

HRU Harrison Ruzzo Ullman Model - Motivation

- Access control modelling in computer security started in 1970s
- Harrison, Ruzzo, Ullman (1975):
Abstract general model of protection mechanisms
- Not dependent on specific policy
 - * Many policies can be modelled in HRU
 - * Need a policy to be useful
- Safety question:
Can a subject acquire a particular right to an object?
- Result of HRU: Safety question undecidable in general case!

HRU – Definition

- S set of subjects
- O set of objects, $S \subseteq O$
- A finite set of access rights
- $R = (R_{SO})_{s \in S, o \in O}$ access matrix, $r_{so} \subseteq A$ rights subject s has on object o
- 6 primitive operations
 - * enter r into r_{so} , delete r from r_{so} ($r \in A$)
 - * create subject s , delete subject s
 - * create object o , delete object o

HRU - Definition (cont.)

- C set of commands
 - * $c(X_1, \dots, X_k)$, c name of command, X_1, \dots, X_k parameters (objects)
 - * Conditions: conjunction of triples (r, s, o)
 - * If for all triples $r \in (s, o)$ in the access matrix, command may be executed
 - * Interpretation I maps C into sequences of primitive operations
 - * Similar to batch job, database transaction

HRU – Examples

- Command $CREATE(s, o)$

// no conditions

create object o

enter own into (s, o)

- Command $GRANT_r(s_1, s_2, o)$

condition: $own \in (s_1, o)$

enter r into (s_2, o)

- Policy defined by S, O, R, C

HRU – State changes in access matrix (i)

- State change by primitive operation

$(S, O, R), (S', O', R')$ configurations of a protection system,
 c primitive operation

Then $(S, O, R) \Rightarrow_c (S', O', R')$ if one of the following holds

- i) $c = \text{enter } r \text{ into } (s, o)$ and $S = S', O = O', s \in S, o \in O,$
 $R'[s_1, o_1] = R[s_1, o_1]$ if $(s_1, o_1) \neq (s, o)$ and
 $R'[s, o] = R[s, o] \cup \{r\}$
- ii) $c = \text{delete } r \text{ from } (s, o)$ and $S = S', O = O', s \in S, o \in O,$
 $R'[s_1, o_1] = R[s_1, o_1]$ if $(s_1, o_1) \neq (s, o)$ and
 $R'[s, o] = R[s, o] - \{r\}$

HRU - State changes in access matrix (ii)

- iii) $c = \text{create subject } s'$, s' is a new symbol not in O , $S' = S \cup \{s'\}$,
 $O' = O \cup \{s'\}$, $R'[s, o] = R[s, o] \forall (s, o) \in S \times O$,
 $R'[s', o] = \emptyset \forall o \in O'$ and $R'[s, s'] = \emptyset \forall s \in S'$
- iv) $c = \text{create object } o'$, o' is a new symbol not in O , $S' = S$,
 $O' = O \cup \{o'\}$, $R'[s, o] = R[s, o] \forall (s, o) \in S \times O$ and
 $R'[s, o'] = \emptyset \forall s \in S$
- v) $c = \text{destroy subject } s'$, $s' \in S$, $S' = S - \{s'\}$, $O' = O - \{s'\}$ and
 $R'[s, o] = R[s, o] \forall (s, o) \in S' \times O'$
- vi) $c = \text{destroy object } o'$, $o' \in O - S$, $S' = S$, $O' = O - \{o'\}$ and
 $R'[s, o] = R[s, o] \forall (s, o) \in S' \times O'$

HRU - State changes in access matrix (iii)

- State change by command

$(S, O, R), (S', O', R')$ configurations of a protection system,
 C command

Then $(S, O, R) \rightarrow_C (S', O', R')$ if

- $\forall (r, s, o) \in \text{conditions}(C) \ r \in R[s, o]$
- $I(C) = c_1, \dots, c_m$, c_i primitive operations, then $\exists m \geq 0$,
configurations (S_i, O_i, R_i) such that
 - $(S, O, R) = (S_0, O_0, R_0)$
 - $(S_{i-1}, O_{i-1}, R_{i-1}) \xrightarrow{c_i} (S_i, O_i, R_i)$ for $0 < i \leq m$
 - $(S_m, O_m, R_m) = (S', O', R')$

HRU - State changes in access matrix (iv)

- $(S, O, R) \rightarrow (S', O', R')$ if there is some command C such that $(S, O, R) \rightarrow_C (S', O', R')$
- $(S, O, R) \rightarrow^* (S', O', R')$ for zero or more applications of \rightarrow

HRU – Example Unix

- Simple Unix protection mechanism
 - * Owner of file specifies privileges r, w, x for himself and others
 - * (superuser disregarded here)
- Two challenges
 - * No bound on number of subjects
 - …❖ not possible to “give all subjects privilege”
 - * No disjunction of conditions
 - Owner or has privilege

HRU - Example Unix (cont.)

- Place access rights in (o, o) entry of matrix
- Command $ADDownerREAD(s, o)$
 - * $own \in R[s, o]$: enter *oread* into (o, o)
- Command $ADDanyoneREAD(s, o)$
 - * $own \in R[s, o]$: enter *aread* into (o, o)
- Commands $READ(s, o)$
 - * $own \in R[s, o] \wedge oread \in R[o, o]$ or $aread \in R[o, o]$
 - * enter *read* into (s, o) – temporary addition to matrix
 - * delete *read* from (s, o)

Two *READ* commands simulate disjunction of conditions

HRU – Safety question

System is “safe” when access to objects is impossible without concurrence of owner

...❖ User should be able to tell impact of an action

- Can a generic right be “leaked” to an “unreliable” subject?
 - * Owner can give away right
 - * Reliable subjects
 - * Can right be added to matrix where it is not initially?

OBS: Safety usually used with respect to causing or preventing injury

HRU – Safety question, particular object

- Safety question concerned with leakage of right
- Leakage of right r to object o_1
 - * Two new rights: r' , r''
 - * Add r' to (o_1, o_1)
 - * Add command $DUMMY(s, o)$
conditions: $r' \in (o, o) \wedge r \in (s, o)$
enter r'' into (o, o)
 - * Leaking r to o_1 now equivalent with leaking r'' to anybody

HRU – **Safety question, definitions (i)**

i) Definition

Given a protection system, we say command $c(X_1, \dots, X_n)$ leaks **right** r if its interpretation has a primitive operation of the form enter r into (s, o) for some s and o .

ii) Definition

Given a protection system and right r , we say that initial configuration (S_0, O_0, R_0) is **safe** for r if there does not exist configuration (S, O, R) such that $(S_0, O_0, R_0) \rightarrow^* (S, O, R)$ and there is a command $c(X_1, \dots, X_n)$ whose conditions are satisfied in (S, O, R) , and that leaks r via enter r into (s, o) for some subject $s \in S$ and object $o \in O$ with $r \notin R[s, o]$.

HRU - Safety question, definitions (ii)

iii) Definition

A protection system is mono-operational if each command's interpretation is a single primitive operation.

Theorem

There is an algorithm which given a mono-operational protection system, a generic right r and an initial configuration (S_0, O_0, R_0) determines whether or not (S_0, O_0, R_0) is safe for r in this protection system.

Proof ... see second assignment

HRU – Undecidability of safety question (i)

Turing machine TM : (Q, T, δ, q_0)

- Q set of states, initial state q_0 , final state q_f
- T distinct set of tape symbols
- Blank symbol \perp initially on each cell of tape (infinite to the right)
- Tape head always over some cell of tape
- Moves of TM given by function $\delta: Q \times T \rightarrow Q \times T \times \{L, R\}$
 - Reading symbol in particular state leads to new state, overwriting with new symbol, moving head to left or right
 - (Head never moves off the leftmost cell)

HRU – Undecidability of safety question (ii)

Halting problem

It is undecidable whether a given Turing machine will eventually enter the final state

There is no general algorithm to determine halting for arbitrary Turing machines. There is not even a finite set of algorithms.

HRU - Undecidability of safety question (iii)

Theorem

It is undecidable whether a given configuration of a given protection system is safe for a given generic right.

Proof

- Protection system can simulate behaviour of arbitrary TM
- Leakage of right corresponds to TM entering q_f
- Halting problem is undecidable, hence the theorem is proved

HRU – Undecidability of safety question (iv)

Simulation of $TM(Q, T, \delta, q_0)$ with protection system (S, O, R, C)

- Set of rights $A := Q \cup T \cup \{own\} \cup \{end\}$, R access matrix
- Set of subjects S represents cells; s_i cell number i
- $S = O$
- Tape represented by list of subjects, s_i owns s_{i+1}
 $own \in R[s_i, s_{i+1}]$
- Last cell, subject s_k , marked by special right: $end \in R[s_k, s_k]$
- Tape symbol X in cell i represented by right to itself: $X \in R[s_i, s_i]$
- Current state q and tape head over cell j : $q \in R[s_j, s_j]$

HRU – Undecidability of safety question (v)

Example

- TM in state q with cell contents W, X, Y, Z , tape head at cell 2
- Representing tape content, current state and tape head position in access matrix

	s_1	s_2	s_3	s_4
s_1	$\{W\}$	$\{own\}$		
s_2		$\{X, q\}$	$\{own\}$	
s_3			$\{Y\}$	$\{own\}$
s_4				$\{Z, end\}$

HRU – Undecidability of safety question (vi)

Moves δ

- $\delta(q, X) \rightarrow (p, Y, L)$ left move

Command $C_{qX}(s, s')$

Conditions: $own \in (s, s') \wedge q \in (s', s') \wedge X \in (s', s')$

Interpretation:

delete q from (s', s')

delete X from (s', s')

enter p into (s, s)

enter Y into (s', s')

HRU – Undecidability of safety question (vii)

- $\delta(q, X) \rightarrow (p, Y, R)$ right move

Ordinary right move command $C_{qX}(s, s')$

Conditions: $own \in (s, s') \wedge q \in (s, s) \wedge X \in (s, s)$

Interpretation:

delete q from (s, s) , delete X from (s, s)

enter p into (s', s') , enter Y into (s, s)

Moving beyond current end of tape command $D_{qX}(s, s')$

Conditions: $end \in (s, s) \wedge q \in (s, s) \wedge X \in (s, s)$

Interpretation:

delete q from (s, s) , delete X from (s, s) ,

delete end from (s, s) , enter Y into (s, s) , create subject s' ,

enter \perp into (s', s') , enter p into (s', s') , enter end into (s', s')

HRU – Undecidability of safety question (viii)

Example

- TM from previous example, $\delta(q, X) \rightarrow (p, Y, L)$

s_1	s_2	s_3	s_4	s_1	s_2	s_3	s_4
$s_1 \{W\} \{own\}$				$s_1 \{W, p\} \{own\}$			
$s_2 \{X, q\} \{own\}$				$s_2 \{Y\} \{own\}$			
$s_3 \{Y\} \{own\}$		s_3			$s_3 \{Y\} \{own\}$		
$s_4 \{Z, end\} s_4$						$s_4 \{Z, end\}$	

- Applying command C_{qX}

HRU – Undecidability of safety question (ix)

- Initial matrix has one subject s_1 , $R[s_1, s_1] = \{q_0, \perp, end\}$
- Each command deletes and adds one state
- Each entry contains at most one tape symbol
- Only one entry contains *end*

...⋮ **In each reachable configuration of the protection system at most one command is applicable. The protection system therefore exactly simulates TM .**

If TM enters q_f , right q_f is leaked, otherwise (S, O, R, C) is safe. Since it is undecidable whether TM enters q_f , it must be undecidable whether the protection system is safe for q_f .

This concludes the proof.

HRU – Undecidability of safety question (x)

Although we can give different algorithms to decide safety for different classes of systems, we can never hope even to cover all systems with a finite, or even infinite, collection of algorithms.

Open question:

- Where is the boundary between decidable and undecidable safety questions in access control models?

