratteremo le coniche reali non degeneri cercando una loro classificazione.
Sia I" una conica reale non degenere rappresentata in un riferimento reale assegnato dall’equazione

a coefficienti reali seguente :
I : X, X. = aj = aji
Za‘jxl X 0 ( Yij i )
ij

Supporremo inoltre che essa sia dotata di punti reali.

(nota bene : la conica x° + 2y2 +3F=0 pur essendo reale non ha punti reali .
Al contrario se essa ha un punto reale ogni retta reale per tale punto e che sia secante

intersechera la conica in un altro punto reale e cosi la conica ha infiniti punti reali)

Poiché la conica I" ¢ non degenere essa non contiene rette e cosi ogni retta del piano la
interseca in due punti distinti o coincidenti. Se la retta ¢ reale allora i due punti di intersezione
sono entrambi reali o immaginari e coniugati.

In particolare cio accade per i suoi punti impropri che sono i punti che la conica ha in comune

con la retta impropria che ¢ una retta reale .

Laconica I' ¢detta ellisse se possiede due punti impropri immaginari e coniugati.

La conica I' ¢ detta iperbole se possiede due punti impropri reali e distinti.

La conica " ¢ detta parabola se possiede un sol punto improprio (reale ).

Per stabilire se una conica ¢ una ellisse , una iperbole o una parabola occorre quindi determinare

1 suoi punti impropri e quindi occorre studiare le soluzioni non nulle del sistema S formato

dall’equazione della conica e da quella della retta impropria :

Zau‘ X;x; =0
0

x,=0

S:
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Il sistema S ¢ equivalernte al sistema seguente :

2 2 _
S - a, Xx; +2a,x,x,+a,x;=0
x;=0

Le soluzioni non nulle di tale sistema saranno reali o immaginarie a seconda che il discriminante
_ 2
A=4(aj,—a;ay)

. 2 2 . . . .
dell’equazione a, Xx; +2a,X,X, +a,X;=0 sia maggiore o eguale a zero o minore di zero.

Tenendo conto che nella matrice A della conica ¢ :
—at=A
ajady, —a g, 33

Si ha A =-4A33

Ne segue che risulta :

A <0 < A3 >0

-

I' €una ellisse se

I' ¢una parabola se ¢ A =0 = Az =0

A>0 = A3 <0

-

I' ¢una iperbole se

Ricordiamo che agiscono sul piano le affinita ( reali ) che sono le applicazioni del piano

in sé descrivibili con equazioni del tipo

Xp=my X, tm, X, +mp;X;
X, =My, X TMy, X, FMy; X

X3 =X;

) . m;; m,
con m;j numeri reali e det #0
m, m
21 22
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Tali isomorfismi del piano trasformano punti propri in punti propri , punti impropri in punti
impropri , punti reali in punti reali e punti immaginari in punti immaginari .

Per una conica avere due punti impropri , immaginari e coniugati , reali e coincidenti o reali
e distinti ¢ quindi una proprieta invariante rispetto al gruppo delle affinitd ed ¢ quindi una
proprieta affine.

Per tale ragione la suddivisione delle coniche reali non degeneri in ellissi , parabole o

iperboli ¢ chiamata la classificazione affine delle coniche reali non degeneri.

6. Polarita definita da una conica non degenere.
Sia I" una conica non degenere rappresentata in un riferimento reale assegnato dall’equazione

seguente :
I : E aijxi Xj =0 (aij = aji )
i.j

Poiché la conica ¢ non degenere la sua matrice A(a;j) ¢ non degenere e quindi ¢ det A #0.
Sia P(yi,¥y2 y3) unpunto del piano. L’ equazione

(Auyirtany: tasys) xi+(@uyitany: tapnys;) X2 +(@iyi+any: ta;ys)x3=0

( costruita utilizzando le coordinate (y;, y2, y3) di P) ¢ una equazione non identica

( altrimenti P sarebbe doppio e la conica sarebbe degenere) e quindi rappresenta una retta del

piano . Tale retta ¢ chiamata la polare del punto P e sara denotata col simbolo 4p

Associando al punto P la retta #p si realizza una applicazione 4 tra i punti del piano e le
rette del piano . Tale applicazione
t: P - #p

¢ chiamata polarita indotta dalla conica non degenere I' .1l punto P ¢ chiamato il polo della
retta 4p

Le proposizioni che seguono illustrano alcune importanti proprieta della polarita 4 indotta dalla

conica [ .

Proposizione 6.1 La polarita e un’applicazione biettiva.
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Dimostrazione. Sia r una retta del piano rappresentata da :

(6.1) r: ax +by+ct=0

Unpunto P ( yi,y2 y3 ) del piano ha per polare la retta r serisulta qp= r cioe se

I’equazione

(Auyirtany: tasy;)xi+(@uyitanry: taxny;) X2 +(@uyitany: taz;ys)x3=0

¢ I’equazione dellaretta r. Siha quindiche P ( y;,y2,y3 ) €polodi r se e solo se risulta :

ajy tayy, tasy; =a
(**) a, y,ta,y, +a,y; =b

ay; y,+ta;y, +a;y; =C

Tale sistema inteso nelle incognite ( yi, Y2, y3 ) hauna sola soluzione ( z;, z», z3 ) in quanto,
essendo la conica non degenere, ¢ det A # 0. Sostituendo alla terna (a, b, c ) la terna
proporzionale (pa, pb, pc) con p # 0 siotterrd in corrispondenza la soluzione

(pz1, pz, pz;3). Pertanto in corrispondenza a tutte le terne ( p z; , p 2, p z3 ) soluzioni di (**)
si ha un solo punto P del piano avente per polare la retta r . La corrispondenza 4 ¢ quindi

biettiva come si voleva provare.

Proposizione 6.2. Un punto P appartiene alla sua polare se e solo se esso appartiene alla
conica . In tal caso la sua polare coincide con la retta tangente in P .
Dimostrazione . Se P(y; ,y», y3 ) € un punto della conica allora la sua polare #p

che ¢ rappresentata da :

(Auyirtany: tasy;) xi+(@uyitany: taxny;) X +(@uyitany: ta;ys)x3=0

coincide con la retta tangente nel punto P (cfr. (4.3) ) . In tal caso quindi P appartiene alla sua
polare in quanto ¢

(@Auyirtany: tagys)yi«@uyitany: taxys)y: +(@uyrtany: tajsys)ys=0
essendo P un punto della conica .

Viceversa se P(y; , y2, y3 ) appartiene alla sua polare
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(Auyirtany: tapy:) xi+{@uyi+any: tapys) X2 + (@ yi+any, ta;sys) x3=0

allora ¢

@Auyitany: tapy;)yi+«(@uyitany: taxys)y: +(@uyr+any: tasys)y;=0

e questa prova che P & un punto della conica.

Abbiamo cosi provato che :

(6.3) Pel < Pe

Una importante proprieta della polarita 4 ¢ espressa dal seguente :

Teorema di reciprocita. Se P(y;, v, y3 ) e Q (z;, z2 z3 ) sono due punti distinti del
piano, . si ha
(6.4) Qe p & Pe 4o

Dimostrazione.

LapolarediPe:

(Auyirtany: tapy:) Xt +auyi+any: tapys) X2 +(@yi1+any, ta;sys) xz3=0

che puo scriversi sinteticamente , usando le notazioni introdotte al numero 1, cosi :

f(yxy /x)=0

LapolarediQ ¢ :

(Auzitanz tapzz ) X1+ zi+tanz +tapz;)x; +(@nzitanz +a;zz) xz=0

che puo scriversi sinteticamente , usando le notazioni introdotte al numero 1, cosi :
f(z /x)=0

Abbiamo, sempre al numero 1 , gia osservato che poiché la matrice A della conica ¢ simmetrica si

ha per ogni coppia di terne (y;,y2,y3 ) € (21,2, Z3 )

(6.5) f(xy /z)y=1(z /y)

Dalla (6.5) segue quindi
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f(x /z)=0 < f(z/y)=0

e questa prova l’asserto.

Siamo ora in grado di descrivere per ogni retta del piano quale sia il suo polo.

Sia r una retta del piano . Distinguiamo i due casi possibili :

a) r étangente alla conica .

b) reésecante la conica .

Caso a) . Se laretta r ¢ tangente alla conica nel punto P allora la polare di P ¢ r e quindi P ¢ il

polo di r . Nel caso in esame quindi il polo di r ¢ il punto di contatto di r con la conica .

Caso b) . Selaretta r ¢ secante la conica siano M e N 1 punti di intersezione di r con la

conica .

Sia m la retta tangente a I' nel punto M e sia n laretta tangente a I' nel punto N.
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Sia P il punto comune alle rette distinte m ed n . Per cio che precede ¢ :

m = pm ed n = 4N
Orac P=mnNnn =y N
e quindi P appartiene alla polare di M ed alla polare di N .
Per il teorema di reciprocita M ed N appartengono alla polare di P . Quindi la polare di P ¢ la

retta r=MN ecosiP ¢ilpolodir.

Per la biettivita della polarita abbiamo cosi provato la seguente proposizione :

Proposizione 6.3. La polare di un punto P é la tangente in P se P é un punto della conica .
Se P non appartiene alla conica la sua polare e la retta che unisce i due punti di contatto delle

due rette tangenti che si possono condurre da P alla conica.

Dal teorema di reciprocita segue facilmente la seguente:

Proposizione 6.4. Quando un punto P descrive una retta m la sua polare descrive un fascio

di rette con centro il polo M della retta m .

7. Centro, diametri, asintoti, assi. Le equazioni canoniche.

Sia I una conica non degenere reale e con punti reali rappresentata, nel riferimento reale

scelto, dall’equazione

2 2
anx; tanx, +333x§ +2apx1X2 t2aixix3 +2ax3xxxy3 =0

Sichiama centro 1l polo della retta impropria.

Se la conica ¢ una iperbole o una ellisse la retta impropria ¢ secante e quindi non contiene il suo
polo. Pertanto per I’iperbole e per ’ellisse il centro € un punto proprio.

Se la conica ¢ una parabola la retta impropria ¢ tangente e quindi il suo polo ¢ il punto di
tangenza . Pertanto per la parabola il centro ¢ un punto improprio e coincide col suo unico
punto improprio. Indichiamo con C il centro della conica T .

Per determinare le coordinate del centro di una iperbole o di una ellisse si pud far uso del

teorema di reciprocita.
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Poiché la retta impropria ¢ per definizione la polare di C allora ogni punto improprio ha la polare
che passa per C.

Due punti impropri “ facili” sono (1 0 0) e (0 1 0) e le loro polari sono le rette distinte

a1 X;tanpxp +al3X3:0
QX1 tanx; tapnx =0

le quali , come detto , passano per il centro . Pertanto le coordinate del centro si ottengono

attraverso le soluzioni del sistema

{an X, +a,Xx, +a;x; =0

a, X, +a,X, +apxx; =0

Tale sistema ¢ omogeneo e di rango due e quindi le sue soluzioni si ottengono attraverso i

minori d’ordine due e presi a segno alterno della matrice dei coefficienti

(311 ap) a13)
Ay Ay An
Utilizzando quindi le prime due righe della matrice A della conica si possono determinare le

coordinate del centro.

Diametri.

Si chiama diametro della conica la retta d  polare di un punto improprio O non
appartenente alla conica.

Quando il punto improprio appartiene alla conica la polare di tale punto ( la tangente in tale

punto ) ¢ chiamato asintoto.

La retta impropria ¢ la polare del centro e quindi , per reciprocita , 1 diametri e gli asintoti

essendo polari di punti impropri passano tutti per il centro.

Se la conica ¢ una iperbole o una ellisse allora i diametri formano un fascio proprio essendo per
tali coniche il centro un punto proprio. Se la conica ¢ una parabola allora i diametri formano un

fascio improprio essendo per tali coniche il centro un punto improprio.

Nel caso della parabola quindi 1 diametri sono tra loro paralleli.

Sia r una retta reale € sia O il suo punto improprio . Supposto che tale punto non
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appartenga alla conica possiamo considerare il diametro d ad esso corrispondente . Poiché 0
non appartiene alla conica la retta d non contiene & e quindi laretta d non ¢& parallela ad r .
Se d ¢ ortogonale ad r allora d ¢ detto asse.

Gli assi sono quindi  particolari diametri .

Come si trovano gli assi ? Vediamo.

Se la conica I' ¢ una parabola allora i diametri hanno una direzione fissa perché passano
tutti per il centro che coincide con 1’unico punto improprio della parabola T'.

Pertanto se il punto improprio di I’ ha coordinate (¢ ,m, 0 ) I’asse della parabola ¢ la
retta d polare del punto improprio (-m, ¢ , 0 ). Tale asse interseca la parabola in un punto
proprio , detto vertice della parabola e nel suo punto improprio.

Disponendo il riferimento in modo che 1’asse x coincida con la retta d e 1’origine nel

vertice della parabola 1’equazione della parabola

a11X2+322y2+a33t2 +2ap xy + 2apxt + 2a;yt =0.

diviene piu semplice. Vediamo.
La polare del punto (0, 1,0) ¢ laretta

A Xtapy taxpt =0
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e tale retta, per la scelta fatta sul riferimento, ¢ laretta y = 0 . Pertanto ¢
ap=ax3; =0

Poiché I’origine (0 0 1) ¢ un punto della parabola ¢ anche asz; = 0.

La conica I' ha allora la seguente matrice

a,; 0 aj,
A=0 a, O
a;, 0 0

Essendo I' una parabola ¢ As;= ajjap =0 e detA# 0 equindie a;;=0.
L’equazione di I' nel riferimento scelto ¢ quindi del tipo

any +2a;3xt =0
I punti propri della parabola sono quindi rappresentati dall’equazione :

a22y2+2 ax =0

che ¢ chiamata l’equazione canonica della parabola T" .

Supponiamo quindi che la conica I' sia una iperbole o una ellisse.

Consideriamo un qualsiasi punto improprio e siano ( A, pu ,0) le sue coordinate e sia r una
retta che passa per esso.
La polare di tale punto improprio ¢ la retta d rappresentata da:
d: (@u A +app)xi+(@uritanp)xy +(a A +app ) x3=0
I numeri direttori di tale retta sono .
(A ,p)=(-(Q@urtanp), (aud +tapp))

Pertanto le rette d ed r sono ortogonaliserisulta AA’+ pp’=0 cioe:

(71) —7\.(3217\4'322“)"' u(alll+a12u)20



112

La (7.1) sviluppata :

(7.2) -3217\.2 + (an-axn)Aip + ap }.LZZO

¢ un’equazione omogenea di secondo grado e le sue soluzioni non nulle forniscono le “direzioni”

(X, u ,0) le cui polari sono gli assi della conica.

Ora il discriminante dell’equazione (7.2) ¢ :

2 2
A= (a;-apn)” +4ap

Se a;; =axp=a;p=0 laconica ¢ una circonferenza e la (7.2) ¢ identicamente nulla . Nel caso
della circonferenza ogni diametro ¢ quindi un asse.

Se la conica non ¢ una circonferenza allora¢ A >0 e quindi la (7.2) fornisce due soluzioni
reali e distinte .

Ci sono quindi due rette reali d e d’ che sono assi della conica se I" ¢ una iperbole o una
ellisse. Gliassi d e d’ sono inoltre , per il teorema di reciprocita, ortogonali tra loro.
Disponendo il riferimento in modo che 1’asse x sia la retta d e I’asse y sia la retta d’

I’equazione della conica diventa piu semplice . Infatti sia

a11X2+a22y2+a33t2 +2ap xy + 2apxt + 2apyt =0.

I’equazione di I'.

Lapolaredi (1,0,0) ¢laretta
ajpxtapy tazt=0
e tale retta per le scelte fatte ¢ laretta x = 0 . Pertanto ¢
ap=2a;3=>0
Lapolaredi (0,1,0) ¢ laretta
A Xtapy taxt=0
e tale retta per le scelte fatte ¢ laretta y = 0 . Pertanto ¢

ap=a3=0



113

Con la scelta fatta per il riferimento I’ equazione diventa :

311X2+322y2+ 833t2 =0.

e questa viene chiamata [I’equazione canonica della conica 1" .
Essendo la conica non degenere ¢ det A=ajjapaz;; # 0 equindie
an + 0, azzio, ayz = 0
Dei tre numeri reali ajy,a2;,a33 valutiamo quali sono positivi e quali negativi .
Avendo supposto che la conica ¢ dotata di punti reali le possibilita per i segni dei numeri reali

aj1, 232,233 sono riassunti nella seguente tabella

a1 | ax | az; Equazione di I' in coordinate non omogenee

+ |+ - | b’x*+a’ y 2=1 (ellisse) o (circonferenza se a=b)
+ |- |- |px*-a° y 2=1 (iperbole)

- |+ |- |a’y%- b*x?=1 (iperbole)

Attraverso le equazioni canoniche abbiamo cosi riconosciuto che la parte reale e propria di una

conica reale non degenere e che sia dotata di punti reali ¢ :
una “vera” circonferenza, una “vera” ellisse, una “vera” iperbole
una “vera” parabola .

nel senso descritto nel capitolo II .

L’aver chiamato ellisse , parabola o iperbole una conica reale non degenere e con punti reali ¢

quindi coerente con le nostre attese.
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Capitolo V

Lo spazio proiettivo complesso di dimensione tre.
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1. Lo spazio affine reale e complesso.

In questo numero S rappresentera lo spazio reale tridimensionale . La famiglia delle rette di
S sara rappresentata col simbolo £ mentre col simbolo & rappresenteremo la famiglia dei piani
di S.

Duerette ¢ ed ¢’ di S sidicono parallele se coincidono oppure, nel caso siano distinte,
esse giacciono in uno stesso piano ed hanno intersezione vuota.

Due piani o e o’ si dicono paralleli se coincidono oppure , nel caso siano distinti , se
hanno intersezione vuota.

Unaretta { ed un piano o sono paralleli se la retta ¢ contenuta nel piano oppure , nel caso
non sia contenuta , essa ha intersezione vuota col piano.

Tre punti distinti si dicono allineati se essi appartengono ad una stessa retta, non allineati in
caso contrario.

Laterna (S, £, 9) ¢ chiamata spazio affine reale tridimensionale e per essa sono verificate

le seguenti proprieta :

Due punti distinti appartengono ad una unica retta.
Tre punti distinti e non allineati appartengono ad un unico piano.

Due piani distinti hanno intersezione vuota o si intersecano in una retta.

ANow oMo~

Una retta ¢ non contenuta nel piano a o e parallela ad o oppure interseca o in un
Unico punto.

5. Data una retta ¢ ed un punto p non appartenente ad ¢ esiste una sola retta ¢/’ per p

parallela ad ¢

Sl

Dato un piano o ed un punto p non appartenente ad o. esiste un sol piano a’ per p

parallelo ad o .

Le proprieta sopra elencate sono equivalenti alle seguenti :

1. Due punti distinti appartengono ad una unica retta.
2. Una retta ed un punto che non si appartengano sono contenuti in un unico piano.
3. Due piani distinti hanno intersezione vuota o si intersecano in una retta.

4’. Una retta ¢ che unisce due punti di un piano é tutta contenuta nel piano.
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5. Data una retta ¢ ed un punto p non appartenente ad / esiste una sola retta ¢’ per p
parallela ad ¢
6. Dato un piano o. ed un punto p non appartenente ad o esiste un sol piano a’ per p

parallelo ad o .

Le proprieta sopra elencate mostrano che ogni piano dello spazio rispetto alle rette in esso

contenute ¢ un piano affine.

Abbiamo gia provato che quando nello spazio (S, £, ¢ ) si introduca un riferimento reale &
e monometrico allora i suoi punti , le sue rette ed 1 suoi piani possono essere rappresentati al
seguente modo.

Ad ogni punto p si puo associare una terna ordinata ( X, y, z) di numeri reali che si chiama
la terna delle coordinate di p nel riferimento R e tale corrispondenza , detta coordinazione dello
spazio , ¢ biettiva .

Ogni piano sirappresenta con un’equazione

ax+by+cz+d=0 con (a,b,c) #(0,0,0)

di primo grado e non identica in tre variabili.

Ogni retta si rappresenta o in modo parametrico con relazioni del tipo

X = X5 + p(Xg—X,)
0 y=Yat pys—ya)
z= 7z, + P(z5-2,)

(dove il parametro p varia nel campo reale)

o con un sistema del tipo :

- ax+by+ cz +d =0
' a'x+by+c'z+d=0

a seconda se si pensi { come la retta che congiunge i punti distinti A( Xp ,ya , ZA) €
B (xs ,yB , zB) oppure si pensi la retta ¢ come la retta comune ai due piani o e o’ distinti tra

loro e rappresentati rispettivamente da :

o: ax+tbyt+cz+d=0 e o: ax+by+cz+d =0
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Attraverso tali rappresentazioni abbiamo visto che ¢ facile riconoscere se due rette sono tra
loro parallele , se due piani sono tra loro paralleli , se una retta ed un piano sono tra loro paralleli.

Cosi come il piano affine reale ¢ stato da noi arricchito di nuovi punti , i punti immaginari ,
lo stesso procedimento puo essere eseguito nello spazio (S, £, ) .

Senza ripetere le motivazioni che portano alla definizione di punto immaginario (sarebbero
le stesse esposte nel caso del piano) puntiamo direttamente alla sua introduzione.

Anche nello spazio, quando si siano scelti due riferimenti reali ® ed R, ci sono delle
formule che consentono di conoscere le coordinate di un punto p nel riferimento  * note che siano
le coordinate dello stesso punto nel riferimento ®. Tali formule ,dette di passaggio da un

riferimento all’altro, sono di questo tipo :

x'=apXx+apy +a;z +c;
*) y'=ayX+a, y+ayz+c,

L
Z=ayX+ay yt+tazZ +C,

dyp gy Agg
dove inumeri a;; e ¢; sonorealiedinoltree:  det| a, a, a,; |#0

s Az Agz

Consideriamo ora le coppie del tipo ((a, b, c); ®) dove la prima coordinata (a,b,c) ¢
una terna ordinata di numeri complessi non tutti e tre reali e la seconda coordinata ® ¢ un
riferimento reale dello spazio.

Due siffatte coppie ((a,b,c); R) e ((a ,b,c’); R ) le diremo equivalenti se
sostituendo nelle formule (*) di passaggio da ® ad QR al postodi x,y,z 1inumeri a, b, c si
ottengono a primo membro i numeri a’,b’,c’.

Tale relazione , come ¢ facile controllare, ¢ d’equivalenza ed ogni classe d’equivalenza ¢
chiamata punto immaginario.

Se p*=[((a,b,c);R)] ¢unpuntoimmaginario i numeri complessi e non tutti reali
(a, b, c) vengono chiamati le coordinate di p* nel riferimento X .

Indichiamo con $ I’insieme di tutti i punti immaginari e con S* =S U § lo spazio

ottenuto aggiungendo ai punti reali 1 punti immaginari.
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Quando si fissi un riferimento R reale dello spazio ogni punto p di S* ha le sue coordinate
x,y,2).
Tali coordinate sono tre numeri reali quando il punto p ¢ reale e sono tre numeri complessi e
non tutti e tre reali quando il punto p ¢ immaginario.
Utilizzando il coniugio ( ¢ : xtiy — x-1y ) del campo complesso si puo nello spazio S*
introdurre una biezione
c: peS* > peS*

che chiameremo egualmente coniugio la quale fa corrispondere al punto p di coordinate (x, y, z)

il punto p le cui coordinate sono 1 numeri complessi e coniugati dei numeri x , y, z..

Il punto p & chiamato il punto complesso e coniugato del punto p .

Evidentemente un punto ¢ reale se e solo se coincide col suo complesso coniugato.

Se p non & un punto reale esso ¢ distinto dal suo complesso coniugato e la retta che

congiunge p ¢ p ha numeri direttori reali come ¢ facile controllare .

Nello spazio S* si possono stabilire le stesse formule gia provate per lo spazio reale. Noi

non faremo pero la dimostrazione di queste formule. Un primo esempio € il seguente.

Se A(Xa ,ya , Za) , B(xs ,y8 , ZzB) , C(Xc ,yc , Zc) sono tre punti distinti e non
allineati di S* il piano a che li congiunge ¢ costituito dai punti p le cui coordinate (X, y , z)

verificano la seguente relazione :

x y z1
Xy Va Zal
Xg Vg Zp !l

Xc Ve 2cl

det =0

Sviluppando tale determinante lungo gli elementi della prima riga si riconosce che i1 punti
del piano o hanno coordinate (X, y , z) che sono tutte e sole le soluzioni di un’equazione di primo
grado non identica nelle variabili x , y, z del tipo

(**) ax tby+cz+d=0

cona,b,c,d numeri complessie con (a,b,c) # (0,0,0).

L’equazione (**) si dice che rappresenta il piano o . E’ evidente che un’equazione
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proporzionale ad essa secondo un fattore complesso non nullo , ha le stesse soluzioni e quindi
rappresenta lo stesso piano.

Quando 1 coefficientia ,b,c,d sono reali o proporzionali a numeri reali il piano ¢ detto
reale .In tal caso i punti reali di tale piano costituiscono allora un piano reale dello spazio S.

Tra 1 piani dello spazio S* ci sono quindi i vecchi piani di S arricchiti ciascuno di infiniti
nuovi punti immaginari.

Per ogni piano o rappresentato da :

o : ax+by+cz+d=0
si pud considerare il piano a complesso e coniugato ottenuto considerando i punti complessi e
coniugati dei punti di o .l piano a & rappresentato da :
a: ax+by+cz+d=0
cio¢ dall’equazione complessa e coniugata dell’equazione di o
E’ facile controllare che sussiste la seguente equivalenza :

Proposizione 1.1 Un piano e reale se e solo se coincide col suo complesso coniugato.

Ci sono pero piani nello spazio S* che non sono reali e quindi non riconoscibili come un
ampliamento di quelli di S . Tali piani ovviamente non possono possedere tre punti reali e non
allineati. Consideriamo quindi un piano o non reale .

E’ evidente che un eventuale punto reale di tale piano appartiene anche al piano complesso

e coniugato. Quindi gli eventuali punti reali del piano a vanno ricercati nell’intersezione di a con

a .Se o éparalleload a allora esso non ha punti reali
Ad esempio il piano rappresentato da

x—1=0

¢ parallelo ad a rappresentato da x +i=0 ed ¢ privo di punti reali in quanto i suoi punti sono

del tipo (i,h, k).

Se a possiede un punto p, realealloraa ed a avendo in comune p, hanno in comune
una retta ¢ . Sia ora A un punto della retta ¢ distinto da p,esia A il suo complesso coniugato
che apparterra anch’esso allaretta ¢. Se A= A allora il punto A ¢ reale e quindi la retta ¢

possedendo due punti reali & reale . Se A # A allora i numeri direttori di ¢ sono reali e quindi la
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retta ¢ € pur sempre reale. Ad esempio il piano rappresentato da
x+iy=0

ha come unici punti reali i punti allineati (0, 0,k) con k reale .
Concludendo, abbiamo mostrato che nello spazio S* ci sono tre tipi di piani :

a) Piani reali che sono i piani di S ampliati ciascuno con i punti immaginari.
b) Piani totalmente immaginari .

c) Piani immaginari dotati di una retta reale.

Vediamo ora le rette di S*.
I punti della retta ¢ che unisce 1 due punti distinti A(Xa ,ya , Za) € B(xs ,yg , zp) di

S* hanno coordinate ( X,y ,z) espresse da

(dove il parametro p varia ora nel campo complesso).

Queste formule, che rappresentano parametricamente la retta *, mostrano che quando i

punti A e B sono reali , la sua parte reale , ottenuta in corrispondenza ai valori reali del parametro p

coincide con la retta reale di S congiungente A e B.

In tal modo si riconosce che alcune rette dello spazio complesso S* sono “un allungamento”
di quelle reali le quali si sono anch’esse arricchite di infiniti nuovi punti immaginari.

Vedremo pero ora che nello spazio S* ci sono rette “nuove” che non sono di questo tipo.
Tali rette evidentemente hanno al pit un punto reale.

Vediamo.

Laretta (¢ rappresentata da

x+iy =0
Lo {Z =0

ha un solo punto reale coincidente con (0, 0,0).

La retta ¢ rappresentata da
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non ha punti reali.

Concludendo nello spazio S* ci sono tre tipi di rette :

a) Rette reali cioé quelle che posseggono due punti reali e quindi infiniti punti
reali.
b) Rette complesse prive di punti reali.

¢) Rette complesse con un unico punto reale.

Denotiamo con £* I’insieme delle rette di S* e con 9* I’insieme dei piani di S*.
Laterna (S*, £, 9 ) ¢ chiamata spazio affine complesso tridimensionale e per esso continuano a

valere le proprieta geometriche 1,2,3,4,5,6 gia espresse per lo spazio affine reale (S, £, ).

2. Lo spazio proiettivo reale e complesso di dimensione tre.

In questo numero mostreremo che lo spazio affine reale (S, £, 9) puo essere ampliato con
I’aggiunta di nuovi punti , detti punti impropri. Aggregando tali nuovi punti in modo opportuno
alle rette di S ed ai piani di S ed agiungendo alcune nuove rette ed un nuovo piano si ottiene una

nuova struttura geometrica (S* , £, 9* ) per la quale proveremo che valgono le seguenti

proprieta :
I Due punti distinti appartengono ad una unica retta.
I1. Due piani distinti si intersecano in una retta.

III.  Una retta ed un punto che non si appartengano sono contenuti in unico piano.

IV.  Una retta incontra un piano che non la contenga in un unico punto.

Lo spazio geometrico (S*, £, ") sara chiamato spazio proiettivo reale tridimensionale.

Vediamo come si effettua questa costruzione.

Diamo prima alcune definizioni.

Nello spazio affine reale (S, £, 9) tutte le rette passanti per un fissato punto p definiscono
una stella propria di rette di centro p.

Tutte le rette parallele ad una retta ¢ fissata costituiscono ( per la proprieta 5) una partizione

dei punti di S e tale famiglia di rette viene detta stella impropria di rette.
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Dato un piano a e scelto un suo punto p si possono considerare tutte le rette per p
contenute in a . Tale famiglia di rette ¢ detta fascio di rette ci centro p.

Tutti 1 piani passanti per un fissato punto p definiscono una stella di piani di centro p.

Tutti 1 piani passanti per una fissata retta ¢ definiscono un fascio proprio di piani di asse £

Tutti 1 piani paralleli ad un fissato piano a costituisco, per la proprieta 6 , una partizione

dei punti di S e definiscono un fascio improprio di piani ..

Vediamo ora come si costruisce lo spazio proiettivo.

Sia r una retta dello spazio affine reale (S, £, 9) .
Indichiamo con O; un oggetto da noi scelto e che chiamiamo punto improprio ed
ampliamo la retta r aggiungendo ad essa questo nuovo punto . Ogni retta dello spazio ha quindi

un nuovo punto ed il criterio che seguiremo per tale attribuzione ¢ il seguente :

O; = O = r ¢ parallela ad s

(esplicitamente : il punto O, aggiunto ad r coincide col punto O, aggiunto ad s se e solo se
r ed s sono rette tra loro parallele )
Pertanto con tale criterio una retta s parallela ad r sara ampliata con lo stesso punto che
abbiamo aggiunto ad r ed in tal modo le due rette red s , prima tra loro parallele, risultano
ora incidenti nel punto O; che ¢ ad esse comune .
Indichiamo con A [D’insieme di tutti 1 punti impropri O, al variare di r nello spazio . Che
cardinalitaha A ? Vediamo .

Si consideri un punto p dello spazio e sia &, la stella di rette di centro p . Per ogni retta r
di &, indichiamo sempre con O il suo punto improprio . E’ chiaro che i punti O; al variare
dirin &, sono tutti distinti tra loro ed esauriscono come ora vedremo I’insieme A .
Infatti sia t una retta dello spazio non passante per p . Se r ¢ I'unica retta per p parallela a t
allora il punto O aggiunto alla retta t coincide con il punto O, aggiunto alla retta r.

Pertanto 1 punti impropri sono tanti quante le rette di 5, per p . Chiameremo A piano

improprio.
Anche i piani , oltre alle rette , vengono ampliati al seguente modo. Sia o un piano e sia r una
retta del piano . Aggiungiamo ai punti del piano il punto improprio O, della retta r. Se p € un
punto di o ed F, ¢ il fascio di rette di centro p allora 1 punti impropri aggiunti al piano o sono

evidentemente tutti e soli 1 punti impropri O al variare di r in F, . Tali punti O costituiscono
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la retta impropria del piano affine o e tale retta sara denotata col simbolo A, .E’ evidente
che due piani tra loro paralleli hanno la stessa retta impropria. Consideriamo ora il seguente

spazio geometrico (S", £, 9" ):

I punti di S* : sonoipuntidi S (puntipropri) el’insieme di tutti i punti impropri .

Le rette di £ : sono le rette di £ ciascuna ampliata col suo punto improprio ¢ le rette

improprie A, alvariaredi a in 9

I pianidi 9" . sono il piano improprio A ed i piani di & ciascuno ampliato con i suoi punti

impropri e la sua retta impropria.

E’ non difficile ora controllare ( e tale verifica viene volutamente lasciata al lettore ) che lo

spazio (S", £, ") ora definito ha le proprieta I, I, IIl, IV gia annunciate .

E’ evidente, inoltre , sulla base della costruzione fatta, che ogni piano del nuovo spazio ¢ un

piano proiettivo.

Noi sappiamo che quando nello spazio reale ( S, £, 9 ) si sceglie un riferimento reale, 1
suoi punti , le sue rette , 1 suoi piani possono essere rappresentati algebricamente e cid consente
di tradurre e risolvere, con I’aiuto del calcolo algebrico, i molti problemi geometrici che si

pOssono porre.

L’ ampliamento ora fatto non fa perdere questa opportunita, in quanto saremo ancora una
volta in grado, fissato un riferimento reale , di rappresentare algebricamente i punti , le rette ed
ipianidi (S, &Y 9) .

Vediamo come.

Per fare cio0 occorre introdurre il concetto di coordinate omogenee di un punto.

Sia P un punto proprio e supponiamo che nel riferimento reale R fissato abbia coordinate
(2,3,5). Chiameremo coordinate omogenee di P nel riferimento R una quaterna ordinata

(X1, X2, X3, X4 ) di numeri reali con x4 # 0 e tale chesia :

*) =2 >z Zams
Xy Xy Xy
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Ovviamente una quaterna (x; , Xz , X3, X4 ) “ facile “ che verifica la proprieta (*) ¢ la quaterna
(2,3,5,1)maanche (4,6,10,2) vabene e cosi ogni quaterna del tipo
2p ,3p, 5p, p) con p=# 0.Una qualsiasi di queste quaterne attraverso le formule (*)

restituisce la terna (2, 3,5 ) e quindi individua il punto P .

Pertanto le coordinate omogenee di un punto proprio P di coordinate (X, , Yo , Z,) SONO

quattro numeri (x; , X, X3, X4) con x4 # 0 e verificanti la seguente proprieta :

(*) — =Xo — =Y . — T Z

La quaterna (x; , X2, X3, X4) avendo x4 # 0 ¢ non nulla e dovendo verificare le (*) ¢ non

unica ma determinata a meno di un fattore di proporzionalita non nullo.

Se P ¢ un punto improprio ed esso ¢ il punto O, aggiunto alla retta r, chiameremo coordinate
omogenee di P una quaterna ordinata (x; , X, X3, X4) con x4= 0 e con la terna
(X1 , X2 , X3) coincidente con una terna (A, n, v) di numeri direttori della retta r. Poiché 1
numeri direttori della retta r sono non tutti nulli e definiti anch’essi a meno di un fattore di
proporzionalitd non nullo , allora ancora una volta le coordinate omogenee del punto P sono una

quaterna non nulla e definita a meno di un fattore di proporzionalita non nullo.

Nell’insieme R* — (0,0,0,0) delle quaterne ordinate e non nulle di numeri reali diciamo
equivalenti due quaterne (y; , y2, VY3, Y4) € (Z1, 22, 73, Z4) se e solo se sono tra loro proporzionali
secondo un fattore di proporzionalita non nullo. Tale relazione, che indichiamo con o, ¢
manifestamente d’equivalenza e ripartisce quindi I’insieme R* — (0,0,0,0) in classi d’equivalenza.

Per quanto precede, quando nello spazio proiettivo reale si fissa un riferimento reale, quando
si associ ad ogni punto di S* la quaterna delle sue coordinate omogenee si costruisce una biezione
trai puntidi S e leclassi [ (yi,y2,ys y4)] d’equivalenza dell’insieme quoziente R*—
(0,0,0,0)/ o .

L’insieme quoziente R* - (0,0,0,0)/ o viene anche indicato col simbolo P3(R) e viene
chiamato sostegno dello spazio proiettivo numerico reale di dimensione tre.

Le ragioni di tale denominazione saranno piu chiare in seguito attraverso I’introduzione degli spazi
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proiettivi numerici su un campo K e di dimensione n ( n intero positivo ) qualsiasi.
Abbiamo visto quindi come si rappresentano 1 punti di S* quando si sia fissato un riferimento reale.
Vediamo ora come si rappresentano i suoi piani. Supporemo sempre che nello spazio sia stato
fissato un riferimento reale R.
Proveremo ora che ad ogni piano w di 9" si puo associare un’equazione di primo grado non
identica ed omogenea in quattro variabili del tipo
) ax;+tbxstexs+dxs=0

che lo “rappresenta” nel riferimento R . In che senso lo rappresenta ? Precisiamo questo aspetto.

Intanto ¢ evidente che se una quaterna (y; , y2 , 3, ¥4 ) non nulla ¢ soluzione dell’equazione

ax;tbxy+cxs+dxs=0 anche la quaterna p(y;,y2,¥3 ya) con p# 0 ¢ soluzione

dell’equazione e cosi ha significato affermare che un punto verifica con le sue coordinate omogenee
I’equazione ax;+bx;+cx3+dxs=0
L’affermazione : [’equazione a x; +bx; +cx;+dxys =0 rappresenta il piano 7 hail

seguente doppio significato.

2.1 Unpuntopdi m fornisce con le sue coordinate omogenee una soluzione dell ’equazione.

2.2 Ogni soluzione non nulla dell’equazione fornisce le coordinate omogenee di un puntop di =«

E’ chiaro che i punti rappresentati dall’equazione sono quelli corrispondenti alle sue soluzioni non
nulle e quindi ogni equazione proporzionale ad essa ,secondo un fattore di proporzionalita non nullo
, avendo le stesse soluzioni , rappresenta lo stesso insieme di punti .

Pertanto quando diremo che 1’equazione a x; + bx, + cx3 +d x4 =0 rappresenta il piano =
sottointenderemo che ogni equazione ad essa proporzionale , secondo un fattore di proporzionalita

non nullo, rappresenta pur sempre lo stesso piano 7 .

Sia ora m un piano dello spazio proiettivo (S, £, 9") . Se m ¢ il piano improprio allora esso €
rappresentato dall’equazione

x4 =0
Se 7 non ¢ il piano improprio allora esso ¢ del tipo : = a U A, con a piano di S cui sono
stati aggiunti 1 suoi punti impropri. I punti impropri di @ sono i punti impropri delle rette contenute
nel piano o . Sia ora

¥ ax+by+cz+d=0
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I’equazione che rappresenta il piano a nel riferimento R .Vogliamo ora far vedere che la stessa
equazione che rappresenta in S il piano o quando la si renda omogenea rappresenta il piano «o
ampliato coi suoi punti impropri cio¢ il piano @ . Vogliamo quindi mostrare che 1’equazione

omogenea nelle variabili X,y,z,t

(§%) : ax+by+cz+dt=0

rappresenta il piano & .Occorre controllare che siano soddisfatte le due condizioni 2.1 ¢ 2.2.

Sia p un punto del piano . Se p ¢ unpuntodi a , cio¢, proprio, esso ha coordinate
( X0, Yo, Zo ) che verificano I’equazione (§) e quindi le sue coordinate omogenee ( Xo, Yo, Zo, 1 )
verificano 1’equazione (§9).

Se p ¢ improprio esso ¢ il punto improprio di una retta r contenuta ina Sia (A, 4, V) una

terna di numeri direttori della retta r. Poiché r ¢ parallela ad a si ha, come sappiamo,

al+tbpu+cv =0

da cui segue che le coordinate omogenee (A, p, v ,0)dip verificano I’equazione (§9).
La condizione 2.1 ¢ quindi verificata. Proviamo la 2.2.

Sia quindi ( yi, Y2, Y3, Y4 ) una soluzione non nulla dell’equazione (§§) e vediamo se tale
quaterna ¢ la quaterna delle coordinate omogenee di un punto pdi @ . Se ¢ ys#0 possiamo
considerare la quaterna ( z;, z», z3, 1) ottenuta moltiplicando la quaterna ( yi, y2, ¥3, Y4) per y—

4
Poiché I’equazione (§§) ¢ omogenea e (yi, y2, ¥3, Y4 ) € una sua soluzione allora anche la quaterna
(z1, 72, 73, 1) € una sua soluzione . Si ha quindi
az;+bz +tczz+d =0
e ¢id mostra che il punto proprio p di coordinate ( z;, z, z3 ) € un punto di o ed ( yi, Y2, ¥3, Y4 )
sono le sue coordinate omogenee.

Se ¢ y4 =0 poniamo, per rendere meglio I’'idea, (yi,y2,y30) =(A,u, v,0).

Poiché per ipotesi la quaterna (yi, y2,y3,0) =(A,pn, v ,0) verifica ’equazione (§§) si
ha:

al+tbp+cv =0.

Questa eguaglianza mostra che una retta di numeri direttori (A, u, v ) risulta parallela al

piano a e che quindi la quaterna (A, pu, v ,0) ¢ la quaterna delle coordinate omogenee di punto
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improprio di o .L’ asserto € cosi provato.

Avendo trovato la rappresentazione dei piani dello spazio proiettivo vediamo come si
rappresentano le sue rette .

Sia quindi ¢ una retta dello spazio proiettivo € sianow e @’ due piani che si intersecano
nella retta ¢. Siano inoltre ax+by+cz+dt=0 ed a’x+b’y+c’z+dt=0.Ovviamente le
soluzioni non nulle del sistema

- |ax+by+cz +dt =0
t {a'x+b'y+c‘z+d‘t:0
forniscono le coordinate omogenee dei punti della retta ¢.
Ricordiamo che tale sistema ¢ omogeneo e le sue soluzioni costituiscono un sottospazio di
dimensione due essendo le nostre due equazioni indipendenti.Per descrivere quindi le sue soluzioni
¢ sufficiente trovare due sue soluzioni non nulle ed indipendenti. Ma cio ¢ facile. Infatti siano pg e
p2 due punti distinti della retta ¢ e siano ( yi, y2, Y3, ya) ed ( zi, z2, Z3, Z4 ) le loro coordinate
omogenee. Le due quaterne ( yi, y2, y3, y4) ed (zi, Z2, 23, 24) sono non proporzionali in quanto
rappresentative di due punti distinti e forniscono quindi due soluzioni indipendenti del sistema
ax+by+cz +dt =0
{a‘x+b‘y+c'z+d't:0

Ogni altro punto p della retta ¢ ha per coordinate omogenee una quaterna ( X, Xz, X3, X4 )
che ¢ una soluzione non nulla del sistema . La quaterna ( X;, Xp, X3, X4 ) sara esprimibile come
combinazione lineare delle due quaterne indipendenti  ( yi, v2, 3, ya) ed ( zi, 72, 73, Z4 ) che
costituiscono una base dello spazio delle soluzioni del sistema .

Attraverso la conoscenza delle coordinate  (yi, y2,y3, y4) ed (zi, z2, 73, z4) di due punti
della retta siamo stati in grado di ricostruire come sono le coordinate dei punti di (. I punti di ¢
sono tutti e soli quelli le cui coordinate omogenee  ( Xi, X2, X3, X4 ) sono descritte dalle seguenti

formule :

(*) (X19X29X39X4) = )\'(ylay29y3sy4) + H(Z17Z29Z39Z4) con (;"au)i (090)

dove 1iparametri A e p variano nel campo reale. Le formule (*) possono essere scritte in modo

equivalente al seguente modo :
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X;= ANy, + pz,
(%) X, = Ay, + 1z, con( A, p)=#(0,0)
X;= ANy, + pz,

X, = Ny, +pz,

e vengono chiamate le equazioni parametriche della retta ¢ .
E’ evidente che se scelgono due valori (A, , [t,) dei parametri non tutti e due nulli si ottengono in
corrispondenza, nelle formule (**), le coordinate di un punto della retta ¢. Tale punto non cambia

se al posto di (A, , Mo) st scegliesse la coppia ( pAo, PHo) con p #0 . Pertanto le formule

(**) vanno usate con questa unica attenzione.

Dalle rappresentazioni trovate seguono queste utili equivalenze :

Proposizione 2.1 [ punti A( a;, a, a3, as) , B (by, by, b3, by), C(cy, cac3 ¢cq4) dello
spazio proiettivo 8™ sono allineati se e solo se le quaterne (ay, ay, as aq) , (b1, by, b3, by),

(ci, ¢, c3, cq) delle loro coordinate sono linearmente dipendenti.

Siano ora A( aj, az,a3,a4) ,B (b, by bs,bs), C(cy,coc3,ca) tre punti non allineati dello
spazio. Tali punti determinano un piano che ha un’equazione del tipo
ax+by+cz+dt=0
la quale deve essere quindi soddisfatta dalle coordinate dei punti assegnati. Si hanno cosi le seguenti
relazioni :
aatbat+tcazt+das=0
(k) abi+tbby+cbs+dbs=0

acitbec,+ces+des=0

Essendo i punti A, B, C non allineati la matrice delle loro coordinate

ha rango tre e quindi le relazioni (k) , intese come sistema nelle incognite a , b , ¢, d permette di
determinare 1 coefficienti del piano. Per quanto visto sui sistemi di equazioni lineari la quaterna

(a, b, c,d) dei coefficienti del piano cercato puo ottenersi utilizzando i determinanti dei minori
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d’ordine tre , presi a segni alterni , della matrice L .
Ci0 detto ¢ provato che 1’equazione del piano cercato possa ottenersi direttamente attraverso

il calcolo del seguente determinante :

det + (=0

La costruzione fatta per passare dallo spazio affine reale allo spazio proiettivo reale puo
essere ripetuta allo stesso modo passando cosi dallo spazio affine complesso allo spazio proiettivo
complesso. La differenza unica é che le coordinate omogenee di un punto saranno ora quattro
numeri complessi non tutti nulli e definiti al solito a meno di un fattore di proporzionalita non
nullo. Un piano si rappresentera con un’equazione omogenea di primo grado non identica in
quattro variabili ed a coefficienti complessi e nelle formule che esprimono la rappresentazione

parametrica di una retta i parametri variano ovviamente nel campo complesso.

3. Sfera coni e cilindri dello spazio affine reale.

a) La sfera.

Fissiamo nello spazio affine reale un riferimento monometrico ed ortogonale R,

Siano P, ( X, Yo » Zo) un punto dello spazio ed r un numero reale positivo.

Si chiama superficie sferica di centro P, e raggior [|’insieme dei punti P dello spazio che hanno
distanza r da P, . Indichiamo con Q tale insieme di punti e cerchiamo una sua rappresentazione

analitica . Sussistono le seguenti ovvie equivalenze :
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P(x,y,z2)e Q < d(P, P))=1r < \/(x-xo)z—i—(y-yo)zﬁ-(z-zo)2 =r

c:>(x—xo)2+(y—yo)2+(z—zo)2 =r

Da queste segue quindi che appartengono alla superficie sferica tutti e soli 1 punti dello spazio le cui

coordinate verificano 1’equazione :

(1) (X*X0)2+(Y*y0)2+(2*20)2: r’

la quale puo scriversi cosi :

2

(2) XX+ y'+ 2z +ax+by+tcz+d =0

avendo indicato con a,b,c,d leseguenti quantita :
=-2%X, , b=-2y, ,c=-2z, , d= X02+ y02+ Zo -1

L’ equazione

2

X +y2+ 7’

+ax+by+cz+d =0

rappresenta quindi la superficie sferica @ nel riferimento &_ fissato.

E’ evidente che un’equazione proporzionale ad essa secondo un fattore di proporzionalita non nullo

avendo le stesse soluzioni, rappresenta lo stesso insieme di punti.

2

L’equazione x° + y*+ z> +ax+by+cz+d =0 che rappresenta Q nel riferimento

scelto ¢ quindi di secondo grado , manca dei termini misti xy ,xz,yz edha eguali i

coefficientidi x* e y° e 7.

Non sempre pero un’equazione di questo tipo rappresenta una superficie sferica. Vediamo perché.

Sia quindi assegnata 1’equazione

x>+ y'+ 722 +ax+by+cz+d =0

essa rappresenta una superficie sferica di centro P, ( X,, Yo, Zo) € raggio r (positivo) se risulta :

2

(3) X+ y'+ 2 tax+tbytcztd =(x—%Xo) +(y=Yo) +(z=20)" - 1
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L’eguaglianza (3) sussiste se risulta :

a=-2%x, , b=-=2y, ,c=-2z, , d= x02+ y02+ 202 -
Si ha quindi
. =.2 __ 0 I
° , Y 2 7 2
2 2 2
(4) = x4 vl zt o d= L+ L
4 4 4

Dalla (4) segue quindi che si trovera un numero r positivo , raggio della superficie sferica

cercata , se si ha :

2 2 2
5) 2 b + 5 d>0
4 4 4
Riassumendo :
L’ equazione X+ y*+ 22 +ax+by+cz+d =0

cheabbia a,b,c,d verificanti la proprieta (5) ¢ ’equazione della superficie sferica con

centro nel punto P, =( - a , - b , - © ) eraggio r datoda:
2 2 2
2 2 2
©6) rz\/3+b—+c—-d
4 4 4

Sia Q una superficie sferica dello spazio con centro nel punto P, ( Xo, Yo , Zo) € raggio r

positivo e sia
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2

X +y2+ 7’

+ax+by+cz+d =0

I’equazione che rappresenta € in un riferimento monometrico ed ortogonale fissato .
Sia P(Xx , ¥y, E) un punto della superficie Q.

Tutte le rette per P che intersecano € nel solo punto P sono chiamate le rette tangenti ad € nel
punto P . Tali rette giacciono tutte in uno stesso piano wp, detto piano tangente ad 2 nel punto P.

Tale piano € noto che sia il piano per P ortogonale alla retta P, P.
I numeri direttori della retta P, P sono ( X - X, ¥V-Yo, z- 2 ) e quindi il piano tangente p

ha equazione :

M (X- %) (X-X )+ (F-Yo )(y- V) +(2-2 ) (z- z) =0.

Quando lo spazio reale venga ampliato con 1 punti immaginari anche la superficie €
rappresentata dall’equazione a coefficienti reali
XX+ v+ 72 +ax+by+tcz+d =0
si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse
dell’equazione che la rappresenta .
Quando allo spazio si aggiungano anche i punti impropri allora per rappresentare tutti i

punti di Q propri ed impropri occorre che I’equazione x> + y* + z°

+ax+by+cz+d =0 di
Q siaresa omogenea.
Pertanto 1’equazione

2

X +y2+ z

taxt+byt +czt+dt?=0

rappresenta tutta la superficie sferica inclusii suoi punti impropri.

Ma quali sono i punti impropri di € ? Vediamo.

E’ chiaro che i punti impropri di €@ sono quelli che essa ha in comune con il piano
improprio dello spazio che si rappresenta con I’equazione t=0.

I punti impropri di € corrispondono quindi alle soluzioni non nulle del seguente sistema S
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. {x2+ y2+ 22+ axt + byt +ezt +dt* =0
|t=0

Le soluzioni cercate si ottengono quindi attraverso le soluzioni non nulle di :

S x>+ y +72°=0
t=0

La curva I' del piano improprio rappresentata da
2 2 2
X +y +z7=0
I: y
t=0
¢ una conica totalmente immaginaria e raccoglie tutti i punti ciclici delle circonferenze che i piani
dello spazio tagliano su . Tale conica ¢ chiamata 1’ assoluto dello spazio e per essa passano

tutte le superfici sferiche dello spazio.

b) 1II cono.

Si consideri nello spazio reale un piano m esia I' una sua conica non degenere. Sia inoltre V

un punto non appartenente al piano s . L’ unione di tutte le rette VP al variaredi Psu I' ¢

a,

chiamato cono quadrico di vertice V

e direttrice I .

Vediamo come si rappresenta il cono che indicheremo con C di vertice V e direttrice I" . Per
rendere semplice 1’esposizione supporremo che V abbia coordinate (0,0,1) e I' siala

conica (ellisse) del piano z=0 di equazione
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r- 2x* +y*-1=0
z=0

Sia P(a, B,y ) unpuntodi I" .

Poiché P ¢unpuntodi I' siha y=0 e 2a*+p*- 1=0

Laretta VP ¢ allora rappresentata parametricamente al seguente modo :

X=pa
VP : Jy=pp
z=1-p
da cui segue
p=1-z e quindi a= e BZ-JL
1-z 1-z

Sostituendo tali valoridi oo e p in 20’+p>~1=0 siha:

C: 2X2+y2—(1—z)2=O
0 equivalentemente

C: 2xX2 4y -2 +2z-1= 0.

L’equazione

2x2+y2-zz+22—1= 0

rappresenta quindi il nostro cono nel riferimento assegnato.
L’equazione trovata mostra che anche il cono, al pari della superficie sferica , si rappresenta
con un’equazione di secondo gradoinx,y, z.

Quando lo spazio reale venga ampliato con i punti immaginari anche il cono C

rappresentato dall’equazione a coefficienti reali

2x2+y2-zz+22—1= 0

si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse
dell’equazione che la rappresenta .
Quando allo spazio si aggiungano anche 1 punti impropri allora per rappresentare tutti 1 punti di

C propri ed impropri occorre che ’equazione 2 x> +y* -z +2z—-1= 0
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di C siaresa omogenea. Pertanto I’equazione

2x*+y -2 +2zt—tP= 0
rappresenta tutti 1 punti del cono propri ed impropri. I punti impropri essendo quelli comuni a C ed
al piano improprio sono i punti della conica X del piano improprio rappresentata da.

s . 2x2+y2-Z2= 0
t=0

Tale conica impropria £ ¢ non degenere e dotata di punti reali.

¢) il cilindro.

Si consideri nello spazio reale un piano @ esia una sua conica non degenere. Sia inoltre ¢
una retta non parallela al piano @ . Sia P un punto I' di e sia & la retta per P parallela alla
retta ¢. L’ unione di tutte le rette o al variare di P su I' & chiamato cilindro di direttrice I e

generatrici parallele ad ¢ .

S

LN\

Vediamo come si rappresenta il cilindro che indicheremo con C . Per rendere semplice

I’esposizione supporremo che la retta ¢ sia la retta rappresentata da :
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X =
L { H
y=2z
e la conica I' sia la conica (ellisse) del piano z=0 di equazione

r- 2x2+y2-1=0
z=0

Sia P(a, B, 0 ) unpuntodi I' .Laretta fp ¢ rappresentata da:

X=a+p
b y=p+p
Z=p

da questasegue o =x—z e P=y—z.Poich¢ P ¢unpuntodi I' siha:

200+ -1=0

Sostituendo in essaivalori o« =x—z ¢ P=y—z siha:

C: 2(xz)t+(y-z)*1=0
o0 equivalentemente :

C: 2)(2+y2+3z2 —-2yz -2xz -1=0

che rappresenta quindi il cilindro C nel riferimento scelto.
L’equazione trovata mostra che anche il cilindro , al pari della superficie sferica e del cono si
rappresenta con un’equazione di secondo gradoinx,y, z.

Quando lo spazio reale venga ampliato con i punti immaginari anche il cilindro C

rappresentato dall’equazione a coefficienti reali
2x2+y* +32% —2yz -2xz -1=0
si arricchisce di ulteriori punti ( immaginari ) corrispondenti alle soluzioni complesse

dell’equazione che la rappresenta .

Quando allo spazio si aggiungano anche i1 punti impropri allora per rappresentare tutti 1 punti di
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C propri ed impropri occorre che equazione 2x*+y*+32z% —2yz -2xz -1=0 di C sia

resa omogenea. Pertanto 1’equazione
2x2+y2+3zz—2yz 2xz —tP=0

rappresenta tutti i punti del cono propri ed impropri. I punti impropri essendo quelli comuni a C ed
al piano improprio sono i1 punti della conica X del piano improprio rappresentata da.
s . {2x2 +y2 +3z° -2yz-2xz=0
" |t=0

Tale conica impropria £ essendo

2x2+y2+3zz—2yz -2xz = [\/E(X-z)]z—iz(y—z)2

¢ degenere ed ¢ I’'unione delle seguenti rette complesse e coniugate.

L 2(x-g)*i(y-z) =0 [ V2(x-2)-i(y-2) =0
| t=0 | t=0
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Capitolo VI

Le quadriche
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1. Le quadriche dello spazio proiettivo complesso.

Nello spazio proiettivo complesso di dimensione tre che indicheremo con P ( nel quale sia

fissato un riferimento reale K _) si chiama quadrica

I’insieme Q dei punti dello spazio verificanti con le loro coordinate omogenee un’equazione non
identica omogenea di secondo grado in quattro variabili (x, y, z, t ) a coefficienti complessi ,cioé

una equazione del tipo

(1) 3.11X2+8.22y2+ 3.33Z2 +a44t2 +2apn Xy+2al3 Xz +2apxt+2ax yz+2a24yt+ 2a34 7zt = 0.

Quando 1 coefficienti a;j dell’equazione (1) sono numeri reali ( o proporzionali a numeri reali) la

quadrica ¢ detta reale .

Poiché I’equazione (1) ¢ omogenea se la quaterna non nulla ( yi, y2, y3, y4 ) verifica I’equazione (1)

anche la quaterna (pyi, py2 pys, pys) con p # 0 verifica I’equazione (1) sicché ha senso

dire che un punto dello spazio soddisfa con le sue coordinate omogenee I’equazione (1).
E’ chiaro inoltre che ogni equazione proporzionale all’equazione (1) secondo un fattore di
proporzionalita non nullo , avendo le stesse soluzioni della (1) , rappresenta lo stesso insieme di

punti.

Quando le variabili (x , y, z, t ) vengano indicate con ( X, X, X3, X4 ) ’equazione (1) sara scritta

nella forma :

2 2 2 2
anx;  tTapxe tanxs® tauxs” F2apxixpt2anxix3 F2apxixst2anxoxst2anuxoxst

28.34 X3 X4 = 0.

Se m em sono due piani dello spazio rappresentati rispettivamente da :

n . ax+by+cz+dt=0

n . ax+by+cz+dt=0

allora I’equazione omogenea di secondo grado , non identica ,
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(ax+ by+ cz +dt )(@x+by+c'z+dt )=0

ottenuta moltiplicando tra loro le due equazioni , rappresenta ovviamente 1’'unione dei due piani .
Pertanto tra le quadriche dello spazio ci sono quelle che siano 1’unione di due piani distinti o
coincidenti. Tali quadriche sono dette riducibili, doppiamente se 1 due piani sono coincidenti e

semplicemente se 1 due piani sono distinti.

B]=B2

ya

Una quadrica riducibile ¢ quindi rappresentata da una equazione
anx >+ a22y2+ a5z’ +aut’ +2apn xyt2a;3xz +2apuxt+2ayyz+2anyt+ 2az zt =0.
nella quale il polinomio

a1x 2 tany 2+ 3.3322 + 8.44t2 +2ap Xy + 213Xz +2ap xt+2 axy yz + 2 apyt + 2a34 7t

¢ riducibile cio¢ ¢ prodotto di due polinomi di primo grado distinti o coincidenti.

Abbiamo anche visto nei numeri precedenti che tra le quadriche reali dello spazio ci sono
anche le sfere 1 coni ed i cilindri che sono appunto rappresentati, come abbiamo provato , in un
riferimento reale da equazioni omogenee di secondo grado non identiche in quattro variabili.

Alla quadrica Q rappresentata nel riferimento scelto dall’equazione :

311X2+322y2+ a3322 +a44t2 +2apxyt2a3xz +2apxt+2ayyz+2apuytt+ 2azzt =0.
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si puo associare la seguente matrice quadrata d’ordine quattro simmetrica ottenuta utilizzando 1

coefficienti a;; dell’equazione della quadrica .

aq Ay dgz Ay
Ay Asy Ayy A
Ay Ay ay ay .
A= ( aj=aji)
Qg dgp dgz3 dgy

Ay Qg Ay Ay
Si osservi ora esplicitamente che nell’equazione :

il numero che accompagna xy e il doppio di a;;
il numero che accompagna xz e il doppio di a;;
il numero che accompagna xt é il doppio di a4
il numero che accompagna yz e il doppio di a3
il numero che accompagna yt e il doppio di a4

il numero che accompagna zt é il doppio di asy

pertanto una certa attenzione va posta quando si scrive la matrice A associata alla quadrica.
Ad esempio la matrice associata alla quadrica reale Q rappresentata da :

2x + y*+4zt +6xy +4yz +72° +4° =0

¢ la seguente :

S O W N
S N P W
N R, N O
B~ NN O O

Vedremo in seguito che nella matrice A associata alla quadrica sono contenute molte

informazioni sulla quadrica stessa e per tale ragione occorre scriverla in modo corretto.
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Studieremo ora in modo approfondito le quadriche dello spazio gia consapevoli che tra

quelle reali dovremo ritrovare :

( coppia di piani distinti o coincidenti, sfera , coni e cilindri ).

Ma queste gia descritte sono le uniche quadriche reali o ce ne sono anche altre ? Vediamo.

Alcune notazioni sono ora introdotte al fine di rendere piu semplice I’esposizione.

Sia Q una quadrica rappresentata in un riferimento reale fissato dall’equazione

2 2 2 2
anX)  tapxo Ttanxyt tauwxs” t2apxixot2apnxix3 t2apxixst2asnxoxst2anuxyxgt

2334 X3 X4 = 0.

Tale equazione puo scriversi nei seguenti modi :

(1)

(i)

(iii)

(anx1tanXxy tasxstangxs) X

+

(azixitanx: Tasxstauxs) X

+

(az1 X1t az Xy tamxstassxs) X3

+

(a41 X1 Tapxy tagx3tauxs)x4=0

Zaijxi X; =0 (aj-aj) (nella sommatoria gli indici i e j variano da 1 a 4)
Lj
X1 Ay Aqp Qg3 Ay
X ay ayana
\ 2 21 A g3 Ay
XiAX=0 dove ¢ X = ed A= ( a=aj)
X3 A3 Az 33 Ay

Xy Ay dyp A dy
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Porremo inoltre a volte per semplicita :

_ 2 2 2 2
f(x1,X ,X3,Xq) =anx; +tapxp " tapXx;” tauxs” t2apxiXp+2a3x X3 t2a4Xx X4+

+2 a3 Xo X3t 2 ax Xo X4 + 2834 X3 X4

fi(xi,X2 ,X3,X4) =X tapxy taxstauxs
fr( xX1,X2 ,X3,X4) =2 X1 tanXy +apx;t+ayxs
f3(x1,X2 ,X3,X4) =a31 X TanXy TasXs+auxy

fa( X1,X2 ,X3,X4) a4 X] Tasp Xy Tas3 X3+ auXs

Per la simmetria della matrice A sussiste questa utile eguaglianza che useremo spesso in seguito :

per ogni coppia di quaterne non nulle (yi, y2, Y3, ¥4) € (21,2 ,23, z4) siha che sono eguali

le seguenti due quantita che indicheremo con

f(yxy /z) e f(z /y)

dove ¢ :

f(y /7z) =(uyitany: tasystagys)z+
(aryrtaxny: taxnystauys)z +
(az1y1Tany: tanys+tauys)z+

(auyrTany: tasystauys) zs

f(z /y) =(@uzitanz tazzztauzs)y +
(aiz1tanz tapnzztanzs)ys +
(as1z1tanz tazztanuz)ys

(g1z1tanzy taz3 +a424 ) ys
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2. Intersezione di una retta con una quadrica.

Sia Q wuna quadrica dello spazio proiettivo rappresentata, nel riferimento reale scelto,

dall’equazione
Z:aijxi x;=0 (- aj (gli indici variano da 1 a 4)
i

esia r una retta dello spazio passante peripunti Y e Z dicoordinate ( y;,y2 ,y¥3,V4) €

(z1,22 ,73,24) . Quando si rappresenti r in forma parametrica si riconosce che 1 punti di r

hanno, al variare dei parametri( A , p) #(0 ,0), coordinate del tipo

X1,X2,X3,X4) = A(Y1,Y2,Y3,¥4) t u(zi,22,23,24)
Cioe€ :

(X1,%X2,%3,%4) = (Ayr+ pz, Aya+ pzo, Ays+ pzz, Ays+ pzy )

Ci chiediamo per quali valori dei parametri (A , p ) #(0 ,0) il punto
(Ay1r + nz, Ay2+ puzy, Ays3+ pzz, Ays+ pzs) dellaretta r appartenga anche alla

quadrica Q .

Orail punto (Ay; + pz;, Aya+ uzy, Ays+ uzz, Ays+ pzs) dellaretta r appartiene alla

quadrica Q serisulta :

2.1 Doa(hy + nz) (hy;+ pz)) =0
Lj

L’ equazione (2.1) ¢ una equazione omogenea di secondo grado nelle incognite A e p del tipo

(2.2) ari+2bip+cep® =0

avendo posto

a = zaini Y , b= ZaiJYi Z; , ¢ = Zaijzi Z;
1] L]

ij
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Se I’equazione (2.2) ¢ identicamente nulla cio¢ risulta a=b=c¢=0 allora per ogni
scelta dei parametri A e p ilpuntodi r di coordinate
(Ay1+ pz, Aya+ uzz, Ays+ pzz, Ays+ pzs) appartiene alla quadrica e qundi la retta r ¢
contenuta nella quadrica Q .

Se I’equazione (2.2) non ¢ identicamente nulla allora essa ammette due soluzioni (distinte o
coincidenti ) in corrispondenza delle quali si trovano due punti (distinti o coincidenti) comuni alla
retta r ed alla quadrica Q .

Abbiamo cosi provato la seguente :

Proposizione 2.1. Una retta dello spazio non contenuta nella quadrica Q ha in comune

con essa al piu due punti .
Da tale risultato segue ovviamente che :

una retta che abbia almeno tre punti in comune con la quadrica é contenuta nella quadrica.

3. Intersezione di un piano con una quadrica.

Sia Q una quadrica dello spazio proiettivo e sia 7 un piano reale dello spazio.Al fine di
studiare la natura dell’insieme @ N Q possiamo ovviamente supporre che il piano non sia
contenuto nella quadrica. Inoltre per rendere facile la nostra indagine disponiamo il riferimento in
modo che t sia il piano z= 0 . Con tale scelta del riferimento sia
a11x2+ a22y2+ a3322 + 2144‘[2 +2apxyt2aixz t2apxt+2ax;yz+2auyt+ 2a3zt =0.

I’ equazione che rappresenta la quadrica Q .
Ovviamente 1 punti comuni al piano ed alla quadrica hanno coordinate che soddisfano il seguente

sistema

{anx +a, y ++a, t? +2a, xy++2a, xt++2a,,yt =0.
z=0

e cio¢ sono i punti di una conica .

Resta cosi provato che :

Proposizione 3.1 Un piano dello spazio che non sia contenuto in una quadrica interseca la

quadrica in una conica.
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4. Le quadriche degeneri.

Abbiamo gia osservato che 1’'unione di due piani distinti o coincidenti ¢ una quadrica.

Inoltre come gia visto , se si considera una conica non degenere I' di un piano e poi un punto V
fuori dal piano , I’'unione di tutte le rette Vp al variare di p sulla conica I" ¢ una quadrica . Tale
quadrica che ¢ un cono quadrico di vertice V e direttrice I' sara chiamata cono se V ¢ un punto
proprio e cilindro se V ¢ un punto improprio.

Questi quattro tipi di quadriche:

a) wunione di due piani coincidenti

b) unione di due piani distinti

c) cono

d) cilindro
sono dette degeneri .Piu precisamente i tipi a) e b) degeneri e riducibili mentre 1 tipi ¢) ¢ d)
degeneri ma non riducibili.
Al fine di trovare una caratterizzazione delle quadriche degeneri ¢ importante la seguente
definizione.

Sia Q una quadrica dello spazio proiettivo. Un punto P della quadrica Q ¢ detto doppio
se ogni retta per P o é contenuta nella quadrica o interseca la quadrica nel solo punto P.

Un punto che non sia doppio ¢ detto semplice.
Le quadriche degeneri sono tutte dotate di punti doppi.

Precisamente :

se la quadrica & ’unione di due piani coincidenti ogni suo punto é doppio : tale quadrica

possiede quindi almeno tre punti doppi non allineati.
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se la quadrica é unione di due piani distinti i punti doppi della quadrica sono i punti della
retta comune ai due piani : tale quadrica possiede piu di un punto doppio ma 1 suoi punti doppi

sono allineati.

Se la quadrica ¢ un cono o un cilindro il vertice V ¢ ['unico punto doppio.

La situazione ora descritta caratterizza tali quadriche come le proposizioni che seguono mostrano.

Proposizione 4.1 Se una quadrica Q possiede almeno tre punti doppi non allineati essa e
["unione di due piani coincidenti.

Dimostrazione. Siano A, B, C tre punti della quadrica Q e siano doppi e non allineati.
Sia & il piano determinato dai tre punti A, B, C. Le tre rette AB, AC, BC costituiscono i lati
di un triangolo e sono contenute nella quadrica in quanto i punti A , B, C sono doppi.
Per questa ragione il piano 7 avendo in comune con la quadrica tali rette non ha in comune con la
quadrica una conica ed ¢ quindi contenuto nella quadrica . Se proviamo che la quadrica coincide
col piano = si ha I’asserto. Supponiamo per assurdo che contenga propriamente il piano « ed
esista quindi un punto T di Q fuori dal piano z. Poiché A , B, C sono doppi le rette TA, TB ,
TC sono contenute nella quadrica .
Segue allora che 1 pianiy=<TAB >, =<TAC>, a=<TBC > sono contenuti nella quadrica
in quanto ciascuno di essi ha in comune con la quadrica tre rette. Sia K un punto dello spazio non
appartenente ai piani @, a, p,y esia a’ un piano per K e non passante per T . Siano ¢, ,{’
le rette che il piano &’ ha in comune conipiani @, B,y .Il piano n’ avendo in comune con

b

la quadrica le tre rette £, £ , £° ¢ contenuto nella quadrica e cosi K ¢ un punto di Q .Ma allora
ogni punto dello spazio fa parte di Q e cid non ¢ possibile in quanto essendo 1’equazione che

rappresenta Q non identica essa non puo rappresentare tutti i punti dello spazio.

Proposizione 4.2 Se i punti doppi di una quadrica Q sono almeno due e tutti allineati
allora la quadrica Q ¢ l'unione di due piani distinti.

Dimostrazione. Siano A e¢ B due punti doppi distinti della quadrica Q . La retta ¢ che
congiunge A e B ¢ allora contenuta nella quadrica. Poiché Q contiene propriamente la retta { ¢
possibile scegliere un punto T su Q fuori dalla retta ¢ . Le rette TA e TB fanno parte della
quadrica in quanto A ¢ B sono doppi. Il piano @ che unisce T ed ¢ ¢ quindi contenuto nella
quadrica avendo con essa in comune le tre rette distinte ¢, TA, TB. Se Q coincidesse col piano 7

allora Q avrebbe almeno tre punti doppi non allineati contro il supposto. Quindi la quadrica Q
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contiene propriamente il piano 7 ed ¢ quindi possibile determinare un punto T’ su Q fuori da =.
Per le stesse ragioni esposte per il punto T il piano @’ che congiunge ¢ ¢ T’ ¢ contenuto nella
quadrica Q . Proviamo oracherisulta Q=7 U @

Supponiamo per assurdo che esista un punto K su Q e non appartenente ai piani © ¢ 7’.

Proveremo ora che ogni retta per K ¢ contenuta nella quadrica il che ¢ assurdo in quanto la
quadrica ¢ un sottoinsieme proprio dello spazio.

Il piano a che congiunge ¢ con K ¢ contenuto nella quadrica avendo in comune con essa le
rette ¢ , KA e KB . Quindi ogni retta per K che incida la retta ¢, essendo conenuta nel piano o,
¢ contenuta nella quadrica. D’altra parte una retta per K che non incida la retta ¢ interseca i piani
n ¢ w in due punti distinti ed ¢ quindi contenuta nella quadrica avendo con essa in comune tre

punti distinti.

Proviamo la seguente :

Proposizione 4.3 Se una quadrica Q contiene un piano essa e unione di due piani distinti o
coincidenti.

Dimostrazione. Supponiamo che la quadrica Q contenga un pianonw .Se ¢ Q== si ha
I’asserto.Supponiamo quindi che Q contenga propriamente @ e sia T un punto di Q fuori dal
piano .

Sia ¢ unarettadi m esia o il piano che congiunge T elaretta ¢ .Se il piano a non ¢
contenuto in Q esso interseca la quadrica in una conica che ¢ degenere ed ¢ composta dalla retta
{ edaun’altraretta t per T.Sia A il punto comunea = ed allaretta t . Siscelga ora una
retta rin 7 non passante per il punto A esia B il piano determinato da T ed r . Tale piano 3 se
non ¢ contenuto in Q interseca Q in una conica che ¢ degenere ed ¢ costituita dalla retta r ed
un’altra retta t” per T . Il piano y determinato dalle rette t e t* ¢ allora contenuto in Q in quanto
ha in comune con Q le tre rette distinte y N @ , t,t . In ogni caso abbiamo provato che la
quadrica Q contiene I’unione di due piani distinti dicuiuno¢ @ el’altro¢ o oppure [ oppure
Y.

Sia @’ il piano diverso da @ contenuto in Q e siaf laretta comune ai piani @ e @’.
Possiamo ora provareche ¢ Q=7 U @’

Supponiamo per assurdo che esista un punto K su Q e non appartenente ai piani @ ¢ «’.
Si scelga un punto L sulla retta ¢ e sia r una retta per K distinta dalla retta s = [KL] e che
intersecaipiani w ¢ @ in due punti distinti. La retta r ¢ contenuta in Q avendo in comune con

Q tre punti distinti.
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Il piano o determinato dalle rette s ed r ¢ allora contenuto nella quadrica Q in quanto ha
incomune con Q letrerette a N, a N ed r.

Abbiamo cosi provato che la retta s =[KL] ¢ contenuta nella quadrica Q qualunque sia L
scelto su ¢ . D’ altra parte ogni retta per K che non incida ¢ interseca i due piani # ¢ x«’ in due
punti distinti e quindi fa parte di Q avendo con essa in comune tre punti distinti . Ma se ogni retta

per K ¢ contenuta in Q allora Q coincide con tutti 1 punti dello spazio il che ¢ assurdo.

Possiamo ora provare la seguente utile :

Proposizione 4.4 Se una quadrica Q contiene un solo punto doppio V essa é un cono
quadrico di vertice V .

Dimostrazione. Sia V 1'unico punto doppio della quadrica Q e sia 7 wun piano non
passante per V . Per la proposizione precedente il piano 7« non ¢ contenuto nella quadrica Q e
quindi interseca la quadrica in una conica I' . La conica I" ¢ non degenere in quanto se contenesse
una retta t il piano  determinato da V e t sarebbe contenuto in Q essendo V doppio.
Consideriamo il cono C di vertice V e direttrice I' e proviamo che ¢ C=Q . E’ evidente che
ogni retta Vp al variare di p su I' ¢ contenuta in Q essendo V doppio. Pertanto¢ C < Q.
Proviamo ora che ogni punto di Q ¢ un punto del cono C e che ¢ quindi Q=C.

Sia M un punto di Q che possiamo supporre diverso da V e non appartenentea I' . La
retta VM ¢ contenuta in Q , essendo V doppio, ed interseca il piano @ in un punto p
necessariamente appartenente a I’

Pertanto M giace su una delle generatrici del cono ( la retta Vp) e quindi appartiene al
cono. L’ asserto € cosi provato.

Possiamo riassumere tutte le proposizioni precedenti nella seguente :

Proposizione 4.5 Una quadrica Q é degenere se e solo se possiede almeno un punto

doppio.

Una quadrica priva di punti doppi sara quindi chiamata non degenere.

Le proposizioni provate e che caratterizzano le quadriche degeneri spostano 1’attenzione sulla

ricerca degli eventuali punti doppi della quadrica .

Ma come si trovano i punti doppi di una quadrica ? Vediamo .
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La proposizione che segue fornisce la risposta al quesito posto.

Proposizione 4.6 Un punto P dello spazio e doppio per la quadrica Q rappresentata

dall’equazione

Q ; Zaijxi XJZO (al'j=aji)
Lj
se e solo se le sue coordinate ( y;,y> , V3, v4) verificano le seguenti eguaglianze :

ajryrtapy: tasys; taugys=0
aryitanys tanys; tayys=0
(4-1) az1yrtaxny: taxsys taynys= 0

anyitany, tasystauys=0

Dimostrazione. Cominciamo a provare che se un punto ha coordinate verificanti le
eguaglianze (4 . 1) esso ¢ un punto della quadrica ed ¢ doppio per essa . Abbiamo gia osservato che

risulta
Z:alijyi y;= (any tapy:, tasystauysn)yirt@yrtargy: taszystasyyy: +
ij

+ (amyitany:tasystasys) yzs t(aayrtany: tasys tasys)ys

e pertanto , se valgono le (4.1), si ha zaini y;=0 il che prova che P ¢ un punto della
quadrica . Proviamo ora che esso ¢ doppio lpjer la quadrica .
Sia Z un punto qualsiasi dello spazio distinto dal punto P e sia r la retta che unisce P con Z .
Siano ( z;,7, ,73 ) le coordinate di Z e sia

X1,X2,X3,X4) = (Ay1+ pz, Aya+ uzp, Ays+ pzs, Ayst pzg )
la rappresentazione parametrica della retta r .
Abbiamo gia visto che gli eventuali punti comuni alla retta r ed alla quadrica si trovano attraverso

le soluzioni non nulle dell’equazione

ari+2bip+cep’ =0
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dove € : (con gliindici i e j variabili tra 1 e4)

a = 4,y Y, , b= Zaini Z; , ¢ = Zaijzi Z,
1,] 1]

ij
Stante le (4.1) sihaallora a=0 e¢ b=0 e pertanto I’ equazione

ali+2bAp+ep® =0

diventa

Se anche ¢ =0 allora la retta r ¢ contenuta nella quadrica se invece ¢ ¢ # 0 allora

I’equazione ¢ p° =0  fornisce come sua unica soluzione la coppia ( 1, 0 ) cui corrisponde il

punto P che diventa quindi I’unico punto che r ha in comune con la quadrica .

Abbiamo provato cosi che se valgono le (4.1) allora P appartiene alla quadrica ed inoltre
(vista l’arbitrarieta del punto Z ) ogni rettaper P o ¢ contenutain Q o hain comune con Q il

solo punto P e cid prova che P ¢ doppio per Q .

Viceversa supponiamo che un punto P (y;,y2 ,y3,ys ) della quadrica Q sia doppio per

essa e proviamo che le sue coordinate (y; , y> ,y3,ys ) verificano le (4. 1).

Al solito sia Z un punto qualsiasi dello spazio distinto dal punto P e sia r la retta che

unisce P con Z . Siano ( z,,2, , 73, z4 ) le coordinate di Z e sia

(X1,X2,X3,X4) = (Ay1+ pzy, Aya+ puzo, Ays+ pzz, Ays+ pzs )

la rappresentazione parametrica della retta 1.

I punti comuni alla retta r ed alla quadrica si trovano attraverso le soluzioni non nulle

dell’equazione
ari+2bip+cep’ =0

dove ¢ : (con gliindici i e j variabili tra 1 e4)
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a = Zaini Y; ) b:Zaijyi Z; , ¢ :Zaijzi Z;
i,j L]

Poiché P ¢ un punto della quadrica allora ¢ a=0.L’ equazione

ar+2bAap+tcep? =0
diventa cosi :
p(2bx+cpu) =0
Si ha quindi la soluzione ( attesa ) (1,0) cui corrisponde P e I’altra soluzione si ottiene da
2b A+ cp =0.
Poich¢ P ¢ doppio laretta PZ ¢ contenuta in Q oppure ha in comune con Q il solo punto P e

quindi I’ equazione 2b A + ¢ p =0 deve o essere identicamente nulla o deve fornire ancora

come soluzione la coppia (1,0 ). In entrambi i casi cido comportache¢ b =0.

Pertanto qualunque sia Z ( z;,2z, , 73,24 ) risulta allora che ¢ :

b= Zaijyiz]. =0
ij

Esplicitamente ¢ :

b= (any tany: tazystauys)zi«(anyrtany: tasystauys)z+

(asiyrtany: tasystauys)zs +(anyitany: tansystauys )z

ed esso ¢ nullo , per ogni scelta del punto Z , e quindi per ogni scelta della quaterna

(21,22 ,73,24).
Scegliendo

(ZI,ZZ 9Z39Z4):(1507090)9 (Zlazz aZ39Z4):(0719090)9
(Z],Z2 ,Z3,Z4):(0,0,1,0), (ZlaZZ :Z39Z4):(0:09091):
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si hanno le (4.1) e I’asserto ¢ cosi provato.

La proposizione ora provata ha mostrato che determinare gli eventuali punti doppi della

quadrica equivale a determinare le eventuali soluzioni non nulle del seguente sistema omogeneo

a; X, +ap, X, +apx; +a,x, =0
@.2) Ay X; +ay X, +ag Xy +ay X, =0
Ay X, +az; X, +ag Xy +ag x, =0

Ay, X, +a, X, +a, X, +a,x, =0

che ha per matrice la matrice A della quadrica .

Pertanto , tenendo conto delle proposizioni precedenti , si ha questa utilissima

Proposizione 4.7 Una quadrica Q rappresentata dall’equazione

Q:  Yaxx;=0 (a-ai
%

e degenere se e solo se risulta
detA =0.
Dimostrazione. Se Q ¢ degenere essa possiede almeno un punto doppio P. Le coordinate di P sono
quindi una soluzione  non nulla del sistema omogeneo (4 .2) e cosi ¢ det A=0.
Viceversa se detA = 0 il sistema (4.2) ha soluzioni non nulle ed in corrispondenza a tali

soluzioni si hanno punti doppi per Q la quale ¢ cosi degenere.

5. Piano tangente ad una quadrica in un suo punto semplice.

Sia Q una quadrica ( non riducibile ) rappresentata da

Z:aijxi Xj=0 (4dij = aji )
ij

e siaP(yi,y2 ,¥3,y4 ) unsuo punto semplice . Poiché il punto P ¢ semplice almeno una delle
quattro relazioni (4 .1) ¢ diversa da zero. SiaZ ( z,, 2, , Z3, z4) un punto dello spazio distinto

da P e siarlaretta PZ . Come gia visto 1 punti comuni alla retta PZ , rappresentata
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parametricamente da
X1,%X2,X3,X4) = (Ay1+ pzy, Aya+ uzy, Ays+ nzz, Ays+ uzg )
si trovano attraverso le soluzioni non nulle dell’equazione
(5.1) ali+2bip+cep® =0

dove ¢ :

"= Tayy, . P Faye ¢~ Naas
i, i ij

Essendo a = 0 inquanto P e Q,’equazione (5.1) diventa :

(5.2) u(2bi+cu) =0

Tale equazione fornisce la soluzione (1, 0) in accordo col fatto che P ¢ comuneadr ¢ Q . Ora se
¢

b:Zaini Z; =0
i

ede¢ ¢ # 0 lasoluzione (1, 0) sara soluzione doppia della (5. 2 ) e cio¢ la retta r interseca Q solo
nel punto P , se invece ¢ anche ¢ =0 D’equazione (5.2 ) ¢ identicamente nulla e la rettar ¢

contenuta in Q .

Abbiamo cosi provato che i punti Z dello spazio per cui la retta PZ incontri Q nel solo punto P o

sia contenuta in Q sono tutti e soli quelli per cui risulti :

(@auyirtany: tasystauys)zi+ (Auyitany: tanystauys)z +

(asryrtany, tasystauys)zzt(@ny tany: tagys tauys)za= 0

cio¢ sono tutti e soli 1 punti dello spazio le cui coordinate sono soluzione dell’equazione seguente

(5.3) (anyrtanpy: tapystauys)xi+ (@uyrtany: tapnystauys) X +
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(asryrtany: tapystayys)xst+t(@uyitany, tagys tauys)xs= 0

Tale equazione, che non é identica perche P e semplice , rappresenta quindi un piano per P che ¢
chiamato piano tangente nel punto P.

Sia P un punto e sia mp il piano tangente in P . Per la sua stessa definizione se Z ¢ un punto
di mp diverso da P la retta PZ ¢ tangente a Q in P (incontra cio¢ Q nel solo punto P) oppure ¢
tutta contenuta nella quadrica. Q .

Poiché la sezione di un piano con una quadrica ¢ una conica allora I’intersezione del piano
mp con la quadrica fornira una conica che ¢ necessariamente degenere .

Viceversa se in un punto P semplice della quadrica c’¢ un piano per P che interseca Q in
una conica degenere costituita da due rette per P o da una sola retta allora tale piano ¢

necessariamente il piano tangente a Q nel punto P .

6. 1l gruppo strutturale.

Sia GL(4,R) il gruppo delle matrici reali quadrate d’ordine quattro non degeneri ad elementi
reali .

Sia A = (‘a; ) una matrice non degenere elemento di GL(4,R) . La matrice A induce nello spazio
proiettivo complesso P un’ applicazione ®, biettiva quando si faccia corrispondere al punto P
di coordinate ( xi, X2, X3, X4) il punto P’ di coordinate (X'1 , X'2 , X'3 , X;) con

(x;,X, ,X5,X,) dateda:
X, TanxitapXxy taXxs tagxg
X, Tap X1 tapX; Tax3Xst+auX
X, =az X;tapX; TaXxst+ayX
X,= a4 X1 tagp Xy TaiXxstauXs

Ovviamente se si moltiplica la matrice A per un fattore p #0 diverso da zero si ottiene una matrice

A’ che induce la stessa funzione indotta su P dalla matrice A . La funzione ®, indottada A €

detta omografia reale ed essa ¢ un isomorfismo dello spazio proiettivo in quanto essa ¢ biettiva e
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trasforma con la sua inversa rette in rette e piani in piani.

Nel gruppo GL(4 , R ) si considerino ora tutte le matrici A del seguente tipo :

Aq dyp Agz Ay

A A .. a aq dgp Ags
_ 21 Aoy Apg Aoy
A= con det|a, a,a, [#0
Qg dgp dgz Ay 4 a4 a
31 d3p Ag3
0 0 0 1

Denotiamo con #&(4 , R) I’inisieme di tutte le matrici del tipo sopra esposto. L’insieme &(4 ,R) ¢
anch’esso un gruppo detto gruppo affine reale . Le applicazioni che le matrici A di &(4 , R)
inducono nello spazio proiettivo sono quindi di questo tipo

X, Tanx;ptapXx taxstauxs

X, Tar X1 tanX TapXstauxy
X, Ta3 X1 T an Xy tassXs tayxy

X, =X4

e sono chiamate affinita reali. Ogni affinita reale ¢ un isomorfismo che trasforma punti reali in
punti reali, punti immaginari in punti immaginari , punti propri in punti propri e punti impropri in
punti impropri.

Noi riterremo che sullo spazio P agiscano tali affinita e le proprieta delle figure dello spazio
invarianti rispetto a tali trasformazioni saranno chiamate proprieta affini.

Sia Q una quadrica reale non degenere rappresentata in un riferimento reale da :

XtAX=0
Sia X’ = MX un’affinita dello spazio . Da X’ =MX segue, essendo detM # 0 ,
X=M'X" e quindi X=X (M")
Siha:
XtAX=X" (M")AM'X =0
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e quindi la quadrica Q viene allora trasformata nella quadrica Q’ rappresentata da :
X AX =0

avendo posto A’= (M), AM™" .
La quadrica Q’ trasformata della quadrica Q ha quindi una matrice A’ il cui determinante ha

lo stesso segno del determinante di A in quanto ¢ :
det A’ = (detM™ ) detA

1l segno del determinante di A ha quindi un significato geometrico essendo invariante per affinita.

7. Quadpriche reali.

Nel presente numero Q rappresentera una quadrica reale e cio¢ rappresentabile con un’equazione

Z:aijxi Xj=0 (Qij = Qji )
ij

1 cui coefficienti aj; sono numeri reali. Supporremo che la quadrica Q sia dotata di punti reali.
Sia P un punto semplice e reale della quadrica Q esia mp il piano tangente in P . Tale piano ¢
al pari di P reale ed interseca quindi Q in una conica y reale. Tale conica y , come abbiamo gia

osservato, ¢ degenere e quindi sono possibili tre eventualita :

a) vy e doppiamente degenere e cioe e una sola retta reale per P .
b) y ésemplicemente degenere ed e costituita da una coppia di rette reali per P.

c) y ésemplicemente degenere e ¢ costituita da una coppia di rette complesse e coniugate per P.

Quando si verifica la circostanza a) il punto P ¢ detto parabolico.
Quando si verifica la circostanza b) il punto P ¢ detto iperbolico.

Quando si verifica la circostanza ¢) il punto P ¢ detto ellittico.

Proveremo ora che le uniche quadriche che posseggono punti parabolici sono 1 coni ed i cilindri

mentre le quadriche non degeneri hanno soltanto punti iperbolici o ellittici.
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Riassumendo :

quando un punto P ¢ parabolico c’¢ una sola retta passante per P e contenuta nella quadrica.

quando un punto P non & parabolico ci sono due rette distinte per P contenute nella quadrica.

Possiamo provare ora la seguente :

Proposizione 7.1 Sia Q una quadrica reale dotata di punti reali e non riducibile. Se Q
possiede un punto parabolico ogni altro suo punto semplice e reale e parabolico e Q possiede
altresi un punto doppio V e cosi Q e un cono o un cilindro a seconda che V sia proporio o
improprio.

Dimostrazione. Sia P un punto reale semplice ¢ parabolico di Q .Esiste quindi una sola
retta per P ,sia t, passante per P e contenuta in Q. Laretta t ¢ intersezione di Q col piano tangente
np nel punto P. Sia P’ un punto reale e semplice di Q e non appartenente al piano mp . Proviamo
che anche il punto P’ ¢ parabolico. Se P’ fosse non parabolico per P’ passerebbero due rette
distinte r ed r’ contenute in Q. Tali rette intersecherebbero il piano mp in due punti distinti della
retta t . Il piano determinato dalle rette r ed r’ avrebbe quindi in comune con la quadrica Q le tre
rette 1,1’ et e sarebbe quindi contenuto in Q che invece per ipotesi non ¢ riducibile.

Pertanto anche P’ ¢ parabolico e quindi per esso passa una sola retta t’ contenuta in Q. Il piano
tangente mp: nel punto P’ interseca quindi Q nella sola retta t’ . Ovviamente mp non contiene t’
e mp- non contiene t . Sia V il punto dellaretta t in cui laretta t’ interseca il piano mp

Ovviamente poiché m, non contiene t’ e m, non contiene t 1puntidi t—{V } sono tutti
parabolici ed i punti di t*— { V } sono tutti parabolici. Sia a il piano determinato dalle rette t e
t’ e sia M un punto reale e semplice della quadrica fuori da tale piano . Ovviamente poich¢ M
non appartiene alla retta t esso non sta sul piano mp e quindi per cio che precede esso ¢ parabolico.
Laretta m per M contenuta in Q interseca il piano a necessariamente nel punto V in quanto ,
come osservato, ipuntidit—{V} e di t’—{ V } sono parabolici. Quindi per il punto V passano

tre rette distinte (t, t’ , m) contenute in Q e cid mostra che esso € doppio. Si ha quindi 1’asserto.

Osserviamo esplicitamente quanto segue :

Se Q ¢ un cono reale allora esso ha un unico punto doppio V che ¢ proprio. Per tale ragione
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la conica impropria del cono ¢ non degenere in quanto se tale conica contenesse una retta r il
piano congiungente V ed r sarebbe contenuto nella quadrica.

Se invece Q ¢ un cilindro reale il suo unico punto doppio ¢ improprio ed esso ¢ quindi doppio
anche per la conica impropria I che ¢ cosi degenere. Se I' si riduce ad una sola retta il cilindro ¢
detto parabolico .Se T ¢ unione di due rette reali e distinte il cilindro ¢ detto iperbolico. Se I' ¢

unione di due rette immaginarie coniugate il cilindro ¢ detto ellittico.

8. Quadriche reali non degeneri.

In questo numero considereremo le quadriche reali non degeneri e che siano dotate di punti
reali.
I punti reali di una quadrica reale non degenere sono tutti semplici € non parabolici e risultano
quindi iperbolici o ellittici . Noi ora mostreremo che essi sono tutti iperbolici o tutti ellittici.

Sussiste infatti la seguente :

Proposizione 8.1 Sia Q una quadrica reale non degenere e dotata di punti reali. Se la
quadrica Q ha un punto reale iperbolico ogni suo altro punto reale é iperbolico.

Dimostrazione. Sia P un punto reale ed iperbolico della quadrica Q e siano r ed r’ le due
rette reali passanti per P e contenute in Q . E’ chiaro che gli altri punti reali di r ed r’ sono
iperbolici. Sia quindi P’ un punto reale della quadrica Q fuori dal piano tangente mp . Il piano che
unisce P’ ed r ¢ reale ed interseca quindi Q in una conica reale . Tale conica ¢ degenere ed ¢
I’unione della retta r e di un’ altra retta reale t per P’ . Analogamente il piano che congiunge 1’
con P’ ¢ reale ed interseca quindi Q in una conica reale. Tale conica ¢ degenere ed ¢ 1’'unione della

retta r’ e di un’ altra retta reale t’ per P’. Abbiamo provato cosi che P’ ¢ iperbolico.
Si puo provare che sussiste la seguente proposizione di cui omettiamo la dimostrazione.

Proposizione 8.2 Sia Q una quadrica reale non degenere e dotata di punti reali

rappresentata da

Z:aijxi x;=0 (Qj = qji )
Lj

La quadrica Q ha i punti reali iperbolici se e solo se risulta
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det A > 0.
Dalla proposizione 8.2 segue ovviamente la seguente:

Proposizione 8.3 Sia Q una quadrica reale non degenere e dotata di punti reali

rappresentata da

Z:aijxi Xj=0 (Qij = Qji )
i

La quadrica Q ha i punti reali ellittici se e solo se risulta
detA< 0.

Le proposizioni 4.7 , 8.1 ed 8.2 confermano che il segno del determinante della matrice

della quadrica ha un significato geometrico.

Sia Q una quadrica reale non degenere . I punti impropri della quadrica sono 1 punti che la
quadrica Q ha in comune con il piano improprio. Poiché il piano improprio interseca Q in una
conica, tali punti sono quindi i punti di una conica , detta conica impropria ¢ che indicheremo col

simboloy , .
Poiché la quadrica ¢ reale ed il piano improprio ¢ un piano reale la conica y_ ¢ reale ¢

quindi per tale conica si hanno le seguenti possibilita :

in due rette reali e distinte

Y., ¢degenere . . o .
in due rette immaginarie e coniugate

Y. ¢non degenere ¢ dotatadi punti reali

Y. ¢ non degenere ¢ priva di punti reali (fotalmente immaginaria).

Quando la conica y, ¢ degenere a quadrica Q ¢ detta paraboloide.
Quando la conica vy, ¢ non degenere e dotata di punti reali la quadrica Q ¢ detta

iperboloide .
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Quando la conica y_, €& non degenere e totalmente immaginaria la quadrica Q ¢ detta

ellissoide.

L’ essere per una quadrica un paraboloide , un iperboloide o un ellissoide ¢ una proprieta
invariante per affinita e per tale ragione la suddivisione delle quadriche reali e non degeneri in
queste tre famiglie viene chiamata la classificazione affine delle quadriche reali.

Una retta reale contenuta nella quadrica Q ha un punto improprio reale e tale punto sara un
punto reale della conica impropria. Da cio segue che i punti reali di un ellissoide sono

necessariamente ellittici.

Ci sono invece due tipi di paraboloidi :

( paraboloide a punti ellittici )
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( paraboloide a puntiiperbolici)

E ci sono due tipi di iperboloidi :

iperboloide a punti iperbolici ( iperboloide ad una falda)

ax\z
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Iperboloide a punti ellittici ( iperboloilde a due falde ).

Le quadriche non degeneri contengono rette , rette reali se i punti sono iperbolici e rette
immaginarie se i punti sono ellittici. Vediamo come sono disposte tali rette sulla quadrica.

Consideriamo un punto P della quadrica e siano r ed s le due rette passanti per P e
contenute nella quadrica Q . Indichiamo con mp il piano tangente in P che contiene le due rette r
ed s . Per ogni punto x di r-{ P} indichiamo con sy 1’altra retta per x contenuta nella quadrica.

La retta s e tutte le rette sy ( al variare di x ) sono evidentemente a due a due sghembe e definiscono

una schiera di rette che indicheremo con 2 .
Analogamente per ogni punto y dis-{ P } sia ry I'ulteriore retta per y contenuta nella

quadrica . La retta r e le rette ry ( al variare di y ) definiscono I’altra schiera di rette che sara

indicata con 2~ . Ogni retta contenuta nella quadrica diversa da r ed s interseca il piano mp in

unpuntodi r U s differente da P e quindi appartiene ad una delle due schiere.

Sia s, una retta di by ed ry una retta di 2 . Il piano tangente my in X che contiene le
rette r ed sx non contiene la retta ry, . La retta ry interseca quindi il piano m in punto che ¢
necessariamente un punto si sx essendo r ed ry, sghembe tra loro.

Abbiamo cosi mostrato che tutte le rette di una quadrica non degenere si ripartiscono in due
famiglie di rette, dette schiere di rette, e tali schiere hanno la proprieta che rette della stessa schiera

risultano sghembe tra loro mentre rette di schiere diverse sono incidenti tra loro.
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9. Polarita definita da una quadrica non degenere.
Sia Q una quadrica non degenere rappresentata in un riferimento reale assegnato

dall’equazione :

1771

Q : Za..x,szo (Qij = Gji )
i.j

Poiché la quadrica ¢ non degenere la sua matrice A(a; ) ¢ non degenere e quindi ¢ det A #0.
Sia P(yi,¥y2 ¥3,Yy4) unpunto dello spazio . L’ equazione

(Auyirtany: tapystauys) Xi +(@ayitany: tasystauys )X +

@uy1tany: taxystayys) Xsanyrtany: tagystagyys )xg =0

( costruita utilizzando le coordinate (y;, v, y3,y4) di P) ¢ una equazione non identica
( altrimenti P sarebbe doppio e la quadrica sarebbe degenere) e quindi rappresenta un piano
dello spazio. Tale piano ¢ chiamato piano polare del punto P e sara denotata col simbolo =, .
Associando al punto P il suo piano polare si realizza una applicazione 4 tra i punti dello
spazio ed 1 piani dello spazio. Tale applicazione
t: P - T
¢ chiamata polarita indotta dalla quadrica non degenere Q . Il punto P ¢ chiamato il polo del
piano .
Le proposizioni che seguono illustrano alcune importanti proprieta della polarita 4 indotta dalla

quadrica Q .

Proposizione 9.1 La polarita e un’applicazione biettiva.

Dimostrazione. Sia n un piano dello spazio rappresentato da :
9.1 T axt+by+cz +dt=0

Unpunto P(yi,y2 y3,ys) dellospazio ha per piano polare il piano © se risulta np= 7 cioe

se 1’equazione
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(Auyirtany: tasystauys) xXi+(@uyitany: tapystauys )X +

(asryrtany: taxsystauys) s+(@nyi+any: tagystauys )xq4 =0

¢ I’equazione del pianon . Siha quindi che P(y;, y2,y3,y4) €polodi m se e solo serisulta :

Ay, tapy, tagyst+ayy, =a
Ay Yy tany, tayy;+ta,y,=b
Ay yitazpy, taxgyz+ayy,=cC

ayy ta,y, tagy;+a,y,=d

**)

Tale sistema inteso nelle incognite (y;, Y2, y3,ys) ha una sola soluzione ( z;, 7, 73,24 ) in
quanto, essendo la quadrica non degenere, ¢ det A # 0.

Sostituendo alla quaterna (a, b, c,d) con la quaterna proporzionale (pa, pb, pc, pd)
con p # 0 siotterra in corrispondenza la soluzione (pzi, pz2, pz3, p24).

Pertanto in corrispondenza a tutte le quaterne ( pzi, p z2, pz3, p z4). soluzioni di (**) si ha un
solo punto P dello spazio avente per piano polare il piano @ . La corrispondenza 4 ¢ quindi

biettiva come si voleva provare.

Proposizione 9.2 Un punto P appartiene al suo piano polare se e solo se esso appartiene
alla quadrica . In tal caso il suo piano polare coincide con il piano tangente in P.
Dimostrazione . Se P(y; ,vy2,y3,ys) ¢€unpunto della quadrica allora il suo piano polare

che ¢ rappresentata da :

(Auyirtany: tasystauys) xi (@ yitany: tasystauys )X +

(asryrtany: taxsystauys) s+(anyr+any: tagystauys )xq4 =0

coincide con il piano tangente nel punto P . In tal caso quindi P appartiene a tale piano in

quanto ¢

(Auyirtany: tasystauys)yi+(@uyitany: taxnystauys )y: +

(@ y1tany, tapzystayys)ys<@Quayi+any: tasystauys )ys =0

essendo P un punto della quadrica.

Viceversa se P(y1, y2, ¥3,y4) appartiene al suo piano polare si ha :
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(Auyirtany: tapystauys)yi+(@ayitany: tasystauys )y: +

(@s1yr+any: tazystauys)i@uyitany: tagystauys )ys =0

e questa prova che P & un punto della quadrica .

Abbiamo cosi provato che :

9.3) Pe mp & Pe Q

Una importante proprieta della polarita 4 ¢ espressa dal seguente :

Teorema di reciprocita. Se A(v;, ys, v3,y+) e B(z;, zs z3 z4) sono due punti distinti
dello spazio , si ha
9.4) Be na & A€ mg
Dimostrazione.
Il piano polaredi A ¢:
(@uyirtany:, tagystauys) X @y tany: tapgystanyys )X +
(Asryrtany: tansystauys) s+(@uyitany: tagystauys )xg =0

che puo scriversi sinteticamente , usando le notazioni introdotte al numero 1, cosi :

f(y /x)=0

Il piano polare di B ¢ :

(anzitapz, tapzztanzy) Xy «(anzitanz; tapnztayz )X +

(@1z1t+aynz, tayszztanuzy) Xsdagzitapz: tagzztayzy )xg =0

che puo scriversi sinteticamente , usando le notazioni introdotte al numero 1, cosi :
f(z /x)=0

Abbiamo, sempre al numero 1 , gia osservato che poiché la matrice A della quadrica ¢ simmetrica

si ha per ogni coppia di quaterne non nulle (y;,y2,v3,v4) € (21,72, Z3, Z4)
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9.5) f(y /z)=1(z /Yy)

Dalla (9.5) segue quindi

f(x /z)=0 < f(z/y)=0

e questa prova ’asserto.

Proposizione 9.3 [ piani polari dei punti di una retta r formano un fascio di asse una retta
r’ che dicesi coniugata della retta r. Le rette r ed r’ sono ognuna il luogo dei poli dei piani per
laltra.

Dimostrazione. Siano A ¢ B due punti distinti della retta r . I piani polari ms € 7g
sono distinti e quindi si intersecano in una retta 1’ . Siano C e D due punti distinti della retta
r’. Poich¢ C e D appartengonoad 1’ =ms N 7p per il teorema di reciprocita A e B
appartengono ai piani polari my € g . Sihaquindi r=mnc N mp e 1’ asserto segue tenendo conto

del teorema di reciprocita.

Dalla proposizione ora provata segue che :

Proposizione 9.4 [ piani polari di tre punti A, B, C non allineati formano una stella con

centro il polo del piano determinato dai punti A, B, C .

Possiamo ora fornire una descrizione geometrica del piano polare di un punto p.

Se il punto P ¢ un punto della quadrica il piano polare di P ¢ il piano tangente in P . Se il
punto P non appartiene alla quadrica il piano polare non passa per P ed ¢ secante la quadrica . Detta
I' la conica non degenere comune a Q e m, si ha quanto segue. Per ogni puntoy di I' possiamo
considerare il piano tangente m, Poiché y appartiene a I' e quindi a m, per il teorema di
reciprocitd, m, passa per p e quindi laretta yp ¢ tangente .

Viceversa sia t una retta per P e tangente a Q nel punto y. Poiché P sta sul piano polare

diy, per reciprocita il punto y sta sul piano polare di P ed ¢ quindi un puntodi T .

La conica I' e quindi il luogo dei punti di contatto delle rette tangenti che si possono

condurredap a Q edil piano r, e il piano che contiene tali punti.
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10. Centro e piani diametrali.

In questo numero la quadrica Q ¢ non degenere e reale ed ¢ rappresentata nel riferimento

reale ortogonale monometrico scelto da :

Z:atijxi x;=0 (Qij = Gji )
ij

Si chiama centro della quadrica il polo del piano improprio. Se la quadrica ¢ un paraboloide il
piano improprio ¢ tangente ed allora il centro ¢ un punto improprio e coincide col punto di contatto
che il piano improprio ha con Q. Se la quadrica ¢ un ellissoide o un iperboloide allora il piano
improprio ¢ secante Q e quindi non contiene il suo polo. Nel caso dell’ellissoide e dell’iperboloide
il centro ¢ quindi un punto proprio.
Per determinare le coordinate del centro si pud far uso del teorema di reciprocita e della
proposizione 9.4. Pertanto 1 piani polari dei punti impropri € non allineati (1,0,0,0) (0,1,0,0)
(0,0,1,0) formano una stella di piani con centro il polo del piano improprio.
Pertanto le coordinate del centro si ottengono attraverso la soluzione del seguente sistema
omogeneo:

a;; X, +ap, X, +a;;x; +a,x, =0

Ay Xy +a, X, +an Xy +ay, X, =0

Ay X; +ay X, +a, X, tagx, =0

che puo ottenersi attraverso il calcolo dei minori d’ordine tre e presi a segni alterni della matrice

Ay Ay dgz Ay

Ay dyy Aoz Ay
Qg dgp dgz dgy

Ay A Ay
dei suoi coefficienti. Ne segue che se det Ay = det | a, a, a,, |=0 il centro ¢ improprio e
Az Ay Ay

quindi si tratta di un paraboloide.

Se detAss # 0 allora la quadrica ¢ un ellissoide o un iperboloide.
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Si consideri nello spazio una retta reale r ¢ sia 0 il suo punto improprio che supponiamo non
appartenga alla quadrica. Il piano polare 1§ di tale punto ¢ reale ed ¢ chiamato piano diametrale
coniugato alla direzione & . Quando il piano polare ©§  risulta ortogonale alla retta r esso ¢
detto piano assiale.

Per la ricerca degli eventuali piani assiali procediamo al seguente modo. Consideriamo un punto

reale ed improprio (A, p, v, 0) . Il piano polare di tale punto ¢ :

(311 A +ap p tagyv )X] +(a21 A +ay B tap; V)Xz +(a31 A +az; p +as; V)X3+

+(Ag AN +tap p tagv)xy =0

Tale piano ¢ ortogonale alla direzione considerata se esiste p #0 per cui risulti :

apn AN tap p +tagv =pA
ajy N +tapp tazv = pp

azg A tap p taz v = pv

0 equivalentemente :

(all-p)}\ +312}1 +313V =0
ay A +t(an-p)p tanv =0

a;3 A +tap p +(apz-p)v = 0

questo sistema ha soluzioni non nulle se risulta :

a; —p ap ag
det | ay ap —P ay (=0
gy az Az —P
aq app g

Poiché la matrice A4s=|a,; a, a, | ¢simmetrica e reale il polinomio -caratteristico

A3 dgp dgg



det ( Ags-1p) =0 ha tre soluzioni reali, determinate le quali , si possono poi determinare le
direzioni (A, p, v,0) cercate.

Perché tanta attenzione al centro ed ai piani assiali ? Vediamo .

Il centro della quadrica quando esso € un punto proprio risulta centro di simmetria per la
quadrica.

Infatti supposto che il centro sia proprio disponiamo il riferimento in modo che il centro
coincida con I’origine del riferimento. In tal modo il centro ha coordinate (0,0,0,1) e quindi il
sistema

a; X, +ap, X, +apx; +a,x, =0
Ay X, +a, X, +an Xy ta,x, =0

Ay X, +ay X, +ag Xy +ag x, =0

che fornisce le coordinate del centro deve essere soddisfatto dalla quaterna (0,0,0,1) .Cio

comporta allora a;4 =axs =azs =0 e quindi nel riferimento scelto 1’equazione della quadrica ¢ :

a11X2+a22y2+ 8.3322 +a44t2 +2apxyt2aixz +2ayyz=0.
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Tale equazione mostra che se un punto proprio di coordinate non omogenee ( X,y , z ) ¢ punto della

quadrica anche il suo simmetrico ( -x . —y , -z ) rispetto all’origine ¢ un punto della quadrica.

Sia O una direzione reale e sia 7 il piano assiale coniugato a tale direzione.
Disponiamo il riferimento in modo che I’asse z abbia la direzione O ed il piano xy sia il piano
.Con tale scelta le coordinate di & sono (0,0, 1,0) e cosi @ che ¢ il suo piano polare é:

azx tay taxsztayut=0
tale equazione deve essere la rappresentazione del piano xy che ha equazione z =0 e quindi si
as;1=an = au=0

Nel riferimento scelto 1I’equazione della quadrica ¢ allora (in coordinate non omogenee) :

311X2+322y2+ 33322 tay +2apxyt+t2ax +2auy =0.

I

ha
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Tale equazione mostra che se un punto proprio di coordinate (x, y, z) ¢ un punto della quadrica
anche il suo simmetrico ( nella simmetria ortogonale di asse il piano 7 ) che ha coordinate

(x,y,-z) ¢anch’esso un punto della quadrica.

La nostra conclusione é che il centro se é un punto proprio é centro di simmetria ed i piani assiali

sono piani di simmetria per la quadrica.

Concludiamo con qualche semplice esercizio.

Si classifichino le quadriche rappresentate ( in coordinate non omogenee) da :

(a) Q: x2-4y2+2x-4z=O

b) Q: 2y*+2xy-4xz+4yz =0

Svolgimento (a) : ’equazione di Q in coordinate omogenee & x” - 4y” + 2xt -4zt =0

e la matrice della quadrica Q ¢:

1 0 0 1

0-4 0 O
A=

0O 0 0 -2

1 0-2 O

Sii ha det A =16 e quindi la quadrica ¢ non degenere. La sua conica impropria ¢ rappresentata
da:

x* -4y® + 2xt -4zt =0
t=0

che ¢ degenere ed ¢ costituita dalle due seguenti rette reali e distinte :

x-2y=0 x+2y=0
r: S:

si conclude che la quadrica Q ¢ un paraboloide a punti iperbolici.
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Svolgimento (b) : I'equazione di Q & -2y*+2xy-4xz+4yz =0

e la matrice della quadrica Q ¢:

01 -2 0

1 -2 2 0
A=

-2.2 0 0

0O 0 0 O

Sii ha det A =0 e quindi la quadrica ¢ degenere. La quadrica possiede quindi punti doppi . Il

rango della matrice A ¢ due in quanto risulta

0o 1 -2
det|1 -2 2 [=0
-2 2 0

Pertanto i punti doppi della quadrica Q sono i punti della retta rappresentata da :

|y-2z =0
|x-2y+2z=0

La quadrica ¢ quindi unione di due piani passanti per larettar. Laretta s rappresentata da :

interseca la quadrica nei due puntit A=(1,0,0) e B=(1,1,0) .Ipiani che uniscono r con
A e B forniscono 1 due piani che compongono la nostra quadrica. Il piano y-2z = 0
manifestamente contiene r ed A . Determiniamo il piano per r e B.

Un qualunque piano per r ¢ deltipo (y-2z)+k (x-2y +2z)=0 ( al variare del parametro k)
Tale piano passa per il punto B se ¢ k= 1. Pertanto I’altro piano ¢ il piano x —y = 0.

Per controllare la correttezza del risultato trovato basta osservare che € :

2y*+2xy-4xz+4yz =2(y -2z )(x-V).
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Capitolo VII

Note di topologia generale
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1. Spazi topologici.

Sia S un insieme non vuoto . Una famiglia @ di parti di S 1 cui elementi sono chiamati

aperti ¢una topologia per S se essa verifica le seguenti proprieta :
1. ®de@,Se @

2. Ace @ ed A’c @ allora AN A’ € @

3. Per ogni famiglia { A; }ic1 di aperti si ha UAi e @

iel
Si richiede quindi che :

il vuoto ed S siano aperti , che l’intersezione di un numero finito di aperti sia ancora un

aperto e che ['unione di un numero qualsiasi di aperti sia ancora un aperto.

La famiglia @ 1 cui unici aperti siano il vuoto ed S € una topologia detta topologia banale.
La famiglia @ 1 cui aperti siano tutti i sottoinsiemi di S ¢ una topologia detta topologia

discreta.

A parte questi casi estremi , non sempre ¢ facile la realizzazione di una famiglia @ di parti di S

con le proprieta ora richieste per cui ¢ utile la seguente:

Proposizione 1.1 Sia S un insieme e sia B una famiglia di parti di S che abbia le seguenti

proprieta :
a) B e un ricoprimento di S
b) ’intersezione non vuota di due elementi di B e unione di elementi di 3.

La famiglia & di parti di S contenente il vuoto ed i sottoinsiemi che si possono ottenere

attraverso tutte le possibili unioni degli elementi di @ ¢ allora una topologia per S.

Dimostrazione. Per semplicita di esposizione precorrendo il risultato chiamiamo aperti gli

elementi di @.
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Poiché @ ¢ un ricoprimento allora ¢ S = UX e quindi S & un aperto . Siano A ed A’
XeB

due aperti , elementi di @ . Per definizione esistono due sottofamiglie F ed F’ di elementi

di B per cuirisulta :

A= JX A=Y

XeF YeF'

Si ha allora .

AnA=Ux)n (UY) = Uxny)

XeF YeF' XY
Per la proprieta b) anche X N Y ¢ unione di elementidi B e cosi A N A’ risultando

unione di elementi di B appartiene ad @ e quindi € un aperto.

E’ evidente infine che per ogni famiglia { A; } i1 di aperti si ha UAi e @

iel

in quanto essendo ogni A; una unione di elementi di @ anche UAi risulta unione di

iel
elementi di % . Poiché anche il vuoto fa parte della famiglia @ allora tale famiglia ¢ , come

si voleva provare , una topologia per S.

La situazione favorevole descritta dalla proposizione ora provata si ha quando I’insieme S ¢
munito di una metrica , nozione di cui ora ci occupiamo.

Sia S un insieme non vuoto . Una metrica in S ¢ una funzione

d: SxS — [0, +oo][

verificante le seguenti proprieta :

a. d(x,y)=0 seesolo se ¢ x=y (proprieta di coincidenza )
B. d(x,y)=d(y,Xx) ( proprieta di simmetria )
Y. d(x,y)+d(y,z) 2d(x,2) ( proprieta triangolare )

Chiameremo il numero reale non negativo d ( x,y) distanza di x da y.Se d ¢ una metrica
in S lacoppia (S, d) ¢ chiamato spazio metrico, ed S ¢ detto il sostegno dello spazio
metrico.

Se ( S, d) ¢ uno spazio metrico allora utilizzando la metrica d possiamo costruire
per S una topologia @ e tale topologia si dice indotta dalla metrica d .

Vediamo come si procede.
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Sia quindi ( S, d) uno spazio metrico. Siano y un elemento di S ed r un numero reale

positivo. Si chiama cerchio aperto di centro y e raggio r il seguente sottoinsieme

C(y,r) diS:

Cy,r) = {xeS :d(x,y)<r}

Poiché d(y,y) =0 allora I’insieme C(y , r) non ¢ vuoto in quanto ye C(y,r). Sia ora B la
famiglia di tutti i cerchi aperti C(y , r) al variare di y in S ed r tra i numeri reali positivi.
Proveremo ora che la famiglia @ verifica le proprieta a) e b) della proposizione 1.1 ed ¢
quindi in grado di generare una topologia. Per fare cio ¢ utile la seguente

Proposizione 1.2. Sia C = C(y, r) un cerchio aperto e sia z un suo punto . Esiste
un cerchio aperto C’ = C(z, r’) di centro z contenuto nel cerchio C.

Dimostrazione . Poich¢ z ¢ un punto del cerchio C=C(y,r) si ha

d(z,y)<r.

Sia r’ un numero positivo tale che risulti

*) r<r-d(z,y)

Proviamo che il cerchio aperto C’ con centro in z e raggio r’ ¢ contenuto nel cerchio C. Sia
quindi x unpunto di C’ e proviamo che ¢ x appartienea C. Siha infatti, tenendo conto

di (*) e della proprieta triangolare ,

d(x,y)<d(x,2) +d(z,y) <r+d(z,y)<r

Dalla proposizione ora provata segue che :

Proposizione 1.3  L’intersezione di due cerchi aperti se e non vuota é unione di
cerchi aperti.

Dimostrazione. Siano C e C’ due cerchi aperti ad intersezione non vuota. Sia X un
puntodi C n C’ . Per la proposizione 1.2 esiste un cerchio aperto I di centro x e raggio r
contenuto in C ed un cerchio aperto I * di centro x e raggio r’ contenuto in C’. Supposto ad
esempio r <1’ siha I < I’ equindi I contiene x ed ¢ contenutoin C N C’ . L’ asserto
¢ cosi provato.

Abbiamo cosi provato che la famiglia @ di tutti i cerchi aperti dello spazio metrico

(S, d) verifica le proprieta a) e b) della proposizione 1.1.
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Pertanto la famiglia @& di parti di S costituita dal vuoto e da tutti i sottoinsiemi di S che siano
ciascuno una unione di cerchi aperti costituisce una topologia per S.

Tale topologia “generata” dai cerchi aperti ¢ detta topologia indotta dalla metrica. Tenendo
conto della proposizione 1.2 si ha facilmente la seguente caratterizzazione degli aperti di tale
topologia @ .

Un sottoinsieme A di S ¢ un aperto di tale topologia se e solo se esso ha la seguente proprieta

(**) Perogni y di A esiste un cerchio aperto di centro y contenuto in A.

Analizzeremo in seguito molte proprieta importanti di tale topologia @ .

E’ evidente che se ( S, d) ¢ uno spazio metrico allora ogni suo sottoinsieme X ¢ a sua volta

uno spazio metrico quando lo si munisca della stessa metrica d pensata ristretta ad esso .

Un esempio importante di spazio metrico ¢ il seguente .

Sia n un intero positivo € sia R" lo spazio vettoriale delle n-ple ordinate di numeri
reali. Come abbiamo gia provato al n.8 cap.VII (fondamenti di geometria piana) si puo
definire nello spazio R" una distanza al seguente modo .

Siano x = ( X1, X2, ..., Xn ) €d Y= (y1, ¥2, ..., ¥n ) due elementi di R" . Si definisce

distanza euclidea di x da y il seguente numero reale

(+) d(x,y) = \/(Xl-y1)2+(x2-y2)2+"+(Xn-Yn)2

Quando si pensa R" munito di tale distanza euclidea, R" & uno spazio metrico e la topologia

indotta da tale metrica euclidea ¢ chiamata la topologia naturale di R"

Quando ¢ n=1 siamo nel campo R dei numeri reali e la (+) diviene
d(x,y)= Ix—yl
e cosi il cerchio aperto di centroy e raggior ¢:

C(y,r)={xeR :d(x,y)<r}={xeR: Ix-yI<r }=
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={xeR :r<x-y<r}= {xeR 1y-r<x <y+r}

I’intervallo aperto
lyr, ytr[.

Se n=2ed ¢ y=(yi,y2) ed r ¢&il raggio allora il cerchio aperto di centroy e
raggio r ¢ , usando una rappresentazione piana di R’ attraverso 1’uso di un riferimento
monometrico cartesiano, ¢ davvero il cerchio racchiuso dalla circonferenza di centro y e

raggior .

v

Se n=3 ede¢ y=(yi1,y2Yy3) ed r ¢il raggio allora il cerchio aperto di centro y e raggior
¢ , usando una rappresentazione di R’ attraverso 1’uso di un riferimento monometrico

cartesiano, ¢ la sfera aperta con centro iny e raggio r.

v
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2. Chiusi di uno spazio topologico.

Sia (S.@ uno spazio topologico . Come detto gli aperti elementi di @ verificano le seguenti

proprieta :
1. ®Pe@, Se @

2. A @ ed A’ @ allora AN A € @

3. Per ogni famiglia { A; }ic1 di aperti si ha UAi e@®

iel

I complementari degli aperti vengono chiamati chiusi . Denotata con € la famiglia dei chiusi

di S si ha subito che la famiglia € ha le seguenti proprieta :

I. e Seéd
I CeCed Cec @ allora Cu C e @
I1I. Per ogni famiglia { C; } ic1 di chiusi si ha ﬂCi €@

iel

Esprimendo tali proprieta a parole : il vuoto ed S sono chiusi, ['unione di un numero finito di

chiusi e un chiuso e l’intersezione di un qualsiasi numero di chiusi é un chiuso.

E’ evidente che se € ¢ una famiglia di parti di S con le proprieta I, IL, III allora la
famiglia @ dei complementari degli elementi di € verifica le proprieta 1, 2, 3 e quindi
costituisce una topologia per S . Inoltre per lo spazio topologico ( S, @) la famiglia €
diventa la famiglia dei chiusi.

Sia S uno spazio topologico e siano @ e € le famiglie degli aperti e dei chiusi di S.
Utilizzando tali famiglie si possono definire le nozioni di interiore ¢ di chiusura di un
sottoinsieme. Vediamo di che si tratta.

Sia X un sottoinsieme di S si definisce interno o interiore di X il piu grande aperto

contenuto in X . Tale interiore si ottiene attraverso 1’unione di tutti gli aperti contenuti in

X e viene indicato col simbolo X . Si ha quindi per definizione :
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X = UA A aperto
AcX
E’ facile controllare la seguente proprieta che caratterizza 1 sottoinsiemi aperti di S.
Proposizione 2.1 Un sottoinsieme A di S é aperto se e solo se coincide col suo

interiore.

o o

Tenendo conto che da X < Y segue X < Y si ha facilmente la seguente

proprieta :

(XNY)Y=XnY

Sia X un sottoinsieme di S si definisce chiusura di X il piu piccolo chiuso

contenente X . Tale chiusura si ottiene attraverso D’intersezione di tutti gli chiusi
contenenti X e viene indicato col simbolo X . Si ha quindi per definizione :
X = ﬂC C chiuso
CoX

E’ facile controllare la seguente proprieta che caratterizza i sottoinsiemi chiusi di S.

Proposizione 2.2 Un sottoinsieme C di S e chiuso se e solo se coincide con la sua

chiusura.

Tenendo conto che da X < Y segue X c Y si ha facilmente la seguente

proprieta :
XuY = XuY
Utilizzando la definizione non sempre ¢ facile il calcolo della chiusura e
dell’interiore di un sottoinsieme assegnato. Un modo alternativo e a volte piu agevole si

ottiene attraverso I’uso dei punti interni ad X o dei punti aderenti ad X. Vediamo di che si

tratta.

Per fare ci0 ci serve pero un concetto semplice ma fondamentale in topologia : il
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concetto di intorno di un punto. Vediamo.

Sia quindi (S ,@ uno spazio topologico . Sia y un punto di S . Si definisce intorno

diy un qualunque sottoinsieme I contenente un aperto contenente y.

In simboli :

IS intorno diy seesolose esiste Ae@®@ .yeAcl

Denoteremo col simbolo $(y) la famiglia di tutti gli intorni del punto y.

Per la definizione data ¢ chiaro che un aperto che contenga y € un intorno di y.
Poiché I’intersezione di un numero finito di aperti ¢ un aperto allora evidentemente

I’intersezione di un numero finito di intorni del punto y € anch’essa un intorno del punto y.

Nel seguito denoteremo con A(y) la famiglia di tutti gli aperti contenenti y.

Molto importante per il seguito ¢ la seguente osservazione :

9

Una proprieta “p” e verificata in ogni intorno di y se e solo se essa e verificata in ogni

aperto che contiene y .

Per questa ragione quando dovremo verificare la validita di un certa proprieta utilizzeremo

anzich¢ la famiglia $(y) la famiglia A(y) .

Piu in generale una famiglia 3(y) di intorni diy ¢ detta sistema fondamentale d’

intorni per il punto y se in ogni intorno di y ¢’ e un intorno di y che faccia parte della

famiglia I{y) .

Evidentemente la famiglia A(y) costituisce per il punto y un sistema fondamentale di

intorni .

Utilizzando tale concetto anche 1’osservazione fatta sopra puo essere generalizzata al seguente

modo:
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“__ 9

Una proprieta “p” é verificata in ogni intorno di y se e solo se essa é verificata in ogni

intorno di un sistema fondamentale di intorni di y .

Siamo ora in grado di introdurre la nozione di punto interno ad un sottoinsieme e di punto

aderente ad un sottoinsieme.

Un punto y di un sottoinsieme X si dice interno ad X se esiste un intorno di y contenuto in

X o equivalentemente se esiste un aperto contenente y e contenuto in X.

Poich¢ Dl’interiore di X ¢ un aperto contenuto in X allora ogni punto che appartenga all’
interiore ¢ punto interno ad X . Viceversa un punto che sia interno ad X appartiene ad un
aperto contenuto in X e quindi appartiene all’interiore di X. Pertanto I'interiore di X ¢

costituito da tutti e soli i punti interni ad X.

Un punto y di S si dice aderente al sottoinsieme X se ogni intorno diy contiene
almeno un punto di X o equivalentemente se ogni aperto contenente y contiene almeno un

punto di X.

Utilizzando tale concetto possiamo caratterizzare la chiusura di un sottoinsieme provando la
seguente :

Proposizione. 2.3 La chiusura di un sottoinsieme X coincide con l’insieme dei punti
aderenti ad X.

Dimostrazione. Proveremo 1’asserto mostrando che sono equivalenti le seguenti

affermazioni :
i) y non appartiene alla chiusura di X
i) y non é aderente ad X.

Proviamo che i) implica ii).

Se y ¢ X = ﬂC allora esiste un chiuso C, contenente X cui y non appartiene . Detto
CoX

A, l’aperto S-C, siha y e A, edinoltre ¢

A, N X = @ e questo prova che y non ¢ aderente ad X.
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Proviamo che ii) implica i).
Se y non ¢ aderente ad X esiste un aperto A, contenente y e disgiunto da X. Il chiuso

Co,=S-A, contiene X e non contiene y . Pertanto y non appartiene alla chiusura di X.

Un’altra caratterizzazione della chiusura di un sottoinsieme X si ottiene attraverso 1’uso della

nozione di punto di accumulazione. Vediamo.

Un punto y di S si dice d’accumulazione per il sottoinsieme X se in ogni intorno di
y c¢’e almeno un punto di X diverso da y o equivalentemente se in ogni aperto contenente y

c’é almeno un punto di X diverso da y.

L’insieme di tutti 1 punti di accumulazione per il sottoinsieme X ¢ chiamato il

derivato di X ed ¢ indicato con il simbolo D(X).

E’ evidente che 1 punti di accumulazione per X sono aderenti ad X ed ¢ altresi evidente che
un punto aderente ad X e che non faccia parte di X ¢ d’accumulazione per X. Pertanto si ha

la seguente eguaglianza :

X = X U DX)
la quale fornisce un’altra caratterizzazione della chiusura di X.

Un punto aderente ad X ed al complementare di X ¢ detto di frontiera per X.
L’ insieme dei punti di frontiera viene denotato con F.(X) e viene chiamato la

frontiera di X. Si ha facilmente la seguente eguaglianza :

X = X u F(X)
la quale fornisce un’altra caratterizzazione della chiusura di X.
3. Funzioni continue.

Un isomorfismo tra due spazi topologici (S.@ ed (S’ @) ¢ una applicazione

f: S > §
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biettiva tra i sostegni S ed S’ che con la sua inversa trasforma gli aperti dell’uno negli aperti

dell’altro e cio¢ abbia le seguenti due proprieta :

D fA) e per ogni aperto A di S
i) f'A) ea@ per ogni aperto A’ di S’.

Un isomorfismo tra due spazi topologici viene anche chiamato omeomorfismo.

Se (S, @) ¢ uno spazio topologico . Indichiamo con Q (S) I’insieme di tutti 1 suoi

omeomorfismi . Rispetto alla composizione di applicazioni I’insieme Q (S) ¢ un gruppo detto
gruppo strutturale dello spazio topologico (S,@®).

€ %

Una proprieta “p” diunaparte Y di S sidice topologica se per ogni omeomorfismo f di

€ .9

S anche f(Y) hala proprieta “p”.

[I¥e4]

Se ci0 accade si dice che la proprieta “p” ¢ invariante per omeomorfismi.
Lo studio dello spazio topologico (S , @ ) consiste nella ricerca delle proprieta topologiche

delle figure di S .

Una applicazione

f: S > §
tra due spazi topologici (S.@ ed (S’ @) ¢ detta continua se
le controimmagini degli aperti di S’ sono aperti di S .
In simboli se per ogni aperto A’ di S’ risulta aperto il sottoinsieme di S
flA) = {x eS : f(x) e A’}

Un omeomorfismo tra due spazi topologici (S,@ ed (S’ ,@°) ¢ quindi una funzione biettiva

tra i sostegni che risulti continua insieme alla sua inversa.

C’¢ una nozione di continuita in un punto ( continuita locale ) che ¢ connessa alla nozione di

continuita globale ora data . Vediamo.
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Siano (S .@ ed (S’ ,@°) due spazi topologici e sia
f: S > §
una funzione di Sin S’ .
Sia X, un punto di S e sia y, = f(X,) il suo trasformato . La funzione f si dice continua nel

punto x, se

Cl) per ogni intorno I’ di y, esiste un intorno 1 di x, tale che risulti :

f(1) cr

E’ come dire :

“ punti vicini ad y, provengono da punti vicini ad x,.”

La proprieta C1) ¢ ovviamente equivalente alla seguente proprieta :

C2) Per ogni aperto A’ contenente y, esiste un aperto A contenente x, per cui si abbia :
f4) c 4
o0 ancora
C3) la controimmagine di un intorno di y, é un intorno di x,, .
C4) la controimmagine di ogni aperto A’ contenente y, € un intorno di x,.

Le due nozioni date , di continuita locale e globale , sono connesse tra loro come mostra la

seguente :

Proposizione 3.1. Siano (S .4 ed (S’ .& ) due spazi topologici . Una funzione
fi§->
di Sin S’ e continua se e solo se essa e continua in ogni punto di S.
Dimostrazione. Supponiamo che f sia continua e proviamo che ¢ continua in ogni punto di

S. Sia x, un punto qualsiasi di S e sia y, = f(X,) il suo trasformato. Poich¢é f & continua la
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controimmagine di un aperto A’ contenente y, ¢ un aperto e tale aperto contiene x, € quindi € un
intorno di x, . Vale quindi la proprieta c4) e cosi la funzione f ¢ continua in X, .

Viceversa supponiamo che f sia continua in ogni punto di S e proviamo che ¢ continua . Sia
A’ un qualsiasi aperto di S’ e sia A=f'(A’) lasua
controimmagine. Supposto A non vuoto , per provare che A ¢ aperto ¢ sufficiente provare che ogni
suo punto ¢ interno. Sia quindi X, un punto di A e sia y, =f(X,) il suo trasformato.
Poiché A =f'(A’) allora ¢ y, € A’ e poiché f ¢ continua in X, per la proprietd c4) la sua

controimmagine che ¢ A ¢ intorno di X,.

Le proposizioni che seguono forniscono delle condizioni necessarie e sufficienti affinché

una assegnata funzione tra due spazi topologici sia continua.

Proposizione 3.2 Una funzione f: S — S’ tra due spazi topologici (S .&) ed
(S°.& ) e continua se e solo se la controimmagine di un chiuso di S’ e un chiuso di S.

Dimostrazione. Sia fcontinua e sia C’ un chiuso di S’. Sia A’ I’aperto di S’ per cui ¢
C=S"-A’. Siha f'(C)=f'(S-A)=S-f'(A).

Poiché f¢& continua si ha che f' ( A’) & un aperto di S e cosi f' ( C”) & un chiuso come si
voleva provare.

Viceversa supponiamo che la controimmagine di un chiuso sia un chiuso e proviamo che f ¢
continua. Occorre quindi provare che se A’ ¢ un aperto di S’ allora
f' (A’) & un aperto di S . Infatti da

S-f'(A)=f'(S=A")

e dall’ipotesi fatta segue che S - f' ( A”) & un chiuso e conseguentemente ' ( A’) & un aperto.

Proposizione 3.3 Una funzione f: S — S’ tra due spazi topologici (S.4) ed (S’ .&) e
continua se e solo se trasforma punti aderenti ad un sottoinsieme X in punti aderenti al
sottoinsieme f(X).

Dimostrazione. Supponiamo f sia continua e sia X, un punto aderente al sottoinsieme X. Sia
Vo = f(X,) 1l trasformato di x, e proviamo che y, ¢ aderente ad f(X). Occorre quindi provare che in
ogni aperto A’ contenente y, ¢’¢ almeno un elemento di f(X). Poiché f ¢ continua nel punto x,, in
corrispondenza dell’aperto A’ intorno di y,, ¢’¢ un aperto A contenente X, tale che f(A) < A’.
Poiché x, ¢ aderente ad X nell’intorno A di x, ¢’¢ almeno un punto x di X . Si ha allora che f(x)

appartiene ad A’ e ad f(X).
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Sia C* un chiuso di S* esia C=f'(C").Siha f(C) = C’ da cui, essendo C’ chiuso,

che prova che C ¢ un chiuso . Avendo provato che la controimmagine di un chiuso ¢ un chiuso la

funzione é continua.

Al fine di individuare un’altra importante proprieta delle funzioni continue ci ¢ utile
richiamare la nozione di successione convergente.

Sia (S, @) uno spazio topologico e sia { un punto di S. Una successione

X1, X2,...,Xn ».... di elementi di S ¢ convergente ad ¢ se

per ogni intorno 1 di ¢ esiste un intero m tale risulti x, € I per ognin> m.

o equivalentemente

per ogni aperto A contenente [/ esiste un intero m tale risulti x, € A per ogni

n> m.

L’elemento ¢ cui la successione converge ¢ anche detto limite della successione. Non sempre una
successione ¢ convergente € non sempre il limite quando esiste € unico. Si ha unicita del limite se lo

spazio topologico ¢ separato o di Hausdorff cio¢ gode della seguente proprieta :

H: Per ogni coppia di punti distinti x ed y esistono due intorni I ed I’ di x ed y tra loro disgiunti.

0 equivalentemente

H: Per ogni coppia di punti distinti x ed y esistono due aperti A ed A’ contenentiil primo x ed il

secondo y tra loro disgiunti.

Possiamo infatti ora provare la seguente

Proposizione 3.4 Sia (S, &) uno spazio topologico di Hausdorff. Una successione xj, X3, ...,Xn
,.... di elementi di S che sia convergente ammette un unico limite.

Dimostrazione. Supponiamo per assurdo che la successione xj, X,...,X, ,.... ammetta due

limiti ¢ ed ¢ distinti tra loro. Siano I ed I’ due intorni di ¢ ed ¢  disgiunti tra loro. Poiché ¢ ¢
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limite della successione X, X2,....Xn »....

esiste un intero m tale cherisulti x, € I perognin> m.

Poiché anche ¢ ¢ limite della successione X, X2,...,Xn ,....

esiste un intero m’ tale che risulti x, € I’ perognin> m’.

Sihaallorache x, e Il n I” perogni n> max {m,m’} , il che contraddice il

fattoche [ ed I’ siano disgiunti.

Un’ altra importante proprieta delle funzioni continue ¢ espressa dalla seguente

Proposizione 3.5 Una funzione continua f: S — S’ tra due spazi topologici (S .&@ ed
(S’ .& ) trasforma una successione convergente in una successione convergente.

Dimostrazione. Sia X, Xa,...,Xs ,.... una successione di elementi di S convergente ad x, .
Proviamo che la successione corrispondente

f(x1), f(x2),..., f(Xn),--..
converge al punto f(x,). Sia A’ un aperto contenente f(x,). Poiché f ¢ continua in X, esiste un
aperto A contenente X, tale cherisulti f( A) < A’. Ma poiché la successione Xj, X2,...,Xp ,....
ha per limite X, ed A ¢ un intorno di tale punto si ha che
esiste un intero m tale che risulti x, € A perognin> m.

Ma allora per ogni n > m risulta f(x,) € f(A) < A’ e cio prova che la successione f ( x;), f(

X2),..., T ( Xp) ,.... ha per limite f(x,).

Concludiamo questo numero provando alcune semplici proprieta valide in uno spazio

topologico di Hausdorff .

Proposizione 3.4 Ogni punto di uno spazio topologico (S, &) di Hausdorff ¢ chiuso.

Dimostrazione. Sia y un punto di S esia z un punto distinto da y e cio¢ un punto del
complementare di y . Poiché lo spazio ¢ di Hausdorff esiste un aperto A contenente z e non y .
L’aperto A ¢ contenutoin S- y e cidoprovache z ¢internoad S - y.

Ogni punto di S - y ¢ interno e quindi S - y ¢ un aperto il che prova che y ¢ un chiuso.



189

Proposizione 3.5 Sia (S, &) uno spazio topologico di Hausdorff i cui aperti non vuoti siano
infiniti. Sia y un punto di accumulazione per il sottoinsieme X. In ogni intorno del punto y ci sono
allora infiniti punti di X diversi da y.

Dimostrazione. Possiamo ovviamente limitarci a verificare la proprieta in un aperto A che
contenga y . Poiché y ¢ d’accumulazione per X nell’aperto A ¢’¢ un punto x; di X diverso da y.
Poiché x; € un chiuso I’insieme

Al=A-x1= A n(S-x))
¢ un aperto che contiene y. Poiché y ¢ d’accumulazione per X nell’aperto A; ¢’¢ un punto x, di X
diverso day e pero esso ¢ distinto anche da x;.
Posto
Ar=A-{x;,x}=A N (S—{x1, x2})
Essendo {x; , x,} un chiuso I’insieme A, ¢ un aperto e contiene il punto y . Pertanto poiché y ¢
d’accumulazione per X nell’aperto A, c’¢ un puno x3 di X diverso da y e che risultera pero distinto
ancheda x; ¢ Xx».
Procedendo induttivamente si costruisce nell” aperto A una successione

X1,X2, ....,.Xn ...di punti di X distinti tra loro e distinti da y e I’asserto ¢ cosi provato.

4. Basi ed assiomi di numerabilita.Spazi separabili.

In questo numero daremo alcune nozioni topologiche utili per il seguito.
Sia (S.@ uno spazio topologico . Una famiglia @ di aperti di S ¢ detta base per la topologia @
se ogni aperto non vuoto di S ¢ unione di elementi di B .
Essendo S aperto la famiglia @ ¢ un ricoprimento di S. Inoltre I’intersezione di due elementi di B,
essendo tale intersezione un aperto, ¢ unione di elementi di ®.

Lo spazio topologico ¢ detto a base numerabile se ammette una base che sia finita o numerabile.

Uno spazio topologico ¢ detto localmente a base numerabile se ogni suo punto ha un sistema

fondamentale di intorni che sia finito o numerabile.

Infine uno spazio topologico si dice separabile se possiede un sottoinsieme D finito o

numerabile che sia denso in S cioé¢ tale che risulti
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La proposizione che segue mostra che le nozioni ora date sono connesse tra loro.

Proposizione 4.1 Uno spazio topologico (S .& ) che sia a base numerabile é anche
localmente a base numerabile e separabile.

Dimostrazione. Denotiamo con @ = {B, }ne n la base numerabile che lo spazio possiede.
Cominciamo a provare che lo spazio ¢ localmente a base numerabile. Sia quindi y un suo punto e
proviamo che per tale punto esiste un sistema fondamentale di intorni finito o numerabile. Poiché¢ B
¢ un ricoprimento di S ci sono elementi di % che contengono y . Indichiamo tale famiglia con

B,={Be B: ye B}

Tale famiglia di aperti ¢ una famiglia di intorni di y ed ¢ fondamentale oltre ad essere

ovviamente finita o numerabile. Infatti sia A un aperto che contenga y . Poiché % ¢ una base

esiste una sua sottofamiglia F di % tale che risulti

A= [JB

BeF
Poiché y appartiene ad A allora esso appartiene ad un elemento B, della famiglia F . Poiché
B, € %, e B, ¢ contenuto in A si ha I’asserto.
Proviamo ora che lo spazio ¢ separabile. Facendo uso dell’assioma della scelta scegliamo un
elemento x, in ogni aperto non vuoto B, della base & .

Indichiamo con D [D’insieme degli elementi X, selezionati. L’insieme D ¢ ovviamente
finito o numerabile ed ¢ denso in S come ora proveremo. Sia y un punto di S e sia A un aperto
contenente y . Poiché A ¢ aperto e B ¢ una base I’aperto A ¢ unione di elementi di % . In ognuno
di tali elementi ¢ stato selezionato un elemento

di D quindi nell’aperto A ci sono elementi di D . Pertanto y ¢ aderente a D e si ha quindi I’asserto.

5. Proprieta della topologia indotta da una metrica .

Sia (S, d ) uno spazio metrico con metrica d. Abbiamo gia visto che la metrica d consente di
introdurre in S una topologia @ che viene detta indotta dalla metrica ed i cui aperti sono le unioni
di cerchi aperti. Vogliamo ora illustrare alcune importanti proprieta di tale topologia @ .

Proposizione 5.1 Lo spazio topologico (S, & ) e di Hausdorff.

Dimostrazione. Siano x ed y due punti distinti € sia r un numero reale positivo minore di

@. I cerchi aperti C(x ,r) e C(y, r) sono disgiunti . Se infatti per assurdo esistesse un punto
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z comune ai due cerchi avremmo, per la proprieta triangolare , :

dx.y) , d(x.y)
2 2

d(x,y) £d(x,z) +d(z,y)<r +r< =d(x,y)

e c10 ¢ assurdo.

Proposizione 5.2 Lo spazio topologico (S, & ) e localmente a base numerabile.

: . : 1 - :
Dimostrazione. Denotiamo per ogni punto 'y di S con & = { C (y , —)} la famiglia numerabile
n

di intorni del punto y costituita dai cerchi aperti di centro y e raggio — . Mostrando che tale
n

famiglia ¢ fondamentale si ha I’asserto. Sia A un aperto contenente y e sia C (y , r ) un cerchio

aperto di centro y e raggio r contenuto in A. Fissato un intero m tale che risulti — < r siha
m

Cly,L)ycC(y,r) cA
m

e I’ asserto ¢ provato.

Proposizione 5.3 Lo spazio topologico (S, & ) é a base numerabile se e solo se e separabile.

Dimostrazione. Abbiamo gia visto che se lo spazio ¢ a base numerabile esso ¢ separabile.
Occorre quindi provare che se ( S, @ ) ¢ separabile esso ¢ a base numerabile. Sia quindi D un
sottoinsieme finito o numerabile denso in S cio¢ tale che risulti ad esso aderente ogni punto di S.
Denotiamo con

%={C(y,9 yeD,qe Q7}

la famiglia dei cerchi aperti aventi centro in un punto y di D e raggio razionale positivo. Tale
famiglia di aperti ¢ ovviamente numerabile ed ¢ come ora proveremo una base per la topologia @y .
Per provare ci0 ¢ sufficiente mostrare che ogni cerchio aperto ¢ unione di elementi di % . Sia
quindi C ( x, r) un cerchio aperto e z un suo punto . Se mostreremo che z appartiene ad un
aperto di @ tutto contenuto nel cerchio C (x,r) siavra l’asserto.

Abbiamo gia visto nella proposizione del n. che ¢ possibile determinare un cerchio aperto

C(z, p ) contenuto nel cerchio C (x,r) . Consideriamo il cerchio C( z, g ) In tale cerchio

aperto ¢’¢ un punto y di D in quanto z ¢ aderente al sottoinsieme D . Poiché y € C( z, % ) siha

p
d(y,z)<=™
(y.z) >

Sia ora q un numero razionale tale che
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d(y.z)<q < g

Il cerchio C (y, q ) appartiene alla famiglia % contiene z e come ora proveremo ¢ contenuto nel

cerchio C(z, p ) . Sia quindi t un elemento del cerchio C (y, q ) e proviamo che t appartiene al
cerchioC(z, p ).

Si ha infatti, usando la proprieta triangolare ,

d(t,z)< d(t,y)+d(y,z) <q+q< %+%:p
L’ asserto € cosi provato.

Poiche uno spazio metrico ¢ di Hausdorff allora come gia visto una successione X, X, ...,Xp

,.... dipuntidiS, se ¢ convergente, ammette un unico limite.
In uno spazio metrico ha significato per una successione anche tale definizione.

Una successione Xi, X2,...,Xn ,.... di punti dello spazio metrico (S, d) ¢ detta di Cauchy

se ¢ soddisfatta la seguente proprieta :

Per ogni ¢ > 0 esiste un interom tale perogni p,q > m , si ha

d(x,,xy < &

La proposizione che segue lega tra loro le due nozioni di convergenza e di essere di Cauchy

per una successione.

Proposizione 5.2 Una successione X, X2,...,Xy ,....  di punti dello spazio metrico (S, d) che
sia convergente e di Cauchy.

Dimostrazione. Sia ¢ il limite della successione xj, Xa,...,Xp ,.... . Sia € un numero positivo e
. € : : . . € . A . :
siaC (¢, 5 ) il cerchio aperto di centro ¢ e raggio 5 Per definizione di limite esiste un intero

m tale che per ogni n > m risulta

xn € C(¢, )

£
2
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Pertanto per ogni p,q > m si ha, utilizzando la proprieta triangolare,

d(Xp,Xg) <d(Xp,¢)+d(¢,xq)< §+ .

£
2

e cio0 prova I’asserto.

Osserviamo esplicitamente che esistono spazi metrici dotati di successioni di Cauchy ma

. . . . + - . . . . e .
non convergenti come mostra il seguente esempio . Sia R™ I’insieme dei numeri reali positivi

dotato della metrica euclidea d(a,b)=|a-b| .In tale spazio la successione x, = 1 ¢ di Cauchy
n

. . . N \ . + .
in quanto ,come successione di R ¢ convergente, ma non ¢ convergente in R risultando
convergente a zero in R.

Uno spazio metrico in cui ogni successione di Cauchy risulta convergente ¢ detto completo.

E ben noto che I’insieme dei numeri reali dotato della metrica euclidea ¢ uno spazio metrico

completo.
Pertanto per una successione di numeri reali X, Xa,...,X, ,.... vale la seguente equivalenza .
X1, X2,...,Xn ».... CONvVeErgente se e solo se X1, X2,..-,Xn ».... € di Cauchy.

La proposizione che segue caratterizza i sottospazi completi di uno spazio metrico completo.

Proposizione 5.3 Sia (S, d ) uno spazio metrico completo . Un suo sottoinsieme X &
anch’esso completo se e solo se X e chiuso.
Dimostrazione. Supponiamo che lo spazio metrico ( X , d ) sia completo e proviamo che

esso ¢ chiuso. Sia y un punto di aderenza per X. Per ogni n, sia x, un punto di X scelto nel
. 1 . :
cerchio aperto C (y, — ).Lasuccessione X, Xa,...,Xn ,....converge manifestamente al punto y e
n

quindi ¢ di Cauchy. Ma poich¢ ¢ di Cauchy ed X ¢ completo essa converge ad un punto di X . Per
I’unicita del limite y ¢ un punto di X. Pertanto contenendo tutti punti aderenti I’insieme X ¢ un
chiuso.

Viceversa supponiamo che X sia chiuso e mostriamo che esso ¢ completo. Occorre quindi
che provare che ogni sua successione di Cauchy ¢ convergente ad un punto di X. Sia quindi xj,
X2,...,Xn ,... Una successione di punti di X e supponiamo sia di Cauchy. Poiché¢ lo spazio S ¢
completo la successione di Cauchy xi, Xy,...,X, ,... converge ad un punto y . Per definizione di
limite in ogni intorno di'y ci sono punti della successione e quindi di X . Pertanto y ¢ aderente ad

X. Ma poiché X ¢ chiuso il punto y appartiene ad X . Avendo provato che la successione di Cauchy
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X1, X2,...,Xn »... converge ad un punto di X resta provato che lo spazio metrico X ¢ completo.

Uno spazio topologico (S @) sidice metrizzabile se esiste una metrica d in S tale che

risulti & =@ cio¢ che induce su S la topologia @.
6. Esempi di spazi topologici.

Al fine di controllare la comprensione delle nozioni finora date ¢ opportuno fornire un po

di esempi. Sia R D’insieme dei numeri reali .

Esempio 1.

Come gia visto , assumendo come aperti di R , il vuoto , R e tutti gli intervalli del tipo
la, b[ con a,b € R.

e tutte le loro unioni si ottiene una topologia (indotta dalla metrica) che denoteremo con 9T per

I’insieme R ( essa e detta topologia naturale di R ).

Esempio 2.
Assumendo come aperti di R , il vuoto , R e tutti gli intervalli del tipo
]-o, a[ con a € R.

si ottiene una topologia che denoteremo con & per 'insieme R ( detta delle semirette sinistre
aperte ).
Essendo evidente che I’intersezione di due aperti € un aperto basta controllare che 1’unione di aperti
¢ un aperto. Sia quindi

Ai= J-o, ajf con a3, e R, 1€ 8§

una famiglia di aperti . Detto a=supa; ¢ facile verificare che risulta :

U ]—OO, ai[=]—oo, a[

e ci0 prova che ’'unione di aperti € un aperto. Pertanto la famiglia & ¢ una topologia per I’insieme

R.
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Esempio 3.

Assumendo come aperti di R , il vuoto , R e tutti gli intervalli del tipo
Ja, o[ con a € R.

si ottiene una topologia che denoteremo con 9 per I’insieme R ( detta delle semirette destre aperte

).
Essendo evidente che I’intersezione di due aperti ¢ un aperto basta controllare che I’'unione di aperti
¢ un aperto. Sia quindi

Ai= laj, o] con 3, e R, 1€ §

una famiglia di aperti . Detto a=infa; ¢ facile verificare che risulta :

UJa. ol =Ja, =

e cio prova che 1’'unione di aperti ¢ un aperto. Pertanto la famiglia © ¢ una topologia per I’insieme

R.
Esempio 4.
Assumendo come aperti di R , il vuoto , R e tutti gli intervalli del tipo

]-a, a[ con ae R, a>o

si ottiene , come ¢ facile verificare , una topologia per 1’insieme R che denoteremo con Q 0.

Esercizio 1. Si consideri il sottoinsieme X =[2, 7[ . Si calcoli la sua chiusura ed il suo

interiore in ognuno degli spazi topologici

(R, 9), (R, $), (R, D), (R, Q. sopra descritti.

Esercizio 2. Si consideri ora la seguente successione di punti di R

xn=3+l ne N
n
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Si determinino per essa i punti di convergenza negli spazi topologici

(R, 9t), (R, &), (R, 9), (R,Qa) sopra descritti.

Esercizio 3. Si consideri la funzione f: R — R che associa al numero x il numero
x>+ 4.
Si assuma che il codominio sia munito della topologia 9D . Si stabilisca con quale topologia delle
quattro topologie 9 , & , D, Q. sopra descritte , deve essere munito il dominio R per rendere
continua la nostra funzione.

Si faccia poi lo stesso controllo per la funzione g: R — R che associa al numero x

il numero x +4 . Si dica se in qualche caso g ¢ un isomorfismo.

Esercizio4. Si stabilisca quale spazio topologico tra questi

(R, 9), (R, &), (R, D), (R, Q)

da not descritti € di Hausdorft.

7. Sottospazi di uno spazio topologico.
Sia (S, @ ) uno spazio topologico. Sia Y un sottoinsieme di S . La famiglia
& ={YNnA , Ae @}

di partidi 'Y 1 cui elementi sono le intersezioni di Y con gli aperti di S¢é evidentemente una
topologia per Y che viene detta indotta da S su Y.

Quando si munisca Y di tale topologia @ lo spazio topologico ( Y , @ ) ¢ detto sottospazio
dello spazio topologico (S, @ ).

Quando I’insieme Y ¢ un aperto gli aperti dello spazio topologico ( Y , @ ) coincidono con gli
aperti di S contenuti in Y e quindi ogni aperto di Y ¢ un aperto di S. Se Y non ¢ aperto non tutti
1 suoi aperti sono aperti di S.

Ad esempio sia R munito della topologia naturale 9C esia Y=[3 , 7].

L’insieme |5, 7]= [3, 7]n]5, 9] ¢unapertodi Y manon ¢ apertodi 9T .
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Per questa ragione non tutte le proprieta della topologia @ vengono ereditate dalla topologia @y

8. Spazi topologici connessi.

In questo numero ci occuperemo di una importante nozione topologica : la connessione .
Vediamo di che si tratta. Sia ( S, @ ) uno spazio topologico . Lo spazio topologico ¢ detto
sconnesso se esistono due aperti A ed A’ non vuoti e disgiunti la cui unione sia S. Se S ¢
sconnesso esso ¢ quindi I’unione di due suoi aperti non vuoti e disgiunti. Uno spazio topologico non
SCONNESSO € connesso.

In maniera “ intuitiva * se € sconnesso si pud spezzare se € CONNESSO €
“ tutto un pezzo’.

E’ evidente che se (S, @ ) ¢ sconnesso ed ¢

S= A UA

con A, A’ aperti non vuoti e disgiunti, allora si A che A’ sono sottoinsiemi propri di S che

risultano sia aperti che chiusi , risultando per essi :

A’=S-A ed A=S-A’.

Per questa ragione nella definizione data la parola aperto puo essere sostituita con la parola
chiuso.
Cosi in modo equivalente lo spazio topologico ( S, @ ) ¢ sconnesso se esistono due

chiusi C e C’ non vuoti e disgiunti la cui unione sia S.

Ovviamente la presenza di un sottoinsieme A proprio di S che sia contemporaneamente

aperto e chiuso garantisce che S ¢ sconnesso risultando

S=A U (S-A)

Un sottoinsieme Y dello spazio topologico S ¢ detto connesso se risulta connesso lo

spazio topologico (Y, Gy).

E’ evidente ma utile la seguente proprieta :
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(*) se S e sconnesso ed e l'unione dei due aperti non vuoti disgiunti A ed A’ allora é sconnesso
ogni sottoinsieme Y che intersechi sia A che A’ in quanto si ha :

Y=Y nS=Y n (4 04)=(Y n A4) v (Y nA4)

Per stabilire se uno spazio ¢ connesso risulta molto utile la seguente
Proposizione 8.1 Uno spazio topologico (S, & ) é connesso se e sole se

vale la seguente proprieta :

©  per ogni coppia x , y di punti d stinti di S esiste un sottoinsieme Y connesso che

contiene i punti x ed y.

Dimostrazione . Se lo spazio ¢ connesso la proprieta © ¢ manifestamente soddisfatta in
quanto basta scegliere Y =S . Supponiamo quindi valga la proprieta © e proviamo che lo spazio ¢
connesso.

Per assurdo sia S sconnesso . Esistono allora due aperti A ed A’ non vuoti e disgiunti la
cui unione ¢ S . Sia x un punto di A ( che € non vuoto ) ed y un punto di A’ (che & non vuoto) e
sia Y 1l sottoinsieme connesso che li contiene entrambi.

Si ha

Y=Y nS=Y n (AUA)=(Y n A) U (Y nA)

Ora gliinsiemi Y N A , Y n A’ sono non vuoti, il primo contiene x ed il secondo

y , sono disgiunti perché tali sono A ed A’ e sono apertidi Y .

Pertanto Y risulta sconnesso € cio € assurdo.

Dalla proposizione ora provata segue la seguente :

Proposizione 8.2 Sia (S .&) uno spazio topologico e siano Y; ed Y, due suoi sottoinsiemi
connessi. Se Y; ed Y, hanno intersezione non vuota allora anche Y; OY> e un sottoinsieme
connesso.

Dimostrazione. Supponiamo per assurdo che I'insieme T =Y; UY, sia sconnesso.

Esistono allora due aperti di S e siano A; ed A, tali che risulti :

(**) T=(TNA) (T NnA)

con (TN A;j)e (T mn Az) non vuoti e disgiunti.
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Poich¢ ¢ YT ed Y, ¢ T siha :
(a)Y1=Y1 NT=Y; ﬂ[(T(’\A]) U(T ﬁAz)]:(YlﬁAl) U(YlﬂAz)
(b)YzZYz M T:Yz ﬂ[(TﬁAl) U(T ﬁAz)]:(YzﬁAl) U(YzﬂAz)

Sia y, un punto comune ad Y; ed Y, . Il punto y, stante (a) appartiene ad
Y n A o ad Y1 n A, . Supponiamo che appartengaad Y; m A; . Deve essere allora vuoto
Y: N A, altrimenti Y, sarebbe sconnesso.

Poiché y, appartiene anche ad Y, ed ad A, da (b) segue che ¢ non vuoto
Y, mn A; e quindi deve essere vuoto Y, N A, altrimenti Y, sarebbe sconnesso. Ma se sono vuoti
YN Ay e Yo, N Ay, risultaanche vuoto T N A, mentre esso € non vuoto.

Supponendo che y, appartenga Y; N A, avremmo, con eguale ragionamento, che sarebbe

vuoto T m A; il che ¢ assurdo . L’ asserto ¢ cosi provato.

Utile ¢ anche la seguente :
Proposizione 8.3 Sia (S .&) uno spazio topologico. La chiusura di un sottoinsieme Y

connesso e anch’essa un sottoinsieme connesso.

Dimostrazione. Supponiamo per assurdo che la chiusura Y di Y sia sconnessa. Esistono

allora due aperti di S e siano A; ed A, tali che risulti :

(i) Y =(Yn A1) U((YN A)

con (Y N A)e ({{ M A,) non vuoti e disgiunti . Da (i) segue :

(i) Y=Y A Y=(Y nA) U(Y N A

Poiché (Y N A)e ({{ M Az) sono disgiunti tali risultano anche (Y n A;) e
(Y m Ay).Poiché (? N A)e ({{ M A,) sono non vuoti esistono due punti a; ed a; con a; in

YN Ajed ain Y n Ay .Mase a; appartiene ad Y allora esso ¢ aderente ad Y e poiché A,
¢ un aperto che contiene a; allora in A; ¢’¢ almeno un punto di Y . Abbiamo cosi provato che
Y M A; ¢ non vuoto . Con la stessa argomentazione fatta sul punto a, siprovache Y n A;¢

non vuoto .Abbiamo cosi provato , stante (ii) che Y € sconnesso contro il supposto.
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La proprieta di essere connesso ¢ una proprieta topologica in quanto si conserva per

omeomorfismi. Pill in generale sussiste la seguente

Proposizione 8.4 Sia f: S — S’ una funzione continua tra due spazi topologici (S &)
ed (S .&).Se X e un sottoinsieme connesso di S allora f(X) e un sottoinsieme connesso di S’ .
Dimostrazione. Supponiamo per assurdo che f(X) sia sconnesso. Sia ha allora che esistono

due aperti di S’ e siano A, ed A, tali che risulti
fX)=EX) N A v (X)) N AY)

con fiX) N A, ed f(X) n A, non vuotie disgiunti. Denotiamo con

A=f"A)) ed A= (A))

Gli insiemi A; ed A, sono aperti perché f ¢ continua ed inoltre (X N Aj) e
(X M A;) sono disgiunti perché tali risultano fiX) N A, ed f(X) N A}.
Sia f(x;) appartenente ad f(X) N A, esia f(x;) appartenente ad f(X) N A,.

Quindi x; appartiene ad X N A; ed x, appartiene ad X N A;.
Da

fX)=(EX) N A v (fX) N A;)

segue, passando alla controimmagine, e chiamando T la controimmagine di f(X) :
T=(T mnA)uU (TN A)
Poiché T contiene X siha :

X=X T=XNn[(TnA)U(TnNA)]=
=X NnTnNnA)u X nT mA)=X mnA)u (X N Ay

e ci0 prova che X ¢ sconnesso in quanto i due aperti (X N Aj) e (X N Ay

sono non vuoti e disgiunti.

Ogni spazio topologico ( S, @ ) che sia sconnesso ¢ unione di parti connesse.

Vediamo perché.
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Sia quindi (S, @ ) uno spazio topologico. Nell’ insieme S definiamo la seguente

relazione =~ :

due punti distinti x ed y li diciamo equivalenti se esiste un sottoinsieme Y connesso di S che li

contiene.

La proposizione 8.2 assicura che tale relazione ¢ di equivalenza e pertanto essa ripartisce S
in classi d’equivalenza ognuna delle quali viene chiamata componente connessa.

Sia Y = [y ] una componente connessa .Evidentemente Y ¢ un connesso ed ¢ il piu grande
connesso che contiene il punto y . Poiché la chiusura di un connesso ¢ un connesso allora I’insieme
Y risulta anche chiuso.

E’ evidente infine che se lo spazio ¢ connesso se solo se ¢’ € una sola classe d’equivalenza e

quindi una sola componente connessa.

9. Iconnessi di (R, 9 ).

In questo numero caratterizzeremo i sottoinsiemi connessi di R che penseremo munito della
topologia naturale.

Richiamiamo preliminarmente un risultato relativo ad una caratterizzazione degli intervalli
di R . Un sottoinsieme I di R ¢ un intervallo se e solo se esso ha la seguente proprieta :

() per ogni coppia di punti distinti x edy di I con x <y [’ intervallo chiuso [x,y ] e

contenuto in I.

Proviamo ora la seguente importante :

Proposizione 9.1 Ogni intervallo chiuso [a, b] di R é connesso .

Dimostrazione. Supponiamo per assurdo che I’intervallo [ a, b ] sia sconnesso. Esistono
allora due chiusi C; e C, non vuoti e disgiunti tali che risulti

[a,b] =Ciu C,
Poiché [ a, b ] ¢& chiusoi chiusi C; e C; sono chiusi di R. Potendoli rinominare possiamo
supporre che il numero b appartenga a C,. Poich¢ C,¢partedi[a,b] essoc¢limitatoe b ¢
un suo maggiorante. Sia ¢ =sup C;. Essendo ¢ I’estremo superiore si ha che :
per ogni numero € positivo esiste un elemento di C; tra c-€ e c

e cio0 prova che c ¢ aderente a C;. Poiché C; ¢ chiuso allora c appartiene a C; .
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Sihac < b. se fosse c=b allora C; e C; non sarebbero disgiunti. Quindi ¢
¢ <be Dintervallo ] ¢, b ] ¢ allora contenuto in C,. Ne segue che c ¢ anche aderente a C,
Pertanto ¢ ¢ comune a C; e C, e cio ¢ assurdo essendo C; e C, disgiunti.

Siamo ora in grado di fornire una caratterizzazione dei sottoinsiemi connessi di R munito

della topologia naturale. Sussiste infatti la seguente :

Proposizione 9.2 [ sottoinsiemi connessi di R sono tutti e soli gli intervalli.

Dimostrazione. Se 1 ¢ un intervallo esso ha la proprieta (j) e quindi esso € connesso
quando si tenga conto delle proposizioni 8.1 e 9.1.

Viceversa supponiamo che I sia connesso e proviamo che esso € un intervallo.Se per assurdo
I non ¢ un intervallo esistono due punti distintia ¢ bdilcona<btaliche[a,b] non sia
contenuto in I . Esiste allora z :

a<z<b e z ¢1.

Posto Aj=I N J-o ,z[ed A;=1 N ]z , +to[ siha
I = A1UA2

e cio prova che I ¢ sconnesso essendo A; e A, apertinon vuoti (a € A; e b € Ay ) e disgiunti.

10. I connessi di R" dotato della topologia naturale.

Sianoy =(y1,¥2,....,¥n) € 2=(21,2,..., Z,) due punti distinti di R".

Si definisce retta per i punti y e z I’insieme dei punti X (t) = ( x;(t) , Xa2(t) ,..., Xs(t)) cosi descritto

xi() =y1+t(zi—y1)
Xa(t) =y2 +t(z2—-y2)

Xa(t) = ¥n T t(Zo—yn)

dove il parametro t varia in R. Quando t variatra 0 ed 1 il punto x (t) descrive il segmento di
estremi y e z.Poiché la funzione

f: te R > x(t)e R"
¢ una funzione continua, allora il segmento di estremi y e z ¢ un connesso in quanto immagine
tramite f dell’intervallo [ 0,1 ] che ¢ un connesso.

Assegnata in R" una (n+1)-pla ordinata di punti (%o, Zi ,...., Z,) si chiama poligonale di vertici
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(Zo , 21 ,...., Z,) il sottoinsieme P di R" che si ottiene come unione dei segmenti [z, z], i=1,2,
. .
Con un semplice ragionamento, tenendo conto della proposizione 8.2 ,si vede facilmente che ogni
poligonale ¢ un connesso di R".
Possiamo allora dare la seguente definizione . Un sottoinsieme Y di R" si dice connesso
per poligonali se per ogni coppia di punti distinti y e zdi Y esiste una poligonale di estremi y e
z contenuta in Y.
Per la proposizione 7.1 quando si tenga conto che la poligonale ¢ un connesso ¢ immediato
che un sottoinsieme che risulti connesso per poligonale & connesso.
Ci sono pero sottoinsiemi connessi che non sono connessi per poligonale. Ad esempio se
n=2 si consideri la circonferenza I'" di centro (0,0) e raggio 1 1 cui punti
( x,y) sono descrivibili al seguente modo
x(t) = cost
y(t) = sent

dove t varia nell’intervallo [ 0, 2n]. La funzione

f: t e [0,2n] - (cost,sent) e R’

¢ continua e quindi I'=f([ 0, 2n] ) ¢ un connesso ma non ¢ connesso per poligonale.

Proveremo ora che le due nozioni di essere connesso o connesso per poligonale sono
equivalenti per gli insiemi aperti di R".

Sussiste infatti la seguente :

Proposizione 10.1 Un sottoinsieme A aperto di R" ¢ connesso se e solo se esso é
connesso per poligonali.

Dimostrazione. Sia A un insieme aperto di R". Se A & connesso per poligonali allora come
gia osservato esso ¢ connesso . Supponiamo quindi che sia connesso e proviamo che esso ¢ anche
connesso per poligonali. Supponiamo per assurdo che A non sia connesso per poligonali . Esistono
quindi due punti distinti y e z di A tali che ogni poligonale di estremi y € z non ¢ contenuta
in A.

Denotiamo con A; ed A, iseguenti due sottoinsiemi di A .

A;= {x € A esiste una poligonale di estremi y ed x contenutain A }

A=A —-A;={x € A: non esiste una poligonale di estremi y ed x contenuta in A }
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I due sottoinsiemi A; e A; sono non vuoti in quanto A; contiene y ed A, contiene z.
Proveremo ora che essi sono entrambi aperti e quindi si avra un assurdo perché cid comportera che
A ¢ sconnesso.

Proviamo che A; ¢ aperto. Sia x un punto di A;. Poich¢ A ¢ aperto esiste un cerchio
aperto C di centro x tutto contenuto in A. Per ogni punto t di tale cerchio il segmento di estremi x e
t ¢ contenuto in C e quindi in A. Poiché x ¢ congiungibile con y con una poligonale contenuta in A
allora anche t ¢ congiungibile con y con una poligonale contenuta in A . Pertanto il cerchio aperto
C ¢ tutto contenuto in A; che ¢ quindi un aperto essendo intorno di ogni suo punto.

Proviamo che A, ¢ aperto. Sia x un punto di A,. Poich¢ A ¢ aperto esiste un cerchio
aperto C di centro x tutto contenuto in A. Per ogni punto t di tale cerchio il segmento di estremi x e
t € contenuto in C e quindi in A. Se t fosse congiungibile con y con una poligonale contenuta in A
allora anche x risulterebbe congiungibile con y con una poligonale contenuta in A . Pertanto il

cerchio aperto C ¢ tutto contenuto in A, che ¢ quindi un aperto essendo intorno di ogni suo punto.
11. Spazi topologici compatti.

Un’altra nozione toplogica importante ¢ la compattezza. Vediamo di che si tratta.

Uno spazio topologico (S, @) ¢ detto compatto se ha la seguente proprieta :
(k) da ogni ricoprimento di aperti di S si puo estrarre un ricoprimento finito.

In simboli :

Per ogni famiglia { A; } 1€ S di aperti tali che S = UAi esiste § < 3 con & finito

tale che sia

s={JAj., je s

Un sottoinsieme Y dello spazio topologico (S, @) ¢ detto compatto se risulta compatto
lo spazio topologico (Y, @v ).

E’ facile riconoscere che il sottoinsieme Y ¢ compatto se e solo se ¢ verificata la seguente
proprieta :

(k’)  Per ogni famiglia { A; } 1e § di aperti tali che Yc UAi esiste § < S con & finito
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tale che sia

YyclJaj . jes

La compattezza ¢ una proprieta topologica in quanto si conserva per omeomorfismi . Piu in

generale sussiste la seguente :

Proposizione 11.1 Sia f: S — S’ una funzione continua tra due spazi topologici (S &)
ed (S°.&).Se X e un sottoinsieme compatto di S allora f(X) é un sottoinsieme compatto di S’ .
Dimostrazione. Per provare che f(X) ¢ compatto bastera verificare la proprieta (k’) . Sia

quindi { A, } ie § una famiglia di aperti di S’ tali che
) < U a;

Da questa segue, passando alla controimmagine , e chiamando per ogni i€ $
A=A
Xc '] ¢ Uai L ie s

Ora essendo f continua, per ogni i€ § [D’insieme A; ¢ un aperto e poiché X ¢ compatto

esiste § < 3 con § finito tale che sia

XgUAj , je §

Da questa segue

1) cf(UJaj)c Ut cUA) Ljes

e si ha quindi ’asserto.
Sono molto utili le proprieta espresse dalle due proposizioni che seguono.

Proposizione 11.2 Sia (S.4 uno spazio topologico compatto. Un sottoinsieme Y chiuso di
S risulta compatto.

Dimostrazione. Sia { A;}, 1€ $ una famiglia di aperti tali che sia

Yc UAi ,1e § .
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Poiché Y ¢ chiuso S-Y ¢ un aperto e si ha ovviamente :

s=(s-Y)u A, ies.

Poiché S ¢ compatto esiste § < S con & finito tale che sia

S=(s-Y)yu Jaj . je g

e da questa segue che ¢

Yy clJAj, jes

e cio prova che Y ¢ compatto.

Non sempre pero un sottoinsieme compatto di uno spazio topologico ¢ chiuso.
Sia ad esempio (R, S ) lo spazio topologico ottenuto considerando come aperti di R , il vuoto, R e
tutte le semirette | o, a[, a € R sinistre aperte . In tale spazio un sottoinsieme Y ridotto ad

un singolo punto ¢ compatto ma non ¢ chiuso.

Sussiste pero la seguente :
Proposizione 11.3 Sia (S .4  uno spazio topologico di Hausdorff. Un sottoinsieme Y
compatto di S risulta chiuso.
Dimostrazione. Per provare che Y ¢ chiuso bastera controllare che S-Y ¢ aperto. Sia

quindi y un punto di S—Y . Per ogni punto x di Y si ha ovviamente

x #y equindi, essendo lo spazio di Hausdorff, esistono due aperti Ax e V| I’uno contenente

x e |’ altro contenente y tra loro disgiunti. Si ha ovviamente :

Y c UAX

xeY

Essendo Y compatto esistono X;,X;, ..., X, in'Y tali che sia:

Y © A, U Ay V... UA

Siano : Vly I” aperto contenente y e disgiunto da A

V; I’ aperto contenente y e disgiunto da A
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V;‘ I” aperto contenente y e disgiunto da A,

. . 1 2 N . .
L’insieme Vy= V. N Vo n.... N V; ¢ quindi un aperto contenente y ed esso come ora

proveremo , ¢ disgiuntoda Y .

Infatti se esiste z in 'Y n V, allora z appartenendo a V, appartiene ad ognuno degli
aperti Vly,V; yenen ,Vry1 ed appartenendoadY (Y < A, U Ay U ... U A ) esiste
jtra 1 ed n talecheil punto z appartiene ad A; . Pertanto z appartiene a
ij N Ay il che ¢ assurdo perché ij e Ay sono disgiunti .

L’aperto Vy ¢ quindi contenuto in S- Y e cosi I’insieme S-Y , essendo intorno di ogni suo

punto, ¢ un aperto e si ha cosi 1’asserto.
Significativa ¢ la seguente proprieta degli spazi compatti .

Proposizione 11.4 Ogni sottoinsieme infinito di uno spazio topologico compatto ha almeno

un punto di accumulazione.

Dimostrazione. Sia (S @) uno spazio topologico compatto € sia Y un sottoinsieme infinito
di S Supponiamo per assurdo che Y non abbia punti di accumulazione. Per ogni x di S ¢ allora

possibile trovare un aperto Ay talechesia Ay " Y=C oppure Ax N Y ={x }.
Si ha ovviamente S = UAX ¢ poiché S ¢ compatto esistono n punti x;,Xp,..,X, di S per cui sia
S=A U Ay U...UA.

Siha:

Y=YN S=Y n (A, U Ay U...UA )=

=(YnA)DUu (Y nA ) vu...u(Y nA)
da cui segue che Y ¢ finito essendo , perogni i=1,.,n  [Y NA_[<1.

12. I compatti di R dotato della topologia naturale.
Indichiamo con 9U la topologia naturale di R . ricordiamo che gli aperti di tale topologia

sono il vuoto , R , gli intervalli aperti e tutte le loro unioni.
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Cosi come abbiamo caratterizzato i sottoinsiemi connessi di ( R, 9U ) proviamo a
caratterizzare i suoi sottoinsiemi compatti.

Premettiamo alcune nozioni . Un sottoinsieme Y di R si dice limitato se ¢ contenuto in un
intervallo chiuso [ a, b ]. Perverremo alla caratterizzazione dei sottoinsiemi compatti di R dopo

aver acquisito la seguente :

Proposizione 12.1 Ogni intervallo chiuso e limitato [a, b ] é compatto.
Dimostrazione. Sia { A; } ,1€ § una famiglia di aperti di R la cui unione contiene

[a,b] . Sia T il seguente sottoinsieme di [a,b ]

T={xe [a,b] :esiste § < S con§ finito: [a,Xx] C UAj , je §}

L’ insieme T ¢ non vuoto perché a € T e perverremo all’ asserto se mostreremo che b e T.
Poich¢ T ¢unapartedi[a,b ] esso ¢ limitato superiormente e quindi possiamo considerare il

suo estremo superiore che indichiamo con c.

Risulta quindi a < ¢c < b.Poich¢ [a,b] < U A; allora esiste un aperto Ay della

famiglia { A; } che contiene a . Esiste allora un intervallo aperto | a-0 , a+0 [ di centro a

contenuto in Ay, . Fanno allora parte di T tuttiipuntidi [a,b] n [a,a+0 .

Quindi ¢ a<c.Poiché c appartienecad [a,b] < U A; esiste un aperto A; della famiglia

{ A; } che contiene ¢ . Conseguentemente esiste un intervallo aperto Ig =]c¢c-0 , ¢+0 |
contenuto in A;j . Essendoc=sup T esiste y € T talechesia c¢c-0 <y < c.
Quindi ce T.

Se fosse per assurdo ¢ <b ogni punto z maggiore di ¢ e minore di b ed appartenente ad

Is N ]c ,b] farebbepartedi T .

La proposizione che segue fornisce una caratterizzazione dei sottoinsiemi compatti di
(R, 90).

Proposizione 12.2 Un sottoinsieme Y di (R, 9X) e compatto se e solo se esso é chiuso e
limitato.

Dimostrazione. Supponiamo che Y sia chiuso e limitato e proviamo che ¢ compatto .
Poiché ¢ limitato esso ¢ contenuto in un intervallo chiuso [ a, b ] . Ma tale intervallo ¢ un compatto

e quindi Y essendo un suo chiuso ( perché [ a, b ] € chiuso ) ¢ un compatto (cfr. Proposizione 11.2).
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Viceversa supponiamo che Y sia compatto e proviamo che ¢ chiuso e limitato. Poiché
(R, 9U) ¢ di Hausdorff allora Y essendo compatto ¢ chiuso per la proposizione 11.3. Inoltre esso
¢ limitato.

Infatti sia yunpuntodi Y esia®= { Ay} lafamiglia di aperti cosi definita :
per ogni n intero sia

Ay =]y-n, y+n]

E’ chiaro che ¢ Y U An, n e N e poiché Y ¢ compatto Y ¢ contenuto nell’unione di un

numero finito A, A, ..., A, ditaliaperti.

Detto m =max { m; ,mp,...m;} siha

Yc A, VA, U...UA  =]y-m ytm[c [y-m, y+m]

e cio prova che Y ¢ limitato.

Il teorema ora provato per 1 sottoinsiemi di R € un caso particolare di un teorema generale
che caratterizza i sottoinsiemi compatti di R" dotato della topologia naturale. Proveremo infatti
successivamente con argomentazioni del tutto simili , che i sottoinsiemi compatti di R" , dotato
della topologia naturale , sono tutti e soli i sottoinsiemi chiusi e limitati.

Per fare cid dobbiamo pero prima introdurre la nozione di spazio prodotto di due spazi

topologici.

13. Spazio topologico prodotto.

Siano (S;, @ ) ed (S, @, ) due spazi topologici. SiaS= S;x S, il prodotto
cartesiano degli insiemi S; ed S, . Gli elementi di S sono quindi le coppie ordinate ( x;, X2 ) con
x; € Sy ed x; € S; . Lafamiglia @ dipartidi S icui elementi sono tutti 1 possibili prodotti
A;xA; con Aje @& ed A, € @, verifica, come facilmente si controlla , le proprietd a) e b)
della proposizione 1.1 ed ¢ quindi in grado di generare una topologia @ su S i cui aperti sono il
vuoto , e tutte le possibili unioni di elementi di @ . La topologia @ di S cosi ottenuta ¢ detta la
topologia prodotto delle due topologie @ ed @&, e lo spazio topologico ( S, @) cosi ottenuto ¢

chiamato spazio topologico prodotto.
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Evidentemente la definizione di spazio prodotto pud essere estesa al caso in cui i fattori
siano un numero finito maggiore o eguale a due.

Lo spazio prodotto “eredita” le eventuali buone proprieta topologiche dei due spazi che lo
hanno generato. Noi per brevitd non mostreremo in dettaglio questo aspetto anche se molte
dimostrazioni sono piuttosto semplici. Ci limitiamo quindi solo ad elencare alcune proprieta dello

spazio prodotto.

a) le due funzioni naturali ( proiezioni )

pi:(x,x)e Si1xS, - x€§

P2 (x,x)e SiIxS, > xe$

che legano lo spazio prodotto ai singoli spazi sono entrambe continue.

b) lo spazio prodotto di due spazi di Hausdorff é di Hausdorff.

¢) Lo spazio prodotto di due spazi a base numerabile é a base numerabile.

d) lo spazio prodotto di due spazi connessi e connesso.

e) lo spazio prodotto di due spazi compatti e compatto.

14. I compatti di R" dotato della topologia naturale.

In questo numero forniremo alcune caratterizzazioni dei sottoinsiemi compatti di R"
munito della topologia naturale. Preliminarmente diamo alcune definizioni.

Siay = ( y1,¥2,...,yn) unpuntodi R" esiano d;,dy,...,d, n numerireali positivi.

Si definisce n-rettangolo aperto di centro y e semidimensioni (d;,d,...,d )

il seguente sottoinsieme di R"

K(y,(d,do,....dn)=lyi—di,yi+tdi[x]y>—ds ,yot da[Xeo ... X J¥n—dn, Yntdal

L’ n-rettangolo chiuso di centroy e semidimensioni (d;,dy,...,d )¢

il seguente sottoinsieme di R" .
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K. dndy....dn)=[yi—di,yitdi ]x [y>-da ,y2+tda ] X ... X [yn—dn, yntda]

Quando ¢ d;=d,=...=d, =d [D'n-rettangolo viene chiamato n-cubo di centro y e di lato
2d.

Non ¢ difficile provare che fissato un cerchio aperto C ( 'y , r) di centro y e raggior si
possono trovare due n-rettangoli aperti di centro y ed opportune semidimensioni , uno

contenuto nel cerchio C e ’altro contenente il cerchio C.

Gli n-rettangoli aperti di R" al pari dei cerchi aperti hanno le proprietd a) e b) della
proposizione 1.1 e quindi definiscono anch’essi una topologia di R" . Per I’osservazione fatta
prima un sottoinsieme che sia unione di cerchi aperti ¢ anche unione di n-rettangoli aperti e
viceversa. Pertanto gli n-rettangoli aperti ed i cerchi aperti definiscono la stessa topologia su R" .

La topologia naturale di R" che ¢ quella indotta dalla metrica euclidea pud quindi anche
pensarsi come la topologia che si ottiene su R" quando si faccia il prodotto di (R, 9T ) n-volte.

Gli n-rettangoli chiusi essendo prodotto di intervalli chiusi di R sono prodotto di spazi

compatti e sono quindi anch’essi compatti.

Un sottoinsieme Y di R" ¢ detto limitato se esso € contenuto in un n-rettangolo o

equivalentemente in un cerchio.
Siamo ora in grado di provare la seguente :

Proposizione 13.1 Un sottoinsieme Y di R" é compatto se e solo se esso é chiuso e
limitato.

Dimostrazione. Supponiamo che Y sia chiuso e limitato . Poiché esso ¢ limitato allora esso
¢ contenuto in n-rettangolo chiuso K . Ma K , come gia osservato , ¢ un compatto e quindi Y
essendo un suo chiuso ¢ anch’esso compatto.

Viceversa supponiamo che Y sia compatto. Poiché lo spazio R" & di Hausdorff Y ¢ chiuso.
Proviamo che ¢ anche limitato. Infatti sia y un puntodi Y e sia

R= {Ch}ne n, lafamigliadicerchi aperti con centroin y e raggio n intero positivo.

E’ chiaroche ¢ Yc U Cn,n € N e poiché Y ¢ compatto Y ¢ contenuto nell’unione di un

numero finito C, ~, C,, ..., C ditali cerchi aperti.

m,
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Detto m =max { m; ,mp,..,m;} siha

Yo C, v(C, vu..uC, =Cy

e cio prova che Y ¢ limitato.

Un’altra caratterizzazione dei sottoinsiemi compatti di ¢ fornita dalla seguente

Proposizione 14.2 Un sottoinsieme K di R" é compatto se e solo se ogni suo sottoinsieme Y
infinito ha almeno un punto di accumulazione in K.

Dimostrazione. Supponiamo K compatto ( quindi chiuso e limitato ) e sia Y un suo
sottoinsieme infinito.Per la proposizione 11.4 , Y ha almeno un punto di accumulazione e sia z tale
punto. Il punto z essendo di accumulazione per Y ¢ aderente ad Y e quindi anche a K che contiene
Y . Ma K ¢ chiuso e quindi il punto z appartiene a K.

Supponiamo che ogni sottoinsieme infinito di K abbia un punto di accumulazione in K e
proviamo che K ¢ compatto. Sara ovviamente sufficiente provare che K ¢ chiuso e limitato. Prima
di provare ci0 ricordiamo un risultato che abbiamo gia provato ( Proposizione 3.5 ) ma del quale
faremo ora uso :

Poiché R" ¢ di Hausdorff ed i suoi aperti sono infiniti allora:

se z e un punto di accumulazione per il sottoinsieme X , in ogni aperto che contenga z ci

sono infiniti punti di X.

Proviamo quindi che K ¢ chiuso e limitato nell’ipotesi che ogni suo sottoinsieme infinito
abbia un punto di accumulazione in K .

Cominciamo a provare che ¢ limitato. Supponiamo per assurdo che K non sia limitato .
Fissiamo un punto y di K . Per ogni intero n , consideriamo il cerchio aperto di centro y e raggio
n . poiché K non ¢ limitato esiste almeno un punto x, di K fuori dal cerchio C (y, n) . Si ha quindi

perognin , d( X, , y)>n
inoltre ¢ sempre possibile fare in modo che risulti

d( xae1 , ¥)>d( Xa, y).

In tal modo gli elementi della successione  xj,X,..,Xn,.. di punti di K sono tutti distinti tra loro e
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costituiscono quindi un sottoinsieme X infinito di K . Il punto y non ¢ d’accumulazione per X in
. 1 . . . . .
quanto nel cerchio aperto C( y, 5 ) non c¢’¢ alcun punto di X .Sia z un punto di K diverso day e

sia C(z,r) un cerchio aperto di centro z e raggio r . Scelto un intero m tale che sia
m > d(y,z) +r
il cerchio C (y, m) di centro y e raggio m contiene il cerchio C ( z, r ). Infatti per ogni punto t

di C(z,r) siha:
d(t,y) < d(t,z)+d(z,y)<r+d(z,y)<m

Poiche tutti i punti  Xp,Xm+1,..,Xn,.. della successione sono fuori dal cerchio C(y, m) nel
cerchio C ( z, r) ci sono al pitt un numero finito di elementi di X e cosi z non ¢ d’accumulazione
per X. Il sottoinsieme X di K ¢ infinito ma ¢ privo di punti di accumulazione in K e ci0 ¢ contro
I’ipotesi.

Proviamo ora che K ¢ chiuso. Sia z un punto di accumulazione per K. Per ogni intero n
S : : . .1 s : S
consideriamo il cerchio aperto di centro z e raggio — . Poiché z ¢ d’accumulazione esiste in tale
n
cerchio un punto x, di K distinto da z . Si ha quindi
. 1
per ogni n d( Xp,z) < —

Possiamo inoltre fare in modo che risulti altresi
per ogni n d(xp1 , 2) <d( xn, 2).

In tal modo gli elementi della successione  X;,Xz,..,Xn,.. di punti di K cosi costruita, sono

tutti distinti tra loro e costituiscono quindi un sottoinsieme X infinito di K. Poiché per ogni n, ¢

1 . .
d( x,,z) < — allora la successione x;,X,..,Xn,.. converge manifestamente al punto z .
n

Poiché X ¢ infinito, per I’ ipotesi in cui siamo , esso ammette un punto y di accumulazione
in K. Se proviamo che z=y allora z ¢ un punto di K e quindi K ¢ chiuso in quanto contiene i suoi
punti di accumulazione.

Supponiamo per assurdo che sia z # y . Poich¢ lo spazio ¢ di Hausdorff esistono due cerchi
apertiC (z,r) e C(y,r ) dicentrozedy disgiunti tra loro.

Poiché x,xa,..,Xpn,.. converge al punto z esiste un intero m tale che i punti

Xm,Xm+1,--,Xn,.. Siano tutti nel cerchio C (z, r) . Conseguentemente nel cerchio
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C(y, r’) ci sono solo un numero finito di elementi di X e cio contraddice la proprieta che abbiamo

richiamato all’inizio relativa ai punti di accumulazione di uno spazio di Hausdorff.

15. Spazio topologico quoziente.

Concludiamo queste note con la nozione di spazio topologico quoziente. Vediamo di che si
tratta. Sia ( S, @ ) uno spazio topologico . Sia R una relazione d’equivalenza definita
nell’insieme S . Lo spazio quoziente S/ ® ¢ come ¢ noto, I’insieme i cui elementi sono le
classi di equivalenza che R crea.

Possiamo munire I’insieme S/ R di una topologia al seguente modo. Indichiamo con p

la funzione che associa ad ogni punto x di S la classe d’equivalenza di x che indichiamo con

[x]
p:xe S - [x]e S/R

Ora una classe d’equivalenza [ x] ¢unelementodi S/ R ma ¢ anche un sottoinsieme
di S quando si pensa agli elementi che di essa fanno parte cio¢ quando si faccia la sua
controimmagine tramite p . Selezioniamo in S/ R  una famiglia @ ‘di parti al seguente modo.

Un sottoinsieme A’ di S/ R appartiene ad @' e viene chiamato aperto se p' (A’) &
un aperto di S. In sostanza bisogna considerare le classi che fanno parte di A’ come sottoinsiemi di
S e controllare che la loro unione dia un sottoinsieme aperto di S. Si controlla immediatamente che
la famiglia @ ora definita ¢ una topologia per I’insieme S/ ® . Quando I’insieme S/ R si
munisca di questa topologia @ ‘ lo spazio topologico che si ottiene viene chiamato spazio
topologico quoziente.

Per la definizione data, la funzione suriettiva

p:xe S —> [x]e S/R

quando la si pensi come funzione tra i due spazi topologici (S, @)ed ( S/ R , @ ) ¢ una funzione
continua .

Come conseguenza si ha allora che se (S, @) ¢ connesso o compatto tale risulta anche lo
spazio quoziente ( S/ R , @ ).

Facciamo un esempio . Consideriamo lo spazio topologico R* dotato della topologia
naturale.

Due punti (x;,y;) ed (x2,y2) li diciamo QR - equivalenti se risulta x; =X,
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Tale relazione R ¢ d’equivalenza e nella classe [ (a,b )] cisono quindi tutte le coppie del tipo
(a,y).

Rappresentando R nel piano facendo uso di un riferimento monometrico ortogonale si ha
che le classi d’equivalenza sono le rette parallele all’asse y. Conseguentemente gli aperti dello
spazio topologico quoziente R*/ R sono strisce aperte del tipo Ja,b[x R o unioni di strisce di
questo tipo.

La relazione R introdotta ha voluto identificare tutte le coppie del tipo (a,y) ( con a fisso
ed y variabile in R) col singolo numero a . La funzione

f:ae R—> [(a,y)]eR/R
diventa quindi un omeomorfismo tra R (dotato della topologia naturale ) e lo spazio quoziente

R/ .
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