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 Capitolo IV 
 

Forme bilineari e forme quadratiche 
 
 
 

1.  Forme bilineari 
 
 Prima di addentrarci nell’argomento richiamiamo alcune nozioni che ci serviranno in 

seguito.  

 Una matrice A quadrata d’ordine n che sia invertibile è detta ortogonale se la sua inversa 

coincide con la sua trasposta . 

 

                                A  ortogonale    < = >    At  =  A-1 

 

 Indichiamo con  a1  a2  ….. an  le righe della matrice A e con a1   a2 …    an   le sue colonne. 

 Se A è ortogonale da  A  At  = I  segue che  

                                                                         

  (*)                                     ai  x  aj = 
!
"
#

$

=

j   i   se   0

j  i   se    1
 

                                                                      

e ciò mostra che le righe di A  sono una base ortonormale di Rn. Viceversa se le righe di A  sono 

una base ortonormale di Rn allora si ha  A  At  = I   e quindi   At  =  A-1   il che mostra che A è 

una matrice ortogonale  . 

 Analogamente se A è ortogonale da  At A = I  segue che  

                                                            1 

  (*)                                     ai
  x  aj = 

!
"
#

$

=

j   i   se   0

j  i   se    1
                                                             

 

e ciò mostra che le colonne di A  sono una base ortonormale di Rn. Viceversa se le colonne di A  

sono una base ortonormale di Rn allora si ha  At A = I  e  quindi   At  =  A-1     il che mostra che 

A è una matrice ortogonale  . 

Ricordiamo ora due utili definizioni. 

Due matrici quadrate A ed A’ d’ordine n sul campo K  si dicono simili se esiste una 

matrice P invertibile tale che risulti : 

    

                                              A’ = P-1 A P 
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si dicono  congruenti   se esiste una matrice P invertibile tale che risulti 

 

                                              A’ = Pt A P 

 

 Matrici simili, come già visto, hanno gli stessi autovalori e lo stesso rango mentre matrici 

congruenti hanno lo stesso rango ma in generale non gli stessi autovalori.  

(Si prova infatti che : 

 Proposizione. Siano A ∈ Kn,n  e B ∈ GL(n, K) due matrici quadrate sul campo K, con B 

invertibile. Si ha allora : r(A) = r(A B) = r(B A). 

 Dimostrazione. Basta ricordare che il rango di A, r(A), coincide con la dimensione dello 

spazio immagine dell’endomorfismo FA di Kn, e tenere conto del fatto che, essendo B invertibile, 

FB è un idomorfismo). 

 

 Sia  Vn = Vn(R) uno spazio vettoriale di dimensione n sul campo reale. Una applicazione 

                                                g :  Vn x Vn  ----- >  R 

                                            ( v , w )  ---- > g ( v , w )   

 

è detta una forma bilineare se valgono le seguenti proprietà : 

 

1.  g ( α v , w ) =  α g ( v , w) 

2.  g ( v + v’ , w ) = g(v , w) + g ( v’ , w ) 

3.   g (v , α w ) =  α g ( v , w) 

4.  g ( v , w + w’ ) = g(v , w) + g ( v , w’) 

 

 La forma bilineare  g  è detta  simmetrica  se risulta 

 

                         g ( v , w )  = g ( w , v )            per ogni coppia di vettori v e w.  

 

 Ovviamente se g è simmetrica le proprietà 1., 2.  sono equivalenti alle proprietà 3., 4. 

 (Una forma bilineare simmetrica è anche detta : prodotto scalare). 

 

Esempi di forme bilineari di Rn  si ottengono al seguente modo. Si consideri una matrice 

A = ( aij)  reale quadrata d’ordine n e sia 

                             gA :  Rn x Rn  !      R 



 3 

l’ applicazione così definita : 

 

                                     gA ( x , y ) =  x t A y  ( = Xt A Y ) 

 

avendo al solito indicato con x  ed  y  i vettori numerici 

                                ( X = )  x =  
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 Esplicitamente è : 

 

gA ( x , y ) = a11x1y1+a12x1y2+…+a1nx1yn  +  a21x2y1+a22x2y2+…+a2nx2yn  +………+ 

+ an1xny1+ an2xny2 +….+ annxnyn  

 

 Se la matrice A è simmetrica si ha : 

 

              gA ( x , y ) =  x t A y =   y t A t x    =  y t A  x  = gA ( y , x )  

(infatti  Xt A Y = (Xt A Y)t = Yt At X = Yt A X) 

 

e quindi la forma bilineare che essa definisce è simmetrica. 

 

 (Osserviamo che ogni forma bilineare di uno spazio vettoriale di dimensione finita, in 

termini di componenti, si esprime sempre come la forma dell’esempio precedente. Infatti: )      

 

Sia Vn = Vn(R) uno spazio vettoriale di dimensione n sul campo reale. e 

                                                g :  Vn x Vn  ----- >  R 

                                            ( v , w )  ---- > g ( v , w )   

una forma bilineare di  Vn  . 

Come si può calcolare facilmente il numero g ( v , w )  ?    Vediamo.  

 

Fissiamo nello spazio vettoriale Vn   una sua base (ordinata) B = ( e1 , e2, …, en)  . 

Denotiamo per ogni i , j = 1,2,…,n  con  

 

                                             aij = g ( ei ,  ej  ) 
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e sia  A = ( aij  )  la matrice così determinata. La matrice A così costruita si dice che rappresenta  

g  nella base B (ed è detta : matrice di Gram associata a g nel riferimento B (cfr.”Appunti di 

Geometria”, Cap. VIII, Par. 3)).   Se  v  e  w  sono due vettori  si ha : 

 

                    v = x1e1 +...+  xnen                ,                w = y1e1 +...+  ynen               

 

e quindi  si  ha,  tenendo conto che g è bilineare , 

 

(**)  g ( v , w ) = g ( x1e1 +...+  xnen     ,    y1e1 +...+  ynen  ) = 

 =  a11x1y1+a12x1y2+…+a1nx1yn  +  a21x2y1+a22x2y2+…+a2nx2yn  +………+ 

+ an1xny1+ an2xny2 +….+ annxnyn . 

 Se indichiamo con  
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le coordinate dei vettori v e w nella base B allora l’espressione  (**) sopra espressa può scriversi 

in forma matriciale al seguente modo : 

 

                                              g ( v , w )  = xt A y 

 Quindi risulta  

                                     g ( v , w )  = xt A y = gG ( x , y ) 

 

Come cambia la matrice A  cambiando la base B ?  Vediamo. 

 

Sia B’ =  ( e’1 , e’2 ,….,e’n)  un’ altra base (ordinata) dello spazio vettoriale e sia  P la 

matrice di passaggio dalla base B’ alla base B. La matrice P ha per colonne le coordinate dei 

vettori e’i  di B’  rispetto alla base B ed è quindi invertibile. Si ha quindi 
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                                     ( e1 , e2 ,….,en) 
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P   = ( e’1 , e’2 ,….,e’n)   

 Denotiamo con A’ la matrice che rappresenta g nella base B’  e per ogni coppia di vettori v e 

w con  
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le coordinate dei vettori v e w nella base B’. Si ha  

 

                                    P x’ = x       e     P y’ = y 

(cfr. “Appunti di Geometria”, Cap. II,  Par. 8)                                    

 Si ha allora    

                    g ( v , w )  = xt A y = x’t P t A P y’ = x’t A’ y’ 

 

da cui segue  

                                               A’ = P t A P 

 

 Abbiamo così provato che cambiando la base B con la base B’ , la matrice A legata alla base 

B cambia , e la nuova matrice A’ legata alla nuova base B’ è  congruente   alla matrice A. 

(Poiché, come si è già osservato, matrici congruenti hanno lo stesso rango, si ha che, al variare 

del riferimento B, il rango della matrice di Gram di g non varia. Tale rango è detto allora : 

rango della forma g). 

 

Una rappresentazione piuttosto semplice della forma bilineare g si ha quando essa è 

simmetrica. Vediamo. 

Supponiamo quindi ora che la forma bilineare g sia simmetrica . Fissiamo una base B = 

( e1 , e2 ,….,en)  nello spazio vettoriale e sia A la matrice che rappresenta g nella base B. Poichè 

g è simmetrica la matrice A è simmetrica. La funzione lineare di Rn in sè indotta da A  che è 

così definita  
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       ( Y = A X ) 

 è una funzione lineare simmetrica (endomorfismo simmetrico di Rn). Pertanto per quanto già 

visto essa è ortogonalmente diagonalizzabile, cioè ammette una base ortonormale di autovettori 

(cfr.”Appunti di Geometria”, Cap. VIII, Par. 6). Esistono quindi n vettori p1 , p2 ,…, pn  di Rn a 

due a due ortogonali e ciascuno di lunghezza uno che sono autovettori per la funzione FA.  

Indicando con   λ1 ,  λ2  , …. , λn     gli autovalori degli autovettori p1 , p2 ,…, pn  si ha quindi : 

 

(***)              A p1  =  λ1 p1  .        A p2  =  λ2 p2 ,  ……..  ,   A pn  =  λ2 pn 

 

Sia P  la matrice quadrata d’ordine n le cui colonne sono gli autovettori p1 , p2 ,…, pn  e  

D  la matrice diagonale  avente sulla diagonale gli autovalori λ1 ,  λ2  , …. , λn   . 

Se ci è utile possiamo disporre le colonne  pi   nella matrice P in modo che le prime s 

colonne siano costituite dagli autovettori con autovalore positivo , poi quelle con autovalore 

negativo ed infine quelle con autovalore zero. In tal modo sulla diagonale della matrice D 

appaiono nei primi s posti gli autovalori positivi , poi quelli negativi e poi sempre zero. 

Le relazioni (***) sopra scritte equivalgono alla seguente eguaglianza tra matrici 
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Da   A P = P D   segue    

                                            P-1A P = D   (come già sapevamo). 

 

Poiché la matrice P è ortogonale si ha allora : 

 

                                                 P-1A P = Pt A P = D. 

 

  Se  B’ = ( e’1 , e’2 ,….,e’n) è la base di Vn ottenuta attraverso l’uso della matrice ortogonale 

P 
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                                ( e1 , e2 ,….,en) 
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P   = ( e’1 , e’2 ,….,e’n) ,  

(cioè B’ è la base tale che P è la matrice di passaggio da B’ a B),  per quanto abbiamo prima 

visto la matrice che rappresenta g nella base B’ è la matrice D e quindi l’espressione di g nella 

base B’ diventa : 

 

 (i)                        g(v,w) = λ1x1 y1+  λ2 x2 y2 +…. + λt xt yt                          t !  n 

 

avendo indicato con    λ1 ,  λ2  , …. , λt     gli autovalori non nulli della matrice A. 

 

 Poiché la matrice A è congruente alla matrice D essa ha lo stesso rango di D la quale ha 

rango pari al numero di autovalori diversi da zero. 

 Se al posto della base iniziale B avessimo scelto un’altra base B° allora la nuova matrice A° 

legata alla base B° anch’essa, seguendo lo stesso procedimento,  sarebbe stata congruente ad 

una matrice diagonale D° avente sulla diagonale gli autovalori di  A°.  

 Poiché A ed A° sono congruenti esse pur non avendo gli stessi autovalori hanno lo stesso 

rango e quindi D e D° hanno lo stesso rango. Per tale ragione D e D°  avranno  sulla diagonale 

lo stesso numero di elementi diversi da zero. 

Si conclude così che nell’espressione  

                                

                                       g(v,w) = λ1x1 y1+  λ2 x2 y2 +…. , λt xt yt                          t !  n 

 

cambiando base possono cambiare i coefficienti ma resta invariato il numero di addendi di tale 

espressione in quanto non cambia il numero di autovalori diversi da zero. 

 

 

2. Forme quadratiche. 

   

 Se        

                                       g :  Vn x Vn  !   R 

 

è una forma bilineare simmetrica si chiama forma quadratica associata a g l’applicazione 

                                         q :  Vn  !   R 
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così definita   :                  

                                         q(v) = g (v , v) 

 

Per quanto precede si è visto che è possibile determinare una opportuna base  B = 

( e1 , e2 ,….,en)  dello spazio vettoriale  nella quale la matrice di Gram di g, che indichiamo con 

D, legata a tale base è di forma diagonale e l’espressione di q è del tipo : 

       

                              q(v) = λ1
2

1
x  +  λ2 

2

2
x  +…. , λt 2

t
x                          t !  n 

 

 Possiamo inoltre ritenere lecito che i primi s  autovalori siano positivi ed i rimanenti quelli 

negativi. 

 La seguente matrice  J  diagonale è non degenere ed essendo diagonale coincide con la sua 

trasposta. 

 

                                        

 Usando tale matrice possiamo cambiare la base B in un’altra base  

B’ = ( e’1 , e’2 ,….,e’n)  tale che la matrice J sia matrice di passaggio da B’ a B ( B’ è ottenuta 

al seguente modo 

                        ( e1 , e2 ,….,en) 
!
!
!

"

#

$
$
$

%

&

J   = ( e’1 , e’2 ,….,e’n)  ). 

 Nella base B’ così ottenuta la matrice che rappresenta g è  ora la seguente  Jt D J : 
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e l’espressione di q rispetto a tale base diventa : 

 

                           q(v) = 2

1
x  + 2

2
x  +…. + 2

s
x  -  

2

1s
x + -…- 2

t
x                     t !  n 

 

 Abbiamo già visto che qualunque sia la base scelta all’inizio il numero di autovalori non 

nulli rimane costante. Proviamo ora che ciò che vale ulteriormente è che : 

 

  Proposizione. Il numero di autovalori positivi rimane costante,  e quindi 

nell’espressione 

  

                       q(v) = 2

1
x  + 2

2
x  +…. + 2

s
x  -  

2

1s
x + -…- 2

t
x                     t !  n 

 

il numero di 1 e -1 è costante.  

 Tale rappresentazione si chiama la forma canonica di q ed il numero di 1 e -1 che in essa 

figurano è detta la segnatura della forma. 

Dimostrazione. Supponiamo che in due basi differenti  B e B’  si trova che l’espressione di q è 

              q(v) = 2

1
x  + 2

2
x  +…. + 2

s
x  -  

2

1s
x + -…- 2

t
x                     t !  n     nella base B 

 

              q(v) = 2

1
x  + 2

2
x  +…. + 2

m
x  - 

2

1m
x + -…- 2

t
x                     t !  n     nella base B’ 

 

 Mostreremo che risulta  m = s e quindi le due espressioni coincidono.  

 Supponiamo per assurdo che sia m !  s e per fissare le idee sia  s > m. 

 Siano  L e T  i seguenti sottospazi di  Vn 

        

L = {v !  Vn  :   xs+1=xs+2=..=xn= 0   nella base B } 

T = {v !  Vn  :   x1 = x2 =….= xm = 0  nella base B’ } 
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I due sottospazi sono evidentemente isomorfi il primo a  Rs  ed il secondo a Rn-m. 

Pertanto per la formula di Grassmann si ha : 

 

      dim (L !  T ) = dim L + dim T – dim ( L + T ) !  s + n-m – n = s-m  >  0  

 

 Esiste pertanto un vettore  v  non nullo comune ad L e a T. 

 Calcolando allora  q(v) si ha q(v) > 0, essendo le coordinate xs+1,xs+2,…xn di v nella base B 

tutte nulle . Lo stesso vettore v nella base B’ ha le coordinate x1, x2,…., xm   tutte nulle e quindi 

è q(v) ≤ 0.  L’ asserto è così provato. 

 

 Concludiamo con qualche utile osservazione : 

 Se A= ( aij ) è una matrice reale quadrata d’ordine n abbiamo già visto che essa induce in Rn 

una forma bilineare , che abbiamo indicato con  gA ,  ponendo : 

gA ((x1,x2,…,xn) , (y1,y2,…,yn) ) =   a11x1y1+a12x1y2+…+a1nx1yn  +  a21x2y1+a22x2y2+…+a2nx2yn  

+………+ an1xny1+ an2xny2 +….+ annxnyn  

 Se indichiamo con  B = ( u1, u2 ,…,un ) la base canonica di  Rn  si  ha facilmente                        

                                        gA (ui, uj) = aij   

 

e così è A stessa la matrice che rappresenta  gA  nella base canonica. 

 Ne segue che se A è una matrice non simmetrica  per qualche coppia di indici i e j si ha   aij 

!  aji e quindi gA (ui ,  uj) !  gA (uj , ui) . Pertanto la forma bilineare è simmetrica se e solo se 

A è una matrice simmetrica. 

 Se A  è simmetrica l’ espressione  

gA ((x1,x2,…,xn) , (y1,y2,…,yn) ) =   a11x1y1+a12x1y2+…+a1nx1yn  +  a21x2y1 + a22x2y2 +…+ 

a2nx2yn  +………+ an1xny1+ an2xny2 +….+ annxnyn  

quando la si calcoli sulla coppia ((x1,x2,…,xn) , (x1,x2,…,xn) ) diventa 

 a11x1x1+a12x1x2+…+a1nx1xn  +  a21x2x1+a22x2x2+…+a2nx2xn  +………+ 

+ an1xnx1+ an2xnx2 +….+ annxnxn  

e tenendo conto che è  aij = aji  la forma quadratica associata ha la seguente espressione : 

a11 2

1
x  + a22

2

2
x  +…. + ann

2

n
x  + 2 a12x1x2 + ….+ 2 a1nx1xn +………+ 2 an-1 nxn-1xn. 

 Si conclude che se si vuole risalire alla matrice A attraverso l’espressione della forma 

quadratica si deve tener conto che il numero che accompagna il monomio xixj  è il doppio di  aij. 

 A titolo di esempio la matrice simmetrica associata alla seguente forma quadratica di R2 
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                    q (x ) = 3 2

1
x  + 8 2

2
x   + 4 x1x2   

 

è la seguente 

                                             A = !!
"
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