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10)

CAPITOLO 1

Numeri complessi

3—J
T+ 35
Rappresentare geometricamente e porre in forma trigonometrica i seguenti numeri
complessi: 2, —3, j, —47, 1 +j, =2+ jv/12, V6 — j/2, —1/2 — j /2. Determinare
I’argomento principale di ciascuno di essi.

Calcolare: j125, =301 (7 4+ 5)(5 — 2j), (2+5)3

Calcolare le radici quadrate di
-2+ b) 2-—3j c) 1445 d) —3-5j

5+ f) —2—5j g) —m—j h) —1—-57

Calcolare: /7, V1, /=1 —j, /=1 — j, /3 + 6.
Provare che le radici n-sime di Z sono coniugate a quelle di z.

Verificare che, per m € R fissato, I’equazione Im z = m Re z rappresenta una retta
non verticale per 'origine.

Scrivere ’equazione della retta per due punti complessi z; e z9 distinti.

Determinare e rappresentare sul piano gli insiemi di numeri complessi verificanti
ciascuna delle seguenti relazioni:

|z +3] > |z 42— j] b) |jz+3| <|z+1]
22 =72 d) 622 —19]2| +15>0
Re(2?) > 0 f) arg(2z+1) €]0,7/4]

axg( + j) € /2,7

Dimostrare analiticamente la disuguaglianza triangolare
|l21] = |22|| < |21 + 22| < |21] + |22, Vz1,22 €C.

Discutere il caso dell’'uguaglianza.

Dimostrare il teorema di Carnot: dette a, b e ¢ le lunghezze dei lati di un triangolo
e o 'ampiezza dell’angolo opposto al lato di lunghezza a, risulta a? = b? 4 ¢ —
2bccos . (Per o = /2 il teorema si riduce a quello di Pitagora.)
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I. NUMERI COMPLESSI 3

Dimostrare la seguente identita del parallelogramma (interpretare geometricamen-
te): Vz, w € C, risulta

|2+ wl? + [z — wf? = 2(]2* + [w]?).

Sia z =x+ jy € C, con z # 0 e y # 0. Mostrare che una determinazione ¥
dell’argomento di z puod essere ottenuta come segue

x
arccos ———, se y > 0;
/IQ +y2
’(9 =
x
arccos ———m, sey <0;
Va2 +y?
oppure
arcsin P B ; se x > 0;
/1'2 + y2
19 —
arcsinL +m, sexz<O.
/IQ + y2

Cosa c’¢ di sbagliato?

1=Vli=y/(-12=V-1V-1=j j=-1.

Siano wy, . .., w,—1 le radici n-sime (n > 1) di z € C\ {0}. Mostrare che, ¥Ym € Z,
wy', ..., w,'_; sono radici n-sime di 2. Mostrare inoltre che esse sono a due a
due distinte se e solo se n e m sono primi tra loro.

Discutere la validita delle uguaglianze

Siano z,w € C, con Rew # 0. Mostrare con un esempio che, in generale, non
vale 'uguaglianza

z Rez

R (7) = ’
¢ w Rew
Provare che condizione sufficiente per la validita dell’'uguaglianza ¢ che z/w € R.

Tale condizione & anche necessaria?



CAPITOLO II

Funzioni olomorfe

Calcolare le espressioni
cos j b) sinj ¢) Log(-1)
Log(—1+j) e) log(exp(z)) f) Log(exp(2))

Osservare che Log z non é continua nei punti del semiasse reale negativo.

Mostrare che exp z, cos z, sin z sono funzioni hermitiane. (Vedere anche 'eserci-
zio 36.)

Mostrare che tutte e sole le determinazioni di log(zw) si ottengono sommando
una determinazione di log z e una di logw.

Mostrare che logz = logz, ¥z € C\ {0}. E anche vero che Logz = Logz,
Vz € C\ {0}? (log z & l'insieme dei coniugati delle determinazioni di log z.)

Risolvere in C le equazioni
e’ =3 b) |e*| = el*! c) sinz=j
cosz =9

Scrivere in forma algebrica il numero complesso exp(m + 155). Indicare modulo e
argomento principale. Rappresentare sul piano complesso.

Descrivere 'immagine mediante la funzione esponenziale della retta di equazione
Imz =m Rez, con m € R fissato. (Cfr. esercizio 6.)

Dove ¢ l'errore: per ogni risuklta z € C, e/* = cosz + jsinz e quindi |e/?| =
Vecos? z +sin® 2z = 17

Per quali z € C, cos z e sin z sono simultaneamente reali?

. sinz 3+5cosz
lim [ 8 5
z—0 23 2’2

Calcolare

usando gli sviluppi di Mac Laurin di sin z e cos z.
Scrivere gli sviluppi di Taylor delle seguenti funzioni nei punti indicati, specifi-
cando la regione in cui questi sussistono:

1+z.
1Mage

20 =0 b) sinz; zop=m7 c) e z=1

4
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II. FUNZIONI OLOMORFE 5

z€e¥; =1
Scrivere gli sviluppi di Laurent delle seguenti funzioni nei punti indicati, specifi-
cando la regione di convergenza:

1 exp(z?) L
=0, 20=1 by SPEL C 2 =
ftecnicAl ;20 ) ;20 c) 2_3.52 D

23 Y

Studiare gli zeri e le singolarita isolate delle seguenti funzioni (anche eventual-
mente nel punto co):

sin z z sinz |
— b) — ) —————
1—cosz 1—cosz 2224+ 7wz — 72

COST 2 cosmz— 1 z
_ e) —m— f) ———
2224+2—6 22—72+6 emz® — 1

Calcolare i residui delle seguenti funzioni nei punti indicati:

1;20:0,21:00 b) —; 2=0

z z

zgi‘l;zozj d) (ZQ—Z’ijl—_;)cosz;Zo2’211’222
G 0 0 i

%;ZOZO h) 2*(z—1)sin—; 2 =1

Sia f una funzione olomorfa in una corona circolare di centro 0 e sia 3.7 ¢,, 2"
la sua serie di Laurent nella corona. Mostrare che, se f é una funzione dispari
(cioe f(—z) = —f(z), Vz), risulta ¢, = 0 per n pari, e se f & pari (f(—z) = f(2),
Vz), risulta ¢, = 0 per n dispari. Piu in generale, se Z:Zo_oo cn (2 —20)" ¢ 1o
sviluppo di Laurent di f in una corona circolare di centro zj e Z;Zo_oo dp, (z+20)"
¢ lo sviluppo nella corona simmetrica rispetto all’origine, di centro —zg, Vn € Z
risulta d,, = ¢, (—1)" se f & pari, e d,, = ¢, (—1)"*! se f & dispari; in particolare,
se Fzp sono singolarita isolate, & R[—zo] = —R][z0] se f & pari, R[—z9] = R|z0] se
f é dispari.

Sia f una funzione olomorfa in un aperto €2 simmetrico rispetto all’asse reale, in
modo che valga 'implicazione z € () = Z € 2. Supponiamo che f sia hermitiana,
cioe risulti f(zZ) = f(z), Yz € Q. Supponiamo inoltre che, fissati zg € C e r
e p numeri reali tali che 0 < r < p, Q) contenga le corone circolari descritte
dalle limitazioni r < |z — 29| < p e r < |z — Zg| < p. Mostrare che i coeflicienti
dello sviluppo di Laurent di f nella prima corona sono coniugati ai corrispondenti
coefficienti dello sviluppo di Laurent di f nella seconda corona. In particolare,

(se si puo scegliere r = 0) risulta R[Zg] = R[z)-
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II. FUNZIONI OLOMORFE

Determinare le singolarita e calcolare i residui della funzione
z
24— 625"
Osservare che i residui sono legati dalle proprieta messe in luce negli Ex. 32 e
Ex. 33; inoltre basta conoscerne uno, per calcolare tutti gli altri.

Sia f olomorfa in una corona circolare di centro 0 (eventualmente un cerchio, o
un intorno di o), verificante

feiz) = f(z), ¥z,
dove n € N ¢ fissato. Mostrare che esiste g olomorfa tale che
f(z)=9("),  Va.
In particolare, se n = 2, la (1) significa che f & pari; la tesi & che essa @ in realta
funzione di 22. (Cfr. Ex. 32.)
Sia f olomorfa in un aperto €.

e Mostrare che g(z) = f(Z) ¢ olomorfa in Q* = {z:z € Q}.

e Sia 2 = QF connesso. Mostrare che €2 interseca l’asse reale e che f &
hermitiana se e solo se assume valori reali nei punti di € sull’asse reale.
z—1
Mostrare che — Log = —Log(1—1/2) in |z|] > 1 ¢ olomorfa e vale il seguente

sviluppo di Laurent intorno all’co:

-1 1 1
—Logz . =—Log(l—-1/7) = ;—i—

ﬁ+..'+nz”

Considerando la funzione f(t) = e’t, t € [0, 27, osservare che per le funzioni com-
plesse non vale il teorema di Rolle (o Lagrange). Mostrare la seguente versione:
se f & continua in [a, b] e derivabile nei punti interni, risulta

[£(b) = fa)] < (b—a)sup | f].
(a,b)
Considerando la funzione f(t) = /%, t € [0,27], osservare che per le funzioni
complesse non vale il teorema della media integrale; risulta fo% f)ydt =0 e
quindi non esiste alcun punto in cui f assume valore uguale alla media integrale.

Sia u una funzione reale di classe C? in un aperto di R?. Mostrare I'equivalenza
u armonica <= [ = u, — ju, olomorfa.
Siano ¢ = £+jn = f(z) = f(z,y) una funzione olomorfa in un aperto Q di Ce u =

u(€,m) = u(¢) una funzione di classe C? in un aperto che contiene f(£2). Mostrare
la seguente uguaglianza per la funzione composta v(z,y) = v(z) = u(f(2)):
Av(z) = Au(f(2)) 1f' (=)
In particolare, v risulta armonica se tale é u.
ST _ ha nei punti 0, F1 singolarita elimi-
z(1— 22

nabili. Calcolare la derivata del prolungamento in tali punti.

Mostrare che la funzione f(z) =



II. FUNZIONI OLOMORFE 7

43) Due primitive di una stessa funzione in un aperto connesso differiscono per una
costante.

44) Sia f olomorfa intorno a zy € C, escluso zg. Mostrare che Ry [20] = 0. Inoltre,
mostrare che f & dotata di primitiva nell’intorno bucato se e solo se Ry[z] = 0.
Calcolare

sin z

B[o, ez B 0 e



CAPITOLO III

Polinomi e funzioni razionali

45) Decomporre in fratti semplici le seguenti funzioni razionali:

a)

j)

2241 b T 22 -1

2z - D)(z—2) ) GIDE+ D@13 ) @I
1 1 1
1123 © Fri-a D 17
1 ) 1 ) 1

(z—1)(=* +1)? (z+1)%(=%-1) p’(p+1)(p—2)

1 1 1
s(s?24+1)2 k) s (52 +w?)? (w#0) 2 (s =7)(s%2+25)2

46) Decomporre mediante la formula di Hermite le seguenti funzioni razionali:

a)

A7)

x3 1
(1+ 22)2 b) (x4 1)(22 +4)2

Sia Q(z) = ag+ay z+- - -+ax 2~ un polinomio di grado positivo e siano 21, ..., 2x
gli zeri (non necessariamente a due a due distinti). Mostrare che
Z1_~_...+ZN:_aN_17 2’1---ZN=(—1)N&.
aN an
In particolare, la somma delle radici N-sime (N > 1) di un assegnato numero
complesso é nulla.
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CAPITOLO 1V

Z-Trasformazione

Calcolare la Z,-trasformata delle seguenti espressioni:

n? 4 3n
(n+2)!

Z-antitrasformare le seguenti espressioni:
(z—1)2%z+1)
23 -8
1
224241
z
(224 2z+1)2

22

(22 — 22+ 2)2
z(z—1)
(22 +22+4)2
1;
2341

Usando la Z-trasformazione, risolvere i seguenti problemi a valori iniziali per

equazioni ricorrenti:

{ y(n+2)+y(n+1) +y(n) = 3cos* (ng)

y(0) =2, y(1) = -3

{ 2y(n+2) + 3y(n + 1) — 2y(n) = 2"
y(0)=1, y(1)=0

{ y(n +2) — 2y(n + 1) + 4y(n) = 2" ' cos (n
y(0) =0, y(1) =1

™

3

)



10 IV. Zz-TRASFORMAZIONE

y(n+2) — 6y(n+ 1) + 18y(n) = (3\/5)7“rl sin (nz)

y(n+2) —y(n+1)+y(n) = (-1)"a(n)
a(n) periodica di p. 3,
a(0)=1,a(1) =0,a(2) =—-1

y(0) = y(1) = 0

y(0) =0, y(1) =1/2

y(n+2)+4y(n) =2"sin (n g)
y(0) =y(1) =0

+2) —y(n+1) +y(n) = cos (n 7)
y<o>:y<1> 0

y(n+2)+y(n+1)+y(n) = cos (n ; 77)
y(0) =y(1) =0

2y(n+2) +7y(n+1) +3y(n) = a(n)
) a(n) periodica di p. 3,

A <>f1a<>f2a<2>:73

y(0) = y(1) =

yn+2)+2y(n+1)+4yn) =a(n)
K) a(n) periodica di p. 3,

a(0) = 1, a(1) = 2, a(2) = 4
y(0) =0, y(1) =3

y(n+2) +y(n) = a(n)
a(n) vale 2 per n pari
e 1 per n dispari

y(0) =y(1) =0

f) { 4dy(n+2) —y(n)=2"" (cosng +sinng)

51) Ricavare la formula per la trasformata di una successione periodica, risolvendo
(formalmente) l'equazione ricorrente y(n + k) — y(n) = 0, dove k ¢ il periodo.

52) Mostrare che Z[1/nu(n — 1)] = —Log Zizidhi_ —Log(1 — 1/z), con dominio
2] > 1. :
53) Risolvere
{ y(n+2) =y(n+1)+yn)
y(0) =0, y(1) =1
La soluzione y(n) ¢ la successione di Fibonacci.



IV. Zz-TRASFORMAZIONE 11

54) E noto che
z z

Zum)]=——,  Zlul-n-1)]=-
Possiamo dedurre sommando Z[1] = 07

55) Posto f(z) = Z,[a(n)], mostrare che, per k € N, risulta Z;1[f(z*)] = b(n), con
b(n) — {a(n/k) ., sen é divisibile per k,

0, altrimenti.

56) Mostrare che, se a(n) ¢ periodica di periodo k € N e b(n) & periodica di periodo
h €N, a(n) 4+ b(n) e a(n) - b(n) sono periodiche di periodo kh.
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CAPITOLO V

Integrali con i residui

Usando i teoremi dei residui, calcolare gli integrali:

2z+1 e®
—dz b) ——dz c) / tgzdz
/|z—1_2 22—z |z—2|=1 # (2 —2)? |z|=3
2y _ 1 :
/ 1 _z o ) / exp(zg) & f) / 1z_smz e
|z|=1 COS z |z]=1 z |z|=10 COS 2

Per gli integrali del tipo fon Z(sinzx)dzr e fozﬂ 2 (cosx) dx, con % funzione razio-
nale, pud convenire decomporre # in fratti semplici. Ad esempio, se i poli ws
di Z(w) sono tutti reali semplici e in valore assoluto maggiori di 1, mostrare la

formula
27
H(sinz)dx = —27 Rlw
| #(sinz) zk: [wi] T

Sgn Wy,
)

1 residui essendo relativi a #Z. Valutare

/27r dSU
o 12sin?z —35sinz +25

Calcolare mediante la teoria dei residui i seguenti integrali (specificando il tipo di
convergenza,):

+o00 : ER
sinx sin27x
d b —d
/_OO 22 _3rztam ” ) /_OC 222t a
T ginz + cosz & dx
dz d) Ak
oo Az +7) (22 + 72) o (b+4cosz)?

dz

* x+cosz T 42 4 cosz
dx f) _
x4+4 0 1+1‘4

1624 — 1

— 00

+oo —iTT +oo .
1+ e . sinx
S dx j) V.p./ﬁOo 115 dx

+oo 2 :
/ 22 +COS7Txdx h) / 2x Tsin e d

12
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o0 :
xr SmmmTax
o [ ST

+o0
1—cosx
w [

+oo : 3
sinx 3
de ==
o) /_Oo ( :c) T=om

T1+sinx cosx
q) 172dx
0 + cos*

+oo :
sin x
S ———dx
) /0 x (14 22)?
T in?
o sin®x — e?i®

)/+°° cos 5 J
Yol L @r3)(@2r6r+10)

)/+°° 1+sinma "
Vo) Qe -32E2+ 1)

a)/mcoswdx
! 24 — 1622 + 100

— 00

27
14 cosx
Cl)/ I 3a2s
0 + 3sin“ x

e)/ﬂ dx
Yo (5—3cosz)(5—4 cosx)

27 3
1+sinx
o [t
0

4421 cos?x

+oo
60) Mostrare che F(w) = /

— 00

y

n)

D)

+°°x—sin%x
7(130
. 3—-1

COST X

83— 1 &

% 8in 2x
1422

sm r+xsinx
— oz &
A
2ix

4sinz + e
2—|—c05x

1—|—cos7rw d
T
(x—1)2(22+1)

cos x
24— 622 +25

sinx + cosx
(5 —4sin x)2

sinwx

— 1022 + 169)

dz

sinmx

d
218"

i
oo
/.
s
[ wreim
i
[
)
W[
W [

e~ @+©)® 4r & costante.



CAPITOLO VI

Trasformazione di Laplace

61) Calcolare

SR [ —

62) Usando la trasformazione di Laplace, risolvere i seguenti problemi di Cauchy in

[0, +o0l:
a) { y' =2y +2y= e sint b) { y' — 6y +13y =4 tu(t —5)
y(0) =y'(0) =1 y(0)=1, y'(0)=5
y//_ Oy’+21y: e?t_ eSt y"—l4y'+65y:16te7t
¢) - 100 — d) o 100 —
y(0)=0, y'(0) =4 y(0)=1, 3/ (0) =3

y' +y=2(sint +t cost)
y'(0) =1
5

y' +2y +5y= e tsin2t

7 7
1 / .
Yy ——=y +2y:—u(t—f> sin2t
3 3
v3 v3 y(0) =1, y'(0) = -1

3
y(0) =5, y/(0) =3

0)=1, y'(0)=1/2 y(0) =1, y'(0) = -1/2

" — 6y +25y = €3 cosdt { Y+ 10y + T4y = e 5t cos Tt
= y(0) =2, y'(0) =4

" —y —2y =18 e*t cos 3t

y y' —6y +5y= e ult—1)
y(0)=1, y'(0) =2

y(0) =y'(0) =1

y'—6y +34y = e3tsinbt
y(0)=y'(0) =1

2y" +5y +2y=tu(t—2) o)
y(0)=1, y'(0) = -2

14

h) { 4y" — 4y +5y =4 e/? sint i 4y" +12¢y' + 13y =4 e 342 cost
Y
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VI. TRASFORMAZIONE DI LAPLACE

3
4y =32y + 73y = 4e4tsin§t
y(0) =1, y'(0) =4

2
—1

5y”" —10y" +9y = 8 e'sin
Y Y Y 75

y(0) =y'(0) =1

0y’ —24y =98t eSlcosTt

Y —

y(0) =1, y'(0) = -2

49" + 8y — 5y =25e'/?cos 4t
3

y(0) =1, ¥'(0) = 3

y' +3y +2y=4tu(t—1)

y(0)=1, y'(0) = -1

y' — 8y +25y= e’
y(0)=1, y'(0)=7

tsin3¢ (tff)
Sin u 3

y”—8y’+52y=e4t
y(0) =1, y'(0) =10

sin6t u(t— g)

]

|
{
{y
|
|

15

2¢y" — 20y’ +51y =2 e’tsin
y(0)=1, y'(0)=5

V2

16y" + 16y —5y =t e_t/QcosZt
y(0) =y'(0) =1

y’' —6y +45y = %'
y(0)=1, y'(0) =9

sin6t u(t —m)

y' +4y +53y= e 2tsinTtu(t—n)
y(0)=1, y'(0)=5

Yy’ — 10y +21y—e tcosat d){ y' =5y +6y=e*lcos5t
y(0) =2, y(0) =10 Vw0 =2, 4(0)=5

Yy — 14y +49y— e’tsin3t ) { y"' — 10y’ + 25y = e’!sin6t
y(0)=1, y'(0) =2 Yl y0) =1, y(0)=2

129" — 35y + 25y = e%t(120055t+sin5t)
15
y(0) =3, y'(0) =

4

t t
6y’ — 17y +12y = e3 ! <30052+sin2>

4
y(0) =1, y'(0) = 3
y' =5y +6y= e?’tsintu(t—I) .
’ 4 .]1)
y(0) =9'(0) =0

t t
129" — 31y +20y = e3! (20056 —|—sin6)
5



VI. TRASFORMAZIONE DI LAPLACE

5 t 1 .t
6y//_19y/+15y: e3t<cos+sm> 9y”—18y/+10y=96t COS%

3 2 3
m ){

y(0) =1, y'(0) = g 1 y(0)=1, y'(0)=4/3
"2y +y=e [ult) —ult—1)] 1) { y' 4+ 2y =u(t—m) sin2t
=y/(0)=1 y(0) =1, y'(0) = V2
y' =3y +2y=10u tfz)cost @) { 2¢y" =2y +y=t(e +1)

y(0) = 1/(0) = 1 VL w0)=1, y(0)=1/2

mer -1 ) { y/”+8y:1

y(0) = y/(0) =¢"(0) =0 L y0) =1, y(0) = -2, y'(0) =4
y" + 25y = tsin5t u){ y" —y= e

y(0)=1, y'(0) =5 Y y(0) =y'(0)=y"(0) =1



63)

64)

CAPITOLO VII

Serie e Trasformazione di Fourier

Calcolare
sin 7t cos Tt
= il b) & 2
q= =
Calcolare la trasformata di Fourier del prolungamento periodico (o della replica

periodica), con periodo specificato, di ciascuna delle seguenti funzioni (disegnare
il diagramma del prolungamento periodico); per ciascuna di esse, scrivere serie
esponenziale e serie trigonometrica di Fourier.

zo(t) = [u(t) — u(t — )] sint
periodo 27

zo(t) = [u(t) — u(t — m)] sint

b
) periodo w

zo(t) = [u(t + 7/2) — u(t — 7/2)] sint d) zo(t) = [u(t) — u(t + )] sint
periodo 7 periodo 27

xo(t) = [u(t +7/2) —u(t —7/2)] cost b olt)= {162 pert € (=1, 0);

periodo 27 pert € (0, 1).
periodo 2
2(t) = 2% per —1<t<0; 2(t) = 2+ 3¢, per —3<t<0;
cos%t, per 0 <t <1. h) 3t—3t2, per0<t<l.
periodo 2 periodo 4
t2—21¢, 1<t <2
zo(t) = e [u(t + 1) —u(t —1)] NEOE [t per 1<t
periodo 2 J cosmt, per [t] < 1.
periodo 4

wo(t) =t cost [ult +7/2) —ult = 7/2)] ) x(t) = {tz(l Sekiop RS ¥ Shctals

periodo 7 t*, per —1<t<0.
periodo 2
™ T
X = x =
|sint|, g<m<w n) It — %, g<m<w
periodo 27 periodo 27

17



18 VII. SERIE E TRASFORMAZIONE DI FOURIER

0) o(t) =2t —t, -1<t<3 D) z(t)=* -1, —2<t<?2
periodo 4 periodo 4
l—cost ,—-5E<t<?B t2 0<t<1
SOER SIS 2(t) = ’
q) 1 F<t<sym r) 2t ,1<t<?2
periodo 27 periodo 2
t+1 ,—-1<t<0
9 *0=1 g e =0-1(=1, 0<t<1
T »Itder) periodo 1
periodo 2
t ,0<t<1 . 1%, Scp
cos ,— 5
w) z(t) =141 1<t <2 v) x(t)_{l 2, Ozt<77
e -2t z
; S cadlerhino 2094 periodo 7
periodo 3
2 0<t<1 t 0<t<1
x(t) = z(t) = i
w) 1 ,1<t<?2 x) sinZt ,1<t<2
periodo 2 periodo 2
—t -1<t<0
zo(t) = lu(t +1) —u(t —1 z(t) = ’
y) pgiigdozl[( e ) z) 0 2t—t2 0<t<l1
periodo 2
(t)= 7%75 i Zisdial) 2(t) = etcost, —— <t< o
ar) T\ sint ,0<t<Z by) TV ’ 2 2
. 2 periodo w
periodo 7
0 ,—T <t<0
&) o(t) = (1 +cost) [u(t +7) —u(t —m)] 4 ) z(t) = { 2=
! periodo 37 1 t cost ,O<t<7

periodo w

zo(t) = (1 +sint)[[U(t+7T/2) —u(ﬂ}] g) @ot) = M1+ ]1), VtER

er) +cost |u(t) —u(t — m/2)

periodo 27 periodo 27
) z(t)=t—1t3, t e (~1,1) ) @) = (7 = %) cost, t € (—m,7)
! periodo 2 ! periodo 27
T 2 ™
2 0 |t‘ <35
i) xz(t) = (sgnt)sin“t, t € (—m, ) i) x(t) =1 4 r 2
periodo 27 cost 15 < [t <

periodo 27
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cos3t ,fg <t<0,

x(t) =
ki) ®) cost ,O<t<g
periodo 7
22—t 0<t <1,
1 3t—t" -2 |J1<t<2
periodo 2

65) Calcolare . [sin ¢ sin 3t].

zo(t) = e'sint [u(t) — u(t — )]
periodo m

) x(t) =t (1 +cost), t € (—m,m)
periodo 27



CAPITOLO VIII
Svolgimenti Numeri complessi

Ex. 3a Le due radici quadrate sono opposte. Chiaramente | — 2 + j| = /5. Se
¥ = arg(—2 + j) & una determinazione dell’argomento, abbiamo cos? = —2/+/5,
sing = 1/\/5 ev—2+j==+v5 (cosg + jsin g) Dobbiamo quindi calcolare cosg e

N4 D — /25 Dy

sin g. Le formule di bisezione danno cos § = L=

valori di cos? e sin? vediamo che esiste una determinazione ¥ tale che 7/2 < ¥ < 7

(I'immagine di —2 + j appartiene al IT quadrante), quindi 0 < 9/2 < 7/2 e cos 2 e

2
sin 2 sono positivi. In definitiva

2
: 5-2 [VE+2
—2+j=1% \/\[2 +g\/f2 .

e sin

Ex. 3d Il procedimento é analogo a quello seguito nell’Ex. 3a. Osserviamo pero
che questa volta I'immagine di —3 — 55 cade nel III quadrante, quindi esiste una
determinazione dell’argomento ¢ compresa tra 7 e 37/2 e quindi tale che 7/2 <
9¥/2 < m. Dunque cosg <0e sing > 0. Infine abbiamo

4 — 4
i _WTHWT;:%

Ex. 5 L’affermazione ¢ ovvia per z € R, poiché Z = z. Per z non reale, dette
wo, . . ., Wn_1 le radici n-sime, a due a due distinte, di z, é chiaro che

Wo, -+ s Wn—1

sono radici n-sime di z, poiché il passaggio al coniugato commuta con le operazioni
razionali:

(Ek)” = w,? =7Z.
Essendo poi a due a due distinte, esse forniscono le n radici n-sime di Z.

Ex. 6 Scrivendo z = z + jy in forma algebrica, I'equazione diventa y = mx e la
conclusione é ovvia.

Ex. 8a Poiché il modulo ¢ non-negativo, elevando al quadrato (e lasciando inalterato
il verso della disuguaglianza) otteniamo una relazione equivalente. Rappresentando
z = z+1iy in forma algebrica, tale relazione si scrive (z+3)2 4+ 4% > (z+2)% + (y—1)2,
ovvero x+y > —2. Geometricamente, I'insieme delle soluzioni ¢ il semipiano superiore
dei due in cui il piano ¢é diviso dalla retta di equazione x4y = —2. Il risultato si ottiene
facilmente con un ragionamento di natura interamente geometrica, ricordando che il
modulo ha significato di distanza. In effetti, |z + 3| rappresenta la distanza di z dal

20



VIII. SVOLGIMENTI NUMERI COMPLESSI 21

punto —3, mentre |z+2—i| ¢ la distanza dal punto —2+4; il luogo dei punti equidistanti
dai due é ’asse del segmento che li ha per estremi, ovvero, la perpendicolare a tale
segmento nel punto medio. E chiaro che il semipiano dei due in cui il piano ¢ diviso
dall’asse, contenente —2 + ¢ é formato dai punti per i quali la distanza da questo é
minore della distanza da —3, dunque costituisce I'insieme delle soluzioni.

~2+4

Ex. 8b Risulta
ljz+3[=1i(z=3j)l =12 =3j], [F+1l=[+1=]z+1],

quindi la relazione si riscrive |z—3j| < |z+1] e si pud ragionare come per 'esercizio 8a.

Ex. 8e Rappresentando z = z + iy in forma algebrica, troviamo Rez? = z2 — 32,
quindi Re 2% > 0 equivale a |z| > |y|. Alternativamente, osserviamo innanzitutto che
é z # 0. Inoltre, se ¥ & una determinazione dell’argomento di z, 2¢ é argomento di
2? e la condizione Re 22 > 0 equivale a —m/2 < 20 — 2kw < 7/2, con k € Z; dunque
—nm/d+kr <9 <w/4+km.

Ex. 8f Basta osservare che arg(2z + 1) = arg (2 + 1/2) = arg (2 — (—4)). L’insieme
delle soluzioni é rappresentato in figura:
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_1

2
Ex. 8g Abbiamo arg(z + j) = arg(z —j) = —arg(z — j) € |n/2,7[ se e solo se
arg(z — j) € | — m, —m/2[, ovvero, posto come al solito z = Rez e y = Im z, se e solo

serisultay < 1exz <0.
Ex. 9 Consideriamo inizialmente |21 + 22| < |21] + |22|. Questa ¢ equivalente a
|21 + 2o < |21 f* + 2|z | | 2] + |22 -
Essendo
(21 + 22) (21 + 22)" = (21 + 22) (21 + Z2)

= |z1|* + 2122 + Z1 22 + |22

= |Z1|2 + 2Re(21 22) =+ |22‘2
la disuguaglianza segue poiché

Re(zl 22) § |Zl §2| = |Zl| |22‘ .
L’uguaglianza vale se e solo se
Re(zl 22) = |21 Egl

ovvero zi Ze € un numero reale non negativo. Questo vale banalmente se z; = 0 o

29 = 0. Nel caso 21 # 0 e 29 # 0, posto r = z1 Z3 > 0, risulta

21 = L 22,
|22]?

ovvero esiste A > 0 tale che z; = A z9. Geometricamente, z; e zo sono su una stessa
semiretta uscente dall’origine.
La seconda parte della disuguaglianza ||z1] — |22|| < |21 + 22/, che ¢ equivalente a
2 2
(lz1] = |22])* < |21 + 227,
si ottiene analogamente. Similmente a prima si perviene a
—|Zl| |22| S Re(zl 22) .
L’uguaglianza vale se e solo se uno dei due numeri (almeno) ¢é nullo, o esiste A > 0
tale che
1 = —A zZ9 .
Osserviamo pure che la seconda parte della disuguaglianza segue dalla prima:
|z1] = (21 + 22) — 22| < |21 + 22| + |22]
e quindi
|21 = [z2] < |21 + 22].
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Concludiamo scambiando il ruolo dei due numeri.
Ex. 10 Non é restrittivo supporre che il vertice opposto al lato di lunghezza a sia
l'origine, un altro sia ("immagine di) b e il terzo sia ('immagine di) ¢ e/“. Dunque
a? =|cel® —b?=(cel® —b)cei®* —b=(ce’™ —b)(ce7* —b)
=2+ 0% — be (el + e I9)
e quindi la tesi.
Ex. 11 Risulta

lz+wf=C+w) (z+w) =z+w)E+0) =|2>+20+Zw+ |w?,

*

z—wP=C-w)(z-—w=(z-w)Z-0) =220 —Zw+ |w|?
e quindi basta sommare membro a membro. Geometricamente l'identita esprime il
fatto che in un parallelogramma la somma dei quadrati delle lunghezze delle diagonali

é uguale alla somma dei quadrati delle lunghezze dei lati.

A |’LU‘ /”/,f,iz—'_w
/’/’ s 4
v il
|z\*\zy| It /2|
2 Sedola Polits
/// \\\\ /
e w
///
|wl

Ex. 13 Il problema ¢é nel doppio significato del simbolo \/: per scrivere le uguaglianze

1 =+/1=+/(—1)? intendiamo la radice aritmetica, mentre per scrivere v/—1 necessa-
riamente dobbiamo intendere la radice in C, che ammette due determinazioni. Non é
chiaro allora cosa significhi il prodotto /—1+/—1. Volendo interpretarlo come ’insie-
me dei valori che si ottengono moltiplicando una determinazione di ciascuna radice,

otteniamo i due valori +1.
Ex. 14 E chiaro che w" = z = (w™)" = 2™. Posto, come al solito, wj, = wo oI 5

k=0,...,n—1, le potenze di due radici distinte coincidono se e solo se esistono h e
k verificanti 0 < k < h <n — 1 e tali che n divida (h — k)m. Essendo 0 < h — k < n,
questo accade se e solo se n e m hanno un divisore comune diverso da 1.

Ex. 16 L’'uguaglianza risulta falsa per z =1e w =1+ j:
1 1—j 1§\ 1 Rel
R =Re———=Re(-—-2|=2; —/——==1.
Rixhip Cacciog e<2 2> 27 Re(l+7)
Sia z/w € R. 1l caso z = 0 & chiaro; sia z # 0. Dunque esiste r € R — {0} tale che
z/w = r, ovvero z = rw. Ne segue Rez = rRew e quindi 'uguaglianza vale. La

condizione z/w € R non & necessaria, poiché I'uguaglianza vale ad esempio per z = j
ew=1.




CAPITOLO IX

Svolgimenti Funzioni Olomorfe

Ex. 17c Log(—1) =log, | — 1|+ jArg(-1) =04+ 7j =7 j.
Ex. 17d Log(—1+ j) =log, V2 + 3 7 j.

Ex. 17e log(exp(z)) = {z + 2knj : k € Z}.

E

%

. 17f Log(exp(z)) ¢ 'unico tra i valori trovati nell’esercizio 17e a verificare
—m <Imz+2kn <m.

La scelta di k dipende da z.

Ex. 19 Posto z = z + jy in forma algebrica, risulta

exp(Z) = exp(x — jy) = e”[cos(—y) + jsin(—y)]

= e%(cosy — jsiny) = exp(2);

cos(z) — U Fexp(—j7) _ exp(T7E) + exp(j?)
2 2

_ ow(j2) + on()
2

=Co0sz;

sin(z) = exp(jZz) — exp(—jZ) _ exp(—jz) — exp(jz)
2j 2j

— exp(—jz) — exp(jz) _1 eXp(jz) — exp(=32) =sinz
2j 2j '

Ex. 21 L’uguaglianza log z = log z vale perché l’esponenziale ¢ hermitiana, quindi
exp(log z) = z. Riguardo all’uguaglianza Log z = Log z, per quanto appena detto,

Logz =log, |z| — j Arg z

¢ una determinazione di log Z, ma non risulta sempre quella principale. L’uguaglianza
fallisce quando z é reale negativo, poiché in tal caso

Logz = Logz =log, |2| + jm, Logz=log, |z| —jr.

In particolare, Log z non é la determinazione principale del logaritmo di alcun numero
complesso. In ogni altro caso 'uguaglianza vale, poiché¢ —m < Im(Log z) < 7.

Ex. 22b Poiché |e*| = ef¢?, equazione diviene ef¢? = el*l; essendo questi esponen-

ziali nel campo reale, 'uguaglianza equivale all’'uguaglianza tra gli esponenti Re z = |z|,
cioé z é reale non negativo.

24
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Ex. 22c Ricordando la definizione di sin z, riscriviamo I’equazione e/? — e77% = —2,
ovvero moltiplicando per e/?, e?/% 42¢e* — 1 = 0, che & un’equazione di secondo grado
in w = e/*. Le soluzioni sono w = —1 F v/2. In corrispondenza di queste, troviamo
z = —jlog(—1 F v/2), quindi le due famiglie di soluzioni

z= —j(log*(\@—k 1) + j(m + 2km)) =7+ 2kt — jlog, (V24 1),
z=2kr —jlog,(vV2-1); keZ.

Ex. 22d In base alla definizione di cosz, l’equazione si riscrive e/ + e™9% = 10,
ovvero, ponendo w = e7%,

w?—10w+1=0.

Ricaviamo w = 5+2v/6. Osserviamo che le due soluzioni sono reali positive. Ne segue
1 1
z = ~log(5+ 2V6), z = ~log(5 — 2V6).
J J

Pertanto
z=2kn —jlog,(54+2V6), keZ,

z=2hm — jlog,(5-2V6), heZ.

Notiamo che I’insieme delle soluzioni é simmetrico rispetto all’asse reale, come si vede
scegliendo h = k poiché log, (5 + 2v/6) = —log, (5 — 2v/6), in accordo col fatto che
il coseno é hermitiana, ed é simmetrico rispetto all’origine, come si vede scegliendo
h = —k, in accordo col fatto che il coseno & pari.

Ex. 23 In base alla definizione di esponenziale, risulta

exp(m + 155) = €™ (cos 15 + jsin15),

cioe
Relexp(m + 155)] = €™ cos 15; Im[exp(m + 155)] = e sin15.
Inoltre
|exp(m + 155)| = exp[Re(m + 15j)] = €”
e

arglexp(m + 157)] = Im(w + 155) + 2k = 154+ 2kw, k€ Z.
Per trovare Arglexp(m + 155)] dobbiamo determinare k € Z tale che
—m <154+ 2kn <.

E chiaro che 15 ¢ minore di 57, ma prossimo a tale valore. In effetti risulta

15>57r—g — 30> 91 < 10> 37

e l'ultima disuguaglianza é vera, poiché m < 3,2. Dobbiamo quindi scegliere k£ = —2:
T =>5m—4mw > 15—47r>57r—g—47rzg.

E chiaro a questo punto anche che I'immagine di exp(m + 155) cade nel II quadrante.
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A

exp(m + 157)

15 —4rw

Ex. 24 Dobbiamo descrivere 'immagine di z € R — w = exp(x + jmz). Conside-
riamo prima il caso m # 0. Usando le coordinate polari p, 9, nel piano w, I'imma-
gine si rappresenta mediante I’equazione p = exp(¥/m), ¥ € R, quindi é una spirale
logaritmica.

N

I

@
0

Imz=mRez /Em :

Per m = 0, abbiamo 'immagine di € R — w = exp(z), che & il semiasse reale
positivo.
Ex. 25 L'uguaglianza exp(jz) = cosz + jsinz, Vz € C, ¢ valida: per z=z € R ¢ la
formula di Eulero; per z € C generico
e - e

= el%.

priverstid degtss
Notiamo che é possibile anche dedurre il caso generale dalla formula di Eulero mediante
il principio di permanenza delle proprieta analitiche.

L’affermazione

cosz + jsinz =

|exp(jz)| =1
per z complesso generico € palesemente falsa, poiché pure jz é generico e ’'esponenziale
non ¢ limitato. (Non ¢ limitato gia in R.) L’errore & nel modo di calcolarne il modulo:
pur essendo come visto exp(jz) = cosz + jsin z, il secondo membro costituisce la
forma algebrica del primo se e solo se cos z e sin z sono entrambi reali e questo, per
I’esercizio 26, accade se e solo se z € reale. In questo caso, I’affermazione & corretta.

Ex. 26 Ovviamente, se z ¢ reale, tali sono pure cosz e sinz. Mostriamo che non ci
sono altre possibilita. Se cos z e sin z sono entrambi reali, dovendo valere la relazione
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fondamentale cos? z + sin® z = 1, risulta in particolare
—1<cosz<1

e, come & noto, questo implica z reale.

Ex. 27 Mediante gli sviluppi di Mac Laurin, troviamo

23 22
sinz=z—g—|—o(23), coszzl—?—i—o(z)).
Quindi il limite cercato coincide con
3 2 [
z—%  34+5(1-% 8— 822 -8+ 322
lim (8 6 — U=%)_ lim —9¢ 2
z—0 23 22 z—0 22
_ 8. 5.7
6 2 6

Ex. 28a Non ¢ necessario usare la definizione e valutare le derivate successive. Lo
sviluppo cercato sara costituito da una serie di potenze in z, convergente in un intorno
di 0. Per ottenere uno sviluppo di questo tipo, che risultera necessariamente quello di
Mac Laurin per il principio di identita delle serie di potenze, basta ricordare la serie
geometrica: per |z| < 1, abbiamo

1-2z 1-z 1fz_n:02 n:Oz B nzlz .

Ex. 28c Lo scopo é rappresentare e come somma di una serie di potenze in z—1; ricor-
dando lo sviluppo di Mac Laurin dell’esponenziale, scriviamo e* = e ¥~ = e Zgo (z—
1) /n!. Ovviamente lo sviluppo si puo scrivere direttamente, poiché [D™e*],—1 = e.

Ex. 28d Lo sviluppo si ottiene direttamente. D’altra parte, possiamo anche usare
I’esercizio 28c nel modo seguente

Zezezﬂzl)eze[ZWHzl)ZW]
n=0 : n=0 :

1ang 1+Z(1, n_l))(zl)"‘|

i e
1
= e 1+E n;r' (z—l)”]
L n=1 5

Ex. 29c¢ Per la funzione
1

g(Z)=722_32+2,

olomorfa in C — {1, 2}, ci sono tre corone circolari di centro zg = 0:

A={z : |2 <1}, B={z:1<|z|<2}, C={z: |2|>2}.
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Essendo 22 —32+2=(2—-1)(z—2) e
1 1
9(2) = 22-3z2+2 1-2z 2-2’
gli sviluppi si ottengono facilmente da quelli noti della funzione f(z) = 1/(1 — 2),

ottenuti mediante la serie gemetrica. In effetti, il primo addendo & esattamente f(z),
mentre per il secondo abbiamo

n

132, X
32 5n = D guris ber 2l <2
n=0 n=0

li “Rel 1 io
2—2 21-2/2 U s
1 25 20
~3 D == D i berle>2
Pertanto
400 1
Z<12n+1)z", per |z] <1
n=0
-1 +o00o P
g(z) =< — Z Zn_ZW’ per 1 < |z] <2
n=—oo n=0
-1 -2
1 n 1 n

n=-—oo

Ex. 30b Gli zeri del numeratore sono z = 0, di ordine 2, e z = k7 con k € Z — {0},
semplici. Gli zeri del denominatore sono z = 2 k7w, doppi. Pertanto z = 0 ¢é singolarita
eliminabile, con f(0) = 2, i punti z = (2k + 1) ® sono zeri semplici, mentre i punti
z=2km con k # 0 sono poli semplici.

Ex. 30f Numeratore e denominatore sono funzioni intere (non identicamente nulle),
quindi le singolarita del rapporto sono tra gli zeri del denominatore. Poiché eim’ 1=
0 equivale a 22 = 2k, con k € Z, troviamo 0 e i punti del tipo Fv2ki e Tv/2k, con
k € N. Il punto 0 ¢é zero di ordine 2 del denominatore e zero semplice del numeratore,
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quindi polo di ordine 1 del rapporto. Gli altri punti sono zeri semplici del denominatore
e non annullano il numeratore, quindi sono anch’essi poli di ordine 1.

Ex. 31h La funzione f(z) = z?(z — 1) sin -1+ ha in 2o = 1 una singolarita essenziale,
poiché tale é zg per sin Zil . Inoltre 2 ¢ I'unica singolarita al finito. Una possibilita per
calcolare il residuo ¢ quella di scrivere lo sviluppo di Laurent, essendo R[1] = c_4][1].

Ricordando lo sviluppo di Mac Laurin del seno, abbiamo subito

. 1 = (_1)n —2n
(z—l)smz_l:;m(z—l) g

Poiché inoltre 2% = [(z — 1) + 1] = (2 — 1) + 2(2 — 1) + 1, moltiplicando abbiamo

RS PSP e S G0 ) L
f(z) ;)(Qnﬂ)!(z ) + 2(2n+1)!(z )

+o00 _1)n Mo
+n§::0 (2(n—|—)1)!(2_ Hooli

Ciascuno degli sviluppi a secondo membro converge Vz € C\ {1}; é chiaro che il primo
e il terzo non contribuiscono al residuo, poiché contengono solo potenze con esponente
pari. Pertanto, considerando il termine in (2—1)~! nel secondo sviluppo (che si ottiene
per n = 1), concludiamo R[1] = —1/3.

Un’altra possibilita per il calcolo del residuo & quella di osservare che R[1]+ R[oo] =
0 per il teorema dei residui, quindi R[1] = —R[oo]. Per calcolare R[oo] non possiamo
procedere direttamente mediante il lemma V.1.3 delle Lezioni, poiché
1

. [ 9 sin ——
lim f(z) = lim 2 T = 00.
Z—00 Z—r00 P
Osserviamo invece che la funzione intera
2uigi, 2
= = —1
o) = 2% = 2z - 1)
ha evidentemente residuo nullo all’co. Pertanto, R[oo; f] = R[oo; f —g]. Poiché inoltre
1 1 1 22(z—1) 1
3 1o 1 2 ¢ e . 1S
B 1) o0 = i 221 fon - ] = T =

abbiamo

Rloo; f] = Rloos f —g] = lim 2 |~

Z— 00

5 1 2

_Zlirgoz{—6+z (z—1) .
1 2%2(z—-1)
6 6(z—1)

e ritroviamo il risultato precedente.

= lim z

Ex. 32 Supponiamo per esempio f funzione dispari e n € Z pari. In base alla
definizione, risulta
1
oy

= T dz,
2ri Jp 2"t

n
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essendo I" una circonferenza di centro 0 contenuta (internamente) nella corona circo-
lare, percorsa in verso antiorario. Calcoliamo l'integrale usando due rappresentazioni
parametriche di I'. Poniamo inizialmente 2(t) = p €', con t € [0,27], essendo p il
raggio di I'. Notiamo che il verso di percorrenza indotto su I' dalla rappresentazione

é quello antiorario, quindi
1 27 elt )
Cp = / f(p ) pieltdt.
211 0 (p ezt)n+1
Usiamo ora invece la rappresentazione z(t) = —p e', con t € [0,27]; anche in questo

caso il verso di percorrenza indotto su I' &€ quello antiorario. Usando la simmetria di
f ed osservando che n + 1 & dispari, troviamo

1 2m _ ei t ) 1 2m ei t )
Cn = — f(pi,)l(—pie”)dtz——,/ f(p,i)lpie”dt.
2w Jy (et 27 Jy pe
Confrontando con 'espressione trovata precedentemente, vediamo che ¢, = —c¢,,, cioé

¢, = 0, come volevamo.
Alternativamente, possiamo ragionare come segue. Ovviamente

—+o00 —+o0
fl=2)= Y en(=2)"= > (~1)"enz"
n=—o0 n=-—00
e quindi, se f & dispari, f(z) = =37 _(=1)"¢, 2" Ricordando l'unicita dello
sviluppo di Laurent, troviamo nuovamente ¢, = —c¢,, per n € Z pari.

Sia r < |z — 29| < R la corona di centro zg in questione C; osservato che |z + zg| =
| — z — 2p|, vediamo che z appartiene alla corona simmetrica se e solo se —z € C.
Pertanto, se f é pari

400 “+o00 +oo
S diGr) =) = )= Y (i) = Y e (<) (2 4 z)”

e quindi la tesi, uguagliando in base al principio di identita ordinatamente i coefficienti
nei due sviluppi. Se f é dispari il ragionamento ¢ analogo. La parte finale si ha
ricordando che R[zg] = c_1 € R[—=z0] = d_;.

Ex. 33 Basta mostrare che, se f(z) = j;:’_oo ¢n (2 — 20)™ @ lo sviluppo in serie
di Laurent di f nella corona di centro z, nella corona di centro Zg vale lo sviluppo
flz) = ::’_OO Cn (2 — Zo)™. A tal fine osserviamo che per z nella seconda corona, z
appartiene alla prima corona e risulta
+oo +oo
FR=F@)= ) alE-2)"= ) &Gl-7)".
n=—oo n=—oo

L’osservazione sui residui ¢ immediata, ricordando che R[zp] ¢ il coefficiente di (z —
20) ! nel primo sviluppo e analogamente per R[Z].

Ex. 34 Le singolarita sono gli zeri del denominatore, cioé le quattro determinazioni
di v/625, vale a dire F5 e F55. Sono tutti poli semplici, in quanto zeri semplici del
denominatore, che non annullano il numeratore, ed il calcolo dei residui ¢ immediato:
detto z; uno qualsiasi dei punti,
2k 1

1
2k — . R[F5 = —, R[F5j] =
123 T 12 [F5] , R[F5j]

R =
(2] 100

100
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Osserviamo che, essendo la funzione dispari, il residuo ¢ “pari” (cfr. Ex. 32):
R[-5] =R[5],  R[-5j] = R[5j].

Inoltre, essendo la funzione hermitiana in quanto funzione razionale a coefficienti reali,
i residui in punti coniugati sono coniugati (cfr. Ex. 33):

R[-5;j] = RI[5]]
e dunque, per quanto gia visto, R[—5j] e R[5j] sono reali e coincidenti. Infine, ri-
cordando che la somma ¢ nulla per il IT teorema dei residui (R[co] = 0 banalmente),
vediamo che, conoscendo ad esempio R[5], & possibile calcolare gli altri residui; in
particolare

Rlsj] = RI-5]] = — 5 (R[5] + RI-5]) = ~R[s].

Ex. 36 Vediamo il primo punto. Osserviamo che z — Z non é olomorfa, quindi non
possiamo provare ’olomorfia di g vedendola come funzione composta. Consideriamo
f = f(z,y) come funzione di due variabili reali, cioé identifichiamo z = = + jy con
la coppia ordinata (z,y), quindi Z = x — jy con la coppia (z,—y). Chiaramente
(z,y) € V" < (x,—y) € Q. Scritta f = u+ jov in forma algebrica, abbiamo

9(z,y) = u(z, —y) — jo(z, —y).
Osserviamo che f € C*(Q), quindi lo stesso vale per u e v; inoltre vale la condizione
di Cauchy-Riemann, espressa dalla coppia di uguaglianze

@) {1z

Uy = —Up

Per quanto detto, risulta g € C*°(Q*) e dunque resta da verificare la condizione di
Cauchy-Riemann per g:

92(2,y) = uz(z, —y) — jvz(z, —y)

%gy@vy) = % [_“y(xv —y) + jvy(, —y)] = vy (2, —y) + J uy(z, )]

Chiaramente, la prima delle (2) scritta nel punto (z,—y) € Q fornisce 'uguaglianza
tra le parti reali, mentre la seconda fornisce I'uguaglianza tra i coefficienti dell’imma-
ginario.

Vediamo il secondo punto. Osserviamo preliminarmente che £ = Q NR # {:
A={2€Q:Imz>0}e B={z€Q:Imz < 0} sono due sottoinsiemi aperti, non
vuoti e disgiunti di Q, quindi £ = Q\ (AU B) # (), per 'ipotesi di connessione. Per il
primo punto, la funzione

hz) = f(z)— f(z), 2€Q=0",

é olomorfa; se f assume valori reali in F, h & nulla in F; essendo {2 aperto, ogni punto
di F ¢ di accumulazione. Pertanto per il II principio di identitd A ¢ identicamente
nulla, cioé f(z) = f(2), Vz € Q.

Nel caso 2 = C, f risulta somma del suo sviluppo di Mac-Laurin; se f € reale nei
punti dell’asse reale, i coeflicienti sono reali:

+oo
f(z):Zanz",Vze(C; dove a,, € R, Vn € Ny.
n=0
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La conclusione che f é hermitiana € a questo punto immediata

+oo +o0o +o0
f(z) = Zanin = ZW?” = Zanz” = f(z), VzeC.
n=0 n=0 n=0

L’esercizio 19 segue immediatamente.

Ex. 37 Basta osservare che f(w) = —Log(1 — w) ¢ olomorfa per |w| < 1e
1 +oo
! A _ n
f(w)—il_w —niow .

Ex. 41 Suggerimento: scritta f(z,y) = &(z,y)+jn(z,y) in forma algebrica, la funzione
composta & v(z,y) = uw((z,y),n(x,y)); calcolare Av = v, + vy, usando la regola di
derivazione delle funzioni composte, ricordando che & e n verificano le relazioni di
Cauchy-Riemann e sono funzioni armoniche.

Ex. 42 I tre punti sono singolarita eliminabili perché ciascuno di essi é zero semplice
del numeratore e del denominatore. Indichiamo ancora con f il prolungamento e
calcoliamo f/(1). Evidentemente f/(1) = lim,_,; f/(z), ma il calcolo diretto risulta
laborioso. E anche chiaro che, se g & una funzione che differisce da f per un infinitesimo
di ordine maggiore di 1 per z — 1, gli sviluppi di Taylor intorno a 1 di f e g possono
differire per i termini di grado 2 in poi, quindi nel calcolo f puo essere sostituita con
g. Ricordando che w —sinw = O(w?) per w — 0 e che sin 7z = sin 7(1 — z), possiamo
sostituire f con
g(z):ﬂ-(l z2): T__.T
z(1-2%2) z2z(142) 2z+22
Il calcolo é a questo punto immediato
=——7.

f)=¢1)=—n (z+22)2|,_, 4

Essendo f pari e quindi f’ dispari, risulta f'(—=1) = —f’(1) = 3w/4. In 0 il calcolo &
immediato: essendo f’ dispari, risulta f'(0) = 0.

1422 3

Ex. 43 Siano f e g olomorfe nell’aperto Q connesso, con f/ = ¢’. Scelto z9 € Q, la
funzione h = f — g — [f(20) — g(20)] ha in zg uno zero di ordine infinito.

Ex. 44 Poiché f’ ¢ evidentemente dotata di primitive, il suo integrale esteso ad una
qualsiasi curva chiusa é nullo, quindi 'annullarsi di Ry/[2g] segue subito dalla defini-
zione di residuo. E chiaro che il ragionamento precedente mostra che, se f & dotata
di primitive, ha residuo nullo. Mostriamo ora il viceversa, supponendo f con residuo
nullo Ry[zg] = 0. Dunque, nello sviluppo di Laurent manca il termine in 1/(z — zo):

f(z) = Z en (z—20)".
n#—1
Ogni termine in questa serie é dotato di primitiva nell’intorno bucato e, potendosi la
serie integrare termine a termine, questo vale anche per f.
Riguardo ai residui, in entrambi i casi 0 & polo di ordine 3 ed il calcolo diretto &
laborioso. Per quanto precede, il primo residuo € nullo, poiché la funzione é dotata di

primitiva intorno a 0:
sin z d 1

(1 — cos z)? T dzcosz—1°
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Il secondo residuo si riconduce facilmente al primo. Invero, poiché sinz — (2 — 23/6)
¢ infinitesima in 0 di ordine 5, la differenza tra le due funzioni

sin z z—23/6
(1 —cosz)?’ (1 — cos z)?
ha in 0 una singolarita eliminabile, quindi esse hanno lo stesso residuo. Ne segue
z 22/6
(1-— cosz)Q] it {O’ (1- cész)2]
e quest’ultimo é relativo ad un polo semplice, quindi infine

z 23/6 1 B2 Matgmaty
TR O (CHC Ol ]. e LT VoA T 1 _— = — = —,
R{O’ (l—cosz)Z] zl—]i][(l)z(l—cosz)2 6 (zl—%l—cosz>

R{O,



CAPITOLO X

Svolgimenti Polinomi e funzioni razionali

Ex. 45j Osserviamo che 0 é polo semplice e Fj sono poli doppi. Possiamo ottenere
la, decomposizione in R scrivendo il numeratore come segue 1 = 1 4 5% — 52
1 1+ 52 — 52 1 S

s(s24+1)2 s(s24+1)2  s(s24+1) (s2+1)2

e ripetendo poi 'osservazione per il primo addendo nell’ultimo membro.
Alternativamente, scriviamo

1 1
s(s2+1)2 ¥ 52 (s2+1)2

Posto t = s2, I'ultimo fattore diviene m che si decompone facilmente:

1 R[0]  R[-1] co[-1] 1 1 1
P ) LR A Ty s RS By ey b

Tornando alla variabile s abbiamo

3) 1 1 1 1

——— =5 = - — :

5(s%+1)2 2 5241 (s2+1)2
Come ulteriore possibilita, osserviamo che la decomposizione nel campo reale &

1 7A+Bs+C’+Ds+E

s(s2+1)2 s s2+1 @ (s2+1)2
con i coefficienti reali. Come & noto A = RJ[0], quindi A = 1. Essendo la funzione
dispari, deve essere C = F = 0. (Mutando s in —s e sommando membro a membro,
otteniamo 0 = C/(s? + 1) + E/(s®> + 1)?, che ¢ assurda se i coefficienti non sono
entrambi nulli.) Moltiplicando in (4) ambo i membri per (s? + 1)? e ponendo s = j,
otteniamo Dj = 1/j = —j, quindi D = —1. Moltiplicando per s ambo i membri e
passando al limite per s — oo, abbiamo A + B = 0, quindi B = —1.

Ancora, osserviamo che sottraendo dalla funzione razionale la sua caratteristica
in 0, R[0]/s, otteniamo una funzione non piu singolare nel punto:

1 1_1—(324—1)2_(1—52—1)(1—|—52+1)
s(s2+1)2 s s(s2+1)2 s(s2+1)2

(4)

e ritroviamo subito (3).
Nel campo complesso, la decomposizione &

1 _ R0, R, cal] , Rl , coal-d]
SGEHIZ s Ts—j  (s-jf s+j (iR

34
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Essendo la funzione a coefficienti reali, quindi hermitiana, ¢ (cfr. Ex. 33)

R[—j] = R[j], c_o[—j] = c_alj].
Inoltre (cfr. Ex. 32), essendo la funzione dispari, il residuo & pari, mentre il coefficiente
c_o é dispari:

R[—jl=R[j],  ca[-j] = —ca[j].
Pertanto, R[—j] = R[j] é reale e c_2[—j] = —c_2[j] & immaginario. La prima di queste
osservazioni, essendo R[oo] = 0, per il IT teorema dei residui implica R[0] + 2 R[j] = 0,
quindi R[j] = R[—j] = —1/2. Risulta inoltre

= ——
C2)| = —F7 2 = "5 — 7
s(s+7)? =y 7202 4
A scopo illustrativo, calcoliamo il residuo mediante la formula:
_d 1 (s+7)%+s2(s+7) _ S+ j+32s
ds s(s+75)%|,—; s2(s +J)* s2(s +7)° lo=;
4j 4 1

bartimgj

Rl[j] F0Z

s=j

legli J3(2)3%di Nagpli “Fad
Ex. 45k Analogo all’Ex. 45j. Invece di ripeterne i calcoli, ci riduciamo ad esso:
1 1 1

w w

Ex. 451 Osserviamo che 7 ¢ polo semplice e F55 sono poli doppi. Scriviamo la
decomposizione in R:

5) 1 a A Ji Bs+C Ds+ FE .
(s=T7)(s2+25)2 s—7 2425 (s2+25)2
Inoltre . .
A=R[7 = E+me| =g
D’altra parte
1 foli” I 1 742 — (s +25)2

(s—7)(s2+252 742s—7 742 (s—7)(s% +25)2
1 (74— % —25) (T4 + s? + 25)
TT42 (s —7) (5% +25)2
1 (49— $?) (T4 + 5% 4 25)
T 742 (s—7)(s2 +25)2

S+TT4+s*+25

T 742 (2 4 25)2

1 s+7 1 s+ 7

742 2425 74 (s2+25)2

Pertanto (5) diviene
1 degli Stidi di Wapeli-Wederleo T8+AR
(s—T7)(s2+25)2 742 s—T7 742 52425 T4 (s2+425)2°
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Calcoliamo i coefficienti di (5) in altro modo. Moltiplicando ambo i membri per
(5% 4+ 25)? e ponendo s = 55, otteniamo
1 —5i—T
5i—7 74
e quindi D = —1/74 e E = —7/74. Moltiplicando per s e passando al limite per
5 — 00, troviamo A + B = 0, quindi B = —1/74%. Ponendo s = 0
1 Aplic@ E

5Dj+ E =

o 7t T o

ovvero
C:§A_£_L:§L+il_ 1 :252+49-74—742
7 25 7-25 7 742 2574 7-25 725742
2524+ (49-74)-74  25-74 7
- 7-25- 742 T 7742 T 142
Alternativamente,

1 1

GG_7)(s2125)  (s2 1 25)2

(-7 (s2+252 74 (s—7)(s2+25)2 74

e analogamente

21954+49— 2 1{ 1 s+ 7 ]

1 1 s2+25449—s2 1] 1 s+7
(s—7)(s2+25) 74 (s—7)(s2+25) 74 [5—7 s2+25}
Pitt complicata ¢é la decomposizione nel campo complesso
1 _ R[], RPjl | coal5j] | RI=5j]  c-a[-5]
(s—T)(s2+25)2 s—T7 s—55 (s=5j)2 s+55 (s+55)2"
Osserviamo che, essendo la funzione a coefficienti reali, quindi hermitiana, risulta
(cfr. Ex. 33)

R[-5j] = R[5j],  c—2[=5j] = c2[54].
La prima uguaglianza, poiché evidentemente R[oo] = 0, implica R[7]+2Re R[5j] = 0,
da cui Re R[5j] = Re R[—55] = —1/(2-74%), ma non consente di calcolare il coefficiente
dell'immaginario. Risulta
e al5i] = 1 B 1 1 745
2T T (s 1 5))2 es; (57 —T7)(107)2  100(7—55)  100-74"
Inoltre
Risj) = d 1 (s+55)% + (s = 7)2(s + 55)
P& 1) s+ 502 s, (s—7)% (s + 5j)* s
_(s+55)+2(s—-7) _10j+10j — 14
(s =72 (s+50)° |,os; (57 =7 (105)°
205 — 14 7— 105

(=25 — 705 + 49) (—10005) (35 +127) - 1000
(7—107) (35— 125) 245 —120 — 845 — 3505  —125 + 434;
(352 +122)-1000 1369 - 1000 1369 - 1000
1 qrpimer 1 27E Al
T1369.8 ' 1369-500° 2742 T 125-7427"




CAPITOLO XI

Svolgimenti Z-Trasformazione

Ex. 48a Osserviamo che

n?+3n n?+3n+2 2 (n+1)(n+2) 2 1 2

n+2! (m+2!  (+2!  (n+2)! (n+2)

nl (n+2)!°

! =
Pertanto, in base alla definizione,

P [ TS e AT TS
“|(n+2) z* (n+2)!

n=0
= e'/7(1 — 22%) + 222 + 2z.

Ex. 49a Calcoliamo la Z 1. Osserviamo che risulta

(z—1)2%(z+1) 22 —22—2+1 2+2-9
= e
23 -8 23 —8 23 -8
i 52 + 16
N 4\z2—-2 2242244/

Inoltre

zZl(1) =9, Zul[ ! }zul {1 z ]2"1u(n1),

zz—2

[ z+16/5 L1 a4 141175
u 2 L o. 1A :Zu s T ol
z  2242z44

2 11 2
=2""1 cos(n — 1)=7 + ——sin(n — 1 W]unl .
Jcos(n = )37+ < sin(i — )3 (o - 1)

In definitiva

aﬁ[“‘ﬁ%@*”}
2

1 5 11 2
=§4+201 |- — = —1)-7m— i —1)-7 —-1).
] {4 1 cos(n )3 3 sin(n )3 } u(n—1)

37
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Presentiamo ora un approccio diverso. E facile ricondursi alla formula per la =z, di
successioni periodiche:

93 _ 2
(z—12(z+1) 22—22—z24+41 g% % 7% 1

23 —8 23 —8 23 -8 8
( z ) 31 (z ) 2 1z
2 2 \2 42 1
3 .
g7 :
2
Ricordando la formula di riscalamento, vediamo in questo modo che I'antitrasformata
cercata €
1 9 1 1
—=04+2" <=, —=, —= ...
8 + {8 27 47 }

dove ’espressione in parentesi graffe indica la successione periodica di periodo 3 i cui
primi tre termini sono quelli specificati.

Ex. 49c¢ Confrontare con I’Ex. 49b;

x| ©

1 “Re2atl zsin%w Zrd
2+z4+1 3z22-2zcosZn+l

u(n — 1) sin(n — l)gw.

Sl

E possibile anche scrivere
1 _z—1
224241 23-1
ed usare la formula per la trasformata delle successioni periodiche.

Ex. 49g Risulta

22 _22—2z+2+2z—2_ 1 N 2z -2
(22 —2242)2 (22—-22+2)2  22—-22+2 (22 —2z+42)2
1 d 1

22-2242 dz 22—-2242°
Poiché inoltre
z ™
Z—l —_ 2n/2 . s
u [22—22—4—2} Pafige
usando successivamente la formula della traslazione e la formula fondamentale, abbia-
mo

1 1 z
2l =zl |22 | =20 D2y 1) sin(n—1
u [222z+2} 3 L 222z+2} ARG e

R

d 1 Ippld 1
-l I S [ C0 ) B S
L [ dz z2—2z+2} " [ PR z2—2z+2}

= (n—1)22/2y(n — 2) sin(n — 2) % .
Osservando che
21/2 sin(n — 1) % = sinng - cosn% ‘ sin(n — 2) % = fcosn% ,
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possiamo scrivere in definitiva

-1 22 (n—1)/2 : m
Zu m = 2 u(n wal 1) Sln(n e 1) Z
+(n—1)2=2/2 y(n — 2) sin(n — 2) %
=2(=2/2y(n - 2) {Sinng —2cosn Z} .
Ex. 49h Una volta scritto

22 -1 z—1 1 d 1
(22 — 22 4 2)2 =(+1) [(z—1)2+1] _2(Z+1){_dz (z—1)2+1}

i calcoli sono analoghi a quelli dell’esercizio 49g.
Ex. 49i Osserviamo che, usando anche la formula di Hermite
z(z—1) z(z+1) 2z
(22 +22+4)2 B (22422 +4)2 (22 +2z+4)?

z d 1 z 1 d z+1
- —— — — - — - 74——7
2dz 22+422+4 3| (z4+1)2+3 dz (#+1)2+3
=23 zd 2245
T 22422+4 6.dz 22+22+4°
Inoltre
2 2 2+/3/2 2 o2
—_——— = — =— 2, |2"sinn -7
2+2:+4 322-2-2(-1/2)2+22 3 3

Pertanto, usando la formula fondamentale e quella della traslazione

—1 [2(2_1)} = _2 2" sinn 277 + ni 2" sinnzw
Yol(e2 4224 4)2 3V3 3 3V3 3
252 nu(n —1)2" sin(n — 1) gw.
63 3
Ex. 49j Effettuando il prodotto a denominatore,
222 4+ 2 _ 222 4 2

(z2-1)(224+1) 2+-1
e basta ricordare la trasformata di una successione periodica.

Ex. 49k Decomponiamo in fratti semplici:

Lo 11 1,
24+1  3\z/zo—1 z/z1—1 z/zp—1

- w42k

dove 2z, = ¢35, k=0,1,2, sono le ¥/—1. Pertanto

z! [z?’—f—l} :*g(zo 21 +25)u(n—1).
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A scopo illustrativo, proponiamo altre soluzioni per I'inversione della trasformata
unilatera.
A) Essendo

1 p—

i = Z[(=)" tu(n — D)) = 0,1, 1,1, —1,...,

¢
C+1

N =

ponendo ¢ = 22, abbiamo

R T |

1 { 1 } _ (=1)"3=tu(n/3 — 1), per n divisibile per 3
0, altrimenti

=0,0,0,1,0,0,—1,0,0,1,0,0, —1,...

(cfr. Ex 55.)
B) Essendo

1 1 qui ¢

A1 (2P -1 (1| __,

ricordando le formule di riscalamento, traslazione e per la trasformata unilatera di
una successione periodica, troviamo

2 | ] = D a - Dt - 1) = (-1 e = a1,

dove a(n) ¢ la successione periodica di periodo 3 tale che a(0) = a(1) =0 e a(2) = 1.
Alternativamente, possiamo scrivere

z-1 Lgi J _z-! [zz r ﬂ — b(n)u(n) — b(n— 3) u(n —3),

essendo b(n) la successione periodica di periodo 6 con b(3) =1 ¢ b(0) = b(1) = b(2) =
b(4) =b(5) = 0.

Per confrontare con i risultati precedenti, notiamo che (cfr. Ex 14), essendo 3
numero primo, se n non ¢ divisibile per 3 le potenze z{, z{' e 2§ sono a due a due
distinte e quindi hanno somma nulla. Se n ¢ divisibile per 3, risulta

-3 3 di i
R , n/ 151.)ar1

3, n/3 pari
Ex. 50a La Z,-trasformata del primo membro dell’equazione ¢

(2 +2+1)Y =222 +32—22.

Per trasformare il secondo membro, osserviamo che cos* (mr/ 2) vale 1 per n pari e 0
per n dispari, quindi

Zu (cos4 (n7r/2)) = 22/(22 -1).
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Pertanto
222 — 2 i 322
224 z41 0 (22-1)(22424+1)

< 2z —1 3/2 1/2 2z+1 )
=z

22+z+1+z—|—1+z—1_22—|—z—|—1

32/2+ z/2 2z
z4+1 z—1 2242+1

e antitrasformando

3 1 4 2
5 (D" 4+ -+ — sinn%.

2" B

Ex. 50b Trasformando ambo i membri dell’equazione, abbiamo

222(Y — 1)+ 32(Y —1) —2Y = 2/(2(2 — 2)),

y(n) =

ovvero, “mettendo da parte” un fattore z e decomponendo in fratti semplici

2224 32 1 z

2:-1)G+2) T2 @D+ -2

S: 2pase Univergith degli St
T\ —1) "0 +2) " 24(z-2))°
Concludiamo antitrasformando
plemizo 20242025 Luigh Greg 11 9 1
Al (i S TN N Iy b L T (N, ) | O T L
y(n) = 2, (15221+4Oz+2+2422) 521 ok o) gy

Ex. 50c La trasformata del primo membro dell’equazione & Y (22 — 2z + 4) — 2. Per
trasformare il secondo membro, usiamo la formula di riscalamento:

Zu [2"—1 COS”%] (z) = % Zu {2" cosng} () = % Zu |:COS n%} (z/2).
Ricordando che

z—cosm/3 z—1/2
22 —2(cosm/3)z + 1 I

s
A [COS ng] =2
possiamo completare la trasformazione:
T z z—1
gn-1 7} D litebion o
Z“{ coshs 222 -2z+4

Ricaviamo dunque
z z 21— 1t
Y = + = .
22—2z44 2 (22—22+4)
Per completare la risoluzione, bisogna antitrasformare. Il primo termine a secondo
membro é semplice da trattare:

1 z/2 1 T
il (Z):Zu_l - = —=2"sinn-.
2?2 —22+4 2 (z/2)° —z/2+1) V3 3
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Per il secondo termine, usiamo la formula fondamentale e la formula della traslazione:
z z—1 1 d 1
ZbihErtimafia 1 Ml ewm o @Z—d [Anylicazioni “Rana
b <2 (22—2z—|—4)2) 4 ( e 22—22+4>

n 1 z n
=2 U, Z—l 1 m 277,—1 e 1 1 °
Bast (z 22 —22—|—4> 43 sin(n )3

(dove abbiamo trascurato u(n — 1), poiché nu(n — 1) = nu(n) = n, per n > 0).
Pertanto

3

2 r.oom n ™
y(n) = 7 [smng + 3 sin(n — 1)§} !

Ex. 50d Poniamo come al solito Y = Z[y(n)]. La trasformata del primo membro
dell’equazione & Y (22 — 6z + 18) — 22 + 62. La trasformata del secondo membro si
calcola come segue; per la formula di riscalamento, abbiamo

Z4, {(3\/§)H+1 sin (ng)} (2) =3V2 2, {(3\/5)nsin (n%)] (2)

=3v2 z, [Sin (”%)} (3\2/5)

ed essendo, com’é noto,

z
ntl 3v2 9v22
(6) 2y (3\/5) sin(nl)] =3 = c
o an 1) -0 B 00

Dunque
z—06 L 9v2 2
22 —6z2+18 (22— 62+ 18)2°

Dobbiamo ora antitrasformare. Per il primo termine, abbiamo

1 z—6 - n o1 2z —/2
z <Zz2—6z+18) =(3v2)" 2 <222\@H>

(7)  Luigi Greco fpertimgy/s diy)l/5
_(3\/5) z <z22—2z/\/§z+1>

Y ==z

= (3\/5)” (cos n% — sin n%) |

Per antitrasformare il secondo termine, usiamo la formula di Hermite:

1 B 1 i1y 1 L4 =-3
(z2—6z+18)2_[(273)2+9}2_18 22— 6z+18  dz 22—-62+18 )"
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Ricordando (6), troviamo
1 n m
ZWftematfa o ANt 3v2) isinms
(22 —62+18> 3 (3v2)"sinn,

mentre usando la formula fondamentale, la formula della traslazione e ricordando (7)

d z—3 z—3
gebify Edelle Fimte dilBace hingrels(th d&T Stnd
(Z dz z26z+18> " <2262+18)

= —nu(n—1) (3v2)" " cos(n — 1)%

= —NnN-——

(3v)" (
V2

s L 77)
cosn— +sinn—
4 4

In definitiva, troviamo

n ™ . ™ n+1 . ™
y(n) = (3\/5) (cos ny = smnz) + (3\@) sinn -

—9n (3\/5)”71 (Cosn% + sinn%)

= (3v3)" Kg\/i— 1L \%n> sinn% o (1 s \%n) cosn;j :

Ex. 50e Trasformando nell’equazione, abbiamo

(=23 —(-2) 22—z

VE -2 )= S T aa
e quindi
Y z—1 _z 2z—1-1 :_z<d 1 q 1 )
(22—241)2 2 (22—241)2 2\dz 22—2z41 (22—2z+1)
Inoltre,

1 i 1 2 1 d  2-1/2
(22—z+1)2_(2_1/2)2+3/4_3 22—2z41 dz 22—2z+1

yienzezdf BaselUniversda degiifslud
T3\ 22—241 dz 22—2z+1)"

A questo punto possiamo antitrasformare:

e quindi

z wderdlic z sinm/3 —iZ
22—2z+1 /322—2zcosw/3+1 /3

(sinnm/3),

% = % Z (sinnm/3 +u(n — 1) sin(n — 1)7/3)
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ed infine, ricordando la formula fondamentale (per n > 0)

2 . .
y(n) = ﬁ{(n —1) sinnw/3+nu(n —1) sin(n — 1)77/3}

2
=—=q(n-1 sinnﬂ3+nsinn717r3}.
55 (= 1) sinn/ (n D/
Ex. 50f Trasformando ambo i membri e ricavando Y = Z[y(n)], otteniamo
2z 22+1 2z 1
= 2 = 2 .
P R VP I Ly P R P R R PN P

D’altra parte

Zl{ 2z ]:131[ z z :|:2”_(_2)n’

422-1] 2 2—1/2 z+1/2 2
Inoltre
2 122 11 Lde?0l Bl 2241
(42241)(22—-1)  (422+1)(22-1) 2z—-1 422+1
e quindi
1 1 z
z7 2 =- 21
[Z(4z2+1)(221)} 2 {21/2}
1 21 (22)? n 2z
2 (22)24+1 ' (22)2+1
=92 n-l_g-n-l (cos n—; + sin n%) .
Pertanto la soluzione ¢
y(n) =2"""1 (2 — (=" = cosn—27T — sin %) , Vn € Np.

Facciamo qualche ulteriore osservazione. Notiamo innanzitutto che, posto z(n) =
2"y(n), Yn € Zo, abbiamo 4y(n + 2)2"™ = z(n + 2) e quindi, moltiplicando i due
membri dell’equazione per 2", il problema di valori iniziali per y(n) si trasforma in

z(n+1)—x(n) :cosn—; +sin%
1'0:0, T =1

che é analogo, ma leggermente pitu semplice. Trasformando ambo i membri e ricavando
X = zZ[z(n)], otteniamo
¥ z " z+1 z " 224z
= z = .
22 -1 (224+1)(22-1) 22-1 z+-1
Il primo termine nell’ultimo membro ¢é la trasformata della successione

{0,1,0,1,...}

periodica di periodo 2, mentre il secondo termine ¢é la trasformata della successione

{04ROqakto 1acc)
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periodica di periodo 4; pertanto
z(n)={0,1,1,2,...}
con periodo 4 ed infine
yn) =277 {0, 1, 1, 2,...}
Ex. 50k Trasformando ambo i membri dell’equazione, troviamo
3422244
Y(22+22+4)—V3z= %
23

e quindi,

V3z z z7! 2
oz : 2" sinn= 0,0,1,0,0,1,...}.
z2+22+4+2371 smn377—|—{ '
Ex. 501 Notiamo che a(n) é la successione periodica di periodo 2 con ag =2 e a; = 1.
Dunque, trasformando ambo i membri nell’equazione, troviamo

222 4 2 2z +1
R )l P vy P Bl o g sy By

(1L o,3 1 12m41
—f\1zr1 1217 22+1

e quindi antitrasformando

(n) = i et —cosn = — L. sinn ~
AT Ar—— 2 2 2
A scopo illustrativo, risolviamo il problema in altro modo.

Per I'equazione particolare in esame, & possibile scindere il problema del secondo
ordine in due del primo. Osserviamo che scrivendo l’equazione ricorrente per indice
pari n = 2k, ricordando la definizione di a(n) troviamo y(2k + 2) + y(2k) = a(2k) = 2,
quindi la successione definita ponendo w(k) = y(2k), Vk € Ny, risolve il problema del
primo ordine

{ w(k+1)+w(k) =2
wo =Yo =0
Posto dunque W = z,[w(k)], abbiamo

2z 1 1
W = = —
2-1 (z -1 z+ 1)
e infine y(2k) = w(k) = 1 — (—1)*. Analogamente, scrivendo I’equazione per I'indice

dispari n = 2k + 1 troviamo y(2k + 3) + y(2k + 1) = 1 e quindi la successione definita
ponendo v(k) = y(2k + 1), Yk € Ny, risolve il problema

v(k+1)+v(k)=1
{ v(0) =y(1) =0
Chiaramente ¢ v(k) = w(k)/2 e pertanto
y(n)={0,0,2,1, ...} periodica di periodo 4.

E anche facile scrivere la soluzione usando la convoluzione

i) = 27" | | at.
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Essendo 1
Z-Hcienze dif Bagg Ugiversiqp degli gtydi di
u |:22 1:| { ) ) ’ ) ) )Ly }7

dove dopo i primi due 0 la successione si ripete con periodo 4, calcolando il prodotto di
convoluzione troviamo yy = 0, y3 = 0, che sono le condizioni iniziali, e successivamente

yo =0a2+0a; +1ag =2,

y3 =0as +0azs+1a; +0ag =1,
y4:0a4+0a3+1a2+0a1+(—1)a0:2—2:0,

ys =0a5+0as+1az+0axs+ (—1)a; +0ag=1-1=0,

Ex. 51 La successione y(n) & periodica di periodo & € N, se risulta y(n + k) =
y(n), ovvero y(n + k) — y(n) = 0, Vn € Ny. Di qui, l'equazione ricorrente del testo.
Ricordiamo che una successione periodica & Z,-trasformabile per |z| > 1, in quanto
ha immagine finita ed é dunque limitata. Trasformando nell’equazione, per la formula
della traslazione abbiamo

2 Zuly(m)] — (02" +y12" 7 4+ +y(k = 1)2) — Zuly(n)] =0,
da cui ricaviamo subito
Yoy 4y —1)2
2k —1 5

Zuly(n)] =
Equivalentemente, possiamo osservare che

Ay 2D 2 ) futm) —ulk + 0]

Yo +
= 2 [y(n)u(n)] — 2 [y(n + k) ulk + k)]

= (1-1/2%) 2 [y(n) u(n)]

e quindi immediatamente la formula.



CAPITOLO XII

Svolgimenti Integrali con i residui

Ex. 57a L’integrando é funzione razionale, olomorfa in C esclusi i punti 0 e 1, che
sono poli semplici. Entrambi i punti sono interni al cerchio di centro 1 e raggio 2, la
cui frontiera ¢ il cammino di integrazione; per il teorema dei residui, l'integrale vale

dunque 27 i(R[0] + R[1]). Inoltre

2 1 2 1
HOPLicF2024-2025 Lujgi Grogn Dipakimdnto di M
z—1 1, < 2=1
Alternativamente, ricordando che la somma dei residui ¢ nulla, troviamo
2 1
R[0] + R[] = —R[oc] = lim 2 o~ =2,
Z—00 Zal=lZ

In definitiva, l'integrale vale 4 7 i.

Ex. 57b L’integrando ¢ olomorfo in C — {0, 2}; in base alla definizione di residuo,
I'integrale vale 2w R[2]. Per il calcolo del residuo, osserviamo che 2 ¢ un polo doppio,
quindi

z—2 z — 2)2

In definitiva, il valore dell'integrale & e?mi/2.

i
-

47

A
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Ex. 57c L’integrando ¢ olomorfo in C — Ugez{ 5 + kn}. I punti § + kn, k € Z, sono
poli semplici e, Vk € Z, risulta

R{ngkﬂ'; tgz}: SH.lz =-1.
—sinz|_z iy,
Nel cerchio di centro 0 e raggio 3 cadono —7 e 7, quindi l'integrale vale
T T
2j (R [=3] + R[5]) = —ami.
) 9 + B v

4

v

[\SI[9N)

™

=
/

|
(Sl
N
K
B

Ex. 57d Le singolarita dell’integrando sono gli zeri del denominatore 2kw, k € Z;
sono tutti zeri doppi. Di questi, 0 é anche zero semplice del numeratore, quindi é polo
semplice dell’integrando. (Tutti gli altri punti sono poli doppi.) Per definizione di
residuo, l'integrale vale 27j R[0]. Essendo

R[0] = limz#:Z
z2—0 1 —cosz

-
-

Ex. 57e L’integrando ¢ olomorfo in C—{0}. 0 & zero di ordine 2 per il numeratore e di
ordine 3 per il denominatore, quindi € polo semplice dell’integrando. Per definizione
di residuo, I'integrale vale

I'integrale vale 4mj.

b

27§ R[0].

Essendo ) )
R[0] = lim 2 explz) =1 lim exp(z) — 1

=1
z—0 2;3 z—0 z2 ’
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I'integrale vale 27j.

2t
N

Ex. 57f Troviamo subito che, in base al teorema dei residui, il valore dell’integrale é
2mi (R[27] 4+ R[—27]). Inoltre

. 1 2 2 . 1 2
R[27] = lim (2 —2m) ZONE_or lim (z = 2m) sin(z —2m) =47
227 1—cosz z=2n 1 —cos(z—2m) z-—2m
e analogamente R[—27] = —47. Pertanto 'integrale ¢ nullo. Tale risultato segue

immediatamente, in quanto la funzione integranda é pari il cammino di integrazione
& simmetrico rispetto all’origine, quindi i residui si presentano a coppie di numeri
opposti (cfr. esercizio 32).

=
=

Ex. 58 Per le ipotesi fatte su %, abbiamo

P

k

e quindi

. Rlwy]
K = _—.
(sinz) g sinx — wg
Quindi concludiamo usando la formula (VII.2.4) delle Lezioni. Nel caso particolare in
esame, abbiamo
1 _ 5 1/5
12w? —35w+25 w-5/3 w-—>5/4"

quindi

/2” dx 7
= — T
o 12sin’z—35sinz+25 30
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Ex. 59a Gli zeri del denominatore sono 7 e 27, che sono discontinuita eliminabili
dell’integrando. Inoltre I'integrando é O(z~2) per x — 00, quindi I'integrale converge
assolutamente. Per il calcolo mediante la teoria dei residui, scegliamo come funzione
ausiliaria
el?
)= ——"—"-——.
1(z) 22 —3mz+ 2w

Per z = = € R, l'integrando & Im f(x), quindi I'integrale cercato sara

o [ o]

Notiamo che 'integrale di f € inteso nel senso del valor principale poiché 7w e 27 sono
poli semplici reali di f. Come €& noto,

+o00
v.p./ f(z)dxdx = 7j (R[r] + R[27]) .

Essendo
el* e™ -1 1
Rr] = ono Aceadamicn 202
] D(#2-3mz+4+27%)|,_. 2n—-31 -—-7m «
e analogamente
e2mJ 1
2 = = —
B2 dr—-3r 7
troviamo
+oo 9
V.p./ f@)de=mj— =25
Bas s
e quindi

+oo 3
sin x
dr =Im(2j) =2.
/_oo 22— 3nztame ot m(2)

Notiamo che

i) elz _jej(z—%ﬂ)
2 ) = = ,
(z—§7r)2+(2—%)7r2 (Z_%ﬂ.)z_ﬂ%,
quindi
+o0 +o0 —j el
v.p. f(z)dx =v.p. ———dx
72— 2
—00 —o0 1
T sing — jcosx
Sifs o

é chiaramente immaginario.

Ex. 59b L’integrale converge assolutamente, poiché 'integrando ¢ continuo in R (i
punti 0 e —1/2 sono discontinuita eliminabili) ed ¢ O(1/z?), quindi sommabile, intorno
a FFoo.

ej 2wz

Scegliamo la funzione ausiliaria f(z) = Gy in modo che, per z = z € R,
224z

Pintegrando sia il coefliciente dell’immaginario di f(z). Le singolarita di f sono gli zeri
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del denominatore, cioé 0 e —1/2, che risultano poli semplici, entrambi reali. L’integrale
si calcola dunque mediante la formula

/+°° S0 2081 31 Ny <V.p. /*o" () dgs) =Tm (7 j R[0] + 7 j R[~1/2))

oo 222+ o

= mRe (R[0] + R[-1/2]).
(L’integrale di f(x) va inteso nel senso del valor principale, per la presenza dei due
poli reali.) Inoltre

e]27rz e]27‘(z

RI0] =1, R[-1/2) =

220 4z+1

=1

el 22+1 z=—1/2

e 'integrale cercato vale 2.

Ex. 59c Osserviamo che 'integrando ha una discontinuitd eliminabile in —w/4, &
continuo in R — {—7/4} e per # — +oo ¢ O(z™3); pertanto 'integrale converge
assolutamente. Osserviamo pure che sin z+cosz = v/2sin (z+m/4) e quindi I'integrale
cercato I € uguale a

+o0 ei w/4 ei:r
I\@IIﬂ(V.p./OO (4x+7r)(x2+7r2)dm>'
Equivalentemente, troviamo I = Re I; 4+ Im I, dove
+oo eia:
I, =V.p./_oo A+ (@ 1) dx .

Notiamo che 'integrale I; é inteso nel senso del valor principale, poiché per 'integrando
il punto —m/4 ¢ un infinito del primo ordine (non piu discontinuita eliminabile). Per
calcolare I; consideriamo la funzione ausiliaria

flz) =

eiz
4z +7) (22 +m2)
Essa ha poli semplici nei punti —7/4 e +mi, quindi I; = 2w ¢ R[ri] + wi R[—n/4].
Essendo

e'* e " 2v/2 (1 — i)

Rlmil = 5 S wianiza) A= ’

1772

abbiamo
I = =
=Y v S 177 17n
e quindi 'integrale cercato ¢
L« 2V/2+ e T4+ 2¢/2 — 47T 0 44/2 — 37T
at 177 1 7r

Ex. 59e L’integrale é assolutamente convergente, poiché I'integrando é continuo in R
ed infinitesimo di ordine 3 per x — Foo. Inoltre

—+oo —+o0 +oo +oo
T+ cosx x CcOs T CcOS T
I := —dr = —d dx =0 d
/,OO wira 7 /,OO 14 m+/,oo e +/,oo A e

e ™ 2v2(1 —14) e_”(1—4i)+2\/§(1+i)

1
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el ?
essendo z/(x*+4) funzione dispari. Consideriamo la funzione ausiliaria f(z) = A+ 4
z
che per z = x € R ha parte reale coincidente con l'integrando dell’ultimo inte-

grale. Le singolarita di f sono gli zeri del denominatore, cioé +v/—4, vale a dire
2r = \/iej(%“:%), per kK = 0,1,2,3; sono poli semplici. Essendo il coefficiente
nell’esponenziale nella definizione di f positivo, consideriamo i poli con coefficiente
dell’immaginario positivo zo =1+ j e 2; = —1 + j. Dunque

+oo PNE '
/_OC e dz =27 j(R[z0] + R[z]) -

D’altra parte z¢ = —4 e R[z;] = /% /(423) = —z;, /% /16, quindi

I Sanl AUVICE®) NN U o R e
L e T i T S

B e O T e e S
R[z] = el = i e N

Pertanto

+oo VLS T N ) —

e ! [(1 i e+ (1+7) e*j]

=13 ool

e 'Re[(1—j)¢] = Z e !(cosl+sinl).
Tale valore ¢ reale (com’era chiaro, essendo il coefficiente dell’immaginario dell’inte-

grando funzione dispari) e quindi coincide con I'integrale cercato I.

Ex. 59f La funzione integranda ¢ continua e l'integrale é assolutamente convergente.
Osserviamo che, essendo la funzione integranda pari, risulta

T 22 4 cosz 1 [T 22 +cosz
—dr = —dz
0 1+2 2 ) 1+z
22 Y eiz
Per il calcolo dell’ultimo integrale, scegliamo la funzione ausiliaria f(z) = TagE
z

La funzione f presenta nel semipiano Im z > 0 due poli del primo ordine nei punti
e'm/* e e37/4 quindi

/+°° 22 + cosx

(8) 0 i Mhtegt

Ponendo A(z) = 22 + e* e B(z) = 1 + 2%, abbiamo f(z) = A(2)/B(z) e

R[ i7r/4] B A(eiw/4) B i+ eieiw/4 B _i—|— e_l/\/§+i/\/§ el

£ T Bl(cit/Y) T 4eidn/A 4 s 2
. —1/V2—i/V2

R[eigﬂ./4] _ —1+4+ e 4/ /

e—iT/4 — —R[ein/4]
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Pertanto, guardando le parti reali nei due membri della (8), troviamo

+oo .2

x® 4+ cosx

/ e T dr = il [1+e71/‘/§(cos1/\f2+sin1/\@)]
0 1+z 2v/2

Ex. 59g Osserviamo preliminarmente che 'integrando ha una discontinuita elimina-

bile in 1 ed ¢ infinitesimo a +oo di ordine 2; pertanto l'integrale ¢ assolutamente

convergente. Inoltre, essendo l'integrando una funzione pari, I'integrale cercato é la

meta di quello esteso all’intervallo | — 0o, +00[. Per calcolare quest’ultimo, conside-
2 iTZ

. : e 2+ e . :

riamo la funzione ausiliaria f(z) = i1 la cui parte reale per z = = € R si
24—

riduce all’integrando. La funzione f é priva di singolarita reali e I'unica singolarita
con coefficiente dell’immaginario positivo & un polo semplice in i. Pertanto

+oo .2 iz

T+ e . ol

9) / ——— dz = 2mi R[i].

O el |
Inoltre R[i] = (=1 + e ™)/(4i®) = (1 — e ™)/(4i) e quindi, guardando le parti
reali in (9) (le parti immaginarie sono nulle, com’¢ chiaro essendo il coefficiente
dell’immaginario dell’integrando una funzione dispari), troviamo

/+°°x2—|—cos7rxd _1/+°Ox2+cos7rxd 1—e™™
0

ZAcelze 4 Bag

wa dogl T = 4 .

— 00
Ex. 59j La funzione integranda é discontinua in —1; 'integrale ¢ inteso nel senso del
valore principale. Per il calcolo, consideriamo la funzione ausiliaria f(z) = €'*/(1423).
Essa ha tre poli del primo ordine negli zeri del denominatore 1 + 23, vale a dire nelle
radici cubiche di —1. Quelli rilevanti per il calcolo sono —1, sull’asse reale, e €'7/3,
nel semipiano Im z > 0. Dunque

+oo ez ) in/3 .
Vv.p. - 1+23da::27rjR[e |+ 75 R[-1].

Inoltre R[—1] = e~7/3, R[ei™/3] = ¢7¢'™"" /(3e727/3) quindi

. +o0 cosa:Jrjsinxdx _Jr o 4 9eie’™?
P 1+ 47 =3 S

— 00

AR (ej<w/2—1> i 26—jw/6+e15“6) ]
3

Infine, uguagliando i coefficienti del’immaginario nei due membri, abbiamo

Foo ot 1
o [ e () o2 (- 7))

1 1
= g (cosl + e V3/2 <\ﬁsin2 — COS2)>
Ex. 59k L’integrale converge assolutamente, poiché U'integrando ¢ continuo in R (il
punto 1 ¢ una discontinuita eliminabile) ed ¢ O(1/2?), quindi sommabile, intorno a
Foo.
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z ej7rz
Scegliamo la funzione ausiliaria f(z) = =T in modo che, per z = x € R,
23—
Pintegrando sia il coefficiente dell'immaginario di f(x). Le singolarita di f sono gli
zeri del denominatore, cioé V1 = z, = e33”k, con k = 0,1,2. Sono poli sempli-
ci. Essendo il coefficiente nell’ebponente positivo, consideriamo i poli con coefficiente

dell'immaginario non-negativo e quindi 'integrale si calcola mediante la formula

+o0 : +oo
I:/ x?ﬂdx:hnv.p./ f(z)dz =Im (7 j R[20] + 27 j R[21])
—0o0 z? —1 —00
= 7 Re (R[20] + 2 R[z1]).
(L’integrale di f(x) va inteso nel senso del valor principale, per la presenza del polo
semplice in 1.) Osserviamo inoltre che
2 ej Tz ej T 2k
322

quindi R[29] = R[1] = e/™/3=—1/3 e

R[Zk =

3Zk

Z=Zk

1 \/g ejﬂ'(féJrog)*]%ﬂ' e—T‘sﬂ—]%ﬂ
RiRyaty [Paccipppbit| S de
] 57773 3 3
_e=mr( V8 g
3 27 2
Pertanto s
T , T
[=—2-2V3e %= §(1+\/§e 7”)
Ex. 591 Scegliamo la funzione ausiliaria f(z) = %, in modo che, per z =

x € R, il coefficiente dell'immaginario di f(z) sia la funzione integranda. Notiamo
che f & olomorfa (ha una singolarita eliminabile) in z = 1; la funzione presenta nelle
altre due radici cubiche dell'unita et?3™ poli semplici. Essendo positivo il coefficiente
nell’esponenziale nella definizione di f, applichiamo il teorema dei residui a f sul
semicerchio Dy di centro 0 e raggio R > 1 formato dai punti z con Imz > 0. Per il
teorema del grande cerchio, passando al limite per R — 400, otteniamo come al solito

I_/+Oox;:i_nlgxdx—1m(27rin[ei§ﬂ)_QWRG(Rf[eing'

— 00

D’altra parte,

2 12— e'2% 1 idn 2
z zzﬂ
z=—e 3
ed essendo
L4 \/g 7 -2 1 \/g L i2 \/g A
Zelgﬂ-zi—*, 5T — = i 16157‘—:—7—*7
2 2 2 2 2 2
2 .
ei%ezéﬂzefgﬂ—e*i%:efgﬂl L
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abbiamo

)
- 2
2 Qﬁ

Pertanto in definitiva

V2

Ex. 59n L’integrale converge assolutamente, in quanto 'integrando é continuo in R
(z = 1/2 ¢ una discontinuita eliminabile) ed ¢ O(z~3) per x — Foo.

Consideriamo la funzione ausiliaria f(z) = /% /(8 22 —1): per z € R, 'integrando
¢ la parte reale di f(z); Uintegrale cercato sara la parte reale dell’integrale di f(x)
sull’asse reale (quest’ultimo va inteso nel senso del valor principale). Le singolarita di
f sono gli zeri del glenominatore7 cioé le soluzioni dell’equazione 8 23 — 1 = 0, vale a

EX]

dire z, = ¢ E = Lj, con k =0, 1,2; sono poli semplici. Pertanto

8 2
+o0 2nj
/ GORM dee<ij[1}+2an f D
2 2
3™
—| )

o 83 —1
1
= —7 Im (R {2] +2R

D’altra parte, essendo 8z2 = 1, abbiamo

1_
I:g(ﬁ—&—e_?” \/§>

R[Z ]: ED ricg VED n 2k Ve
T a2 T 3 del
quindi
™ 2 ¢ 255
1 ez g e3™J e37l iz ©3
R |=| = R|z]| = = — R = R|z]| =
M 0] = 5= =5 2 1] 6
2. 1 \/3 T 1205 m \/g
Inoltre, essendo €3™ = —— 4+ —j, j—e3™ = —j — — — 7,
PR dogAcca
e%“j e]% e%ﬂj = e%ﬂ'j efj % eiéﬂ- = e%ﬂ'j*@ﬂ

_ﬁﬂ<\/2—\/§ ,\/2+\/§>
= o e
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abbiamo infine

+oo < D1
/ COST X dx_ﬂlm{j+2€{ﬂ<\/2 \/§+j\/2+\/§>}

2 2

—0o0

Ex. 590 Osserviamo che l'integrale é assolutamente convergente.

Dalla uguaglianza (cos z+i sinx)3 = cos 3z+i sin 3z, ricaviamo sin® z = (3sinz—
sin3z)/4 = Im ((3¢™™ — €%7)/4). Per il calcolo dell'integrale, ¢ allora naturale con-
siderare la funzione z ~— (3e¥* — e3#)/23; d’altra parte, tale funzione ha in 0 un
polo di ordine 3 e quindi non puo essere utilizzata. Consideriamo invece la funzione
f(z) = (3¢ — 3= —2) /23 che ha in 0 un polo semplice; per z = z reale, f differisce
dalla precedente solo per la parte reale e non per il coefficiente dell’immaginario, che
interessa per l'integrale. Considerando il dominio 0 < ¥ = argz <, ¢ < |z| < R, con
la solita tecnica basata sul teorema dei residui, otteniamo 1'uguaglianza

+o0 3eix _ eBiz —92

3

— 00
(dove v.p. & necessario per la parte reale dell’integrando), da cui uguagliando i coef-
ficienti dell’immaginario nei due membri ricaviamo subito il risultato. Notiamo che,
per x € R, la funzione Re f(x) & dispari, quindi ha integrale nullo, in accordo col fatto
che il valore trovato per l'integrale di f(z) ¢ immaginario.

Ex. 59p Esprimendo sin 2z con le formule di Eulero, 'integrale cercato diviene

L 400 e3ir C( e—iz 1 o0 eSiz 1 +o0 e—ir
Per il primo integrale scegliamo il dominio D indicato in figura e la funzione ausiliaria
f(z) = €3 /(1 + 2?), mentre per il secondo scegliamo il dominio D’ e la funzione
g(z) = e7%#/(1 + 2?). Passando al limite per R — +oo, vediamo che l'integrale
cercato vale
e 3 —e!
® (Rylil + Ryl-i)) = =

Per evitare di calcolare due integrali su cammini diversi, osserviamo che mutando x
in —z nell’ultimo integrale di (10), 'integrale cercato diviene

(11)

che si puo calcolare scegliendo come dominio D e funzione ausiliaria h(z) = (3% —
e?)/(1 + 2?). Alternativamente scriviamo e** nell'integrando mediante la formula di
Eulero; I'integrale cercato diviene

/+°° (cosx + isinx) sin 2x d /+°° i sinx sin 2z
x = _
1+ a2 2ik 1+ 22

poiché (cos x sin 2z)/(1 + 22) & una funzione dispari. Essendo 2 sinz sin 2z = cosz —

cos 3z, 'integrale cercato é
. +oo iz 3ix
i e — e
— Re ———dx;
2 3

1+ 22

1 +o0 eBix _ eia: J
= ———dz
20 J_ oo 1422 ]

— 00

— 00
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questa espressione coincide con (11).

A
. I'r
J
L
i >
\ |
\ 1
\ !
\ / /
\ D /
\ . /
M —j L
N 7 /
. "Ik

Ex. 59q Ricordando le formule di duplicazione, con la sostituzione ¢ = 2z ed usando
le formule di Eulero, 'integrale cercato I si riscrive

1 /2” 2 +sint 1 (27 44+ et — g7t
0

2 3+ cost 2i Jo 64 et 4 e7it

dt

N e T |
2y et 46eit41
it

Pertanto, con 'ulteriore sostituzione z = e, arriviamo ad un integrale curvilineo
b ) )

esteso alla circonferenza unitaria
1 22 +4diz—1
I=—— _ . d
2 /|Z_1 2(224+6241) ‘
La funzione integranda ha poli semplici nei punti 0, —3 F 21/2, quindi per il teorema
dei residui abbiamo I = —7i(R[0] + R[—3 + 2v/2]). Essendo R[0] = —-1/1=—-1e

22 12— z
el 2\/5] T ( (z:_—f(iz + 11)){

2=—34+2V2

99— 12v2+8+4i(—3+2v2)— 1
(=3 +2v/2) (—6 + 4v/2 + 6)
_4-3v24i(-3+2v2) i

4-3v2 V2

troviamo infine I = 7/ V2.
Notiamo che l'integrale si calcola molto facilmente in maniera elementare.

Ex. 59r L’integrale é assolutamente convergente, poiché la funzione integranda risulta
0(1 / x3) per x — Foo, in z = 0 ha una discontinuita eliminabile ed é continua altrove.
Mediante le formule di bisezione, riscriviamo 'integrale da calcolare come segue

I_/+°°sin21:+a:sinz 1/+°°1—cos2x—|—21:sinx

dr = — S

whehapd 2 &

— 0 —o0
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ed osservando che 1—cos 2z+2z sin z = Re(1— €% —2iz ¢'®), consideriamo la funzione
ausiliaria

21z - 1z

F(2) = 1—ce - 2212 e

2+ z
Gli zeri del denominatore sono 0, di ordine due, e Fi, semplici. Il punto z = 0 & pure
zero semplice del numeratore e quindi 0 ¢ polo semplice per f. I punti F¢ non annullano
I’espressione a numeratore, dunque sono poli semplici per f. Consideriamo il dominio
D formato dai punti z € C talichee < |z] < pelmz >0, dove 0 < ¢ < 1 < pin modo
che i sia interno a D, ed integriamo f lungo la frontiera; per il teorema dei residui,
troviamo 1'uguaglianza

(x) :f(o:)dx +/% f(z)dz+(x)/€pf(x)dx+/rp f(z)dz

(12)

= (2) dz = 2mi Ryld],
oD
dove 7. e I', sono le semicirconferenze nel semipiano Im z > 0, di centro 0 e raggi € e p,
rispettivamente, mentre gli altri integrali sono estesi a segmenti dell’asse reale. Per il
teorema del grande cerchio, 'integrale esteso a I', ¢ infinitesimo per p — +o00. Essendo
z f(z) convergente a —4i per z — 0, per il teorema del piccolo cerchio U'integrale esteso
a e converge a —mi(—4i) = —4m per ¢ — 0. La somma dei due integrali calcolati
lungo l'asse reale in (12) converge a v.p. [, f(x) dz. D’altra parte, poiché

1 — e2iz — 24z ei?

1—e242¢7!
423 4+ 2z ;

—21 ’

Ryli] =

z=1

mediante il passaggio al limite per ¢ = 0 e p — +00, da (12) otteniamo

V.p./Rf(x)dx:47r—7r(1— e ?4+2e)

da cui ricaviamo
I=2(3+e?—2¢e7").

Notiamo che

+oo +2 ¢in 2 "
V.p./ Imf(x)dx:—/ AT LT de =0,

4 2
— 00 P r*+x

poiché l'integrando ¢ una funzione dispari, in accordo col fatto che l'integrale di f(x)
é reale.

Ex. 59t Usando le formule di Eulero, I'integrando si riscrive

, N2
e — e i
4sin? z + €% _4( 2 > Pot _9 2 — e %i®

2+ cosx e L gTi 4 + eiz 4 o—iz
2%tienze o B

2627 — 1
(e2im + 4eiz + 1) eir
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e quindi, effettuando la sostituzione e = z, da cui dx = (iz) ! dz, I'integrale cercato

I diviene A
1—/%4Sin2x+ = Z/ L —
0 2+ cosx i Jjzj=1 (22 +42+1) 22

La funzione integranda f nell’'ultimo membro ha un polo doppio in z = 0 e poli
semplici negli zeri di 22 + 4z + 1 vale a dire nei punti 2 = -2 F V3. Osserviamo che
| —2++/3] < 1, mentre | — 2 — /3| > 1. Per il teorema dei residui, risulta dunque
I = 4m (Rs[0] + Rf[-2+ V/3]). Daltra parte, risulta Ry[0] + Ry[—2+ v/3] + Ry[—2 —
V3] + Ryloc] = 0 ed ¢ subito visto che Ry[oo] = 0. Dunque I = —47 Ry[—2 — /3]
Essendo

B 22++v3)% -1
veavs (24 V3)2(—4—2V3+4)

_ 13+8/3 1 ( 1 _2)
V314483 23 \74+4V3

L (143 L) 548
" 2v3 \ 4948 23
abbiamo I = 27 (12 — 5v/3)/3.

Ex. 59u Risulta

T sin 2z it sin 2z
o sin®z — e 0 % _ o2z

e’Lt _ e—zt

/ T et / ” 2i dt
_ dsd it it —1t )
o 1—cost—2e 0 1_&2972_2€n

1 27 e2it _ 1 2m e2it _q
i Jo 26— 2t — 1 —4e2it o Het—2et 41

/ 22 -1 d
= Svecmre nr Do G210
|z|:1 2(52’2 — 22’ + 1)

Per il teorema dei residui, I ¢ dunque uguale a 27i per la somma dei residui nei poli
della funzione integranda nell’ultimo membro, che cadono nel cerchio unitario. Poiché
|z] > 1 implica che |52% — 22 + 1] > 5 —2—1 > 0, tutti i poli cadono nel cerchio e
quindi

2 .

z¢—1 2m

I=27mi(—R = 2mi i —

m ( [oo]) [l z2(bz2 —2z+1) 5
Ex. 59v L’integrale converge assolutamente, essendo 'integrando continuo in R (z =
—5/2 & discontinuita eliminabile) e O(x~3) per 2 — Foo. Consideriamo la funzione
ausiliaria
ejTrz

(2245)(22422+2)’

f(z) =



60 XII. SVOLGIMENTI INTEGRALI CON I RESIDUI

la cui parte reale, per z = z € R, si riduce all'integrando. Le singolarita (al finito) di
f sono gli zeri del denominatore, cioé —5/2 e —1 F j, che sono poli semplici. Quindi
I'integrale si calcola secondo la formula

+o0
I =Re {V.p./ f(z) dx} =7 Re (j R[-5/2] +2j R[-1+j]) .

— 00

(L’integrale di f va inteso nel senso del valor principale, per la presenza del polo
semplice reale —5/2.) Inoltre

R[-5/2] = e __ iy
2(22+22+2)|,_ 5 2(F-5+2) 13
e, similmente,
eI 2 eJ ™ (=1+7) 2435

R[-1+j] =

(22+5)(22+2) (34+25)25 26em

z=—1+j
Pertanto 'integrale vale

2 _2j-3\ o« mi

Ex. 59w L’integrale converge assolutamente, essendo l'integrando continuo in R (z =
—3 & discontinuita eliminabile) e O(z~3) per # — Foo. Consideriamo la funzione
ausiliaria

el 32
1@ = @6 710)
la cui parte reale, per z = z € R, si riduce all’integrando. Le singolarita (al finito)

di f sono gli zeri del denominatore, cioé —3 e —3 F j, che sono poli semplici. Quindi
I'integrale si calcola secondo la formula

I =Re [V.p. /m f(z) dm} =7 Re (j R[-3] + 2j R[-3 + j]) .

—00

(L’integrale di f va inteso nel senso del valor principale, per la presenza del polo
semplice reale —3.) Inoltre

Rg— S '
[_]_22+6z—|—1022_3_‘]’

. el 32 J
R[_3+]]_(z+3)(22+6) i——34j 263

e dunque l'integrale vale I = 7 (e~3 — 1).
Come visto, v.p. fj;: f(x) dz éreale. In effetti, essendo 22 +6x+10 = (x+3)2+1,
abbiamo

&9 T sinZ (z —3) T cosIx
.p. I =v.p. 72 Y dr = v, Pt
Vp/_OO m f(z)dx vp/_OO T2+ D) dx vp/_OO x(xQ—&—l)dx

¢ nullo poiché l'integrando ¢ funzione dispari.
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Ex. 59x L’integrale converge assolutamente, essendo 'integrando continuo in R (z = 1
¢ discontinuita eliminabile) e O(z~%) per x — Foo. Consideriamo la funzione ausiliaria

14 &7
(z—1)%(z2+ 1)’
la cui parte reale, per z = z € R, si riduce all’integrando. Le singolarita (al finito) di

f sono gli zeri del denominatore, cioé 1 e 5, che sono poli semplici. Quindi I'integrale
si calcola secondo la formula

I =Re [V.p. /+OO f(z) dx} =7 Re (j R[1] + 2j R[j]) .

—0Q0

f(z) =

(L’integrale di f va inteso nel senso del valor principale, per la presenza del polo
semplice reale 1.) Inoltre

14T ] jn
R[] = lim —5 S
s o sy el ey 2

1+ ei™d 14+ e ™

Ril=G—1r5; = 3

Pertanto l'integrale vale I = 72 /2.

Ex. 59y L’integrale & analogo a quello dell’Ex. 59x. Esso converge assolutamente,
essendo I'integrando continuo in R (z = 3/2 ¢ discontinuita eliminabile) e O(z~%) per
r — Foo. Consideriamo la funzione ausiliaria

]+ ej7rz
f(z) = 373 ,
(22 —3)2(22 + 1)
il cui coefficiente dell’immaginario, per z = = € R, si riduce all’integrando. Le sin-

golarita (al finito) di f sono gli zeri del denominatore, cioé 3/2 e Fj, che sono poli
semplici. Quindi 'integrale si calcola secondo la formula

+00
I =1Im |:V.p./_ f(z) dm] =7 Im (j R[3/2] + 2j R[j])
=7 Re (R[3/2] + 2 R[j]) .

(L’integrale di f va inteso nel senso del valor principale, per la presenza del polo
semplice reale 3/2.) Inoltre

. Jj+ eim? 1 2 . jmeTE T
R[3/2] = 1 =1 -
[3/2] 253)22(22—3) 2211 13 s08/2 2 13
€
R[j] = jHe™  j+e ™ (j+e7)(12-5))
= 2j =322 ~2(5j+12) 338
 5+12e "+ j(12—5¢e7)
>C 338 5
Pertanto 'integrale vale
71'2 ™ L
I=—+—((B+12e7).

13 169
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Ex. 59z L’integrale converge assolutamente, essendo l'integrando continuo in R e
O(z~*) per z — Foo. Per il calcolo, consideriamo la funzione ausiliaria
el?
1(z) = 24 —6224257
la cui parte reale, per z = z € R, si riduce all’integrando. Le singolarita (al finito)
di f sono gli zeri del denominatore, cioé F(2 + j) e F(2 — j), che sono poli semplici.
Pertanto 'integrale vale

+oo
I:Re/ f(z)dx =27 Re (j R[2+ j] + j R[-2+j]) .

Inoltre
ez e~ 1£2j
R 4g]i i Nasoli < o
BT o, T e )
S o—1%2j i o—1%2j u (F1 — 2j) e*2
4(£2+4j) (£45) 16(F1+2j) 80 e
e quindi
. L —(14+25)e¥ +(1—2j5) e %
R2+ ]+ Rl-2+4] = 202 & + U= %)
80 e
(e — e7H) — 2j(e¥ 4 ™)
< 80 e
_.sin2+2cos2
40 e
Dunque I = 57 (sin2 + 2cos2). Concludiamo notando che fj:j f(z)dx & reale, in

accordo col fatto che il coefficiente dell’immaginario di f(z) & funzione dispari e quindi
ha integrale nullo.

Ex. 59a; L’integrale é analogo a quello dell’Ex. 59z. Esso & assolutamente conver-
gente. La funzione ausiliaria f(z) = ¢/%/(2* — 16 22 + 100) ha i poli semplici F(3 + 5)
e F(3 —j) e risultando

. RE o143
et il Sggme 557 2=+3+4; T A(£3 +7)[(£3+5)? — 8]
o143 o143 (1 — 3j) o3
1(E3 1) (£6j)  24(F1+39) 240¢

I'integrale vale

+oo T
I:Re/ f(z)dx =27 Re (j R[3+j] + j R[-3+ j]) = ——(sin3 + 3cos 3).

o 60 e
Ex. 59b; Mediante la sostituzione z = e’®, 'integrale cercato I si trasforma nel
seguente
1 1+)22—(1—3j 1+ 245
1:—7/ (A+7)z 2( .Jz)dzz +J/ co i+ funo_frec
2 Jizj=1 (5z+252%2—2j) 8 lz|=1 (22 = 3j2z—1)
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(Notiamo che —(1 — j) = j2(1 — j) = j (1 + j).) Le singolarita dell’integrando sono
gli zeri del denominatore, vale a dire j /2 e 2j, che risultano poli doppi. Pertanto
Pintegrale vale I = % 274 R[j/2]. Essendo inoltre

pep 2tl | 2(=2) -2t )
R[j/2] = D (z — 2j)2 Lo o (z—2j)3 z=j/2
_i(=3i/2)+1/2-2 _ 16
i 7 Nay(alggg)eerico 11” Agg Al

troviamo infine I = 7 8/27.
Per semplificare leggermente il calcolo, potevamo osservare preventivamente che

ovviamente risulta >
g cos T
o (b—4sinx)

Ex. 59c¢; Mediante la sostituzione z = e/, I'integrale cercato I si trasforma nel
seguente
224+22+1 (z+1)2
]/|z|_13z4—10z2+3 N j/|z|_1324—1022+3 ‘

Le singolarita dell'integrando sono gli zeri del denominatore, vale a dire Fv/3 e F1/+/3,
che risultano poli semplici. Pertanto I'integrale vale

I =2j x 2mj (R[1/V3] + R[~-1/V3]) = —4n (R[1/V3] + R[-1/V3]).
Essendo inoltre

REF1/VE =

(1222 —20) z

_WBEB 11

g1 EL6/V3 W3 8

quindi R[1/v/3] + R[—1/+/3] = —1/4, troviamo infine I = 7.
Per semplificare leggermente il calcolo, potevamo osservare preventivamente che

ovviamente risulta 1
T
cos
o 1+3sin“z

Ex. 59d; L’integrale converge assolutamente, poiché I'integrando ¢ continuo in R (il
punto 0 ¢ una discontinuita eliminabile) e per z — Foo risulta O(z~°). Scegliamo la
funzione ausiliaria

eim?
1@ = 27 169)
il cui coefficiente dell’immaginario, per z = € R coincide con l'integrando. Le
singolarita di f sono gli zeri del denominatore, cio¢ z = 0 e le radici dell’equazione
biquadratica z* — 1022 + 169 = 0, ovvero z = /5 F 12j = F(3 F 2j), dove i segni
vanno presi in tutti e quattro i modi possibili; sono tutti poli semplici. Pertanto, com’é
noto, l'integrale cercato é

Im [V.p./+oo f(x)dx} :ﬂm{jR[o] +25R[-3+2j] +2jR[3+2j]}

— 00

= 7 Re {R[o] +2R[-3+ 2] +2R[3+2j]}.
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(L’integrale di f va inteso nel senso del valor principale, a causa del polo semplice
reale z = 0.) Notiamo che la parte reale di f & funzione dispari e quindi ha integrale
nullo su R, dunque v.p. fj;o f(x) dz ¢ immaginario. D’altra parte

T 24 —1022+169| _, 169
e ) .
: (eJTrZ)/Z )Tz
RIF3+24] = A\ :
D(Z4 —1022 + 169) 2=F3+25 42% — 202 2=F3+2j

Tenendo presente che, per z = F3 + 27, risulta 2* — 1022 + 169 = 0, ricaviamo
42 —202% =4(52% - 169) e quindi

R34 24 el oI (F3+25)
i “Reitato 4(52% — 169) 2=F3+2  4[5(F3+275)2 — 169]
_ deHFhE T e (1245))
T AB(GF125) - 169]  48(12F5j) 48 x 169
ed ancora
: . e (12457 27 (19 _ 5 —2x
R[-3+2j]+ R[3+2j]= ( J)+e ( g) Mate

48 x 169 48 x 169  2x169°

Osserviamo che, in accordo con quanto detto, R[0] + R[—3 + 2 j] + R[3 + 2j] & reale.
In definitiva,

Foo sinmx s or
/_OO 2@ - 102 +169) - T LT )
Ex. 59e; Osserviamo che I'integrando é funzione pari, quindi I'integrale cercato ¢ la
meta dell’integrale esteso all’intervallo [—7, 7r]. Posto z = e'!, abbiamo dz =i e’ dt =
iz dt e quando ¢ varia tra —m e 7, z descrive la cinconferenza |z| = 1 in verso antiorario.
Mediante la formula di Eulero scriviamo cost = (z 4+ 1/2)/2 e Uintegrale si trasforma
quindi come segue:

—T

I dt 1 dz
5/ (56— 3 cost) (5 —4 cost) S i/|z|_1 2(10-32—-3/2)(b—22z—2/z)

_1/ zdz
i Jj=1 (322102 +3) (222 — 52 +2)

La funzione integranda nell’ultimo termine ha poli semplici nei punti 1/3, 3, 1/2, 2,
che annullano il denominatore. Per il teorema dei residui, il valore dell’integrale é
dunque 27(R[1/3] + R[1/2]). Essendo

z 1
222-524262—10

R[1/3] =

z=1/3

1/3 1 3 legli 3

2/9-5/3+22-10 (2—15+18)(—8) 40
e analogamente R[1/2] = 2/15, I'integrale vale m(4/15 — 3/20) = 77/60.
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5 anche possibile calcolare I'integrale “decomponendo l'integrando in fratti”, come
indicato nell’esercizio 58.

Ex. 59g; Procediamo direttamente con la sostituzione z = ¢7%; I’integrale si trasforma
nel seguente
z—1/z
2j dzrer; / 22 +2jz2—1
\

1+
I:/,l 24+1/2\° jz _1 2124 45822 + 21 i
I#1= 4+21( . ) i

Le singolarita dell’integrando sono i poli semplici q:\/g je :F\/g 4, quindi
V33 +r |7
77 77
3 3 5 3 7
~3-2,/8 1 7—7—\ﬂ775\/;+1

=i afdi-ade) 2/ e’

3] S/s-1
| = e

I = —4rj (R + R

Essendo inoltre

\/5_ 2242521
77| T 8425 + 1162

e similmente

R

troviamo infine

Calcoliamo ora l'integrale riducendo i calcoli con qualche osservazione. Inizia-
mo notando che il termine sinx a numeratore da contributo nullo: per la periodici-
ta, possiamo sostituire all’intervallo di integrazione [0, 27] lintervallo [—m, 7], e poi

. sinz . qe . e e . . . T
osserviamo che =2 Tolcos?s © dispari. Usando la formula di bisezione, abbiamo quindi

2 27
d d
e —
o 294 2lcos2x o 2942lcosx
I'ultima uguaglianza valendo per la periodicita dell’integrando. A questo punto pos-
siamo usare la formula (VII.2.4) delle Lezioni:
ol 4 _Ar o
V292212 V400 5
Come ulteriore possibilita, scriviamo nel denominatore cos

2w : 2w

il

I:/ Ln.x?dx = Z(sinx) dr,
o 25—21sin“z 0

1

2

2p=1—sin’a:

dove Z(w) = 251;;;’1” >. A questo punto usiamo ’esercizio 58. Le singolarita di % sono

i poli semplici :F\/% e risulta

5 }i\/ﬁ5

to C2100ppt

R{Wﬁ
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quindi
[ooopY2l=s 1 V215
N 210 25 210 25
21 1 21 1
2w /21 2w s
== —\(V 21 \Y4 2 TR s fe AW N 21 e hw Y
210 2 ( bk 5) 210 5

Ex. 60 Lespressione F(w) ¢ integrale della funzione intera f(z) = e~  lungo la
retta orizzontale passante per w, che & rappresentata dall’equazione Imz = Imw.
Osserviamo innanzitutto che lintegrale ¢ assolutamente convergente e ovviamente
F(w) non dipende da Rew, vale a dire ¢ costante su ogni retta orizzontale, ad esempio
sull’asse reale. Per w non reale, scriviamo w = u~+j v in forma algebrica e applichiamo
il teorema di Cauchy a f sul rettangolo D di vertici r, r+jv, —r+jv, —r, dove r > 0:

w

—r r

(la figura é relativa al caso v > 0). In tal modo abbiamo

(13) / e dz=0.
+FD

Notiamo che gli integrali sui lati orizzontali hanno versi di percorrenza opposti, mentre
¢ facile mostrare che gli integrali sui lati verticali sono infinitesimi per » — +o0o0. Ad
esempio, scrivendo z = z+ 7 y in forma algebrica, sul lato verticale destro risulta x = r

. . _ .2 . 2 2_ .2 2 _ .2 .
e y compreso tra 0 e v, quindi |[e”* | = e Rez™ — o¥" =" < eV 7", da cui segue

r+jv R
/ e * dz
r+350

infinitesimo per r — +oc0. Pertanto, passando al limite in (13), troviamo

+o0 5 +o0 .
/ e ? d:z:—/ e~ (i) gr =0,

che ¢ la tesi. Dunque per ogni w € C l'integrale vale /7, che com’é noto ¢ il valore
per w = 0.

Osserviamo che possiamo anche estendere il caso banale per w € R all’intero piano
complesso mediante il II principio di identita, poiché F'(w) é funzione intera. Alter-
nativamente e pit direttamente, é sufficiente usare le condizioni di Cauchy-Riemann,
vista I'indipendenza da u = Rew:

< |v] e’ e

7] .0
%F(u,v)—] %F(u,v)—o.



CAPITOLO XIII

Svolgimenti Trasformazione di Laplace

Ex. 61c Decomponiamo in fratti semplici. Essendo
1 R[] n c_o[—4] = R[-16]
(t+4)2(t+16) t+4 (t+4)2  t+16

e
1 1
abbiamo
1 d —1/144 1/12 1/144
(t+4)2(t+16) t+4 = (t+4)2 t-+16
e quindi
s n: 1 s i 12s i S
(s2+4)2(s2+16) 144 \ s2+4  (s2+4)2  s2+16
_ L (s g4 1 s
144\ s244 ds s24+4  s2+16)°
Pertanto

L fienato Caccioppoll” Selo
Zu (s24+4)2(s% + 16)} 1 144(

Ex. 62b Tenendo presenti i valori iniziali, calcoliamo la trasformata del primo membro
dell’equazione:

Ly —6y +13yY|=Ys" —s—5-6(sY —1) +13Y = (s~ 65 +13)Y —s+1.

— cos 2t + 3tsin 2t + cos4t) u(t).

Per il secondo membro abbiamo

Z[etut—5)](s) = L [ult—5)](s—3) = ———
e quindi ricaviamo

s—1 4 =5 (s-3)

Y = .
82—6S+13+(8—3)(82—65+13)

Per antitrasformare, osserviamo che s — 65+ 13 = (s — 3)? + 4 e quindi

1 s—1 1| 8=3+2 | gy 1| s5t+2
% [3265+13}_$ {(33)%4}_6 < |y

= ' (cos2t +sin2t) u(t).

67
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Inoltre
9‘271 4C75(573) _ eBt 371 4Cf5s
(s—3)(s2—6s+13) s(s2+4)
4
=t |l —— | (t-5
¢ s(s2+4) ( )
e
4 _4A+82-5 1 s zt

s(s2+4)  s(s2+4) i ST I u(t)(1 — cos2t).

In definitiva

y(t) = u(t) e’ (cos2t +sin2t) + ' (1 — cos2(t — 5)) u(t — 5).

Ex. 62c¢ Trasformando ambo i membri dell’equazione e ricavando Y = _#[y], abbiamo

v — 4 n 1 ( 1 _ 1 ) '
s2—10s+21 s2—-10s+21 \s—7 s—3
Per antitrasformare, osserviamo che
4 _s=3—(s—-7) 1 1
s2—-10s+21 (s=3)(s=7) s—-7 s—-3

1 1 1 1/ 1 1 \?
52—um+21(s—7_s—3>:4<s—7_s—3)
/4 1/2 L 14
(s=72 (s—-7)(s—3) (5-—3)2

1/4 1/8  1/8 1/4

(s —7)2 8—7+s—3+(s—3)2'

Pertanto (per ¢ > 0)

t
y(t) Ol 7(e7t_ eBt)_’_Z(eﬁf_’_ eSt).

Ex. 62d Tenendo presenti i valori iniziali, calcoliamo la trasformata del primo membro
dell’equazione:

Ly — 14y +65y] =Y —s—3—14(sY —1) +65Y = (s> — 145+ 65) — s+ 11,

mentre per il secondo membro abbiamo Z[t €] = £[t](s —7) = 1/(s — 7)%. Quindi

ricaviamo Y:
s—11 16

2 — 145+ 65 + (s —T7)2(s2—145+65)
Per DPantitrasformazione, osserviamo che s> — 14s + 65 = (s — 7)? + 16. Dunque
(sottintendendo t > 0)

Y =

BaselUniversitasdegli—4 27!
s2—-145+65 (s—T)2+16

e’ (cos4t —sin4t).
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Inoltre
16 16
—1 3109, 71k g—l
< [(3—7)2(32—145—#65)] i [32(32+16)]
16 + s% — 52 1 1
_ Tt -1 Nl
Snicd [32(32+16)} 2 2 s2+16

1
=e't (t— 1 sin4t> .

y(t) = €7 (t + cos4t — 5/4 sin4t).
Ex. 62e La trasformata del primo membro dell’equazione ¢

Y —5—1-26Y —1)+Y =(s>-2s+1)Y —s+1=(s—1)’Y —s+1.

In definitiva

La trasformata del secondo membro &

. 1 d 3
2 st e =2 (5 - § )

_ 1 1 i 252 1 42
CT\s24+ 1 8241 (s241)2) (s2+41)2

e quindi troviamo
1 4 52
+ 2 (g2 2"
s—1 (s—=1)2(s2+1)
Il primo addendo a secondo membro ha antitrasformata e’ (per ¢ > 0); per il secondo
addendo, osserviamo che risulta

Y =

4 52 )P 1 (s+1)?
(s=12(s2+1)2  (s—12(s2+1)*  (s—1)2 (s2+1)?
1 1 d 1

G-1? 2+1 ds2+1
e quindi (per ¢ > 0)

4 52
CESIHEESE
Pertanto la soluzione del problema & y(t) = (1 +t) (e’ —sint).

g—l

] =tel —sint —tsint.

Ex. 62f Ponendo Y = Z[y], scriviamo la trasformata del primo membro come
22

)
52Y—5s—\[—5(3Y—5)+2Y:<52—3—|—2>Y—5s—|—\/§.

V3 V3

Per il secondo membro, abbiamo
£ [u(t —7/3) sin2t] = e 5° & [sin(2t + 27/3)]
x . l\/g 1 ]_e_gsﬁs—2

—e 3% @ 70052t—fsin2t 5 211
s
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Notiamo che 52 —55/v/3 +2 = (s — v/3) (s — 2/V/3) e quindi ricaviamo
. 5s—22/V3 +e—%s 7
(—VB)(5—2/v3) 2 (2+4)(s—v3)
Per antitrasformare, decomponiamo in fratti semplici:

55 —22/\/3 R[V3] = R[2/V3] -7 12

(s —v/3) (s — 2/V3) 5—\/§+s—2/\/§757\/§+572/\/§

ff71
Ty _7et 126wt

3

7 s24+443—-52 1 s+3

(2+4)(s—V3) (2+4)(s—3) s—v3 s°+4d

Al
< V3t

3 .
— e —cos2t—781n2t.

Pertanto (per t > 0)

y(t) = —TeV3t 112 6v5"

+%u(t —7/3) [e\/g(t”/?’) —cos2(t—7/3) — ? sin2 (¢t — m/3)

Ex. 62g Trasformando ambo i membri dell’equazione, essendo s?+2 s+5 = (s+1)2+4

troviamo
s+1 2

(8+1)2+4+ [(5+1)2+4]2

ed usando la formula di Hermite, antitrasformando concludiamo, V¢t > 0,

Llyl=Y =

1 t
y(t)=e "t (COSQt + 3 sin2t — 1 0052t> .
Ex. 62h Trasformiamo ambo i membri dell’equazione. Ponendo Y = #[y] e tenendo
presenti i valori iniziali, troviamo che la trasformata del primo membro &
LAy —4y +5y] =4(s’Y —5—1/2)—4(sY —1)+5Y = (45> —45+5)Y —4s+2.

La trasformata del secondo membro &
4

(s—1/2)2+1°

Osservato che risulta 4 s> —4s+ 5 = 4[(s — 1/2)? + 1], usando anche la formula di
Hermite, ricaviamo dunque

Z[4e? sint](s) =42 [sint](s — 1/2) =

B s—1/2 L+ 1

(s=1/22+1 " [(s-1/2)2+1]°
. s—1)2 1 1 dooris—11/2
(3—1/2)2+1+2{(s—1/2)2+1+d8 (5—1/2)2+1}'
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Antitrasformando infine otteniamo (per ¢ > 0)
1 1
y=e/?Lcost+ = sint — =t cost p .
2 2
Ex. 62i Trasformiamo ambo i membri dell’equazione. Ponendo Y = £[y] e tenendo

presenti i valori iniziali, troviamo che la trasformata del primo membro é
LAy +12y +13y] =4(s’Y —s+1/2) +12(sY — 1) + 13Y
= (45 +1254+13)Y — 45— 10.
La trasformata del secondo membro ¢
5+3/2
(s+3/2)2+1"

Osservato che risulta 4 5% +12s + 13 = 4[(s + 3/2)? + 1], ricaviamo dunque
_ s+45)2 s+3/2
(s+3/2°+1  [(s+3/2)2+1]°

24 e 3t/2 cost](s) =4 [cost|(s+3/2) =4

d ¢ delle &cienze
ds (s+3/2)2+1"

_ 5+43/2 1
C(5+3/2)2+1  (s+3/2)2+1

Antitrasformando infine otteniamo (per ¢t > 0)

1
2

1
Y= e 3t/2 {cost+sint+ §t sint} .

Ex. 62j Trasformando ambo i membri dell’equazione e ricavando Y, troviamo
s—3 s—3 s—3 1d 1

Y:2 = P
(5—3)2+16+ [(3—3)2+16]2 (s—3)2+16 2 ds (s—3)2+16

e quindi (per ¢ > 0)
t
y(t) = e** (2 cosdt+ 3 sin4t> .

Ex. 62k Analogo all’Ex. 62j. Trasformando ambo i membri dell’equazione, troviamo

s+5

2y _9g_ _ — (s? Y —2s-24=—— "
7Y — 25— 4+10(sY —2) + T4Y = (s + 10 + 74) s TESEEYY

e quindi, osservando che 52 + 10 s + 74 = (s + 5)? + 49, ricaviamo

s+ 12 s+5 s+5+7 1d 1

=22 = g AN SV
(s+5)2+497L [(5+5)2+49}2 (s+5)2+49 2ds (s+5)2+49

Pertanto, antitrasformando (¢ > 0):

- 4
y(t) = e ™ [2 cos7t+ (2 + 14) sin?t} .

Ex. 621 Trasformando ambo i membri dell’equazione, troviamo

s—2

2 JLUAD _
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e quindi, osservando che 52 — s — 2 = (s — 2) (s + 1), ricaviamo

1 18 z! 18
iz D R .
5=2 (s+1)[(s—2)2+9] (s+3)(s2+9)
Inoltre
18 24949 — 52 1 3—s

G43) (219 (5+3) (249 543 249
Pertanto (¢ > 0):
y(t) = e "+ e**(1 +sin3t — cos3t).
Ex. 62m Trasformando ambo i membri dell’equazione, abbiamo (s2—6 s+5) Y —s+5 =
e~ =1 /(s —1) ed essendo s> — 65+ 5= (s — 1) (s — 5), ricaviamo

1 e—(s—1) 7 1
Y = bu) + et L7 | ———— |t —1).
o] “Rpmatgys- arciey ol ool AR
Inoltre
1 1 s2+16— 52 1 s+4 1 1 4

s2(s—4) 16 s2(s—4) 16(s—4) 1652 16(s—4) 165 1652

e quindi

1 et —1 -4t
! = t).
L? (54)} 16 u(®)
Pertanto )
Aftcl) Pqlitegiijea
y(t) = et u(t) + et = T (
A scopo illustrativo, forniamo un’altra risoluzione del problema. Innanzitutto,
osserviamo che esso puod essere “spezzato”’ nei due problemi di Cauchy

{y”—Gy/+5y:etu(t—1) {y”—Gy'+5y=0
y(0) =y'(0)=0 y(0) =y'(0) =1
dei quali il primo tiene conto delle condizioni iniziali ed ha termine noto nullo, mentre
il secondo ha valori iniziali nulli e tiene conto del termine noto dell’equazione. In altri
termini, dette y; e yo rispettivamente le soluzioni dei due problemi, la soluzione y
del problema iniziale ¢ la somma di queste: y = y; + y2. Com’é chiaro dai calcoli
precedenti, risulta yo(t) = e’ wu(t). D’altra parte, se H(s) = 1/(s> — 65+ 5) ¢ la
funzione di trasferimento (cioé¢ il reciproco del polinomio caratteristico dell’operatore
differenziale a primo membro) e h = £~ H, é noto che la soluzione y; si scrive come
prodotto di convoluzione di h col termine noto dell’equazione; nel caso dell’esercizio, la
convoluzione si calcola facilmente. In effetti, per la formula dello sviluppo di Heaviside,
o5t _ ot

;: et SNt = —u
TG TE = (Bl Bl () = S ()

D u(t—1).

i) S
e quindi

yi(t) = ————u(t) * e u(t —1) :/
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Inoltre

0, pert<lepert>t—1;
1, perO<rT<t—1.

u(T)u(t—T—l):{

Dunque abbiamo
¢ pt—1 t o/ ed(t=1)
(1) = ul(t — 1)3/ (A7 —V)dr =u(t —1) < <e - (t—l))
e ritroviamo subito la soluzione precedente.
Ex. 62n La trasformata del primo membro dell’equazione ¢

LRy +5y +2y] =2(s°Y —5+2)+5(8Y —1)+2Y = (25 +55+2)Y —25—1

(notiamo che il fattore che moltiplica Y ¢ il polinomio caratteristico dell’operatore
differenziale), mentre la trasformata del secondo membro ¢

—2s —2s —2s
Lltu(t —2)] :—%X[u(t—%] = —% es =2 es + 682 = 2851 o2
Pertanto, osservando che 22 +5s5+2 = 2(s+1/2) (s+2) = (25+1) (s+2), ricaviamo
2s+1 2s5+1 10, 1 e 28
:252+5s+2+52(232+53+2)e :s+2+52(5—|—2)'
Inoltre
1 1s2+4-—s2 1 2—s 1 1, 1

2612 4 2612 16+2) 42 4512 1288 43’

quindi infine

_ 1| L s (1 1 eeli Shy
ylt) =2 [s+2+e 4(8+2)+282 4s

_ o2 ali | Fedbrico IT” IAnnolAkgad

=c¢ “ult) + < [4(s+2)+282 1 (t—2)

= e u(t) + i e 2D u(t = 2) + o (- 2)u(t —2) - iu@‘ -2)

e 2 {u(t) + eZu(t— 2)} + 2t4_ ° u(t —2).

Ex. 620 Calcoliamo la trasformata del I membro dell’equazione tenendo presenti i va-
lori iniziali, usando la proprieta di linearita e la formula per la trasformata (unilatera)
delle derivate:

Ly —6y +34 =5Y —5—-1-6(sY —1)+34Y = (s> —65+34)Y —s+5,
dove come al solito Y = £[y] & la trasformata della funzione incognita. Notiamo che
il fattore che moltiplica Y ¢ il polinomio caratteristico dell’operatore differenziale.

Per trasformare il II membro dell’equazione, usiamo la formula di traslazione in s
e ricordiamo la trasformata del seno:
nica & delle
(s —3)2+25"
Ricaviamo ora Y; nel fare cio, osserviamo che s? — 65+ 34 = (s — 3)% + 25 e dunque
$—95 4 )
(5—3)2+25 " [(s—3)2+25]"

Zle3tsin5t)(s) = L[sin5t)(s — 3) =

Y:
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Per ricavare la soluzione, antitrasformiamo ’espressione a II membro. Per il primo
termine, mediante la formula di traslazione in s abbiamo

& §—95 8t el | ST2 | 5y 9
g |:(3_3)2'i_25:| = ¢ g |:32+25:| =€ (COSBt_ g Sln5t L

Decomponiamo il secondo termine mediante la formula di Hermite e ricordiamo la
formula per la derivata della trasformata:

al
[(s —3)2 + 25]

ettt 1 +i s
10 s2425  ds s2+25

et /1
= 0 (5 sinbt —t cos5t> .

In definitiva, la soluzione del problema di Cauchy ¢é

t 1
y(t) = et {(1 - 10) cos5t — 5—3 sin5t} .
Ex. 62p Analogo all’Ex. 620;

t 2
y(t) = ett [(13) cosgt+§ Sinit].

Ex. 62q Analogo all’Ex. 620;

t t t
t)=et|[1-— cos—f—sin].
1)=& (1-75) om 75 +on
Ex. 62r Analogo all’Ex. 620;

y(t) = e Kl—jgt)cosjgwrsinjgt]

Ex. 62s La trasformata del I membro é
LN6y" +16y —5y] =16(s*Y —s —1)+16(sY —1) —=5Y
= (165> 4+ 165 —5)Y — 165 — 32.

Per trasformare il II membro, usiamo innanzitutto la formula di traslazione in s:

& {t et/2cosit} (s) =% {t coszt} (s+1/2).

Inoltre, per la formula della derivata della trasformata, abbiamo

3 d 3 d s s2—-9/16
<z tcoszt =—-— ¢ coszt

T T ds s2+49/16  (s2+9/16)2

e quindi
(s+1/2)2-9/16
(s+1/2)2+9/16]"
Ricaviamo ora Y dall’'uguaglianza ottenuta trasformando ambo i membri dell’equa-
zione; a tale scopo, osserviamo che 16s? + 16s — 5 = 16 [(s + 1/2)? — 9/16] =
16 (s —1/4) (s + 5/4) e dunque
5+ 2 " il 1
(s —1/4)(s+5/4) * 16 [(s41/2)2+9/16]"

K [t ot/ COSZt] (5) = [

Y:
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A questo punto, dobbiamo antitrasformare I’spressione a II membro. Per il primo
addendo, decomponiamo in fratti semplici. Poiché

542 1/4+2 3 1
R|1/4] = = = = R[-5/4] = — —R[1/4] = —=
WA= 5| S Tarsasy RS =Rl - Rl =,
abbiamo

s+2 3/2 1/2 1 3 4 1 5t/4

= — € _56

(s—1/4)(s+5/4) s—1/4 s+5/4
Per il secondo addendo usiamo la formula di Hermite:

1 el

16

1 e t2 1 d s
2| = <z + 7
[(s+1/2)2 +9/16] 18 s2+9/16  ds s2+9/16

*eit/z és' §tftcos§t
~ 18 37 1)

Possiamo pertanto concludere

3 1 2 3 t 3
y(t) = 5 et/4 CT 5 ef§t/4—|— eit/2 (27 Sinzt— g COS4t> 3
Ex. 62t Analogo all’Ex. 62s;
1
y(t) = el 2YPEdedt (7 sin7t—t cos?t) .

Ex. 62u Trasformando ambo i membri dell’equazione, troviamo

-2
2_3542)Y —2s43=10——""
(s s+2) s+ G-2219
ed osservando che s — 35+ 2 = (s — 1) (s — 2), ricaviamo
25s—-3 10
Y = n ;
(s=1)(s=2) (s—1)[(s—2)2+9]
Inoltre
25s—3  s—24s5—-1 1 1 z7! Y
G-DG-2 (-D(e-2 s-1's-2 ¢t
e
10 10
gfl :€2t$1|: :|
l(s—l) [(s—2)2+9] (s+1)(s2+9)
2t o1 s2+9+1—5” o2t 1| L +1_5
N (s+1)(s2+9)] s+1  s249
t 2t 1 .
=e +e <3 s1n3t—cos3t>
Pertanto

1
y(t) =2 et + &t <1+ 3 sin3tcos3t) .
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Ex. 62v Analogo all’Ex. 62u;

4 3 1 1
y(t) = ol/2 <3 + 6 sindt — 1 cos4t) g e Bt/2
Ex. 62w Trasformando ambo i membri dell’equazione, troviamo
27
(s> +4s+4)Y —s—2= T

e quindi ricaviamo

1 n 27
s+2 (s+2)2(s—1)2"

Osserviamo inoltre che

3 icasetZpbllcazioni “Henato (1
(s+2)(s—1) (s+2)(s—1) s—1 s+2
e quindi
27 e dj 3 2_3 i di Najol\?
(s+2)2(s—1)2 " [(s+2)(s—1)] “\s—1 s+2
3 _q 3 . 3
C(s—1)2 (s—1)(s+2) (s+2)?
3 2 n 2 . 3
(s—1)2 s—1 s+2 (s+2)?
————— 3te'—2e +2e 2" 43t 2!
Pertanto

y(t) = e (3t—2)+3e 2 (t+1).
Ex. 62x Trasformando ambo i membri dell’equazione, troviamo

Y(52+35+2)524(d Bi >4e58+1

ds s 52
e quindi, notando che s? + 3 s+ 2 = (s + 1) (s + 2), ricaviamo
1
Y = etsits digli §
s+1 e % (s+2)

Essendo inoltre
4 s24+4—52 1 2 dellk

s2(s+2) s2(s+2) _s+2+37_§’
troviamo infine
y(t)=e "+ [e 2D 42t —1) — 1] u(t —1).
Ex. 62y La trasformata del secondo membro dell’equazione &

Z[e*sin6tu(t —m)] = £ [sin6t u(t —m)](s — 3)

6 e—fr(s—3)

= e g [sin6(t 4 (e - 8) = s
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e quindi, essendo s2 — 6 s + 45 = (s — 3)? + 36, ricaviamo

atemaich 3> Applica e~ (s
C (s—3)2+36  [(s—3)2+36]2°

Infine, antitrasformiamo:

s+3 _ 5—3+6 z
(s—3)2+36 (s—3)2+36

6 e 7(s73) et 1 d s
2oarib(nics & dolla Seinfyze 45 Beos ) 3ol Stidi dliNa
u [[(5—3)24—36]2] 12~ LZ+36 P 52+36]( ™)

1 t—
nolisé ar
=e (72 sin 6¢ B

T cos 6t> u(t —m).

Pertanto la soluzione &

f 1 t—
y(t) = e {(cos 6t + sin 6t) u(t) + (72 sin 6¢ — 127r cos Gt) u(t — W)} !

Ex. 62z La trasformata del secondo membro dell’equazione &
2 [e*'sin3t u(t — 7/3)] = 2 [sin3t u(t — 7/3)](s — 4)
= e 5 &, [sin3(t +7/3)|(s — 4)

3e 5 (579
(s—4)2+9

e quindi, essendo s2 — 8s + 25 = (s — 4)? + 9, ricaviamo

s—1 3e 5 (574
T (s—4)2+49 [(s—4)2+92°

Infine, antitrasformiamo:

s—1 s —4+3 £t
(s—4)2+9 (s—4)2+9

et (cos 3t + sin 3t) u(t) ;

g—l

u

—3 e F(- &Sheg,Uipfverdith dedli Stadi i Napol,
- = e e <2 L O _7r
[(s —4)249]? 6 "% |s24+9 dss2+9
1 t—m/3
= o (18 sin 3t — Tﬂ/ cos3t) u(t —7/3).

Pertanto la soluzione &

y(t) = et {(cos 3t + sin 3t) u(t) + (1188111 g ’6”/ T 3t) u(t — 77/3)}.

3" (cos 6t + sin 6t) u(t) ;

7
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Ex. 62a; La trasformata del secondo membro dell’equazione &
Z[e*sin6tu(t —n/2)] = £ [sin6t ut —7/2)](s —4)
— e 3069 o [sin6(t +m/2)](s — 4)
6 e~ 254
C(s—4)2+36
e quindi, essendo s? — 85 + 52 = (s — 4)2 + 36, ricaviamo

s+2 6 e z(5—4)

Yo (s—4)2+36 [(s—4)2+3672"

Infine, antitrasformiamo:

s+2 s—4+6 £t

4t :
= (6t + sin 6t) u(t) ;
(s—4)2+36  (s—4)2+36 ¢ (cos bt +sin6t) u(t);

6e 209 et 1 d 5
cgoith |dedli®Stndi di Nanolf “Fgala & Accillemiep 2095
u {[(5—4)24—36]2] 12,7 {s2+36+ds s2+36]( ™/2)

1 t—m/2
4 [ sin6t — —7/2).
e (72 sin 6¢ o cos6t) u(t —m/2)

Pertanto la soluzione &

y(t) = et {(cos 6t + sin 6t) u(t) + (712 sin6t — ’17;/ 2l 6t> u(t — 77/2)}.

Ex. 62b; La trasformata del secondo membro dell’equazione é

ZL[e?'sinTtu(t—m)] = & [sinTt u(t — m)](s +2)

=e ") @ [sin7(t+m)|(s +2) = Mifeahides's
(s +2)2+49
e quindi, essendo s? + 4 s + 53 = (s + 2)2 + 49, ricaviamo
s+9 rogemi(eer-2)
T (5422449 [(s+2)2+492°

Infine, antitrasformiamo:

s+9 s+ 247 z
(s+2)2+49 (s+2)2+49

e 2! (cos Tt + sin Tt) u(t) ;

YO [(s+2)2+492] 14 T |s2449  ds s2 449
t—
=% 98 sin 7t — Tﬂ- cos Tt | u(t — ).

Pertanto la soluzione &

y(t) = =2 {(cos Tt + sin 7t) u(t) + <1 sin 7t — L= cos 7t) u(t — w)} .

98 14
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Ex. 62c; Trasformando ambo i membri dell’equazione e notando che il polinomio
caratteristico si scompone come segue s2 — 10 s + 21 = (s — 3) (s — 7), ricaviamo

25-10 1
(5=3)(s=7) (s=7)[(s—3)2+16]

Antitrasformando otteniamo (¢ > 0)

Y(s) =

2gtimpgto di Matgmakica7e App) 1 z ! poli” o
G-3(-7 G-3(s-7 s-7 5-3 &2028
1 1
g—l _ 3t$—1|: :|
“ A G-ns-32+16]| ° T |G-9H(=+16)
ed essendo
1 1 $24164+16—s 1 1 544
(s—4)(s24+16) 32 (s—4)(s2+16) 32 \s—4 s2+16
2zt 1 4 .
3 (e cos 4t — sin 4t)
troviamo infine la soluzione
33 4 3t cos 4t + sin 4t
y(t) = 3 © +et |1 3 .

Ex. 62d; Trasformando ambo i membri dell’equazione e osservando che il polinomio
caratteristico si decompone come segue s> —5s+ 6 = (s — 2) (s — 3), ricaviamo

2s—5 i 1
(5=2)(s=3) (s—3)[(s—2)2+25]

Per antitrasformare, cominciamo osservando che (¢ > 0)

Y(s) =

25s—5 78—24—5_37 1 + 1 "%1:1 eSt+62t
(s—2)(s—3) (5—2)(s—3) s—3 s-2 ’

D’altra parte

1

1 a2t 1[ 1 }
“ (s =3)[(s —2)%+25] (s —1)(s2 +25)
Inoltre
1 1 @425 41-6 1 1 s+1
(s—1)(s2+25) 26 (s—1)(s2+25) 26 |s—1 s2+25

z;! Loif 3 1
—— > —< e"—cosht— —sinbt ;.
26 5

Pertanto la soluzione &

27 1 1
y(t) = = &3t + % (1 Yo cos bt — 50 Sin5t> .
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Ex. 62e; Trasformando ambo i membri dell’equazione e notando che il polinomio
caratteristico si scrive (s — 7)2, ricaviamo

s—12 n 3
(s=72% (s=7)2[(s—7)2+9]

Per l'antitrasformazione, notiamo innanzitutto che (¢t > 0)

Y(s) =

s—5 3

s—12 3
Lt .
52 3 s2(s2+9)

¢ (5—7)2+ (s=7)2[(s = 7)2+9]

_ e'715',§/p71 |:

Inoltre

s—=5 1 5 2z
=tiea cApphcasiont “Renbt

52 s 82
3 1s24+9—-52 1/1 1 LIk t 1. 5
= - =-|=- - — —sin
s2(s2+9) 3 s2(s2+9) 3\s2 s$2+49 3 9

e quindi la soluzione ¢

14 1
y(t) = e7t <1 — gt - 9Sln3t> .

Ex. 62f; Trasformando ambo i membri dell’equazione e notando che il polinomio
caratteristico si scrive (s — 5)?, ricaviamo

5—8 " 6
(s=5)2  (s—5)%[(s—5)%+36]

Per l'antitrasformazione, notiamo innanzitutto che (¢ > 0)

Y(s) =

1| s—8 6 _ ot 1 s—3 6
v | GobE o552 136]| © ~* | " 2(2+36)]
Inoltre
ot A
s=8_ 1.3 oy
52 s 82
6 1824365 1/1 1 <z ol
s2(s2+36) 6 s2(s2+36) 6 \s2 s2+36 6 36

e quindi la soluzione &

Ex. 62n; Tenendo presenti i valori iniziali, calcoliamo la trasformata del primo
membro dell’equazione

LW =2y +y=6Y —5-1-2(8Y -1)+Y =(s*-2s+1)Y —s+1,
mentre per il secondo membro abbiamo
Z e (u(t) —ut—1))](s) = £ [u(t) —u(t —1)](s — 1)
T e A

s—1 s—1 s—1
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In definitiva, essendo s? — 25+ 1 = (s — 1), troviamo Y = + e

quindi antitrasformando

t

y(®) = eu(t) + 5 [Pult) - (¢ = D2u(t - 1]
Ex. 620; Trasformiamo ambo i membri dell’equazione; per il secondo membro, osser-
viamo che sin2¢ = sin 2 (t — ) e usiamo la formula di traslazione:
2
2 _ —T7Ss
Y(S +2)—S—\/§—e m,

da cui
s+v2 ., 2 s+v2 ., s*+4—52-2

2127 @i+ 212 7° @10t +2)

s+vV2 1 1
= + e =AEe ol
s2+2 s2+2 244

A questo punto possiamo facilmente antitrasformare

y(t) = (cos V2t +sin vV2t) u(t) + u(t — ) (\}é sin vV2(t — ) — % sin2t> .

Ex. 62p; La trasformata del primo membro ¢ s?Y —s —1—3(sY — 1) +2Y =
(s2—=35+2)Y — s+ 2, mentre quella del secondo membro &

Z[10u(t —m/2) cost] =10 e 2° £ [cos(t +7/2)]

=10e %% ¢ [ —sint] = -10 —

Essendo s2 —3s+2 = (s — 1) (s — 2), ricaviamo dunque
1 10
Malergal; (2+1D)(s—2)(s—1)°
Per antitrasformare, decomponiamo in fratti semplici la funzione razionale

10 i Gdeco, DigBirtimGistID
(s2+1)(s—2)(s—1) s—-2 s—1 s2+1°

Risulta A = R[2] =2, B = R[1] = —5; inoltre usiamo le formule C =2a e D = -2 0,

essendo a+i 08 = R[i] =5/(3+1), quindi 2(a+:i8) =3—ie C =3, D=1. Dunque
2 ) 3s+1

t _ o1 _ N

Caltlen [3—2 s—1+82+1}(t 742)

el u(t) — {2e* ™ —5e'"™2 4 3cos(t — m/2) +sin(t — 7/2) } u(t — 7/2)

elu(t) —{2e* 7" — 5¢7™/2 4 3sint — cost}u(t —m/2).

€

[N

S

y(t)

Ex. 62q; La trasformata del primo membro & 2 (s?Y —s—1/2) —2(sY —1)+Y =
(252 —2s5+1)Y — 25+ 1, mentre quella del secondo membro &

d (1 1y_ 1 1_2¢#-25+1

ds (s—1)2 52 s2(s—1)2 °

s—1 s

Z[t(e"+1)] =
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Pertanto ricaviamo
_ s—1/2 1

S G122t/ P21
Per antitrasformare il secondo termine a secondo membro, decomponiamo in fratti
semplici; a tal fine, osserviamo che 1/(s (s — 1)) =1/(s — 1) — 1/s e quindi

1 1 1\? 1 1 2 1 1 2 2
82(81)2:<sl_s> TGt s Go1E 2 s—1's
Pertanto, per t > 0

y(t):et/zcos%+et(t—2)+2+t.

Notiamo che potevamo anche procedere nel modo seguente

o[- ()
PR PP

= [(e" = u(®)] * [(e" = 1) u(t)

= [e'u(t)] * [e'u(t)] — 2[e'u(t)] * u(t) + u(t) * u(t)

t t t
:et/dr—2/ erT—/dT
0 0 0

=t(ef+1)—-2(ef —1).




CAPITOLO XIV

Svolgimenti Serie e Trasformazione di Fourier

Ex. 63a Il segnale da trasformare ¢ sommabile e la trasformata si calcola mediante
la definizione:

dt

sin 7t 1 [+ gilr-wit _ gmilmtw)t
[t2—1]_2j/ 2 -1
e gli integrali si possono valutare col metodo dei residui.
Procediamo in modo diverso. Risultando

— 0o

2 1 1
VP g SVP Ty T VP
abbiamo
F [V.p. 1} = —jz sgnw (e — ¢/¥) = —mwsgnwsinw.
2-1 2
Ne segue

F [tSan_mlf] = —%[sgn(w — ) sin(w — ) — sgn(w + ) sin(w + )]

2%, sinw[sgn(w — ) — sgn(w + )]

= jrsinwfu(w + 7) — u(w — )] .
Confrontare con gli esempi nelle Lezioni.
Ex. 63b Procedendo come nell’Ex. 63a, troviamo

F cosgt ——z{s n(w—z>sin(w—z)+s n(w—i—z)sin(w—&—ﬁ)}
#2 Aqcpdemigo| % 2 g D% 2 2
g fmfes §) (-5
= 2cosw sgn (w 5 sgn | w 5

oo oo+ ) (o= )]

Confrontare con I’'Ex. 64e.
Ex. 64c Confrontare con 'Ex. 64b.
Ex. 64d Usiamo il teorema di campionamento. Dobbiamo quindi trasformare x,
che é prodotto di una funzione trigonometrica per una porta; deriviamo due volte nel
senso delle distribuzioni e usiamo la proprietd di campionamento della §:
zo(t) = [(5(75) —6(t+m)| sint + [[u(t) —u(t+ 71')]} cost = [u(t) — u(t + )] cost,
zg(t) = [6(t) = 6(t +m)| cost — |u(t) —u(t + )| sint =6(¢) +6(t + m) — xo(t) .

83
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Posto Xg = Z[x¢], trasformando ambo i membri e usando la formula per la tra-

sformata della derivata, ne segue —w? Xo(w) = 1 + '™ — Xg(w) e quindi, per
w# F1,
1 + eiﬂ'w
X (9) oo e
o) 1 —w?

Essendo wy = 1, dobbiamo campionare nei punti k € Z. Pertanto calcoliamo

1+eiﬂ'w Z'ﬂ_eiTrw

. . LT
XO(ZFl) tu wli>n$ll XO(W) o wgrgl 1—w? 10 —2w w=F1 B :':7 '
Inoltre, per k € Z — {—1, 1}
14+ et™k 14 (=1)F 0, per k dispari,
1-k 1—-k —=—, per k pari.
1—k
In definitiva, indicando un intero pari & = 2n, con n € Z, possiamo scrivere la
trasformata della replica periodica
7r T =
X(w) =35 0(w—1) 7]55(w+1)+2n;m1_74n25(w72n).

Ex. 64e Applichiamo il teorema di campionamento. Calcoliamo la trasformata di
xo. Poiché tale funzione & prodotto di una funzione trigonometrica per una porta,
deriviamo nel senso delle distribuzioni finché non si ripresenta il segnale di partenza:
+ cost [0(t + m/2) — 6(t — m/2)]

)

zh(t) = —sint [u(t + 7/2) — u(t — 7/2)
= —sint [u(t +7/2) —u(t —7/2)

xg(t) = —cost [u(t +7/2) —u(t — 7/2)] —sint [6(t + 7/2) — 6(t — 7/2)]
— o) + 6(t + 7/2) + 8(t — 7/2) .

) x
T 5 _x o 3 5
2 2 2 2 2T 27
/ " —_——_——d e _ =
Lo i T Lo 1
! 2 . >
_r ! F _r I &
2 M 2 2

A questo punto trasformiamo usando la formula per la trasformata delle derivate:
A O 7r
(1-w?) Fag=e29 e d2% = 2cos§w

e quindi, per w # F1,
cos T w
Xow) = Fag(w) =2—2—.
o(w) = .F zo(w) =2
Osserviamo che la trasformata ¢ funzione reale pari, come potevamo prevedere, essendo
tale anche il segnale di partenza.
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Un altro modo di calcolare X ¢ quello di usare la trasformata della finestra
II(t/7) = u(t + 7/2) — u(t — 7/2), scrivere cost mediante la formula di Eulero e
applicare la formula della traslazione. In tal modo abbiamo

Fxo] = FleostIl(t/m)] %f/‘[(eﬂ't + eI II(t/7)]
= £ #[/m)(w — 1) + 5 (/) +1)
T 1 1
g (MH T, AN

Jjt —jt F
o e AT T [6(w—1)+dw+1)],

possiamo usare la formula per la trasformata del prodotto:

L T
111 &
S 20.)

F xg= Fleost(t/m)] = %y[cost] « FI(t/m)] = [6(w—1) + 6(w+1)] =

ed infine, ricordando che d(w — wp) * Y (w) = Y(w — wp), concludiamo con gli stessi
calcoli di prima. Alternativamente ancora, osserviamo che la trasformata si ricava da
quella del’Ex. 64a mediante la formula di traslazione in ¢.

Poiché il periodo é 2, risulta wyg = 1 e dobbiamo campionare Xy nei punti k
interi; occorre quindi calcolare Xo(F1), per i quali non possiamo usare la formula
trovata. Dunque, essendo X continua,

cos % w o

Xo(1) = lim Xo(w) = lim 22—~ = 5
0

e analogamente (o usando il fatto che Xy ¢ pari) troviamo
parte, per k € Z — {—1, 1}, abbiamo

(=1) = 7/2. D’altra

cos T k Qﬂ
2 2

= = 1—-4
Xo(k) =2 T2 J1in

, per k= 2n pari

, per k dispari

In definitiva, essendo z(t) la replica periodica,

400 n
X(w):,?[x](w):g[6(w—1)+5(w+1)] +2 Z %(5@1—271).

n=—oo

Ex. 64f Usiamo il teorema di campionamento e trasformiamo x(¢) [u(t+1)—u(t—1)] =
x1(t) + w2(t), dove 1 (t) = [u(t + 1) — u(t)] e x2(t) = ' [u(t) — u(t — 1)].

A A
e|l----

[
—_ - = = -
NoF---4
Wk ---+
[N S —
[ { S

U
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A A

x1(t) ‘I xa(t)

U

-1
5 (t)
1 >
afglnaticy
In base alla definizione, per w # 0 abbiamo
o e—dwt]t=" jw _ 1
Xl(w):/ e~ Iwtgy — [ .]t:71 _ ¢ . 7
-1 —Jjw jw

mentre X;(0) = 1. Per trasformare xo, deriviamo una volta e usiamo la proprieta di
campionamento della §:

zh(t) = 22(t) + €' [6(t) — 6(t — 1)] = 22(t) + () — ed(t — 1)
e quindi, Yw € R,

Dunque, per w # 0,

X =
oW ===t T 50
mentre Xo(0) =14 e —1 = e. Essendo wy = 7, bisogna campionare nei punti k&,
con k € Z. Per k # 0, abbiamo

ejkﬂ_l el—jkﬂ'_l

Xo(kn) =
ok ) Thr 1 jkn
—e—1 er k pari
g 17]']{371.7 . 1% pari,
== 2 e+l _ 24+(e—1)jkm

jkn T 1—Gkm — Tkr kA per k dispari.
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In definitiva, scrivendo un numero pari non nullo & = 2n, con n € Z — {0}, e un
numero dispari k = 2n + 1, con n € Z, abbiamo

Xw)=medw) +m(e=1) >

neZ—{0}

1

——d(w—2nm)
1-2nmj

2 -1)(2 1

m 2y tle=DERE DT 5, (a4 1)m).
2n+1)j+@2n+1)2n

Ex. 64g Usando il teorema di campionamento, trasformiamo

wo(t) = 2¢ [u(t + 1) — u(t)] + cos g t [u(t) —u(t —1)].

Cominciamo col trasformare z1(t) = 2° [u(t + 1) — u(t)]. La trasformata puo essere
facilmente calcolata col metodo del riciclo; usiamo invece la definizione di trasformata
di Fourier:

0 s 0 i [ eClos 2—je)t] ="
Floi] = / 2 eI dt = / ellon2-3w)t gy = L—I=1
-1 —1 0g2 — jw

1— ejw—10g2 ejw —92
= = , Vw e R.
log2 — jw 2 (jw — log 2) @

Calcoliamo la Z-trasformata di z3(t) = cos % t [u(t) — u(t — 1)] mediante il legame
con la trasformata di Laplace (anche questa Z-trasformata si calcola col riciclo, o
esprimendo il coseno con la formula di Eulero); Z[xs](w) = Z[za](jw) e L[xa] &
funzione intera. Per il calcolo, supponendo Re s > 0 abbiamo

g(t—&—l)}

S

el = my

—e Y [cos

s e’ s /3
i Mofunatioca o Appliedioni SRfFatadScnio),
s2+72/9 2 <82+7T2/9 \[82+7T2/9>

Tale uguaglianza si estende a s € C (in Fj /3 bisogna eliminare la singolarita).
Ponendo s = jw, abbiamo per w # Fm/3

9 2jw—e Jw(jwfw/\f)
2 —9Jw?

Flxa] =

Chiaramente Xy = X7+ X5; essendo il periodo 2, risulta wy = 7 e bisogna campionare
Xy nei punti k 7, con k € Z: non intervengono quindi nel campionamento i punti F/3,
esclusi nella formula di X. Osserviamo che eT/*™ = (—=1)* dunque distinguendo i
casi k = 2n pari e k = 2n + 1 dispari, n € Z, abbiamo

1 6jn—++v3
X0(2n7r)2ﬂ_< T 43290 f),

log2—2jnm 1—36n2

3 47 C9j(2n+1)-V3
log2 —j

Xo(@n+1)71) = =
o(@n+1)m) = Cntl)r  9n2+9n+2
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+oo G

1 T 6in+V3

X(w) =3 §(w—2
@) 2n_z_oo<log2—2jn7r+3 1—36n2) (w=2nm)
3 io A _9j@en+1) -3
8 — \log2—j(@2n+1)m 9n2+9n + 2

>6(w—(2n+1)ﬂ').

Infine, per quanto riguarda la serie di Fourier, ricordiamo che
1
Cp = ﬂono(k‘wO), Vk e Z;
ag = Cp; e YVkeN: ay=cp+c_g, bp=7(ck—ck).
Ex. 64h Usando il teorema di campionamento, dobbiamo trasformare
zo(t) = (2 +3t) [u(t +3) —u(@®)] +3(t — t2) [u(t) —u(t — 1)] = ta1(t),
essendo
z1(t) =t +3)ult+3)—4tu(t)+3Et—1ult—1).
A tal fine, osserviamo che z; ¢ Z-trasformabile in C, quindi .Z[z1](w) = ZL[z1](j w).
Inoltre (supponendo momentaneamente Re s > 0)

e —443¢°
FLlz1](s) = T Base, g mIversit Vs e C—{0}.
Pertanto
e s —443¢"8 ediw 4439w
Flnlw) = ——5—— =— — ,  YweR-{0}.
s=jw

Per la formula della derivata della trasformata abbiamo

3jw _ a—jw 3jw_4+3 —Jw
(§ € . € (§
Flr1] =3 5 +2j 3 §
w w

Xo(w) = Flaolw) =

Alternativamente, posto g(t) = (t2 + 3t) [u(t + 3) — u(t)], osserviamo che q.o. risulta
xo(t) = g(t) — g(—3¢)/3 e quindi

Xo(w) = G(w) — éG (ﬁ) .

3
Essendo il periodo 4, ¢ wo = /2 e dobbiamo campionare nei punti km/2, con
k € Z. Osserviamo che €373 = —j = ¢™7 3, quindi per k # 0 abbiamo
(=) —44+3(—i)F 64 (—i)F—1

Xo(km/2) =0+2j

=7 —
(k‘ 71_/2)3 7-[-3 k3
Inoltre X(0) = f33(t2 +3t)dt +3 fol (t —t?) dt = —4. Dunque

32— (=i)F -1
E#0

Ex. 64k Usiamo il teorema di campionamento; trasformiamo dunque xy. Osserviamo

che per le proprieta di simmetria, la trasformata sard immaginaria dispari. Per il

calcolo, notiamo che

zo(t) =j(—jt) [u(t +7/2) —u(t —7/2)] cost =j (—jtzi(t)),

S(w — k/2).
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e ricordiamo che la trasformata di x; é calcolata nell’Ex. 64e; pertanto, usando la
formula per la derivata della trasformata, abbiamo per w # F1

# S oo 1 5 d cos & w
o) = Flwolw) = § & Flerlw) =25 & 2
s TC s
] W*Slnfw COS7C&]
=92 — 2 .
]<2 i g2AD w(l—w2)2)

Essendo il periodo 7, &€ wy = 2 e dobbiamo campionare Xy nei punti 2k, con k € Z;
non intervengono nel campionamento i valori esclusi w = F1:

Xo(2k) =2 <o+4kC°S“> :8j(k(_1)k

(1—4k2)2 1—4k2)2
In definitiva, essendo x la replica periodica, abbiamo
+o00 k (_1)k
X(W) = ﬁ[m](w) = 16] k:z_:oo mé(lﬂ — 2k}) .

Ex. 641 Usiamo il teorema di campionamento. Dobbiamo quindi trasformare il segnale
zo(t) =t(1— e) [u(t) —u(t —1)] +* [u(t + 1) —u(t)] .

Cominciamo col trasformare z1(t) = e’ [u(t)—u(t—1)]; questa trasformata ¢ calcolata

nell’Ex. 64f. A scopo illustrativo, procediamo in base alla definizione; abbiamo

elfjw 1

1
Xl(w):/ e(l77w)t gy — 1, Yw € R.
0

1-—jw
Alternativamente,
1— e Gw—D
Xi(w) = ZMu(t) —u(t = 1)](jw—-1) = R —
Ricordando la formula per la derivata della trasformata troviamo quindi
d el -1 1—jwel™w
T dw 1-jw | (1-jw)?

Z [t e [u(t) — u(t — 1)]} = Fltai(t)]

Calcoliamo ora la trasformata di za(t) = t [u(t) — u(t — 1)] + ¢ [u(t + 1) — u(t)]
derivando ripetutamente fino ad ottenere impulsi e derivate di impulsi:

ah(t) = u(t) —u(t — 1)+t [0(t) — 6(t — 1)] + 2¢[u(t + 1) — u(t)]
+2[0(t+ 1) — §(t)]
=u(t) —u(t—1) =6t — 1)+ 2¢[u(t+ 1) —u(t)] +0(t + 1),

ay(t) =6(t) —6(t —1) = 8'(t — 1) + 2[u(t + 1) — u(t)]
+2t[0(t+1) = 6(t)] +6'(t+1)
=6(t)—0(t—1) =&t —1)+2[ult+1)—ut)] —26(t+1)+8(t+1),

zy'(t)=68() -8 t—1)=8"(t—1)+2[6(t+1)—(t)]
—28'(t+1)+06"(t+1),



90 XIV. SVOLGIMENTI SERIE E TRASFORMAZIONE DI FOURIER

quindi (jw)? Xo(w) =jw+ e ¥ (—jw+w?)+ e/¥ (2-2jw—w?) —2 e, per w # 0,

jwt e Y (—jw4w)F Y (2—2jw—w?)—2
Xo(w) = 42 (—J ) 2-2 ) =2

w3

Inoltre X»(0) = fol tdt + f_01 t2dt = 1/2+1/3 = 5/6. Essendo il periodo 2, abbiamo
wo = 7 e quindi dobbiamo campionare nei punti k7, con k € Z. Per k # 0 pari
risulta ¥/ %™ = 1 e quindi Xy(kn) = 2/(km)2. Per k dispari risulta eT/*™ = —1 ¢
quindi Xo(k7) = —4 (i + km)/(k7)3. Dunque la trasformata del prolungamento per
periodicita é

+oo .
X(w)= —7 Z M(;(w_kﬂ)

cietica (1Apphar)2

5 1 1
+67T§(w)+27rnz#orﬂ§(w—2n)

4 X i+ @n+)n
- = ST I S(w— (2n+ D).
Wzn; 2n+1)3 §(w—(2n+1)m)

Ex. 64m Tracciamo il grafico del prolungamento periodico x:

(B
3l

Usiamo il teorema di campionamento. Trasformiamo il segnale (per —w < t < —7/2
¢ |sint| = —sint)

xo(t) = [u(t—&— g) —u(t - g)} +sint [u(t - g) - u(t—ﬂ)}
—sint [u(t—i—ﬂ) - u(t—|— g)}
=21 () + z2(t) + 23(t) .

zo(t)

s -
—sint sint

- -5 5 g sint

[SE]

—sint
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sm w
In base alla definizione, troviamo X;(w) = (o cio che ¢ lo stesso, osservando

w
2

che z(t) = II(t/m) e ricordando che Z[II] = 9°

mediante la formula di cambiamento di scala).

Il segnale z5(t) = sint[u(t — 7/2) — u(t — )] ¢ prodotto di una funzione trigo-
nometrica per una finestra, quindi per trasformarlo possiamo derivare due volte nel
senso delle distribuzioni:

xh(t) = cost [u(t— g) —u(t — ] +sint {5(15 5) —4( t—’IT)]

:cost[u(t—g)*U(t* ] ( *g)

2(t) = —sint {u(t— g) —u(t — ) ] +cost 6(t— 7) —5(t—7r)} +5’(t— E)

_xg(t)+5(t_7r)+5’(t_g) 2

, calcoliamo la trasformata X;

e quindi trasformando —w? X5 (w) = —Xo(w)+ e/ "+ jw e I3%, ovvero per w # F1,

1 — w?

XQ(W) =

Per trasformare z3(t) = —sint[u(t + m) — u(t + 7/2)], basta osservare che risulta
x3(t) = x2(—t) e quindi

ejﬂ'w_jwejzw

X3(w) = Xo(~w) = Toe

Pertanto (per w # —1,0,1)

Xo(w) = Xl(LU) + Xg(u)) + Xg(W)

251n§w+ eI L jwe IV 4 7Y — juw el2¥

w 1— w?
sin 2 w cosSTw + w sin Zw sin 2w+ w cosTw
-9 2 _|_2 2 ol 2
w 1—w? w(l—w?)

La funzione X é reale e pari, come é chiaro risultando tale pure zy. Per il campiona-
mento, essendo wg = 1, dobbiamo calcolare i valori di Xy nei punti esclusi:

Xo(0) = /+Oox0(t)dt: /ﬂ zo(t)dt = 1 +2,

— 00 —T

w—1

w—1

+2

2singw CoSTw + w sin Jw
w 1—w?

—msinTw+sin 2w + w Z cos Zw
=2+21lim 2 2 2 =2-1=1.
w—1 —2w
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sin 5 n+ncosTn

D’altra parte, per n € Z — {—1,0,1}, abbiamo Xo(n) = 2 a 2y e,
n(l—n
distinguendo i casi n pari e n dispari,
sinkm+ 2k cos2km 2
Xo(2k) =2 = k >
o(2k) 2k (1 —4k2) TRt db KIak

sin(km+ %)+ (2k+1) cos(2k T + )
2k+1)(—4k—4Ek?)
2k+1—(=1)k

T2Qk+ 1) (k+K2)” k#-1,0.

Xo(2k+1) =2

Pertanto la trasformata del prolungamento periodico = é

X(w):(7r+2)6(w)+§(w—1)+5(w+1)+2217714m(5(w—2k)
k20

1 2k +1—(=1)k
+§k;0(2k+1)(k+k2) Ow—=2k—1).

Da questo possiamo subito scrivere la serie esponenziale di Fourier di z, ricordando
che i coefficienti sono ¢, = Xo(n)/(27):

1 1 et et 1 e2kit
e fecadenicp 502 5 §reed Dina
z(t) (2+7r)+27r+27r +7rl;)1—4k2

1 2k+1— (1" (2k+1)4t
+4wk7;0(2k+1)(k+k:2)e ‘

La serie trigonometrica sara in soli coseni, poiché il segnale x ¢ pari. Ricordando che
ag = ¢g € Gy = Cp + ¢y, YN € N, scriviamo

1 1 cost 2 cos2kt 1 2k +1—(—1)F
LT = Rk T b AR 2k +1)t.
z(®) (2+7r>+ ™ +7rk€ZNl—4k2+27T]§I(2k+l)(k+k2) cos (2k +1)

Ex. 64n Tracciamo il grafico del prolungamento periodico x:

—t-z t—
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Usiamo il teorema di campionamento. E chiaro che il segnale z si ottiene come replica
periodica di periodo 27 della somma x( di

o(t) = —cost [u(t+ 7) —u(t— 2]
= (- B (- --r]
i ey W o

z1(t) x5(t)|”

k3 I T I3 s I
3 3T
~cost

La trasformata di —x1(t) = [u(t+7/2) —u(t—m/2)] cost ¢ stata calcolata nell’Ex. 64e;
per w # F1:

oS 5 W

w?—-1"

La trasformata di zo si riconduce facilmente a quella del segnale yy nell’Ex. 64u,

risultando
77 t—m
3?2(t)=2y0( T )

2

Xl(w) =2

Usando la formula di traslazione e quella di cambiamento di scala, otteniamo per
w#0
T . e g
- 7‘]7!'0.)Y<7 ): —jmwo
979 € 0 9 w e
Essendo wg = 1, dobbiamo campionare nei punti w = n € Z. Occorre quindi calcolare i
valori esclusi dalle formule trovate; poiché X;(F1) = —m/2 e X2(0) = (7/2)?, abbiamo

1—cosiw

2

™ s
X0(0)=X:(0) + X(0) = =2+ -, Xo(F1) =-5 - 2.
D’altra parte, per n € Z — {—1,0,1}
11 LU cos 5 M immal—cosZn
Xo(n)—Xl(n)+X2(n)f2n2_1 o J QT'
Evidentemente:
57 =0 per n dispari = Xo(n)
—-—n= T ispari =_.
cos2n per n dispa o(n i

cos g n = 1 per n divisibile per 4 = Xy(n) = T
™ . i, di.. n? —2
cos 5 n = —1 per n pari, ma non divisibile per 4 = X

(n)sz.
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Scrivendo nei tre casin = 2k+1con k € Z—{-1,0}, n =4k con k € Z — {0}, e
n =4k + 2 per ogni k € Z, rispettivamente, abbiamo in definitiva

X(w) = (”2 = 2) §(w) — (g n 2) [6(w—1)+6(w+1)]

4
1
-2 ——0(w—-2k—-1)
2 T
+2 0w —4k)
>
4k +2)% -2
+2)° ( 2+ ) - S(w—4k—2).
i (4k+2)2[(4k +2)? — 1]
-3t -1<t<0
Ex. 640 Chiaramente z(t) = ’ =*<Y " Tracciamo il diagramma del
t 0<t<3

prolungamento periodico, denotato ancora con z.

Usando il teorema di campionamento, trasformiamo il segnale
zo=—3t[u(t+1) —u(t)] +t[u(t) —u(t —3)] =t [4u(t) — 3u(t + 1) —u(t — 3)],

la cui replica periodica di periodo 4 ¢é il prolungamento periodico x. Deriviamo due
volte nel senso delle distribuzioni:

zo(t) =4u(t) —3u(t+1) —u(t —3)+t[46(t) —38(t+ 1) — 6(t — 3)]
=du(t) —3u(t+1) —u(t —3)+36(t+1) —36(t — 3),

xg(t) =46(t) =30t +1) =5t —3)+38(t+1)—38(t—3).
Trasformando,
—w? Xow)=4—-3e&Y — e 1 3jw el —3jwe ¥V,
da cui ricaviamo, per w # 0,

31— +jwe)+1— e 3% —3jwe 3w

Xo(w) T )

—w
Una scelta leggermente pit comoda dal punto di vista dei calcoli &

z1(t) =t [u(t) —u(t —3)] —3(t —4) [u(t — 3) —u(t — 4)],
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che ha pure come replica periodica z; il segnale 1 ¢ continuo, quindi #} non contiene
impulsi. E facile derivare x; graficamente:

(1) zi(t) (1)

Dunque 2 (t) = 6(t) —46(t —3) +346(t — 4).
Alternativamente, posto

zo(t) =t [u(t) —u(t—3)],  as(t)=-3t[ult+1)—ut)],

in modo che risulti g = x5 + x3, possiamo osservare che x3(t) = x2(—3t), quindi
X3(w) = %Xg(—%). Per calcolare X5, possiamo procedere come prima, derivando nel
senso delle distribuzioni, o come segue:

Xo(w) =7 [t[ul) —u(t = 3)]] =j & [ - jt [ult) —u(t = 3)]] = j jfw Xa(w),

dove x4(t) = u(t) — u(t —3). La trasformata X} si calcola subito usando la definizione:

+o0 : 3 1 — e—3iw
Xy(w) = / z4(t) e 99 dt = / e I¥t dt = -
—o0 0 Jw
Dunque
d 1—e2% 3jwe ¥ 14 3%
X =Nin = .
2(w) dw w w?
Ne segue ‘ ‘ ‘ ‘
1 —jwel” -1+ e« 1—e“+jwel”
X = — =
3(w) 3 w?/9 —w?

e quindi riotteniamo la trasformata Xy = X5 + X3 trovata precedentemente.
Occorre calcolare a parte X(0):

1
Xo(0) = 3 4 -3 (= area triangolo)

Essendo il periodo 4, risulta wg = 7 e dobbiamo campionare nei punti k& 5, con k € Z.
Poiché

o 3kE = o 2WmithTI — okEI — jk
per k # 0 troviamo

™ s

1—j* ‘k—'k> 1—4F—3jk= 4" .

ro (i) gL CTF A I F 0T e
2 —k272 w2 k2
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Pertanto infine
T

0z 8 -1
X@n_gwawy+;g; k2<%w—k§)
Ex. 64p Il prolungamento si ottiene come replica periodica di
zo(t) = (2 = D{[u(t+2) —ut + 1)] — [u(t + 1) — u(t — 1)]
Hu(t — 1) —u(t —2)]}

= (1= {210(t/2) —T(t/4)} = 1 =)z (1),
dove come al solito II(t) = u(t+1/2) — u(t — 1/2) e abbiamo posto z1(t) = 211(¢/2) —
II(t/4).

x(t)

Per le proprieta della trasformazione, avremo

. d?
Xo=F [m1(t) - 21(t)) = X1 + F [(—i 1) 21 ()] = X1 + e X1
Per calcolare X7, ricordiamo che .Z[II(t)] = sin(w/2)/(w/2), quindi, per la formula di
cambiamento di scala,

sin w sin 2w
F[I(t/2)] =2 II(t/4)] = 4
FMe2 =2 /) =47
e dunque
sin w sin 2 w
X =4 —4 =4[Y(w) —Y(2
) =42 g T U () - Y (2w)],
essendo Y (w) = 2 Inoltre X{'(w) = 4[Y"(w) —4Y"(2w)], essendo
sinw cosw sin w
14 Y” = — -2 2
(14 (@) =-T2 o T
Pertanto

Xo(w) =4{Y(w) - Y(2w) +Y"(w) —4Y"(2w)} .
Il valore w = 0 non pud essere inserito nelle espressioni trovate, quindi Xy(0) deve
essere calcolato a parte. In base alla definizione, abbiamo X(0) = fj;: xo(t) dt = 4.
Poiché il periodo ¢ 4, risulta wy = 7/2. Nel campionamento, distinguiamo i casi n pari
e n dispari. Per n # 0 pari, scriviamo n = 2k, con k € Z — {0}, quindi nwy = k.
Inoltre Y (k7)) =Y (2k7) =0 e da (14)

coskm (—1)k " co II” 2
(k)2 GnE Y @km =G

Y'(kw)= -2
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Dunque

8 1—(=1)*
Per n dispari, scriviamo n = 2k + 1, con k € Z, quindi abbiamo nwy = k7 + 7,
YQ2kn+m)=0e

V(kmn+3)= L

Ckr+ %
Npys 2(—1)* 2
Ykt z) = - Y"(2k L —
s +1) Fr A e (G o) SoigEe e
Quindi
322(-1)F-2kr—n
Xolkm+ ) ==
olkm+ ) = 3 2k+1)°
Pertanto

_(_1\k
X(w) =276(w) +% Z%é(w—kw)
k=0

16 2(-1)F -2k —7
= S(w—km—1z).
+7T2]€EZZ (2k+1)3 (w ™ 2)

D’altra parte, non é difficile calcolare in base alla definizione i coefficienti ¢j della serie
esponenziale di Fourier.

Ex. 64q Indichiamo con x anche il prolungamento per periodicita.

rérmica-e ddlle-Sci 1 ST TSI o UT

T = ™ 3 ' 5 37 T
2 I 2 E 27 am 3 3T

Osserviamo che risulta x(t) = 1 — y(¢), dove y ¢ replica periodica con periodo 27 di
yo(t) = cost [u(t +7/2) —u(t — 7/2)].

Pertanto abbiamo X (w) = 27 6(w) — Y (w). D’altra parte, la trasformata Y = Z[y] &
stata calcolata nell’Ex. 64e:

ellm Scjenz SRl Gt dy Nap
Y(w) =3 [fw—1) +dw+1)]+2 0w —2n).
Dunque in definitiva
i Stz di stk D Ngpoli
X(w) =27 6(w) 5 [bw—1)+d(w+1)] +2 Z 4n2_15(w 2n)
= (27 —2)d(w) — g [fw-1)+dw+1)]+2) 4(71_1)_: §(w—2n).
n#0

Ex. 64r Il prolungamento per periodicita, che indicheremo ancora con x, si ottiene
come replica periodica con periodo 2 di

2o(t) =12 [u(t) — u(t — 1)] + (2 — ) [u(t — 1) — u(t — 2)].
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2o(t)

| 1 2 -2 o1 [ 1 2 3 4

Procediamo mediante il teorema di campionamento. Trasformiamo xg; poiché
tale segnale é somma di termini ciascuno prodotto di un polinomio per una finestra,
deriviamo nel senso delle distribuzioni fino a che rimangano impulsi e derivate:

zo(t) =2t [u(t) —u(t — D] + 2 [6(t) — 6(t — 1)] — [u(t — 1) — u(t — 2)]
+2-t)[0t—-1)—d(t—2)]=2tu®t) —ult—1)] —ult—1) +u(t —2)
(notiamo che la derivata coincide con quella ordinaria, zo essendo C! a tratti)

[u(t) —u(t—1)]+2¢t[0() — 6@t —1)] —d(t—1)+6(t —2)
[u(t) —u(t—1)] —36(t—1)+d(t—2)

xy () =20(t) —26(t—1) =38t —1)+d(t—2)

Applicando la trasformazione ad ambo i membri e ricordando la formula per la tra-
sformata delle derivate, troviamo

—juP Xo(w) = Flzy]|=2—-2e7Y —3jwe I +jwe2I¥,

da cui ricaviamo (in senso puntuale, essendo X una funzione di classe C*° in quanto
trasformata di una funzione a supporto compatto), per w # 0

e v —1 3ZeIw— e 2w

jws w?

D’altra parte
1 2 5
XO(O):/ t2dt+/ (2—t)dt ==
0 1 6

Essendo il periodo 2, risulta wg = 7w e bisogna campionare nei punti k7, con k € Z.
Poiché e 7#™ = (—1)* distinguiamo i casi k pari e k dispari:

ﬁ, per k=2n, n#0
Xokm)=q"7—@n-1nr
4 @n_17P per k=2n-1

In definitiva

5 1 1 4 —j—@2n-1)n

Ex. 64s Il prolungamento z é replica periodica con periodo 2 di

zo(t) = (t+1) [ult+1) —u(t)] —t [u(t) —u(t—1)].
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sy s
N N N

Procediamo mediante il teorema di campionamento. Trasformiamo xq; deriviamo
nel senso delle distribuzioni fino a che rimangano impulsi e derivate:

zo(t) =u(t+1) —u()+ @ +1) [6(+1) = 6(t)] — [u(t) —u(t —1)]
—t[6(t) —6(t —1)]
—u(t+1)—2u(t)+ult—1)—6(#) +5(t—1)

zo(t) x(t)

zo(t)=6(t+1)—286(t)+6(t—1)—8()+0'(t—1)

e quindi, applicando la trasformazione e usando la formula per la trasformata delle
derivate, abbiamo

—w? Xo(w) = 7Y =24+ 7Y —jwtjwe I

e, per w # 0,

1—cosw e v —1
XO (w) =2 B} + A .
w Jjw
Alternativamente, posto z1(t) =t [u(t) — u(t — 1)], possiamo scrivere zo(t) = 21 (t +
1) — z1(¢); inoltre

. d /o Sinw/2
YA D a4 LGOI LU 41/ 2D po &
Flei)] =7 ZI-jtlt-1/2)]=j -~ e o)
! 1—e_j“’_,e_jw 1—eJw
T dw w v M w w? t

Flor(t+ 1] = ¢ Sl =j -~ <

2
w
e riotteniamo facilmente I’espressione trovata per Xy. D’altra parte
1
Xo(0) = lim X =2--1=0.
0(0) = lim Xo(w) =23

Riguardo al campionamento, essendo il periodo 2, é wy = 7; inoltre osserviamo
che ¥n € Z risulta Xo(2n7) = 0, mentre

24+5@2n—1)m
Pertanto, in definitiva

X(w) = i%2+(‘;f7_11>21)” §(w—(2n—1)7).

Ex. 64t Il prolungamento x si ottiene come replica periodica con periodo 1 di

o(t) = (1 —t) (e = 1) [u(t) —u(t — )] = 1= t)yo(t) = [L —j (=5 )] o (t),
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S g N noN A
\ 1 -1 \ 1 2

dove yo(t) = (e’ — 1) [u(t) — u(t — 1)]. Calcoliamo la trasformata di yo in base alla
definizione; per w # 0:

1 1
/ (e —1) e_j‘”tdt:/ (e(l_j“’)t—e_j“t)dt
0 0

Yo (w)

1-jw —Jjw 1—jw i jw
Dunque, ricordando la formula per la derivata della trasformata, abbiamo
el7iw -1  ed¥w -1
- + -
1—jw jw

[ elTiw LelTiv 1 eTiw  eiw_]
—J{—] .—(—J)( e Aol adermico 207 }

Xo(w) =Yo(w) —j¥5(w) =

1—jw 1—jw)? jw Jjw?
-1 -1 LelTiv—1  eiw—1
S St S ) () ek SR
l—-jw  jw (1-jw) jw
_eieo1 eie 1
cadlimideoR w? jw(l—jw)’

Inoltre

1
XO(O):/O (1—1t) (et —1)dt = efg.

Poiché il periodo ¢é 1, risulta wy = 27 e bisogna campionare nei punti 2 k7. Essendo
e 72k™ =1, VEk, dall’espressione di X ricaviamo per k # 0
e—1 1 _ ej2km—1

Xo2km)= —————=+0— =
o@EM) = 5ok T T Tokn—jokn)  jZhn(—j2kn)
Pertanto concludiamo
2kme+j
X 2e— Ow—2km).
Wl=d2 g +lcz¢ok (1—-2kmj)? (w ™)

Ex. 64u Tracciamo il diagramma del prolungamento per periodicita (che indichiamo
ancora con ):

3 2 -1 I 1 2 3 4 5 6

I chiaro che y(t) = 1—z(t) si ottiene come replica periodica di periodo 3 della finestra
triangolare

yo(t) = (1 —t) [u(t) —u(t —1)] + (1 +¢) [u(t +1) —u(t)] = A(t),
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yo(t) \ A (®) \

—1 [ 1 -3 -2 1 [ T 2 3 4 5 [

trasformata nelle Lezioni: per w # 0, abbiamo
1 —cosw
Yo(w) =2 STop Dy

mentre Yp(0) = 1. Poiché il periodo ¢ 3, risulta wy = %w; per k # 0, abbiamo

2
9 1—coskigm
193 ) Lo

2
’ (k37)
ed essendo COS%WZCOS% = —%, troviamo ancora
2 0 , per k=3n,conn#0
Y0<k3ﬁ>: (227)2 ,perk=3n+leperk=3n+2,connecZ
7r

Pertanto

e quindi in definitiva

X(w)=2710(w) —Y(w)
+oo

LoD [wé(w—(?mﬂ);w)

oo Vst S el 0

Notiamo che X (w) & reale pari, come potevamo prevedere, essendo tale pure z(t).
Ex. 64v Il prolungamento, indicato ancora con z, si ottiene come replica periodica
con periodo 7w di zo(t) = z1(t) + z2(t), dove

z1(t) = cost [u(t +7/2) —u(t)], za(t) = (1 —2t/m) [u(t) — u(t — 7/2)] .

1 1
zo(t) (t) |

i - -5 I 2 i i

s \ B s
Derivando due volte, troviamo x1(t) = —z1 (t)+(t+m/2) — &’ (t) e quindi, per w # F1,
efEY —jw
1 —w?
Analogamente, x4 (t) = —(2/7) 6(¢t) + (2/7) §(t — 7/2) 4+ 6'(t) e quindi, per w # 0,
2(e2Y —1)+7jw
Y :

Xl (W) =

XQ(LLJ) =
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Inoltre X5(0) = 7T/2(1 —2t/7)dt = w/4. Essendo il periodo 7, risulta wy = 2, quindi
dobbiamo campionare nei punti 2 k; w = F1 non intervengono. Dunque, per k # 0,
(=DF2k—j (=D*-1

2k(1—4k2)  2k2x

Xo(2k) = X1(2k) + X5(2k) =

2k —j .
12048 Fofin T k
2k (1 — 4k2) » ber i patt
—2k— . .
751 4k2) + k:217r , per k dispari

Possiamo pertanto scrivere

X(w) = (2+ 2) o +Z 4” 1é 2y 9w )

2n—1)+] 2
§(w—dn+2
+Z[2n—1 16n2—16n+3)+(2n—1)27r] Wraidatid)

Ex. 64w Il prolungamento z si ottiene come replica periodica con periodo 2 di

zo(t) =1* [u(t) —u(t —1)] +u(t — 1) + u(t —2).

xy 1

1 2 -2 L 1 2

\

w
L= T,

Deriviamo fino a che non rimangano impulsi e derivate (deriviamo 3 volte):
zo(t) =2t [u() —u(t — 1))+ [6(t) —6(t —1)] +6(t — 1) — 6(t — 2)
=2t |u(t) —ut—1)| —0(t—2)

zg(t) =2u(t) —2u(t — 1) +2¢ [6(t) — 6(t — 1)] —0'(t —2)
=2u(t) —2u(t—1)—25(t—1) -t —2)

xg'(t) =26(t) —26(t—1) =28t —1)—8"(t —2)
e quindi, applicando la trasformazione,
—juW Xpw)=2—-2e7%Y —2jwe ¥ 4 w? e 20V,
Dunque, per w # 0, otteniamo

‘1_ e—jw e—jw 'e—2jw
XO(W):2] wg +2 wz +J )

D’altra parte, X((0) = fol t2dt +1=1/3+1 = 4/3. Essendo il periodo 2, & wy = 7
e dobbiamo campionare nei punti k7, con k € Z. Osserviamo che e k™ = (—1)k;
distinguiamo i casi k pari e k dispari:
1;_% ,perk=2n, n#0
Xo(km) =9 4 -2@2n-)r+j2n-1)>x
(2n—1)37°

,perk=2n—-1
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Pertanto
1 l1+nmy
X(w)==md(w) 27r§) 5 0w —2nm)
44252n—1)m+2n—1)%7
+pz Gn_1) 5(w—2n7r+7r).

Ex. 64x Il prolungamento x ¢é la replica periodica di

o(t) = t [u(t) — u(t — 1)] +sin g t[u(t—1) —u(t—2)] .

xo(t) 1V\ z(t) 1= ;

2 -2 -1 1 2 3 4

L’esercizio & analogo all’Ex. 64v. Per il risultato, osserviamo che, indicata con y(t) la
funzione periodica di periodo 7 di tale esercizio, risulta

2(t) =y (-5t - 1)

UG P

e quindi
Ciw ™ 2 2
X = 2o (50] = Fever ()
Inoltre
2 2 2 2
5(—w—4n> =d(w+2nm), 5<—w—4n+2> =6(w+(2n—-1)m).
T v v T
Pertanto
1€ 47’l -] j2nm
X(w)—( ) +Z2n — 1617 e d(w+2nm)

2n—1)+] 2
+Z[ 2n—1) 16n2—16n+3)+(2n—1)27r} x

x el Cr=N75( 4+ (2n — 1) 7)

(D T gyt a0

(2n+ 1) — 9
_,% [(2n+1) (16n2+16n+3) + (2n+1)27} S(w—(2n+1)7)

Ex. 64y Tracciamo i diagrammi di z( e della replica periodica x:
xo(t) 1

qnato 1 5 4 -3 2 _1 1 2 3 4 5

Per trasformare zo, osserviamo che risulta zo(t) = —(—;t)?II(¢/2) e quindi, per

w # 0,

d? sinw —sinw cosw sin w
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D’altra parte Xy(0) = 2f01 t2dt = 2/3. Essendo il periodo 4, risulta wy = 7/2; nel
campionamento, distinguiamo i casi k pari e k dispari:

_1)"
4 =2
in(kﬁ): 4,’7‘271-2/47 perk n,n#o
2 1 2
2(=1)" — — k=2n+1
(=1) ((2n+1)7r/2 (2n+1)37r3/8>’ s e

Pertanto

X(w) = T o) + 25 5 )

+ %Z(—l)" Wé(w —nw—7/2).

Ex. 64z Il prolungamento x si ottiene come replica periodica con periodo 2 del segnale
continuo

zo(t) = (2t — %) [u(t) —u(t — )] + (2 —t) [u(t — 1) — u(t — 2)] .

2 3

1 2 -3 -2 -1 1

Deriviamo fino a che non rimangano impulsi e derivate (deriviamo 3 volte, i calcoli
sono analoghi a quelli dell’Ex. 64r:

zh(t) = (2= 2¢) [u(t) —u(t — 1))+ (2t —t3) [6(t) — 6(t — 1)]
—ut-1)—ult—=2)]+2—-¢)[0(t—1)—0(t —2)]
=2(1 =) [u(t) — ut — 1)] — u(t — 1) + ut — 2)

(notiamo che la derivata coincide con quella ordinaria, ¢ essendo C! a tratti)

zg(t) = —2[u(t) —ut —1D]+2(1—t)[0(t) —6(t—1)] —6(t —1)+6(t —2)
—2[u(t) —u(t—1)]+26() -6t —1)+6(t — 2)

g (t) = —26(t) +25(¢t —1)+25@#) -5t —-1)+68(t—2)
quindi
—jw Xo(w) =—-2+2e77¥ +jw(2— e+ e72¥)
e, per w # 0, ricaviamo
2125 RiigeTtedo eDHH

Xo(w) =27 3 "

D’altra parte Xo(0) = [; (2t — #2)dt +1/2 = 1 —1/3 4+ 1/2 = 7/6. Poiché il periodo
é 2, risulta wy = m e dobbiamo campionare nei punti k£, con k € Z; distinguiamo i
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casi k pari e k dispari:
(-DF-1 3-(-1*

X()(k‘ﬂ')ZQj k37T3 — k27T2
—ﬁ , per k=2n,conn#0
i 2n—1) 7+
—4m ,perk’:2n—1
Pertanto
7 5 1 15 7T+j6
X(w):éw (w)—ﬁgn— (w—2nm)— 22 Gn_17 (w—2nm+m).

Ex. 64a; Il prolungamento x ¢ la replica periodica con periodo 7 del segnale continuo

zo(t) = sint [u(t) — u(t — 7/2)] + (2 = 2t/7) [u(t — 7/2) — u(t — 7)] .

ver 1["" I x(t\/T\lV\/
z ™ —%ﬂ' T -5 5 ™ %W

L’esercizio & analogo all’Ex. 64v. Per il risultato, osserviamo che, indicata con y(t) la
funzione periodica di periodo 7 di tale esercizio, risulta x(t) = y(t — 7/2) e quindi

Xw)=e739Y(w) = ( ) )+ Z 41n_ 1én2) d(w—4n)

e 22n—1)+ 2 poli °F
%[( + }5( 4n+2).

2n—1)(16n2—-16n+3) (2n-1)27
Ex. 64b; Il prolungamento é replica periodica con periodo 7 di

zo(t) = €' cost [u(t+7/2) —u(t —m/2)].

Per trasformare z, usiamo il legame tra .% e #; osserviamo che #[x¢] & una funzione
intera e .Z[zg](w) = ZL[xo](j w). Poiché (supponendo momentaneamente Re s > 1)

Z et costu(t+7/2)] = £ [costu(t+m/2)](s—1)

= D2 glsint u(t)](s — 1) = a1 Iifdde
(s—1)2+1
e analogamente
Z e costu(t—m/2)] = i Bonct i
(s—1)2+1°

abbiamo
e(jw—l)ﬂ'/Q + e(l—j w) /2

Jw—1)2+1

Xo(w) = Flzo] =
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Essendo il periodo 7, risulta wg = 2; inoltre

Ty —kmj+m s
Xo(2k) = ekmi=m/2 4 okmitm/2 _ (1 cosh %
2kj—1)2+1 1-2kj—2k2
e pertanto
+o00 k
™ )
k=—o00

Ex. 64c; Tracciamo i diagrammi di x( e della replica periodica x:

Per la trasformazione, per w € R — {—1, 0, 1} abbiamo

t sinTw  sinw(w—1) sinw(w+1)
X = 1 t) II| — =2
o) f/"[( 2 S (27r)] w i w-—1 w+1
] 2 1 1 sin 7w
=sinmTrw|——————] =2 .
w w—-—1 w+1 w— w3

Notiamo che Xy ¢ reale pari, come zy. Essendo il periodo 3w, risulta wy = 2/3 e
bisogna campionare nei punti k£ 2/3; i punti F1 non intervengono nel campionamento.
D’altra parte Xo(0) = lim,, 0 Xo(w) = 27. Nel campionamento, distinguiamo i tre
casik=3n,k=3n+1ek=3n+ 2; essendo

3 9 3 5
troviamo
0 ’perk':?)n’conn#o
2 V3/2 ) :
—V3/2
= 2
(n+2/3) — 4(n +2/3)° , per k=3n+
e pertanto
1 1

1
35(w)+\/37;2{(n+1/3)—4(n+1/3)
1
35(w—2n—4/3)}.

C (n+2/3)—4(n+2/3)
Ex. 64d; Il prolungamento x é replica periodica con periodo 7 di

zo(t) =t cost [u(t) —u(t —7/2)] .

(1) } (1) I

\ \ H ? -

Posto 21 (t) = cost [u(t)—u(t—m/2)], abbiamo zo(t) = j (—jt) z1(t). Per trasformare
x1, essendo tale segnale prodotto di una finestra per una funzione trigonometrica,
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usiamo il metodo del riciclo, quindi deriviamo due volte:

2 (t) = —sint [u(t) —u(t — 7/2)] + cost [§(t) — 6(t — m/2)]
= —sint |u(t) —u(t —7/2)| + 6(¢)

2)(t) = —1(t) —sint [6(t) — 6(t — 7/2)] +6'(t) = —w1(t) + 6(t — 7/2) + 6 (¢)

e quindi, per w # F1

e IIv 4w

Xiw) = 1 —w?
Ne segue
td (% e_j%“’—1> 1-wH)+2jwe 2% — 202
Xo((.U):] aXl(w) D (1_w2)2
B e*jgw[%(l—w2)+2jw}717w2
I (1 —w?)?

E wy = 2, quindi

(—Dk(%J—Zk%r+4kj>——1—4k2

X(w)=2)_ (EvYSE S(w—2k).
k

Ex. 64e; Sia x la replica periodica con periodo 27 di

zo(t) = (1 +sint) [u(t + 7/2) — u(t)] + cost [u(t) — u(t — m/2)].

pa RN RN AN

s

-5 5 -37 37 -§ 5 A X

Scriviamo z(t) = z1(t) + z2(t) + z3(t), con z1(t) = u(t + 7/2) — u(t), z2(t) =
sint [u(t +7/2) — u(t)] e z3(t) = cost [u(t) — u(t — 7/2)]. In base alla definizione,
per w # 0 abbiamo

0 ) jiw_l
X1 (w) :/ edwtgp =" "2
—m/2 Jw

Inoltre, essendo z45(t) = —x3 — §(t) — 0'(t + 7/2), per w # F1 abbiamo

l+jwelz¥
Kalilimico iz oo
Ancora, osservando che x3(t) = —xo(t — m/2), troviamo X3(w) = —e™7 2% Xy(w) e
quindi infine
iTw . JTw . i Tw
Xo(w):w—i—(l—e‘j%“)wz(eﬂfw—l)]we ANecad

Jjw w?—1 jww?-1) °
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Essendo il periodo 27, ¢ wy = 1 e bisogna campionare nei punti k& € Z. Nel
campionamento, distinguiamo quattro casi, in base alla classe di k& modulo 4:

Xo(4dn) =0, n#0;

s 14 .

X0(4n+1)_(4n+£)(4n2+2)’ n#0;
n+2-—7

Xo(4 2) = ; Vn;

oUn+2) =577 [(4n+2)2 1] "
P

Xo(4n+3) = J n#-1.

(4n+2)(4n+3)’
Inoltre Xo(0) = lim,, 0 Xo(w) = 7/2,

. S 1+ T .
Xo(1) = lim X =(1 ——j— )= - (1-
o(1) = lim Xo(w) = (1+7) <2 j 4) Tnt D (inT2) n:OJr 7 (1=7)
e analogamente
~ (1 7 1—3 s .
Xo(—1)=(1- - - | = -(1 .
o(=1)={1~J) (2“4) @2 nsy|,_ Tatd

Possiamo pertanto scrivere

s ‘ .
X(@) = 20w+ 7 A=) —1)+T (1+)8w+1)
1 1+
+%2n+1{8n+25(w_4n_1)
WA T iois Girecy Divgytimdiieddigytategy
(4n+2)2_15(w dn 2>+8n+65(w dn 3)}

Ex. 64f; Per trasformare x¢ osserviamo che, posto z1(t) = e~¢ (1 + ) u(t), risulta
xo(t) = z1(t) +21(—t), quindi Xo(w) = X;(w)+ X3 (—w). Z-trasformiamo dunque x1;
a tal fine, usiamo il legame con la _#-trasformazione, osservando che x; é assolutamente
P-trasformabile per Re s > —1, perché di ordine esponenziale. Risulta quindi

Xi(w) = Flnlw) = 29 = 7+ 3
s+ 2 jw+2

T s+ 12|,_, Guwt1?

Jw

s=jw

Notando che X;(—w) = X;(w), troviamo infine

_ _9Re ¥ t2 _ypo Wt 2)(jwt 1)
Xolw) =2Re Xy (w) =2Re Frmsy = 2Re =00y

Jjw+2)(1 — w? — 2jw) _22(1—w2)+2w2
(w2 +1)2 - (w2 +1)2

no Acepdemico /20232093
(w412 \1+4w?

Notiamo che X é reale pari, come é pure xy. Inoltre, ricordando che & [e_‘”] =
1/(1 4+ w?), vediamo che z¢(t) = e !l ¥ e7I!l. Essendo il periodo 27, dobbiamo

:2Re(
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campionare negli interi.Pertanto

X(w) :42@5@—@

keZ
e
400 + oo
2 1 - 2 4 1
t = | [ —— ]kt = — +€ roerer— oo kt.
z(t) sz—:w (14 k2)2 ¢ 7r+7r;(1+k2)2 o8

Ex. 64g; Il prolungamento periodico, che indichiamo pure con z si ottiene come
replica periodica di periodo 2 di

zo(t) = (t — %) [u(t + 1) — u(t — 1)].

Ricordando che (vedere Esempio X.3.9 delle Lezioni)

F(1-?)ult+1)—ut-1)]] =4 (Sinw COSW) |

Wi w2
mediante la prima formula fondamentale troviamo, per w # 0,

! sinw  cosw [ sinw cosw sin w
Xo(w):43dw< 5,2 >:4]< 2 +3 3 -3 i )

Notiamo che X é immaginaria dispari, in accordo col fatto che x( € reale dispari.
Inoltre, essendo dispari, verifica X((0) = 0.

Essendo il periodo 7 = 2, risulta wg = 7 e dobbiamo campionare nei punti &,
k € Z. Poiché chiaramente sin k7 = 0, Vk € Z, mentre cos k7 = (—1)*, troviamo

Xo(k )—12'(_1)k Vk e Z — {0}
0 ™) = .7 (kﬂ_)37 .
Dunque
125 —1)* 6] -k
X(w):TjZ(kQ 5w — k), x(t):ﬁz(kg) Ikt
k#0 k#0

Ex. 64h; Il prolungamento periodico,indicato ancora con x, si ottiene come replica
con periodo 27 di

xo(t) = (7% —t*) cost [u(t + 1) — u(t — 7)].
Per la formula di modulazione, posto
w1(t) = (7% — ) [u(t + ) — u(t — )]
e risultando quindi x(t) = x1(t) cost, abbiamo
ik
2

Per trasformare z1, possiamo derivare 3 volte nel senso delle distribuzioni, o usare la
prima formula fondamentale, o usare il legame con la #-trasformazione. Procediamo
qui nel modo seguente; ricordando che il segnale

zo(t) = (1 =t [u(t + 1) — u(t — 1)]

Xo(w) (Xl(w—1)+X1(w+1)).
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¢ stato trasformato nelle Lezioni ed osservando che risulta z1(t) = 72 x5(t/m), trovia-
mo, per la formula di cambiamento di scala, X;(0) = 472/3 e per w # 0,

X1 (w) = Xy(nw) = 4nd (

T
w3 w?

sinTw  cosSTw _ sin 7w COS T W
(rw)d  (Tw)? '

Pertanto, per w # F1,
Xo(w)2<sin7r(w1) cosT(w—1) sinm(w-+1) cosw(erl))

T S -7
(w—=1)3 ¢ (cu—ll)2 (w+1)3 : (w—i—l)l2
=2TCcosTw + — 2sinTw +
ccademic @zt M25 el Podo Dipartinklie-d R <w+1>3)
:47rcos7erf4sin7rww+7w.
W - 1)? W - 1P

Osserviamo che X ¢ reale pari, in accordo col fatto che tale é anche xy. Essendo il
periodo 7 = 27, risulta wyg = 1 e dobbiamo campionare nei punti k& € Z. Calcoliamo

spiea ) delig Syjen: %(Xl(o) +X1(2)> adk (47r3 d 7r) Nafdos “FId

2\3 3 2
Notiamo che sink7 =0 e coskn = (—1)*, Vk € Z, quindi, per k # F1, abbiamo
k*+1
9 k
Dunque
2Rgnatm p K241
= (- - 4 SE T S(w—k).
X(w) (37r 2) {(6(w+1)+6w—1)}+ WI;I( ) e §(w — k)

Ex. 64i; Tracciamo il diagramma di x e del prolungamento periodico, che denoteremo
ancora con .

 Accadenliof DN | 9/ Dgpatica o A
| |

Il segnale periodico si ottiene come replica di periodo 27 di z(t) = z1(t) —z1(—1),
dove

1 —cos2t
% Baepthm [u(t) — u(t —m)].

1 —cos2t
2

.131(75)

—ai(—t) = u(t + 7) — u(t)]

1 — cos2t
2

zi(t) = [u(t) — u(t — )]

Notiamo altresi che, detto x5 il segnale periodico di periodo 27 che nell’intervallo
(—m,m) vale
-1 , per —7<t<O0
1 ,perO<t<m

risulta
1 — cos2t
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Ne segue

DN | =

cklx] =

{ck (o] — %(cm[xz] + ckg[x2]>} .

Poiché risulta

0 , per k pari
cklz2] = —— , per k dispari
jkm
abbiamo cg[z] = 0 per k pari, mentre, per k dispari
] 1 (2 1 1 2k -8 —k* 42k —k* — 2k
clr] = — | = — 5 re
F 2jm \k k+2 k-2 2jmk (k% — 4)
mento G
Tk (k2—-4)°

Notiamo che la successione dei coefficienti della serie esponenziale di Fourier ¢ im-
maginaria dispari, in accordo col fatto che x é reale dispari. Pertanto, ricordando la
relazione wy Xo(kwy) = 27 ¢k [z], abbiamo infine

1
(15) X(w)=8j) S(w—2n+1).
5 (2n—1)[(2n—1)2 — 4]
A scopo illustrativo, proponiamo un’altra risoluzione. Per trasformare

_ 1 — cos2t
N 2

deriviamo tre volte nel senso delle distribuzioni; essendo x¢y € C%(R), le derivate prima
e seconda coincidono con le derivate ordinarie:

zo(t) =sin2t [2u(t) —u(t +7) —u(t —m)] +0

xo(t) 2u(t) —u(t+ ) —u(t —7)]

xy(t) = 2cos2t[2u(t) —u(t +m) —u(t — )] +0

xy'(t) = —4sin 2t [2u(t
+2cos2t[26(t
= —dxy(t) +45(

e quindi, trasformando ambo i membri

(—jw’+4jw) Xo(w) =4—2(™ + /™),

u(t +7) — u(t — )]
S(t+m) —d(t—m))
)—20(t+m) —26(t—m)

)
)
t

ovvero, per w # 0, w # F2,
1 —cosmw
Xolw)=4j ——.
o) T (w? —4)
Notiamo che X, é immaginaria dispari, in accordo col fatto che x( € reale dispari.
Facilmente troviamo pure

. ... l—cosmw 1
XO(O)_uIJ%XO(w)_4Ji% w w?—4 =0,

X()($2) = lim Xo(w) =0.

w—F2
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Essendo il periodo 27, risulta wy = 1 e bisogna campionare negli interi. Risulta
chiaramente Xy(k) = 0 per k pari, mentre per k dispari &

8j

quindi ritroviamo la (15).

Ex. 64j; Tracciamo il diagramma del prolungamento periodico, che denotiamo ancora
con .

N

3T
‘ \/ ,

I I
Evidentemente x é replica periodica di periodo 27 di

LL'()(t) =T (t) + wg(t) X

v

NIE]
-3

—3n 24-20%
T
I
I

<

dove

t
()
xa(t) =cost [u(t+ ) —u(t +7/2) + u(t — 7/2) —u(t — )] .

/J(\ jversith Sfli ST2 I
1 (t) ) N\

Osservando perd che x5 non é continua, puo valere la pena di notare che x si ottiene
anche come replica periodica di periodo 27 di

LL'()(t) =T (t) + w;;(f) s

2a(t) = (Z - i) [u(t +7/2) — u(t — 7/2)] = [1 - (it)z

NIE]

[SIE]
-43

dove
x3(t) = cost [u(t — m/2) — u(t —37/2)].

ut N

Una ulteriore possibilitd ¢ quella di vedere x come somma di cost con la replica
periodica di periodo 27 di
x24(t) = 21 (t) — cost [u(t + 7/2) — u(t — 7/2)].

Di queste tre possibilita, scegliamo 'ultima. La Z-trasformata di z; si puo calcolare
derivando 3 volte nel senso delle distribuzioni, o usando la seconda formula fondamen-
tale, o mediante il legame con la _#-trasformazione. Noi procediamo direttamente,
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riconducendoci, come fatto nell’Ex. 64h;, mediante la formula di cambiamento di
scala alla trasformata di

yi(t) = (1 =) [u(t+1) —u(t - 1)) = (1 - ) TL(t/2),

calcolata nelle Lezioni. In effetti, chiaramente risulta z1(t) = § i (% t) e quindi (per

w #0)
2

T ™ 7 (sinfw cosTw 4 sinZw cos 5w
Xl(w):Yl(w):< 23— 22>: —-2—2.
4 2 2 2 (%UJ) (gw) T W w
D’altra parte, cost [u(t +m/2) —u(t —w/2)] ¢ stato trasformato nell’Ex. 64e. Pertanto
(w#0,w# F1)

4 sin T w Ccos = w cos S w 4 sin T w cos I w

X — 2 —9 2 _92 2 — 2 _ 2 .
4(w) T wd w? 1-w?2 7 W w? (1 —w?)

Essendo 7 = 27 il periodo, risulta wy = 1 e dobbiamo campionare nei punti k € Z,
Calcoliamo X;(0) = n2/6 — 2, X1(F1) = 4/m — 7/2. Inoltre, per k € Z — {—1,0,1},
distinguendo i casi k = 2n pari, n € Z — {0}, e k = 2n + 1 dispari, n € Z — {—1, 0},
troviamo

X4(2n) kiob)S5i Xs2n+1) = % (U1

T 2n2(1—4n?)’ 2n+1)3°
Dunque, ricordando che Z[cost] = m {§(w — 1) + 6(w + 1)}, troviamo

X(w) = (7;2 . 2) S(w) + (j + g) {6(w+1) +(w—1)}

1 (_1)n+1 4 (_l)n
_|_,E — 0w —2n) + = E 735(w—2n—1)
2n¢0n (1 —4n?) 777#7177#0(2714—1)
e lo sviluppo in serie esponenziale di Fourier si scrive

x(t) = (17; = i) + (732 - i) {77t 4 oIt}

1 (D™ e 2 (D" ent
T I = Td
47Tn¢0n (1 —4n?) T\ pab g 2n+1)
Ex. 64k; Il prolungamento periodico x si ottiene come replica con periodo 7 di
To = T1 + T2, dove
x1(t) = cos3t [u(t +7/2) —u(t)], x2(t) = cost [u(t) — u(t — 7/2)].
Per trasformare x; e x2, deriviamo due volte nel senso delle distribuzioni (metodo del
riciclo).
zh(t) = —3sin3t [u(t +7/2) — u(t)] + cos 3t [6(t + 7/2) — §(t)]
= —3sin3¢ [u(t+7/2) —u(t)] — 6(t),

2] (t) = —9x1(t) — 3sin 3t [6(t +7/2) — 6(t)] — &' (¢)
=—9z1(t) — 35(t +/2) — &' (¢)
e quindi ricaviamo, per w # F3,
_3 9T 4 jw

%SGR 9 —w?
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In maniera simile, troviamo
x5 (t) = —x1(t) —sint [0(t) — 6(t — 7/2)] + 6" (t) = —x2(t) + 6(t — w/2) + &' (t)
e quindi, per w # F1,

e ITY 4w
F)aid Grecd D

1 —w?
Dunque
Xo(w) 329 +jw e TEY 4w e iE#nicss €S 8jw
w)=— = — .
P 9 —w? 1—w? 1—w? 9-w? ' (1—w?)(9—w?)

Essendo il periodo 7 = 7, risulta wyg = 2 e dobbiamo campionare negli interi pari; i
valori F1 e F3 non intervengono. Inoltre, con k € Z,
eIk 3 eIk 165k (—1)* (4k*+3)+8jk

Xo(2k) = o =2
0(2k) = T 94k T4k (94 (1—4k2) (9 — 4k?)

Pertanto

(-1 (4k%+3)+84k
X =4 O(w—2k).
(=43 1417 (9 1k) @20
keZ
Ex. 641; Analogo all’Ex. 64b;. Invero, detto y il segnale periodico dell’Ex. 64b,
il segnale periodico del presente esercizio & z(t) = e? y(t — 7/2) e quindi troviamo
immediatamente

s s = 1
X(w)=¢e2 e?“2Y(w)=(e"+1) Z

k=—o0

—172kj72k25(w_2k)'

Ex. 64m; Il prolungamento periodico, che indicheremo ancora con x, si ottiene come
replica periodica di periodo 2 di

zo(t) = (12 =) [u(t) —u(t — )]+ Bt —t> = 2) [u(t — 1) —u(t —2)] = 1 (t) — 1 (t — 1),
dove x1(t) = (12 — t) [u(t) — u(t — 1)].

2 T N .

71 M 2 3 4

E pero facile rendersi conto che z si ottiene anche come replica periodica di periodo 2
di

yo(t) = Il(t) — 1‘1(715) .
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Per trasformare x; che é prodotto di un polinomio di secondo grado per una finestra,
deriviamo tre volte nel senso delle distribuzioni:

2 () = (2t = 1) [u(t) — u(t = D] + (=) [6(t) — 0(t — 1)]
=2t—1)[ult) —u(lt—-1)]+0,

(t— )]—6<) (t 1)
/') =2[6(t) =6t —1)] = (t) = &' (t—1).

Applicando la .#-trasformazione ad ambo i membri e ricordando la prima formula
fondamentale, abbiamo quindi

—jw Xy (w)=2(1— e ) —jw(1+ e I¥)

e quindi, per w # 0, _ '
14 e ¢ 11— e
+2 .

Xi(w) = ——3 =753
Pertanto
1+ e 9@ l—e ¥ 14 v 11— e
YQ(LU) T X1<w) LT Xl(_w) ST OJ2 +2] OJ3 " ( OJ2 +2] wg
! 1—cosw sinw
=2 (2 3 STinTa ) .

Notiamo che Y é immaginaria dispari, in accordo col fatto che yy é reale dispari.
Ne segue, in particolare, Y5(0) = 0. Essendo il periodo 7 = 2, risulta wy = 7 e
bisogna campionare nei punti k7, k € Z. Chiaramente sinkn = 0, Vk € Z, mentre
coskm = (—1)F, quindi

0 , per k pari

Yo(km) =4 8j

(mk)?

Pertanto, scrivendo k dispari come k =2n — 1, n € Z,

8 1
=2y (w2 :
— 2 Gn_1p d(w—2nm+m)

, per k dispari



