Capitolo IV

Forme bilineari e forme quadratiche

1. Forme bilineari

Prima di addentrarci nell’argomento richiamiamo alcune nozioni che ci serviranno in
seguito.
Una matrice A quadrata d’ordine n che sia invertibile ¢ detta ortogonale se la sua inversa

coincide con la sua trasposta .
A ortogonale <=> A; = Al

. . . . 1 2.
Indichiamo con a; a, .. a, le righe della matrice Aecona a a" le sue colonne.

Se A ¢ ortogonale da A A; =1 segue che

1 se 1=]
(*) aixaf{ o
0 se 1#=]

e cid mostra che le righe di A sono una base ortonormale di R". Viceversa se le righe di A sono
una base ortonormale di R" allorasiha A A, =1 equindi A, = A il che mostra che A &
una matrice ortogonale .

Analogamente se A ¢ ortogonale da A; A =1 segue che

1
-7 0 se 1=]

e cio mostra che le colonne di A sono una base ortonormale di R". Viceversa se le colonne di A
sono una base ortonormale di R" allorasiha A;A=1 e quindi A, = A" il che mostra che
A ¢ una matrice ortogonale .

Ricordiamo ora due utili definizioni.

Due matrici quadrate A ed A’ d’ordine n sul campo K si dicono simili se esiste una

matrice P invertibile tale che risulti ;

A’=P'AP



si dicono congruenti se esiste una matrice P invertibile tale che risulti

A’=PAP

Matrici simili, come gia visto, hanno gli stessi autovalori e lo stesso rango mentre matrici
congruenti hanno lo stesso rango ma in generale non gli stessi autovalori.
(Si prova infatti che :

Proposizione. Siano A € Kn,n e B € GL(n, K) due matrici quadrate sul campo K, con B
invertibile. Si ha allora : r(A) =r(A B) =r(B A).

Dimostrazione. Basta ricordare che il rango di A, r(A), coincide con la dimensione dello
spazio immagine dell’endomorfismo F, di K", e tenere conto del fatto che, essendo B invertibile,

Fg e un idomorfismo).
Sia V, = Vy(R) uno spazio vettoriale di dimensione n sul campo reale. Una applicazione
(V,W) --—->g(v,w)
¢ detta una forma bilineare se valgono le seguenti proprieta :
g(av,w)=oag(v,w)

g(vtv,w)=gv,w)+g(v,w)

gv,aw)=ag(v,w)

L b o=

g(v,wtw)=g(v,w)+g(v,w)

La forma bilineare g ¢ detta simmetrica se risulta

g(v,w) =g(w,Vv) per ogni coppia di vettori v e w.

Ovviamente se g ¢ simmetrica le proprietd 1., 2. sono equivalenti alle proprieta 3., 4.

(Una forma bilineare simmetrica é anche detta : prodotto scalare).

Esempi di forme bilineari di R" si ottengono al seguente modo. Si consideri una matrice
A = ( a;) reale quadrata d’ordine n e sia

ga: R"XR" - R



I’ applicazione cosi definita :

ga(X,y)= XAy (=X A7)

avendo al solito indicato con X ed y i vettori numerici
Xy Y1
X
(x=)x=|" ed (v=) y=|"

Esplicitamente ¢ :

ga (X,Y)=anxiyitanxiyz2t...faimXiyn + anxoyitanxeyst... tamXoyn +

+ anlxny1+ anzan2 +...t annxn}’n

Se la matrice A & simmetrica si ha :

ga(X,¥Y)= XtAy= YiAXx =YiAX =ga(Y,X)
(infatti X,AY=(X,AY), =Y, AtX =Y, 4 X)

e quindi la forma bilineare che essa definisce ¢ simmetrica.

(Osserviamo che ogni forma bilineare di uno spazio vettoriale di

dimensione finita, in

termini di componenti, si esprime sempre come la forma dell’esempio precedente. Infatti: )

Sia V, = V,(R) uno spazio vettoriale di dimensione n sul campo reale. e

(VaW) "">g(VaW)

una forma bilineare di V,, .

Come si puo calcolare facilmente il numero g (v,w) ? Vediamo.

Fissiamo nello spazio vettoriale V, una sua base (ordinata) B = (e, €, ..., €)) .

Denotiamo per ognii,j=1,2,...,n con

ay=g(e, &)



esia A =(a; ) lamatrice cosi determinata. La matrice A cosi costruita si dice che rappresenta

g nella base B (ed e detta : matrice di Gram associata a g nel riferimento B (cfr.”Appunti di

Geometria”, Cap. VIII, Par. 3)). Se v e w sono due vettori si ha:
VvV =X1€1 t...T Xp€n , W =Yyi€;t...T Yn€n

e quindi si ha, tenendo conto che g ¢ bilineare ,

(%) g(v,w)=g(xigit..t Xa€n , yi€1t..F Yoo )=

= anxXiyrtapxiy2t...famXi1yn T a2iXoyrtaznXoyat... tamXoyn T +

+ anlxny1+ anzan2 +...t annxn}’n .

Se indichiamo con

X Y1
X

XZ 2 ed L— YZ
Xh Y

le coordinate dei vettori v e w nella base B allora I’espressione (**) sopra espressa puo scriversi

in forma matriciale al seguente modo :

g(v,w) =xAy
Quindi risulta

g(v,w) =xAy=gs(Xx,Y)
Come cambia la matrice A cambiando la base B ? Vediamo.
SiaB’= (¢e,¢€>,....e7n) un’ altra base (ordinata) dello spazio vettoriale e sia P la

matrice di passaggio dalla base B’ alla base B. La matrice P ha per colonne le coordinate dei

vettori ¢’; di B’ rispetto alla base B ed ¢ quindi invertibile. Si ha quindi



(&,€,.....en) p =(€1,€2,....e")

Denotiamo con A’ la matrice che rappresenta g nella base B’ e per ogni coppia di vettori v e

W con
1 1
X Yi
1 1
X y
2 2
X’ = ed y =
|l 1
X, Ya

le coordinate dei vettori v e w nella base B’. Si ha
Px’=x e Py =y
(cfr. “Appunti di Geometria”, Cap. I, Par. 8)
Si ha allora

g(v,w) =xAy=x" P APY =x" A"y

da cui segue

A’=PAP

Abbiamo cosi provato che cambiando la base B con la base B’ , la matrice A legata alla base
B cambia , e la nuova matrice A’ legata alla nuova base B’ ¢ congruente alla matrice A.
(Poiché, come si e gia osservato, matrici congruenti hanno lo stesso rango, si ha che, al variare
del riferimento B, il rango della matrice di Gram di g non varia. Tale rango ¢ detto allora :

rango della forma g).

Una rappresentazione piuttosto semplice della forma bilineare g si ha quando essa ¢
simmetrica. Vediamo.

Supponiamo quindi ora che la forma bilineare g sia simmetrica . Fissiamo una base B =
(er,é€,.....en) nello spazio vettoriale e sia A la matrice che rappresenta g nella base B. Poiche
g & simmetrica la matrice A ¢ simmetrica. La funzione lineare di R" in s¢ indotta da A che &

cosi definita



A X

X
ol A 2l (y=dAX)
Y X,

¢ una funzione lineare simmetrica (endomorfismo simmetrico di R"). Pertanto per quanto gia
visto essa e ortogonalmente diagonalizzabile, cioe ammette una base ortonormale di autovettori
(cfr.”Appunti di Geometria”, Cap. VIII, Par. 6). Esistono quindi n vettori p; , p2,..., pn diR"a

due a due ortogonali e ciascuno di lunghezza uno che sono autovettori per la funzione Fa.

Indicando con Ay, Ay, ...., A, gli autovalori degli autovettori p; , p> ,..., Pn Si ha quindi :
(FH%) Apr=Mp. Ap=hp, ... , Apn = Mapn

Sia P la matrice quadrata d’ordine n le cui colonne sono gli autovettori p; , p2 ,..., Pn ©
D la matrice diagonale avente sulla diagonale gli autovalori A;, Ay , ...., Ay .

Se ci ¢ utile possiamo disporre le colonne p; nella matrice P in modo che le prime s
colonne siano costituite dagli autovettori con autovalore positivo , poi quelle con autovalore
negativo ed infine quelle con autovalore zero. In tal modo sulla diagonale della matrice D
appaiono nei primi s posti gli autovalori positivi , poi quelli negativi e poi sempre zero.

Le relazioni (***) sopra scritte equivalgono alla seguente eguaglianza tra matrici

Da AP=PD segue
P'AP=D (come gia sapevamo).

Poiché la matrice P ¢ ortogonale si ha allora :

P'AP=P,AP=D.

Se B =(¢’1,¢e,....,e"n) ¢ la base di V, ottenuta attraverso 1’uso della matrice ortogonale



(er,€,.....en) P =(€1,€2,....°),

(cioe B’ ¢ la base tale che P ¢ la matrice di passaggio da B’ a B), per quanto abbiamo prima
visto la matrice che rappresenta g nella base B’ ¢ la matrice D e quindi I’espressione di g nella

base B’ diventa :

A
=

@ gv,w) =Mx1 yit Mo Xoy2 Foo F A X Y t

avendo indicato con A;, Ay ,...., A gli autovalori non nulli della matrice A.

Poiché la matrice A ¢ congruente alla matrice D essa ha lo stesso rango di D la quale ha
rango pari al numero di autovalori diversi da zero.

Se al posto della base iniziale B avessimo scelto un’altra base B° allora la nuova matrice A°
legata alla base B° anch’essa, seguendo lo stesso procedimento, sarebbe stata congruente ad
una matrice diagonale D° avente sulla diagonale gli autovalori di A°.

Poiché A ed A° sono congruenti esse pur non avendo gli stessi autovalori hanno lo stesso
rango e quindi D e D° hanno lo stesso rango. Per tale ragione D e D° avranno sulla diagonale
lo stesso numero di elementi diversi da zero.

Si conclude cosi che nell’espressione

A
=

gv,w) =Mx1yit MXaya T, A Xe Y t

cambiando base possono cambiare i coefficienti ma resta invariato il numero di addendi di tale

espressione in quanto non cambia il numero di autovalori diversi da zero.

2. Forme quadratiche.

Se
g: VpxV, - R

¢ una forma bilineare simmetrica si chiama forma quadratica associata a g I’applicazione

q: Vo = R



cosi definita

qv)=g(v,v)

Per quanto precede si ¢ visto che ¢ possibile determinare una opportuna base B =
(er,€,.....en) dello spazio vettoriale nella quale la matrice di Gram di g, che indichiamo con

D, legata a tale base ¢ di forma diagonale e I’espressione di q ¢ del tipo :

A
=

qV) =M xX; + A X5 Feoe, M X7 t

Possiamo inoltre ritenere lecito che i primi s autovalori siano positivi ed i rimanenti quelli
negativi.
La seguente matrice J diagonale ¢ non degenere ed essendo diagonale coincide con la sua

trasposta.

Usando tale matrice possiamo cambiare la base B in un’altra base
B =(¢1,¢e>,....e"m) tale che la matrice J sia matrice di passaggio da B’ a B ( B’ ¢ ottenuta
al seguente modo

(&1,€,.....en) J =(€1,€2,.....e") ).

Nella base B’ cosi ottenuta la matrice che rappresenta g ¢ ora la seguente J;D J:



1
1
1
IDJ= -1
-1
0
0
e ’espressione di q rispetto a tale base diventa :
qQV) = X7+ X5t XD - XD - XD t=<n

Abbiamo gia visto che qualunque sia la base scelta all’inizio il numero di autovalori non

nulli rimane costante. Proviamo ora che cid che vale ulteriormente € che :

Proposizione. Il numero di autovalori positivi rimane costante, e quindi

nell’espressione

qQ(V) = X; + X5 e + X0 = X2 meeem X t

s+l t

A
=

il numero di 1 e -1 ¢ costante.
Tale rappresentazione si chiama la forma canonica di q ed il numero di 1 e -1 che in essa
figurano ¢ detta la segnatura della forma.

Dimostrazione. Supponiamo che in due basi differenti B e B’ si trova che I’espressione di q ¢

Q) = X7 + X5+ XD - XD - XD t =n nellabase B
= X2+ X5 o X - XD - X, t =n nellabase B’
qV) =X + X5 T FX - X e X <

Mostreremo che risulta m = s e quindi le due espressioni coincidono.
Supponiamo per assurdo che sia m = s e per fissare le idee sia s > m.

Siano L e T i seguenti sottospazi di V,

L={vE Vy | X¢1=Xs2=..=X,= 0 nella base B }
T={vE V,: x1=x=....=Xx,=0 nella base B’ }
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I due sottospazi sono evidentemente isomorfi il primo a R® ed il secondo a R™.

Pertanto per la formula di Grassmann si ha :

dim(L N T)=dimL+dmT-dim(L+T)=s+nm-n=s-m > 0

Esiste pertanto un vettore v non nullo comune ad L e a T.
Calcolando allora q(v) si ha q(v) > 0, essendo le coordinate Xs,Xst2,...Xn di v nella base B
tutte nulle . Lo stesso vettore v nella base B’ ha le coordinate x, Xa,...., X, tutte nulle e quindi

€ q(v) <0. L’ asserto ¢ cosi provato.

Concludiamo con qualche utile osservazione :

Se A= ( a; ) ¢ una matrice reale quadrata d’ordine n abbiamo gia visto che essa induce in R"
una forma bilineare , che abbiamo indicato con g, ponendo :
ga ((X1,X2,....Xn) 5 (Y1,Y2,-.-,¥n) ) = anxiyrtapxiyat...tamXiyn + axxoyitanxoyst...taxnXoys
o + anXnY1T an2Xny2 . ... @nnXn¥n

Se indichiamo con B =(u;, uy,...,u, ) la base canonica di R" si ha facilmente

ga (u;, uj) = ajj

e cosi ¢ A stessa la matrice che rappresenta ga nella base canonica.

Ne segue che se A ¢ una matrice non simmetrica per qualche coppia di indiciiejsi ha aj
= aj e quindi ga (i, uj) = ga (u;j, w;) . Pertanto la forma bilineare ¢ simmetrica se e solo se
A ¢ una matrice simmetrica.

Se A ¢ simmetrica I’ espressione
ga ((X1,X2,..,Xn) 5 (Y1,Y2,-.¥n) ) = anxiyrtapxiyat...tamXiyn + anXxayr + anxays +...+
anXoyn teeeiiins + aniXnY1t an2Xny2 t....7 @nXn¥n
quando la si calcoli sulla coppia ((Xi1,X2,...,Xn) , (X1,X2,...,Xn) ) diventa
anxixXitapxXot... fan XXy + aXoXitapnxoXot. .. FasXoXy +.o.ee.e. +
+ an1XnX1T An2XpX2 ... ApnXnXn
e tenendo conto che ¢ aj; = a; la forma quadratica associata ha la seguente espressione :

2 2 2
a1 X + an X, +....+ ann X, +2 apxi Xt ...+ 2 AnX1XpTeeeennn.. +2 An-1 nXn-1Xn.

Si conclude che se si vuole risalire alla matrice A attraverso 1’espressione della forma
quadratica si deve tener conto che il numero che accompagna il monomio x;x; ¢ il doppio di aj.

A titolo di esempio la matrice simmetrica associata alla seguente forma quadratica di R



q(x)=3 Xl2 +8x§ +4 x1X»

¢ la seguente

-(2)
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