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Cenni storici
L’ analisi tensoriale ritrova le sue prime origini sul finire del 190 secolo,

nello studio degli invarianti geometrici associati agli operatori di derivata e di
differenziale rispetto ad un generico cambiamento di coordinate. Questi studi
risalgono infatti all’opera di Riemann, Beltrani, Cristoffel e Lipschitz.

Un nuovo approccio - ancora oggi seguito - fu introdotto da Gregorio Ricci
Curbastro in un primo articolo del 1892 e successivamente con un altro redatto
con il suo allievo Tullio Levi Civita. Si posero cos̀ı le basi del cosidetto calcolo
assoluto ( cfr [8] p. 1309, [14]).

Il nome di tensore fu introdotto la prima volta dal fisico tedesco Woldemar
Voigt nel 1882 nei suoi studi sui cristalli solidi ( [14] p. 293). Tuttavia il termine
si diffuse sopratutto per l’ uso che nel 1916 Albert Einstein ne fece all’interno
della relatività generale. E proprio in quell’anno l’illustre scienziato introdusse la
convenzione moderna secondo cui il simbolo di sommatoria può essere soppresso
rispetto agli indici ripetuti( [9] p. 236).

Le operazioni eseguite sui tensori prendono poi il nome di algebra tensoriale.
Interessante - anche perchè ricco di aneddoti - è il rapporto che Einstein ebbe
con l’ algebra tensoriale e le sue difficoltà.

Più testi riportano una frase che lo scienziato avrebbe pronunciato in occa-
sione di un incontro con un vecchio compagno di studi il matematico Marcel
Grossmann: Grossmann mi devi aiutare o finirò per impazzire ( [7] p. 69, [9]
p. 232).

Einstein in quel momento aveva bisogno di una geometria in grado di descri-
vere la curvatura dello spazio - tempo e Grossmann aiutò il fisico presentandogli
la geometria di Riemann elaborata nel 1854 che applicava l’ analisi infinitesi-
male ai vettori e ai tensori. Grossmann comunque precisava: che si trattava di
un terribile pasticcio nel quale i fisici avrebbero fatto bene a non impicciarsi [9].
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1.1. INTRODUZIONE M. De Angelis, E. Mazziotti

Lo stesso Einstein anni dopo ricordando le difficoltà incontrate con la nuova
matematica, disse ad alcuni studenti delle medie inferiori: Non preoccupatevi
delle vostre difficoltà con la matematica, vi posso assicurare che le mie ancora
oggi sono maggiori ( [7] p.69).

Il fisico M. Kaku commenta: Riemann scopr̀ı mondi matematici del tutto
nuovi [...] ed Einstein era convinto che questa geometria avrebbe consentito una
descrizione più accurata dell’ universo. Per la prima volta il linguaggio matema-
tico della geometria differenziale si stava facendo strada nel mondo della fisica.
La geometria differenziale ovvero il calcolo tensoriale, un tempo considerata la
branca più inutile della matematica, divenne il linguaggio stesso dell’ universo
( [7] p. 70).

Fu cośı che in un giorno di metà agosto del 1912, Albert Einstein fu lie-
to di fare la sua prima conoscenza con l’ opera matematica di Gregorio Ricci
Curbastro che ventanni prima aveva creato il calcolo tensoriale ( [14] p. 118-
119).

È interessante ricordare che il tensore di curvatura, che divenne poi la chiave
delle equazioni gravitazionali, è oggi comunemente detto tensore di Ricci ( [7]
p. 1314, [9] p. 239, [14] p. 240).

Ancora oggi nel mondo anglosassone il calcolo tensoriale assoluto viene chiam-
ato Ricci calculus ( [3] p. 383).(2)

È ben noto che ci fu anche un carteggio tra A. Einstein e T. Levi Civita
relativamente a questioni di calcolo tensoriali ( [3] p.456).

Nel 1921, in una conferenza a Padova sulla relatività generale(conferenza
tenuta in italiano), fu proprio Gregorio Ricci Curbastro - allora docente del-
la Facoltà di Scienze - ad introdurre Albert Einstein che, in quella occasione
espresse il più vivo compiacimento nel presentare la sua teoria nella città in cui
insegnava l’ artefice del calcolo differenziale assoluto ( [14] p. 252 e sc).

A tal proposito si ricorda che il termine assoluto sta ad indicare l’ essen-
za concettuale del calcolo tensoriale ossia l’ indipendenza dal riferimento delle
leggi che hanno un carattere propriamente fisico. In tal modo la formulazione
tensoriale da sola assicura l’ indipendenza delle leggi fisiche dagli osservatori.

Applicazioni
Il calcolo tensoriale non trova applicazione unicamente nella teoria della rela-

tività, ma da sempre ha permesso di lavorare nell’ ambito di tutte le discipline
della fisica, della matematica e dell’ingegneria spaziando dalla Meccanica ana-
litica alla teoria dell’ elasticità e viscoelasticità, nonchè in tutta la dinamica dei
fluidi ( [3] p.409).

1.1 Introduzione

Il calcolo tensoriale è uno degli strumenti matematici essenziali nelle applicazioni
della fisica matematica. In esso bisogna distinguere tre livelli: quello geometrico,
quello algebrico e quello analitico.

Il primo consiste nella rappresentazione geometrica degli enti fisici e matem-
atici che intervengono nelle applicazioni. Si veda, ad esempio, la regola del
parallelogrammo che si utilizza per valutare la somma o la differenza fra due
vettori.

2Per un’immagine piu’ diretta si clicchi su http://arc-geniuses.blogspot.com
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1.2. I VETTORI M. De Angelis, E. Mazziotti

Il secondo livello affronta la determinazione delle strutture astratte che sono
alla base sia delle regole del calcolo geometrico che del calcolo analitico.

Il terzo infine, quello appunto analitico,riguarda l’ introduzione delle com-
ponenti e la risoluzione dei problemi geometrici per mezzo dei calcoli analitici
eseguiti sulle componenti.

In questo testo le tre trattazioni saranno affrontate completamente solo nel
caso dei vettori, mentre per i tensori ci limiteremo alla trattazione analitica
introdotta da Ricci Curbastro ( [7] p. 1309).

1.2 I vettori

Livello geometrico - La trattazione geometrica consiste nella definizione di vet-
tore libero ordinario e nelle relative operazioni di somma e di prodotto.

Livello algebrico - La definizione di vettore nel livello algebrico è fondata sulla
struttura degli spazi vettoriali. Introduciamo quindi la seguente definizione di
spzio vettoriale astratto (generico)

Definizione 1.2.1. Sia S un insieme qualsiasi di elementi e siano u, v e w
tre suoi elementi. Fissata con ′′+′′ una qualsiasi operazione interna valgono le
seguenti proprietà:

1) u′′ +′′ v = v′′ +′′ u Proprietà commutativa,
2) (u ′′ +′′ v) ′′ +′′ w = u ′′ +′′ (v ′′ +′′ w) Proprietà associativa,

esiste un elemento 0 per il quale si ha

3) u′′ +′′ 0 = 0′′ +′′ u = u el.to neutro dell’ addizione.

Qualunque sia l’ elemento u deve esistere un elemento − u tale che :

4) u′′ +′′ (−u) = 0 proprietà dell’ opposto.

Inoltre detta ′′ · ′′ l’ operazione esterna con operatori nei numeri reali <, si ha:

5) 1′′ ·′′ u = u el.to neutro del prodotto
6) m′′ ·′′ (u′′ +′′ v) = m′′ ·′′ u′′ +′′ m′′ ·′′ v proprietà distributiva,
7) (m+ n)′′ ·′′ u = m′′ ·′′ u+ n′′ ·′′ u proprietà distributiva,
8) m′′ ·′′ (n′′ ·′′ u) = n′′ ·′′ (m′′ ·′′ u) = (mn)′′ ·′′ u proprietà dell’ omogeinità.

La struttura algebrica formata dall’ insieme S e dalle operazioni di somma e di
prodotto che godono delle proprietà 1-8, è per definizione uno spazio vettoriale
astratto.

Nota 1.2.1. Il carattere astratto (generico) dello spazio comporta un analogo
carattere astratto (generico) di operazione di somma e di prodotto.

Si può giungere alla seguente
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1.2. I VETTORI M. De Angelis, E. Mazziotti

Definizione 1.2.2. Il vettore è un elemento di uno spazio vettoriale

Nota 1.2.2. Questa differente definizione non è una semplice estensione del
concetto geometrico di vettore libero ordinario. Infatti ci sono enti non geo-
metrici che sono vettori perchè appartengono a spazi vettoriali (ad esempio i
polinomi); al contrario ci sono enti geometrici con modulo direzione e verso
che non sono vettori secondo quest’ ultima definizione. Infatti il prodotto vetto-
riale u × v è un vettore libero. Tuttavia non può essere classificato come un
vettore appartenente ad un spazio vettoriale perchè la sua definizione dipende
dall’orientamento dello spazio fisico.

Livello analitico - Nel livello geometrico si introducono le convenzionali com-
ponenti di un vettore libero ordinario.(si veda, ad esempio [11]). La trattazione
dei vettori in maniera analitica richiede di estendere tale concetto al caso di uno
spazio vettoriale generico.

Introduciamo dapprima la seguente

Definizione 1.2.3. Considerata una combinazione lineare di n vettori ap-
partenenti allo spazio vettoriale, si consideri l’ equazione:

(1.1) λ1 u1 + λ2 u2 + +....+ λn un = 0 .

I vettori (u1,u2, .....un ) si dicono linearmente indipendente se e solo se la
(1.1) è verificata per λi = 0 ∀i. In caso contrario il sistema di vettori risulta
linearmente dipendente.

Distinguiamo ora gli spazi vettoriali di dimensione finita da quelli di dimen-
sione infinita.

Definizione 1.2.4. Uno spazio vettoriale S si dice di dimensione finita n -
e si indicherà Sn - se ammette un sistema massimo di vettori (e1, e2, .....en )
linearmente indipendenti. Se ciò non avviene lo spazio vettoriale S si dirà di
dimensione infinita.

In questo contesto ci occuperemo soltanto di spazi a dimensione finita. Ad
esempio lo spazio fisico di dimensione 2 o 3.

Gli spazi di dimensione infinita intervengono nelle applicazioni dell’ analisi
funzionale, come ad esempio nell’ analisi di Fourier.

Si è ora in grado di giungere alla definizione di componenti.
Sia Sn uno spazio vettoriale e sia (e1, e2, ..... en ) una ennupla di vettori linear-
mente indipendenti appartenenti ad Sn .

Il sistema (x, e1, e2, ..... en ) è necessariamente linearmente dipendente e ciò
implica che esistono n scalari tali che :

(1.2) x = x1 e1 + x2 e2 + +....+ xn en ⇔ x =

3∑
i=1

xi ei.
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Definizione 1.2.5. I vettori (e1, e2, ..... en ) definiscono una base dello spazio
Sn mentre le xi (i = 1, 2..n ) sono dette componenti controvarianti del vettore
x nella base assegnata.

L’ importanza delle componenti può essere riconosciuta mediante l’ appli-
cazione al caso della somma come segue nel seguente

Esempio 1.2.1. Considerati i vettori x e y, sia ′′+′′ l’ operazione di somma
definita nello spazio vettoriale. ( Le virgolette stanno ad indicare il carattere
astratto dell’ operazione). Eseguiamo x ′′ +′′ y . Si avrà:

x ′′+′′ y = (x1 e1
′′+′′ x2 e2

′′+′′....′′+′′xnen ) ′′+′′ (y1 e1 +y2e2
′′+′′....′′+′′ynen).

Tenuto conto delle proprietà della somma e del prodotto definite nello spazio
risulta:

x ′′ +′′ y =

n∑
i=1

(xi + yi) ei.

Da ciò si deduce che risultando (xi + yi) i coefficienti di un vettore nella base
(e1, e2, ..... en ), esse rappresentano le componenti del vettore x ′′ +′′ y .

Dunque, l’ operazione di somma generica (astratta) definita nello spazio
vettoriale viene sempre trasformata nell’ ordinaria somma aritmetica, e ciò resta
vero qualunque sia la definizione di somma considerata al primo membro: sia
che si tratti di somma di vettori che di matrici o di polinomi etc.

1.3 I tensori cartesiani

Siano (Ox1 x2 x3 ) (Ox′1 x
′
2 x
′
3 ) due qualsiasi terne cartesiane levogire (3)con

l’ origine in O e siano {ei} e {e′j} (i, j = 1, 2, 3) rispettivamente i versori degli
assi.

La trasformazione delle basi è retta dalla legge e′j = Aij ei dove gli elementi

Aij = cos(e′j ei) rappresentano i nove coseni direttori del cambiamento di base
(e′j)→ (ei).

Tenendo conto che da ora in poi le terne considerate si supporranno sempre
cartesiane levogire, si da’ la seguente

Definizione 1.3.1. Si consideri un ente T individuato nella base {ei} dalle

nove quantità T ij (i, j = 1, 2, 3) e nella base {e′j} dai nove scalari T ′
hk

(h, k =
1, 2, 3).

Se è verificata la seguente trasformazione

(1.3) T ′ hk =

3∑
i,j=1

Ahi A
k
j T

ij ,

3Una terna si definisce cartesiana quando ad essa e’ associata una base ortonormale
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1.3. I TENSORI CARTESIANI M. De Angelis, E. Mazziotti

in accordo con la definizione classica ( [5]), si dirà allora che T è un tensore
doppio euclideo e le T ij sono le sue componenti cartesiane.

Nota 1.3.1. In presenza di terne cartesiane le notazioni T ij o T ij oppure T ji
(i, j = 1, 2, 3) possono essere usate indifferentemente.

Nota 1.3.2. Mediante la notazione matriciale si ha una possibile e comoda
rappresentazione di un tensore doppio:

(1.4) T =

T 11 T 12 T 13

T 21 T 22 T 23

T 31 T 32 T 33


(x1,x2,x3)

.

Nota 1.3.3. Un tensore può godere di una certa proprietà soltanto se essa è
verificata in un qualsiasi sistema di riferimento.

Esempio è la proprietà di simmetria e antisimmetria.

Ad esempio consideriamo il caso dei tensori simmetrici e emisimmetrici. Si ha:

Definizione 1.3.2. Indicato con TT il tensore trasposto di T ( TT ij = Tji )
se si verifica che

(1.5) TT = T ⇔ T hk = T kh ∀ h 6= k,

il tensore doppio è detto simmetrico.

Si verifica facilmente che la permutabilità degli indici si conserva in ogni riferi-
mento.

Analogamente

Definizione 1.3.3. Quando si ha

(1.6) TT = −T ⇔ T hk = −T kh ∀ h 6= k,

il tensore doppio è detto antisimmetrico o emisimmetrico.

Nota 1.3.4. Quanto detto per i tensori doppi nello spazio tridimensionale può
riproporsi in uno spazio euclideo ad n dimensioni. In questo caso il tensore
è caratterizzato da n2 scalari. In particolare nel piano si avranno 22 scalari
T ji (i, j = 1, 2).

Inoltre è naturale poter considerare oltre ai tensori doppi ( chiamati anche
tensori di ordine due), i tensori tripli (caratterizzati, nello spazio tridimension-
ale, da 33 scalari T ijk (i, j, k = 1, 2, 3)), tensori quadrupli e cos̀ı via.

Cos̀ı un vettore (con 31 componenti) può essere considerato quale tensore di
ordine uno. Chiameremo infine un tensore di ordine zero (o scalare intrinseco)
uno scalare che sia indipendente dalla scelta del sistema di riferimento.
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1.4. CONVENZIONE DI EINSTEIN M. De Angelis, E. Mazziotti

1.4 Convenzione di Einstein

La convenzione di Einstein riguarda il cosidetto indice ripetuto. Lo scienziato la
stabiĺı per qualunque tipo di tensore( coovariante , controvariante etc..) Pertan-
to se non si lavora con tensori cartesiani va tenuto conto anche della posizione
occupata dall’indice. Vale quindi la seguente regola:

Quando in un monomio compare al piu’ due volte uno stesso indice una
volta in posizione superiore e un’altra in posizione inferiore, per quell’indice si
sottointende il segno di sommatoria.

L’indice ripetuto é detto indice muto (dummy index) metre gli altri indici
son detti liberi.

1.5 Operazioni fra tensori

Le operazioni fra tensori costituiscono la cosidetta algebra vettoriale e cos̀ı come
le proprietà hanno carattere tensoriale anche le operazioni se sono valide in un
riferimento lo sono anche in tutti gli altri. Cosicchè si ha:

Prodotto di uno scalare per un tensore

Definizione 1.5.1. Assegnato un tensore T di ordine m ed un scalare reale
λ , si definisce prodotto del tensore per lo scalare assegnato, il tensore λT di
ordine m che in ogni riferimento ha per componenti il prodotto di λ per le
omologhe componenti di T .

Tensore opposto

Definizione 1.5.2. Se λ = − 1 il prodotto (−1)T definisce il tensore opposto
che verrà indicato con −T .

Somma di tensori

Definizione 1.5.3. Assegnati due tensori T e Y dello stesso ordine m si
definisce somma di tali tensori, il tensore T + Y di ordine m che in ogni
riferimento ha per componenti la somma delle omologhe componenti.

Proprietà 1.5.1. Sia T un tensore doppio di componenti T ij . Esso può essere
sempre scomposto in maniera univoca nella somma del tensore simmetrico S =
1

2
(T ij + T ji) e del tensore antisimmetrico A =

1

2
(T ij − T ji). Ovvero:

(1.7) T = S + A
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Moltiplicazione - Prodotto tensoriale

Definizione 1.5.4. Assegnati due tensori T e Y di ordine rispettivamente
m ed n, si definisce moltiplicazione o prodotto tensoriale di tali tensori - e si
indica con T ⊗ Y - il tensore di ordine m+ n di componenti:

(T ⊗ Y )i1.....im+n = Ti1i2...im Yim+1...im+n

dove si è inteso che Yim+k
= Yik .

Esempio 1.5.1. Uno dei più semplici esempi di prodotto tensoriale sono le
cosidette diadi . Tali tensori si costruiscono a partire da due vettori. Assegnati
arbitrariamente i vettori a = ai ei e b = bj ej , si definisce diade il seguente
prodotto [6]:

(1.8) a⊗ b =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 .

Si dimostra facilmente che una diade è un tensore doppio in quanto soddisfa
la relazione 1.3.

Nota 1.5.1. É interessante osservare che, considerati i versori ei (i = 1, 2, 3),
risulta:

(1.9) e1 ⊗ e2 =

0 1 0
0 0 0
0 0 0

 e3 ⊗ e1 =

0 0 0
0 0 0
1 0 0

 .

Cośı in base alle proprietà delle diade (vedi,ad esempio [6]) ogni tensore doppio
puó essere formalmente scritto come somma di nove diadi. Infatti se T ij in-
dicano le componenti di un tensore T in una base ortonormale (ei)i=1,2,3, si
avrà:

(1.10) T =

3∑
i,j=1

T ij ei ⊗ ej .

Esercizio 1.5.1. Assegnati nello spazio bidimensionale i tensori doppi:

(1.11) T =

(
0 1
5 2

)
Y =

(
4 0
7 3

)
,
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si determinino i tensori S = T + Y e P = T ⊗ Y .

SVOLGIMENTO:

S =

(
0 + 4 1 + 0
5 + 7 2 + 3

)
=

(
4 1
12 5

)
.

Il tensore P è un tensore di ordine 2+2 e quindi presenterà 24 componenti
P ijmn:

P1111 = T11Y11 = 0 P1112 = T11Y12 = 0
P1121 = T11Y21 = 0 P1122 = T11Y22 = 0

P1211 = T12Y11 = 4 P1212 = T12Y12 = 0
C1221 = T12Y21 = 7 P1222 = T12Y22 = 3

P2111 = T21Y11 = 20 P2112 = T21Y12 = 0
P2121 = T21Y21 = 35 P2122 = T21Y22 = 15

P2211 = T22Y11 = 8 P2212 = T22Y12 = 0
P2221 = T22Y21 = 14 P2222 = T22Y22 = 6

Operazione di saturazione - Contrazione di due indici

Definizione 1.5.5. Si definisce l’ operazione di saturazione o contrazione di
due indici, l’ operazione nella quale si eguagliano due indici e si somma rispetto
all’ indice uguagliato (saturato).

Proprietà 1.5.2. L’ operazione di saturazione abbassa di due unità l’ ordine
del tensore. (Legge di saturazione).

Esempio 1.5.2. Si consideri il tensore doppio

T ij ei ⊗ ej .

Se si eguagliano i due indici (i = j) e si somma rispetto all’ indice ottenuto
risulta

3∑
i=1

T ii = T 11 + T 22 + T 33

che è appunto uno scalare intrinseco che coincide con la Tr T .

Prodotto contratto
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Definizione 1.5.6. Il prodotto contratto tra due tensori e’ l’operazione che si
ottiene moltiplicando i due tensori e saturando un indice dell’uno e un indice
dell’altro. L’operazione puo’ essere ripetuta piu’ volte.

Ad esempio, nel caso di un tensore doppio T e di un vettore v si ottengono
due vettori a seconda dell’indice di saturazione di T.
Nel caso di due tensori doppi A e B si ottengono quattro tensori doppi.

Nota 1.5.2. Se nel prodotto contratto si saturano indici adiacenti fra di loro si
ottiene il cosidetto prodotto interno.

Prodotto interno tra due vettori

Un primo esempio di prodotto contratto si incontra quando si valuta il
prodotto scalare tra due vettori.

Infatti considerati i vettori u =
∑3
i=1 u

i ei, v =
∑3
j=1 v

j ej uguagliando
gli indici e operando la sommatoria rispetto all’ indice ottenuto si ha:

(1.12) u · v = ui ei · vj ej =
(
u1 u2 u3

)v1v2
v3

 =

3∑
i=1

ui vi.

Un ulteriore esempio e’ dato dal

Prodotto interno tra un tensore e un vettore

Definizione 1.5.7. Considerato il tensore doppio T e il vettore u :

(1.13) T =

3∑
h,k=1

T hk eh ⊗ ek u =

3∑
i=1

ui ei,

si definisce prodotto interno di T per u e si indica T · u (si legge T interno
u oppure T tensore contratto u), il vettore che si ottiene eseguendo il prodotto
tensoriale di T ⊗ u e saturando il secondo indice di T con quello di u :

(1.14) T · u = (T · u )h eh

= Thk uk eh = (T 11u1 + T 12u2 + T 13u3 )e1 + .....

Analogamente si definisce u · T il vettore ottenuto da u ⊗ T saturando il
primo indice di T con quello di u :

u · T = Thk uh ek.
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1.5. OPERAZIONI FRA TENSORI M. De Angelis, E. Mazziotti

Proprietà 1.5.3.

u · T = T T · u

Pertanto il prodotto u ·T e’ riconducibile a T · u.
Si deduce inoltre che

T · u = u · T ⇔ T è simmetrico.

Nota 1.5.3. Il prodotto interno può essere rappresentata usando la notazione
matriciale. Ad esempio si ha:

T · u =

T 11 T 12 T 13

T 21 T 22 T 23

T 31 T 32 T 33

 u1u2
u3

 =

T 11u1 + T 12u2 + T 13u3

T 21u1 + T 22u2 + T 23u3

T 31u1 + T 32u2 + T 33u3

 .

Infine si consideri il

Prodotto interno tra due tensori

Considerati i due tensori doppi

A = Aijei ⊗ ej ; B = Bhkeh ⊗ ek;

e seguendo il prodotto interno del primo per il secondo si ha:

(1.15) A ·B = Aim Bmkei ⊗ ek

Nota 1.5.4. I tre prodotti interni ora esposti si ottengono mediante l’operazione
di saturazione che in a accordo con la proprieta’ 1.5.2 abbassano di due gradi
l’ordine del tensore. Infatti risulta:

(1.16)


1 + 1− 2 = 0 nella (1.12),

2 + 1− 2 = 1 nella (1.14),

2 + 2− 2 = 2 nella (1.15).

Doppio prodotto scalare (tra tensori)
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1.6. TENSORI DOPPI
E APPLICAZIONI LINEARI M. De Angelis, E. Mazziotti

Definizione 1.5.8. S’ intende per prodotto scalare fra due tensori (anche detto
doppio prodotto scalare) T e D e si indica con T : D (si legge T scalare D
ovvero T saturato completamente da D) lo scalare

(1.17) T : D = TijDij = Tr(T ·D).

Nota 1.5.5. Se T è un qualunque tensore doppio simmetrico e A è un generico
tensore doppio antisimmetrico, risulta

(1.18) T : A = 0.

1.6 Tensori doppi
e applicazioni lineari

Definizione 1.6.1. Sia E uno spazio vettoriale. Si intende per endomorfismo
un’applicazione lineare di E in E.

Proprietà 1.6.1. Considerata l’applicazione T · che ad ogni vettore u dello
spazio vettoriale associa il vettore T · u, si dimostra che T · é lineare e pertanto é
un endomorfismo dello spazio vettoriale in sé. Viceversa se τ é un endomorfismo
é possibile dimostrare che esiste un tensore doppio T per il quale

(1.19) τ(u) = T · u.

Pertanto un tensore doppio T puó sempre essere identificato attraverso l’ appli-
cazione lineare T ·

1.7 Tensori emisimmetrici e vettori aggiunti

Sia T un generico tensore doppio emisimmetrico nello spazio vettoriale E+
3

orientato positivamente.
Sussiste la seguente proprietá: (4)

Proprietà 1.7.1. Per ogni tensore doppio emisimmetrico T dello spazio E+
3

esiste uno ed uno solo vettore a per il quale si ha:

(1.20) a× v = T · v ∀v ∈ E+
3

Il vettore a é detto aggiunto di T e vale:

(1.21) a =
1

2

3∑
i=1

ei × T · ei

dove gli ei sono i versori di una base ortonormale.

4Si veda, ad esempio [13]
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1.8 Tensori isotropi

Definizione 1.8.1. Un tensore si dice isotropo se le sue componenti non varia-
no al variare della base. Quindi le componenti del tensore in una qualsiasi base
sono determinate attraverso la semplice operazione:

(1.22) T hk =

3∑
i,j=1

Ahi A
k
j T

ij .

Il tensore di Kronecker Il tensore di Kronecker δ di componenti δij è
isotropo essendo definito come:

(1.23) δij =

 1 per i = j,

0 per i 6= j.

Pertanto le componenti di un generico tensore doppio isotropo possono essere
sempre espresse dalla formula:(5)

(1.24) T ij = K δij ,

dove K è una costante arbitraria. La (1.24) rappresenta la piu’ generale rapp-
resentazione cartesiana di un tensore isotropo.

Nota 1.8.1. E’ facile verificare che il tensore isotropo ha le stesse caratteristiche
in qualunque direzione dello spazio.

Esempio 1.8.1. Il tensore degli sforzi per un fluido in quiete (o per un fluido
perfetto) e’

(1.25) T = − p0(x, t) I (p0 = const)

e pertanto e’ isotropo.

Definizione 1.8.2. Se Tij sono le componenti di un tensore doppio, lo scalare

(1.26)

3∑
i=1

T ii = T 11 + T 22 + T 33 = Tr(T)

si chiama traccia del tensore T; mentre lo scalare
1

3
Tr(T) é detto deviatore.

Valendo

(1.27) Tij = [Tij −
1

3
Tr(T ) δij ] +

1

3
Tr(T) δij

si ha il seguente [5]

5Per una dimostrazione, si veda [5]pag 93
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1.9. TENSORE DEFINITO POSITIVO M. De Angelis, E. Mazziotti

Teorema 1.8.1. Ogni tensore doppio può essere decomposto nella somma di
un tensore a traccia nulla e di un tensore isotropo.

Nota 1.8.2. In generale vale che:

Tij δij = Tii = Tr(T)

Tij δik = Tjk

ovvero il tensore di Kronecker elimina l’ indice ripetuto e lo sostituisce con quello
libero.

1.9 Tensore definito positivo

Ricordiamo che una forma quadratica e’ definita positiva [ definita negativa] se
per valori non nulli delle variabili assume soltanto valori positivi [negativi].
Se assume solo valori ≥ 0 [ ≤ 0] e’ detta semidefinita positiva [semidefinita
negativa]. E’ invece indefinita se assume sia valori positivi che negativi.

Queste proprieta’ potrebbero essere verificate solo in alcuni sistemi di riferi-
mento. Qualora invece siano soddisfatte in tutti i riferimenti possono assumere
un carattere tensoriale e quindi si ha la seguente:

Definizione 1.9.3. Il tensore doppio T e’ detto definito positivo [definito neg-
ativo] se soddisfa le condizioni:

(1.28) (T · v) · v ≥ 0 ∀v; (T · v) · v = 0 ⇔ v = 0

[ (T · v) · v ≤ 0 ∀v; (T · v) · v = 0 ⇔ v = 0 ]

Il tensore T e’ detto semidefinito positivo [semidefinito negativo] quando soddisfa
la seguente proprieta’:

(1.29) (T · v) ≥ 0 ∀v

[ (T · v) ≤ 0 ∀v ]

1.10 Il tensore di inerzia

Un esempio di tensore doppio simmetrico e’ il tensore di inerzia cosi’ chiamato
in quanto le componenti sono rappresentate dai prodotti e dai momenti d’inerzia
di un sistema materiale rispetto gli assi cartesiani.

Considerato un sistema materiale SN e un riferimento di assi (x1, x2, x3),
siano Y 11, Y 22, Y 33 rispettivamente i momenti di inerzia rispetto agli asse
x1, x2, x3 , mentre Y 12, Y 13, Y 23 indicano i prodotti di inerzia (o momenti di
deviazione)di SN associati al riferimento.

E’ possibile dimostrare, [11], che i nove scalari Y ij (i = j = 1, 2, 3)
rappresentano le componenti di un tensore doppio simmetrico detto tensore
di inerzia.
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1.11 Autovalori e autovettori

Considerato un tensore T, esso può definire una corrispondenza tra vettori data
da

(1.30) T · u = v.

La (1.30) è in generale una trasformazione tra vettori, ma se si impone che
il vettore v sia parallelo al vettore u ovvero v = λu la (1.30) diviene

(1.31) T · u = λu,

che rappresenta un’ equazione nell’ incognita u che in generale non ammette
soluzione qualunque sia λ (problema della compatibilità). Si dà pertanto la
seguente

Definizione 1.11.1. La ricerca dei valori di λ per i quali la (1.31) è compatibile
è detta problema di autovalori.

Dalla (1.31) si ha

T · u = λ I u⇔ (T − λ I)u = 0

ossia

(1.32)


T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ




u1

u2

u3

 = 0

Come é ben noto in questo caso si ottengono soluzioni non nulle se e solo il
determinante della matrice secolare |T − λ I| é nullo. Quindi bisogna imporre
che sia:

(1.33)

∣∣∣∣∣∣∣∣∣∣∣∣

T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Da qui, svolgendo:
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(1.34) − λ3 + λ2 (T11 + T22 + T33 ) − λ

∣∣∣∣∣∣∣∣
T22 T23

T32 T33

∣∣∣∣∣∣∣∣ +

−λ

∣∣∣∣∣∣∣∣
T33 T31

T13 T11

∣∣∣∣∣∣∣∣ − λ

∣∣∣∣∣∣∣∣
T11 T12

T21 T22

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣∣∣∣

T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Cos̀ı, introdotti rispettivamente il primo , il secondo e il terzo invariante:

I1 = tr(T ) = T11 + T22 + T33

I2 = T22T33 − T23T32 + T33T11 − T13T31 + T11T22 − T12T21

I3 = det T

riesce:

(1.35) λ3 − I1 λ2 + I2λ − I3 = 0,

la cui risoluzione dà appunto gli autovalori λi (i = 1, 2, 3) per cui si ha la
seguente

Definizione 1.11.2. La (1.35) è detta equazione secolare ed ammette tre radici
reali o complesse che sono dette autovalori del tensore. Le soluzioni corrispon-
denti agli autovalori cos̀ı trovati si dicono autovettori del problema.

Nota 1.11.1. Ad un autovettore corrisponde un unico autovalore. Al contrario,
ad un autovalore corrispondono infiniti autovettori paralleli tra di loro.

Nota 1.11.2. Si possono presentare tre casi:

i) i tre autovalori sono distinti: λ1 6= λ2 6= λ3. Il rango della matrice secolare
é 2 e per ciascun autovalore esiste un autovettore del tipo u = m(u1, u2, u3) (m
scalare arbitrario). I tre autovettori sono distinti tra loro.

ii) due dei tre autovalori coincidono: λ1 = λ2 6= λ3. Il rango della ma-
trice secolare é 1 in corrispondenza degli autovalori uguali, mentre é 2 in cor-
rispondenza dell’ altro autovalore. In corrispondenza di λ1 = λ2 gli autovettori
assumono la forma u = (u1, u2,m(u1 + u2)).

iii)i tre autovalori coincidono. Il rango della matrice secolare é zero e ogni
vettore é un autovettore.

Inoltre, sono ben note le seguenti proprietà
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Proprietà 1.11.1. Assegnati due autovalori distinti anche gli autovettori ad
essi associati sono distinti.

Proprietà 1.11.2. Per un tensore doppio simmetrico gli autovettori associati
a due autovalori distinti sono ortogonali.

Proprietà 1.11.3. In uno spazio euclideo gli autovalori di un tensore doppio
simmetrico sono reali. Inoltre esiste almeno una base ortonormale costituita
dagli autovettori di tale tensore rispetto alla quale solo le componenti di ugual
indice sono non nulle e coincidono con gli autovalori associati.

Esercizio 1.11.1. Assegnato il tensore doppio:

(1.36) T =


2 0 6

0 1 2

0 0 −1


si determinino gli autovalori e i rispettivi autovettori.

Svolgimento: Le formule precedenti permettono di ricavare facilmente i tre in-
varianti. Si ha quindi I1 = 2 ; I2 = −1 ; I3 = −2; e l’ equazione secolare (1.35)
diviene:

(1.37) λ3 − 2λ2 − λ − 2 = 0, ⇔ (λ− 1) (λ2 − λ − 2) = 0

Si ottengono cośı gli autovalori:

λ = 1, λ = −1, λ = 2.

Per determinare gli autovettori occorre considerare la (1.32) dalla quale discende
il sistema

(1.38)


(2− λ)u1 + 6u3 = 0

(1− λ)u2 + 2u3 = 0

(λ+ 1)u3 = 0

In corrispondenza di λ = −1 il sistema che si ottiene dalla (1.38) evidenzia che
u3 puó essere qualunque e pertanto, indicato con m uno scalare arbitrario , gli
autovettori sono tutti e soli quelli del tipo: w = m(2, 1,−1).

Per λ = 1, u2 puó assumere valore arbitrario e quindi gli autovettori associati
sono dati da v = n (0, 1, 0) dove per n s’intende uno qual si voglia scalare.

Infine per λ = 2, se u1 = 1, gli autovettori sono: lu = (1, 0, 0) con l scalare
arbitrario.
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Esercizio 1.11.2. Considerato il tensore doppio:

(1.39) T =


0 0 1

0 −2 0

3 1 −2


si valutino gli autovalori.

Essendo I1 = −4 I2 = 1 I3 = 6, si ha

(1.40) λ3 + 4λ2 + λ − 6 = 0 ⇔ (λ− 1) (λ+ 2) (λ+ 3)

cośı gli autovalori sono λ1 = 1; λ2 = −2; λ3 = −3.
Gli autovettori si deducono dal seguente sistema:

(1.41)


−λu1 + u3 = 0

−( 2 + λ)u2 = 0

3u1 + u2 − (2 + λ)u3 = 0

Per λ1 = 1 si ha u1 = l(1, 0, 1). Per λ2 = −2 riesce u2 = m(1, 3,−2). Infine si
ottiene u3 = n(1, 0,−3).

Esercizio 1.11.3. Assegnato il tensore doppio simmetrico:

(1.42) T =


1 0 0

0 0 2

0 2 4


si valutino gli autovalori e si dimostri che gli autovettori associati agli autovalori
distinti sono ortogonali. Infine si determini una terna ortonormale associata e
si valuti il tensore rispetto a tale base mostrando che gli autovalori rappresentano
gli unici elementi non nulli.

Valendo I1 = 5 I2 = 0 I3 = −4, dall’equazione secolare

(1.43) λ3 − 5λ2 + 4 = 0 ⇔ (λ− 1) (λ2 − 4λ− 4) = 0

si ricavano gli autovalori: λ1 = 1; λ2 = 2(1−
√

2); λ3 = 2(1 +
√

2).

In corrispondenza di λ1 = 1 si ottiene u1 = (1, 0, 0).
Per λ2 = 2(1 −

√
2), scegliendo arbitrariamente u2 riesce u2 = (0, 1, 1 −

√
2) .

Infine si ha u3 = (0, 1, 1 +
√

2) .
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É facile verificare che

u1 · u2 = u1 · u3 = u2 · u3 = 0

Una possibile terna ortonormale puó essere associata alla base:

e1 = u1; e2 =
u2√

2(2−
√

2)
; e3 =

u3√
2(2 +

√
2)
.

Considerata la matrice A le componenti del tensore T nel nuovo riferimento
possono essere ottenute mediante la legge di trasformazione (1.3) o equivalen-
temente considerando che T′ = ATAT .

Cośı per

(1.44) A =


1 0 0

0 1/|u2| (1−
√

2)/|u2|

0 1/|u3| (1 +
√

2)/|u3|



si ha:

(1.45) T′ =


1 0 0

0 1
|u2|

1−
√
2

|u2|

0 1
|u3|

1+
√
2

|u3|




1 0 0

0 0 2

0 2 4




1 0 0

0 1
|u2|

1
|u3|

0 1−
√
2

|u2|
1+
√
2

|u3|

 =

=


1 0 0

0 2−2
√
2

|u2|
6−4
√
2

|u2|

0 2+2
√
2

|u3|
6+4
√
2

|u3|




1 0 0

0 1
|u2|

1
|u3|

0 1−
√
2

|u2|
1+
√
2

|u3|

 =

=


1 0 0

0 2−2
√
2+(1−

√
2)(6−4

√
2)

|u2|2
2−2
√
2+(1+

√
2)(6−4

√
2)

|u2||u3|

0 2+2
√
2+(1−

√
2)(6+4

√
2)

|u2||u3|
2+2
√
2+(1+

√
2)(6+4

√
2)

|u3|2

 =


λ1 0 0

0 λ2 0

0 0 λ3


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Nota 1.11.3. Quando si considera il tensore d’inerzia, esso e’ simmetrico e gli
autovalori ad esso associati coincidono con i momenti d’inerzia. Le direzioni in-
dividuate dagli autovettori si dicono autodirezioni e la terna ortonormale definita
mediante gli autovettori é detta terna principale d’inerzia.

Si possono cosi’ presentare tre casi:

i) i tre autovalori sono distinti e quindi si individuano tre autovettori unitari
per cui esiste una ed una sola terna principale d’inerzia.

ii) due dei tre autovalori sono uguali e gli autovettori ad essi associati sono
entrambi ortogonali all’ autovettore associato al terzo autovalore. Cośı esistono
∞2 terne principali d’inerzia: tutte e sole formate da una qualunque coppia di
autovettori unitari e ortogonali associati agli autovalori identici e un autovettore
unitario ad essi ortogonale.

iii) i tre autovalori sono coincidenti. In questo caso esistono ∞3 terne
principali d’inerzia formate da una qualunque terna ortogonale di autovettori
unitari.

1.12 Un esempio di tensore triplo

Uno dei più utili e pratici tensori del terzo ordine è il cosi detto tensore di
permutazione di Levi-Civita [6].

Definizione 1.12.1. Introdotta una base {ei} (i = 1, 2, 3) ortonormale, si
definisce il tensore di permutazione di componenti

εijk = −(ek × ej)i

Proprietà 1.12.1. Dalla definizione discende che:

εijk = ej × ek · ei.

(1.46) εijk =


0 quando almeno due indici sono uguali

+1 se la permutazione degli indici è dispari

−1 se la permutazione degli indici è pari

e quindi:

εijk = εkij = εjki = −εikj = − εkji = −εjik.

Proprietà 1.12.2. Il tensore di permutszione permette di esprimere il prodotto
vettoriale tra i vettori a e b :

a× b = εijk aj bk ei.
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1.13 Criteri di tensorialità

Si intende per Criteri di tensorialità le condizioni necessarie e sufficienti affinchè
nk scalari siano le componenti di un tensore di ordine k nello spazio ad n
dimensioni.

Criterio 1.13.1. Condizione necessaria e sufficiente affinchè nk scalari siano
le componenti di un tensore di ordine k nello spazio ad n dimensioni, è che
saturando tutti gli indici con un altro tensore di ordine k si ottenga un tensore
di ordine zero, ovvero uno scalare intrinseco.

Esempio 1.13.1. Se lo spazio è tridimensionale (n = 3) e k = 2, fissato il
tensore doppio T e due vettori arbitrari u, v si ha:

u · T · v =

3∑
i,j=1

ui T ij vj

che rappresenta uno scalare intrinseco.

Criterio 1.13.2. Condizione necessaria e sufficiente affinchè nk scalari siano
le componenti di un tensore di ordine k nello spazio ad n dimensioni, è che
saturando m < k suoi indici con quelli di tensore arbitrario di ordine m, si
ottiene un tensore di ordine k −m.

1.14 Operatori differenziali

Nelle applicazioni della fisica matematica vengono frequentemente utilizzati al-
cuni operatori differenziali di carattere tensoriale. In particolare si introduranno
l’operatore gradiente, la divergenza, l’operatore rotore e l’operatore laplaciano.

1.14.1 Operatore gradiente

Gradiente di una funzione scalare

Sia (x1, x2, x3) una scelta di coordinate qualsiasi in corrispondenza di un punto
P determinato (per esempio coordinate cartesiane, polari, sferiche, etc.) e sia
f(x1, x2, x3) una funzione scalare di classe C1.

Si considerino le derivate parziali
∂f

∂xi
(i = 1, 2, 3).

È possibile dimostrare che queste quantità rappresentano le componenti di un
vettore e pertanto si ha la seguente

Definizione 1.14.1. Indicati con ei i versori degli assi associati alle coordinate
nel punto P, il vettore

(1.47) ∇ f =
∂f

∂xi
ei,

è detto gradiente di f e può essere denotato con ∇ f oppure con grad f.
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Significato geometrico

Per capire come si colloca il gradiente nello spazio, consideriamo una funzione
scalare

(1.48) f(x1, x2, x3) = f(x) = λ.

La (1.48) identifica nello spazio tridimensionale una famiglia di superfici dette
superfici di livello o superfici equipotenziali.

Sia σ una di queste superfici. Considerata una curva biregolare γ, si indichi
con t il versore della tangente. Si introduca anche un sistema di ascisse curvilinee
s.

Figura 1.1: superficie equipotenziale

In tutti i punti della curva vale la relazione

(1.49) f(x(s)) = C

dove C dipende solo da λ e non da s.
Derivando si ha :

(1.50)
d

ds
f(x(s)) =

∂f

∂x
· ∂x
∂s

= 0

ma
dx

ds
= t e quindi

∂f

∂x
· t = 0. Da ciò si deduce che

∂f

∂x
⊥ t.

Essendo γ arbitraria, anche t è qualsiasi e pertanto il vettore
∂f

∂x
è ortogonale

a tutte le curve di γ passanti per x.

Di conseguenza ∇ f è ortogonale alla superficie σ.

Per quanto riguarda il verso di ∇ f, si puo’ osservare che è quello rivolto
verso le superfici corrispondenti a valori crescenti di λ.

Infatti dalla ( 1.50 ) si deduce che

(1.51) df = ∇ f · dP
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avendo indicato con P il punto sulla superficie equipotenziale di coordinate x.

Supponiamo ora di passare da un punto P1 appartenente alla superficie
equipotenziale σ(λ1) ad un punto P2 appartenente alla superficie equipotenziale
σ(λ2) dove λ2 > λ1. In questo caso df = λ2 − λ1 > 0.

Pertanto risulta anche ∇ f ·dP > 0. Da ciò si deduce che ∇ f e dP formano
un angolo acuto e quindi il verso di ∇ f è lo stesso di dP e cioè delle cosidette
f crescenti.

Resta cos̀ı dimostrato il seguente

Teorema 1.14.1. Il gradiente di una funzione scalare è un vettore ortogonale
alle superfici equipotenziali e diretto nel verso di crescenza di tali superfici.

Esempio 1.14.1. Si consideri la forza peso di cui è ben noto il potenziale
U = −mgz.

U

x y

z

Figura 1.2: gradiente relativo alla forza peso

In questo caso la famiglia delle superfici equipotenziali è individuata da:

(1.52) f(x, y, z) = −mgz = U.

Come si è dimostrato, il verso del ∇U sarà quello che va da superfici a poten-
ziale U più basso a quelle di potenziale U più alto, e quindi da una quota più alta
ad una più bassa. Di conseguenza il ∇U sarà rivolto verso il basso. (fig.1.2)

Gradiente di un vettore

Si consideri ora il vettore v(x1, x2, x3) = vj ej e siano
∂ vj

∂ xi
le derivate parziali

di vj rispetto alle variabili xi. Esse costituiscono un sistema di quantità a due
indici che come si può verificare soddisfano le leggi di trasformazione tensori-
ale (1.3) e quindi rappresentano le componenti di un nuovo tensore. Pertanto
sussiste la seguente
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Definizione 1.14.2. Il tensore

(1.53) ∇v =

3∑
i,j=1

∂ vj

∂ xi
ei ⊗ ej = ∂i vj ei ⊗ ej .

è detto gradiente di v.

Nota 1.14.1. Come qualunque altro tensore doppio, anche il gradv può essere
rappresentato in forma matriciale, e si ha:

(1.54) gradv =



∂ v1

∂ x1
∂ v2

∂ x1
∂ v3

∂ x1

∂ v1

∂ x2
∂ v2

∂ x2
∂ v3

∂ x2

∂ v1

∂ x3
∂ v2

∂ x3
∂ v3

∂ x3


( cf. ad esempio in [6], [13])

1.14.2 Operatore divergenza

Divergenza di un vettore

Sia v = vi ei una funzione vettoriale di classe C1 dipendente dalle variabili
xi (i = 1, 2, 3).

È possibile dimostrare che la seguente quantità

(1.55)
∂ v1

∂ x1
+
∂ v2

∂ x2
+

∂ v3

∂ x3
=
∂ vi

∂ xi

punto per punto è uno scalare indipendente dalla scelta delle coordinate; ovvero
è uno scalare assoluto (intrinseco).

Ciò permette di introdurre la seguente

Definizione 1.14.3. Lo scalare intrinseco (1.55) rappresenta la divergenza del
vettore v e si denota con div v ≡ ∇ · v.

È facile dimostrare la seguente identità:

Nota 1.14.2.

(1.56) ∇ · v =
∂ vi

∂ xi
= Tr (∇ v )
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Divergenza di un tensore

Si consideri il tensore doppio T ij ei ⊗ ej . È possibile dimostrare che

le quantità ad un indice
∂ T ij

∂ xi
e

∂ T ij

∂ xj
si trasformano secondo la legge

tensoriale (1.3). Esse quindi definiscono due vettori. Più precisamente si ha:

Definizione 1.14.4. Assegnato un tensore doppio, si possono definire le seguen-
ti divergenze:

(1.57) div T =
∂

∂ xi
T ij ei ⊗ ej =

∂ T ij

∂ xi
ej =

= e1

(
∂ T 11

∂ x1
+
∂ T 21

∂ x2
+
∂ T 31

∂ x3

)
+ e2

(
∂ T 12

∂ x1
+
∂ T 22

∂ x2
+
∂ T 32

∂ x3

)
+ etc..

(1.58) divT T =
∂

∂ xj
T ij ei ⊗ ej =

∂ T ij

∂ xj
ei =

= e1

(
∂ T 11

∂ x1
+
∂ T 12

∂ x2
+
∂ T 13

∂ x3

)
+ e2

(
∂ T 21

∂ x1
+
∂ T 22

∂ x2
+
∂ T 23

∂ x3

)
+ etc..

Nota 1.14.3. Le (1.57),(1.58) differiscono tra loro per l’ indice sulla derivazione
e se il tensore è simmetrico le due divergenze coincidono. Se il tensore è
emisimmetrico le due divergenze sono opposte.

Nota 1.14.4. Si noti che mentre l’ operatore gradiente fa passare da un tensore
di ordine m ad un altro di ordine m + 1, la divergenza abbassa di un grado l’
ordine del tensore.

1.14.3 Operatore rotore

Assegnato il vettore v = v1(x1, x2, x3)e1 + v2(x1, x2, x3)e2 + v3(x1, x2, x3)e3 di
classe C1si ha la seguente

Definizione 1.14.5. Gli scalari

(1.59)
∂ v3

∂ x2
− ∂ v2

∂ x3
∂ v1

∂ x3
− ∂ v3

∂ x1
∂ v2

∂ x1
− ∂ v1

∂ x2

rappresentano le componenti cartesiane del vettore rot v = ∇× v.

È possibile dimostrare che il rotv è indipendente dal riferimento. (6)

6Si veda, ad esempio [5, pag 136]
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Nota 1.14.5. Il rotv può essere rappresentato simbolicamente mediante la
scrittura:

(1.60) rotv =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂ x1
∂

∂ x2
∂

∂ x3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Molteplici sono i significati fisici del rot v. Ad esempio a seconda che v rapp-
resenti lo spostamento infinitesimo di un generico punto P di un continuo o la
sua velocità, il rot v coincide con il doppio del vettore rotazione ψ o la metà
della velocità angolare ω relativo ad un elemento infinitesimo al quale appar-
tiene P . Le leggi di Maxwell poi ci ricordano che il rotore è coinvolto sia per la
valutazione della corrente elettrica che per quella magnetica di spostamento.

1.14.4 Operatore Laplaciano

Definizione 1.14.6. L’operatore

(1.61) 4 = div grad ≡ ∇2

è detto operatore di Laplace. In coordinate cartesiane ortogonali si puo’ es-
primere come:(7).

(1.62) 42 =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

Definizione 1.14.7. Le funzioni soluzione dell’equazione di Laplace: 42 = 0,
si dicono funzioni armoniche.

1.14.5 Operazioni

È possibile dimostrare che, considerata una funzione scalare f, un vettore v e
un tensore T, valgono le seguenti relazioni:(8)

(1.63) div ( f v ) = v · ∇ f + f div v

(1.64) div ( T · v ) = T : ∇v + div T · v

(1.65) 42v = grad (divv)− rot rotv
7L’operatore di Laplace si indica anche con 42.
8Per una tavola piu’ completa di proprieta’ si puó consultare [10] pag 39 e pag 57
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(1.66) v · ∇v =
1

2
∇v2 − v × rotv

dove per T : ∇v s’ intende il prodotto scalare tra tensori (definizione (1.5.8)).

Inoltre valgono:

(1.67) rot grad = 0 div rot = 0.

1.15 Coordinate curvilinee

Generalmente, per rappresentare un punto nello spazio mediante terne ordinate,
si considerano le coordinate cartesiane. Tuttavia situazioni fisiche quali,ad es-
empio, il moto di un fluido all’esterno di una sfera, oppure .... possono richiedere
l’utilizzo anche di altri possibili parametri, quali le coordinate cilindriche o le
coordinate sferiche(anche dette coordinate polari nello spazio.)

Il passaggio da una riferimento all’altro segue delle leggi ben precise che qui
si cercheranno di illustrare incominciando a puntualizzare alcuni aspetti del ben
noto riferimento cartesiano.

Introdotta la terna cartesiana di versori {ei, }i=1,2,3 siano (x1, x2, x3) le
coordinate del punto P nello spazio e sia r il vettore che ne individua la posizione.

Fissati (x1, x2), al variare di x3 si descrive una retta parallela all’asse x3.
Analogamente, fissati (x1, x3) si puo’ far variare di x2 e fissati (x2, x3) si fa
variare x1. Si ottengono cosi’ tre famiglie di rette dette linee coordinate del
riferimento cartesiano che percio’ viene anche detto riferimento rettilineo.

Le derivate parziali del vettore r rispetto ad (x1, x2, x3) risultano uguali in
ogni punto dello spazio ai versori degli assi:

(1.68)
∂r

∂x1
= e1;

∂r

∂x2
= e2;

∂r

∂x3
= e3

r

e1

e2

e1

e2

r

P

P

Figura 1.3: Linee coordinate nel piano cartesiano

e il riferimento cartesiano e’ contrassegnato tanto dal carattere rettilineo delle
linee coordinate quanto dalla costanza dei versori {ei, }i=1,2,3 in tutti i punti
dello spazio.
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Si introducono ora i cosidetti sistemi di coordinate curvilinee.
Si definiscono coordinate curvilinee, una terna di parametri (y1, y2, y3) in cor-
rispondenza biunivoca con le (x1, x2, x3):

(1.69)


x1 = f1(y1, y2, y3)

x2 = f2(y1, y2, y3)

x3 = f3(y1, y2, y3)

dove le fi(i = 1, 2, 3) sono funzioni non lineari.

Analogamente a quanto fatto prima, si possono definire le cosidette linee coor-
dinate di un sistema curvilineo.

Si riconosce che i vettore
∂r

∂yi
(i = 1, 2, 3) sono tangenti in ogni punto dello

spazio alle linee coordinate yi (i = 1, 2, 3) Pertanto se {ui}i=1,2,3 sono i versori
tangenti a tali linee, risulta:

(1.70)
∂r

∂y1
= h1u1;

∂r

∂y2
= h2u2;

∂r

∂y3
= h3u3

dove

(1.71) hi =

∣∣∣∣ ∂r

∂yi

∣∣∣∣ (i = 1, 2, 3)

sono detti i fattori di scala e se {ui}i=1,2,3 sono a due a due perpendicolari, il
sistema di coordinate e’ detto ortogonale.

Da cio’ si possono ricavare le espressioni degli operatori piu’ comuni tenendo
presente che la procedura non e’ semplicissima in quanto va considerata anche
la variabilita’ dei versori ui (i = 1, 2, 3).

Esempio 1.15.2.

Si consideri il riferimento polare nel piano: (ρ, θ).
Per determinare le linee coordinate basta fissare ρ e far variare θ. In tal caso

le curve sono delle circonferenze.(fig.1.4(a))

P

P
ρ

ρ θ

P

Figura 1.4: Linee coordinate a), b), c)
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Poi, fissato θ, bisogna far variare ρ e si ottengono delle rette.(fig.1.4(b))
In definitiva, le linee coordinate descrivono una ragnatela (fig.1.4(c)).

Per determinare i fattori di scala si puo’ procedere tenendo fissi uno alla volta le
coordinate polari. Ad esempio fissato ρ ed introdotta l’ascissa curvilinea s = ρ θ
si ha:

∂r

∂θ
=
∂r

∂s

∂s

∂θ
= ρu1

e ρ e’ il fattore di scala.

Se si fissa θ, al variare di ρ il punto si muove su rette e l’ascissa curvilinea s si
identifica con ρ. Pertanto

∂r

∂ρ
= u2

e il fattore di scala e’ 1.

Cosi’ in generale, tenendo conto dei fattori di scala,mentre il gradiente di
una funzione scalare in coordinate cartesiane e’ dato da:

(1.72) ∇ ≡ e1
∂

∂ x1
+ e2

∂

∂ x2
+ e3

∂

∂ x3
= ei

∂

∂ xi

e’ possibile dimostrare [6] che in coordinate curvilinee sara’ espresso da

(1.73) ∇ ≡ u1
1

h1

∂

∂ y1
+ u2

1

h2

∂

∂ y2
+ u3

1

h3

∂

∂ y3

mentre il laplaciano assumera’ la forma:

(1.74) ∇2 ≡
3∑
i=1

[ 3∑
j=1

(
1

h2ihj

∂

∂ yi
∂hj
∂ yi

)
+

∂

∂ yi

(
1

h2i

∂

∂ yi

) ]

Considerato inoltre il vettore v(v1, v2v3), riesce:

(1.75) ∇v =

3∑
i=1

3∑
j=1

[
vj

hihj

∂hi
∂ yj

ui ⊗ uj +
1

hi

(
∂vj

∂yi
vi

hj

∂hi
∂ yj

)
ui ⊗ uj

]

Per altre formule si possono consultare, ad esempio, [10](pag 41); [6] (pag 135 e
ss oppure [12] pag 126 e ss ).
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Coordinate cilindriche

Fissato nello spazio il sistema di coordinate cartesiane di versori ei(i = 1, 2, 3),
si assuma nel piano (x1, x2) il sistema di coordinate polari (r, θ) con il polo
nell’origine della terna e l’asse polare coincidente con il semiasse positivo della
x1. Dato il punto P e detto Q la sua proiezione nel piano (x1, x2), il punto P e’
univocamente determinato dalle coordinate polari (r, θ) di Q e dalla coordinate
z = x3.

θ

P

x1

x2

x3

er

eθ

ez

z
r

Figura 1.5: coordinate cilindriche

I parametri (r, θ, z) vengono detti coordinate cilindriche del punto P e indi-
cati con (er, eθ, ez), i versori risulta:

(1.76)

 x1 = r cos θ, x2 = r sin θ, x3 = z,

r = r cos θ e1 + r sin θe2 + z e3

e

er = cos θ e1 + sin θ e2; eθ = − sin θ e1 + cos θ e2; ez = e3.

Ovvero, in forma matriciale riesce:

(1.77)


er

eθ

ez

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



e1

e2

e3



e viceversa:
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(1.78)


e1

e2

e3

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



er

eθ

ez


Dalla (1.76)2 si ricava:

(1.79)



∂r

∂ r
= (cos θ, sin θ, 0)

∂r

∂ θ
= (−r cos θ, r sin θ, 0)

∂r

∂ z
= (0, 0, 1)

per cui:

(1.80) h21 = 1 h22 = r2 h23 = 1

Analogo risultato si ottiene ragionando soltanto in termini di coordinate cilin-
driche conformemente a quanto gia’ fatto nell’esempio precedente.

Cosi’ risulta:

(1.81) ∇ ≡ ∂

∂ r
er +

1

r

∂

∂ θ
eθ +

∂

∂ z
ez

∇2 ≡ ∂2

∂ r2
+

1

r

∂

∂ r
+

1

r2
∂2

∂ θ2
+

∂2

∂z2

In particolare il gradiente di un vettore v = vi(r, θ, z)(i = 1, 2, 3) sara’ individ-
uato dalle nove componenti:

(1.82) ∇v =



∂v1

∂r

∂v2

∂r

∂v3

∂r

1

r

∂v1

∂θ
− v2

r

v1
r

+
1

r

∂v2

∂θ

1

r

∂v3

∂θ

∂v1

∂z

∂v2

∂z

∂v3

∂z


e il laplaciano ∆v :
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(1.83)



(∇2v)1 = ∇2v1 − v1

r2
− 2

r2
∂v2

∂θ

(∇2v)2 = ∇2v2 +
2

r2
∂v1

∂θ
− v2

r2

(∇2v)3 = ∇2v3

Coordinate sferiche o coordinate polari nello spazio

Indicata con (O, x1, x2, x3) il sistema di coordinate cartesiane , sia P un
punto diverso dall’origine e sia r = |OP |. Indicato con θ l’angolo che la proiezione
di OP forma con l’asse di x1, si indichi con 0 < φ < π l’angolo che OP forma con
l’asse x3. Gli scalari (r, φ, θ) si chiamano coordinate sferiche o anche coordinate
polari nello spazio.

θ

r

P

x1

x2

x3

z

Figura 1.6: coordinate sferiche

Si ha:

(1.84)

 x1 = r cos θ sinφ, x2 = r sin θ sinφ x3 = r cosφ,

r = r sinφ cos θ e1 + r sin θ sinφ e2 + r cosφ e3

con

(1.85)


er

eφ

eθ

 =


sinφ cos θ sinφ sin θ cosφ

cos θ cosφ cosφ sin θ − sinφ

− sin θ cos θ 0



e1

e2

e3


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ossia, reciprocamente:

(1.86)


e1

e2

e3

 =


sinφ cos θ cos θ cosφ − sin θ

sin θ sinφ cosφ sin θ cos θ

cosφ − sinφ 0



er

eφ

eθ



(1.87)



∂r

∂ r
= (cos θ sinφ, sin θ sinφ, cosφ)

∂r

∂ φ
= (r cos θ cosφ, r sin θ cosφ,−r sinφ)

∂r

∂ θ
= (−r sin θ sinφ, r cos θ sinφ, 0)

per cui i fattori di scala sono:

(1.88) h21 = 1 h22 = r2 h23 = r2 sin2 φ

Nota 1.15.6. Le (1.88) si possono determinare ragionando in termini di co-
ordinate sferiche. Fissato φ, le coordinate r e θ divengono coordinate polari e
si avra’ h1 = 1 e h2 = r. Per determinare h3, fissati r e θ, facciamo variare
soltanto φ Il punto P descrive in tal caso una circonerenza di raggio pari ad
r sinφ e quindi h3 = r sinφ.

La rappresentazione per il gradiente e il laplaciano in tali coordinate e’ data da:

(1.89) ∇ ≡ er
∂

∂ r
+ eφ

1

r

∂

∂ φ
, + eθ

1

r sinφ

∂

∂ θ

(1.90) ∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

r2 sin2 φ

∂2

∂θ2

In particolare indicato con v il vettore di coordinate vi(r, φ, θ) (i = 1, 2, 3),
risulta:

∇v =



∂v1

∂r

∂v2

∂r

∂v3

∂r

1

r

∂v1

∂φ
− v2

r

v1

r
+

1

r

∂v2

∂φ

1

r

∂v3

∂φ

1

r sinφ

∂v1

∂θ
− v3

r

1

r sinφ

∂v2

∂θ
− v3 cotφ

r

v1

r
+
v2 cotφ

r
+

1

r sinφ

∂v3

∂θ


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Inoltre essendo ∇ · v = (∇v)ii riesce

∇ · v =
1

r2
∂

∂r
(r2 v1) +

1

r sinφ

∂

∂φ
(v2 sinφ) +

1

r sinφ

∂v3

∂θ

Introdotto con D =
1

2
[∇v + (∇v)T ] il tensore simmetrico della velocita’ di

deformazione, risulta:

(1.91)



D11 =
∂v1

∂r
D22 =

v1

r
+

1

r

∂v2

∂φ

D33 =
v1

r
+
v2 cotφ

r
+

1

r sinφ

∂v3

∂θ

D12 = D21 =
1

2

[
1

r

∂v1

∂φ
+ r

∂

∂r

(
v2

r

)]

D13 = D31 =
1

2

[
1

r sinφ

∂v1

∂θ
+ r

∂

∂r

(
v3

r

)]

D23 = D32 =
1

2

[
1

r sinφ

∂v2

∂θ
+

sinφ

r

∂

∂φ

(
v3

sinφ

)]

In base alla (1.65) e’ possibile dimostrare [6] che le componenti di ∇2v sono:

(1.92)



(∇2v)1 = ∇2v1 − 2v1

r2
− 2

r2 sinφ

∂

∂φ
(v2 sinφ)− 2

r2 sinφ

∂v3

∂θ

(∇2v)2 = ∇2v2 +
2

r2
+

2

r2
∂v1

∂θ
− v2

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂v3

∂φ

(∇2v)3 = ∇2v3 +
2

r2 sin2 θ

∂v1

∂φ
+

2 cos θ

r2 sin2 θ

∂v2

∂φ
− v3

r2 sin2 θ

Volendo presentare una applicazione di vettori e tensori espressi in coordinate
sferiche, l’esempio che segue considera il moto di un fluido all’esterno di una sfera
sotto condizioni al contorno di tipo frontiera libera [1].

Esempio 1.15.3.

Fissato un dominio D esterno ad una sfera D0, si consideri in tale dominio
esterno, il moto di un fluido newtoniano incompressibile dovuto ad una sorgente
posta nel punto O ∈ D0.

Introdotte le coordinate polari (r, θ, φ) in ogni punto P del dominio D, si
puo’ considerare il potenziale cinetico rappresentato dalla funzione armonica [4]

φ(r) = − q

4πr
,

1 Breve manuale di Calcolo Tensoriale 34



1.15. COORDINATE CURVILINEE M. De Angelis, E. Mazziotti

dove q e’ la portata della sorgente che coincide il flusso di ∇φ(r) attraverso
una qualunque superficie chiusa circostante il punto O. Quando q > 0 si e’ in
presenza di una sorgente (source), quando q < 0 si ha un pozzo (sink).

Se il fluido e’ soggetto ad una forza conservativa F = ∇U,il corrispondente
moto stazionario deve soddisfare le seguenti equazioni di Navier-Stokes:

(1.93)


div v = 0

v · ∇ v = ∇ Up −
1

ρ
∇ p + µ42 v,

le cui soluzioni sono date da: [4]

(1.94) (v, p) =

(
q

4πr2
er, − q2

32π2r4
+ U + cost

)
.

dove ∇2v = 0.

Introdotto con ni la normale interna a ∂D (e quindi esterna al dominio consi-

derato) e con D =
1

2
(∇v+(∇v)T ) il tensore di velocita’ di deformazione, e’ facile

verificare che tale moto soddisfa le seguenti condizioni iniziali e le condizioni al
contorno di tipo frontiera libera:

(1.95)



v(x, 0) = v0(x) x ∈ D

v(P, t) · ni = − q

4π r20
on ∂D0,

ni ·D× ni = 0 on ∂D0.

In questo caso infatti il tensore D e’ individuato dalle componenti:

D =



− q

2πr3
0 0

0
q

4πr3
0

0 0
q

4πr3


e ni ·D× ni e’ nullo in quanto ni = −er e si ha

(1.96) ni ·D× ni =
q

2πr3
er × er = 0

1 Breve manuale di Calcolo Tensoriale 35



1.15. COORDINATE CURVILINEE M. De Angelis, E. Mazziotti

Bibliografia

1. F.Capone, M.De Angelis On the energy stability of fluid motions in exteri-
or of a sphere under free boundary like conditions Rend. Acc. Sci Fis.Mat
Napoli serie IV vol LX anno CXXXII 1993

2. C. Banfi Introduzione alla meccanica dei continui Ed Cedam Padova 1990

3. Simonetta Di Sieno, Angelo Guerraggio, Pietro Nastasi La Matematica
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