
HRU Harrison Ruzzo Ullman Model – Motivation

• Access control modelling in computer security started in 1970s

• Harrison, Ruzzo, Ullman (1975):
Abstract general model of protection mechanisms

• Not dependent on specific policy
∗ Many policies can be modelled in HRU
∗ Need a policy to be useful

• Safety question:
Can a subject acquire a particular right to an object?

• Result of HRU: Safety question undecidable in general case!
Hanno Langweg IMT4161 Information Security and Security Architecture 7/70

HRU – Definition

• set of subjects

• set of objects,

• finite set of access rights

• access matrix, rights subject has
on object

• 6 primitive operations
∗ enter into , delete from ()
∗ create subject , delete subject
∗ create object , delete object

S

O S O⊆

A

R RSO()s S o O∈,∈
= rso A⊆ s

o

r rso r rso r A∈
s s

o o
Hanno Langweg IMT4161 Information Security and Security Architecture 8/70

HRU – Definition (cont.)

• set of commands
∗ , name of command, parameters

(objects)
∗ Conditions: conjunction of triples
∗ If for all triples in the access matrix, command may be

executed
∗ Interpretation maps into sequences of primitive operations
∗ Similar to batch job, database transaction

C
c X1 … Xk, ,() c X1 … Xk, ,

r s o, ,()
r s o,()∈

I C
Hanno Langweg IMT4161 Information Security and Security Architecture 9/70

HRU – Examples

• Command

// no conditions

create object
enter into

• Command

condition:

enter into

• Policy defined by , , ,

CREATE s o,()

o
own s o,()

GRANTr s1 s2 o, ,()

own s1 o,()∈

r s2 o,()

S O R C
Hanno Langweg IMT4161 Information Security and Security Architecture 10/70

HRU – State changes in access matrix (i)

• State change by primitive operation

, configurations of a protection system,
 primitive operation

Then if one of the following holds

i) = enter into and , , , ,
 if and

ii) = delete from and , , , ,
 if and

S O R, ,() S' O' R', ,()
c

S O R, ,() S' O' R', ,()c⇒

c r s o,() S S'= O O'= s S∈ o O∈
R' s1 o1,[] R s1 o1,[]= s1 o1,() s o,()≠
R' s o,[] R s o,[] r{ }∪=

c r s o,() S S'= O O'= s S∈ o O∈
R' s1 o1,[] R s1 o1,[]= s1 o1,() s o,()≠
R' s o,[] R s o,[] r{ }–=
Hanno Langweg IMT4161 Information Security and Security Architecture 11/70

HRU – State changes in access matrix (ii)

iii) = create subject , is a new symbol not in , ,
, ,

 and

iv) = create object , is a new symbol not in , ,
, and

v) = destroy subject , , , and

vi) = destroy object , , , and

c s' s' O S' S s'{ }∪=
O' O s'{ }∪= R' s o,[] R s o,[] s o,() S O×∈∀=
R' s' o,[] ∅ o O'∈∀= R' s s',[] ∅ s S'∈∀=

c o' o' O S' S=
O' O o'{ }∪= R' s o,[] R s o,[] s o,() S O×∈∀=
R' s o',[] ∅ s S∈∀=

c s' s' S∈ S' S s'{ }–= O' O s'{ }–=
R' s o,[] R s o,[] s o,() S' O'×∈∀=

c o' o' O S–∈ S' S= O' O o'{ }–=
R' s o,[] R s o,[] s o,() S' O'×∈∀=
Hanno Langweg IMT4161 Information Security and Security Architecture 12/70

HRU – State changes in access matrix (iii)

• State change by command

, configurations of a protection system,
 command

Then if

i)

ii) , primitive operations, then ,
configurations such that

a)

b) for

c)

S O R, ,() S' O' R', ,()
C

S O R, ,() S' O' R', ,()C→

r s o, ,() conditions C()∈∀ r R s o,[]∈

I C() c1 … cm, ,= ci m 0≥∃
Si Oi Ri, ,()

S O R, ,() S0 O0 R0, ,()=

Si 1– Oi 1– Ri 1–, ,() Si Oi Ri, ,()ci
⇒ 0 i< m≤

Sm Om Rm, ,() S' O' R', ,()=
Hanno Langweg IMT4161 Information Security and Security Architecture 13/70

HRU – State changes in access matrix (iv)

• if there is some command such that

• for zero or more applications of

S O R, ,() S' O' R', ,()→ C
S O R, ,() S' O' R', ,()C→

S O R, ,() * S' O' R', ,()→ →
Hanno Langweg IMT4161 Information Security and Security Architecture 14/70

HRU – Example Unix

• Simple Unix protection mechanism
∗ Owner of file specifies privileges r, w, x for himself and others
∗ (superuser disregarded here)

• Two challenges
∗ No bound on number of subjects

> not possible to “give all subjects privilege”
∗ No disjunction of conditions

Owner or has privilege
Hanno Langweg IMT4161 Information Security and Security Architecture 15/70

HRU – Example Unix (cont.)

• Place access rights in entry of matrix

• Command
∗ : enter into

• Command
∗ : enter into

• Commands
∗ or
∗ enter into – temporary addition to matrix
∗ delete from

Two commands simulate disjunction of conditions

o o,()

ADDownerREAD s o,()
own R s o,[]∈ oread o o,()

ADDanyoneREAD s o,()
own R s o,[]∈ aread o o,()

READ s o,()
own R s o,[]∈ oread R o o,[]∈∧ aread R o o,[]∈

read s o,()
read s o,()

READ
Hanno Langweg IMT4161 Information Security and Security Architecture 16/70

HRU – Safety question

System is “safe” when access to objects is impossible without
concurrence of owner

> User should be able to tell impact of an action

• Can a generic right be “leaked” to an “unreliable” subject?
∗ Owner can give away right
∗ Reliable subjects
∗ Can right be added to matrix where it is not initially?

OBS: Safety usually used with respect to causing or preventing injury
Hanno Langweg IMT4161 Information Security and Security Architecture 17/70

HRU – Safety question, particular object

• Safety question concerned with leakage of right

• Leakage of right to object
∗ Two new rights: ,
∗ Add to
∗ Add command

conditions:
enter into

∗ Leaking to now equivalent with leaking to anybody

r o1
r' r''

r' o1 o1,()
DUMMY s o,()

r' o o,()∈ r s o,()∈∧
r'' o o,()

r o1 r''
Hanno Langweg IMT4161 Information Security and Security Architecture 18/70

HRU – Safety question, definitions (i)

i) Definition
Given a protection system, we say command leaks
right if its interpretation has a primitive operation of the form
enter into for some and .

ii) Definition
Given a protection system and right , we say that initial
configuration is safe for if there does not exist
configuration such that and
there is a command whose conditions are satisfied
in , and that leaks via enter into for some
subject and object with .

c X1 … Xn, ,()
r
r s o,() s o

r
S0 O0 R0, ,() r
S O R, ,() S0 O0 R0, ,() * S O R, ,()→

c X1 … Xn, ,()
S O R, ,() r r s o,()

s S∈ o O∈ r R s o,[]∉
Hanno Langweg IMT4161 Information Security and Security Architecture 19/70

HRU – Safety question, definitions (ii)

iii) Definition
A protection system is mono-operational if each command’s
interpretation is a single primitive operation.

Theorem

There is an algorithm which given a mono-operational protection
system, a generic right and an initial configuration
determines whether or not is safe for in this protection
system.

Proof > see second assignment

r S0 O0 R0, ,()
S0 O0 R0, ,() r
Hanno Langweg IMT4161 Information Security and Security Architecture 20/70

HRU – Undecidability of safety question (i)

Turing machine :

• set of states, initial state , final state

• distinct set of tape symbols

• Blank symbol initially on each cell of tape (infinite to the right)

• Tape head always over some cell of tape

• Moves of given by function

Reading symbol in particular state leads to new state,
overwriting with new symbol, moving head to left or right

(Head never moves off the leftmost cell)

TM Q T δ q0, , ,()

Q q0 qf

T

⊥

TM δ: Q T× Q T L R,{ }××→
Hanno Langweg IMT4161 Information Security and Security Architecture 21/70

HRU – Undecidability of safety question (ii)

Halting problem

It is undecidable whether a given Turing machine will eventually
enter the final state

There is no general algorithm to determine halting for arbitrary
Turing machines. There is not even a finite set of algorithms.
Hanno Langweg IMT4161 Information Security and Security Architecture 22/70

HRU – Undecidability of safety question (iii)

Theorem

It is undecidable whether a given configuration of a given protection
system is safe for a given generic right.

Proof

• Protection system can simulate behaviour of arbitrary

• Leakage of right corresponds to entering

• Halting problem is undecidable, hence the theorem is proved

TM

TM qf
Hanno Langweg IMT4161 Information Security and Security Architecture 23/70

HRU – Undecidability of safety question (iv)

Simulation of with protection system

• Set of rights := , access matrix

• Set of subjects represents cells; cell number

•

• Tape represented by list of subjects, owns

• Last cell, subject , marked by special right:

• Tape symbol in cell represented by right to itself:

• Current state and tape head over cell :

TM Q T δ q0, , ,() S O R C, , ,()

A Q T own{ } end{ }∪ ∪ ∪ R

S si i

S O=

si si 1+
own R si si 1+,[]∈

sk end R sk sk,[]∈

X i X R si si,[]∈

q j q R sj sj,[]∈
Hanno Langweg IMT4161 Information Security and Security Architecture 24/70

HRU – Undecidability of safety question (v)

Example

• in state with cell contents , , , , tape head at cell 2

• Representing tape content,
current state and tape head
position in access matrix

TM q W X Y Z

 s1 s2 s3 s4
s1 W{ } own{ }

s2 X q,{ } own{ }

s3 Y{ } own{ }

s4 Z end,{ }
Hanno Langweg IMT4161 Information Security and Security Architecture 25/70

HRU – Undecidability of safety question (vi)

Moves

• left move

Command
Conditions:

Interpretation:
delete from
delete from
enter into
enter into

δ

δ q X,() p Y L, ,()→

CqX s s',()
own s s',()∈ q s' s',()∈ X s' s',()∈∧ ∧

q s' s',()
X s' s',()

p s s,()
Y s' s',()
Hanno Langweg IMT4161 Information Security and Security Architecture 26/70

HRU – Undecidability of safety question (vii)

• right move

Ordinary right move command
Conditions:
Interpretation:
delete from , delete from
enter into , enter into

Moving beyond current end of tape command
Conditions:
Interpretation:
delete from , delete from ,
delete from , enter into , create subject ,
enter into , enter into , enter into

δ q X,() p Y R, ,()→

CqX s s',()
own s s',()∈ q s s,()∈ X s s,()∈∧ ∧

q s s,() X s s,()
p s' s',() Y s s,()

DqX s s',()
end s s,()∈ q s s,()∈ X s s,()∈∧ ∧

q s s,() X s s,()
end s s,() Y s s,() s'
⊥ s' s',() p s' s',() end s' s',()
Hanno Langweg IMT4161 Information Security and Security Architecture 27/70

HRU – Undecidability of safety question (viii)

Example

• from previous example,

• Applying command

TM δ q X,() p Y L, ,()→

 s1 s2 s3 s4
s1 W{ } own{ }

s2 X q,{ } own{ }

s3 Y{ } own{ }

s4 Z end,{ }

 s1 s2 s3 s4
s1 W p,{ } own{ }

s2 Y{ } own{ }

s3 Y{ } own{ }

s4 Z end,{ }

CqX
Hanno Langweg IMT4161 Information Security and Security Architecture 28/70

HRU – Undecidability of safety question (ix)

• Initial matrix has one subject ,

• Each command deletes and adds one state

• Each entry contains at most one tape symbol

• Only one entry contains

> In each reachable configuration of the protection system at most
one command is applicable. The protection system therefore exactly
simulates .
If enters , right is leaked, otherwise is safe.
Since it is undecidable whether enters , it must be undecidable
whether the protection system is safe for .

This concludes the proof.

s1 R s1 s1,[] q0 ⊥ end, ,{ }=

end

TM
TM qf qf S O R C, , ,()

TM qf
qf
Hanno Langweg IMT4161 Information Security and Security Architecture 29/70

HRU – Undecidability of safety question (x)

Although we can give different algorithms to decide safety for
different classes of systems, we can never hope even to cover all
systems with a finite, or even infinite, collection of algorithms.

Open question:

• Where is the boundary between decidable and undecidable
safety questions in access control models?
Hanno Langweg IMT4161 Information Security and Security Architecture 30/70

