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Capitolo 1

I numeri reali

1.1 Il principio di induzione

Assumiamo per il momento che il lettore abbia dimestichezza con la struttura
R dei numeri reali e ne conosca le proprietà. Concentriamoci su un sottoinsieme
di R, l’insieme dei naturali

N = {1, 2, 3, · · · }.

Solitamente i naturali si introducono ponendo l’accento su un numero ridotto
ed essenziale di proprietà dalle quali si deducono tutte le altre. Una di tali
proprietà è nota come

Principio di induzione matematica - Sia I un sottoinsieme di N che soddisfi
le seguenti due condizioni

i) 1 ∈ I,

ii) se n ∈ I anche il successivo di n appartiene a I.

Allora I = N.

Tale principio si rivela un importante strumento operativo in varie situazioni.

Proposizione 1.1.1. - Per ogni intero n vale la seguente identità

(1.1) 1 + 2 + · · ·+ n =

n∑
k=1

k =
n(n+ 1)

2
.

Dimostrazione. La (1.1) sussiste per n = 1. Se essa vale per un particolare
indice n allora

n+1∑
k=1

k =

n∑
k=1

k + (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
(n+ 1)(n+ 2)

2
.
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6 CAPITOLO 1. I NUMERI REALI

Tale identità corrisponde alla (1.1) con l’indice n + 1 al posto di n. Ci tro-
viamo quindi nella seguente situazione: se I è l’insieme degli indici per cui la
(1.1) sussiste allora I gode delle proprietà i) e ii). Per il principio di induzione
matematica I coincide con N: la (1.1) è quindi vera per ogni n.

Introduciamo ora per ricorrenza la nozione di potenza ad esponente intero.

Definizione 1.1.1. - Sia a un numero reale; poniamo

a0 = 1 , an = an−1 a .

Proposizione 1.1.2. - Per ogni intero n si ha

(1.2) 1 + 22 + · · ·+ n2 =

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Dimostrazione. La (1.2) è vera per n = 1. Ipotizziamo che essa sussista per un
certo intero n e verifichiamola per il successivo di n

n+1∑
k=1

k2 =

n∑
k=1

k2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
(n+ 1)(n+ 2)(2n+ 3)

6
.

Per il principio di induzione matematica allora la (1.2) vale per ogni n.

Proposizione 1.1.3. - Per ogni intero n sussiste la seguente identità

(1.3) 1 + 23 + · · ·+ n3 =

n∑
k=1

k3 =
n2(n+ 1)2

4
.

Dimostrazione. Si ha

n+1∑
k=1

k3 =

n∑
k=1

k3 + (n+ 1)3 =
n2(n+ 1)2

4
+ (n+ 1)3

da cui si ottiene facilmente la (1.3) con n + 1 al posto di n. Per il principio di
induzione la formula è dimostrata.

Per la (1.1) la (1.3) si può scrivere anche nel seguente modo

n∑
k=1

k3 = (1 + 2 + · · ·+ n)2 .

Proposizione 1.1.4. - Se n è un intero e x un numero reale diverso da 1 allora
vale l’identità

(1.4) 1 + x+ x2 + · · ·+ xn =

n∑
k=0

xk =
1− xn+1

1− x
.
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Dimostrazione. Si assuma che la (1.4), ovviamente vera per n = 1, sussista per
un certo intero n. Si ha allora

n+1∑
k=0

xk =

n∑
k=0

xk + xn+1 =
1− xn+1

1− x
+ xn+1 =

1− xn+2

1− x

che è la (1.4) per il successivo di n. Sempre per il principio di induzione
matematica la (1.4) vale per ogni n.

Proposizione 1.1.5. - Se a, b sono reali e n ∈ N si ha

(1.5) an − bn = (a− b)(an−1 + an−2 b+ · · ·+ a bn−2 + bn−1) .

Dimostrazione. La (1.5) discende da (1.4) con x = b a−1 e n − 1 al posto di
n.

Proposizione 1.1.6. - Per ogni x > −1 vale la seguente “disuguaglianza di
Bernoulli”

(1.6) (1 + x)n ≥ 1 + nx .

Dimostrazione. Osservato che la (1.6) è vera per n = 1, nell’ipotesi che essa
sussista per un indice n si ha

(1 + x)n+1 = (1 + x)n (1 + x) ≥ (1 + nx) (1 + x)

= 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x ,

cioè la (1.6) con n + 1 al posto di n. Per il principio di induzione matematica
si ha l’asserto. Il lettore individui il punto della dimostrazione in cui interviene
la condizione che x sia maggiore di −1.

Definizione 1.1.2. - Posto 0! = 1 il fattoriale di un intero si definisce per
ricorrenza nel modo seguente

n! = n (n− 1)! .

Fissato n poniamo

(1.7)

(
n

k

)
=

n!

k!(n− k)!

per ogni k = 0, 1, · · · , n. Il simbolo a primo membro nella (1.7) prende il nome
di “coefficiente binomiale”. Esso è il numero delle combinazioni di n elementi
su k posti. Si verifica facilmente la seguente identità

(1.8)

(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
che viene tra l’altro utilizzata per generare il triangolo di Tartaglia.
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Proposizione 1.1.7. - Sussiste la seguente formula del binomio di Newton

(1.9) (a+ b)n =

n∑
k=0

(
n

k

)
an−k bk

con a, b reali e n intero.

Dimostrazione. Osservato che la (1.9) è soddisfatta per n = 1 basta dimostrare
che essa è vera per l’indice n+ 1 una volta che si supponga che sussista la (1.9).
Si ha

(a+ b)n+1 = (a+ b) (a+ b)n

= (a+ b)

n∑
k=0

(
n

k

)
an−k bk

=

n∑
k=0

(
n

k

)
an−k+1 bk +

n∑
k=0

(
n

k

)
an−k bk+1

=

n∑
k=0

(
n

k

)
an−k+1 bk +

n+1∑
k=1

(
n

k − 1

)
an−k+1 bk

e quindi, raggruppando i termini in modo opportuno,

(a+ b)n+1 = an+1 +

n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
an−k+1 bk + bn+1 .

Ricordando la (1.8) si ottiene

(a+ b)n+1 =

n+1∑
k=0

(
n+ 1

k

)
an−k+1 bk,

cioè la (1.9) con n+ 1 al posto di n.

1.2 Approccio assiomatico

L’inadeguatezza di N già in relazione alle ordinarie operazioni algebriche sugge-
risce il passaggio a classi numeriche via via più ampie. Una prima estensione è
costituita dall’insieme dei numeri relativi

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } .

La seconda tappa consiste nel costruire in modo opportuno l’insieme Q dei
razionali. Non ci soffermeremo sulle procedure che consentono di definire tali
strutture algebriche; rimandiamo per esempio a [1], [5] per approfondimenti.
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Limitiamoci qui ad osservare che si può pensare ai razionali come simboli

(1.10)
m

n
,

le classiche frazioni, con m ∈ Z e n ∈ N. Con tali simboli è lecito operare
ricorrendo alle ben note regole di calcolo.
Un modo alternativo di rappresentare i razionali consiste nel considerarli come
allineamenti decimali illimitati periodici

(1.11) a0, a1a2a3 · · · an · · ·

dove a0 è un intero relativo e i simboli an denotano cifre decimale. Il termine
periodico sta a significare che un gruppo di cifre, a partire da un certo indice, si
ripete indefinitamente. Per un motivo che sarà chiarito nel seguito si escludono
gli allineamenti di periodo 9. Diamo per nota la regola che consente di passare
da una forma all’altra delle due rappresentazioni.
I razionali costituiscono una struttura pienamente soddisfacente dal punto di
vista algebrico; sui razionali cioè si può operare senza alcun problema con le
ordinarie operazioni. Se si esce da tale ristretto ambito la struttura dei razionali
mostra però i suoi limiti. Infatti già il semplice problema di determinare un
numero il cui quadrato è 2 non ha soluzione in Q. Verifichiamo ciò procedendo
per assurdo. Se il razionale (1.10) ha per quadrato 2 si ha m2 = 2n2. Tale
uguaglianza non può però sussistere in quanto il fattore 2 compare un numero
pari di volte al primo membro e un numero dispari di volte al secondo.
Si può ovviare a tale inconveniente approdando alla più ampia struttura dei
reali. Questa può essere definita a partire dai razionali: si pensi per esempio
alla definizione di Dedekind per cui un numero reale è una “sezione” dei razio-
nali. Preferiamo però qui proporre un approccio più diretto esibendo la lista di
assiomi che caratterizzano i numeri reali. In quel che segue delineiamo in modo
sintetico tale procedura.
Sia R un insieme e definiamo in esso due operazioni, denominate rispettivamente
somma e prodotto,

(a, b) ∈ R2 −→ a+ b ∈ R , (a, b) ∈ R2 −→ a b ∈ R

con proprietà raggruppate secondo lo schema seguente.

Assiomi di campo

(A1) Proprietà commutative: a+ b = b+ a , a b = b a .

(A2) Proprietà associative: (a+ b) + c = a+ (b+ c) , (a b) c = a (b c) .

(A3) Proprietà distributiva: a (b+ c) = a b+ a c .

(A4) Esiste un elemento di R, indicato con il simbolo 0 e detto “elemento neutro
della somma”, tale che

a+ 0 = a , ∀a ∈ R .
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(A5) Per ogni a ∈ R esiste un elemento di R, denotato con il simbolo −a e detto
“opposto” di a, tale che

a+ (−a) = 0 .

(A6) Esiste un elemento, diverso da 0 e denotato con il simbolo 1, detto “ele-
mento neutro del prodotto”, tale che

1 a = a , ∀a ∈ R .

(A7) Per ogni a 6= 0 esiste un elemento, denotato con il simbolo a−1 e detto
“reciproco” di a, tale che

a a−1 = 1 .

Una struttura che verifica gli assiomi sopra elencati prende il nome di “campo”.

Definizione 1.2.1. - Sia R un sottoinsieme di R× R. Se

(a, b) ∈ R

si dice che a è in relazione R con b. Con il simbolo a ≤ b si denota una relazione
d’ordine, una relazione cioè che soddisfi le seguenti condizioni

(O1) proprietà riflessiva: a ≤ a .

(O2) proprietà antisimmetrica: a ≤ b , b ≤ a⇒ a = b .

(O3) proprietà transitiva: a ≤ b , b ≤ c⇒ a ≤ c .

La relazione d’ordine si dice totale se, per ogni coppia (a, b), sussiste almeno
una delle relazioni a ≤ b, b ≤ a.

In R è definita una relazione d’ordine totale che interagisce con le operazioni in
modo da soddisfare alle seguenti ulteriori due regole.

Assiomi d’ordine

(B1) Se a ≤ b e c ∈ R allora a+ c ≤ b+ c;

(B2) se a, b ≥ 0 allora a b ≥ 0 .

Si parla in tal caso di “campo ordinato”.
In un campo ordinato tutte le note regole di calcolo, si pensi, tanto per fare degli
esempi, alla legge di annullamento del prodotto o alla regola dei segni, sono
conseguenza degli assiomi (cfr. [4], [8], [12]). Limitiamoci qui a richiamarne
alcune

Proposizione 1.2.1. - Sia a < b; se c > 0 allora a c < b c, se invece c < 0
allora a c > b c. Il quadrato di un qualsiasi numero non nullo è positivo: in
particolare si ha 1 > 0. L’inverso di un numero positivo è positivo.
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Ovviamente Q è un campo ordinato. Per discostarsi dai razionali in modo
da caratterizzare la più ampia struttura dei reali è quindi necessario imporre
qualche ulteriore condizione. A tal fine premettiamo alcune nozioni.

Definizione 1.2.2. - Un sottoinsieme X di R è limitato superiormente (infe-
riormente) se esiste un elemento m, detto maggiorante (minorante) di X, tale
che

x ≤ (≥)m, ∀x ∈ X .

Un insieme che risulti limitato sia superiormente che inferiormente dicesi limi-
tato.

Definizione 1.2.3. - Un maggiorante (minorante) che appartenga ad X prende
il nome di massimo (minimo) di X e si denota con il simbolo maxX (minX).

Proposizione 1.2.2. - Il massimo (minimo) di un insieme X, se esiste, è
unico.

Dimostrazione. Se m1,m2 sono minimi di X deve essere m1 ≤ m2 e m2 ≤ m1.
Per la proprietà antisimmetrica si ha allora m1 = m2.

Definizione 1.2.4. - Se X è limitato superiormente il minimo dei suoi mag-
gioranti, ammesso che esista, prende il nome di estremo superiore di X; esso si
denota con il simbolo supX.
Se X è limitato inferiormente il massimo dei suoi minoranti, sempre che esista,
prende il nome di estremo inferiore di X e si denota con il simbolo inf X.

Proposizione 1.2.3. - L’estremo superiore di X è caratterizzato dalle seguenti
proprietà

(1.12) x ≤ supX ∀x ∈ X

(1.13) ∀ε > 0 ∃xε ∈ X : supX − ε < xε .

Dimostrazione. La (1.12) esprime semplicemente il fatto che l’estremo supe-
riore è un maggiorante. La (1.13) va letta nel modo seguente: ogni elemento
più piccolo dell’estremo superiore di X non è un maggiorante per X, cosa che
ovviamente equivale ad affermare che supX è il più piccolo dei maggioranti.

In modo analogo si procede per l’estremo inferiore.

Proposizione 1.2.4. - L’estremo inferiore di X gode delle seguenti proprietà
caratteristiche

(1.14) inf X ≤ x ∀x ∈ X

(1.15) ∀ε > 0 ∃xε ∈ X : xε < inf X + ε.

Ciò premesso introduciamo il seguente
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Assioma di completezza

(C) Ogni sottoinsieme di R limitato superiormente ha estremo superiore.

Osservazione 1.2.1. - L’assioma di completezza comporta anche che ogni
insieme X limitato inferiormente ha estremo inferiore.

Un campo ordinato che soddisfi l’assioma di completezza prende il nome di
“campo ordinato completo”.

Definizione 1.2.5. - Il sistema R dei numeri reale è un qualsiasi campo ordi-
nato completo.

L’esistenza di un campo ordinato completo, nonché la coerenza del sistema di
assiomi, è demandata alla costruzione di un modello: se si postula l’esistenza
della struttura dei naturali allora un modello di R è per esempio quello di Dede-
kind precedentemente richiamato. Un ulteriore modello è quello che identifica
un generico numero reale con un allineamento decimale. Con tale termine si in-
tende il simbolo (1.11) dove, questa volta non si fa alcuna ipotesi di periodicità
sulla successione delle cifre decimali {an}. Per dettagli relativi al procedimento
da seguire per verificare che un numero reale si possa rappresentare in tal modo
rimandiamo a [4] e [8]. C’è da osservare che non è immediato stabilire come i
simboli (1.11) possano essere sommati e moltiplicati. Fissati due allineamenti

a = a0, a1a2a3 · · · , b = b0, b1b2b3 · · ·

è però abbastanza semplice dare significato alla scrittura a < b : infatti o a0 < b0
oppure esiste un n > 0 tale che ak = bk se k < n e an < bn.
Altra questione importante riguarda l’identificazione in R delle struttura dei
naturali, dei relativi e dei razionali. Per far ciò si procede nel modo seguente.
Chiamiamo induttivo un sottoinsieme di R per il quale valgono le condizioni
i) e ii) del principio di induzione matematica. Si può facilmente verificare che
l’intersezione di tali insiemi è induttivo e soddisfa tutti gli assiomi che caratte-
rizzano la struttura dei naturali: esso quindi può identificarsi con N. Una volta
che si ha a disposizione N si possono costruire in modo standard sia Z che Q.
Occupiamoci infine dell’unicità del sistema dei reali. Siano R1 e R2 due campi
ordinati completi. Un’applicazione

ϕ : a ∈ R1 −→ ϕ(a) ∈ R2

di R1 su R2 tale che

• ϕ(a+ b) = ϕ(a) + ϕ(b)

• ϕ(a b) = ϕ(a)ϕ(b)

• a < b⇒ ϕ(a) < ϕ(b)

è detta “isomorfismo”. Si può dimostrare (cfr. [4]) che esiste un unico isomor-
fismo tra due diversi campi ordinati completi: la struttura dei reali è quindi da
ritenersi unica a meno di isomorfismi.
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Definizione 1.2.6. - Si chiama sistema ampliato dei numeri reali l’insieme R
che si ottiene aggiungendo a R i due simboli +∞ e −∞. Per ogni a ∈ R si pone

−∞ < a < +∞ .

Definizione 1.2.7. - Se a < b l’insieme

]a, b[= {x : a < x < b}

prende il nome di intervallo aperto limitato di estremi a, b. Per intervallo chiuso
limitato di estremi a, b, si intende l’insieme

[a, b] = {x : a ≤ x ≤ b} .

Se a ∈ R gli insiemi

]a,+∞[= {x : a < x} , ]−∞, a[= {x : x < a}

prendono il nome di intervalli aperti non limitati; gli insiemi

[a,+∞[= {x : a ≤ x} , ]−∞, a] = {x : x ≤ a}

sono gli intervalli chiusi non limitati.

Si pone

(1.16) supX = +∞ ,

se X non è limitato superiormente, e

(1.17) inf X = −∞

se X non è limitato inferiormente. La (1.16) equivale alla condizione

(1.18) ∀M ∃xM ∈ X : xM > M ,

la (1.17) alla condizione

(1.19) ∀M ∃xM ∈ X : xM < M .

Definizione 1.2.8. - Per valore assoluto si intende la funzione

x ∈ R −→ |x| =

 x se x ≥ 0

−x se x < 0 .

Proposizione 1.2.5. - Si ha

(a) −|x| ≤ x ≤ |x|

(b) |x| ≤ a⇔ x ∈ [−a, a]

(c) a ≤ |x| ⇔ x ∈]−∞, a] ∪ [a,+∞[

(d) |x+ y| ≤ |x|+ |y|

(e) | |x| − |y| | ≤ |x− y| .
Le proprietà (d), (e) sono note come “disuguaglianze triangolari”.
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1.3 Proprietà dei reali

Cominciamo dimostrando la seguente “proprietà di buon ordinamento” di N.

Proposizione 1.3.1. - Ogni sottoinsieme di N ha minimo; inoltre, se esso è
limitato, ha massimo.

Dimostrazione. Un sottoinsieme S di N è ovviamente limitato inferiormente:
sia s il suo estremo inferiore. Per la (1.15) esiste un intero n ∈ S tale che

s ≤ n < s+ 1 .

Poiché n− 1 < s ogni naturale m ≤ n− 1 non appartiene a S. Pertanto n è il
minimo di S.
Sia S limitato e s il suo estremo superiore. Per la (1.13) esiste un n ∈ S tale
che

s− 1 < n ≤ s .

Si ha allora s < n + 1 ovvero n + 1 6∈ S. Ovviamente anche ogni naturale
maggiore di n+ 1 non appartiene a S. Il massimo di S è quindi n.

Corollario 1.3.1. - L’insieme dei naturali non è limitato superiormente.

Dimostrazione. Se N fosse limitato avrebbe un massimo n. D’altra parte il
successivo di n è un intero strettamente maggiore di n. L’assurdo cui siamo
pervenuti prova l’asserto.

Proviamo ora la cosiddetta “proprietà di Archimede”.

Teorema 1.3.1. - Siano x, y due reali positivi. Esiste un n ∈ N tale che

(1.20) (n− 1)x ≤ y < nx .

Dimostrazione. Dimostriamo che esiste un k ∈ N tale che y < k x. Se cośı
non fosse si avrebbe kx ≤ y e, quindi, k ≤ y x−1 per ogni k ∈ N. Quindi N
risulterebbe limitato in contrasto con quanto affermato nel cor. 1.3.1.
L’insieme S = {k ∈ N : y < k x} è non vuoto e, per la prop. 1.3.1, ha minimo
n; quindi (n− 1)x 6∈ S. Abbiamo pertanto la (1.20).

Dimostriamo ora la seguente proprietà di densità di Q in R.

Teorema 1.3.2. - Ogni intervallo aperto ]a, b[ contiene infiniti numeri razio-
nali.

Dimostrazione. Per la (1.20), se poniamo x = 1 e y = (b−a)−1, esiste un m ∈ N
tale che

(b− a)−1 < m

da cui
1

m
< b− a .
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Sempre per la (1.20), con x = 1/m e y = a, esiste un n ∈ N tale che

n

m
− 1

m
≤ a < n

m
.

In definitiva si ha

a <
n

m
=

(
n

m
− 1

m

)
+

1

m
< a+ (b− a) = b .

L’intervallo ]a, b[ contiene quindi il razionale n/m. È inoltre evidente che in
]a, b[ ci sono infiniti punti razionali.

Proposizione 1.3.2. - Sia x > 1. Allora, per ogni ε > 1 esiste un n ∈ N tale
che xn > ε. Se x < 1 allora per ogni ε ∈]0, 1[ esiste un n ∈ N tale che xn < ε .

Dimostrazione. Sia x > 1. Dalla (1.6) si ha

xn = [1 + (x− 1)]n ≥ 1 + n (x− 1) .

Per la (1.20) è possibile determinare n ∈ N tale che

n >
ε− 1

x− 1
.

Si ha allora anche xn > ε.
Passando ai reciproci si ottiene l’asserto per quanto riguarda il caso x < 1.

Se x ∈]0, 1[ dalla (1.4) si ottiene

(1.21)

n∑
k=0

xk <
1

1− x
.

Sia ε > 0. Per la prop. 1.3.2 esiste un n ∈ N tale che

xn+1

1− x
< ε .

Tenendo in conto la (1.4) abbiamo allora

n∑
k=0

xk =
1

1− x
− xn+1

1− x
>

1

1− x
− ε

e quindi, per la (1.21),

sup
n

{
n∑
k=0

xk , n ∈ N

}
=

1

1− x
.

Tali considerazioni suggeriscono di introdurre la seguente notazione

(1.22)

∞∑
k=0

xk =
1

1− x
.
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La (1.22) è il primo esempio di serie; essa è nota come “serie geometrica”.

Con considerazioni analoghe si può identificare il numero reale (1.11) come
somma della serie

(1.23) a0 +

∞∑
n=1

an
10n

.

Tale rappresentazione, unitamente alla (1.22), consente di fornire una giustifi-
cazione per la formula della frazione generatrice di un razionale che si rappre-
senti mediante un allineamento decimale illimitato periodico. Limitiamoci qui
a dare una motivazione della opportunità di non prendere in considerazione gli
allineamenti periodici con periodo nove. Dalle (1.23) e (1.22) si ha per esempio

0, 9 =

∞∑
n=1

9

10n
=

9

10

∞∑
n=0

1

10n
=

9

10

(
1− 1

10

)−1

= 1 .

Quindi il numero 0, 9 si identifica con 1.

Consideriamo ora la successione il cui termine generale è

(1.24)

n∑
k=0

1

k!
.

Risulta per la (1.21)

n∑
k=0

1

k!
= 1 + 1 +

1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ · · ·+ 1

2 · · · (n− 1) · n

< 1 +

(
1 +

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1

)
< 3 .

Quindi la successione (1.24) è limitata superiormente. Il suo estremo superiore,
noto come “numero di Nepero”, si denota con la lettera e. Si pone

(1.25) e = sup
n

{
n∑
k=1

1

k!

}
=

∞∑
k=0

1

k!
.

È possibile dare una valutazione dell’errore che si commette quando si appros-
sima e con una delle somme (1.24). Si ha

e−
n∑
k=0

1

k!
= sup

h

{
n+h∑
k=n+1

1

k!

}
.
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Risulta

n+h∑
k=n+1

1

k!
=

1

(n+ 1)!

(
1 +

1

n+ 2
+ · · ·+ 1

(n+ 2) · · · (n+ h)

)

<
1

(n+ 1)!

(
1 +

1

n+ 2
+ · · ·+ 1

(n+ 2)h−1

)
(per la (1.22))

<
1

(n+ 1)!

1

1− (n+ 2)−1
=

1

n!

n+ 2

(n+ 1)2
.

Osservato che
n+ 2

(n+ 1)2
<

1

n

si ha

(1.26) 0 < e−
n∑
k=0

1

k!
<

1

nn!
.

Proposizione 1.3.3. - Il numero di Nepero è irrazionale.

Dimostrazione. Si ragiona per assurdo. Sia e = m/n; dalla (1.26) abbiamo

0 < nn!

(
m

n
−

n∑
k=0

1

k!

)
= mn!− nn!

n∑
k=0

1

k!
< 1 .

D’altra parte

mn!− nn!

n∑
k=0

1

k!

è un intero. Abbiamo un assurdo in quanto non esistono interi strettamente
minori uno.

Consideriamo il sottoinsieme del piano

{(x, y) ∈ R2 : 0 ≤ x ≤ 1 , 0 ≤ y ≤ x2}

noto come segmento di parabola. Vogliamo pervenire ad una definizione di area
per tale insieme. Se n ∈ N decomponiamo [0, 1] in n intervalli di ampiezza 1/n
e indichiamo con xk = k/n i relativi estremi. Consideriamo l’insieme contenuto
nel segmento di parabola, costituito dall’unione dei rettangoli le cui basi sono
gli intervalli [xk, xk+1] e le cui altezze misurano xk

2. Per la (1.2) la misura di
tale insieme è

1

n3

n−1∑
k=1

k2 =
(n− 1)(2n− 1)

6n2
.
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Si può dimostrare facilmente che l’estremo superiore di tali quantità è 1/3; è
allora naturale attribuire a tale valore numerico il ruolo di rappresentare l,area
dell’insieme piano considerato.
In modo analogo, facendo ricorso alla (1.3), si prova che 1/4 è la misura dell’in-
sieme

{(x, y) ∈ R2 : 0 ≤ x ≤ 1 , 0 ≤ y ≤ x3} .

1.4 Potenza ad esponente reale

Premettiamo la seguente

Definizione 1.4.1. - Due insiemi X,Y si dicono “separati” se supX ≤ inf Y
ovvero se

x ≤ y ∀x ∈ X ∀y ∈ Y .

Se

(1.27) supX = inf Y

i due insiemi si dicono “contigui” e la quantità (1.27) prende il nome di ele-
mento di separazione dei due insiemi.

Proposizione 1.4.1. - Due insiemi separati X,Y sono contigui se e solo se

(1.28) ∀ε > 0 ∃xε ∈ X , ∃yε ∈ Y : yε − xε < ε .

Dimostrazione. Siano X,Y contigui e sia s l’elemento di separazione. Per ogni
ε esistono due punti xε ∈ X e yε ∈ Y tali che

xε > s− ε/2 , yε < s+ ε/2

e quindi yε − xε < ε.
Supponiamo che sussista la (1.28). Se X,Y non sono contigui si ha

0 < inf Y − supX ≤ y − x , ∀x ∈ X , ∀y ∈ Y .

Basta allora fissare ε < inf Y − supX per arrivare ad un assurdo.

Proposizione 1.4.2. - Se y, z ∈ [0,+∞[ allora

(1.29) y < z ⇔ yn < zn .

Dimostrazione. Si procede per induzione su n: si assuma che

x < y −→ xn < yn .

Utilizzando la prop. 1.2.1 si ha

yn+1 = y yn < y zn < z zn = zn+1

cioè l’asserto. È inoltre evidente che x < y se xn < yn.
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Teorema 1.4.1. - Se a > 0 l’equazione

(1.30) xn = a

ha un’unica soluzione positiva.

Dimostrazione. Consideriamo gli insiemi

Y = {y ≥ 0 : yn < a} , Z = {z ≥ 0 : a < zn} .

Essi sono non vuoti: se per semplicità assumiamo a > 1 allora si verifica facil-
mente che 1 ∈ Y e a ∈ Z. Essi sono inoltre separati per la (1.29). Proviamo che
sono contigui. In caso contrario tutti i punti di ] supY, inf Z[ risolvono l’equa-
zione (1.30) in quanto essi non appartengono né a Y né a Z; ciò è in contrasto
con la (1.29). Sia quindi x l’elemento di separazione di Y e Z. Tale elemento
non può appartenere né a Y né a Z. Se x ∈ Y allora x è il massimo di Y ; inoltre
xn < a. D’altra parte, se ε ∈]0, 1[, per la (1.5) si ha

(x+ ε)n − xn = ε
[
(x+ ε)n−1 + (x+ ε)n−2 x+ · · ·+ xn−1

]
≤ nε(x+ ε)n−1 < nε(x+ 1)n−1

da cui

(x+ ε)n < a+ (xn − a) + nε(x+ 1)n−1 .

Se

ε <
a− xn

n (x+ 1)n−1

si ha (x+ ε)n < a; quindi x+ ε ∈ Y contro il fatto che x è il massimo di Y .
Proviamo che x 6∈ Z. Se x ∈ Z allora x è il minimo di Z e xn > a, Sia ε < x; si
ha

xn − (x− ε)n = ε
[
xn−1 + xn−2(x− ε) + · · ·+ (x− ε)n−1

]
≤ nεxn−1

da cui

(x− ε)n ≥ a+ (xn − a)− nεxn−1 .

Se

ε <
xn − a
nxn−1

si ha (x − ε)n > a; quindi (x − ε) ∈ Z in contrasto col fatto che x è il minimo
di Z.
In definitiva x è l’unica soluzione positiva dell’equazione (1.30).

Definizione 1.4.2. - La soluzione dell’equazione (1.30) prende il nome di radice
n−ma aritmetica di a e si denota con il simbolo n

√
a.
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Riportiamo le principali proprietà della funzione ad esponente n ∈ N

x ∈ R −→ xn .

Se n è pari il codominio della funzione è [0,+∞[ per il teo. 1.4.1. Inoltre la sua
restrizione a [0,+∞[ strettamente crescente: l’inversa prende il nome di funzione
radice n-ma. La restrizione a ]−∞, 0] è invece strettamente decrescente.
Se n è dispari il codominio è R. La funzione inoltre è strettamente crescente: la
sua inversa è

(1.31) x ∈ R −→


n
√
x se x ≥ 0

− n
√
|x| se x < 0 .

Nel caso in cui x < 0 il valore assunto dalla funzione (1.31) si denota più
semplicemente con il simbolo n

√
x.

Altro simbolo usato per denotare la radice n−ma di a è a
1
n ; il motivo di una

tale scelta è legato al fatto che ci accingiamo a definire l’operazione di potenza
ad esponente reale ed essa deve obbedire alle seguenti regole

(1.32) (aα)β = aαβ

e

(1.33) aα+β = aαaβ .

con α, β reali. Essendo ( n
√
a)n = a, la (1.32) è rispettata se appunto si pone

n
√
a = a

1
n .

Ricapitoliamo ora i vari passi che consentono di dare significato alla scrittura

(1.34) aα

con a > 0 e α reale. Ricordiamo che a tale simbolo è stato già dato significato
nel caso di esponente intero non negativo (cfr. def. 1.1.1). Se l’esponente è un
intero negativo si adotta la seguente convenzione

a−n = (a−1)n

dove a−1 è il reciproco di a. Nel caso in cui l’esponente sia un numero razionale
della forma (1.10) si pone

a
m
n = n

√
am = ( n

√
a)m .

Si verifica che le proprietà (1.32) e (1.33) sussistono quando α e β sono razionali.
Resta da fare l’ultimo passo che consiste nel definire il simbolo (1.34) nel caso
in cui α è irrazionale.
A tal fine supponiamo che sia a > 1. Si può dimostrare allora, utilizzando la
(1.29) (cfr. anche [4]), che la funzione

x ∈ Q −→ ax
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è crescente. Pertanto gli insiemi

A− = {ar : r ∈ Q , r < α} , A+ = {ar : r ∈ Q , r > α}

sono separati. Verifichiamo che sono contigui.
Se n ∈ N, per la densità di Q in R, esiste un razionale r tale che

α− 1

n
< r < α .

Si ha quindi

r < α < r +
1

n
;

pertanto ar ∈ A− e ar+1/n ∈ A+. Per dimostrare l’asserto dobbiamo far vedere
che, fissato ε > 0, è possibile scegliere n, e di conseguenza r, in modo tale che

ar+1/n − ar < ε .

Posto a1/n = 1 + σ per la disuguaglianza (1.6) si ha

a = (1 + σ)n ≥ 1 + nσ = 1 + n(a1/n − 1) .

Risulta quindi

(1.35) a1/n − 1 ≤ a− 1

n
.

Si ha quindi

ar+1/n − ar = ar
(
a1/n − 1

)
≤
(
supA−

) a− 1

n
.

Facendo ricorso alla proprietà di Archimede è possibile determinare n in modo
tale che la quantità a secondo membro risulti minore di ε.
Possiamo quindi attribuire per definizione al simbolo (1.34) il valore rappresen-
tato dall’elemento di separazione degli insiemi A− e A+.
Nel caso infine in cui a ∈]0, 1[ si assume che

aα = (a−1)−α .

Si può facilmente verificare sono soddisfatte le proprietà (1.32) e (1.33).
Siamo ora in grado di definire la funzione potenza ad esponente reale α

x −→ xα .

Essa è definita in [0,+∞[ se α è positivo, in ]0,+∞[ se α è negativo. Nel primo
caso essa è strettamente crescente, nel secondo strettamente decrescente.
Per quanto riguarda la funzione esponenziale

x ∈ R −→ ax
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essa è intanto strettamente crescente se a > 1, strettamente decrescente se a < 1.
Verifichiamo che il suo codominio è R+. Bisogna dimostrare che l’equazione
ax = b ammette un’unica soluzione per ogni b > 0.
Si verifica facilmente che gli insiemi

A = {y ∈ R : ay < b} , B = {z ∈ R : az > b} ,

sono non vuoti; essi sono separati per la proprietà di monotonia sopra ricordata.
Poiché al più un numero reale non appartiene né ad A né a B essi sono contigui:
sia x l’elemento di separazione. Se x ∈ A esso ne è anche il massimo; inoltre si
ha ax < b. D’altra parte, se n ∈ N, per la (1.35) abbiamo

ax+1/n − ax = ax
(
a1/n − 1

)
≤ ax a− 1

n
.

Si ha quindi

ax+1/n < b+ (ax − b) + ax
a− 1

n
.

Scelto n in modo che risulti

ax
a− 1

n
< b− ax

si ha ax+1/n < b. Ciò implica che x+ 1/n appartiene ad A contro l’ipotesi che
x è il massimo di A.
In modo analogo si dimostra che x 6∈ B. Si ha infatti

ax − ax−1/n = ax−1/n
(
a1/n − 1

)
≤ ax a− 1

n

da cui

ax−1/n ≥ b+ (ax − b)− ax a− 1

n
;

quindi ax−1/n > b se si sceglie n tale che

ax − b > ax
a− 1

n
.

Deve allora essere ax = b.
La funzione esponenziale è dotata di inversa, il logaritmo in base a. Tale funzione
è definita in R+ e ha per codominio R

x ∈ R+ −→ loga x ∈ R .

Se la base è il numero di Nepero e il logaritmo di b si denota più semplicemente
con log b.
La funzione logaritmo, in quanto inversa della funzione esponenziale, eredita
dalla funzione esponenziale le relative proprietà di monotonia.
Infine, facendo uso delle proprietà (1.32) e (1.33) si possono dimostrare le
seguenti identità

loga b
c = c loga b , loga(b c) = loga b+ loga c .
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1.5 Potenza di un insieme

Se è evidente cosa vuol dire che due insiemi finiti hanno lo stesso numero di ele-
menti la questione è più delicata per insiemi infiniti. Per operare correttamente
in tale ambito bisogna ricorrere alla seguente nozione.

Definizione 1.5.1. - Due insiemi si dicono “equipotenti” se esiste un’applica-
zione biunivoca tra essi.
In particolare un insieme X dicesi “numerabile” se è equipotente ad N. Esiste
cioè un’applicazione biunivoca

n ∈ N→ xn ∈ X .

La potenza del numerabile viene denotata con il simbolo ℵ0.

Sussistono i seguenti risultati.

Proposizione 1.5.1. - L’insieme Q è numerabile.

Dimostrazione. Basta ovviamente dimostrare che tale è l’insieme Q+ dei razio-
nali positivi. Inseriamo tali numeri in una tabella in modo che nell’n−ma riga
siano presenti le frazioni, ridotte ai minimi termini, con n a numeratore e con
denominatori via via crescenti

1 → 1

2

1

3
→ 1

4
· · ·

↙ ↗ ↙
2

2

3

2

5

2

7
· · ·

↓ ↗ ↙
3

3

2

3

4

3

5
· · ·

· · · · · · · · · · · · · · ·

Se si ordinino gli elementi di tale tabella come indicato dalle frecce, si ottiene
un’applicazione biunivoca tra N e Q+.

Proposizione 1.5.2. - L’insieme R non è numerabile.

Dimostrazione. Basta verificare che non è numerabile l’intervallo [0, 1]. Per as-
surdo supponiamo che sia [0, 1] = {xn}. Diviso l’intervallo [0, 1] in tre intervalli
di uguale ampiezza denotiamo con [a1, b1] uno di tali tre intervalli che non con-
tenga x1. Operiamo ora allo stesso modo sull’intervallo [a1, b1] determinando
un secondo intervallo [a2, b2] che non ha x2 come elemento. Cośı procedendo si
genera una successione di intervalli [an, bn] con le seguenti caratteristiche

(i) an ≤ an+1 < bn+1 ≤ bn

(ii) bn − an = 3−n

(iii) xn 6∈ [an, bn]
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La (i) comporta che gli insiemi {an} e {bn} sono separati mentre la (ii) assicura
che essi sono contigui. L’unico elemento di separazione s appartiene ovviamente
a tutti gli intervalli [an, bn]. D’altra parte deve esistere un indice n tale che
s = xn in contrasto con la (iii).
Riportiamo un’ulteriore dimostrazione in cui si fa uso di un metodo noto come
“procedimento diagonale” di Cantor. Supponiamo ancora una volta che sia
[0, 1] = {xn}. Usiamo la rappresentazione dei reali in base due e inseriamo le
cifre dopo la virgola di xn nella n−ma riga della seguente tabella

(1.36)

a11 a12 a13 a14 · · ·

a21 a22 a23 a24 · · ·

a31 a32 a33 a34 · · ·

a41 a42 a43 a44 · · ·

· · · · · · · · · · · · · · ·

Non preoccupiamoci del fatto che ci possano essere più rappresentazioni del-
lo stesso numero razionale, quelle per intenderci con la cifra 1 periodica: si
aggiungono infatti dei simboli che appartengono ad un insieme numerabile.
Conveniamo di rappresentare il numero 1 come 0, 1.
Per ogni n indichiamo con an la cifra binaria diversa da ann; allora l’allineamento

0, a1a2a3 · · · an · · ·

rappresenta un elemento dell’intervallo [0, 1] che però non compare nella tabella
(1.36). Infatti se le sue cifre occupassero la k−ma riga si perverrebbe ad un
assurdo essendo ak 6= akk.

In definitiva l’insieme R ha una potenza maggiore di quella di N e di Q. Si parla
in tal caso di “potenza del continuo” per la quale si usa il simbolo c.

Osservazione 1.5.1. - Anche R2 ha la potenza del continuo. Se si conviene di
rappresentare un qualsiasi numero dell’intervallo [0, 1] in base due come nella
dimostrazione della prop. 1.5.2 allora ad ogni coppia di tali allineamenti si può
associare quello che ha le cifre del primo numero nei posti dispari e quelle del
secondo nei posti pari. Si crea in tal modo un’applicazione biunivoca tra [0, 1]2

e [0, 1].

1.6 Il teorema di Bolzano-Weierstrass

Richiamiamo alcune nozioni.

Definizione 1.6.1. - Per “intorno” di x0 si intende un qualsiasi intervallo
aperto contenente x0. Il simbolo I(x0) denota la famiglia degli intorni di x0.
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Definizione 1.6.2. - Si dice che x0 è “punto di accumulazione” per X se

I ∩X\{x0} 6= ∅

per ogni I ∈ I(x0). In altri termini ogni intorno di x0 contiene punti di X
diversi da x0.

Definizione 1.6.3. - Per intorno di +∞ si intende un qualsiasi intervallo non
limitato ]a,+∞[. La famiglia degli intorni di +∞ si denota con I(+∞).
Analogamente con il simbolo I(−∞) si denota la famiglia degli intorni di −∞
ovvero degli intervalli ]−∞, a[.

Osservazione 1.6.1. - In un certo senso +∞ e −∞ possono considerarsi punti
di accumulazione per insiemi che siano, o non limitati superiormente o non
limitati inferiormente. Se infatti un insieme X non è superiormente limitato la
condizione (1.18) afferma che ogni intorno di +∞ contiene punti di X. Discorso
analogo vale per insiemi non limitati inferiormente se si fa riferimento alla
(1.19).

Una importante conseguenza dell’assioma di completezza è costituito dal se-
guente risultato.

Teorema 1.6.1. (Teorema di Bolzano-Weierstrass) - Un insieme X infi-
nito e limitato ha almeno un punto di accumulazione.

Dimostrazione. Sia [a, b] un intervallo contenente X. Dividiamo tale intervallo
in due intervalli di uguale ampiezza. Di questi almeno uno contiene infiniti punti
di X: indichiamo tale intervallo con [a1, b1]. Si può a questo punto operare su
tale intervallo come abbiamo fatto per [a, b]: si determina un secondo intervallo
[a2, b2], di ampiezza pari alla metà dell’intervallo [a1, b1], contenente infiniti
punti di X. È ovviamente possibile iterare il procedimento; si ottiene quindi
una successione di intervalli [an, bn] con le seguenti caratteristiche

• an ≤ an+1 < bn+1 ≤ bn

• bn − an =
b− a

2n

• [an, bn] contiene infiniti punti di X

Ragionando come nella dimostrazione del teo. 1.5.2 si ha che i due insiemi {an}
e {bn} sono contigui. Indichiamo con c il loro elemento di separazione. Se I
è un intervallo aperto contenente c si dimostra facilmente che esiste un n tale
che [an, bn] ⊂ I. Quindi c è punto di accumulazione per X dal momento che
l’intervallo [an, bn], e quindi I, contiene infiniti punti di X.
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Capitolo 2

Numeri complessi

2.1 Forma algebrica

Abbiamo visto nel cap.1 che è possibile strutturare R come campo; ci chiediamo
se è possibile fare altrettanto con R2. In quanto spazio vettoriale, R2 è dotato
di una operazione di somma

(2.1) (x, y) + (x′, y′) = (x+ x′, y + y′)

e di una di prodotto esterno tra un vettore e uno scalare α ∈ R

(2.2) α (x, y) = (αx, α y) .

Più complessa è la questione relativa all’operazione di prodotto interno. Co-
minciamo a definire tale operazione per i due vettori della base naturale

e1 = (1, 0) , e2 = (0, 1) .

Poniamo

(2.3) e1 e1 = e2
1 = e1 , e1 e2 = e2 e1 = e2 , e2 e2 = e2

2 = −e1 .

Le (2.3) sono sufficienti per definire il prodotto tra due generici elementi di R2.
In accordo con le (2.1) e (2.2) si ha

z = (x, y) = x e1 + y e2 , z′ = (x′, y′) = x′ e1 + y′ e2 .

Facendo ricorso alle (2.3) abbiamo

z z′ = (xx′ − y y′) e1 + (x y′ + x′ y) e2

e quindi

(2.4) z z′ = (xx′ − y y′, x y′ + x′ y) .

27
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Si verifica facilmente che R2 con le operazioni (2.1) e (2.4) è un campo; sono
soddisfatti cioè gli assiomi (A1), · · · , (A7) del par.1.2. Limitiamoci ad osservare
che (0, 0) è l’elemento neutro rispetto alla somma e (1, 0) quello rispetto al
prodotto. Inoltre, se z = (x, y) 6= (0, 0) il vettore

z−1 =

(
x

x2 + y2
,− y

x2 + y2

)
è il reciproco di z.
È lecito chiedersi se le posizioni (2.3) che hanno permesso di definire il prodotto
siano una scelta arbitraria o obbligata. La risposta sta nel seguente risultato la
cui dimostrazione è ripresa da [13].

Proposizione 2.1.1. - Oltre all’operazione di somma (2.1) in R2 sia definita
una moltiplicazione in modo che risultino soddisfatti gli assiomi di campo. Allora
esistono due elementi f1, f2 di R2, linearmente indipendenti, tali che

(2.5) f2
1 = f1 , f1 f2 = f2 f1 = f2 , f2

2 = −f1 .

Dimostrazione. Sia f1 l’elemento neutro rispetto al prodotto. Se g1 non dipende
linearmente da f1 per ogni γ ∈ R risulta

(2.6) g2 = g1 + γ f1 6= 0 .

Sia inoltre

(2.7) g2
1 = α f1 + β g1 .

Per le (2.6) e (2.7) si ha

g2
2 = g2

1 + 2 γ g1 + γ2 f1 = (α+ γ2) f1 + (β + 2 γ)g1 .

Quindi se γ = −β/2 abbiamo

(2.8) g2
2 =

(
α+

β2

4

)
f1 = δ f1 .

Si ha δ 6= 0 per la (2.7). Se δ > 0 la (2.8) diventa

(g2 −
√
δ f1)(g2 +

√
δ f1) = 0 .

Per la legge di annullamento del prodotto g2 è allora proporzionale a f1; quindi,
per la (2.6), anche g1 è proporzionale a f1 contro l’ipotesi che i due vettori sono
linearmente indipendenti. Deve allora essere δ < 0. Se

f2 =
1√
−δ

g2

per la (2.8) si ha f2
2 = −e1. I vettori f1, f2 soddisfano quindi le (2.5).
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Se quindi in R2 coesistono due differenti strutture di campo esse possono essere
“identificate” facendo corrispondere f1 ad e1 e f2 ad e2. In tal modo infatti si
viene a costruire un’applicazione biunivoca ϕ di R2 su se stesso che verifica le
seguenti condizioni

ϕ(z + z′) = ϕ(z) + ϕ(z′) , ϕ(z z′) = ϕ(z)ϕ(z′) ;

abbiamo per semplicità usato gli stessi simboli di somma e prodotto per le
operazioni definite nelle due diverse strutture algebriche. L’applicazione ϕ è un
isomorfismo. Possiamo quindi concludere che, a meno di isomorfismi, R2 può
essere in modo unico strutturato come campo.

Definizione 2.1.1. - Lo spazio R2 con le operazioni (2.1) e (2.4) prende il
nome di “campo complesso”. Esso si denota con il simbolo C. I suoi elementi
si chiamano numeri complessi.

Osservazione 2.1.1. - È possibile introdurre in C una relazione d’ordine in
modo che C possa considerarsi un campo ordinato? La risposta a tale domanda
è negativa. Infatti in un campo ordinato il quadrato di un qualsiasi numero
è positivo (cfr. prop. 1.2.1), cioè maggiore strettamente dell’elemento neutro.
Ciò non può verificarsi in C dal momento che il quadrato di e2 è −e1; quest’ul-
timo numero non è positivo perché in un campo ordinato l’elemento neutro del
prodotto è positivo e il suo opposto negativo.

L’applicazione
x ∈ R −→ (x, 0)

è un isomorfismo tra R e il sottoinsieme di C costituito dalle coppie la cui seconda
coordinata è zero. Ciò comporta che è possibile identificare le due strutture;
possiamo considerare quindi R come una sottocampo di C. In definitiva e1 va
ad identificarsi con 1, unità di R, l’origine con lo zero di R e, più in generale,
(x, 0) con il numero reale x. Denotiamo inoltre con il simbolo i il numero
complesso e2. Ciò premesso, essendo

z = (x, y) = (x, 0) + (y, 0) (0, 1) ,

possiamo scrivere

(2.9) z = x+ i y = <(z) + i=(z) .

La (2.9) è nota come “forma algebrica” di z: <(z) è la parte reale di z mentre
=(z) ne è la parte immaginaria. La forma (2.9) è particolarmente utile perché
con essa si può operare con le ordinarie regole del calcolo letterale; bisogna solo
ricordarsi di inserire al posto di i2 il numero reale −1.
Per modulo di z si intende la quantità

|z| =
√
x2 + y2 .

Il complesso coniugato di z è

z = x− i y = <(z)− i=(z) .
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Proposizione 2.1.2. - Valgono le seguenti proprietà:

(a) z = z ⇐⇒ z ∈ R

(b) z + w = z + w

(c) z w = z w

(d) z z = |z|2

(e) |z + w| ≤ |z|+ |w|

(f) |z − w| ≥ ||z| − |w|| .

2.2 Forma trigonometrica

Rappresentiamo il piano R2 e quindi C in coordinate polari. Ciò vuol dire che
ogni numero complesso diverso dallo zero è individuato da una nuova coppia
di coordinate. La prima, che indichiamo con ρ, è il modulo di z, la seconda,
che indichiamo con θ, è una delle determinazioni, in radianti, dell’angolo che
il vettore orientato, i cui estremi sono l’origine e z, forma con il semiasse rea-
le positivo. L’applicazione che a z associa tali determinazione costituisce un
primo esempio di funzione a più valori nota come “argomento”. Solitamente
si sceglie la determinazione compresa nell’intervallo ] − π, π] detta “argomento
principale”. Usiamo la scrittura [ρ, θ] per denotare z; essa prende il nome di
forma trigonometrica. Si ha

(2.10) [ρ, θ] = [ρ′, θ′]⇐⇒

 ρ = ρ′

θ′ − θ = 2kπ , k ∈ Z .

Per passare dalla forma algebrica a quella trigonometrica bisogna tener conto
della seguente identità

z = x+ i y = ρ (cos θ + i sin θ) .

La forma trigonometrica si presta bene per rappresentare il prodotto di due o
più numeri complessi. Infatti se z = [ρ, θ] e z′ = [ρ′, θ′], si ha

z z′ = ρρ′ [(cos θ cos θ′ − sin θ sin θ′) + i (sin θ cos θ′ + sin θ′ cos θ)]

= ρρ′ [cos(θ + θ′) + i sin(θ + θ′)] = [ρρ′, θ + θ′] .

Per n complessi [ρk, θk] si ha ovviamente

z1 z2 · · · zn =

n∏
k=1

zk =

[
n∏
k=1

ρk,

n∑
k=1

θk

]
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e, in particolare,

(2.11) zn = [ρn, n θ] .

Utilizziamo la (2.11) per introdurre l’operazione di estrazione di radice n-ma nel
campo complesso. Sia z = [ρ, θ] un numero complesso non nullo. Determiniamo
w = [r, φ] in modo tale che si abbia wn = z ovvero [rn, n φ] = [ρ, θ]. Dalla (2.10)
si ha

(2.12) rn = ρ , n φ− θ = 2k π

per un opportuno k ∈ Z. I complessi

wk =

[
ρ1/n,

θ + 2k π

n

]
,

con k ∈ Z, sono le radici n-me di z. Per la (2.10) si ha[
ρ1/n,

θ + 2k1 π

n

]
=

[
ρ1/n,

θ + 2k2 π

n

]
se e solo se esiste h ∈ Z tale che

k2 − k1 = nh

il che equivale a dire che k1 e k2 sono congruenti modulo n. Quindi le radici
n-me distinte di z sono n tante quante le classi di congruenza modulo n. In
definitiva, mentre in R ogni numero reale positivo ha una sola radice n-ma, in C
ogni numero diverso da zero ha n radici n-me: esse si ottengono dalla formula
(2.12) attribuendo all’indice k i valori interi da 0 fino a n− 1 o più in generale
n valori consecutivi. In particolare le radici n-me dell’unità sono

(2.13) wk =

[
1,

2k π

n

]
, k = 0, · · ·n− 1 .

Esse sono i vertici del poligono regolare a n lati inscritto nella circonferenza
con centro nell’origine e raggio unitario; uno dei suoi vertici è (1, 0). I numeri
complessi (2.13) sono le n soluzioni dell’equazione zn − 1 = 0. Si ha anche

zn − 1 =

n∏
k=1

(z − wk) .

Più in generale consideriamo il polinomio

P (z) = a0 z
n + a1 z

n−1 + · · ·+ an

con ak ∈ R. Si può dimostrare che esso può essere fattorizzato nel modo seguente

(2.14) P (z) = a0(z − z1)m1(z − z2)m2 · · · (z − zk)mk = a0

k∏
h=1

(z − zh)mh ;
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mh sono interi positivi tali che

k∑
h=1

mh = n .

I numeri complessi zh sono le uniche radici del polinomio, cioè le soluzione
dell’equazione P (z) = 0. Gli interi mh indicano la “molteplicità” di ciascuna
radice. Pertanto, se ogni radice zh viene contata mh volte, il polinomio P
ha n radici. Ricordiamo infine che in R non sempre è possibile ottenere una
fattorizzazione come la (2.14).



Capitolo 3

Limiti di funzioni e
successioni

3.1 Definizioni

Se

(3.1) f : x ∈ X ⊆ R −→ f(x) ∈ R

è una funzione numerica e x0 è un punto di accumulazione per X la definizione
di limite di f per x che tende a x0, in simboli

lim
x→x0

f(x) = ` ,

si struttura in una delle seguenti tre modalità:

(1) se ` ∈ R ,

∀ε > 0 ∃δ : ∀x ∈ X∩]x0 − δ, x0 + δ[\{x0} ⇒ |f(x)− `| < ε ;

(2) se ` = +∞ ,

∀K ∃δ : ∀x ∈ X∩]x0 − δ, x0 + δ[\{x0} ⇒ f(x) > K ;

(3) se ` = −∞ ,

∀K ∃δ : ∀x ∈ X∩]x0 − δ, x0 + δ[\{x0} ⇒ f(x) < K .

Definizione 3.1.1. - Se x0 ∈ X e

lim
x→x0

f(x) = f(x0)

si dice che f continua in x0. La funzione f dicesi continua in X se essa è
continua in ogni punto di X.

33
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Sia X non limitato superiormente. Per quanto detto nell’oss. 1.6.1 in un certo
senso +∞ si comporta come punto di accumulazione per X. La definizione di
limite di f per x che diverge positivamente, in simboli

lim
x→+∞

f(x) = ` ,

si struttura in una delle seguenti tre modalità:

(4) se ` ∈ R ,

∀ε > 0 ∃δ : ∀x ∈ X∩]δ,+∞[⇒ |f(x)− l| < ε ;

(5) se ` = +∞ ,

∀K ∃δ : ∀x ∈ X∩]δ,+∞[⇒ f(x) > K ;

(6) se ` = −∞ ,

∀K ∃δ : ∀x ∈ X∩]δ,+∞[⇒ f(x) < K .

In particolare esaminiamo il caso di una successione

n ∈ N→ an ∈ R

denotata anche con il simbolo {an}. Allora, in luogo di (4), (5) e (6), per

lim
n→+∞

an = ` ,

si usano le seguenti definizioni:

(4S) se ` ∈ R ,
∀ε > 0 ∃ν ∈ N : ∀n > ν ⇒ |an − l| < ε ;

(5S) se ` = +∞ ,
∀K ∃ν ∈ N : ∀n > ν ⇒ an > K ;

(6S) se ` = −∞ ,
∀K ∃ν ∈ N : ∀n > ν ⇒ an < K .

Sia X non limitato inferiormente. La definizione di limite di f per x che diverge
negativamente, in simboli

lim
x→−∞

f(x) = ` ,

si struttura in una delle seguenti tre modalità:

(7) se ` ∈ R ,

∀ε > 0 ∃δ : ∀x ∈ X∩]−∞, δ[⇒ |f(x)− l| < ε ;
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(8) se ` = +∞
∀K ∃δ : ∀x ∈ X∩]−∞, δ[⇒ f(x) > K ;

(9) se ` = −∞ ,

∀K ∃δ : ∀x ∈ X∩]−∞, δ[⇒ f(x) < K .

Nei casi (1), (4), (4S), (7) si parla di convergenza. Se ` = +∞ (−∞) si dice
che la funzione o la successione diverge positivamente (negativamente). In ogni
caso si parla di funzione o successione regolare.

Definizione 3.1.2. - Sia x0 ∈ I con I intervallo aperto e sia f una funzione
definita in I\{x0}. Per “limite sinistro” di f in x0 si intende il limite della
restrizione di f a I∩]−∞, x0[. Esso si denota con il simbolo

lim
x→x−0

f(x) .

Il “limite destro” di f in x0, in simboli

lim
x→x+

0

f(x) ,

è il limite della restrizione di f a I∩]x0,+∞[ .

Sussiste il seguente risultato di semplice verifica.

Proposizione 3.1.1. - Una funzione è regolare in x0 se e solo se i limiti sinistro
e destro in x0 sono uguali.

La funzione

(3.2) x ∈ R\{0} → sin(1/x) .

non è regolare in zero. Si usa in tal caso anche il termine “oscillante”.

3.2 Primi risultati

È possibile dare una definizione unificata di limite che abbracci tutti i casi sopra
esposti.

Definizione 3.2.1. - Si dice che f tende a ` ∈ R per x che tende a x0 ∈ R se

(3.3) ∀J ∈ I(l) ∃I ∈ I(x0) : ∀x ∈ X ∩ I\{x0} ⇒ f(x) ∈ J

dove I(x0) e I(`) indicano le famiglie di intorni di x0 e `.

Una immediata conseguenza della def. 3.2.1 è costituita dal seguente risultato.

Teorema 3.2.1. (Teorema di unicità del limite) - Sia f regolare in x0.
Allora il limite di f è unico.
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Dimostrazione. Siano `1, `2 ∈ R due differenti limiti di f . Fissati J1 ∈ I(`1) e
J2 ∈ I(`2), a intersezione vuota, siano I1 e I2 gli intorni di x0 che si vengono a
determinare in corrispondenza di J1, J2 secondo quanto indicato nella (3.3). Si
ha allora che f(x) appartiene sia a J1 che a J2 se x ∈ I1 ∩ I2; ma ciò è assurdo
essendo J1 ∩ J2 = ∅.

La funzione (3.1) dicesi limitata superiormente, inferiormente o limitata se il
suo codominio f(X) è, rispettivamente, limitato superiormente, inferiormente o
limitato. I simboli

sup
X
f = sup f(X) , inf

X
f = inf f(X)

denotano rispettivamente l’estremo superiore e l’estremo inferiore di f in X.
Per massimo di f in X, in simboli maxX f , si intende il massimo, se esiste, di
f(X). Ogni punto in cui la funzione assume il valore massimo prende il nome
di punto di massimo. Per minimo di f in X, in simboli minX f , si intende il
minimo, se esiste, di f(X). Punto di minimo è un qualsiasi punto in cui la
funzione f assume il valore minimo. Talvolta, quando non c’è possibilità di
equivoco, nei simboli sopra introdotti si può fare a meno di indicare l’insieme
in cui f è definita.

Teorema 3.2.2. - Ogni successione convergente è limitata.

Dimostrazione. Sia ` il limite della successione {an}. Per la definizione (4S),
fissato ε > 0, esiste un indice ν tale che per n > ν risulti

`− ε < an < `+ ε .

Basta a questo punto osservare che si ha

min{a1, · · · , aν , `− ε} ≤ an ≤ max{a1, · · · , aν , `+ ε}

per ogni n, il che comporta la limitatezza della successione.

La versione del teo. 3.2.2 per funzioni assume la seguente veste.

Teorema 3.2.3. - Sia f convergente in x0. Esiste allora un intorno I di x0

e una costante M tale che |f(x)| ≤ M per ogni x ∈ X ∩ I. La funzione dicesi
“definitivamente limitata”.

Dimostrazione. È banale conseguenza della (3.3).

Riportiamo alcuni importanti risultati per le cui dimostrazioni rimandiamo per
esempio a [4].

Teorema 3.2.4. (Teorema della permanenza del segno) - Sia f definita
in X. Se

lim
x→x0

f(x) = ` > 0 (< 0)

esiste un intorno I di x0 tale che

f(x) > 0 (< 0) ∀x ∈ I ∩X\{x0} .
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Teorema 3.2.5. (Teorema del confronto) - Siano f, g definite in X.

(a) Se
lim
x→x0

f(x) < lim
x→x0

g(x)

esiste un intorno I di x0 tale che

f(x) < g(x) ∀x ∈ I ∩X\{x0} .

(b) Se f(x) ≤ g(x) in un intorno di x0 e f, g sono regolari in x0 allora

lim
x→x0

f(x) ≤ lim
x→x0

g(x) .

In particolare, se f diverge positivamente allora anche g diverge positiva-
mente. Se invece g diverge negativamente allora anche f diverge negati-
vamente.

Teorema 3.2.6. (Teorema dei carabinieri) - Siano f, g, h definite in X.
Se

lim
x→x0

f(x) = lim
x→x0

g(x) = ` ∈ R

e se esiste un intorno I di x0 tale che

f(x) ≤ h(x) ≤ g(x) ∀x ∈ I ∩X\{x0}

allora
lim
x→x0

h(x) = ` .

3.3 Funzioni monotone

Definizione 3.3.1. - Si dice la funzione (3.1) è monotona in X se, al variare
di x1, x2 in X, si verifica uno dei seguenti casi:

• x1 < x2 ⇒ f(x1) ≤ f(x2) (f crescente)

• x1 < x2 ⇒ f(x1) < f(x2) (f strettamente crescente)

• x1 < x2 ⇒ f(x1) ≥ f(x2) (f decrescente)

• x1 < x2 ⇒ f(x1) > f(x2) (f strettamente decrescente) .

Teorema 3.3.1. - Sia f monotona in ]a, b[. Se f è crescente si ha

(3.4) lim
x→a

f(x) = inf f , lim
x→b

f(x) = sup f .

Se f è decrescente si ha

(3.5) lim
x→a

f(x) = sup f , lim
x→b

f(x) = inf f .
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Dimostrazione. Verifichiamo la seconda delle (3.4). Sia f limitata superiormen-
te. Per la seconda proprietà dell’estremo superiore, fissato ε > 0, esiste un xε
tale che

sup f − ε < f(xε) .

Se x ∈]xε, b[, per l’ipotesi di crescenza e per la prima proprietà dell’estremo
superiore, abbiamo

sup f − ε < f(xε) ≤ f(x) ≤ sup f

da cui l’asserto.
Sia f non limitata superiormente. Fissato K, esiste un xK tale che

K < f(xK) .

Per l’ipotesi di crescenza, se x ∈]xK , b[, si ha

K < f(xK) ≤ f(x)

da cui la divergenza di f .
In modo analogo si dimostrano le altre relazioni di limite.

La stessa procedura utilizzata per dimostrare il teo. 3.3.1 può ovviamente essere
utilizzata per il seguente risultato.

Teorema 3.3.2. - Ogni successione {an} monotona è regolare. Se essa è
crescente si ha

lim
n→+∞

an = sup an ;

se essa è decrescente si ha

lim
n→+∞

an = inf an .

Definizione 3.3.2. - Sia f definita in un intervallo I e sia x0 un punto di I.

• Se f converge in x0 ad un valore diverso da f(x0) si dice che f presenta
in x0 una “singolarità eliminabile”.

• Se in x0, interno ad I, esistono finiti il limite destro e sinistro di f e
se essi sono distinti si dice che x0 è un “punto di discontinuità di prima
specie” per f .

• In tutti gli altri casi si parla di “discontinuità di seconda specie”.

Proposizione 3.3.1. - Sia f monotona in un intervallo I. Se x0 è un punto
interno ad I allora o f è continua in x0 o in tale punto f presenta una discon-
tinuità di prima specie. Se x0 è un estremo di I allora o f è continua in x0 o
in x0 è presente una discontinuità eliminabile.
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Dimostrazione. Supponiamo f crescente. Se x0 è interno ad I per le (3.4) si ha

(3.6) `− = lim
x→x−0

f(x) = sup
x<x0

f(x) ≤ f(x0) ≤ inf
x>x0

f(x) = lim
x→x+

0

f(x) = `+ .

Se x0 è un estremo dell’intervallo, per esempio quello destro, la (3.6) diventa

lim
x→x−0

f(x) = sup
x<x0

f(x) ≤ f(x0) .

Si ottiene in tal modo l’asserto.

Siamo ora in grado di dimostrare il seguente importante criterio di continuità,
noto anche come “teorema inverso di Bolzano”.

Teorema 3.3.3. - Sia f monotona in un intervallo [a, b]. Se f assume tutti i
valori dell’intervallo di estremi f(a) e f(b) allora f è continua.

Dimostrazione. Per fissare le idee supponiamo f crescente: il suo codominio è
allora [f(a), f(b)]. Sia f discontinua in x0 ∈]a, b[. Nella (3.6) bisogna quindi
imporre `− < `+. Scegliamo un valore ` ∈]`−, `+[ con ` 6= f(x0); ovviamente
` ∈ [f(a), f(b)]. Dalla (3.6) si evince anche che in nessun punto dell’intervallo
[a, b] la funzione f assume il valore `; pertanto ` non appartiene al codominio
di f . Siamo pervenuti ad un assurdo: f deve allora essere continua in x0. Se
x0 è un estremo di [a, b] si ragiona in modo analogo.

Per quanto detto nel primo capitolo in relazione alle proprietà dell’operazione
di potenza ad esponente reale il teo. 3.3.3 consente di pervenire alle seguenti
conclusioni.

Proposizione 3.3.2. - Le funzioni potenza ad esponente reale, esponenziale e
logaritmo sono continue nei rispettivi insiemi di definizione.

Osservazione 3.3.1. - In modo del tutto analogo si può dimostrare che anche le
funzioni trigonometriche sono continue. Il teo. 3.3.3 va applicato alle restrizioni
di tali funzioni ad intervalli in cui esse siano monotone. Ovviamente sono anche
continue le relative funzioni inverse.

3.4 Limite di una funzione composta

Assegnate due funzioni

f : x ∈ X → f(x) ∈ Y , g : y ∈ Y → g(y) ∈ R

consideriamo la funzione composta

g ◦ f : x ∈ X → (g ◦ f)(x) = g(f(x)) .
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Proposizione 3.4.1. - Sia

(3.7) lim
x→x0

f(x) = y0 ∈ R .

Supponiamo inoltre che esista un intorno I ′ di x0 tale che

(3.8) f(x) 6= y0 ∀x ∈ I ′ ∩X\{x0}

e che

(3.9) lim
y→y0

g(y) = ` ∈ R .

Si ha allora

(3.10) lim
x→x0

g(f(x)) = ` .

In particolare se f è continua in x0 e g in y0 allora g ◦ f è continua in x0.

Dimostrazione. Verifichiamo innanzitutto che ha senso la scrittura (3.9). Se
y0 ∈ R un uso combinato delle condizioni (3.7), (3.8) porta a concludere che
y0 è punto di accumulazione per Y . Se y0 = +∞ la (3.7), unita al fatto che
f(x) ∈ Y , assicura che Y non è limitato superiormente. In modo analogo si
prova che, se y0 = −∞, l’insieme Y non è limitato inferiormente.. La (3.9)
implica che, in corrispondenza di un intorno I` di `, è possibile determinare un
intorno Iy0 di y0 tale che

y ∈ Iy0 ∩ Y \{y0} =⇒ g(y) ∈ I` .

Per la (3.7), in corrispondenza dell’intorno Iy0 di y0, è possibile determinare un
intorno Ix0

di x0 tale che

x ∈ Ix0
∩X\{x0} =⇒ f(x) ∈ Iy0 .

Tenendo in conto la (3.8), posto I = I ′ ∩ Ix0
, si ha

x ∈ I ∩X\{x0} =⇒ g(f(x)) ∈ I` .

Abbiamo in tal modo dimostrato la (3.10). Si osservi infine che, nel caso in cui
le funzioni siano continue, si può prescindere dalla condizione (3.8).

Osservazione 3.4.1. - Per la prop. 3.4.1 e per la continuità della funzione
valore assoluto si ha

(3.11) lim
x→x0

f(x) = `⇒ lim
x→x0

|f(x)| = |`| .

Da sottolineare che l’implicazione inversa non vale.

Proposizione 3.4.2. - Sia {xn} una successione di punti di X\{x0} che tende
a x0 ∈ R. Se f è regolare in x0 si ha

(3.12) lim
n→+∞

f(xn) = lim
x→x0

f(x) .
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Dimostrazione. La successione {f(xn)} si ottiene componendo le funzioni

n ∈ N→ xn , x ∈ X → f(x) .

Basta allora applicare la prop. 3.4.1.

Osservazione 3.4.2. - Si può utilizzare la (3.12) per dedurre la non regolarità
di una funzione. Basta infatti trovare due successioni {x′n}, {x′′n} con le carat-
teristiche indicate nell’enunciato tali che le corrispondenti successioni {f(x′n)},
{f(x′′n)} abbiano limiti differenti. Si usi tale procedura per verificare che la
funzione (3.2) non è regolare in zero.

Definizione 3.4.1. - Sia {an} una successione e sia {nk} una successione
strettamente crescente di naturali. Allora la successione

(3.13) an1
, an2

, · · · , ank
, · · · ,

denotata anche con il simbolo {ank
}, prende il nome di sottosuccessione di {an}

o di successione estratta da {an}.

Proposizione 3.4.3. - Se ` è il limite di {an} allora ogni sottosuccessione di
{an} tende a `.

Dimostrazione. La successione (3.13) si ottiene componendo le funzioni

k ∈ N→ nk ∈ N , n ∈ N→ an ∈ R .

Il risultato segue allora dalla prop. 3.4.1.

Di semplice verifica è il seguente risultato.

Proposizione 3.4.4. - Se le due sottosuccessioni {a2k}, {a2k+1} tendono allo
stesso limite ` allora anche {an} tende a `.

Teorema 3.4.1. - Sia x0 punto di accumulazione per X. Esistono successio-
ni di punti di X\{x0} convergenti a x0. Se X non è limitato superiormen-
te (inferiormente) esistono successioni di punti di X divergenti positivamente
(negativamente).

Dimostrazione. Per ogni n scegliamo un punto xn ∈ X\{x0} tale che

x0 −
1

n
< xn < x0 +

1

n
.

La successione {xn} ha le caratteristiche richieste. In modo analogo si procede
negli altri due casi.

Vogliamo ora dedurre il comportamento di una funzione f in x0 semplicemente
testando il comportamento delle restrizioni della funzione alle successioni che
tendono a x0. Sussiste infatti il seguente risultato noto come “teorema ponte”.
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Teorema 3.4.2. - Se {f(xn)} è regolare per ogni successione {xn} di punti di
X\{x0} tendente a x0 allora f è regolare in x0.

Dimostrazione. Verifichiamo innanzitutto che tutte le successioni {f(xn)} han-
no lo stesso limite. Siano {xn,1} e {xn,2} due successioni, entrambe tendenti
a x0, tali che le corrispondenti successioni {f(xn,1)} e {f(xn,2)} abbiano limiti
distinti. Assembliamo le due successioni {xn,1} e {xn,2} in un’unica successione
{yn} inserendo i termini della prima nei posti con indice dispari, quelli dell’altra
nei posti con indice pari. Per quanto detto nella prop. 3.4.4 la successione {yn}
tende a x0, quindi {f(yn)} deve essere regolare. D’altra parte quest’ultima suc-
cessione non è regolare per la prop. 3.4.3 in quanto le sottosuccessioni {f(xn,1)}
e {f(xn,2)} tendono a limiti diversi. Siamo pervenuti ad un assurdo; pertanto
tutte le successioni {f(xn)}, con {xn} tendente a x0, hanno lo stesso limite `.
Verifichiamo che ` è il limite di f . Per semplicità supponiamo che x0 sia punto
di accumulazione per X. Se ` non è il limite di f allora

∃I ∈ I(`) : ∀n ∃xn ∈ X∩]x0 − 1/n, x0 + 1/n[\{x0} : f(xn) 6∈ I .

La successione {xn} tende a x0 mentre ` non è il limite di {f(xn)}: siamo quindi
pervenuti ad un assurdo. Ciò prova l’asserto.

3.5 Limiti e operazioni

Elenchiamo alcuni risultati relativi al limite di somme, prodotti e quozienti
di funzioni regolari; per le dimostrazioni rimandiamo ad un qualsiasi testo di
Analisi Matematica 1.
Poniamo

(3.14) lim
x→x0

f1(x) = `1 , lim
x→x0

f2(x) = `2 .

Proposizione 3.5.1. - Se `1, `2 ∈ R si ha

(3.15) lim
x→x0

[f1(x) + f2(x)] = `1 + `2 .

In particolare, se f1, f2 sono continue in x0, allora f1 + f2 è continua in x0.

La formula (3.15) è suscettibile delle seguenti estensioni:

• se uno dei due limiti (3.14) è +∞ e l’altro è diverso da −∞ il limite della
funzione f1 + f2 è +∞;

• se uno dei due limiti (3.14) è −∞ e l’altro è diverso da +∞ il limite della
funzione f1 + f2 è −∞.

Si può dare quindi significato alla somma di due elementi di R nei seguenti
ulteriori casi

(E1) a+ (+∞) = +∞ se a 6= −∞ ;
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(E2) a+ (−∞) = −∞ se a 6= +∞ .

La formula (3.15) non si applica solo nel caso in cui a secondo membro compare
la seguente espressione

(I1) (+∞) + (−∞) .

La (I1) costituisce il primo caso di “forma indeterminata”.

Proposizione 3.5.2. - Se `1, `2 ∈ R si ha

(3.16) lim
x→x0

[f1(x) f2(x)] = `1 `2 .

In particolare, se f1, f2 sono continue in x0, allora f1 f2 è continua in x0.

La formula (3.16) è suscettibile delle seguenti estensioni:

• se uno dei due limiti (3.14) è +∞ e l’altro è un elemento di R positivo il
limite della funzione f1 f2 è +∞;

• se uno dei due limiti (3.14) è +∞ e l’altro è un elemento di R negativo il
limite della funzione f1 f2 è −∞;

• se uno dei due limiti (3.14) è −∞ e l’altro è un elemento di R positivo il
limite della funzione f1 f2 è −∞;

• se uno dei due limiti (3.14) è −∞ e l’altro è un elemento di R negativo il
limite della funzione f1 f2 è +∞.

Si può dare quindi significato al prodotto di due elementi di R nei seguenti
ulteriori casi

(E3) a (+∞) = +∞ se a > 0 ;

(E4) a (+∞) = −∞ se a < 0 ;

(E5) a (−∞) = −∞ se a > 0 ;

(E6) a (−∞) = +∞ se a < 0 .

La formula (3.16) non si applica solo nel caso in cui a secondo membro compare
l’espressione

(I2) 0 (±∞) .

La (I2) è una ulteriore “forma indeterminata”.

Osservazione 3.5.1. - Dai precedenti risultati si deduce che

lim
x→x0

[a1 f1(x) + a2 f2(x)] = a1 `1 + a2 `2

con a1, a2 ∈ R. In particolare si ha

lim
x→x0

[f1(x)− f2(x)] = `1 − `2 .
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Occupiamoci infine del limite del quoziente di f1 e f2.

Proposizione 3.5.3. - Se `1, `2 ∈ R con `2 6= 0 si ha

(3.17) lim
x→x0

f1(x)

f2(x)
=
`1
`2
.

Se le funzioni f1, f2 sono continue in x0 e f2(x0) 6= 0, la funzione f1/f2 è
continua in x0.

Limitiamoci a sottolineare che la condizione `2 6= 0, via il teo. 3.2.4, implica
che f2 è diversa da zero in un intorno di x0; ciò comporta che la funzione f1/f2

è ben definita in un intorno di x0.

La formula (3.17) è suscettibile delle seguenti estensioni:

• se `1 ∈ R e `2 = ±∞ il limite della funzione f1/f2 è zero;

• se `1 = +∞ e `2 è un numero reale positivo il limite di f1/f2 è +∞;

• se `1 = +∞ e `2 è un numero reale negativo il limite di f1/f2 è −∞;

• se `1 = −∞ e `2 è un numero reale positivo il limite di f1/f2 è −∞;

• se `1 = −∞ e `2 è un numero reale negativo il limite di f1/f2 è +∞.

Si può dare quindi significato al quoziente di due elementi di R nei seguenti
ulteriori casi

(E7)
a

±∞
= 0 ;

(E8)
+∞
a

= +∞ se a ∈ R+ ;

(E9)
+∞
a

= −∞ se a ∈ R− ;

(E10)
−∞
a

= −∞ se a ∈ R+ ;

(E11)
−∞
a

= +∞ se a ∈ R− .

Analizziamo ora il caso in cui `2 è nullo. Supponiamo che esista un intorno I di
x0 tale che

• f2(x) > 0 ∀x ∈ I ∩X\{x0} (f2 definitivamente positiva) ;

• f2(x) < 0 ∀x ∈ I ∩X\{x0} (f2 definitivamente negativa) .

Il limite della funzione f1/f2 è

• +∞ se `1 > 0, `2 = 0 e f2 è definitivamente positiva;

• −∞ se `1 > 0, `2 = 0 e f2 è definitivamente negativa;
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• −∞ se `1 < 0, `2 = 0 e f2 è definitivamente positiva;

• +∞ se `1 < 0, `2 = 0 e f2 è definitivamente negativa.

La formula (3.17) non si applica nel caso in cui il secondo membro assume una
delle seguenti espressioni

(I3)
0

0
;

(I4)
±∞
±∞

.

Le (I3), (I4) sono ulteriori casi di “forme indeterminate”.

Esempio 3.5.1. - Assegnati due polinomi

P (x) = a0 x
n + a1 x

n−1 + · · ·+ an , Q(x) = b0 x
m + b1 x

m−1 + · · ·+ bm ,

con a0, b0 6= 0, si ha

(3.18)
P (x)

Q(x)
= xn−m

a0

b0

1 +
a1

a0

1

x
+ · · ·+ an

a0

1

xn

1 +
b1
b0

1

x
+ · · ·+ bm

b0

1

xm

.

Si ha allora

lim
x→+∞

P (x)

Q(x)
=



a0

b0
se n = m

+∞ se n > m e
a0

b0
> 0

−∞ se n > m e
a0

b0
< 0

0 se n < m .

Per quanto riguarda il limite per x che diverge negativamente del rapporto (3.18)
bisogna tener conto che il comportamento della funzione xn−m dipende dalla
parità dell’esponente.

Occupiamoci ora di stabilire il limite della funzione

(3.19) x −→ f1(x)f2(x)

con f1 strettamente positiva.

Proposizione 3.5.4. - Sussistano le (3.14) con `1, `2 ∈ R. Se `1 > 0 si ha

(3.20) lim
x→x0

f1(x)f2(x) = `1
`2 .

In particolare se le funzioni f1, f2 sono continue in x0 e f1(x0) > 0 la funzione
(3.19) è continua in x0.
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Dimostrazione. Per la continuità delle funzioni esponenziale e logaritmo (cfr.
teo. 3.3.2), ricordando le prop. 3.5.2 e 3.4.1, abbiamo

lim
x→x0

f1(x)f2(x) = lim
x→x0

ef2(x) log f1(x)

= elimx→x0
[f2(x) log f1(x)] = e`2 log `1 = `1

`2

ovvero la (3.20).

La formula (3.20) è suscettibile delle seguenti estensioni:

• `1+∞ = +∞ se `1 > 1 oppure `1 = +∞ ;

• `1−∞ = 0 se `1 > 1 oppure `1 = +∞ ;

• `1+∞ = 0 se `1 ∈ [0, 1[ ;

• `1−∞ = +∞ se `1 ∈ [0, 1[ .

Si può dare quindi significato alla potenza di due elementi di R nei seguenti
ulteriori casi

(E12) se a > 1 ovvero a = +∞ allora a+∞ = +∞ e a−∞ = 0 ;

(E13) se a ∈ [0, 1[ allora a+∞ = 0 e a−∞ = +∞ .

La formula (3.20) non si applica quando il seguente limite

lim
x→x0

[f2(x) log f1(x)]

si presenta nella forma indetermina (I2). Abbiamo quindi le seguenti ulteriori
“forme indeterminate”.

(I5) 00 ;

(I6) 1±∞ ;

(I7) (+∞)0 .

3.6 Il numero e

Un procedimento alternativo per definire il numero di Nepero (1.25) passa
attraverso la successione il cui termine generale è

(3.21)

(
1 +

1

n

)n
.

La quantità (3.21) rappresenta il capitale maturato a seguito di un investimento
per il quale venga riconosciuto l’interesse annuale del cento per cento, nell’ipotesi
ulteriore che gli interessi vengano capitalizzati n volte a periodi regolari. Si
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tratta ovviamente di calcolare gli interessi composti ed è ragionevole accettare
l’idea che risulta più vantaggiosa quella proposta di capitalizzazione che preveda,
a parità di interesse corrisposto, un numero maggiore di intervalli intermedi in
cui gli interessi via via maturati si aggiungono al capitale. Tali considerazioni
suggeriscono che la successione (3.21) deve essere crescente. Poiché(

1 +
1

n+ 1

)n+1

(
1 +

1

n

)n =

1 +
1

n+ 1

1 +
1

n


n+1(

1 +
1

n

)

=

(
1− 1

(n+ 1)2

)n+1
n+ 1

n

(per la disuguaglianza (1.6))

≥
(

1− 1

n+ 1

)
n+ 1

n
= 1

risulta infatti (
1 +

1

n+ 1

)n+1

>

(
1 +

1

n

)n
.

La successione (3.21) è regolare per il teo. 3.3.2: sia ` il suo limite. Si ha(
1 +

1

n

)n
=

n∑
k=0

(
n

k

)
1

nk

= 1 + 1 +
1

2!

n(n− 1)

n2
+

1

3!

n(n− 1)(n− 2)

n3
+ · · ·+ 1

n!

n!

nn

< 1 + 1 +
1

2
+

1

3!
+ · · ·+ 1

n!
=

n∑
k=0

1

k!
.

Per il teo. 3.2.5 e la (1.25) abbiamo ` ≤ e. Fissato m, se n > m risulta(
1 +

1

n

)n
=

n∑
k=0

1

k!

n(n− 1) · · · (n− k + 1)

nk

≥
m∑
k=0

1

k!

n(n− 1) · · · (n− k + 1)

nk
.

Per ogni k si ha (cfr. es. 3.5.1)

lim
n→∞

n(n− 1) · · · (n− k + 1)

nk
= 1 .
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Per il teo. 3.2.5 abbiamo

` = lim
n→∞

(
1 +

1

n

)n
≥

m∑
k=0

1

k!
.

Ancora per la (1.25) si ha ` ≥ e. Possiamo quindi concludere che

(3.22) e = sup
n

(
1 +

1

n

)n
= lim
n→∞

(
1 +

1

n

)n
.

La successione il cui termine generale è

(3.23)

(
1 +

1

n

)n+1

tende ovviamente ad e. Essa è però decrescente. Bisogna verificare che(
1 +

1

n

)n+1

<

(
1 +

1

n− 1

)n
ovvero

1 +
1

n
<

(
1 +

1

n− 1

)n
(

1 +
1

n

)n =

(
1 +

1

n2 − 1

)n
.

Quest’ultima relazione è conseguenza della disuguaglianza (1.6); si ha infatti(
1 +

1

n2 − 1

)n
> 1 +

n

n2 − 1
> 1 +

1

n
.

Possiamo quindi affermare che il numero di Nepero è l’estremo inferiore della
successione il cui termine generale è (3.23). In definitiva abbiamo

(3.24)

(
1 +

1

n

)n
< e <

(
1 +

1

n

)n+1

,

da cui

e−
(

1 +
1

n

)n
<

1

n

(
1 +

1

n

)n
≤ e

n
.

Un confronto con la (1.26) porta a concludere che la successione il cui termine
generale è (3.21) converge ad e meno rapidamente della successione il cui termine
generale è (1.25).

3.7 La lista dei “limiti notevoli”

In tale paragrafo sono raggruppati alcuni limiti tutti in forma indeterminata.
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Osserviamo innanzitutto che le seguenti diseguaglianze

0 < | sinx| < |x| , 0 < 1− cosx < | sinx| ∀x ∈]− π/2, π/2[\{0}

comportano, via il teo. 3.2.6, che

lim
x→0

sinx = 0(3.25)

lim
x→0

cosx = 1 .(3.26)

Le (3.25) e (3.26) confermano quanto già osservato in relazione alla continuità
delle funzioni seno e coseno. Dalla diseguaglianza

sinx < x < tanx , x ∈]0, π/2[

discende che

(3.27) cosx <
sinx

x
< 1 , x ∈]− π/2, π/2[\{0} .

Per la (3.26) e per il teo. 3.26 si ha

(3.28) lim
x→0

sinx

x
= 1 .

Osservato che

1− cosx = 2 sin2
(x

2

)
,

per la (3.28) e per le prop. 3.5.2, 3.4.1 si ha

lim
x→0

1− cosx

x
= 0(3.29)

lim
x→0

1− cosx

x2
=

1

2
.(3.30)

Consideriamo la funzione

x ∈ [−1, 1]\{0} → arcsinx

x
.

Essa può considerarsi come composta dalle funzione arcoseno e

y ∈ [−π/2, π/2]\{0} → y

sin y
.

Per la prop. 3.4.1 e per la (3.28) si ha allora

lim
x→0

arcsinx

x
= 1 .
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Si verifica facilmente che

lim
x→0

tanx

x
= 1 , lim

x→0

arctanx

x
= 1 .

Consideriamo ora la funzione

x ∈ R\[−1, 0] −→
(

1 +
1

x

)x
.

La “funzione parte intera” di x è definita nel modo seguente

x ∈ R −→ [x] = max{n ∈ Z : n ≤ x} .

Essendo [x] ≤ x < [x] + 1 risulta

(3.31)

(
1 +

1

[x] + 1

)[x]

<

(
1 +

1

x

)x
<

(
1 +

1

[x]

)[x]+1

.

La funzione a primo membro nella (3.31) è la funzione composta della funzione
parte intera e di

n ∈ N −→
(

1 +
1

n+ 1

)n
.

Utilizzando la prop. 3.4.1 abbiamo

lim
x→∞

(
1 +

1

[x] + 1

)[x]

= e .

In modo analogo si prova che

lim
x→∞

(
1 +

1

[x]

)[x]+1

= e .

La (3.31) consente di applicare il teo. 3.2.5; si ha allora

(3.32) lim
x→+∞

(
1 +

1

x

)x
= e .

Sia ora x < −1. Risulta(
1 +

1

x

)x
=

(
1− 1

|x|

)−|x|
=

(
1 +

1

|x| − 1

)|x|
da cui ancora per la prop. 3.4.1

(3.33) lim
x→−∞

(
1 +

1

x

)x
= e .
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Proposizione 3.7.1. - Se a ∈ R si ha

(3.34) lim
n→+∞

(
1 +

a

n

)n
= ea

e, in particolare,

(3.35) lim
n→+∞

(
1− 1

n

)n
=

1

e
.

Dimostrazione. Essendo (
1 +

a

n

)n
=

[(
1 +

a

n

)n
a

]a
,

per la prop. 3.4.2 e per la (3.32), se a > 0, ovvero per la (3.33), se a < 0, risulta

lim
n→+∞

(
1 +

a

n

)n
a

= e .

Per la continuità della funzione potenza si ottiene la (3.34).

Consideriamo la funzione

x ∈]− 1,+∞[\{0} → (1 + x)
1
x .

Essa è composta dalle funzioni

x ∈]− 1,+∞[\{0} −→ 1

x
, y ∈ R\[−1, 0] −→

(
1 +

1

y

)y
.

Osservato che

lim
x→0−

1

x
= −∞ , lim

x→0+

1

x
= +∞ ,

dalle (3.32) e (3.33), facendo uso della prop. 3.4.1, si ha

lim
x→0−

(1 + x)
1
x = lim

x→0+
(1 + x)

1
x = e

e quindi

(3.36) lim
x→0

(1 + x)
1
x = e .

Dalla (3.36) e dalla continuità della funzione logaritmo si ha intanto

(3.37) lim
x→0

loga(1 + x)

x
= loga e

e quindi, in particolare,

(3.38) lim
x→0

log(1 + x)

x
= 1 .
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Consideriamo la funzione

x ∈ R\{0} → ax − 1

x
.

Essa può considerarsi come composta da

x→ ax − 1 , y → y

loga(1 + y)
.

Per la prop. 3.4.1 e la (3.37) si ha allora

(3.39) lim
x→0

ax − 1

x
= log a .

In particolare abbiamo

(3.40) lim
x→0

ex − 1

x
= 1 .

Si ha

(1 + x)a − 1

x
=
ea log(1+x) − 1

x
= a

ea log(1+x) − 1

a log(1 + x)

log(1 + x)

x
.

Per la prop. 3.4.1 e la (3.40) risulta

lim
x→0

ea log(1+x) − 1

a log(1 + x)
= lim
y→0

ey − 1

y
= e .

In definitiva abbiamo

(3.41) lim
x→0

(1 + x)a − 1

x
= a .

3.8 Il criterio di convergenza di Cauchy

Per il teo. 3.2.2 una successione convergente è limitata. D’altra parte, come già
osservato in precedenza, la limitatezza da sola non assicura la convergenza. Le
successioni limitate hanno però una notevole proprietà illustrata nel seguente
risultato.

Teorema 3.8.1. - Da ogni successione limitata {an} è possibile estrarre una
successione convergente.

Dimostrazione. Se il sostegno della successione è finito allora c’è un valore ā
che si ripete infinite volte nella successione. Basta allora considerare la sotto-
successione i cui termini sono per l’appunto quelli uguali ad ā. Se il sostegno è
infinito esso, in quanto limitato, per il teo. 1.6.1 ha un punto di accumulazione
ā. Abbiamo già osservato (cfr. teo. 3.4.1) che ā è limite di una successione
di punti del sostegno di {an}. Dobbiamo ora riprendere la dimostrazione di
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detta proposizione per fare in modo che la successione convergente a ā sia una
sottosuccessione di {an}. Consideriamo l’intorno I1 =]ā− 1, ā+ 1[ e indichiamo
con {ak,1} la sottosuccessione di {an} costituita dai termini che appartengono
a I1. Si consideri l’intervallo I2 =]ā − 1/2, ā + 1/2[ e indichiamo con {ak,2} la
successione estratta da {ak,1} costituita dagli elementi che appartengono a I2.
Procedendo allo stesso modo per ogni intervallo Ik =]a0 − 1/k, a0 + 1/k[ viene
a generarsi una tabella del tipo

a1,1 a2,1 · · · an,1 · · ·

a1,2 a2,2 · · · an,2 · · ·

· · · · · · · · · · · · · · · .

a1,k a2,k · · · an,k · · ·

· · · · · · · · · · · · · · ·

Ogni riga è estratta della successione dei termini della riga precedente. Consi-
deriamo la successione diagonale {ak,k}. Per ogni k il termine ak+1,k+1 segue
ak,k nella successione {an}. Infatti i primi k termini della successione che oc-
cupa la riga (k + 1)-ma, possono, nella peggiore delle ipotesi, occupare i primi
k posti della riga precedente: ciò implica che l’indice che compete a ak+1,k+1

nella successione {an} è strettamente maggiore dell’indice del termine ak,k. La
successione diagonale è ancora una sottosuccessione di {an}. Si ha

ā− 1

k
< ak,k < ā+

1

k
.

Per il teo. 3.2.6 la sottosuccessione {ak,k} tende ad ā.

Dal teo. 3.8.1 si ottiene il seguente fondamentale risultato noto come “criterio
di convergenza di Cauchy”.

Teorema 3.8.2. - Condizione necessaria e sufficiente affinché una successione
{an} sia convergente è che sussista la seguente condizione

(3.42) ∀ε > 0 ∃ν : ∀n,m > ν |an − am| < ε .

Dimostrazione. Si verifica facilmente che la (3.42) è necessaria. Verifichiamo
che essa è condizione sufficiente. Dalla (3.42), se n > ν si ha |aν+1 − an| < ε e
quindi

aν+1 − ε < an < aν+1 + ε .

Tale relazione comporta che la successione {an} è limitata. Per il teo. 3.8.1
esiste quindi una sottosuccessione {ank

} convergente; sia ` il suo limite. Poiché
la successione di indici {nk} diverge è possibile determinare un indice κ tale che
nk > ν se k > κ. Dalla (3.42), se n > ν e k > κ, si ha

|an − ank
| < ε
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e quindi, passando al limite su k,

|an − `| ≤ ε ∀n > ν .

Abbiamo in tal modo ottenuto l’asserto.

Il criterio di convergenza di Cauchy può essere formulato per le funzioni nel
modo seguente.

Teorema 3.8.3. - La funzione f è convergente in x0 se e solo se

(3.43) ∀ε > o ∃I ∈ I(x0) : |f(x′)− f(x′′)| < ε ∀x′, x′′ ∈ I ∩X\{x0}

con X insieme di definizione di f .

Dimostrazione. Limitiamoci anche in questo caso a verificare che la (3.43) im-
plica la convergenza di f in x0. Consideriamo una successione {xn} di punti di
X\{x0} con limite x0. In corrispondenza dell’intervallo I riportato nella (3.43)
si può determinare un indice ν tale che xn ∈ I per n > ν. Si ha allora

|f(xn)− f(xm)| < ε ∀n,m > ν .

Quindi la successione {f(xn)} soddisfa la (3.42) ed è pertanto convergente.
Basta allora applicare il teo. 3.4.2 per giungere alla conclusione.

3.9 Massimo e minimo limite

Se {an} è una successione limitata è possibile definire due successioni i cui
termini generali sono

e′k = inf
n≥k

an , e′′k = sup
n≥k

an .

Si ha

e′k ≤ e′k+1 ≤ e′′k+1 ≤ e′′k .

Quindi le successioni {e′k} e {e′′k} sono limitate, la prima crescente, la seconda
decrescente. Per il teo. 3.3.2 si ha

`′ = lim
k→∞

e′k = sup
k
e′k ≤ inf

k
e′′k = lim

k→∞
e′′k = `′′ .

Definizione 3.9.1. - Le quantità `′ e `′′, note come “minimo limite” e “mas-
simo limite” di {an}, si denotano rispettivamente con i simboli

lim inf
n→+∞

an , lim sup
n→+∞

an .

Sussiste il seguente risultato.
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Proposizione 3.9.1. - Il massimo (minimo) limite gode delle proprietà

(α) ∀ε > 0 ∃ν : ∀n ≥ ν an < `′′ + ε (an > `′ − ε),

(β) ∀ε > 0 e ∀ν ∃n ≥ ν : an > `′′ − ε (an < `′ + ε).

Dimostrazione. Poiché `′′ è il limite della successione {e′′k}, fissato ε > 0 esiste
un indice ν tale che

e′′ν = sup
n≥ν

an < `′′ + ε .

Quindi, per ogni n ≥ ν, si ha

an ≤ sup
n≥ν

an < `′′ + ε

ovvero (α). Fissati ε e ν, essendo

e′′ν = sup
n≥ν

an ,

per la seconda proprietà dell’estremo superiore esiste un indice n ≥ ν tale che

an > e′′ν − ε ≥ `′′ − ε ,

cioè (β).

In modo analogo si procede per le proprietà relative al minimo limite.

Proposizione 3.9.2. - Le condizioni (α) e (β) caratterizzano il massimo e il
minimo limite nel senso che se esistono valori λ′′ e λ′ che le verificano allora
deve essere λ′′ = `′′ e λ′ = `′.

Dimostrazione. Limitiamoci al caso del minimo limite. Se λ′ < `′ scegliamo ε
in modo tale che risulti λ′+ ε < `′− ε. Per la proprietà (α) se n > ν deve essere
an > `′ − ε. D’altra parte, per la proprietà (β) riferita a λ′, infiniti termini
della successione devono essere minori di λ′ + ε. L’assurdo cui siamo pervenuti
implica che λ′ ≥ `′. In modo analogo si prova che λ′ ≤ `′. Deve quindi essere
λ′ = `′.

Come conseguenza dei risultati ottenuti si ottiene la seguente caratterizzazione
delle successioni convergenti.

Proposizione 3.9.3. - Una successione {an} converge se e solo se il massimo
ed il minimo limite coincidono. Risulta allora

(3.44) lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an .
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Dimostrazione. La successione converga a `. Allora ` soddisfa le condizioni (α)
e (β) relative al massimo e minimo limite. Per la prop. 3.9.2 vale la (3.44).
Viceversa, se vale la (3.44), allora dalla proprietà (α), relativa sia al massimo
che al minimo limite, si ha

∀ε > 0 ∃ν : ∀n > ν `− ε < an < l + ε ;

quindi la successione converge ad `.

Vediamo come è possibile procedere se si elimina l’ipotesi di limitatezza della
successione {an}. Distinguiamo vari casi.
1 - Supponiamo che {an} sia limitata inferiormente e non limitata superiormen-
te. In tal caso si pone

lim sup
n→∞

an = +∞

mentre è ancora
lim inf
n→∞

an = lim
k→∞

e′k .

Ovviamente quest’ultimo limite può anche essere +∞.
2 - Se {an} è limitata superiormente ma non limitata inferiormente si pone

lim inf
n→∞

an = −∞

e, ancora,
lim sup
n→∞

an = lim
k→∞

e′′k .

Quest’ultimo limite può anche essere −∞.
3 - Se la successione non è limitata né superiormente né inferiormente si pone

lim inf
n→∞

an = −∞ , lim sup
n→∞

an = +∞ .

Vale la pena di osservare che l’enunciato della prop. 3.9.3 continua a sussistere
nel senso che una successione risulta regolare se e soltanto se il minimo limite
coincide con il massimo limite.
Per concludere è utile richiamare il seguente risultato che in qualche modo spiega
perché `′ e `′′ assumono il nome di minimo e massimo limite.

Proposizione 3.9.4. - Data una successione {an}, esistono sottosuccessioni
che tendono al minimo limite e sottosuccessioni che tendono al massimo limi-
te. Inoltre non esistono sottosuccessioni che tendono ad un limite strettamente
maggiore del massimo limite o strettamente minore del minimo limite.

Dimostrazione. Assumiamo che il massimo e il minimo limite siano finiti. La
condizione (α) assicura che nessuna sottosuccessione di {an} può tendere ad un
valore più grande del massimo limite o più piccolo del minimo limite. Le due
condizioni (α), (β) comportano che in ogni intorno del minimo e del massimo
limite ci sono infiniti termini della successione. Basta allora procedere come
nella dimostrazione del teo. 3.8.1 per concludere che esistono sottosuccessioni
che tendono al massimo o al minimo limite. Più semplice è la verifica nel caso
in cui il massimo o il minimo limite non siano finiti.
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Concludiamo osservando che la nozione di massimo e minimo limite può essere
formulata anche per funzioni. Ci asteniamo per brevità dal fornire i dettagli di
tale estensione.

3.10 Medie aritmetiche e geometriche

La successione di termine generale

An =
a1 + · · ·+ an

n

è detta successione delle medie aritmetiche di {an}. Sussiste il seguente risultato.

Proposizione 3.10.1. - Se {an} è regolare anche {An} è regolare e si ha

lim
n→+∞

an = lim
n→+∞

An .

Dimostrazione. Sia ` il limite di {an}. Se ` ∈ R, Fissato ε, determiniamo ν in
modo che

|an − `| < ε ∀n > ν .

Se n > ν risulta pertanto

|An − `| =

∣∣∣∣∣ 1n
n∑
k=1

(ak − `)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
ν∑
k=1

(ak − `)

∣∣∣∣∣+
1

n

n∑
k=ν+1

|an − `|

≤

∣∣∣∣∣ 1n
ν∑
k=1

(ak − `)

∣∣∣∣∣+
n− ν
n

ε .

Poiché

lim
n→+∞

1

n

ν∑
k=1

(ak − `) = 0

è possibile determinare un indice a partire dal quale∣∣∣∣∣ 1n
ν∑
k=1

(ak − `)

∣∣∣∣∣ < ε .

In definitiva, per n abbastanza grande si ha |An − `| < 2 ε da cui l’asserto.
Sia ` = +∞. Fissato K determiniamo ν in modo tale che

an > K , ∀n > ν .
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Se n > ν si ha

An =
a1 + · · ·+ aν

n
+

1

n

n∑
k=ν+1

ak >
a1 + · · ·+ aν

n
+
n− ν
n

K .

Poiché la successione di termine generale

a1 + · · ·+ aν
n

è infinitesima è possibile scegliere un indice ν′ a partire dal quale risulti

a1 + · · ·+ aν
n

> −K
4
.

Se facciamo in modo che a partire da tale indice risulti anche

n− ν
n

>
1

2

si ha

An >
k

4
, ∀n > ν′ ;

pertanto {An} diverge positivamente. La dimostrazione varia di poco se {an}
diverge negativamente.

Se {an} è a termini positivi la successione di termine generale

Gn = n
√
a1 a2 · · · an

è nota come successione delle medie geometriche di {an}. Si può dimostrare che

Gn ≤ An .

Proposizione 3.10.2. - Se {an} è regolare anche {Gn} è regolare e si ha

lim
n→+∞

an = lim
n→+∞

Gn .

Dimostrazione. Sia ` il limite di {an}. Si ha allora

lim
n→∞

logGn = lim
n→∞

log a1 + · · · log an
n

(per la prop. 3.10.1)

= lim
n→∞

log an =


−∞ se ` = 0

log ` se ` > 0

+∞ se ` = +∞

da cui ovviamente l’asserto.
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Osservazione 3.10.1. - La successione delle medie aritmetiche può essere
regolare anche se tale non è la successione data. Ad esempio la successione
{(−1)n+1} non è regolare mentre la successione delle medie aritmetiche è in-
finitesima. Un’analoga considerazione può essere fatta per la successione delle
medie geometriche. Si pensi alla successione il cui termine generale è 2(−1)n+1

.

Esempio 3.10.1. - Consideriamo la successione

1, 2,
3

2
, · · · , n

n− 1
, · · · .

Per la prop. 3.10.2 si ha

(3.45) lim
n→∞

n
√
n = 1 .

Dalla (3.45) si deduce che

lim
n→∞

log n

n
= 0 .

Più in generale si ha

Proposizione 3.10.3. - Sia {an} una successione a termini positivi. Se la
successione

(3.46) a1,
a2

a1
, · · · , an

an−1
, · · ·

è regolare tale è anche la successione { n
√
an} e si ha

(3.47) lim
n→∞

n
√
an = lim

n→∞

an
an−1

.

Osservazione 3.10.2. - La successione { n
√
an} può essere regolare anche se

tale non è la successione (3.46). Un esempio è costituito dalla successione i cui
termini di posto dispari sono uguali a 1, quelli di posto pari uguali a 2.

La (3.47) è suscettibile della seguente generalizzazione (cfr. anche [12]).

Proposizione 3.10.4. - Per ogni successione a termini positivi si ha

(3.48) lim inf
n→∞

an+1

an
≤ lim inf

n→∞
n
√
an ≤ lim sup

n→∞
n
√
an ≤ lim sup

n→∞

an+1

an
.

Dimostrazione. Se
h > lim sup

n→∞

an+1

an

esiste un indice ν tale che

an+1

an
< h , ∀n ≥ ν .

Usando il principio di induzione si ha

an <
aν
hν
hn , ∀n > ν
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e, quindi,

n
√
an <

n

√
aν
hν
h , ∀n > ν .

Si ha allora
lim sup
n→∞

n
√
an ≤ h

ovvero, data l’arbitrarietà di h,

lim sup
n→∞

n
√
an ≤ lim sup

n→∞

an+1

an
.

in modo analogo si dimostra l’altra disuguaglianza.

Proposizione 3.10.5. - Sia {an} una successione a termini positivi. Se

(3.49) ` = lim
n→∞

n
√
an < 1(> 1)

allora
lim
n→∞

an = 0(= +∞) .

Dimostrazione. Scelto h ∈]`, 1[ si ha definitivamente

(3.50) n
√
an < h

e, quindi, sempre definitivamente an < hn. Poiché h < 1 la successione {hn} è
infinitesima; tale è anche la successione {an}. Passando ai reciproci si ottiene
l’asserto se ` > 1

Osservazione 3.10.3. - Per la (3.47) e per la prop. 3.10.5, se

lim
n→∞

an
an−1

< 1 ,

{an} è infinitesima.

Proposizione 3.10.6. - Si ha

(3.51) lim
n→∞

n
√
n!

n
=

1

e
.

Dimostrazione. Risulta

lim
n→∞

n
√
n!

n
= lim

n→∞
n

√
n!

nn

(per la (3.47))

= lim
n→∞

n!(n− 1)n−1

nn(n− 1)!
= lim
n→∞

(
n− 1

n

)n−1

da cui la (3.51) per la (3.35).
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Sia α > 0 e a > 1; consideriamo le quattro successioni i cui termini generali
sono

(3.52) nα , an , n! , nn .

Per la (3.45) si ha

lim
n→∞

n

√
nα

an
= a−1 < 1 ;

quindi per la prop. 3.10.5 abbiamo

lim
n→∞

nα

an
= 0 .

Si ha inoltre

lim
n→∞

an

n!
= 0

in quanto

lim
n→∞

n

√
an

n!
= 0 .

Infine, dalla (3.51) e dalla prop. 3.10.5 si ha

lim
n→∞

n!

nn
= 0 .

In definitiva le quattro successioni (3.52), prese nell’ordine, divergono ciascuna
più rapidamente di tutte quelle che la precedono.
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Capitolo 4

Funzioni continue

4.1 Il teorema di Weierstrass

Premettiamo alcune nozioni e risultati di natura topologica.

Definizione 4.1.1. - Un insieme C si dice “chiuso” se contiene tutti i suoi
punti di accumulazione. Un insieme A dicesi “aperto” se per ogni x ∈ A esiste
un intorno di x contenuto in A.

Proposizione 4.1.1. - Un insieme è chiuso (aperto) se e solo se il suo com-
plementare è aperto (chiuso).

Proposizione 4.1.2. - L’unione di una famiglia infinita di aperti è un aperto.
L’intersezione di una famiglia infinita di chiusi è un chiuso.

Teorema 4.1.1. - Un insieme X è chiuso se e solo se ogni successione conver-
gente di punti di X ha per limite un punto di X.

Dimostrazione. Sia X chiuso. Se {xn} è una successione di punti di X il cui
limite è x0 allora, se x0 non appartiene al sostegno della successione, ne è un
punto di accumulazione. Quindi è anche punto di accumulazione per X; poiché
X è chiuso allora x0 ∈ X. Supponiamo ora che ogni successione convergente di
punti di X ha per limite un punto di X. Basta far riferimento al teo. 3.4.1 per
concludere che ogni punto di accumulazione di X appartiene a X.

Definizione 4.1.2. - Un sottoinsieme K di R dicesi “compatto” se ogni suc-
cessione di suoi punti ha una sottosuccessione convergente ad un punto dell’in-
sieme.

Molto utile è la seguente caratterizzazione dei compatti di R.

Teorema 4.1.2. - Un sottoinsieme K di R è compatto se e solo se esso è chiuso
e limitato.
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Dimostrazione. Sia K compatto. Come conseguenza del teo. 4.1.1 esso è intanto
chiuso. Dimostriamo che è limitato. Se cośı non fosse, per ogni n esisterebbe
un elemento xn di K tale che |xn| > n. Sia {xnh

} una sottosuccessione di {xn}
convergente ad un punto x di K. Per la proprietà triangolare si ha

|xnh
− x| ≥ |xnh

| − |x| ≥ nh − |x| .

Quindi la successione {|xnh
− x|} diverge positivamente. Ciò è assurdo dal

momento che la successione{xnh
} tende a x.

Sia K chiuso e limitato. Se {xn} è una successione di punti di K essa, in quanto
limitata, per il teo. 3.8.1 ha una sottosuccessione {xnh

} convergente ad un
numero x. Tale punto è in K essendo K chiuso. Quindi K è compatto.

Teorema 4.1.3. (Teorema di Weierstrass) - Sia f continua in K compatto.
Allora f ha minimo e massimo.

Dimostrazione. Sia
m = inf

K
f .

Se m ∈ R per ogni n ∈ N esiste un elemento xn tale che

(4.1) m ≤ f(xn) < m+
1

n
.

Se m = −∞, allora per ogni n ∈ N esiste un elemento xn tale che

(4.2) f(xn) < −n .

Le (4.1) e (4.2) assicurano che esiste una successione {xn} di punti di K tale
che

(4.3) lim
n→+∞

f(xn) = m.

Per l’ipotesi di compattezza di K, dalla successione {xn} è possibile estrarre
una successione {xnh

} convergente ad un punto x ∈ K. Poiché f è continua,
per la prop. 3.4.2 si ha

lim
h→+∞

f(xnh
) = f(x) .

Ricordando la (4.3) abbiamo allora m = f(x); quindi m è il minimo di f e x un
punto di minimo.
In modo analogo si ragiona per provare che f è dotata di massimo.

Va rimarcato che l’ipotesi di compattezza è essenziale. Si possono esibire esempi
di funzioni continue, definite in insiemi non chiusi e/o non limitati, prive di
minimo e/o massimo.
Per concludere ricordiamo che il teorema ha carattere puramente esistenziale;
non fornisce cioè un procedimento costruttivo che consenta di calcolare, in modo
esatto o anche approssimato, il minimo e il massimo di una funzione. Vedremo
più avanti che sarà possibile, in certi casi, attivare procedure per l’individuazio-
ne dei punti di minimo e massimo di una funzione; tali metodi funzionano in
presenza di ulteriori ipotesi di regolarità sulla funzione.
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4.2 Il teorema di Cantor

Sia f continua in un insieme X. La continuità in x0 ∈ X comporta che

∀ε > 0 ∃δε,x0
: |f(x)− f(x0)| < ε ∀x ∈ X∩]x0 − δε,x0

, x0 + δε,x0
[ .

Con la notazione δε,x0
si è voluto sottolineare che il valore di δ dipende, oltre

che da ε, anche dal punto x0.
Può accadere che δ possa essere scelto in modo da risultare indipendente da x0.
Una tale proprietà può essere riformulata nel modo seguente.

Definizione 4.2.1. - La funzione f dicesi “uniformemente continua” in X se,
comunque si fissi ε < 0, esiste un δ tale che

|f(x′)− f(x′′)| < ε

per ogni x′, x′′ ∈ X con |x′ − x′′| < δ.

Ovviamente una funzione uniformemente continua è continua. Il seguente risul-
tato fornisce un criterio per riconoscere quando una funzione continua è anche
uniformemente continua.

Teorema 4.2.1. (Teorema di Cantor) - Se f è continua in un compatto K
allora essa è uniformemente continua.

Dimostrazione. Neghiamo quanto affermato nella def. 4.2.1.
Esiste allora un ε > 0 tale che, comunque si fissi n ∈ N, è possibile determinare
due elementi x′n, x

′′
n ∈ K, soddisfacenti le condizioni

(4.4) |x′n − x′′n| <
1

n
,

e

(4.5) |f(x′n)− f(x′′n)| ≥ ε .

Essendo K compatto, da {x′n} si può estrarre una successione {x′nh
} convergente

ad un punto x′ ∈ K. Da {x′′nh
} estraiamo una successione convergente ad un

punto x′′ ∈ K; per semplicità di notazione indichiamo ancora con {x′′nh
} tale

sottosuccessione. Per la (4.4) si ha

|x′nh
− x′′nh

| < 1

nh

da cui, passando al limite per h che tende ad infinito, abbiamo x′ = x′′.
Per la continuità di f si ha allora

(4.6) lim
h→+∞

f(x′nh
) = lim

h→+∞
f(x′′nh

) = f(x′) .

D’altra parte per la (4.5) deve essere

|f(x′nh
)− f(x′′nh

)| ≥ ε .

Siamo pervenuti ad un assurdo in quanto, per la (4.6), l’espressione a primo
membro è infinitesima al divergere di h.
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Osservazione 4.2.1. - Come già osservato in relazione al teorema di Weier-
strass l’ipotesi di compattezza di K non può essere indebolita.
Si pensi ad una funzione continua in [a, b[ e divergente in b. Se essa fosse
uniformemente continua si avrebbe:

∀ε ∃δ : |f(x′)− f(x′′)| < ε ∀x′, x′′ ∈]b− δ, b[ .

Per il criterio di convergenza di Cauchy (3.43) la funzione f risulterebbe allora
convergente in b. L’assurdo cui siamo pervenuti prova che f non è uniforme-
mente continua.

4.3 Il teorema degli zeri

Nei precedenti due paragrafi ha giocato un ruolo centrale l’ipotesi di compattezza
dell’insieme di definizione di f . In questo paragrafo invece la proprietà che serve
è nota come connessione che, nel caso dei sottoinsiemi di R, equivale a dire che
l’insieme di definizione deve essere un intervallo.

Teorema 4.3.1. (Teorema degli zeri) - Sia f continua in [a, b]. Se

(4.7) f(a) f(b) < 0

esiste almeno una soluzione (uno “zero”) dell’equazione f(x) = 0.

Dimostrazione. Per fissare le idee assumiamo f(a) < 0 e f(b) > 0. Illustriamo
un procedimento, noto come “metodo di bisezione” che fornisce anche un al-
goritmo numerico per il calcolo approssimato di una soluzione. Sia c il punto
medio di [a, b]. Se f(c) = 0 la procedura si arresta. Supponiamo quindi che sia
f(c) 6= 0. Tra i due intervalli [a, c] e [c, b] selezioniamo quello ai cui estremi f
assume valori di segno opposto. Se per esempio f(c) < 0 l’intervallo scelto è
[c, b]; se invece f(c) > 0 la scelta cade sull’intervallo [a, c]. Etichettiamo come
[a1, b1] l’intervallo selezionato: si ha ovviamente f(a1) < 0 e f(b1) > 0. Sia c1
il punto medio di [a1, b1]. Seguiamo lo stesso procedimento appena descritto.
Se f(c1) = 0 abbiamo trovato la soluzione; in caso contrario si seleziona un
ulteriore intervallo [a2, b2] con lo stesso criterio utilizzato per la scelta di [a1, b1].
Ovviamente il procedimento o si arresta dopo un numero finito di passi oppure
genera una successione di intervalli [an, bn] con le seguenti caratteristiche:

(i) an ≤ an+1 < bn+1 ≤ bn ;

(ii) bn − an =
b− a

2n
;

(iii) f(an) < 0 , f(bn) > 0.

Le condizioni (i) e (ii) assicurano che le successioni {an} e {bn} tendono allo
stesso limite x0. Dalla (iii), per il teo. 3.2.5, si ha

f(x0) = lim
n→+∞

f(an) ≤ 0 , f(x0) = lim
n→+∞

f(bn) ≥ 0 .
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Deve quindi essere f(x0) = 0. I termini an e bn vanno intesi come valori appros-
simati, per difetto e per eccesso, della soluzione x0. Sia εn = x0 − an l’errore
che si commette se si approssima x0 con an. Per la (ii) si ha

εn ≤
b− a

2n
.

Da osservare che ad ogni passo l’errore al più si dimezza: il procedimento ha
una velocità di convergenza relativamente bassa.
Diamo ora una ulteriore dimostrazione. Sia

X = {x ∈ [a, b] : f(x) < 0}

e sia x0 = supX. Verifichiamo intanto che x0 è interno all’intervallo. Essendo
f(a) < 0 risulta anche f(x) < 0 per x appartenente ad un intervallo [a, a + δ];
quindi x0 > a+δ. Poiché f(b) > 0 esiste un δ tale che f(x) > 0 per x ∈ [b−δ, b];
quindi x0 < b− δ.
Consideriamo un qualsiasi intorno di x0: a destra la funzione f assume valori
non negativi, a sinistra, essendo x0 l’estremo superiore di X, c’è almeno un
punto in cui f assume valore negativo. Poiché f converge in x0 a f(x0), quanto
detto si accorda solo con l’eventualità che sia f(x0) = 0.

Come immediata conseguenza abbiamo il seguente risultato noto come “teorema
di Bolzano”.

Teorema 4.3.2. - Una funzione f continua in un intervallo [a, b] assume tutti
i valori compresi tra il suo minimo e il suo massimo.

Dimostrazione. Per il teo. 4.1.3 la funzione f ha minimo e massimo m e M .
Siano x, x due punti in cui f assume il valore minimo e massimo. Fissato
h ∈]m,M [ si applichi il teo. 4.3.1 alla restrizione all’intervallo di estremi x, x
della funzione f(x)− h .

Concludiamo con il seguente utile risultato.

Lemma 4.3.1. - Sia f continua in [a, b] ed iniettiva. Allora f è strettamente
monotona e la sua inversa è continua.

Dimostrazione. Per fissare le idee assumiamo che sia f(a) < f(b) e dimostriamo
che si ha

(4.8) f(a) < f(x) < f(b)

se x è interno all’intervallo. Infatti, se per esempio fosse f(x) < f(a) allora f
assumerebbe nell’intervallo [x, b] tutti i valori dell’intervallo [f(x), f(b)] quindi
anche il valore f(a); ciò in contrasto con l’ipotesi di iniettività.
Siano x′, x′′ due punti di [a, b] con x′ < x′′. Essendo f(x′) < f(b), la (4.8), con
x′ al posto di a, comporta che f(x′) < f(x′′); quindi f è strettamente crescente.
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Indicato con J l’intervallo codominio di f la funzione inversa

(4.9) y ∈ J −→ f−1(y) ∈ I

è continua per il teo. 3.3.3.



Capitolo 5

Calcolo differenziale

5.1 Definizioni

In questo primo paragrafo riportiamo la definizione di derivata di una funzione
numerica

x ∈ X ⊆ R −→ f(x) ∈ R .
Definizione 5.1.1. - Se x0 è interno a X e

(5.1) lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0) ∈ R

si dice che f è derivabile in x0 e che f ′(x0) è la “derivata” di f in x0.
Se f è derivabile in ogni punto di X essa dicesi derivabile in X.

Il “rapporto incrementale”
f(x)− f(x0)

x− x0

è il coefficiente angolare della retta “secante” il grafico di f passante per i punti
di coordinate (x0, f(x0)) e (x, f(x)). La posizione limite di tali rette al tendere
di x a x0 è la retta di equazione

y = f(x0) + f ′(x0) (x− x0) .

Essa è per definizione la “tangente” al grafico in (x0, f(x0)).

Osservazione 5.1.1. - Il limite sinistro del rapporto incrementale prende il
nome, se finito, di “derivata sinistra” di f in x0 e si denota talvolta con f ′(x−0 ).
Analogamente il limite destro, se finito, è la “derivata destra” di f in x0 e si
denota con il simbolo f ′(x+

0 ). Ovviamente una funzione è derivabile se e solo
se la derivata destra coincide con la derivata sinistra.

Il grafico di una funzione è un primo esempio di curva piana. Con tale termine
si intende un’applicazione iniettiva

(5.2) t ∈ [a, b] −→ (x(t), y(t)) ∈ R2
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con x, y funzioni derivabili in [a, b]. Si assume inoltre che

(5.3) (x′(t), y′(t)) 6= (0, 0) ∀t ∈ [a, b] .

Se t 6= t0 la retta passante per i punti (x(t0), y(t0)) e (x(t), y(t)) ha numeri
direttori

(5.4)

(
x(t)− x(t0)

t− t0
,
y(t)− y(t0)

t− t0

)
.

Il vettore (5.4), al tendere di t a t0, converge al vettore (x′(t0), y′(t0)) non nullo
per la (5.3); esso è un vettore tangente alla curva in (x(t0), y(t0)). La retta di
equazioni parametriche  x = x(t0) + τ x′(t0)

y = y(t0) + τ y′(t0)

é quindi la tangente alla curva nel punto (x(t0), y(t0)). Se si interpreta la curva
come la traiettoria di un punto materiale e la funzione (5.2) come la relativa
legge oraria, allora (x′(t), y′(t)) è il vettore velocitá. La condizione (5.3) assicura
che in nessun istante il punto materiale si arresta.
Una immediata conseguenza della definizione di derivata è il seguente risultato.

Proposizione 5.1.1. - Sia f derivabile in x0; allora f è continua in x0.

Dimostrazione. Basta osservare che

lim
x→x0

[f(x)− f(x0)] = lim
x→x0

(x− x0) lim
x→x0

f(x)− f(x0)

x− x0
= 0

da cui
lim
x→x0

f(x) = f(x0)

ovvero la continuità richiesta.

Il rapporto incrementale di f in x0 viene talvolta scritto nella forma

f(x0 + ∆x)− f(x0)

∆x
=

∆f

∆x
.

La (5.1) diventa

f ′(x0) = lim
∆x→0

∆f

∆x

da cui

lim
∆x→0

∆f − f ′(x0) ∆x

∆x
= 0 .

La funzione
∆x→ ∆f − f ′(x0) ∆x ,
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per ∆x che tende a zero, è quindi, con una terminologia che introdurremo più
avanti, un infinitesimo di ordine superiore al primo, ovvero in simboli

(5.5) ∆f − f ′(x0) ∆x = o(∆x) ;

in tal caso o(t), che si legge “o piccolo di t”, è una funzione tale che

(5.6) lim
t→0

o(t)

t
= 0 .

La funzione lineare in ∆x

∆x −→ df = f ′(x0) ∆x

prende il nome di “differenziale” di f in x0. La (5.5) si scrive nel modo seguente

(5.7) ∆f = df + o(∆x) .

Possiamo quindi introdurre un ulteriore simbolo per denotare la derivata di una
funzione. Infatti, osservato dx è il differenziale della funzione identica, si ha

df = f ′(x0) dx

da cui

(5.8) f ′(x0) =
df

dx
.

5.2 Regole di derivazione

Le prime regole di derivazione riguardano le derivate della somma, del prodotto
e del quoziente di due funzioni derivabili. Per le dimostrazioni rimandiamo ad
un qualsiasi testo di Analisi Matematica 1.

Proposizione 5.2.1. - Siano f, g derivabili in x0.

• Se α, β ∈ R allora αf + βg è derivabile in x0 e si ha

(5.9) (αf + βg)′(x0) = αf ′(x0) + βg′(x0) .

• Il prodotto f g è derivabile in x0 e si ha

(5.10) (f g)′(x0) = f ′(x0) g(x0) + f(x0) g′(x0) .

• Se g(x0) 6= 0 allora il quoziente f/g è derivabile in x0 e si ha

(5.11)

(
f

g

)′
(x0) =

f ′(x0) g(x0)− f(x0) g′(x0)

g2(x0)
.
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Abbiamo descritto in che modo l’operatore di derivazione interagisce con le
operazioni algebriche. Vediamo ora come esso si comporta in relazione a due
operazioni di tipo funzionale, l’inversa di una funzione e la composta di due
funzioni.

Proposizione 5.2.2. - Sia f continua in un intervallo e iniettiva. Se essa è
derivabile in x0 e f ′(x0) 6= 0 allora f−1 è derivabile in y0 = f(x0) e si ha

(5.12) (f−1)′(y0) =
1

f ′(x0)
.

Dimostrazione. Posto

φ(x) =
f(x)− f(x0)

x− x0

si ha
f−1(y)− f−1(y0)

y − y0
=

1

φ(f−1(y))
.

Per il lemma 4.3.1 f−1 è continua; risulta quindi

lim
y→y0

f−1(y) = f−1(y0) = x0 .

La (5.12) discende allora dalla prop. 3.4.1.

Occupiamoci ora della regola di derivazione delle funzioni composte.

Proposizione 5.2.3. - Se f è derivabile in x0 e g in y0 = f(x0) allora g ◦ f è
derivabile in x0 e si ha

(5.13) (g ◦ f)′(x0) = g′(f(x0))f ′(x0) .

Dimostrazione. Consideriamo la funzione

γ(y) =


g(y)− g(y0)

y − y0
se y 6= y0

g′(y0) se y = y0 .

Essa è ovviamente continua in y0. Si ha

(5.14)
g(f(x))− g(f(x0))

x− x0
= γ(f(x))

f(x)− f(x0)

x− x0
.

Per la prop. 3.4.1 si ha

lim
x→x0

γ(f(x)) = lim
y→y0

γ(y) = γ(y0) = g′(f(x0)) .

Passando al limite per x che tende ad x0 nella (5.14) si ottiene la (5.13).
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Osservazione 5.2.1. - Il simbolo g′ in (5.13) sta ad indicare la derivata di g
rispetto alla variabile y. Per non incorrere in errore si può utilizzare il simbo-
lo (5.8) per denotare l’operatore di derivazione e riscrivere la (5.13) nel modo
seguente

d(g ◦ f)

dx
(x0) =

dg

dy
(f(x0))

df

dx
(x0) .

Come applicazione delle regole esposte si può ricavare la seguente formula

Dfg = fg
(
g′ log f +

g f ′

f

)
.

5.3 Derivate delle funzioni elementari

Riportiamo l’elenco delle derivate delle funzioni elementari; è sottinteso che, per
ciascuna funzione, l’insieme di derivabilità coincide con l’insieme di definizione
della funzione derivata.
Per denotare l’operatore di derivazione utilizziamo il simbolo “D”.

(1) Dxα = αxα−1 , α ∈ R ;

(2) Dax = ax log a , a > 0 e a 6= 1 ;

(3) D loga |x| =
log a

x
, a > 0 e a 6= 1 ;

(4) D sinx = cosx , D cosx = − sinx ;

(5) D tanx =
1

cos2 x
= 1 + tan2 x ;

(6) D arcsinx =
1√

1− x2
, D arccosx = − 1√

1− x2
;

(7) D arctanx =
1

1 + x2
.

Le formule (1), (2), (3) e (4) discendono, rispettivamente, da (3.41), (3.39),
(3.37) e dalle (3.28), (3.29). La (5) consegue dalle formule (4) e dalla (5.11). Le
(6) e (7) sono conseguenza della (5.12).

Accenniamo brevemente ad un’altra classe di funzioni elementari note come
funzioni iperboliche:

• “seno iperbolico”

sinhx =
ex − e−x

2
;

• “coseno iperbolico”

coshx =
ex + e−x

2
;
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• “tangente iperbolica”

tanhx =
sinhx

coshx
=
e2x − 1

e2x + 1
.

Per un elenco delle proprietà di tali funzioni si rimanda a [4], [10].

La funzione seno iperbolico ha inversa definita in tutto R. Essa è nota come
“settore seno iperbolico” e si rappresenta nel modo seguente

settsinh x = log(x+
√
x2 + 1) .

La funzione coseno iperbolico è invertibile se ristretta a [0,+∞[. Si ottiene in
tal modo una funzione definita in [1,+∞[. Essa è nota come “settore coseno
iperbolico” e ha la seguente espressione

settcosh x = log(x+
√
x2 − 1) .

L’inversa della funzione tangente iperbolica, nota come “settore tangente iper-
bolica”, è definita in ]− 1, 1[ e assume la seguente espressione

setttanh x =
1

2
log

1 + x

1− x
.

Per la (5.13) si ha

(8) D sinhx = coshx ,

D coshx = sinhx ,

D tanhx =
1

cosh2 x
= 1− tanh2 x ;

(9) Dsettsinh x =
1√

x2 + 1
,

Dsettcosh x =
1√

x2 − 1
,

Dsetttanh x =
1

1− x2
.

5.4 Estremi locali

Ritorniamo sulla questione posta nel par. 4.1 relativa a possibili strategie per
la determinazione del massimo e del minimo di una funzione.
Introduciamo la seguente nozione.
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Definizione 5.4.1. - Si dice che x0 ∈ X è “punto massimo (minimo) relativo”
per f se esiste un δ tale che

(5.15) f(x) ≤ (≥)f(x0) , ∀x ∈ X∩]x0 − δ, x0 + δ[ .

Un punto che sia o di minimo o di massimo relativo prende il nome di “punto
di estremo locale”.

Definizione 5.4.2. - Un punto in cui si annulla la derivata di f prende il nome
di “punto stazionario” o “punto critico” di f .

Una condizione necessaria perché un punto sia di estremo locale è descritta nel
seguente risultato, noto come “teorema di Fermat”.

Teorema 5.4.1. - Sia f una funzione definita in un intervallo I e derivabile
in x0, punto di estremo locale per f . Allora

(i) se x0 è interno ad I allora x0 è un punto critico per f ;

(ii) se x0 è l’estremo sinistro di I si ha f ′(x0) ≥ 0 ovvero f ′(x0) ≤ 0 a seconda
che x0 sia punto di minimo o di massimo relativo;

(iii) se x0 è l’estremo destro di I si ha f ′(x0) ≤ 0 ovvero f ′(x0) ≥ 0 a seconda
che x0 sia punto di minimo o di massimo relativo.

Dimostrazione. Supponiamo che x0 sia interno ad I e che esso sia punto di
minimo relativo. Per la (5.15) si ha

f(x)− f(x0)

x− x0
≤ 0 se x ∈ I∩ ]x0 − δ, x0[

f(x)− f(x0)

x− x0
≥ 0 se x ∈ I∩ ]x0, x0 + δ[ .

Quindi la derivata sinistra di f in x0 è non positiva e la derivata destra è non
negativa. Essendo f derivabile in x0 le due derivate devono coincidere: si ha
allora f ′(x0) = 0. Nel caso in cui x0 sia uno degli estremi dell’intervallo bisogna
ovviamente limitarsi a prendere in considerazione solo la derivata destra di f
nell’estremo sinistro di I, ovvero solo la derivata sinistra di f nell’estremo destro
di I. Si ottiene quindi la (ii) ovvero la (iii).

Sebbene il teorema di Fermat fornisca solo una condizione necessaria perché un
punto sia di massimo o minimo, talvolta la sola determinazione dei punti critici
di una funzione consente di ottenerne i valori estremi. Nel caso per esempio di
una funzione continua e derivabile in un intervallo compatto i punti di minimo
e massimo assoluti vanno ricercati tra i punti critici e gli estremi dell’intervallo.
Riportiamo qui di seguito alcuni esempi.

a) Legge di Snell: “Determinare la traiettoria di un raggio luminoso che
attraversa due mezzi omogenei ed isotropi separati da un piano.”
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Indichiamo con v1 e v2 le velocità della luce nei due mezzi; sia v1 > v2. Per
il principio di Fermat un raggio luminoso segue la traiettoria cui corrisponde il
tempo minimo di percorrenza. Nei singoli mezzi le traiettorie sono ovviamente
rettilinee. Il raggio luminoso segue un percorso che si colloca in un piano per-
pendicolare al piano di separazione dei due mezzi. Con un opportuno sistema
di riferimento assumiamo che la traiettoria sia una spezzata formata da due
segmenti, il primo si estremi (0, 1), (x, 0) con x ∈ [0, 1], il secondo di estremi
(1,−1) e (x, 0). Il tempo di percorrenza è

T (x) =
1

v1

√
x2 + 1 +

1

v2

√
x2 − 2x+ 2 .

Per individuare la traiettoria dobbiamo determinare il minimo della funzione T
al variare di x in [0, 1]. Abbiamo

(5.16) T ′(x) =
1

v1

x√
x2 + 1

− 1

v2

1− x√
x2 − 2x+ 2

.

Con semplici considerazioni geometriche si prova che le funzioni

x√
x2 + 1

,
1− x√

x2 − 2x+ 2

sono strettamente monotone, la prima crescente, la seconda decrescente. In-
fatti la prima rappresenta il seno dell’angolo formato dal segmento di estremi
(0, 1) , (x, 0) e dalla semiretta normale al piano di separazione dei due mez-
zi orientata verso l’alto, la seconda il seno dell’angolo formato dal segmento di
estremi (1,−1), (x, 0) e dalla semiretta normale al piano di separazione orientata
verso il basso. Quindi T ′ è strettamente crescente. Poiché

T ′(0) = − 1

v2

√
2
, T ′(1) =

1

v1

√
2

per il teo. 4.3.1 esiste un unico punto x̄ tale che T ′(x̄) = 0. In x̄ la funzione T ha
il suo valore minimo dal momento che in 0 e 1 la derivata di T è rispettivamente
negativa e positiva. Dalla (5.16) si ha

(5.17)
sin θ1

v1
=

sin θ2

v2

dove θ1 e θ2 sono rispettivamente gli angoli che il raggio forma con la normale
al piano di separazione; essi si chiamano, rispettivamente, angolo di incidenza e
angolo di rifrazione.

b) Un problema isoperimetrico: “Tra tutti i cilindri circolari retti di asse-
gnata superficie totale S determinare quello di volume massimo.”
Sia r il raggio del cerchio di base e h l’altezza del cilindro. Si ha S = 2π r(r+h)
da cui

h =
S − 2π r2

2π r
.
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Pertanto il volume del cilindro è

V (r) = r

(
S

2
− π r2

)
, r ∈

[
0,
√
S(2π−1

]
.

La derivata di V si annulla solo in
√
S(6π)−1. In tale punto la funzione V

raggiunge il valore massimo.

La procedura sopra illustrata può essere adattata al caso di funzioni continue e
derivabili in intervalli non compatti. Se si assume che la funzione è regolare agli
estremi dell’intervallo allora l’estremo superiore e quello inferiore della funzione
vanno cercati tra i valori che la funzione assume nei punti critici e i limiti agli
estremi dell’intervallo. Ovviamente il più grande e/o il più piccolo tra tali valori
è il minimo o il massimo solo se esso è assunto in uno dei punti critici. Nel caso
in cui tale valore massimo o minimo è costituito da uno dei limiti agli estremi
dell’intervallo allora tale valore costituirà solo l’estremo superiore o inferiore
della funzione.

5.5 Il teorema di Lagrange

Punto di partenza è il seguente risultato.

Teorema 5.5.1. (Teorema di Rolle) - Sia f derivabile in ]a, b[ oltre che
continua agli estremi dell’intervallo. Se

(5.18) f(a) = f(b)

esiste almeno un punto c ∈]a, b[ tale che f ′(c) = 0.

Dimostrazione. Per il teo. 4.1.3 la funzione f ha minimo e massimo. Se i punti di
minimo e massimo si collocano agli estremi dell’intervallo la funzione è costante
per la (5.18): la sua derivata è allora identicamente nulla. In caso contrario o
il punto di minimo o il punto di massimo deve essere interno all’intervallo. In
tale punto la derivata si annulla per il teo. 5.4.1.

Dal teorema di Rolle discende il seguente risultato di fondamentale importanza.

Teorema 5.5.2. (Teorema di Lagrange) - Sia f derivabile in ]a, b[ oltre che
continua agli estremi dell’intervallo. Esiste almeno un punto c ∈]a, b[ tale che

(5.19) f ′(c) =
f(b)− f(a)

b− a
.

Dimostrazione. Consideriamo la funzione

g(x) = f(x)− f(b)− f(a)

b− a
(x− a) .

Si ha g(b) = g(a); è possibile allora applicare a g il teo. 5.5.1. Sia c il punto in
cui si annulla la derivata di g. In tale punto la derivata di f assume il valore a
secondo membro nella (5.19).
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Dal teorema di Lagrange si ottiene la seguente caratterizzazione delle funzioni
monotone.

Proposizione 5.5.1. - Sia f derivabile in un intervallo I. Allora

(5.20) f è crescente⇐⇒ f ′(x) ≥ 0 ∀x ∈ I

e

(5.21) f è decrescente⇐⇒ f ′(x) ≤ 0 ∀x ∈ I .

Dimostrazione. Sia f crescente. Se x0 ∈ I e x 6= x0 si ha

f(x)− f(x0)

x− x0
≥ 0

e quindi, facendo tendere x a x0, abbiamo f ′(x0) ≥ 0.
Sia f ′ non negativa in I. Se x1 < x2 per la (5.19) si ha

f(x2)− f(x1)

x2 − x1
= f ′(c)

con c ∈]x1, x2[. Poiché f ′(c) ≥ 0 abbiamo f(x1) ≤ f(x2) cioè la (5.20).
In modo analogo si ottiene la (5.21).

È bene dare risalto alla seguente banale conseguenza della prop. 5.5.1.

Corollario 5.5.1. - Una funzione derivabile in un intervallo è costante se e
solo se la sua derivata è identicamente nulla.

Osservazione 5.5.1. - Se si vuole una condizione che assicuri la stretta mo-
notonia basta imporre che f ′ sia o positiva o negativa. Condizione necessaria
e sufficiente è che f ′ sia o non positiva o non negativa e che non si annulli in
nessun sottointervallo di I.

La prop. 5.5.1 fornisce anche una condizione per riconoscere se un punto critico
x0 è di massimo o di minimo relativo. Se infatti f ′ cambia segno quando si
passa da destra a sinistra di x0 allora x0 è punto di estremo locale.

Esempio 5.5.1. - Consideriamo la funzione

(5.22) x ∈]0,+∞[−→ xx .

Si ha
Dxx = D ex log x = xx(log x+ 1) .

La funzione (5.22) è strettamente decrescente in ]0, e−1], strettamente crescente

in [e−1,+∞[: il punto e−1 è di minimo assoluto. La proprietd̀i monotonia
comporta anche che la funzione è regolare in zero per il teo. 3.3.1. Utilizzando
la (3.45) si ha

lim
x→0+

xx = lim
n→+∞

n−
1
n = 1 .
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5.6 Proprietà della funzione derivata

In tale paragrafo riportiamo alcune notevoli proprità della derivata di una fun-
zione. Come conseguenza del teo. 5.4.1 si ottiene il seguente risultato che
costituisce una sorta di teorema degli zeri per la funzione derivata: si noti che
sulla derivata non si fa l’ipotesi di continuità.

Teorema 5.6.1. (Teorema di Darboux) - Sia f derivabile in [a, b] e sia

f ′(a) f ′(b) < 0 .

Esiste allora un punto c ∈]a, b[ tale che f ′(c) = 0.

Dimostrazione. La funzione f é continua in [a, b] per la prop. 5.1.1; essa ha
quindi minimo e massimo per il teo. 4.1.3. Per semplicitá supponiamo che sia
f ′(a) < 0 e f ′(b) > 0. Per il teo. 5.4.1, gli estremi a, b non possono essere punti
di minimo per f . Pertanto il punto di minimo è interno; in tale punto f ′ si
annulla per la (i) del teo. 5.4.1.

Corollario 5.6.1. - Se f è derivabile in un intervallo il codominio di f ′ è un
intervallo.

Dimostrazione. Siano α < β due punti del codominio di f ′; poniamo

α = f ′(xα) β = f ′(xβ) .

Se γ ∈]α, β[ si applichi il teo. 5.6.1 alla funzione

x −→ g(x) = f(x)− γx

ristretta all’intervallo I di estremi xα e xβ . Esiste quindi un punto c ∈ I tale
che f ′(c) = γ. Ciò comporta che il codominio di f ′ è un intervallo.

Riportiamo qui di seguito alcune conseguenze del teorema di Lagrange.

Proposizione 5.6.1. - Sia f derivabile nell’intervallo ]a, b[ e sia f ′ limitata;
allora f è convergente agli estremi dell’intervallo.

Dimostrazione. Sia M tale che

|f ′(x)| ≤M , ∀x ∈]a, b[ .

Se x1, x2 ∈]a, b[ per la (5.19) esiste un punto c compreso tra x1 e x2 tale che

f(x1)− f(x2) = f ′(c)(x1 − x2) .

Si ha quindi

(5.23) |f(x1)− f(x2)| ≤M |x1 − x2| .

Fissato ε, se x1, x2 ∈]b− δ, b[ con δ = ε/M , dalla (5.23) si ha

|f(x1)− f(x2)| ≤Mδ = ε .

Dal criterio di convergenza di Cauchy discende la convergenza di f in b.
Un discorso analogo va fatto in relazione al comportamento di f in a.
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Proposizione 5.6.2. - Se f è derivabile nell’intervallo ]a, b[ e se f ′ è con-
vergente in b allora anche f converge in b. Se indichiamo ancora con f il
prolungamento per continuità di f in b si ha

(5.24) f ′(b) = lim
x→b

f ′(x) .

Dimostrazione. La convergenza della derivata in b implica la sua limitatezza in
un intorno di b; allora f converge in b per la prop. 5.6.1. Se λ è il limite di f ′

in b, allora, fissato ε, esiste un δ tale che

(5.25) |f ′(x)− λ| < ε

per ogni x in ]b− δ, b[. Per la (5.19) si ha

f(x)− f(b)

x− b
= f ′(c)

con c ∈]x, b[. Se x ∈]b− δ, b[, per la (5.25) si ha allora∣∣∣∣f(x)− f(b)

x− b
− λ
∣∣∣∣ < ε .

Quindi f è derivabile in b e si ha la (5.24).

La dimostrazione della prop. 5.6.2 può essere adattata al seguente caso: se f
è continua in b e la derivata di f diverge in b allora diverge anche il limite del
rapporto incrementale. In definitiva, alla luce della prop. 5.6.2, la funzione de-
rivata non può presentare né discontinuità eliminabili né discontinuità di prima
specie; inoltre essa non può neanche divergere. Le uniche discontinuità ammis-
sibili contemplano il caso in cui f ′ è oscillante come per la funzione riportata
nel seguente esempio.

Esempio 5.6.1. - Sia

f(x) =


x2 sin

1

x
se x 6= 0

0 se x = 0 .

Si verifica facilmente che f ′(0) = 0 e che non esiste il limite di f ′ per x che
tende a zero.

5.7 Successioni definite per ricorrenza

Sia f un’applicazione continua di un intervallo I in sé

x ∈ I −→ f(x) ∈ I .
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Ha senso definire allora la successione

(5.26) u0 ∈ I , un+1 = f(un) .

Supponiamo che essa converga a u. Per la continuità di f si ha

u = lim
n→∞

un+1 = lim
n→∞

f(un) = f(u) ;

quindi u è soluzione dell’equazione

(5.27) x = f(x) .

Osservazione 5.7.1. - Se I è un intervallo chiuso e limitato [a, b] la (5.27) ha
almeno una soluzione. Posto infatti

g(x) = x− f(x) ,

poiché f(a), f(b) ∈ [a, b] si ha

g(a) = a− f(a) ≤ 0 , g(b) = b− f(b) ≥ 0 .

Basta allora applicare il teo. 4.3.1 alla funzione g.

Ma quando la successione {un} è convergente? Per dare risposta a tale domanda
si può utilizzare il seguente risultato.

Proposizione 5.7.1. - Se f è derivabile e

(5.28) |f ′(x)| ≤ L < 1 , x ∈ [a, b]

la successione (5.26) è convergente.

Dimostrazione. Per il teo. 5.5.2 si ha

|un+1 − un| = |f(un)− f(un−1)| = |f ′(cn)||un − un−1|

con cn compreso tra un e un−1. Dalla (5.28) si ha

|un+1 − un| ≤ L|un − un−1|

e quindi induttivamente

(5.29) |un+1 − un| ≤ Ln|u1 − u0| .

Abbiamo

|un+k − un| ≤ |un+k − un+k−1|+ · · ·+ |un+1 − un|

(per la (5.29))

≤ Ln(Lk−1 + · · ·+ 1) |u1 − u0|

(per la (1.21))

<
Ln

1− L
|u1 − u0| .
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Poiché L < 1 la successione {un} è di Cauchy ed è quindi convergente.

Diamo ora una valutazione dell’errore εn = un − u. Si ha

εn+1 = un+1 − u = f(un)− f(u) = f ′(en)(un − u) = f ′(en) εn

con en appartenente all’intervallo di estremi u e un; la successione {en} tende
quindi ad u.
Nell’ulteriore ipotesi che f ′ sia continua si ha

lim
n→∞

εn+1

εn
= lim
n→∞

f ′(en) = f ′(u) .

Se f ′(u) 6= 0 la convergenza è di tipo lineare; ad ogni passo dell’iterazione
l’errore si riduce di un fattore dell’ordine di f ′(u).

Osservazione 5.7.2. - Con lo stesso procedimento utilizzato per provare la
prop. 5.7.1 si può concludere che {un} diverge se

|f ′(x)| ≥ L > 1

per ogni x ∈ R.

La successione definita per ricorrenza

F0 = F1 = 1 , Fn+2 = Fn+1 + Fn

prende il nome di “successione di Fibonacci”.
I termini della successione sono tutti positivi: i primi due sono infatti positivi e
se i primi n termino sono positivi allora Fn+1 > 0. Il risultato discende quindi
dal principio di induzione.
Si verifica inoltre che {Fn} è crescente e divergente positivamente.
Posto

Rn+1 =
Fn+1

Fn

si ha

Rn+1 =
Fn+1

Fn
=
Fn + Fn−1

Fn
= 1 +

1

Rn
= f(Rn)

dove

f(x) = 1 +
1

x
.

Proviamo che {Rn} converge a

R =

√
5 + 1

2
,

soluzione positiva dell’equazione x = f(x).
Si verifica facilmente che

(i) x < (>)R =⇒ f(x) > (<)R;
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(ii) x < (>)R =⇒ f(f(x)) > (<)x.

Essendo R1 = 1 tutti i termini della successione {R2k+1} sono minori di R
per la (i); inoltre, per la (ii), la successione è crescente. In modo analogo,
essendo R2 = 2, si prova che la successione {R2k} è decrescente; inoltre i suoi
termini sono maggiori di R. Tutte e due le sottosuccessioni di {Rn} sono quindi
convergenti; si vede facilmente che esse tendono a R. La successione {Rn}
converge pertanto a R.

5.8 Le regole di de l’Hôpital

Consideriamo la curva piana (5.2) con la condizione (5.3). Supponiamo che essa
non sia chiusa; i suoi estremi

(5.30) (x(a), y(a)) , (x(b), y(b))

devono essere quindi distinti. È geometricamente evidente che in almeno un
punto della curva la tangente è parallela alla corda che collega gli estremi della
curva. Tale proprietà è analiticamente formulata nel seguente risultato.

Teorema 5.8.1. (Teorema di Cauchy) - Siano x, y due funzioni continue
in [a, b] e derivabili in ]a, b[. Se sono soddisfatte le condizioni (5.3) e

(5.31) x(a) 6= x(b)

allora si ha

(5.32)
y(b)− y(a)

x(b)− x(a)
=
y′(c)

x′(c)
.

per un opportuno punto c ∈]a, b[.

Dimostrazione. Consideriamo il determinante

d(t) =

∣∣∣∣∣∣
x(t)− x(a) y(t)− y(a)

x(b)− x(a) y(b)− y(a)

∣∣∣∣∣∣ .
Essendo d(a) = d(b) = 0, per il teo. 5.5.1 esiste un punto c ∈]a, b[ tale che

(5.33) x′(c)[y(b)− y(a)] = y′(c)[x(b)− x(a)] .

Per la (5.31) deve essere x′(c) 6= 0 altrimenti si avrebbe y′(c) = 0 in contrasto
la (5.3). Dalla (5.33), dividendo per x′(c) [x(b) − x(a)], si ottiene la (5.32). La
(5.33) assicura quindi che il vettore (x′(c), y′(c)) è parallelo alla corda che unisce
gli estremi (5.30) della curva (5.2). Si può pertanto concludere che il teorema
di Cauchy è la versione per le curve piane del teorema di Lagrange.

Il teorema di Cauchy è lo strumento essenziale per dimostrare due formule utili
per il calcolo di limiti che si presentino in forma indeterminata.
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Teorema 5.8.2. (Prima regola di de l’Hôpital) - Siano f, g due funzioni
derivabili in un intervallo aperto X e sia x0 uno degli estremi dell’intervallo.
Se

(i) g′(x) 6= 0,

(ii) lim
x→x0

f(x) = lim
x→x0

f(x) = 0,

(iii) lim
x→x0

f ′(x)

g′(x)
= ` ∈ R

allora

(5.34) lim
x→x0

f(x)

g(x)
= ` .

Dimostrazione. Supponiamo che x0 sia l’estremo destro dell’intervallo. Per la
(i) e per il teo. 5.6.1 la derivata g′ ha segno costante. Sia per esempio g′ < 0.
La funzione g è decrescente e quindi, per la (ii), positiva. Ha senso prendere
in considerazione il rapporto f/g. Consideriamo il caso ` ∈ R. Per la (iii), per
ogni ε esiste un intorno I di x0 tale che

(5.35)

∣∣∣∣f ′(x)

g′(x)
− `
∣∣∣∣ < ε , ∀x ∈ I ∩X\{x0} .

Se x, ξ ∈ I\{x0}, per la (5.32) si ha

(5.36)
f(x)− f(ξ)

g(x)− g(ξ)
=
f ′(c)

g′(c)

dove c appartiene all’intervallo di estremi x e ξ e, quindi, a I ∩X\{x0}. Per la
(5.35) si ha allora

(5.37)

∣∣∣∣f(x)− f(ξ)

g(x)− g(ξ)
− `
∣∣∣∣ < ε .

Facendo tendere ξ a x0 e ricordando le condizioni (ii) abbiamo in definitiva∣∣∣∣f(x)

g(x)
− `
∣∣∣∣ ≤ ε , ∀x ∈ I ∩X\{x0}

cioè la (5.34).
Sia ` = +∞. Per ogni K esiste un intorno I di x0 tale che

(5.38)
f ′(x)

g′(x)
> K , ∀x ∈ I ∩X\{x0} .

Per la (5.36), se x, ξ ∈ I\{x0}, si ha allora

(5.39)
f(x)− f(ξ)

g(x)− g(ξ)
> K .
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Facendo tendere ξ a x0 e ricordando le condizioni (ii) abbiamo

f(x)

g(x)
≥ K

da cui l’asserto.
Con piccole modifiche, infine, si ottiene il risultato se ` = −∞.

Teorema 5.8.3. (Seconda regola di de l’Hôpital) - Siano f, g due funzioni
derivabili in un intervallo aperto X e sia x0 uno degli estremi dell’intervallo.
Se

(i) g′(x) 6= 0,

(ii) f, g divergono in x0,

(iii) lim
x→x0

f ′(x)

g′(x)
= ` ∈ R

allora

(5.40) lim
x→x0

f(x)

g(x)
= ` .

Dimostrazione. Sia x0 l’estremo destro di X. La condizione (i) comporta che
g′ ha segno costante. Se per esempio g′ > 0 allora la funzione g diverge posi-
tivamente. Pertanto essa non si annulla in un intorno di x0: in tale intorno ha
senso considerare il rapporto f/g.
Supponiamo che la (5.40) non sussista. Il teo. 3.4.2 comporta che esiste una
successione {xn} tendente a x0 tale che

(5.41) lim
n→∞

f(xn)

g(xn)
= `′ 6= ` .

Per la (iii), se ` ∈ R, in corrispondenza di ε è possibile determinare un intorno
I di x0 tale che, per ogni x , ξ ∈ I ∩X\{x0}, sussista la (5.37) ovvero

(5.42)

∣∣∣∣∣∣∣∣
f(x)

g(x)
− f(ξ)

g(x)

1− g(ξ)

g(x)

− `

∣∣∣∣∣∣∣∣ < ε .

Poiché {xn} tende a x0, se n è abbastanza grande si ha ξ < xn. Quindi, essendo
g crescente, abbiamo

g(ξ)

g(xn)
< 1 .

Se poniamo x = xn nella (5.42) si ha∣∣∣∣f(xn)

g(xn)
− f(ξ)

g(xn)
− `
(

1− g(ξ)

g(xn)

)∣∣∣∣ < ε

(
1− g(ξ)

g(xn)

)
< ε .
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Passando al limite per n che tende ad infinito e ricordando la (ii) abbiamo

|`′ − `| ≤ ε

da cui, per l’arbitrarietà di ε, si ha ` = `′. L’assurdo cui siamo pervenuti prova
l’asserto.
Sia ` = +∞. Procediamo per assurdo come nel caso precedente. Sia {xn} una
successione tale che sussista la (5.41). Fissiamo K > `′. È possibile determinare
un intorno I di x0 tale che, per ogni x , ξ ∈ I∩X\{x0}, sussista la (5.39) e quindi,
per quanto già osservato nel caso precedente,

f(xn)

g(xn)
− f(ξ)

g(xn)
> K

(
1− g(ξ)

g(xn)

)
.

Passando al limite su n si ha `′ ≥ K cioè un assurdo.
In modo analogo si procede se ` = −∞.

Osservazione 5.8.1. - Poniamo

f(x) = x2 sin(1/x) , g(x) = x .

Si vede facilmente che esiste il limite per x che tende a zero, del rapporto del-
le due funzioni mentre il rapporto delle derivate non è regolare. Un discorso
analogo si può fare in relazione alle due funzioni

f(x) = x+ sinx , g(x) = x

divergenti al tendere di x a +∞.

Esempio 5.8.1. - La seconda regola di de l’Hôpital consente di dimostrare che

lim
x→+∞

log x

xα
= 0

per ogni α positivo. Si ha inoltre

lim
x→0+

xα log x = 0

sempre per ogni α positivo.

L’uso delle due regole di de l’Hôpital può non essere risolutivo. Nel caso in cui
il limite del rapporto delle derivate si presenti ancora in forma indeterminata si
può ovviamente riapplicare una delle due regole confidando che non si presenti
ancora in forma indeterminata il limite del rapporto delle derivate seconde

lim
x→x0

f ′′(x)

g′′(x)
.

La procedura può essere iterata tante volte quante ne consente la regolarità delle
funzioni in gioco. A tal fine è utile introdurre i simboli f (0) = f

f (n) = D f (n−1) se n ≥ 1
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per denotare la derivate di ordine n di f .
In definitiva se il limite per x che tende a x0 dei rapporti delle funzioni f (k), g(k)

è in forma indeterminata per tutti gli interi k minori di n e

lim
x→x0

f (n)(x)

g(n)(x)
= `

allora vale la (5.34).

Esempio 5.8.2. - La procedura sopra descritta permette di calcolare il seguente
limite

lim
x→+∞

ex

xn
.

derivando n volte le funzioni a numeratore e denominatore si ha

lim
x→+∞

ex

n!
= +∞

da cui

lim
x→+∞

ex

xn
= +∞ .

La funzione esponenziale diverge più velocemente di una qualsiasi potenza ad
esponente intero e, anche, reale.

5.9 Infinitesimi ed infiniti

In tale paragrafo richiamiamo alcuni risultati relativi agli infinitesimi e infiniti.
Con il primo termine si indicano funzioni il cui limite, per x che tende a x0, è
zero, con il secondo funzioni che divergono al tendere di x a x0.

Definizione 5.9.1. - Siano f, g definite in un intorno I di x0. Siano esse non
nulle in I\{x0} e infinitesime in x0.

• Se

lim
x→x0

f(x)

g(x)
= 0

f è un infinitesimo di ordine superiore rispetto a g.

• Se

lim
x→x0

f(x)

g(x)
= ` ∈ R\{0}

f e g sono infinitesimi dello stesso ordine.

• Se

lim
x→x0

f(x)

g(x)
= ±∞

f è un infinitesimo di ordine inferiore rispetto a g.
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• Se f/g non è regolare f e g non sono confrontabili.

Per denotare che f è un infinitesimo di ordine superiore rispetto a g si usa
talvolta il simbolo f = o(g) già introdotto nel par. 5.1. Se invece f, g sono
infinitesime dello stesso ordine si usa il simbolo f = O(g).
Si può parlare anche di “ordine di un infinitesimo” una volta che si attribuisca
un valore numerico ad opportuni “infinitesimi campione”. Si parla infatti di
infinitesimo di ordine n ∈ N in x0 ∈ R in relazione alla funzione (x − x0)n. Se
x0 = ±∞ l’infinitesimo campione di ordine n è x−n. Se α > 0 non è intero si
preferisce assumere la funzione |x− x0|α come infinitesimo campione di ordine
α in x0. Infine se x0 = ±∞ la funzione |x|−α è l’infinitesimo campione di ordine
α all’infinito. La funzione f è infinitesima di ordine α in x0 se il rapporto tra f
e l’infinitesimo campione di ordine α ha limite finito e non nullo. Va rimarcato
che non sempre si può attribuire un valore numerico all’ordine di infinitesimo di
una funzione. Si pensi a

(5.43) f(x) = x log x .

Tale funzione è infinitesima in zero ed è f = o(|x|α) per ogni α < 1. D’altra
parte il rapporto tra f e la funzione identica, infinitesimo del primo ordine in
zero, diverge. Quindi f è un infinitesimo il cui ordine è più piccolo di tutti i
numeri minori di uno; il suo ordine non è però uno.
Sussiste la seguente proprietà, nota come “principio di sostituzione degli infini-
tesimi”.

Proposizione 5.9.1. - Siano

f1, · · · , fn , g1, · · · , gm

funzioni infinitesime in x0. Se f1 è un infinitesimo di ordine inferiore rispetto
a f2, · · · , fn e g1 è un infinitesimo inferiore rispetto a g2, · · · , gm e il rapporto
tra le due funzioni f1 e g1 è regolare allora

(5.44) lim
x→x0

f1(x) + · · ·+ fn(x)

g1(x) + · · ·+ gm(x)
= lim
x→x0

f1(x)

g1(x)
.

Dimostrazione. Essendo

f1(x) + · · ·+ fn(x)

g1(x) + · · ·+ gm(x)
=
f1(x)

g1(x)

 1 +
f2(x)

f1(x)
+ · · ·+ fn(x)

f1(x)

1 +
g2(x)

g1(x)
+ · · ·+ gm(x)

g1(x)


si ottiene facilmente la (5.44).

Definizione 5.9.2. - Siano f, g due divergenti per x che tende a x0.

• Se

lim
x→x0

f(x)

g(x)
= 0

f è un infinito di ordine inferiore rispetto a g.
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• Se

lim
x→x0

f(x)

g(x)
= ` ∈ R\{0}

f e g sono infiniti dello stesso ordine.

• Se

lim
x→x0

f(x)

g(x)
= ±∞

f è un infinito di ordine superiore rispetto a g.

• Se f/g non è regolare si dice che f e g non sono confrontabili.

Si può parlare anche di “ordine di un infinito” una volta che si attribuisca
un valore numerico ad opportuni “infiniti campione”. Se α > 0 la funzione
|x − x0|−α è l’infinito campione di ordine α in x0. La funzione f è un infinito
di ordine α in x0 se il rapporto tra f e l’infinito campione di ordine α ha
limite finito e non nullo. Anche in questo caso non sempre si può attribuire
un valore numerico all’ordine di infinito di una funzione. Si pensi ancora un
volta alla funzione (5.43) divergente al tendere di x a infinito. Con lo stesso
procedimento utilizzato per dimostrare la prop. 5.9.1 si ottiene il seguente
“principio di sostituzione degli infiniti”.

Proposizione 5.9.2. - Siano

f1, · · · , fn , g1, · · · , gm

infiniti in x0. Se f1 è un infinito di ordine superiore rispetto a f2, · · · , fn e g1

è un infinito di ordine superiore rispetto a g2, · · · , gm e il rapporto tra f1 e g1 è
regolare allora

lim
x→x0

f1(x) + · · ·+ fn(x)

g1(x) + · · ·+ gm(x)
= lim
x→x0

f1(x)

g1(x)
.

5.10 Studio qualitativo dei grafici

Se dallo studio del segno della derivata prima di una funzione f si deducono le
proprietà di monotonia, da quello della derivata seconda si ricava una proprietà
geometrica nota come “convessità”.

Definizione 5.10.1. - Una funzione f dicesi “convessa” in un intervallo I se
per ogni x1, x2 ∈ I si ha

(5.45) f(tx2 + (1− t)x1) ≤ t f(x2) + (1− t) f(x1) , t ∈ [0, 1] .

Se (−f) è convessa si dice che f è “concava”; la (5.45) diventa

(5.46) f(tx2 + (1− t)x1) ≥ t f(x2) + (1− t) f(x1) , t ∈ [0, 1] .
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Se x1 < x2 e t ∈ [0, 1] il punto

(5.47) x = tx2 + (1− t)x1

descrive l’intervallo [x1, x2]. Per la (5.45) il punto (x, f(x)) del grafico di f è al
di sotto della “corda” di estremi (x1, f(x1)), (x2, f(x2)).

Proposizione 5.10.1. - La funzione f è convessa se e solo se vale una delle
seguenti tre diseguaglianze

(5.48)
f(x0)− f(x1)

x0 − x1
≤ f(x2)− f(x1)

x2 − x1
≤ f(x2)− f(x0)

x2 − x0
, x0 ∈]x1, x2[ .

Dimostrazione. Dalla (5.47) si ha

t =
x− x1

x2 − x1
, 1− t =

x2 − x
x2 − x1

;

pertanto la (5.45) assume la forma

(5.49) f(x) ≤ x− x1

x2 − x1
f(x2) +

x2 − x
x2 − x1

f(x1) , x ∈ [x1, x2] .

È facile verificare che la (5.49) può essere trasformata in una qualsiasi delle tre
diseguaglianze (5.48).

La (5.48) mette in relazione i coefficienti angolari delle rette cui appartengono
le corde del grafico di f che collegano due dei tre punti

(x1, f(x1)) , (x, f(x)) , (x2, f(x2)) .

Tale interpretazione geometrica consente di ricavare in modo immediato la
seguente fondamentale proprietà.

Proposizione 5.10.2. - Se f è convessa in I e x0 ∈ I si ha

(5.50) x1 < x2 =⇒ f(x1)− f(x0)

x1 − x0
≤ f(x2)− f(x0)

x2 − x0
.

La funzione

x ∈ I\{x0} −→
f(x)− f(x0)

x− x0

è cioè crescente.

Proposizione 5.10.3. - Sia f convessa in I e sia x0 interno ad I. Allora f
ha derivata destra e sinistra in x0 ed è quindi continua in tale punto.
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Dimostrazione. Per la prop. 5.10.2 e per il teo. 3.3.1 abbiamo

lim
x→x−0

f(x)− f(x0)

x− x0
= sup
x<x0

f(x)− f(x0)

x− x0

≤ inf
x>x0

f(x)− f(x0)

x− x0
= lim
x→x+

0

f(x)− f(x0)

x− x0

da cui

(5.51)
f(x1)− f(x0)

x1 − x0
≤ f ′(x−0 ) ≤ f ′(x+

0 ) ≤ f(x2)− f(x0)

x2 − x0

se x1 < x0 < x2. Pertanto la derivata sinistra e quella destra di f in x0 sono
finite; quindi f è continua in x0.

Proposizione 5.10.4. - Sia f convessa in [a, b]. Allora f converge agli estremi
dell’intervallo e si ha

(5.52) f(a) ≥ lim
x→a+

f(x) , f(b) ≥ lim
x→b−

f(x) .

Dimostrazione. Se x < x1 < x2 si ha (cfr. (5.48))

f(x)− f(x1)

x− x1
≤ f(x)− f(x2)

x− x2

da cui

(5.53) f ′(x−1 ) = sup
x<x1

f(x)− f(x1)

x− x1
≤ sup
x<x2

f(x)− f(x2)

x− x2
= f ′(x−2 ) .

La derivata sinistra di f è quindi crescente. Pertanto, fissato c ∈]a, b[ la funzione

ϕ : x −→ f(x)− f ′(c−)(x− c)

ha derivata sinistra non negativa in ]c, b[. Se x1, x2 ∈]c, b[, ragionando come nella
dimostrazione del teorema di Lagrange, si può determinare un punto d ∈]x1, x2[
tale che

f(x2)− f(x1)

x2 − x1
≥ f ′(d−) .

Ciò comporta che la funzione ϕ è crescente in ]c, b]. Si deduce pertanto che f è
regolare in b e che vale la seconda delle (5.53). In modo analogo si ragiona per
quanto riguarda il comportamento di f nell’altro estremo.

Se f è derivabile in x0 dalla (5.51) discende

(5.54) sup
x<x0

f(x)− f(x0)

x− x0
= f ′(x0) = inf

x>x0

f(x)− f(x0)

x− x0

da cui

(5.55) f ′(x0)(x− x0) + f(x0) ≤ f(x) , ∀x ∈ I .

Il grafico di f si colloca quindi al di sopra di ogni retta ad esso tangente. Per le
funzioni derivabili tale proprietà geometrica equivale alla convessità.
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Proposizione 5.10.5. - Sia f derivabile; allora f è convessa se e solo se
sussiste la (5.55) per ogni x0 ∈ I.

Dimostrazione. Basta dimostrare che la (5.55), ossia la (5.54), implica che f è
convessa. Se x1 < x0 < x2 dalla (5.54) si ha

f(x1)− f(x0)

x1 − x0
≤ f ′(x0) ≤ f(x2)− f(x0)

x2 − x0
.

In forza della (5.48) si ottiene la convessità di f .

Proposizione 5.10.6. - Una funzione f derivabile è convessa se e solo se la
sua derivata è crescente.

Dimostrazione. Sia f convessa. Se f è derivabile la (5.53) comporta che f ′ è
crescente.

Supponiamo f ′ crescente. Se x1 < x0 < x2, per il teo. 5.5.2 si ha

(5.56) f(x0)− f(x1) = f ′(c1)(x0 − x1) , f(x2)− f(x0) = f ′(c2)(x2 − x0)

con c1 ∈ [x1, x0] e c2 ∈ [x0, x2]. Essendo f ′(c1) ≤ f ′(c2) dalle (5.56), si ha

f(x0)− f(x1)

x0 − x1
≤ f(x2)− f(x0)

x2 − x0
.

Vale la (5.48); quindi f è convessa.

Proposizione 5.10.7. - Sia f è dotata di derivata seconda in I. Allora f è
convessa (concava) se e solo se la derivata seconda è non negativa (non positiva).

Dimostrazione. L’ipotesi di segno sulla derivata seconda si traduce in una con-
dizione di monotonia su f ′. Si applica allora la prop. 5.10.6.

Per t = 1/2 la (5.45) diventa

(5.57) f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
.

La (5.57) è suscettibile della seguente generalizzazione nota come “diseguaglian-
za di Jensen” (cfr. [7]).

Teorema 5.10.1. - Sia f convessa nell’intervallo I. Se x1, · · · , xn ∈ I allora

(5.58) f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
.
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Dimostrazione. Dimostriamo dapprima la (5.58) nel caso in cui n = 2k. Si
procede per induzione. La diseguaglianza sussiste per k = 1 (cfr. (5.57)).
Sussista la (5.58) per n = 2k; verifichiamo che essa sussiste per n = 2k+1. Si ha

f

(
x1 + · · ·+ x2k + x2k+1 + · · ·+ x2k+1

2k+1

)

= f

(
1

2

(
x1 + · · ·+ x2k

2k
+
x2k+1 + · · ·+ x2k+1

2k

))
(per la (5.57))

≤ 1

2

[
f

(
x1 + · · ·+ x2k

2k

)
+ f

(
x2k+1 + · · ·+ x2k+1

2k

)]
(per l’ipotesi di induzione)

≤ f(x1) + · · ·+ f(x2k) + f(x2k+1) + · · ·+ f(x2k+1)

2k+1
.

Se n 6= 2k esiste un intero m positivo tale che n = 2k −m. Posto

x̄ =
x1 + · · ·+ xn

n
,

osservato che n+m = 2k, risulta

f(x̄) = f

(
x1 + · · ·+ xn +mx̄

n+m

)
≤ f(x1) + · · ·+ f(xn) +mf(x̄)

n+m

da cui si ottiene facilmente (5.58).

Per le funzioni concave la diseguaglianza di Jensen diventa

(5.59) f

(
x1 + · · ·+ xn

n

)
≥ f(x1) + · · ·+ f(xn)

n
.

Tenendo conto che la funzione f = log è concava dalla (5.59) si ha

log

(
x1 + · · ·+ xn

n

)
≥ log x1 + · · ·+ log xn

n

da cui la diseguaglianza

x1 + · · ·+ xn
n

≥ n
√
x1 · · · · · xn

che mette in relazione la media geometrica e quella aritmetica di n numeri
positivi.
Come ultimo strumento per lo studio qualitativo dei grafici introduciamo la
nozione di “asintoto”.
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Definizione 5.10.2. - La retta di equazione

(5.60) y = mx+ n

è asintoto a +∞(−∞) per f se la funzione

x −→ f(x)− (mx+ n)

è infinitesima per x che tende a +∞(−∞). Si parla di asintoto obliquo m 6= 0,
di asintoto orizzontale se m = 0.

Riportiamo il seguente risultato per la cui dimostrazione rimsandiamo, per
esempio, a [4].

Proposizione 5.10.8. - La retta (5.60) è asintoto a +∞(−∞) per f se e solo
se la funzione

x −→ f(x)

x

converge a m al tendere di x a +∞(−∞) e la funzione

x −→ f(x)−mx

converge a n sempre al tendere di x a +∞(−∞).

5.11 Formule di Taylor con resto di Peano

Sia f derivabile in un intervallo I e sia x0 un punto interno di I. Per la (5.5) in
un intorno di x0 si può approssimare il grafico di f con quello di una funzione
ad andamento lineare. Proviamo ora ad approssimare il grafico di f usando
polinomi di secondo grado. Ci chiediamo cioè se, fra tutte le parabole

y = f(x0) + f ′(x0)(x− x0) +
a

2
(x− x0)2 ,

ne esista una, detta “parabola osculatrice”, che in qualche modo aderisca meglio
delle altre al grafico di f . Si vuole in definitiva determinare il parametro a in
modo che risulti

f(x)− f(x0)− f ′(x0)(x− x0)− a

2
(x− x0)2 = o

(
(x− x0)2

)
ovvero

(5.61) lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)− a

2
(x− x0)2

(x− x0)2
= 0 .

Se f è derivabile due volte in x0, per la prima regola di de l’Hôpital la (5.61)
sussiste se

a = lim
x→x0

f ′(x)− f ′(x0)

x− x0
= f ′′(x0) .
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La parabola osculatrice è allora

y = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 .

Siamo pervenuti al seguente risultato

(5.62) f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + o((x− x0)2)

che prende il nome di formula di Taylor di f di ordine 2, di punto iniziale x0, con
resto di Peano. La (5.62) consente di ottenere condizioni sufficienti ad assicurare
che un punto critico sia punto di estremo locale.

Proposizione 5.11.1. - Sia x0 un punto critico di f e sia f derivabile due volte
in x0. Se f ′′(x0) 6= 0 allora x0 è un punto di estremo locale. In particolare x0 è
un punto di minimo relativo se f ′′(x0) > 0, di massimo relativo se f ′′(x0) < 0.

Dimostrazione. Sia f ′′(x0) > 0. Essendo f ′(x0) = 0 dalla (5.62) si ha

f(x)− f(x0)

(x− x0)2
=
f ′′(x0)

2
+
o((x− x0)2)

(x− x0)2

da cui

lim
x→x0

f(x)− f(x0)

(x− x0)2
=
f ′′(x0)

2
> 0 .

Per il teo. 3.2.4 risulta
f(x)− f(x0)

(x− x0)2
> 0

in un intorno di x0. Si ha quindi l’asserto. Il caso f ′′(x0) < 0 si tratta in modo
analogo.

Estendiamo la formula (5.62).

Teorema 5.11.1. - Sia f derivabile (n − 1) volte in I e n volte in x0; si ha
allora

(5.63) f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k + o ((x− x0)n) .

Dimostrazione. La (5.63) prende il nome di formula di Taylor di ordine n, di
punto iniziale x0, con resto di Peano. Si procede per induzione. La formula vale
per n = 1: essa non è altro che la (5.5). Supponiamo che la (5.63) sussista con
n− 1 al posto di n e per una qualsiasi funzione. Sia

Tn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k
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il polinomio di Taylor di f , di punto iniziale x0 e ordine n. Dobbiamo verificare
che

(5.64) lim
x→x0

f(x)− Tn(x)

(x− x0)n
= 0

Per la prima regola di de l’Hôpital la (5.64) sussiste se

lim
x→x0

f ′(x)−
n∑
k=1

f (k)(x0)

(k − 1)!
(x− x0)k−1

(x− x0)n−1
= 0 .

La funzione a numeratore è la differenza tra f ′ e il polinomio di Taylor di f ′ di
punto iniziale x0 e ordine n− 1. Essa, per l’ipotesi di induzione, è infinitesima
di ordine maggiore di n− 1. Vale pertanto la (5.64).

Dal teo. 5.11.1, ragionando come nella dimostrazione della prop. 5.11.1, si
ottiene il seguente risultato.

Proposizione 5.11.2. - Sia f derivabile 2n − 1 volte in I e 2n volte in x0,
punto interno di I. Se f (k)(x0) = 0 con k ≤ 2n − 1 e f (2n)(x0) 6= 0 allora
x0 è punto di minimo relativo se f (2n)(x0) > 0 ovvero di massimo relativo se
f (2n)(x0) < 0. Se invece f è derivabile 2n volte in I e 2n + 1 volte in x0 e
f (k)(x0) = 0 con k ≤ 2n e f (2n+1)(x0) 6= 0 allora x0 non è punto di estremo
locale.

5.12 Formule di Taylor con resto di Lagrange

La formula (5.5) fornisce solo una informazione qualitativa sul resto. È possi-
bile pervenire ad una valutazione numerica dell’errore di approssimazione se si
assume che la funzione abbia derivata seconda in tutto I. Poniamo

f(x) = f(x0) + f ′(x0)(x− x0) +
r

2
(x− x0)2

con r costante da determinare. La funzione

g(t) = f(t) + f ′(t)(x− t) +
r

2
(x− t)2

assume il valore f(x) sia in x0 che in x. Per il teo. 5.5.1 esiste un punto c,
strettamente compreso tra x0 e x, tale che g′(c) = 0. Poiché

g′(t) = [f ′′(t)− r] (x− t)

risulta
[f ′′(c)− r](x− c) = 0

da cui r = f ′′(c) essendo x 6= c.. Si ha in definitiva

(5.65) f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(c)

2
(x− x0)2 .
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Tale formula si presta bene ad essere utilizzata per stimare l’errore

ε(x) = f(x)− [f(x0) + f ′(x0)(x− x0)]

in termini dell’estremo superiore della derivata seconda di f . Procediamo ora
con la generalizzazione della formula (5.65).

Teorema 5.12.1. - Se f è derivabile (n+ 1) volte in I allora

(5.66) f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1

con c appartenente all’intervallo di estremi x0 e x.

Dimostrazione. La (5.66) è nota come formula di Taylor di f , di punto iniziale
x0, di ordine n, con resto di Lagrange. Poniamo

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +

(x− x0)n+1

(n+ 1)!
rn

con rn da determinare. Se

g(t) =

n∑
k=0

f (k)(t)

k!
(x− t)k +

(x− t)n+1

(n+ 1)!
rn

allora g(x) = g(x0) = f(x). È possibile applicare quindi a g, ristretta all’inter-
vallo di estremi x e x0, il teo. 5.5.1: esiste un punto c, strettamente compreso
tra x0 e x, tale che g′(c) = 0. Si ha

g′(t) =

n∑
k=0

f (k+1)(t)

k!
(x− t)k −

n∑
k=1

f (k)(t)

(k − 1)!
(x− t)k−1 − (x− t)n

n!
rn .

Osservato che

n∑
k=1

f (k)(t)

(k − 1)!
(x− t)k−1 =

n−1∑
k=0

f (k+1)(t)

k!
(x− t)k

abbiamo

g′(t) =
(x− t)n

n!

[
f (n+1)(t)− rn

]
.

Poiché c 6= x si ha rn = f (n+1)(c) da cui la (5.66).

Ricaviamo alcuni sviluppi notevoli. Cominciamo applicando la (5.66) alla fun-
zione esponenziale; si ha

ex =

n∑
k=0

xk

k!
+

ec

(n+ 1)!
xn+1︸ ︷︷ ︸

Rn(x)
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con c appartenente all’intervallo di estremi 0 e x. Essendo

lim
n→∞

Rn(x) = 0

si ha

(5.67) ex = lim
n→∞

n∑
k=0

xk

k!
=

∞∑
k=0

xk

k!
.

Utilizziamo lo stesso procedimento per le funzioni trigonometriche seno e coseno.
Si ha

sinx =

n∑
k=0

(−1)k
x2k+1

(2k + 1)!
+ (−1)n+1 cos c

(2n+ 3)!
x2n+3︸ ︷︷ ︸

R2n+2(x)

con c appartenente all’intervallo di estremi 0 e x. Essendo

lim
n→∞

R2n+2(x) = 0

si ha

(5.68) sinx = lim
n→∞

n∑
k=0

(−1)k
x2k+1

(2k + 1)!
=

∞∑
k=1

(−1)k−1 x2k−1

(2k − 1)!
.

Risulta anche

cosx =

n∑
k=0

(−1)k
x2k

(2k)!
+ (−1)n+1 cos c

(2n+ 2)!
x2n+2︸ ︷︷ ︸

R2n+1(x)

con c compreso tra 0 e x. Essendo

lim
n→∞

R2n+1(x) = 0

si ha

(5.69) cosx = lim
n→∞

n∑
k=0

(−1)k
x2k

(2k)!
=

∞∑
k=0

(−1)k
x2k

(2k)!
.

5.13 Il metodo di Newton

Riportiamo un procedimento, noto come “metodo di Newton”, utile per appros-
simare soluzioni dell’equazione

(5.70) f(x) = 0

con f , definita in un intervallo [a, b], soddisfacente le seguenti condizioni
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(i) f(a) f(b) 6= 0;

(ii) f ′ 6= 0;

(iii) f ′′ 6= 0.

Per il teorema degli zeri la condizione (i) assicura l’esistenza di una soluzione u
di (5.70). Le ipotesi (ii) e (iii), per il teo. 5.6.1, comportano che f ′ e f ′′ non
cambiano segno. Per semplicità assumiamo che sia

(5.71) f ′(x) > 0 , f ′′(x) > 0 .

Quindi f è strettamente crescente e convessa. La stretta crescenza comporta
che la soluzione u è unica. In questo caso il primo passo del processo di appros-
simazione di u consiste nel porre u0 = b. La retta tangente al grafico di f nel
punto (u0, f(u0)) interseca l’asse delle x nel punto di ascissa

u1 = u0 −
f(u0)

f ′(u0)
.

Poiché f è convessa si ha u < u1 < u0. È ovviamente possibile ripetere la pro-
cedura partendo da u1. In tal modo si costruisce per ricorrenza una successione
il cui termine generale è

(5.72) un+1 = un −
f(un)

f ′(un)
.

Essendo u < un+1 < un la successione {un} è decrescente e limitata; si ha

v = inf
n
{un} = lim

n→+∞
un .

Essendo f e f ′ continue dalla (5.72) si ha

v = v − f(v)

f ′(v)

e quindi f(v) = 0; deve ovviamente essere u = v.
Per valutare la velocità di convergenza di {un} applichiamo a f la formula di
Taylor (5.65) di punto iniziale un. Si ha

0 = f(u) = f(un) + f ′(un)(u− un) +
1

2
f ′′(cn)(u− un)2

con cn ∈]u, un[. Sostituendo a f(un) il valore che si ottiene dalla (5.72) si ha

f ′(un)(un+1 − u) =
1

2
f ′′(cn)(u− un)2 ,

ovvero, se εn = un − u denota l’errore di approssimazione,

εn+1 =
1

2

f ′′(cn)

f ′(un)
ε2
n .
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In definitiva abbiamo

lim
n→∞

εn
ε2
n−1

=
1

2

f ′′(u)

f ′(u)
;

quindi la convergenza è almeno “quadratica”. Si tratta di un tipo di convergenza
più efficace di quello relativo al metodo di bisezione illustrato nella dimostrazione
del teorema degli zeri.
Se non si verificano le condizioni (5.71) si procede in modo analogo. Bisogna sta-
re solo attenti a scegliere il punto da cui iniziare il processo di approssimazione;
in certi casi infatti va posto u0 = a.
Se f(x) = x2 − 2 si ottiene un algoritmo per il calcolo approssimato di

√
2 noto

come “metodo di Erone”. Posto u0 = 2 e

un+1 =
1

2

(
un +

2

un

)
la successione {un} converge a

√
2 soluzione positiva dell’equazione f(x) = 0.

Si ha anche

εn = un −
√

2 =
1

2un−1
(un−1 −

√
2)2

da cui

εn ≤
ε2
n−1

2
√

2
.



Capitolo 6

Calcolo integrale

6.1 Misura secondo Peano-Jordan in R
In tale paragrafo diamo la definizione di misura per sottoinsiemi di R prendendo
le mosse dalla nozione elementare di lunghezza di un intervallo limitato I di
estremi a, b

m(I) = b− a .

Definizione 6.1.1. - Siano

I1, I2, · · · , In

n intervalli limitati a due a due privi di punti interni comuni. L’insieme

(6.1) P =

n⋃
k=1

Ik

dicesi “plurintervallo” e la quantitá

(6.2) m(P ) =

n∑
k=1

m(Ik)

ne è la misura.

Gli intervalli delle decomposizioni (6.1) di P possono essere anche aperti o semia-
perti. In ogni caso la posizione (6.2) non si presta ad equivoci; si può dimostrare
infatti che essa non dipende dalla particolare decomposizione (6.1).

Definizione 6.1.2. - Sia X un sottoinsieme limitato di R. L’estremo inferiore
dell’insieme delle misure dei plurintervalli contenenti X prende il nome di “mi-
sura esterna” di X e si denota con me(X). L’estremo superiore dell’insieme
delle misure dei plurintervalli contenuti in X prende invece il nome di “misura
interna” di X e si denota con mi(X).

101
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Dati due plurintervalli P1, P2 è evidente che

(6.3) P1 ⊆ P2 =⇒ m(P1) ≤ m(P2) .

Si ha quindi

(6.4) mi(X) ≤ me(X) .

Definizione 6.1.3. - Se mi(X) = me(X) l’insieme X dicesi “misurabile se-
condo Peano-Jordan” o semplicemente “misurabile”. La “misura” di X è
allora

m(X) = mi(X) = me(X) .

Sussiste la seguente ovvia caratterizzazione.

Proposizione 6.1.1. - L’insieme X è misurabile se e solo se, per ogni ε,
esistono due plurintervalli P1, P2, con P1 ⊆ X ⊆ P2, tali che

m(P2)−m(P1) < ε .

Esempio 6.1.1. - Con il simbolo D = Q∩[0, 1] denotiamo il cosiddetto “insieme
di Dirichlet”. Consideriamo un plurintervallo P contenente D. Ovviamente P
è chiuso e in quanto tale contiene tutti i suoi punti di accumulazione. Per la
proprietà di densità descritta nel teo. 1.3.2 i punti di [0, 1] sono di accumulazione
per D e, quindi, per P . Pertanto [0, 1] ⊆ P ; ciò implica che me(D) = 1. D’altra
parte, essendo D privo di punti interni, gli unici plurintervalli contenuti in D
sono quelli costituiti da un numero finito di punti: pertanto mi(D) = 0. In
definitiva D non é misurabile.

È possibile introdurre una nozione più generale di misura. Limitiamoci per
semplicità al seguente caso.

Definizione 6.1.4. - Un sottoinsieme X di R ha “misura nulla secondo Lebe-
sgue” se, per ogni ε > 0, esiste una successione di intervalli aperti {Ik} tale
che

(a) X ⊆
+∞⋃
k=1

Ik

(b) sup
n∈N

{
n∑
k=1

m(Ik)

}
=

+∞∑
n=1

m(In) < ε .

E’ evidente che un insieme di misura nulla secondo Peano-Jordan ha misura
nulla secondo Lebesgue.

Proposizione 6.1.2. - L’insieme di Dirichlet e, più in generale, gli insiemi
numerabili hanno misura nulla secondo Lebesgue.
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Dimostrazione. Sia X numerabile: si ha allora X = {rk}k∈N. Fissato ε poniam

Ik =
]
rk −

ε

2k
, rk +

ε

2k

[
.

È soddisfatta la condizione (a); inoltre, ricordando la (1.22), si ha

n∑
k=1

m(Ik) ≤ ε
n−1∑
k=0

1

2k−1
< 2 ε

da cui la condizione (b). Quindi X ha misura nulla secondo Lebesgue.

Esempio 6.1.2. - Posto E0 = [0, 1] sia

(6.5) E1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
l’insieme che si ottiene eliminando i punti dell’intervallo aperto

]
1
3 ,

2
3

[
, il cosid-

detto “terzo medio”. Se si elimina il terzo medio in ognuno dei due intervalli a
secondo membro della (6.5) abbiamo l’insieme

E2 =

[
0,

1

9

]
∪
[

2

9
,

1

3

]
∪
[

2

3
,

7

9

]
∪
[

8

9
, 1

]
.

Iterando il procedimento si ottiene una successione {En} decrescente di plurin-
tervalli. Ogni En è unione di 2n intervalli di ampiezza 3−n; si ha quindi

(6.6) m(En) =

(
2

3

)n
.

L’intersezione C della famiglia {En} prende il nome di “insieme di Cantor”.

Per la prop. 4.1.2 l’insieme C é chiuso in quanto intersezione di chiusi; esso non
é vuoto perché contiene gli estremi di tutti gli intervalli la cui unione dà En.
Inoltre C, per la (6.6), ha misura nulla secondo Peano-Jordan.

Proposizione 6.1.3. - L’insieme di Cantor ha la potenza del continuo.

Dimostrazione. Per come è stato costruito a C appartengono i punti di [0, 1]
della forma

+∞∑
n=1

αn
3n

,

con αn = 0 oppure αn = 2, cioè tutti quei numeri che, rappresentati in base tre,
non presentano mai dopo la virgola la cifra uno. Conveniamo di rappresentare
i numeri di C che abbiano l’ultima cifra 1, come per esempio 1/3, sostituendo 1
con la cifra 0 seguita da 2. Quindi C è in corrispondenza biunivoca con l’insieme
delle successioni {αn} con αn che può assumere solo i valori 0, 2; tale insieme
ha la potenza del continuo.
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Proposizione 6.1.4. - L’insieme di Cantor é privo di punti interni e di punti
isolati.

Dimostrazione. L’insieme C non può avere punti interni dal momento che ha
misura nulla.Per dimostrare che C é privo di punti isolati procediamo per assur-
do. Sia x un punto isolato di C e sia ]a, b[ un intervallo la cui intersezione con
C si riduca a x. E’ ovviamente possibile, scegliendo opportunamente l’indice n,
fare in modo che x appartenga ad uno degli intervalli che compongono En e che
tale intervallo, che denotiamo con In, sia incluso in ]a, b[. Allora, detto y uno
dei due estremi di In diverso da x, risulta che y ∈ C∩]a, b[: siamo pervenuti ad
un assurdo.

Osservazione 6.1.1. - L’insieme di Cantor è il primo significativo esempio di
frattale. Per tali insiemi si può introdurre la nozione di dimensione che non
sempre è un numero intero; in particolare C ha dimensione log3 2.

6.2 Misura secondo Peano-Jordan in R2

La derivata di una funzione f può essere interpretata come la velocità scalare
di un punto materiale il cui moto è descritto da una legge oraria rappresentata
per l’appunto da f . Il problema inverso consiste nel risalire alla legge oraria una
volta che si conoscano i valori della velocità istante per istante. La soluzione di
tale problema, nel caso in cui la velocitè sia positiva, richiede che si introduca
la nozione di area per una opportuna classe di insiemi del piano. Poniamoci
l’obiettivo di misurare un sottoinsieme di R2, di associare cioè ad esso un valore
numerico che si riduca all’area nel caso di figure geometriche elementari come i
poligoni. Il modo tradizionale di procedere consiste nell’attribuire una misura
a semplici oggetti per poi passare ad insiemi di struttura via via più complessa.

Definizione 6.2.1. - Assegnate due coppie (x1, y1), (x2, y2) di R2, con x1 ≤ x2

e y1 ≤ y2, l’insieme

I = {(x, y)) : x1 ≤ x ≤ x2 , y1 ≤ y ≤ y2}

si chiama “intervallo chiuso” di R2. Il diametro di I è la lunghezza della
diagonale e la sua misura è

m(I) = (x2 − x1)(y2 − y1) .

L’insieme dei punti interni ad un intervallo chiuso prende il nome di interval-
lo aperto; in modo naturale si può anche introdurre la nozione di intervallo
semiaperto a destra o a sinistra. Ovviamente la definizione di misura rima-
ne inalterata. A questo punto la def. 6.1.1 può ora essere adattata al caso
bidimensionale.

Definizione 6.2.2. - Sia

(6.7) D = {I1, · · · , In}
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una famiglia di intervalli di R2 a due a due privi di punti interni comuni. Si
chiama “plurintervallo” l’insieme

P =

n⋃
k=1

Ik .

La famiglia (6.7) prende il nome di decomposizione di P . Il “diametro” di D è
il massimo tra i diametri degli intervalli Ik. La misura di P è

(6.8) m(P ) =

n∑
k=1

m(Ik) .

Nella definizione di plurintervallo gli intervalli della decomposizione in genera-
le sono chiusi anche se (cfr. [6]) converrebbe utilizzare intervalli semiaperti a
sinistra o a destra. Anche in questo caso la posizione (6.8) non si presta ad
equivoci. Si può dimostrare infatti che la quantità (6.8) non cambia se si uti-
lizzano differenti decomposizioni del plurintervallo. Il primo passo consiste nel
verificare che

(6.9) m(I) =
∑
k

m(Ik)

se l’intervallo I è unione di un numero finito intervalli Ik a due a due privi
di punti interni comuni. Tralasciamo la dimostrazione della (6.9); limitiamoci
a verificare come da essa si possa dedurre l’indipendenza della misura di un
plurintervallo dalla decomposizione scelta. Se D′ = {I ′k} e D′′ = {I ′′h} sono
decomposizioni di P , applicando due volte la (6.9) abbiamo

∑
k

m(I ′k) =
∑
k

(∑
h

m(I ′k ∩ I ′′h)

)

=
∑
h

(∑
k

m(I ′k ∩ I ′′h)

)
=
∑
h

m(I ′′h) .

Ricordiamo inoltre che l’unione, l’intersezione di due plurintervalli è ancora
un plurintervallo. Per quanto riguarda la differenza bisogna far riferimento ai
plurintervalli semiaperti a sinistra o a destra. Vale inoltre la (6.3).

Definizione 6.2.3. - Sia X è un sottoinsieme limitato di R2. L’estremo supe-
riore dell’insieme delle misure dei plurintervalli contenuti in X, denotato con
mi(X), è la “misura interna” di X. L’estremo inferiore dell’insieme delle mi-
sure dei plurintervalli contenenti X prende il nome di “misura esterna” di X e
si denota con me(X).

Si verifica facilmente che continua a valere la (6.4).
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Definizione 6.2.4. - Se mi(X) = me(X) l’insieme X dicesi “misurabile se-
condo Peano-Jordan” o semplicemente “misurabile”. La sua misura è

m(X) = mi(X) = me(X) .

Denotiamo con M la famiglia dei sottoinsiemi misurabili di R2.

Riportiamo senza dimostrazione i seguenti risultati.

Teorema 6.2.1. - Se X1, X2 ∈M allora gli insiemi X1∪X2, X1∩X2, X1\X2

appartengono a M. Inoltre si ha

• X1 ⊆ X2 ⇒ m(X1) ≤ m(X2) (monotonia);

• m(X1 ∪X2) ≤ m(X1) +m(X2) (subadditività);

• Se X1, X2 non hanno punti interni in comune allora

m(X1 ∪X2) = m(X1) +m(X2) , (additività) ;

• X1 ⊂ X2 =⇒ m(X2\X1) = m(X2)−m(X1) .

Definizione 6.2.5. - Sia X non limitato. Si dice che esso è misurabile se, per
ogni r > 0, è misurabile X ∩ Cr dove Cr è il cerchio con centro nell’origine e
raggio r. Si pone allora

(6.10) m(X) = lim
r→∞

m(X ∩ Cr) .

Nulla esclude che sia m(X) = +∞.

6.3 Integrale secondo Riemann

Se I = [a, b] per “decomposizione” di I si intende una collezione di punti di I

(6.11) D = {x0, x1, · · · , xn}

con
x0 = a < x1 < x2 < · · · < xn = b .

Il “diametro” di D è
δD = max

k
(xk+1 − xk) .

Sia f una funzione limitata in [a, b]. Posto

(6.12) mk = inf
[xk,xk+1]

f , Mk = sup
[xk,xk+1]

f ,

consideriamo le quantità

s(f,D) =

n−1∑
k=0

mk (xk+1 − xk) , S(f,D) =

n−1∑
k=0

Mk (xk+1 − xk) .

Quando non c’è possibilità di equivoco porremo più semplicemente

s(f,D) = s(D) , S(f,D) = S(D) .
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Proposizione 6.3.1. - Gli insiemi numerici {s(D)} e {S(D)} sono separati.
Si ha cioè

sup
D
s(D) ≤ inf

D
S(D) .

Dimostrazione. Se D1, D2 sono decomposizioni di I indichiamo con D12 la de-
composizione costituita dai punti che appartengono ad almeno una delle due
decomposizioni D1, D2. Si verifica facilmente (cfr. [4]) che

(6.13) s(D1) ≤ s(D12) ≤ S(D12) ≤ S(D2)

da cui l’asserto.

Definizione 6.3.1. - Se

(6.14) sup
D
s(D) = inf

D
S(D) ,

la funzione f dicesi “integrabile secondo Riemann” o, semplicemente, “inte-
grabile” in [a, b]. L’elemento di separazione (6.14) delle due classi numeriche
{s(D)} e {S(D)} si denota con il simbolo∫ b

a

f(x) dx ;

esso è detto“integrale” di f esteso ad [a, b].

Definizione 6.3.2. - Sia f integrabile e non negativa. L’insieme del piano

(6.15) {(x, y) : a ≤ x ≤ b , 0 ≤ y ≤ f(x)}

si chiama “rettangoloide” di base [a, b] relativo a f .

Proposizione 6.3.2. - Se f è una funzione non negativa e integrabile allora la
misura di (6.15) è l’integrale di f .

Dimostrazione. Basta osservare che s(D) e S(D) rappresentano le aree di due
plurintervalli il primo contenuto, il secondo contenente il rettangoloide (6.15).
L’integrabilità di f equivale ad affermare che l’insieme (6.15) è misurabile.

Dimostriamo il seguente criterio di integrabilità.

Teorema 6.3.1. - Se f è continua allora f è integrabile.

Dimostrazione. Fissato ε, per il teo. 4.2.1 è possibile determinare δε in modo
tale che

(6.16) |x− y| < δε =⇒ |f(x)− f(y)| < ε .

Scegliamo una decomposizione D di [a, b] con δD < δε. Per l’ipotesi di continuità
di f le quantità mk,Mk in (6.12) sono, rispettivamente, il minimo e il massimo
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di f in [xk, xk+1]; i punti in cui f assume tali valori distano tra loro meno di δD
e, quindi, di δε. Per la (6.16) si ha Mk −mk < ε. In definitiva abbiamo

(6.17) S(D)− s(D) =

n−1∑
k=0

(Mk −mk) (xk+1 − xk) < ε (b− a)

da cui la (6.14).

Definizione 6.3.3. - Una funzione f dicesi “generalmente continua” in un
intervallo I se essa è continua tranne che in un numero finito di punti di I.

Definizione 6.3.4. - Una funzione dicesi “quasi ovunque continua in I secondo
Peano-Jordan” se è continua in tutti i punti di I\I0 con I0 sottoinsieme di I
di misura nulla secondo Peano-Jordan. Essa dicesi “quasi ovunque continua
secondo Lebesgue” se è continua in tutti i punti I\I0 con I0 sottoinsieme di I
di misura nulla secondo Lebesgue.

La condizione di continuità per l’integrabilità può essere indebolita.

Proposizione 6.3.3. - Sia f limitata e generalmente continua in [a, b] o, più in
generale, quasi ovunque continua secondo Peano-Jordan. Allora f è integrabile.

Dimostrazione. Sia f generalmente continua e siano x1 < x2 < · · · < xk i punti
di discontinuità di f . Fissato ε scegliamo gli intorni Ij =]cj , dj [ di xj in modo
tale che essi siano a due a due disgiunti e che la somma delle loro misure sia
minore di ε. La funzione f è continua nel compatto

(6.18) [a, b]\
(
∪kj=1Ij

)
.

Procedendo come nella dimostrazione del teo. 6.3.1 decomponiamo il compatto
(6.18) in intervalli in ognuno dei quali l’oscillazione di f sia minore di ε. Detta
D tale decomposizione si ha allora

(6.19) S(D)− s(D) < ε(b− a).

Sia D′ la decomposizione di [a, b] che si ottiene aggiungendo gli intervalli [cj , dj ]
a quelli di D. Se

M = sup
[a,b]

|f |

per la (6.19) si ha

S(D′)− s(D′) = S(D)− s(D) +

k∑
j=1

(
sup

[cj ,dj ]

f − inf
[cj ,dj ]

f

)
(dj − cj)

< ε(b− a) + 2M

k∑
j=1

(dj − cj)

< ε (b− a+ 2M) .
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Dall’arbitrarietà di ε discende che f è integrabile.

La stessa procedura può essere utilizzata se f è quasi ovunque continua secondo
Peano-Jordan. Basta infatti assumere che l’insieme I0 dei punti di discontinuità
di f sia contenuto nel plurintervallo aperto ∪kj=1Ij sopra introdotto. Per ulteriori
dettagli si consulti per esempio [4].

Per completezza riportiamo senza dimostrazione la seguente caratterizzazione
delle funzioni integrabili secondo Riemann (cfr. [6]).

Teorema 6.3.2. (Criterio di Vitali-Lebesgue) - Una funzione limitata è
integrabile secondo Riemann se e solo se essa è quasi ovunque continua secondo
Lebesgue.

Come ultimo criterio di integrabilità proponiamo il seguente risultato.

Proposizione 6.3.4. - Sia f monotona in [a, b]. Allora essa è integrabile.

Dimostrazione. Sia f per esempio crescente. Fissato ε scegliamo una decompo-
sizione D di [a, b] con diametro minore di ε. Poiché xk+1 − xk < ε e

f(xk) = min
[xk,xk+1]

f , f(xk+1) = max
[xk,xk+1]

f

si ha

S(D)− s(D) =

n−1∑
k=0

[f(xk+1)− f(xk)] (xk+1 − xk)

≤ ε

n−1∑
k=0

[f(xk+1)− f(xk)] = ε [f(b)− f(a)]

da cui la (6.14).

Osservazione 6.3.1. - Si può dimostrare che l’insieme dei punti di disconti-
nuità di una funzione monotona è numerabile e pertanto, per la prop. 6.1.2,
di misura nulla secondo Lebesgue. Ciò basta per concludere che le funzioni
monotone sono integrabili secondo Riemann alla luce del teo. 6.3.2.

Esempio 6.3.1. - La funzione

(6.20) x ∈ [a, b] −→

 1 se x ∈ D

0 se x 6∈ D ,

dove D è l’insieme di Dirichlet dell’es. 6.1.1, non è integrabile secondo Riemann.
Ciò può essere verificato direttamente ma è anche conseguenza del teo. 6.3.2
dal momento che la funzione (6.20) è discontinua in ogni punto.
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Definizione 6.3.5. - Se D la decomposizione (6.11) e ξk ∈ [xk, xk+1] chiamia-
mo “somma di Riemann” l’espressione

σ(D) =

n−1∑
k=0

f(ξk)(xk+1 − xk) .

Si dice che

(6.21) lim
δD→0

σ(D) = ` ∈ R

se per ogni ε esiste un δε tale che, comunque si scelga una decomposizione D
con δD < δε e comunque si scelgano i punti ξk ∈ [xk, xk+1], risulti

|σ(D)− `| < ε .

Proposizione 6.3.5. - Se vale la (6.21) allora f è integrabile secondo Riemann
e si ha ∫ b

a

f(x) dx = ` .

Dimostrazione. Per semplicità ci limitiamo al caso in cui f è continua. Per la
dimostrazione nel caso generale si consulti [6]. Se D è la decomposizione (6.11)
si ha ovviamente

s(D) ≤ σ(D) ≤ S(D)

e

s(D) ≤
∫ b

a

f(x) dx ≤ S(D) .

Ne consegue che ∣∣∣∣∣
∫ b

a

f(x) dx− σ(D)

∣∣∣∣∣ ≤ S(D)− s(D) .

Ragioniamo come nella dimostrazione del teo. 6.3.1. Fissato ε > 0 determinia-
mo δε in modo tale che, se δD < δε, sussista la (6.17). Si ha allora∣∣∣∣∣

∫ b

a

f(x) dx− σ(D)

∣∣∣∣∣ < ε (b− a)

da cui l’asserto.

Osservazione 6.3.2. - Sia f continua in [a, b]. Fssato n scegliamo la decom-
posizione di [a, b] costituita da intervalli di uguale ampiezza (b − a)/n. Per la
prop. 6.3.5 si ha ∫ b

a

f(x) dx = lim
n→∞

(
b− a
n

n−1∑
k=0

f(ξk)

)

con ξk ∈ [xk−1, xk].
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Sia f una funzione con derivata continua in [a, b]. Fissata la decomposizione
(6.11) consideriamo la curva spezzata di estremi (xk, f(xk)) la cui lunghezza,
per il teorema di Lagrange, è

n−1∑
k=0

√
[f(xk+1)− f(xk)]2 + (xk+1 − xk)2 =

n−1∑
k=0

(xk+1 − xk)
√

[f ′(ck)]2 + 1

con ck ∈ [xk, xk+1]. La quantità a secondo membro è una somma di Riemann
relativa alla funzione continua

x ∈ [a, b] −→
√

[f ′(x)]2 + 1 .

Poiché le spezzate possono essere considerate delle “approssimazioni” del grafico
di f ha senso i la seguente posizione.

Definizione 6.3.6. - La lunghezza del grafico di una funzione con derivata
continua in [a, b] è ∫ b

a

√
[f ′(x)]2 + 1 dx .

6.4 Proprietà dell’integrale di Riemann

Il criterio di Vitali-Lebesgue comporta che l’insieme delle funzioni limitate e in-
tegrabili secondo Riemann è chiuso rispetto alle ordinarie operazioni algebriche:
con ciò intendiamo dire che la somma e il prodotto di due funzioni integrabili so-
no ancora integrabili. È altreśı integrabile la restrizione di una funzione, definita
in un intervallo I, ad un qualsiasi sottointervallo di I. Ciò premesso elenchiamo
qui di seguito le principali proprietà delle funzioni integrabili secondo Riemann.

• Proprietà distributiva : Se α, β ∈ R

(6.22)

∫ b

a

[αf(x) + βg(x)] dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx .

• Proprietà additiva : Se c ∈]a, b[

(6.23)

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .

• Proprietà di monotonia :

f ≤ g =⇒
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

• Proprietà di media : Per ogni funzione f limitata e integrabile si ha

(6.24) (b− a) inf
[a,b]

f ≤
∫ b

a

f(x) dx ≤ (b− a) sup
[a,b]

f .
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Se f è continua esiste un punto c ∈ [a, b] tale che

(6.25)

∫ b

a

f(x) dx = f(c) (b− a) .

• Se f è integrabile tale è anche la funzione |f | e si ha

(6.26)

∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx .

Dimostriamo la (6.22) con α = β = 1. Verifichiamo che

(6.27) inf f + inf g ≤ inf(f + g) ≤ sup(f + g) ≤ sup f + sup g .

Sia {xn} tale che
inf(f + g) = lim

n→∞
[f(xn) + g(xn)] .

Poiché
inf f + inf g ≤ f(xn) + g(xn) , ∀n

si ha
inf f + inf g ≤ inf(f + g) .

In modo analogo si ragiona per l’altra disuguaglianza. Essendo f, g integrabili,
fissato ε > 0, si può dimostrare che esiste una decomposizione D tale che

S(f,D)− s(f,D) < ε , S(g,D)− s(g,D) < ε .

Dalla (6.27) si deduce che

s(f,D) + s(g,D) ≤ s(f + g,D) ≤ S(f + g,D) ≤ S(f,D) + S(g,D)

e quindi
S(f + g,D)− s(f + g,D) < 2 ε .

Dall’arbitrarietà di ε discende che f + g è integrabile. Si ha anche anche∣∣∣∣∣
∫ b

a

f(x) dx+

∫ b

a

g(x) dx−
∫ b

a

[f(x) + g(x)] dx

∣∣∣∣∣ < 2 ε

da cui la (6.22).
Dimostriamo la (6.23). Fissato ε scegliamo la decomposizione (6.11) di [a, b] in
modo tale che sia

S(f,D)− s(f,D) < ε .

Se k è tale che c ∈ [xk, xk+1] allora

D1 = {x0, · · · , xk, c} , D2 = {c, xk+1, · · · , xn}
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sono decomposizioni di [a, c] e [c, b]. Se f1, f2 denotano le restrizioni di f ai due
intervalli [a, c] e [c, b] si ha

s(f,D) ≤ s(f1,D1) + s(f2,D2) ≤ S(f1,D1) + S(f2,D2) ≤ S(f,D)

da cui ∣∣∣∣∣
∫ b

a

f(x) dx−

(∫ c

a

f(x) dx+

∫ b

c

f(x) dx

)∣∣∣∣∣ < ε .

Dall’arbitrarietà di ε discende la (6.23).
La proprietà di monotonia è ovvia; da essa si deduce facilmente la (6.24). Se f
è continua la (6.24) diventa

min
[a,b]

f ≤

∫ b

a

f(x) dx

b− a
≤ max

[a,b]
f

da cui la (6.25) in base al teo. 4.3.2.
Infine la (6.26) è semplice conseguenza della proprietà di monotonia.

6.5 Integrazione indefinita

Se f è integrabile in I e x, y ∈ I il simbolo

∫ y

x

f(t) dt =



∫ y

x

f(t) dt se x ≤ y

−
∫ x

y

f(t) dt se y < x .

prende il nome di “integrale definito” tra x e y di f . Per esso la proprietà
additiva (6.23) va riformulata nel seguente modo: se x, y, z ∈ I

(6.28)

∫ y

x

f(t) dt =

∫ z

x

f(t) dt+

∫ y

z

f(t) dt .

La novità sta nel fatto che i tre punti dell’intervallo possono essere scelti senza
che essi siano in un ordine preciso come nella (6.23).
Ci proponiamo ora di verificare in che senso l’operazione di integrazione è da
ritenersi l’inversa dell’operazione di derivazione.

Definizione 6.5.1. - Si dice che F è una primitiva di f nell’intervallo I se

(6.29) F ′(x) = f(x)

per ogni x ∈ I.

Sussiste il seguente risultato noto anche come “teorema fondamentale del calcolo
integrale”.
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Teorema 6.5.1. - Sia f continua in I. Fissato x0 ∈ I la funzione

(6.30) F (x) =

∫ x

x0

f(t) dt

è una primitiva di f in I.

Dimostrazione. Se x ∈ I, per l’ipotesi di continuità di f , fissato ε esiste un
intorno Ix di x tale che

(6.31) |f(x)− f(t)| < ε

per ogni t ∈ Ix. Per la (6.28) risulta

F (y)− F (x) =

∫ y

x

f(t) dt .

Si ha quindi∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ =
1

|y − x|

∣∣∣∣∫ y

x

f(t) dt− f(x)(y − x)

∣∣∣∣
=

1

|y − x|

∣∣∣∣∫ y

x

[f(t)− f(x)] dt

∣∣∣∣
(per la (6.26))

≤ 1

|y − x|

∣∣∣∣∫ y

x

|f(t)− f(x)| dt
∣∣∣∣ .

Se y ∈ Ix vale la (6.31); abbiamo quindi∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ < ε

da cui la (6.29).

Osservazione 6.5.1. - Se f non è continua in tutto I allora la (6.29) continua
a valere nei punti in cui la funzione è continua mentre, nei punti in cui c’è una
discontinuità di prima specie, la funzione F ha derivata sinistra e destra.

Il teorema fondamentale del calcolo integrale assicura che ogni funzione continua
è dotata di almeno una primitiva F . Ovviamente le funzioni

(6.32) x ∈ I −→ F (x) + cost.

sono anch’esse primitive di f . Il seguente risultato assicura che le (6.32) sono le
sole primitive di f .

Proposizione 6.5.1. - Se F1, F2 sono due primitive di f in I allora esse
differiscono per una costante.
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Dimostrazione. Poiché

F ′1(x)− F ′2(x) = f(x)− f(x) = 0 ∀x ∈ I

il risultato è conseguenza del cor. 5.5.1.

Definizione 6.5.2. - L’insieme (6.32) delle primitive di f si denota con il
simbolo ∫

f(x) dx

che si legge “integrale indefinito” di f .

Concludiamo con il seguente risultato.

Teorema 6.5.2. - Sia F una primitiva di f in [a, b]. Allora

(6.33)

∫ b

a

f(x) dx = F (b)− F (a) .

Dimostrazione. Per il teo. 6.5.1 e la prop. 6.5.1 la primitiva F si può scrivere
nel modo seguente

F (x) =

∫ x

x0

f(t) dt+ C

con x0 ∈ I e C costante opportuna. Si ha allora

F (b)− F (a) =

∫ b

x0

f(x) dx+

∫ x0

a

f(x) dx

da cui la (6.33) per la (6.28).

6.6 Regole di integrazione indefinita

Per la (6.33) il calcolo di un integrale definito di una funzione è ricondotto a
quello del suo integrale indefinito. Ma come bisogna procedere per determinare
la primitiva di una funzione? Per definizione si ha

(6.34)

(∫
f dx

)′
= f ,

∫
f ′ dx = f .

Gli operatori di derivazione e di integrazione indefinita sono da considerarsi
quindi l’uno l’inverso dell’altro: pertanto, ad ogni regola di derivazione si può
far corrispondere una regola di integrazione. In tutte le formule che seguono si
sottintende che le varie uguaglianze valgono a meno di una costante additiva.

(a) Integrali indefiniti di funzioni elementari

Le derivate delle funzioni elementari elencate nel par. 5.2 danno luogo ad
altrettante formule di integrazione:
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(1)

∫
xα dx =

1

α+ 1
xα+1 , α 6= −1

(2)

∫
x−1 dx = log |x|

(3)

∫
ax dx = ax loga e ,

∫
ex dx = ex

(4)

∫
sinx dx = − cosx ,

∫
cosx dx = sinx

(5)

∫
1

cos2 x
dx = tanx

(6)

∫
1√

1− x2
dx = arcsinx

(7)

∫
1

1 + x2
dx = arctanx

(8)

∫
sinhx dx = coshx ,

∫
coshx dx = sinhx

(9)

∫
1√

x2 + 1
dx = settsinh x ,

∫
1√

x2 − 1
dx = settcosh x

(10)

∫
1

1− x2
dx = setttanh x.

Dalla (6.34) si evince che la primitiva si ottiene in modo rapido se si rappresenta
la funzione da integrare come derivata. Si ha quindi∫

tanx dx = −
∫

D log | cosx| dx = log | cosx|(6.35)

∫
x√

1− x2
dx = −

∫
D
√

1− x2 dx = −
√

1− x2(6.36)

∫
x

1 + x2
dx =

1

2

∫
D log(1 + x2) dx =

1

2
log(1 + x2) .(6.37)

(b) Proprietà distributiva: Dalle (6.34) discende che

(6.38)

∫
(α f + β g) dx = α f + β g .

Esempio 6.6.1. - Siano α 6= β due reali. Per le formule di prostaferesi si ha∫
sinαx cosβx dx =

1

2

∫
[sin(α+ β)x + sin(α− β)x] dx
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e quindi, per la (6.38),∫
sinαx cosβx dx = − 1

2(α+ β)
cos(α+ β)x− 1

2(α− β)
cos(α− β)x .

Procedendo in modo analogo si ha anche∫
sinαx sinβx dx =

1

2(α− β)
sin(α− β)x− 1

2(α+ β)
sin(α+ β)x

∫
cosαx cosβx dx =

1

2(α+ β)
sin(α+ β)x+

1

2(α+ β)
cos(α+ β)x .

(c) Integrali di funzioni razionali

Mediante le procedure illustrate ai punti precedenti è possibile integrare le co-
siddette funzioni razionali cioè quelle funzioni che si presentano come rapporti di
polinomi. Per dettagli sui tali metodi di integrazione rimandiamo per esempio a
[3], [4], [10]. Il metodo consiste nel riscrivere la funzione come somma di “fratti
semplici” , funzioni razionali cioè con, a denominatore, un polinomio irriducibile
di primo o secondo grado e, a numeratore, un altro polinomio di grado inferiore
a quello del denominatore.
Per semplicità di esposizione limitiamoci ad un esempio. Consideriamo la
funzione razionale

(6.39)
1

x(x2 + 3x+ 2)
.

Poiché
1

x(x2 + 3x+ 2)
=

1

2x
− 1

x+ 1
+

1

2 (x+ 2)
,

la primitiva si ottiene utilizzando le proprietà riportate ai punti precedenti.

(d) Integrazione per parti

Dalla regola di derivazione del prodotto (5.10) e dalla (6.34) si ottiene

(6.40)

∫
f ′(x) g(x) dx = f(x) g(x)−

∫
g′(x) f(x) dx .

La (6.40) è nota come “regola di integrazione per parti”.

Dalla (6.40) si ha

(12)

∫
log x dx = x(log x− 1) .

Inoltre, ricordando le (6.36), (6.37), abbiamo

(13)

∫
arcsinx dx = x arcsinx+

√
1− x2 ,
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(14)

∫
arctanx dx = x arctanx− 1

2
log(1 + x2) .

Osservazione 6.6.1. - Dalla (6.40) e dalla (6.33) si ottiene la seguente regola
di integrazione per parti relativa agli integrali definiti

(6.41)

∫ b

a

f ′(x) g(x) dx = f(b) g(b)− f(a) g(a)−
∫ b

a

g′(x) f(x) dx .

(e) Regola di integrazione per sostituzione

Sia F una primitiva di f in un intervallo I e sia

ϕ : t ∈ J −→ ϕ(t) ∈ I

un’applicazione biunivoca di J su I, con derivata diversa da zero. Si ha

d

dt
F (ϕ(t)) = f(ϕ(t))ϕ′(t)

da cui, per la (6.34),

F (ϕ(t)) =

∫
f(ϕ(t))ϕ′(t) dt

ovvero

(6.42) F (x) =

∫
f(x) dx =

[∫
f(ϕ(t))ϕ′(t) dt

]
t=ϕ−1(x)

.

Con la formula (6.42) e con una scelta opportuna di ϕ, per il calcolo dell’integrale
di f ci si può ricondurre ad uno dei casi studiati ai punti precedenti.
Illustriamo tale procedura con qualche esempio. Per calcolare l’integrale∫

dx

e2x + 3 ex + 2

operiamo il cambio di variabile x = log t. Il calcolo dell’integrale è ricondotto
a quello della funzione razionale (6.39). Per ritornare alla variabile x bisogna
ovviamente porre t = ex.
Per il calcolo dell’integrale ∫

dx

sinx(1 + cosx)
,

osservato che

sinx =
2 tan

x

2

1 + tan2 x

2

, cosx =
1− tan2 x

2

1 + tan2 x

2

,

si procede con la sostituzione x = 2 arctan t. Ancora una volta si perviene ad
una funzione razionale nella nuova variabile t. Nella primitiva ottenuta bisogna
ovviamente porre t = tan x

2 .
Per ulteriori casi si può utilmente consultare un qualsiasi testo di Analisi Ma-
tematica 1.
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6.7 Sommabilità

Facciamo brevemente cenno all’integrazione di funzioni continue in intervalli
non compatti. L’ipotesi di continuità potrebbe essere indebolita ma, per sem-
plicità di esposizione, non ci occuperemo di tali estensioni. Per maggiori dettagli
rimandiamo ad uno qualsiasi dei testi riportati in bibliografia.

Consideriamo prima il caso di una funzione non negativa e, per rendere l’idea,
partiamo da alcuni casi concreti. Data la funzione

(6.43) f : x ∈]0,+∞[−→ f(x) = x−α

con α positivo e diverso da 1, restringiamo f all’intervallo [1,+∞[. Per ogni
a > 1 si ha ∫ a

1

x−α dx =
1

1− α
(
a1−α − 1

)
da cui

lim
a→+∞

∫ a

1

x−α dx =


1

α− 1
se α > 1

+∞ se α ≤ 1 .

Analoghe considerazioni si possono fare se si prende la restrizione di f a ]a, 1].
Si ha allora

lim
a→0

∫ 1

a

x−α dx =


1

1− α
se α < 1

+∞ se α ≥ 1 .

L’esempio proposto suggerisce la seguente

Definizione 6.7.1. - Sia f una funzione non negativa e continua in un inter-
vallo I di estremi a, b ∈ R. Si pone

(6.44)

∫ b

a

f(x) dx = sup

{∫ β

α

f(x) dx : [α, β] ⊂ I

}
.

Se la quantità (6.44) è finita si dice che f è “sommabile” in I.

Sia per esempio f è continua e non negativa nell’intervallo [a,+∞[; allora se

(6.45) lim
t→+∞

∫ t

a

f(x) dx = ` ∈ R

la funzione è ovviamente sommabile e si ha∫ +∞

a

f(x) dx = ` .
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Esempio 6.7.1. - Se a > 1 si verifica facilmente che la funzione

x ∈ [a,+∞[−→ 1

x logα x

è sommabile se e solo se α > 1. Analoghe considerazioni possono essere fatte
per la stessa funzione ristretta all’intervallo ]0, a] con a < 1.

Per riconoscere se una funzione non negativa è sommabile o meno si può far
riferimento al seguente criterio di semplice verifica.

Proposizione 6.7.1. - Siano f, g due funzioni non negative e, per esempio,
continue in un intervallo I. Sia f ≤ g; allora

• se g è sommabile allora f è sommabile;

• se f non è sommabile allora anche g non lo è.

Siano f, g due funzioni continue e non negative in ]a, b]. Se

lim
x→a

f(x)

g(x)
= ` ∈ R+

allora è possibile applicare la prop. 6.7.1. Si può cioè concludere che f, g o so-
no entrambe sommabili o non sommabili. In particolare, alla luce degli esempi
sopra proposti lo studio della sommabilità o meno di una funzione può esse-
re ricondotto a quello della determinazione del suo ordine di infinitesimo o di
infinito.
Consideriamo il caso di una funzione f di segno variabile. Indichiamo con

f+(x) = max{f(x), 0} , f−(x) = max{−f(x), 0}

rispettivamente la “parte positiva” e la “parte negativa” di f . Si ha

(6.46) f(x) = f+(x)− f−(x) , |f(x)| = f+(x) + f−(x) .

Definizione 6.7.2. - Si dice che f è sommabile in I se tale è la funzione non
negativa |f |.

Dalla (6.46) si deduce che f è sommabile se e solo se tali sono la parte positiva
e quella negativa di f . Se a, b sono gli estremi dell’intervallo I si pone∫ b

a

f(x) dx =

∫ b

a

f+(x) dx−
∫ b

a

f−(x) dx .

Consideriamo la seguente funzione

(6.47) x ∈ [π/2,+∞[−→ sinx

x
.

Integrando per parti si ha∫ t

π/2

sinx

x
dx = −

∫ t

π/2

cosx

x2
dx− cos t

t
.
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La funzione

x ∈ [π/2,+∞[−→ cosx

x2

è ovviamente sommabile. Pertanto risulta finito il seguente limite

lim
t→+∞

∫ t

π/2

sinx

x
dx

Nonostante ciò si può dimostrare che la funzione (6.47) non è sommabile. Per-
tanto il criterio indicato nella (6.45) per riconoscere se una funzione non negativa
è sommabile non si applica a quelle di segno variabile.

6.8 Diseguaglianze di Jensen e di Hölder

Sia f una funzione continua in [a, b] e sia ϕ una funzione convessa in R. Dimo-
striamo la seguente “diseguaglianza integrale di Jensen”

(6.48) ϕ


∫ b

a

f(x) dx

b− a

 ≤
∫ b

a

ϕ(f(x)) dx

b− a
.

Consideriamo la decomposizione di [a, b] in n intervalli di uguale ampiezza e
siano xk gli estremi si tali sottointervalli. Per la (5.58) si ha

ϕ

(
f(x0) + f(x1) + · · ·+ f(xn−1)

n

)
≤ ϕ(f(x0)) + · · ·+ ϕ(f(xn−1))

n
.

Facendo divergere n, tenendo conto dell’oss. 6.3.2, abbiamo la (6.48) .
Se ϕ(t) = |t|p con p > 1 la (6.48) diventa(∫ b

a

f(x) dx

)p
≤ (b− a)p−1

∫ b

a

|f(x)|p dx .

Essa è un caso particolare della seguente “diseguaglianza di Hölder”

(6.49)

∣∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣∣ ≤
(∫ b

a

|f(x)|pdx

) 1
p
(∫ b

a

|g(x)|qdx

) 1
q

con f, g integrabili in [a, b] e p, q numeri reali maggiori di uno tali che

(6.50)
1

p
+

1

q
= 1 .

Premettiamo il seguente risultato.
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Lemma 6.8.1. - Se p, q soddisfano la (6.50) allora

(6.51) uv ≤ up

p
+
vq

q

per ogni u, v > 0.

Dimostrazione. Considerata la funzione t = sp−1 e la sua inversa s = tq−1, si
verifica facilmente

uv ≤
∫ u

0

sp−1ds+

∫ v

0

tq−1dt

da cui la (6.51).

Poniamo

(6.52) ‖f‖p =

(∫ b

a

|f(x)|pdx

) 1
p

, ‖g‖q =

(∫ b

a

|g(x)|qdx

) 1
q

.

Dalla (6.51) si ha

|f(x) g(x)|
‖f‖p ‖g‖q

≤ 1

p

|f(x)|p

‖f‖pp
+

1

q

|g(x)|q

‖g‖qq

e quindi ∣∣∣∣∣
∫ b

a

f(x) g(x)

‖f‖p ‖g‖q
dx

∣∣∣∣∣ ≤
∫ b

a

|f(x) g(x)|
‖f‖p ‖g‖q

dx

≤ 1

p

∫ b

a

|f(x)|p

‖f‖pp
dx+

1

q

∫ b

a

|g(x)|q

‖g‖qq
dx .

Ricordando le posizioni (6.52) nonché la (6.50), abbiamo∣∣∣∣∣
∫ b

a

f(x) g(x)

‖f‖p ‖g‖q
dx

∣∣∣∣∣ ≤ 1

p
+

1

q
= 1

da cui la (6.49). Se p = q = 2 la (6.49) é nota “diseguaglianza di Schwarz”

6.9 Irrazionalità di π

Una interessante applicazione di quanto fin qui ottenuto è costituita dal seguente
risultato (cfr. [5]).

Teorema 6.9.1. - π è irrazionale.
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Dimostrazione. Consideriamo la funzione

f : x ∈ [0, 1] −→ xn

n!
(1− x)n .

Si verifica che

(6.53) max
[0,1]

f = f

(
1

2

)
=

1

n!

1

22n
<

1

n!
.

Un semplice calcolo mostra inoltre che

(6.54) f (k)(0) = f (k)(1) = 0 , k = 0, · · · , n− 1 .

Per la (1.9) si ha

(1− x)n =

n∑
h=0

(
n

h

)
(−1)h xh

e quindi

f(x) =
1

n!

n∑
h=0

(
n

h

)
(−1)h xn+h .

Se k = 0, · · · , n si ha

f (n+k)(0) = (−1)k
(
n

k

)
(n+ k)!

n!
= (−1)k

(
n+ k

n− k

)
(2k)!

k!
.

Da tale formula si evince che

(6.55) f (n+k)(0) ∈ Z , k = 0, · · · , n .

Per la simmetria del grafico di f rispetto alla retta di equazione x = 1
2 si ha

anche

(6.56) f (n+k)(1) ∈ Z , k = 0, · · · , n .

Supponiamo per assurdo che π sia razionale; si ha allora

(6.57) π2 =
p

q

con p, q ∈ N. Introduciamo la funzione

F (x) =

n∑
k=0

(−1)k pn−k qk f (2k)(x) .

Per le (6.54), (6.55), (6.56) abbiamo che

(6.58) F (0), F (1) ∈ Z .
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Si ha

(F ′(x) sinπx− π F (x) cosπx)
′

= sinπx
[
F ′′(x) + π2 F (x)

]
= sinπx

{
n∑
k=0

(−1)kpn−k qk
[
f (2k+2)(x) + π2f (2k)(x)

]}

(essendo f (2n+2) ≡ 0 e per la (6.57))

= sinπx

{
n−1∑
k=0

(−1)kpn−k qkf (2k+2)(x) +

n∑
k=0

(−1)kpn−k+1 qk−1f (2k)(x)

}
.

Essendo

n−1∑
k=0

(−1)kpn−k qkf (2k+2)(x) =

n∑
k=1

(−1)k−1pn−k+1 qk−1f (2k)(x) ;

si ha in definitiva

(F ′(x) sinπx− π F (x) cosπx)
′

=
pn+1

q
f(x) sinπx .

Integrando tra 0 e 1 otteniamo la seguente identità

π [F (1) + F (0)] =
pn+1

q

∫ 1

0

f(x) sinπx dx

da cui intanto si deduce che

F (1) + F (0) > 0

essendo f(x) sinπx > 0 per x ∈]0, 1[. Per la (6.53) si ha

F (1) + F (0) <
pn+1

q

1

n!

1

π

∫ 1

0

sinπx dx =
pn+1

q

1

n!

2

π2

e quindi, per la (6.57),

F (1) + F (0) <
2 pn

n!
.

Poiché

lim
n→∞

pn

n!
= 0 ,

scegliendo n abbastanza grande, possiamo fare in modo che

0 < F (1) + F (0) < 1 .

Ciò è assurdo in quanto in contrasto con la (6.58). Abbiamo quindi provato che
π è irrazionale.
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6.10 La trascendenza di e

Definizione 6.10.1. - Un numero reale dicesi “algebrico” se è radice di un
polinomio a coefficienti in Z. Un numero reale che non sia algebrico dicesi
“trascendente”.

Si può dimostrare che l’insieme dei numeri reali algebrici è numerabile. Quin-
di la gran parte della struttura dei reali è costituita da numeri trascendenti.
Stabilire se un numero irrazionale è trascendente non è una questione da poco.
Proponiamo il seguente risultato, noto come teorema di Hermite (cfr. [11]).

Teorema 6.10.1. - Il numero di Neper è trascendente.

Dimostrazione. Sia f un polinomio di grado m. Posto

I(t, f) =

∫ t

0

et−τf(x) dx ,

integrando per parti si ha

(6.59) I(t, f) = et f(0)− f(t) + I(t, f ′) .

Sussiste la seguente identità

(6.60) I(t, f) = et
m∑
h=0

f (h)(0)−
m∑
h=0

f (h)(t) .

Procediamo per induzione. La (6.60) è banalmente vera se f è un polinomio di
grado zero. Supponiamo che essa sussista per polinomi di grado m e sia g un
polinomio di grado m + 1. Per la (6.59) e la (6.60) con g′, polinomio di grado
m, in luogo di f si ha

I(t, g) = et g(0)− g(t) + I(t, g′)

= et g(0)− g(t) + et
m∑
h=0

g(h+1)(0)−
m∑
h=0

g(h+1)(t)

= et
m+1∑
h=0

g(h)(0)−
m+1∑
h=0

g(h)(t)

cioè la (6.60) per il polinomio g.
Sia e algebrico: esistono allora n + 1 interi relativi a0, · · · , an, con a0 an 6= 0,
tali che

(6.61)

n∑
k=0

ake
k = 0 .
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Consideriamo il polinomio

f(x) = xp−1(x− 1)p · · · (x− n)p

con p numero primo maggiore di n; il grado di f è m = (n+ 1)p− 1. Poniamo

(6.62) J =

n∑
k=0

akI(k, f) .

Utilizzando la (6.60) abbiamo

J =

n∑
k=0

ak

ek m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(k)


=

(
n∑
k=0

ake
k

) m∑
j=0

f (j)(0)

− n∑
k=0

ak

 m∑
j=0

f (j)(k)


e quindi, per la (6.61),

(6.63) J = −
n∑
k=0

ak

 m∑
j=0

f (j)(k)

 .

Si verifica facilmente che

f (j)(0) = 0 , j < p− 1

e, se 1 ≤ k ≤ n,
f (j)(k) = 0 , j < p .

La derivata di ordine p− 1 di f è la somma di un certo numero di addendi uno
solo dei quali,

(p− 1)!(x− 1)p · · · (x− n)p ,

non presenta come fattore una potenza di x ad esponente intero positivo. Si ha
pertanto

(6.64) f (p−1)(0) = (p− 1)!(−1)np(n!)p .

Non è difficile rendersi conto che i termini f (j)(0), con p ≤ j ≤ m, e f (j)(k), con
1 ≤ k ≤ n e p+ 1 ≤ j ≤ m, sono interi divisibili per p!. Se scegliamo il numero
primo p maggiore sia di n che di |a0| dalla (6.64) si deduce che il termine

(6.65) a0 f
(p−1)(0)

della sommatoria a secondo membro della (6.63) è divisibile per (p − 1)! ma
non per p. Per quanto detto in precedenza tutti gli altri addendi invece sono
divisibili per p!. Ciò implica che J è un intero non nullo altrimenti il termine
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(6.65) risulterebbe divisibile per p!; inoltre J è divisibile per (p − 1)!. Si ha
pertanto

(6.66) (p− 1)! ≤ |J | .

Poniamo

F (x) = xp−1(x+ 1)p · · · (x+ n)p .

Essendo f(x) ≤ F (x) se x ≥ 0 risulta

I(t, f) ≤ etF (t) t , t > 0 .

Poiché per k = 1, · · · , n si ha

F (k) ≤ F (n) =
1

n
[n(n− 1) · · · ((2n)]

p
<

[(2n)!]p

n

dalla (6.62), posto A = maxk |ak|, abbiamo

|J | ≤
n∑
k=0

|ak|ekF (k)k ≤ Aen[(2n)!]p

(
1

n

n∑
k=1

k

)
< Aen[(2n)!]p n .

Ricordando la (6.66) in definitiva si ha

(p− 1)! ≤ |J | ≤ Anen [(2n)!]p .

Se si sceglie p abbastanza grande si perviene ad un assurdo in quanto (p − 1)!
diverge più rapidamente di [(2n)!]p.

6.11 Formula di Stirling

Applicando la regola di integrazione per parti (6.41) si ha

∫ π/2

0

sinn x dx =
n− 1

n

∫ π/2

0

sinn−2 x dx .

Per induzione si ottengono le seguenti relazioni

∫ π/2

0

sin2n x dx =
(2n− 1)!!

(2n)!!

π

2∫ π/2

0

sin2n+1 x dx =
(2n)!!

(2n+ 1)!!
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dove il simbolo k!! denota il prodotto degli interi non superiori a k con la stessa
parità di k. Si ha pertanto∫ π/2

0

sin2n−1 x dx∫ π/2

0

sin2n+1 x dx

= 1 +
1

2n
(6.67)

∫ π/2

0

sin2n x dx∫ π/2

0

sin2n+1 x dx

=
(2n+ 1)[(2n− 1)!!]2

[(2n)!!]2
π

2
.(6.68)

Essendo

sin2n+1 x ≤ sin2n x ≤ sin2n−1 x

risulta

1 ≤

∫ π/2

0

sin2n x dx∫ π/2

0

sin2n+1 x dx

≤

∫ π/2

0

sin2n−1 x dx∫ π/2

0

sin2n+1 x dx

e quindi, per le (6.67) e (6.68),

1 ≤ (2n+ 1)[(2n− 1)!!]2

[(2n)!!]2
π

2
≤ 1 +

1

2n
.

Si ha pertanto

lim
n→∞

[(2n)!!]2

[(2n− 1)!!]2
1

2n+ 1
=
π

2

ovvero

(6.69) lim
n→∞

(2n)!!

(2n− 1)!!

1√
n

= lim
n→∞

22n(n!)2

(2n)!
√
n

=
√
π .

La (6.69) è nota come “formula di Wallis”.

Osservazione 6.11.1. - La (6.69) implica che la successione di termine gene-
rale

(2n− 1)!!

(2n)!!

è infinitesima di ordine 1/2.

Occupiamoci ora di ricavare una formula che descrive il comportamento asinto-
tico del fattoriale.
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Proposizione 6.11.1. - Vale la seguente relazione

(6.70) lim
n→∞

n!en

nn
√
n

=
√

2π

nota come “formula di Stirling”.

Dimostrazione. Punto di partenza è la seguente diseguaglianza valida per x
appartenente all’intervallo [0, 1[

(6.71) 0 ≤ 1

2
log

1 + x

1− x
− x ≤ x3

3(1− x2)
.

Posto x = (2n+ 1)−1 nella (6.71) si ha

0 ≤ 1

2
log

n+ 1

n
− 1

2n+ 1
≤ 1

12(2n+ 1)(n2 + n)

e quindi, moltiplicando per 2n+ 1,

(6.72) 0 ≤
(
n+

1

2

)
log

n+ 1

n
− 1 ≤ 1

12

(
1

n
− 1

n+ 1

)
.

Posto

an =
nn
√
n

n!en

la (6.72) può essere riscritta nel modo seguente

0 ≤ log
an+1

an
≤ 1

12

(
1

n
− 1

n+ 1

)
.

Pertanto {an} è crescente mentre la successione di termine generale

log an +
1

12n

è decrescente. Si ha pertanto

log an +
1

12n
≤ log a1 +

1

12
.

La successione {an} è anche limitata; essa risulta convergente: sia a il suo limite.
Essendo

a2n =
(2n)2n+1/2

(2n)!e2n
=
√

2
(n!)222n

(2n)!n1/2

[
nn
√
n

n!en

]2

=
√

2
(n!)222n

(2n)!n1/2
a2
n

si ha, per la (6.69),

a = lim
n→∞

a2n =
√

2πa2

da cui a =
1√
2π

. Abbiamo in tal modo ottenuto la (6.70).
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Capitolo 7

Serie numeriche

7.1 Definizioni

Fissata una successione {an} costruiamo una nuova successione il cui termine
generale è

Sn = a1 + a2 + · · ·+ an =

n∑
k=1

ak .

Il simbolo

(7.1)

+∞∑
k=1

ak

prende il nome di “serie” di termine generale ak e Sn quello di somma parziale
n-ma. La serie (7.1) dicesi regolare se tale è la successione {Sn}. In particolare
se {Sn} converge a S si dice che la serie (7.1) ha per somma S e si pone

S =

∞∑
k=1

ak = a1 + a2 + · · ·+ ak + · · · .

In tal caso la quantità

rn = S − Sn =

∞∑
k=n+1

ak

si chiama “resto n-mo”. Se la successione {Sn} diverge positivamente (negati-
vamente) si pone

∞∑
k=1

ak = +∞ (−∞) .

Infine se {Sn} non è regolare si dice che la serie è oscillante. Le (1.22) e (1.25)
sono due esempi di serie convergenti. Per tale tipo di serie vale il seguente
risultato.

131
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Proposizione 7.1.1. - Se la serie (7.1) converge allora

(7.2) lim
n→+∞

an = 0 .

Dimostrazione. Sia S la somma della serie. Poiché an = Sn − Sn−1 si ha

lim
n→+∞

an = lim
n→+∞

(Sn − Sn−1) = S − S = 0

e quindi la (7.2).

Consideriamo ora la “serie armonica”

(7.3)

+∞∑
k=1

1

k
.

Proposizione 7.1.2. - La serie (7.3) diverge.

Dimostrazione. Per ogni k ∈ N dalla (3.22) si deduce che

log

(
1 +

1

k

)
<

1

k

da cui

log(n+ 1) =

n∑
k=1

log

(
1 +

1

k

)
<

n∑
k=1

1

k
.

Per il teo. 3.2.5 la successione delle somme parziali della serie (7.3) diverge
positivamente.

Il comportamento della serie armonica mostra che la condizione (7.2) è solo ne-
cessaria per la convergenza. Per ottenere una condizione necessaria e sufficiente
bisogna appellarsi al criterio di convergenza di Cauchy che per le serie assume
la seguente forma.

Teorema 7.1.1. - La serie (7.1) è convergente se e solo se, fissato ε, esiste un
indice ν tale che

|rn,k| = |an+1 + · · ·+ an+k| < ε

per ogni n > ν e per ogni k.

7.2 Serie a termini positivi

In tale paragrafo prenderemo in considerazioni serie i cui termini sono positivi
o, più in generale, non negativi.

Proposizione 7.2.1. - Una serie a termini non negativi o converge o diverge
positivamente.
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Dimostrazione. Essendo Sn+1 = Sn + an+1 ≥ Sn la successione delle somme
parziali della serie è crescente. Il risultato segue allora dal teo. 3.3.2.

Quando si ha a che fare con una serie a termini non negativi il problema è
stabilirne il “carattere”: bisogna cioè verificare se essa converge o diverge. Se
si verifica la prima circostanza si pone un secondo problema: determinare la
somma della serie ovvero, quando ciò non sia possibile, stimare il resto n-mo,
cioè, in altre parole, valutare l’errore che si commette quando si approssima la
somma della serie con una sua somma parziale. Per risolvere la prima questione
è fondamentale il seguente risultato di semplice verifica.

Proposizione 7.2.2. - Date due serie a termini positivi an e bn, se si ha
definitivamente an ≤ bn allora valgono le seguenti implicazioni:

• se la serie di termine generale bn converge allora converge anche quella di
termine generale an;

• se la serie di termine generale an diverge allora diverge anche quella di
termine generale bn.

Di grande utilità è il seguente criterio.

Proposizione 7.2.3. - Se

lim
n→∞

an
bn

= ` ∈]0,+∞[

allora le due serie hanno lo stesso carattere.

Dimostrazione. Fissato ε < ` esiste un indice ν tale che

(`− ε) bn < an < (`+ ε) bn .

Basta allora applicare la prop. 7.2.2.

Osservazione 7.2.1. - Se

lim
n→∞

an
bn

= 0

si ha definitivamente an ≤ bn. Si può ancora fare appello alla prop. 7.2.2.

In base alla prop. 7.2.3, per studiare il carattere di una serie a termini positivi, è
sufficiente confrontarla con una di cui è noto il comportamento. È d’altra parte
evidente che tanto più efficace è tale procedura quanto più ampio è il repertorio
delle serie di cui si conosce il carattere. Al confronto con una serie geometrica
si perviene facendo uso di uno dei seguenti due risultati noti, rispettivamente,
come criterio della radice e criterio del rapporto.

Proposizione 7.2.4. - Sia

(7.4) lim
n→∞

n
√
an = ` ;
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allora la serie (7.1) converge se ` < 1, diverge se ` > 1. Più in generale, se

(7.5) lim sup
n→∞

n
√
an < 1

la serie (7.1) converge, se invece

(7.6) lim inf
n→∞

n
√
an > 1

la serie (7.1) diverge.

Dimostrazione. Sussista la (7.5), ovvero la (7.4) con ` < 1. Fissiamo h in modo
tale che risulti

lim sup
n→∞

n
√
an < h < 1 .

Si ha definitivamente an ≤ hn: la serie (7.1) è confrontabile con la serie
geometrica convergente di ragione h.
Sussista la (7.6), ovvero la (7.4) con ` > 1. Scelto un valore h tale che

lim inf
n→∞

n
√
an > h > 1

si ha definitivamente an ≥ hn; la serie (7.1) ovviamente diverge.

Proposizione 7.2.5. - Sia

(7.7) lim
n→∞

an+1

an
= ` ;

allora la serie (7.1) converge se ` < 1, diverge se ` > 1. Più in generale, se

(7.8) lim sup
n→∞

an+1

an
< 1

la serie (7.1) converge, se invece

(7.9) lim inf
n→∞

an+1

an
> 1

la serie (7.1) diverge.

Dimostrazione. Il risultato discende dalla prop. 7.2.4, nonché dalla (3.47), se
vale la (7.7), ovvero dalla (3.48) nel caso in cui sussista una delle due condizioni
(7.8) e (7.9).

Quando il criterio del rapporto perde di efficacia può essere utile il seguente
criterio di Raabe per la cui dimostrazione rimandiamo a [9], [10].

Proposizione 7.2.6. - Sia

lim
n→+∞

n

(
an
an+1

− 1

)
= ` .

Se ` > 1 allora la serie (7.1) converge.
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Osservazione 7.2.2. - Se la serie (7.1) è confrontabile con la serie geometrica
di ragione h è possibile determinare una costante H e un indice ν in modo tale
che

an ≤ H hn , ∀n > ν .

Si ha allora la seguente valutazione per il suo resto n-mo

rn =

∞∑
k=n+1

ak ≤ H
∞∑

k=n+1

hk = H hn+1
∞∑
k=0

hk = H
hn+1

1− h
.

con n > ν.

7.3 Serie armoniche

Consideriamo ora la classe delle cosiddette serie armoniche generalizzate di
esponente α

(7.10) 1 +
1

2α
+

1

3α
+ · · ·+ 1

nα
+ · · · =

∞∑
k=1

1

kα
.

Se α ≤ 1 si ha
1

n
≤ 1

nα
.

Per le prop. 7.2.2 e 7.1.2 la (7.10) diverge. Essa invece converge se α > 1. Il
risultato discende dal criterio di Raabe (cfr. prop. 7.2.6). Preferiamo però dare
una dimostrazione diretta. Per ogni k consideriamo la seguente somma di 2k−1

termini della serie (7.10)

1

(2k−1)
α + · · ·+ 1

(2k − 1)
α ;

essa si maggiora con
2k−1

(2k−1)
α =

(
21−α)k−1

.

Si ha allora
2n−1∑
k=1

1

kα
<

n∑
k=1

(
21−α)k−1

<
1

1− 21−α ,

da cui l’asserto.
Le serie armoniche costituiscono una vasta gamma di serie con le quali testare il
comportamento di una serie. Alla luce della prop. 7.2.3 è evidente che confron-
tare una serie di termine generale an con una serie armonica si riduce a valutare
l’ordine di infinitesimo della successione {an}.
Per le serie armoniche divergenti ha interesse studiare l’ordine di infinito della
successione delle somme parziali. Dalle (3.22) e (3.24) si ha

(7.11)
1

n+ 1
< log

(
1 +

1

n

)
<

1

n
.
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Se Sn è la somma parziale n-ma della serie armonica (7.3) consideriamo le
successioni i cui termini generali sono

an = Sn − log(n+ 1) , bn = Sn+1 − log(n+ 1) .

Si ha ovviamente an < bn e, per la (7.11),

an − an−1 =
1

n
− log

(
1 +

1

n

)
> 0

bn − bn−1 =
1

n+ 1
− log

(
1 +

1

n

)
< 0 .

Quindi la successione {an} è crescente mentre {bn} è decrescente. Poiché per
ogni n si ha

a1 < an < bn < b1

le due successioni sono limitate e, quindi, convergenti. Si verifica poi facilmente
che esse hanno lo stesso limite. Poniamo

(7.12) lim
n→+∞

[
n∑
k=1

1

k
− log(n+ 1)

]
= C = 0, 57721 . . . .

La costante C è nota come “costante di Eulero-Mascheroni”; non è noto se tale
numero sia razionale o meno.
Dalla (7.12) si deduce il seguente comportamento asintotico della successione
delle somme parziali della serie armonica

lim
n→+∞

∑n
k=1 k

−1

log n
= 1 .

Sia α < 1. Poiché
1

kα
>

∫ k

k−1

dx

(x+ 1)α

abbiamo
n∑
k=1

1

kα
>

∫ n

0

dx

(x+ 1)α
=

(n+ 1)1−α − 1

1− α
.

Essendo inoltre
1

kα
<

∫ k

k−1

dx

xα

con k > 1, abbiamo

n∑
k=1

1

kα
< 1 +

∫ n

1

dx

xα
=
n1−α − α

1− α
.

In definitiva si ha

(n+ 1)1−α − 1

1− α
<

n∑
k=1

1

kα
<
n1−α − α

1− α
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da cui

lim
n→+∞

∑n
k=1 k

−α

n1−α =
1

1− α
.

Pertanto la successione delle somme parziali della serie armonica di esponente
α > 1 è un infinito di ordine 1− α.

7.4 Criterio integrale

Dimostriamo il seguente ulteriore criterio.

Proposizione 7.4.1. (Criterio integrale) - Sia f una funzione positiva de-
crescente in R+. Se f è sommabile [1,+∞[ e si ha definitivamente

(7.13) an ≤ f(n)

allora la serie (7.1) converge. Si ha inoltre

(7.14) rn =

∞∑
k=n+1

ak ≤
∫ +∞

n

f(t) dt .

Se invece f non è sommabile in [1,+∞[ e si ha definitivamente

(7.15) an ≥ f(n− 1)

allora la serie (7.1) diverge.

Dimostrazione. Si consideri la funzione g, costante a tratti, che assume il valore
an in [n − 1, n[. In base all’ipotesi di decrescenza di f si ha definitivamente
g ≤ f se vale la (7.13). Basta allora applicare la prop. 6.7.1 ed osservare che la
sommabilità di g equivale alla convergenza della serie (7.1). Inoltre, se vale la
(7.13), la (7.14) è ovvia. Se vale la (7.15) allora g è definitivamente maggiore
di una funzione non sommabile. Anche in questo caso si fa uso della prop.
6.7.1.

Il criterio integrale può essere utilizzato per una ulteriore dimostrazione del
comportamento delle serie armoniche. A tal fine osserviamo che la funzione g
introdotta nella dimostrazione della prop. 7.4.1 con an = n−α, se α > 1, è
dominata dalla funzione sommabile

f : t ∈ [1,+∞[−→ min{1, (1 + t)−α} ,

mentre, se α ≤ 1, domina la funzione f(t) = t−α.
Per quanto riguarda le serie armoniche di esponente α > 1 ci siamo limitati a
dimostrare che esse sono convergenti. La somma è nota solo per alcuni valori
del parametro α: per esempio, se α = 2, essa è π2/6. È utile quindi valutare
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l’errore che si commette quando si approssima il valore della somma della serie
con quello di una sua somma parziale. Per la (7.14) si ha

rn =

∞∑
k=n+1

1

kα
≤
∫ ∞
n+1

(1− t)−α dt =
n1−α

α− 1
.

Con una procedura simile è possibile studiare il comportamento della serie

+∞∑
n=2

1

n logα n

per ogni valore positivo del parametro α. Essa converge se α > 1, diverge se
α ≤ 1. Si può inoltre stimare il resto nel caso in cui la serie converga o studiare
il comportamento asintotico nel caso in cui essa diverga.

7.5 Serie a segni alterni

Indichiamo con Ak la somma parziale di indice k della serie armonica a segni
alterni

(7.16)

+∞∑
n=1

(−1)n+1 1

n
.

Si verifica facilmente che

A2n+1 =

2n+1∑
k=1

(−1)k+1 1

k
=

2n+1∑
k=1

1

k
−

n∑
k=1

1

k
= S2n+1 − Sn .

Abbiamo quindi per la (7.12)

lim
n→+∞

A2n+1 = lim
n→+∞

[S2n+1 − log(2n+ 2)]

− lim
n→+∞

[Sn − log(n+ 1)] + log 2 = log 2 .

Poiché risulta anche
lim

n→+∞
A2n = lim

n→+∞
A2n+1

si ha in definitiva
+∞∑
k=1

(−1)k+1 1

k
= log 2 .

La serie armonica alternante è un prototipo di serie a segni alterni. Con tale
termine si intende una serie del tipo

(7.17)

+∞∑
n=1

(−1)n+1 an

con an ≥ 0 per ogni n ∈ N.
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Proposizione 7.5.1. (Criterio di Leibnitz) - Se la successione {an} è de-
crescente ed infinitesima la serie alternante (7.17) è convergente.

Dimostrazione. Sia Sk la somma parziale di indice k della serie (7.17). Si ha

S2n+1 = S2n−1 − a2n + a2n+1 ≤ S2n−1

S2n+2 = S2n + a2n+1 − a2n+2 ≥ S2n .

Le successioni {S2n+1} e {S2n} sono quindi regolari. Poiché

lim
n→+∞

S2n+1 = lim
n→+∞

S2n + lim
n→+∞

a2n+1 = lim
n→+∞

S2n

la successione {Sn} deve essere convergente. Se indichiamo con S la somma
della serie (7.17) abbiamo

(7.18) S2n ≤ S ≤ S2n+1 .

Dalla (7.18) si deduce anche che

|S − Sn| ≤ an

per ogni intero n. Possiamo in tal modo valutare l’errore che si commette quando
si approssima la somma della serie (7.17) con una qualsiasi somma parziale.

Per concludere riportiamo la seguente generalizzazione del criterio di Leibnitz
(cfr. [9]).

Proposizione 7.5.2. (Criterio di Dirichlet) - Se la successione {sn} delle
somme parziali di una serie di termine generale αk è limitata e se {ak} è una
successione decrescente e infinitesima allora la serie

(7.19)

+∞∑
k=1

αkak

è convergente.

Dimostrazione. Sia {Sn} la successione delle somme parziali della serie (7.19).
Facendo uso del principio di induzione matematica si prova che

(7.20) Sn = s1(a1 − a2) + s2(a2 − a3) + · · ·+ sn−1(an−1 − an) + snan .

Sia M tale che
|sn| ≤M , ∀n ;

allora, usando l’ipotesi di decrescenza della successione {ak}, si ha

|sk(ak − ak−1)| ≤M(ak − ak−1) .
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La serie il cui termine generale è M(ak − ak−1) ha per somma Mb1. Pertanto
la serie

∞∑
k=1

sk(ak − ak−1)

è assolutamente convergente e, se σn è la sua somma parziale, la (7.20) diventa

Sn = σn−1 + snan .

La successione {snan} è infinitesima dal momento che {sn} è limitata e {an} è
infinitesima. Si ha che {Sn} converge allo stesso limite di {σn}.

7.6 Assoluta convergenza

Definizione 7.6.1. - Si dice che la serie (7.1) converge assolutamente se con-
verge la serie

(7.21)

+∞∑
n=1

|an| .

La serie armonica alternante (7.16) è convergente ma non assolutamente con-
vergente. Il seguente risultato mette quindi in luce il fatto che la nozione di
convergenza assoluta è ben più forte della semplice convergenza.

Proposizione 7.6.1. - Una serie assolutamente convergente è convergente.

Dimostrazione. Si ha

|an+1 + · · · an+k| ≤ |an+1|+ · · ·+ |an+k| .

Poiché la serie (7.21) converge, per il criterio di convergenza di Cauchy, fissato
ε, risulta

|an+1|+ · · ·+ |an+k| < ε

per n maggiore di un indice ν e per ogni k ∈ N. Per questi stessi indici si ha
allora

|an+1 + · · · an+k| < ε

da cui l’asserto sempre per il criterio di convergenza di Cauchy.

Mettiamo ora in relazione la nozione di assoluta convergenza con quella di con-
vergenza incondizionata che, in ultima analisi, caratterizza quelle serie per le
quali vale una sorta di proprietà commutativa. Sia

j : k ∈ N −→ jk ∈ N

un’applicazione biunivoca di N in sé. Allora si dice che la serie

(7.22)

+∞∑
k=1

ajk
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è un “riordinamento” della serie (7.1); in (7.22) compaiono cioè tutti e soli i
termini di (7.1) ma in ordine diverso.
Supponiamo che la serie (7.1) sia assolutamente convergente. Posto

a+
n = max{an, 0} , a−n = max{−an, 0}

si ha

(7.23) an = a+
n − a−n , |an| = a+

n + a−n

e quindi

(7.24) 0 ≤ a+
n ≤ |an| , 0 ≤ a−n ≤ |an| .

Se la serie è assolutamente convergente dalle (7.24) si deduce che le serie di
termini generali a+

n e a−n sono convergenti. Viceversa se queste ultime sono con-
vergenti allora, per la seconda delle (7.23), la serie è assolutamente convergente.
Poniamo

+∞∑
n=1

a+
n = S+ ,

+∞∑
n=1

a−n = S− .

È evidente che S+ e S− sono gli estremi superiori degli insiemi costituiti da tutte
le somme di un numero finito di addendi rispettivamente delle serie di termine
generale a+

n e a−n . Ciò comporta ovviamente che le somme di tali due serie e
quindi, la somma della serie (7.1), non dipende dall’ordine in cui i vari termini
sono elencati. Pertanto la somma di (7.1) e di ogni suo riordinamento è S = S+−
S−. La proprietà sopra descritta caratterizza le serie assolutamente convergenti
come si evince dal seguente risultato noto come “teorema di Riemann”.

Teorema 7.6.1. - Se la serie (7.1) è convergente ma non assolutamente con-
vergente allora, comunque si fissino due valori α, β ∈ R, con α ≤ β, esiste un
riordinamento della serie tale che la successione {Sn} delle somme parziali della
serie riordinata verifica le seguenti condizioni

lim inf
n→+∞

Sn = α , lim sup
n→+∞

Sn = β .

In particolare è possibile riordinare gli addendi in modo da ottenere come somma
un qualsiasi elemento di R.

Dimostrazione. Fissato ` ∈ R dimostriamo che esiste un riordinamento della
serie che ha per somma `. Per tutti gli altri casi rimandiamo a [4] e [12].
Essendo la serie convergente, fissato ε, esiste un indice ν tale che

(7.25) |an| < ε , ∀n ≥ ν .

Indichiamo con {ark} e {ash} rispettivamente le sottosuccessioni di {an} dei
termini non negativi e di quelli negativi. Per quanto detto in precedenza si ha

(7.26)

∞∑
k=1

ark = +∞ ,

∞∑
h=1

ash = −∞ .
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Per la prima delle (7.26) è possibile determinare k1 in modo tale che

P1 =

k1∑
k=1

ark

sia la prima somma parziale della serie di termine generale ark che risulti mag-
giore di `. Per la seconda delle (7.26) è possibile determinare h1 in modo tale
che

Q1 =

h1∑
h=1

ash

sia la prima somma parziale della serie di termine generale ash tale che

P1 +Q1 < ` .

Sommiamo ora i termini ark a partire da ark1
+1 e fermiamoci non appena, posto

P2 =

k2∑
k=k1+1

ark ,

si abbia

P1 +Q1 + P2 > ` .

A questo punto si ritorna alla serie di termine generale ash ; sommiamone i
termini a partire da ash1

+1 e fermiamoci non appena, posto

Q2 =

h2∑
h=h1+1

ash ,

si abbia

P1 +Q1 + P2 +Q2 > ` .

Sempre per le (7.26) tale procedura può essere iterata quante volte si vuole.
Tutti i termini della serie vengono pertanto inseriti nel seguente elenco

(7.27) P1 +Q1 + P2 +Q2 + · · ·+ Pn +Qn + · · ·

dove

Pn =

kn∑
k=kn−1+1

ark , Qn =

hn∑
h=hn−1+1

ash ;

si ha inoltre

(7.28)

n−1∑
j=1

(Pj +Qj) +

kn−1∑
k=kn−1+1

ark ≤ ` ,
n−1∑
j=1

(Pj +Qj) + Pn > `
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e

(7.29)

n−1∑
j=1

(Pj +Qj) + Pn +

hn−1∑
h=hn−1+1

ashn
≥ ` ,

n∑
j=1

(Pj +Qj) < ` .

Nella costruzione della somma parziale

ν∑
j=1

(Pj +Qj)

abbiamo utilizzato almeno i primi n termini non negativi e i primi n termini
negativi della serie; pertanto per tutti i termini che vengono presi in conside-
razione per la determinazione delle quantità Pj e Qj vale la (7.25). Sia n > ν.
Per le (7.28) si ha

P1 +Q1 + · · ·+ Pn − ` ≤ arkn
< ε ,

mentre, per le (7.29),

|P1 +Q1 + · · ·+ Pn +Qn − `| ≤ |ashn
| < ε .

È poi evidente che, se σn denota la n-ma somma parziale della serie (7.27), si
ha

|σn − `| < ε , ∀n >
ν∑
j=1

(kj + hj) .

Si ha quindi l’asserto.

A titolo di esempio riordinando i termini della serie armonica alternante (7.16)
nel modo seguente

(7.30) 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · ·+ 1

4n− 3
+

1

4n− 1
− 1

2n
+ · · · .

Indichiamo con Σk la somma parziale k-ma di (7.30) e con Sk la somma parziale
k-ma della serie armonica (7.3) si ha

Σ3n = 1 +
1

3
+ · · ·+ 1

4n− 3
+

1

4n− 1
− 1

2

(
1 +

1

2
+ · · ·+ 1

n

)
= S4n −

1

2
(S2n + Sn) = [S4n − log(4n+ 1)]

− 1

2
[S2n − log(2n+ 1) + Sn − log(n+ 1)] + log

4n+ 1√
(2n+ 1)(n+ 1)

.

Passando al limite e tenendo in conto la (7.12) abbiamo

lim
n→+∞

Σ3n =
3

2
log 2 .

Poiché le successioni {Σ3n}, {Σ3n+1} e {Σ3n+2} convergono allo stesso limite
si può concludere che la somma della serie (7.30) è 3

2 log 2, valore diverso dalla
somma della serie (7.16).
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7.7 Le formule di Eulero

Consideriamo una successione di numeri complessi il cui termine generale è

zk = xk + i yk .

Si può dare in modo naturale una definizione di convergenza per la serie

∞∑
k=1

zk

nel modo seguente

(7.31)

∞∑
k=1

zk = z = x+ i y
def.⇐⇒ lim

n→∞

∣∣∣∣∣
n∑
k=1

zk − z

∣∣∣∣∣ = 0 .

La def. (7.31) equivale ovviamente ad affermare che

∞∑
k=1

xk = x ,

∞∑
k=1

yk = y .

Inoltre, poiché
|xk|

|yk|

 ≤ |zk| ≤ |xk|+ |yk| ,
la serie di termine generale zk converge assolutamente se e solo se tali sono le
due serie a termini reali

∞∑
k=1

xk ,

∞∑
k=1

yk .

Consideriamo la serie di potenze

(7.32)

∞∑
n=0

zn

n!

con
z = x+ i y = <(z) + i=(z) .

Essa converge assolutamente per ogni z ∈ C. Poiché la sua somma è ex se x ∈ R
è ragionevole porre

(7.33) ez =

∞∑
n=0

zn

n!
, z ∈ C .

Tale posizione si giustifica, oltre che per la ragione appena esposta, anche per
il fatto che la funzione (7.33) verifica alcune proprietà formali della funzione
esponenziale nel campo reale. Si ha infatti

(7.34) ez+w = ezew .

Dimostriamo preliminarmente il seguente risultato.
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Proposizione 7.7.1. - Siano a, b i limiti delle successioni {an}, {bn}; si ha

(7.35) lim
n→∞

a1bn + · · ·+ anb1
n

= a b .

Dimostrazione. Abbiamo

(7.36)
a1bn + · · ·+ anb1

n
=
a1 + · · ·+ an

n
b+

a1(bn − b) + · · ·+ an(b1 − b)
n

.

Per la prop. 3.10.1 il primo termine a secondo membro nella (7.36) ha per limite
a b. Risulta inoltre∣∣∣∣an(b1 − b) + · · ·+ a1(bn − b)

n

∣∣∣∣ ≤ (sup
n
|an|

)
|b1 − b|+ · · ·+ |bn − b|

n
.

Pertanto, sempre per la prop. 3.10.1, l’ultimo termine in (7.36) è infinitesimo.
Si è ottenuto in tal modo la (7.35).

Definizione 7.7.1. - Per “serie prodotto secondo Cauchy” di due serie di
termini generali ak e bk si intende la serie il cui termine n-mo è

(7.37) cn = a1bn + · · ·+ anb1 =

n∑
k=1

akbn−k+1 .

Proposizione 7.7.2. - Se le serie di termini generali ak e bk sono assoluta-
mente convergenti tale è anche la serie prodotto secondo Cauchy e si ha

(7.38)

∞∑
k=1

ck =

( ∞∑
k=1

ak

)( ∞∑
k=1

bk

)
.

Dimostrazione. L’assoluta convergenza della serie prodotto secondo Cauchy di-
scende dalla disuguaglianza

n∑
k=1

|ck| ≤

(
n∑
k=1

|ak|

)(
n∑
k=1

|bk|

)
.

Siano An, Bn, Cn e A, B, C le somme parziali e le somme delle serie di termini
generali ak, bk, ck. Essendo Cn = a1Bn + · · ·+ anB1 risulta

C1 + · · ·+ Cn
n

=
AnB1 + · · ·+A1Bn

n
.

Basta allora utilizzare le prop. 3.10.1 e 7.7.1 per ottenere la (7.38).

Osservazione 7.7.1. - La (7.38) sussiste anche se si assume che una sola delle
due serie sia assolutamente convergente. Il risultato non vale se entrambe le
serie sono solo convergenti. A tale proposito basta considerare il caso

ak = bk = (−1)k−1 1√
k
.
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Procediamo ora alla verifica della (7.34). Si ha

ez ew =

( ∞∑
k=0

zk

k!

)( ∞∑
k=0

wk

k!

)

(per la (7.38))

=

∞∑
n=0

(
n∑
k=0

zkwn−k

k!(n− k)!

)
=

∞∑
n=0

1

n!

(
n∑
k=0

(
n

k

)
zkwn−k

)

(per la formula del binomio di Newton)

=

∞∑
n=0

(z + w)n

n!
= ez+w .

La serie (7.33) è assolutamente convergente; quindi è possibile riordinare i suoi
termini senza alterarne la somma. Si ottiene pertanto la seguente relazione

eiy = 1 + iy − y2

2
− iy

3

3!
+
y4

4!
+ · · ·

=

(
1− y2

2
+
y4

4!
+ · · ·

)
+ i

(
y − y3

3!
+
y5

5!
− · · ·

)
= cos y + i sin y .

Per la (7.34) abbiamo allora

ez = ex+iy = exeiy = ex(cos y + i sin y) .

Si ha inoltre

(7.39) sin y =
eiy − e−iy

2i
, cos y =

eiy + e−iy

2
.

Le (7.39) sono note come “formule di Eulero”.
Si ha (cfr. (1.4))

sn =

n∑
k=0

cos k + i

n∑
k=0

sin k =

n∑
k=0

ek i =
e(n+1)i − 1

ei − 1

e quindi

|sn| ≤
√

2

1− cos 1
.

Le somme parziali n-me delle serie di termini generali cos k e sin k sono pertanto
equilimitate. Si può applicare il criterio di Dirichlet (cfr. prop. 7.5.2) per
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concludere che le serie
∞∑
n=1

cosn

nα
,

∞∑
n=1

sinn

nα

convergono per ogni valore positivo di α.
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