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CAPITOLO 1

Il campo complesso

1. La forma algebrica

L’esigenza di introdurre un ampliamento del campo dei numeri reali nasce dall’im-
possibilita di risolvere in esso ’equazione 22 = a nell’incognita z, per a € R generico
numero assegnato. E chiaro infatti che, se a < 0, non esiste alcuna soluzione, poiché
ovviamente risulta z2> > 0, Vo € R. Piu in generale, nel campo reale un’equazione
algebrica P(z) = 0, P polinomio, puo essere priva di soluzioni.

I1 campo dei numeri complessi si costruisce sull’insieme R? delle coppie ordinate
di numeri reali, introducendo le operazioni di addizione e moltiplicazione:

(1.1) (x1,y1) + (22,92) = (T1 + 22,91 + ¥2),
’ (x1,91) - (x2,92) = (T122 — Y1Y2, T1Y2 + T2y1) -

Con tali operazioni, R? diviene un campo, che diremo campo complesso ed indicheremo
con C. Pertanto, due numeri complessi (z1,y1) e (z2,y2) sono uguali se e solo se sono
uguali come coppie ordinate, cioé se e solo se x1 = T3 € Y1 = Yo.

Consideriamo il sottoinsieme

Z = {(z,0) : x € R}.

Evidentemente, esso é chiuso rispetto alle due operazioni, cioé la somma ed il prodotto
di elementi di #Z appartengono a Z; il sottoinsieme risulta un sottocampo di C (cioé le
operazioni (1.1), ristrette a %, lo rendono un campo). Dal punto di vista insiemistico,
¢ naturale identificare Z con R, facendo corrispondere al generico elemento (z,0) € Z
la sua prima componente z € R. E immediato pero verificare che tale identificazione
fa corrispondere le strutture di campo su Z e su R:

(331,0) + (332,0) o (1‘1 +5€2,0)
! ! I
X + X2 = xr1 + Xo

dove -+ denota laddizione in Z (cioé in C), e analogamente per la moltiplicazione; si
dice che i due campi Z e R sono isomorfi. Con I'identificazione indicata, il campo reale
risulta un sottocampo del campo complesso, ovvero quest’ultimo ¢ un ampliamento
del primo.

E naturale considerare anche I’altro sottoinsieme

(1.2) Z={(0,y) : yeR},
ma esso non é chiuso, in quanto ad esempio risulta
(1.3) (0,1)*=(0,1)-(0,1) = (=1,0) = -1 ¢ T.

4



1. LA FORMA ALGEBRICA 5

Gli elementi di Z si dicono numeri (complessi) immaginari. L’elemento (0,1) & di
fondamentale importanza; si dice unita immaginaria e si denota con j (spesso anche
con i): j = (0,1). Con queste notazioni, I'uguaglianza (1.3) si riscrive j? = —1.
Dunque Z non & un sottocampo. Osserviamo che ogni numero complesso z = (z,y) si
puo rappresentare come segue:

(1.4) z=(z,y) = (,0) + (0,9) = (,0) + (0,1) - (y,0)
ovvero (con lidentificazione tra #Z e R), z = © + jy. Questa espressione si chiama
forma algebrica del numero complesso z = (z,y). I numeri reali x e y si dicono

rispettivamente parte reale e coefficiente dell’immaginario del numero complesso z
e si denotano con z = Rez e y = Imz. L’utilita della forma algebrica ¢ nel fatto
che sui numeri complessi in forma algebrica si opera, invece che usando direttamente
le definizioni (1.1), mediante le usuali regole dell’aritmetica elementare (che seguono

dalle proprieta di campo), ricordando che j2 = —1 e le relazioni che ne seguono:
P=5i==4, =0 =1,4=5"3=4,="=-1,...
e analogamente
R L B IE A

In generale, se m e n sono numeri interi con m — n divisibile per 4 (si dice che m e n
sono congruenti modulo 4 e si scrive m = n (mod 4)), risulta j™ = j™.
Ad esempio,

(B+45)- (1 —j)+(5+2j)=B-3j+4j—45) + (5+2j)
=@B4+j+4)+(5B+2j)=3+j+4+5+2j=12+3j.

Vediamo qualche altro esempio di operazioni sui numeri complessi in forma algebrica.
Dato z = x + jy, il numero z = & — j y si chiama coniugato di z (un’altra notazione
usata per il coniugato & z*). Calcoliamo zz = (z + jy) (z — jy). Usando il ben noto
prodotto notevole dell’aritmetica elementare (somma per differenza), scriviamo subito

2z=(x+jy)(z—jy) =2 -Gy’ =2 -5y’ =2 +¢°.

Il numero reale non-negativo /22 + y2 si dice modulo di z e si indica con |z|. Dunque
2z = |z|%. Osserviamo che |z| > 0 e |z| =0 += 2z = 0. Inoltre z + 2 = 2 Rez,
z—z=27Imz.

OsseERVAZIONE 1.1. La notazione per il modulo di un numero complesso é identica a quella usata

per il valore assoluto di un numero reale. In effetti, se z = x é un numero complesso reale, il suo
modulo coincide con il valore assoluto.

Scriviamo il reciproco di z = x + jy # 0 in forma algebrica:

1. 32 & z _r—=jy T .y
2_22_12+y2_x2+y2_a:2+y2 ]:172+y2’
cioé
1 1
Ref:L, Imf:—i.
z $2+y2 z x2+y2

Notiamo che per I'ipotesi z # 0, risulta 22 + y? > 0. Vediamo un altro esempio.



6 I. IL. CAMPO COMPLESSO

365
ESEMPIO 1.2. Calcoliamo ij A tale scopo, ricordiamo che le potenze
k=1
consecutive dell’unitd immaginaria sono
j7 _17 _j7 17 ja _17 _j7 17
Notando che j — 1 —j+ 1 = 0, conviene associare i termini della sommatoria a gruppi
di quattro consecutivi; poiché 365 non ¢ divisibile per 4, rimarranno alcuni termini
che non completano uno di questi gruppi. Precisamente, essendo 365 = 364 + 1 ed
essendo 364 divisibile per 4, risulta
365 364
Z]k:Z]k+]365:O+]:]
k=1 k=1
In maniera meno diretta, alternativamente possiamo usare la nota formula dell’arit-
n
PRE anJrl
metica elementare a’ =
el 2924708
k=0
365 365

] ] 17j366 17(71)
k k

PIEAED D ORET Rt il P el
k=1 k=0

2—1+5 1+j (14472 142j-1
farGmaiicy € Appicagioni —Renap Cactid

, per a # 1, e ricavare

ESEMPIO 1.3. E facile verificare che il coniugato della somma ¢é la somma dei
coniugati; analogamente per prodotto e rapporto. Pitl in generale, vale la seguente
proprieta. Se Z(z1,...,2n) € una funzione razionale dei suoi argomenti (cio¢ un’e-
spressione che si calcola a partire dai numeri zq, ..., 2, mediante le quattro operazioni
razionali), risulta

%(21,...,271) :%(217...,2’”).
Se P(z) = ap +ay z+ as 22 + -+ + a, 2™ & un polinomio, chiaramente risulta P(z) =
X(z,a0,a1,...,a,). In particolare, se i coefficienti di P sono reali, abbiamo P(z) =
P(z2).

Osserviamo che in C non si introduce un ordinamento, poiché non é possibile farlo
in modo che esso sia compatibile con la struttura algebrica.

2. Rappresentazione geometrica dei numeri complessi

Poiché dal punto di vista insiemistico C coincide con R?, una rappresentazione
geometrica dell’insieme dei numeri complessi si ottiene mediante quella ben nota di
R2 sul piano, la quale si realizza considerando nel piano un sistema di riferimento
cartesiano monometrico ortogonale e facendo corrispondere alla coppia (x,y) il punto
P che la ammette come coppia di coordinate. Il punto P(x,y) si dice immagine del
numero complesso z = x + jy. Dunque, lorigine é 'immagine di 0; i numeri reali
hanno per immagini i punti dell’asse delle ascisse, che per tal motivo si dice asse reale,
mentre i numeri immaginari hanno per immagini i punti dell’asse delle ordinate, che si
dice asse immaginario. Le immagini di z e Z sono simmetriche rispetto all’asse reale.
Nel seguito, identificheremo sistematicamente i numeri complessi con le loro immagini
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sul piano; questo, com’¢ noto, permette di adottare la terminologia geometrica a
proposito di numeri e sottoinsiemi di C. Ad esempio, chiameremo un numero z € C
punto complesso. O, anche, faremo riferimento a |z| come distanza di z dall’origine.

In maniera equivalente, possiamo rappresentare i numeri complessi come segmenti
orientati, di primo estremo l'origine. In questo modo, possiamo illustrare geometrica-
mente la somma di due numeri complessi ricordando la costruzione geometrica della
somma di due vettori del piano.

A

w22
’,,”’ /
- /
214~ /
/
/
/
2z
Cosi otteniamo la doppia disuguaglianza
(2.1) |l21] = [22l| < 121 + 22| < |za] + |22] -

Il contenuto geometrico della (2.1) ¢ evidente. La prima disuguaglianza esprime la
proprieta che in un triangolo il valore assoluto della differenza tra le lunghezze di due
lati non supera la lunghezza del terzo lato. La seconda disuguaglianza corrisponde al
fatto che in un triangolo la lunghezza di un lato non supera la somma delle lunghezze
degli altri due. Per questi motivi, la (2.1) é detta disuguaglianza triangolare.

A A
21+ 29

/

/

|21 + 22 / 21
/ -,

z
¢ /|le -7 \\\\\|Zl—-2ﬂ

/ 21 — Ry __-- <Y

|21] 22 |21] “w 22
‘22| - |Zl 4’22‘ 4/”””///T;;(///' ‘

ESEMPIO 2.1. Fissati xg, yo € R, le equazioni Re z = zg e Im z = gy rappresen-
tano rispettivamente una retta verticale e una orizzontale. Fissato pg > 0, I’equazione
|z| = po rappresenta una circonferenza di centro 0.

A A
Imz =1y

Yo

Zo

v
v
v

Rez =g 2 = p
= pPo

3. Forma trigonometrica dei numeri complessi

Nel piano, consideriamo 'usuale sistema di coordinate polari avente polo nell’o-
rigine O e semiasse polare coincidente col semiasse positivo delle ascisse. Le formule
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che legano le coordiante cartesiane a quelle polari sono

x = pcost
(3.1) { y = psind
Da queste otteniamo p? = x? + y?; ¢ quindi chiaro che p =0 <= z =y = 0. In tal
caso ¢ ¢ indeterminato, nel senso che le uguaglianze (3.1) valgono V¢ € R, e il punto
P(z,y) coincide con l'origine. Se invece P & distinto dall’origine, & p > 0, e da (3.1)
ricaviamo

cost =x/p
(3.2) { sind =y/p
e queste uguaglianze individuano ¥ a meno di un multiplo di 2 7, cioé
(3.3) 9=0+2kw, keZ,

essendo U una soluzione particolare. Ricordiamo che p e l'insieme dei valori di o
indicati in (3.3) si dicono rispettivamente raggio vettore e anomalia di P; i singoli
valori di 9, che si ottengono fissando k € Z nella (3.3), si dicono determinazioni
dell’anomalia.

Sia z = z + jy un numero complesso. Usando le (3.1), possiamo scrivere

(3.4) z=x+4+jy=p(cost+jsind).

Questa si chiama forma trigonometrica di z. Evidentemente p = |z| ¢ il modulo di
z. In riferimento a z, ¥ si dice argomento di z e si denota con argz (a volte anche
con Zz). Com’¢ noto, 0 é I'unico numero di modulo nullo. Se z # 0, Pargomento &
un insieme di valori che a due a due differiscono per un multiplo di 27 e si chiamano
determinazioni dell’argomento (con leggero abuso di notazione, arg z indica pure una
qualsiasi determinazione).

A
y=psindfr--------------

Per indicare che p e ¥ sono modulo e argomento di z, scriveremo sinteticamente
z = [p, ¥]. La determinazione dell’argomento che cade in | — 7, 7] si dice argomento
principale (o determinazione principale dell’argomento) di z e si indica con Arg z.

La corrispondenza z — arg z fornisce un esempio di funzione polidroma, in quanto
ad ogni numero complesso & associato un insieme (non unitario) di valori. Viceversa,
la corrispondenza z € C — {0} — Argz definisce una funzione monodroma, cioé una
funzione in senso usuale.

Le (3.1) consentono subito di passare dalla forma trigonometrica a quella algebrica.
Ad esempio

{1 Z] :cosz—i—jsinﬁzj.
ha2 2 2
Effettuiamo l'operazione inversa per z # 0. Banalmente, se z = x & reale positivo,
risulta p = z e (una determinazione di) 9 = 0;se z =2 <0, ¢ p = —z e ¥ = 7; se
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z = jy ¢ immaginariocon y >0, é p=yed=7/2;se z=jycony<0,ép=—-ye

¥ = —r/2. Esclusi questi casi, risulta cos # 0 e quindi da (3.1) ricaviamo

Y
3.5 tand = =,
(3.5) an .
da cui

arctan Q’ se x > 0;
x

(3.6) 9=

arctangth, se x < 0.
x

ESEMPIO 3.1. Volendo scrivere in forma trigonometrica —1—j, troviamo p = /2
ed usando (3.6) ¥ = %ﬂ. Osserviamo che —1 — j cade nel terzo quadrante, quindi ha
una determinazione dell’argomento verificante 7 < 9 < %ﬂ (in effetti il punto é sulla

bisettrice del quadrante). L’argomento principale & Argz = %7‘(’ -2 = f%w.
. A
T E arg Zf\
-1, [ Znnc
| I S
L3 3m=Argz
|
|
U
el Bl L —J

ESERCIZIO 3.2. Scrivere in forma trigonometrica 3 —4j e —3 +43j.
ESEMPIO 3.3. Se z # 0 e Z ¢ il coniugato, risulta |z| = |z| e argZ = —arg 2.

A
y =Ime | _ .
= psind =TIy
|
|
p=lzl = V2 +y?
|
¥ =argz |
—) =argZz : z =Rez=Rez
| = pcost = pcos(—1)
|
— |
p =1z !
-y =Imz | :Z—x— .
= psin(—1) ar JY

La forma trigonometrica risulta comoda per calcolare il prodotto tra numeri
complessi. Dati z = [p, ¥] e w = [r, ¢], risulta

zw = p(cos? 4 j sindd) r (cosp + j singp)
=pr [cosﬁ cos p — sin¥ sin ¢ + j (cos ¥ sin ¢ + sin ¥ cosgp)]

= pr [cos(¥ + ) + j sin(V + ¢)],
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ovvero, vale la formula

(37) [p,ﬂ]-[r,go]:[pr,ﬂ—kcp}.

Piu esplicitamente, risulta |z w| = |z| |w| e arg(z w) = arg z + argw. La (3.7) consente
di interpretare geometricamente il prodotto di due numeri complessi. Consideriamo
inizialmente il prodotto di z per un numero reale positivo w = r = [r,0]:

A A

r<l1 r>1 ra

rz

>

>

Geometricamente, l'effetto su z della moltiplicazione consiste in un accorciamento, se
r < 1, o in un allungamento, se 7 > 1, dunque in un’omotetia di centro 0 e rapporto
r. Consideriamo ora il prodotto di z per un numero di modulo unitario w = [1, ¢].
Poiché cambia solo ’argomento, & chiaro che I'effetto geometrico su z é quello di una
rotazione di ampiezza (relativa) ¢ attorno a 0:

Consideriamo ora il caso generale. Essendo
zw=z[r,p] = (z [7“,0]) 1, ¢],
evidentemente leffetto su z della moltiplicazione per w é la composizione di una

omotetia e di una rotazione; in figura consideriamo ad esempio il caso r > 1:

A

zr
P Z

>

La formula (3.7) si generalizza ad un numero arbitrario di fattori:

(3.8) [p1, 9] - [p2, D2l -+ [pn . n] = [p1 P2 pn, 1+ 02+ + 0]

In particolare, se i fattori sono uguali tra loro, abbiamo la formula di De Moivre per
le potenze:

(3.9) lo, 9" = [p", nd].



4. RADICI DEI NUMERI COMPLESSI 11

Tale formula, ricavata per n € N, si estende ad ogni n € Z osservando che vale per
n=—1.

ESERCIZIO 3.4. Scrivere in forma algebrica (j — v/3)*!.

OSSERVAZIONE 3.5. La (3.9) per p = 1, insieme alla ben nota formula di Newton
per le potenze di un binomio, consente di ottenere le formule di moltiplicazione degli
archi. Per n € N, ¢ [1,9]" = [1, n¥], ovvero

cosnd + jsinnd = (cos®? + jsind)" .

Sviluppando il secondo membro mediante la formula di Newton, abbiamo

cosnd + jsinny = Z (n) (cos )" *(jsinv)* .
im0 \F

A questo punto, ricaviamo cosn® e sinnt separando il reale dall'immaginario. Ad
esempio
cos 20 + jsin 20 = cos? 9 + 2j cos ¥ sin ) — sin® 0

che danno le ben note formule cos 29 = cos? 9 — sin® 9 e sin 29 = 2 cos ¥ sind. Analo-
gamente,

cos 30 = cos® ¥ — 3cos¥sin® ¥, sin3Y = 3cos?Isind — sin® 9.

Mlustriamo 'uguaglianza di due numeri complessi in forma trigonometrica: risulta
[p, 9] =[r, ¢] se e solose p =71 =0, oppure p = r # 0 e J e ¢ differiscono per un
multiplo di 27, cioé¢ Fk € Z: ¢ =9+ 2km.

4. Radici dei numeri complessi

Datin € N e z € C, si dice radice n-sima di z ogni numero complesso la cui
potenza n-sima & z, cioé ogni soluzione w dell’equazione

(4.1) w' = z.

Essendo il caso n = 1 banale, supponiamo n > 2. E chiaro che per z = 0 troviamo
l'unica radice w = 0 (per la legge di annullamento del prodotto). Per z # 0, riscriviamo
Pequazione (4.1) usando la formula di De Moivre, rappresentando z e 'incognita w in
forma trigonometrica; posto z = [p, ¥] e w = [r, ¢], abbiamo

(4.2) [ nel =1[p, 9]

Questo (in base all’osservazione finale del paragrafo 3) significa

r=3/p (radice n-sima aritmetica);
(4.3)
9+2k
— g , ke Z7
n

dove la radice m-sima aritmetica di p é I'unico numero positivo la cui potenza n-
sima & p. Le infinite scelte di k nella seconda delle (4.3) non danno tutte origine a
radici a due a due distinte. Questo accade per Kk = 0, 1,...,n — 1. Per ogni altro
valore di k, abbiamo una ripetizione: la formula fornisce una determinazione diversa
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dell’argomento di una delle radici gia trovate. Dunque troviamo esattamente n radici
n-sime; esse hanno tutte modulo {/p, mentre gli argomenti sono

¥ I+2m 9+2(n—1)7
Yo = —, Y1 = g vy Pn—1 = .
n n n
Osserviamo che
27
901_<P02802_801:"‘:Sﬁn—1—80n—2:7~
Geometricamente, le n radici wg, wy ..., w,_1 sono i vertici di un poligono regolare

a n lati, inscritto nella circonferenza di centro 0 e raggio {/p. Ad esempio, in figura

sono rappresentate le 5 radici quinte di
1 ny V3 N [ 1 77}
2 T T sl

s
~

/ 7/
5. G .
(AN S R Y0

Briod] (et 4

L’insieme delle radici n-sime del numero complesso z si denota con {/z; le singo-
le soluzioni si chiamano determinazioni della radice. (Con abuso di notazione, tale
simbolo indica anche una qualsiasi delle determinazioni.) Ogni numero complesso non
nullo ha due radici quadrate opposte. Se z = a > 0, le due radici sono quella aritme-
tica e Popposto. Se z = a < 0, le due radici sono Fj (—a)/?; ad esempio, v/—1 = Fj.
E chiaro allora che I'equazione 2 = a da cui siamo partiti per motivare la costruzione
del campo complesso ¢ risolubile in C per ogni a.

ESERCIZIO 4.1. Calcolare v/—8, /3 + 47, \/jji1

OSSERVAZIONE 4.2. Notiamo che il simbolo ¢/~ € usato con due significati di-
versi: quello di radice aritmetica e quello di radice di un numero complesso. La
corrispondenza z — {/z ¢ un altro esempio di funzione polidroma.

ESEMPIO 4.3. Risolviamo l'equazione
(4.4) -2 44=0.

Ponendo w = 23, 'equazione diviene w? —2w+4 = 0, che ha le soluzioni w = 1F+/3

equindi z = /1 —V3jez= 1+ v3j. Per calcolare le radici, scriviamo i radicandi

in forma trigonometrica:

1535 =2 G?‘fg) = [253]
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V1F [21/3,¢ —|—37rk; k=0,1, 2.

b 1+VEi=[23]

e quindi

AN
=

27,47

5. Le funzioni elementari nel campo complesso

Per estendere al campo complesso le funzioni elementari useremo due modi di
procedere: quando possibile effettueremo ’estensione direttamente dalla definizione,
oppure cercheremo di mantenere le proprieta formali valide nel campo reale.

5.1. L’esponenziale. L'uguaglianza [1, 9] [1, ¢] = [1, ¥+ ¢], caso particolare

di (3.7), & formalmente analoga alla ben nota proprieta dell’esponenziale e?-e® = e2t?.
Questo suggerisce di dare la seguente definizione

(5.1) /Y =[1,y] =cosy+jsiny,

Vy € R. Questa uguaglianza, che qui é usata come definizione, & detta formula di
Eulero. Se z = [p, ], possiamo scrivere z = pe/”. Questa scrittura si chiama
forma esponenziale del numero complesso z. E chiaro che essa equivale alla forma
trigonometrica.

Con la notazione introdotta nella formula di Eulero (5.1), ripetiamo, la formula per
il prodotto di due numeri complessi (di modulo 1) in forma trigonometrica corrisponde
alla menzionata proprieta delle potenze

V. gIY2 — o (h1ty2)
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Vogliamo definire ’esponenziale e*, per z € C, cercando di conservare tale proprieta.
Dato z = x + jy in forma algebrica, dobbiamo allora necessariamente porre
(5.2) ef = "V = " . &IY = " (cosy + j siny).
Con tale definizione la proprieta delle potenze resta effettivamente valida.
Un’altra notazione per l'esponenziale di z & exp(z) = e*. Dunque
(5.3) |e?| = e arg(e®)=Imz+2kmw, k€ Z.

In particolare, dalla prima uguaglianza, ricaviamo e* # 0, Vz € C, poiché ’esponen-
ziale reale & positivo: eR¢# > 0. La corrispondenza z — e definisce in C una funzione
complessa di variabile complessa, che si dice funzione esponenziale. Osserviamo che
I’esponenziale é periodico di periodo 27 j:

T = o VzeC, VkeZ.

A scopo illustrativo, studiamo ’equazione e* = 1. Scriviamo z = x + jy in forma
algebrica. In base alle (5.3), essendo 1 = [1, 0] troviamo

=1 <= z2=2knj, keZ.

Analogamente
ef=—-1 <= z=nj+2knj, keZ.

ESEMPIO 5.1. Descriviamo I'immagine tramite la corrispondenza w = e® delle
rette di equazioni Rez = zy e Im z = yp nel piano della z, cfr. esempio 2.1.

A A
z w = e* w
/\
o R R
Rez =z |w| = emk/
A A
z w = e* w
/\ ey
Yo argw = Yo
Yo
Imz =1y >

ESEMPIO 5.2. Dati zg, x1, ¥, y1 € Rcon 29 < 21 ¢ 0 < y1 —yo < 2,
Iimmagine di [zg, 21] X [yo, y1] & un settore di corona circolare con centro nell’origine.

Y1+

Yo
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5.2. Il logaritmo. Dato z € C, chiameremo logaritmo di z e lo indicheremo con
log z ogni numero complesso w, se esiste, tale che e¢* = z. E chiaro che non si puo
definire il logaritmo di 0. Per z # 0, quindi con |z| > 0, 'equazione e“ = z si riscrive

Re

et =|e" =

|z|, Imw = arg(eV) = arg z.
Pertanto
(5.4) w=logz=log, |z| +j (9 +2kn), kelZ,

dove log, indica il logaritmo aritmetico di un numero positivo (cioé Iesponente da
dare a e per ottenere tale numero, log,: |0,+0co[ — R), e J & una qualsiasi fissata
determinazione dell’argomento di z. Il logaritmo z — logz ¢ una funzione polidro-
ma ad infinite determinazioni, corrispondenti alle infinite determinazioni di arg z; due
determinazioni di log z differiscono per un multiplo di 27 j (ovvio, per la periodici-
ta dell’esponenziale). La determinazione che si ottiene scegliendo la determinazione
principale dell’argomento di z si chiama logaritmo principale di z e si denota con Log z:
(5.5) Logz =log, |2| +j Arg z.

Piu in generale, scelto ¥y € R, possiamo fissare una determinazione di log z conside-
rando la determinazione di argz che cade in |9, 99 + 27[. In altri termini, definiti
I'insieme

Ay, ={2€C—-{0} : Yg<argz <Vy+27m },

ottenuto da C effettuando un taglio lungo la semiretta uscente da O di anomalia ¥,
e la striscia orizzontale

Sy ={weC : Yy <Imw <Yy + 27 },
consideriamo la funzione
log: z € Ay, — log, |z| +j argz € Sy, ,
che risulta inversa alla restrizione dell’esponenziale (cfr. esempio 5.2)
w € Sy, — ev € Ay, .
ESEMPIO 5.3. Risulta
logl=2kmj, keZ, Logl=0.
J

ESERCIZIO 5.4. Calcolare log jj’ Logj i T

5.3. Le funzioni circolari e iperboliche. In base alla formula di Eulero (5.1),
per ¥ reale, abbiamo e’V = cos? + j sin? e, mutando ¥ in —¥, per le proprieta di
simmetria delle funzioni coseno e seno, abbiamo pure e 7% = cos®) — jsin¥. Dunque
ricaviamo

e 4 oY . eV — eIV
(5.6) cosv = mico 20042 sind = 2
Estendiamo le funzioni a C ponendo
Jz —jz Jjz _ g%
(5.7) COSZz%, Sinz:%, Vze C,
J
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(sostituiamo cioé ¥ € R con z € C). Analoghe sono le definizioni delle funzioni
iperboliche

e* 4+ e ? e*— e ?

(5.8) coshz = B el sinhz = S N vz e C.
Sono immediate le uguaglianze

coshjz=cosz, sinhjz =j sinz,
(5.9) : o i

cosjz = cosh z, sinj z = j sinh 2,

e le ben note relazioni fondamentali

2

: 2 )
cos?z+sin’z=1, cosh®z —sinh“z =1.

Vediamo alcune proprieta. Osserviamo innanzitutto che le funzioni cos z e sin z sono
periodiche di periodo 27, come segue subito dalla periodicita dell’esponenziale.

Studiamo ’equazione cosz = 0, cerchiamo cioé gli zeri del coseno. In base alla
definizione,

cosz=0 < " +e =0 = ¥ =1« 2jz2=nj+2knj
e quindi
cosz:0<:>z:g+k7r, kelZ.

Analogamente

sinz =0 < z=km, kelZ.
In altri termini, troviamo solo gli zeri reali. Una proprieta nuova rispetto a quanto
accade in R ¢& che cos z e sin z non sono limitate:

sup | cos z| = sup | sin z| = +o0,
zeC zeC

come si vede ad esempio prendendo z = jy e passando al limite per y — Foo.
Valgono formule di addizione identiche a quelle note nel campo reale:

cos(z + w) = cos z cosw — sin z sinw, sin(z + w) = sinz cosw + cos z sinw,

Vz,w € C, che si verificano con un calcolo diretto, o, come vedremo, seguono dal
principio di permanenza delle proprieta analitiche. In particolare, usando (5.9)

cos(x+jy) =cosx cosjy —sinx sinjy

(5.10) AD & P
= cosx coshy — j sinzsinhy.

Da (5.10) ricaviamo

cosz €ER < sinzsinhy=0 < (x=kw, k€Z), oy=0.

Osserviamo che y = 0 significa z = € R e quindi chiaramente cosz = cosx € R.
Supponendo x = k7, troviamo

|cosz| <1 <= |cosz coshy|=coshy <1
e quindi comunque y = 0. Pertanto I’equazione nell’incognita z
cosz=w€ER, —-1<w<l1
ha in C esattamente le soluzioni reali. Analogamente

sinz=w €eR, —-1<w<l1
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ha in C esattamente le soluzioni reali. Questo ¢ in accordo col fatto che, come abbiamo
visto, gli zeri delle due funzioni sono esattamente quelli reali. Chiaramente definiamo

sin 2 T

t = —+k

an z . perz;é2+ T,
sinh z T

tanh z = S| per z # j (§+k‘7r) !

con k € Z.

ESERCIZIO 5.5. Posto z = z + jy, verificare le uguaglianze

(5.11) | cos z|2 = cosh® y — sin’ z, |sin z|? = cosh®y — cos? z,
che, per z = x reale (cioé¢ y = 0), si riducono alla relazione fondamentale per le funzioni
trigonometriche. Osservare inoltre che le (5.11), unite alle (5.9) implicano

(5.12) | cosh z|? = cosh® 2 — sin? y, | sinh 2|2 = cosh® 2 — cos?y,
ovvie per z reale.

5.4. La potenza. Per w # 0 definiamo la potenza
(5.13) w® = exp(z logw).

Essendo log w polidroma, c¢’é da aspettarsi che la potenza abbia in generale pit deter-
minazioni. Scegliendo in (5.13) per log w la determinazione principale Log w, si ottiene
quella che si chiama determinazione principale della potenza. Studiamo in dettaglio
le determinazioni della potenza, scrivendo

w? = exp (z (Logw + 2k7rj)) = exp(z Logw) exp(z2km j)
= exp(z Logw) h¥

con k € Z, avendo posto h = exp(z 27 j). Dunque tra le determinazioni della potenza
ci sono ripetizioni se e solo se esistono due interi k; # kp tali che h*' = h¥2, cioé se e
solo se 3n € N: h™ =1, ovvero ancora risulta

z2nmj=2mmj, conm € Z.

Pertanto le determinazioni della potenza non sono a due a due distinte (vale a dire, ci
sono ripetizioni) se e solo se z =m/n € Q. Se z = m/n é ridotta a minimi termini, la
potenza ha n determinazioni a due a due distinte. Per z = 1/n otteniamo le n radici
n-sime di w. Per z = m € Z, otteniamo come unica determinazione la definizione gia
nota di potenza m-sima; ad esempio, se m > 0,
w"t=w-w--w .
m fattori

Per z ¢ Q, le determinazioni sono a due a due distinte. Se w ¢ reale positivo, in genere
w? denota la determinazione principale. Ad esempio, e® ¢ una notazione imprecisa (la
potenza avendo infinite determinazioni, in generale); piu precisa ¢ exp(z), che coincide
con la determinazione principale. Con la convenzione introdotta, e* indica exp(z).

ESERCIZIO 5.6. Calcolare 17, j7. Indicare le determinazioni principali.
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6. Ampliamento del campo complesso. Elementi di topologia

Ricordiamo che in C non si introduce un ordinamento. Il campo complesso si
amplia con 'aggiunta di un unico punto all’infinito, che indicheremo con co. Il campo
complesso ampliato si denota con C.

In C si adopera la struttura topologica di R?, che & indotta dalla metrica euclidea;
sez=x+jy,20 =20+ jyo € C, |z — 2| rappresenta la loro distanza (la distanza
tra le immagini nel piano):

|2 — 20| = V(& — 20)? + (y — 0)?.
Chiameremo intorno di zy € C ogni cerchio aperto (privato della circonferenza
che lo delimita) con centro nel punto, cioé
D(z0;1)={2€C : |2 —2| <7},
dove r & un numero positivo. Un intorno del punto all’infinito oo é un insieme del
tipo
{zeC : |z| >r},

vale a dire, geometricamente, 'insieme dei punti esterni ad un cerchio con centro
nell’origine.

>

Un sottinsieme A C C si dice aperto se ogni suo punto ha un intorno contenuto
in A:

A ——_— ==

Un sottoinsieme C' C C si dice chiuso se il suo complementare A = C — C' é aperto.
L’insieme vuoto () e C sono sia aperti che chiusi.

ESEMPIO 6.1. Un cerchio aperto secondo la terminologia introdotta preceden-
temente, cioé privato della circonferenza che lo delimita, é un insieme aperto secondo
la definizione appena data. In effetti, assegnato il cerchio D = D(zg; r), dobbia-
mo mostrare che ogni suo punto ha un intorno contenuto in D. Se z; € D, risulta
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|21 — 20| <7, quindi p = r — |21 — 29| > 0. Mostriamo che il cerchio D(z; ; p) di centro
z1 e raggio p € contenuto in D, cioé

lz—z|<p=|z—2|<r.
Questa implicazione ¢ immediata conseguenza della disuguaglianza triangolare (2.1):
|z — 20| < |z — 21|+ |21 — 20| < p+ |21 — 20| = 7.

A

Diremo cerchio chiuso ogni cerchio comprendente la circonferenza che lo delimita,
cioé un insieme del tipo

D(zg;r)={2€C : |z—2| <7}.

Con un ragionamento analogo al precedente, é facile vedere che esso é un insieme
chiuso, nel senso che il complementare & aperto.

L’unione di una famiglia qualsiasi di aperti é aperta, come pure U'intersezione di
una famiglia finita; simmetricamente, I'intersezione di una famiglia qualsiasi e I’'unione
di una famiglia finita di chiusi sono chiuse.

Un aperto A si dice connesso se non puo essere espresso come unione di due aperti
non vuoti e disgiunti, vale a dire

(A:AluAg, COIlAl,AQ aperti, A10A2:®):>(A1:@0A2:(2))

La nozione di connesso traduce I'idea intuitiva di insieme formato da un unico pez-
zo. C é connesso, quindi non esiste alcun sottoinsieme proprio e non vuoto che sia
simultaneamente aperto e chiuso.

Un sottoinsieme E C C si dice limitato se esiste K > 0 tale che |z| < K, per ogni
z € FE. Geometricamente, F ¢ limitato se e solo se esiste un cerchio di centro 'origine
che lo contiene. Un insieme chiuso e limitato si dice compatto.

Sia £ C C. Un punto zg € FE si dice interno ad E se esiste un suo intorno
contenuto in F, cioé esiste r > 0 tale che D(zp; r) C E. Ad esempio, in un insieme
aperto ogni punto é interno. L’insieme dei punti interni ad E si indica con E. Un
punto zg € C si dice esterno ad F se é interno al complementare, cioé esiste r > 0
tale che D(zp; 7) N E = 0. Un punto zy € E si dice isolato se possiede un intorno nel
quale non cadono altri punti di F.

Un punto 2y € C si dice di accumulazione per E C C se in ogni suo intorno cadono
punti di F distinti da esso. Intuitivamente, zy di accumulazione per E significa che,
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muovendosi nell’insieme F, ci si pud avvicinare arbitrariamente a zy, ma rimanendo
a distanza positiva da esso. Osserviamo che le due proprieta: zg € E; 2y di accumula-
zione per E; sono indipendenti tra loro. Un punto di E che non sia di accumulazione
per l'insieme é punto isolato dell’insieme. L’unione di F con 'insieme dei suoi punti
di accumulazione si dice chiusura di E:

E={2€C : z€F oz di accumulazione per E}.

Si dice frontiera di £ C C l'insieme FE = 0F = EN (C — E).
La nozione di punto di accumulazione si applica anche al punto all’infinito oo,
essendo stati definiti gli intorni di tale punto. E immediato verificare che

oo di accumulazione per E <= F non limitato.

ESERCIZIO 6.2. Siano A e B aperti connessi tali che AN B # (). Mostrare che
AU B é connesso. (Suggerimento: se AU B & unione di due insiemi aperti disgiunti, A
é contenuto in uno di questi e lo stesso vale per B; poiché A e B non sono disgiunti,
entrambi sono contenuti nello stesso insieme, quindi l’altro & vuoto.)

6.1. Funzioni complesse di variabile complessa. Una funzione complessa ¢
una funzione a valori in C; una funzione di variabile complessa ¢ una funzione definita
in un sottoinsieme di C. Pertanto, una funzione complessa di variabile complessa &
una funzione

fQcC—-C.

Scriveremo w = f(z), z € Q. Dal punto di vista insiemistico, assegnare una funzione
complessa di variabile complessa equivale ad assegnare una funzione complessa di due
variabili reali, o una coppia di funzioni reali di due variabili reali. In effetti, scrivendo
z=x+jyew=u+ jv in forma algebrica, abbiamo

(6.1) w = f(z) = f(z,y) = (u(2),v(2)) = (u(z,y),v(z,y)) .

Siano assegnati f: 2 C C — C, zp € C punto di accumulazione per 2 e [ € C.
Diremo che [ & il limite di f in zp, o anche che f(z) converge a I per z tendente a zg,
e scriveremo

l= le f(z), o anche f(z) =l per z — 2z,
z Z0

se vale la ben nota condizione:
L) comungque si fissi un intorno I dil, & possibile trovare un intorno J di zq, tale che i
valori assunti da f nei punti (di Q) che cadono in J e sono distinti da zy appartengano
al.

Tenendo presente che gli intorni di un punto al finito sono i cerchi con centro in
tale punto, possiamo riscrivere la definizione di limite come segue:

Ve>0,30>0: (z€Q,0<|z—2]<0)=|f(z) - <e.

Ricordiamo che, per parlare di limite di f in zg, non occorre che la funzione sia definita
nel punto e che, anche se zy € 2, l'esistenza del limite e ’eventuale valore di questo
sono indipendenti da f(zg). Si estendono facilmente tutte le proprieta del limite note
nel caso delle funzioni reali di variabile reale, nelle quali non intervenga 1’ordinamento
di R: cosi, ad esempio, valgono 'unicita del limite, i teoremi sul limite di somma,
prodotto, rapporto.
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ESEMPIO 6.3. Considerando la funzione z €  + |f(z)| che assume valori reali
non-negativi, é facile mostrare la seguente versione del teorema della permanenza del
segno: se il limite [ di f in zo € diverso da zero, esiste un intorno di zp nel quale,
escluso al piu il punto zg, la funzione assume valori diversi da zero.

Un’altra proprieta é la seguente. Scritti zg = g + jyo ¢ [ = p + jv in forma
algebrica, con riferimento alla (6.1), risulta

i dis z,y)—>(Z0,Yo
(6.2) I=lim f(z) <= ¢ ,_ "y v(z,y

(z,y)—(x0,y0)
L’equivalenza (6.2) ¢é facile conseguenza delle disuguaglianze
|1 — ul
<l—fl<|lu-— — .
ol S Y PERE Y

La definizione di limite data in termini di intorni si estende al caso del limite
infinito. In questo caso diremo che oo é il limite di f in zp, o anche che f(z) diverge
per z — zg, e scriveremo oo = lim f(z). Ricordando come sono fatti gli intorni del

zZ—r20

punto all’infinito, vediamo che divergenza significa che vale la condizione
VK >0,30>0: (2€Q,0<|z—2] <) =|f(2)| > K,

ovvero ancora che |f| diverge positivamente.

Se oo & di accumulazione per €2, cioé I'insieme non ¢é limitato, si da la definizione
di limite nel punto all’infinito. E chiaro che f(z) converge a [ € C per z — oo,
l= zh—>nolo f(2), significa che vale la condizione

Ve>0,3IM >0 : (z€Q, |z|>M)=|f(z) - <e.

Analogamente, co = lim f(z) significa che
zZ—00

VK >0, 3M >0 : (z€Q, |z2|>M)=|f(2)] > K.

Se f ammette limite, finito o infinito, in zg, si dice che f é regolare nel punto.
Siano f: 2 — C e zp € Q. La funzione f si dice continua in z se

Ve>0,30>0: (2€Q, |z—20] <) = |f(z) — f(z0)| <€.

Tale condizione vale banalmente se zg ¢ punto isolato di 2. Se zp ¢ di accumulazione,
essa chiaramente significa

flzo) = Jim f(2).

Un caso particolare di funzioni é quello delle successioni. Una successione a termini
complessi é una funzione n € N — z,, € C. Usualmente la indicheremo con

21y 22y ey By o anche con (zn)nen -

La definizione di limite si particolarizza facilmente nel caso delle successioni.

Verificare la convergenza in base alla definizione richiede la conoscenza del limi-
te. Il seguente criterio di convergenza di Cauchy fornisce una caratterizzazione della
convergenza, che non fa intervenire il limite.

TEOREMA 6.4. La successione (zp), converge se e solo se Ve > 0, v € N:
m,n > v =z, — 2z, <e¢.
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Ogni successione convergente verifica banalmente la condizione del criterio di
Cauchy. L’implicazione inversa costituisce la proprieta di completezza di C.

ESEMPIO 6.5. Consideriamo la successione (2"),, per z € C fissato. B subito
visto per |z| < 1 la successione & infinitesima, cioé converge a 0. In effetti, risulta
|z"] = |z|™ ed @ noto che la successione reale n — p™ & infinitesima per 0 < p < 1.
Analogamente, la successione ¢ divergente per |z| > 1. Per z = 1 la successione vale
costantemente 1. Per |z| = 1, ma z # 1, la successione non & regolare. Infatti la
successione ¢ limitata, quindi non diverge. Inoltre,

|Zng1 — 2| = |2 = 2" = |2"(z = 1)| =2 — 1] > 0
quindi non vale la condizione di Cauchy e la successione non converge.

6.2. Serie a termini complessi. Ricordiamo che il concetto di serie si intro-
duce per estendere I'operazione di addizione agli infiniti termini di una successione.
Assegnata una successione complessa (2, )y, la serie

+o00o
(6.3) >
n=1

indica formalmente la corrispondenza che associa alla (z,), la sua successione delle
somme parziali (sy,)n, definita ponendo

S1 =21, Sy=2z1+22,..., Sp=21+ "+2n,...

La serie si dice convergente o divergente, a seconda che tale risulti la successione

(Sn)n. Nel caso di convergenza, il limite della successione delle somme parziali si dice
—+o0

somma della serie; per indicare che s = lim s, si scrive s = g zn. La serie si dice
n=1

indeterminata (o oscillante) se (sy), non & regolare. Si dice carattere della serie la

proprieta di essere convergente, divergente o indeterminata. E ben noto che condizione

necessaria per la convergenza di una serie € che il termine generale sia infinitesimo:

“+oo
Z zn € convergente = limz, =0.

n=1

La condizione non ¢ sufficiente. Ad esempio, la serie armonica

=1 11 1
27:14_7_4_,4_...4_74_...
—n 2 3 n

diverge, pur essendo infinitesimo il termine generale.
Data la serie complessa (6.3), scrivendo z, = x,+j y, in forma algebrica, possiamo

“+o0 —+o0
considerare le due serie reali E T, € E Yn. Inoltre, per quanto detto & chiaro che
n=1 n=1

la (6.3) & convergente se e solo se tali risultano queste ultime; in caso di convergenza,

vale 'uguaglianza
“+o0

+oo +oo
1 n=1 n=1

n=
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Il criterio di convergenza di Cauchy (teorema 6.4) puod essere riformulato per le
serie. A tale scopo, ricordiamo che, dati n,k € N, si dice resto parziale della serie
(6.3) di indici n e k l’espressione

Tn,k = Zn+1 + Zn+2 + -+ Zn+k = Sn+k — Sn -

TEOREMA 6.6. Condizione necessaria e sufficiente affinché la serie (6.3) con-
verga é che Ve >0, v € N: Vn > v e Vk € N, risulti |r, x| <.

DEFINIZIONE 6.7. Si dice che la serie (6.3) converge assolutamente se risulta
+oo

convergente la serie dei moduli Z |zn|. Quest’ultima é una serie a termini non-
n=1
negativi e quindi o converge o diverge, non ¢é indeterminata.
PROPOSIZIONE 6.8. Una serie assolutamente convergente & convergente.

La serie armonica a segni alterni

jenzk di Basd (—=1)n1t
Diingica & Applic

é convergente, ma non assolutamente convergente; dunque il risultato precedente non

si inverte. Una serie che converge, ma non assolutamente, é detta semplicemente

convergente.

ESEMPIO 6.9. Sia z € C fissato. La serie
+o0
(6.4) Zzn:1+z+22++zn+..

n=0

(per z = 0, poniamo qui 0° = 1) si dice serie geometrica di ragione z. La successione
del termine generale ¢ (2"), considerata nell’esempio 6.5. Il carattere della serie geo-
metrica dipende dalla ragione z. Evidentemente, per z = 1 la serie diverge. Per z # 1,
consideriamo le somme parziali

(I+z+22+---+2")1—2) 1—z"!

11—z -ciopb=liZ S
Dobbiamo esaminare il comportamento di (s,,) per n — +o0. Risultando lim 2"+ =0
per |z| < 1, per tali z la serie converge:

Sp=1l+4+z+4+22 4+ F2"=

+oo 1

E 2= VzeC, con |z| < 1.
Qe

n=0

In effetti, la convergenza € assoluta, in quanto la serie dei moduli € la serie geometrica
di ragione |z| < 1, che converge.

Analogamente, risultando lim 2™ = oo per |z| > 1, per tali valori di z la serie
diverge (nel campo complesso).

Resta da considerare il caso |z| = 1, ma z # 1. In tali punti la serie non pud
convergere, poiché il termine generale non ¢ infinitesimo. D’altra parte, la serie non
diverge, essendo la successione delle somme parziali limitata:

1=zt 142" 2
|sn| = < = ]
|1 — 2| [1— 2| |1 — 2|

Pertanto la serie ¢ indeterminata.
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A. Serie a termini non-negativi. Criteri di convergenza

Come gia detto, la serie dei moduli ) |z,| ¢ una serie a termini non-negativi,
quindi non indeterminata. Richiamiamo qui alcuni criteri di convergenza per le serie
a termini non-negativi, che forniranno altrettanti criteri di convergenza assoluta per
le serie complesse (6.3), quindi di convergenza in base alla proposizione 6.8. I criteri
seguenti sono stabiliti per confronto. Siano a, e > b, due serie a termini non-
negativi. Se vale la relazione a,, < b,,, ¥n € N (o0 anche solo per n abbastanza grande),
la prima serie si dice maggiorata dalla seconda, o la seconda minorata dalla prima
(definitivamente). Evidentemente, in questo caso valgono le implicazioni:

Z b, converge = Zan converge;
Zan diverge = an diverge .

PROPOSIZIONE A.1 (Criterio del rapporto). Sia 3 a, una serie a termini
positivi, tale che il limite
Ap+1
an

I =lim € [0, +o0]
n
esista. Se risulta | < 1, la serie converge. Se risulta l > 1, la serie diverge.

PROPOSIZIONE A.2 (Criterio della radice). Sia > a, una serie a termini
non-negativi, tale che il limite

[ =lim a, € [0,+o0]
n
esista. Se risulta l < 1, la serie converge. Se risulta |l > 1, la serie diverge.

Nel caso [ = 1 entrambi i criteri non sono applicabili. Il criterio della radice é pit
generale di quello del rapporto, in quanto si prova I'implicazione

(A1) I=lm 2 = | =lim ¢a,.

n Qp

PROPOSIZIONE A.3 (Criterio dell’integrale). Sia
@: [1,+00[ = [0, +o0]

una funzione decrescente. La convergenza della serie Z:z p(n) equivale alla som-
mabilita della funzione ¢ su [1,4+00].

Sulla nozione di sommabilita torneremo nel capitolo VII. Scegliendo ¢(t) = t7?,
con p > 0, vediamo che la serie armonica generalizzata di esponente p

1 1 1
(A.2) 1+27P+37P+.“+ﬁ+.“
converge se e solo se p > 1. A tale serie non é applicabile il criterio del rapporto, né

quello della radice, poiché il limite da studiare vale 1.

OSSERVAZIONE A.4. 11 caso della divergenza é chiaro per confronto, poiché per
p < 1 la serie ¢ minorata dalla serie armonica (p = 1).

Per confronto con la (A.2), si ottiene il seguente criterio dell’ordine di infinitesimo.
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PROPOSIZIONE A.5. Sia data Y a,, una serie a termini non-negativi. (a) Se
esistono due costanti K > 0 e p > 1 tali che risulti a, < Kn™P per n abbastanza
grande, la serie converge. (b) Se esiste una costante K > 0 tale che per n abbastanza
grande risulti a, > Kn™', la serie diverge.

Nel caso (a) dell’enunciato precedente, si dice che a,, ¢ infinitesimo di ordine non
inferiore a p (rispetto all’infinitesimo campione n=1), per n — +o0; per intendere cio,
si scrive a, = O(n~P) (che si legge “a,, ¢ o grande di n=P”).

ESERCIZIO A.6. Se Y a, € una serie a termini non-negativi convergente, anche
>~ aP risulta convergente, Vp > 1.



CAPITOLO II

Funzioni analitiche

1. Funzioni olomorfe

Siano © un aperto di C, f: Q — C e zg € Q. Essendo ) aperto, per Az € C
di modulo sufficientemente piccolo, risulta zg + Az € € e quindi possiamo esaminare

Af  f(zo+ Az) — f(z0)

il rapporto incrementale A, = per Az — 0. Si dice che f &
z

derivabile, o olomorfa, in zy se il rapporto incrementale converge, cioé esiste finito

. f(z0+ Az) — f(20)
Alggo Az

In questo caso il limite si chiama derivata di f in zy e si denota con uno dei simboli

d
'(20), Df(z0), —f(zo). Formalmente, quindi, la condizione di derivabilita ¢ identica a

quella per le funzioni di variabile reale. Come vedremo, a differenza di quanto accade
per queste ultime, la derivabilitd in campo complesso é una condizione estremamente
forte. Cominciamo col dimostrare la seguente caratterizzazione.

TEOREMA 1.1. La funzione f = f(z) é olomorfa in zo = xo + j yo se e solo se
f = f(z,y) ¢ differenziabile in (xg,yo) e soddisfa la condizione di Cauchy-Riemann:
of 1 0f
1.1 oy =la Bt .
( ) o (x07y0) j ay (3307y0)

In tal caso, risulta
0 10
f’(zo) = afi(xoyyo) o ; 8%;(93072/0).

Ricordiamo che f(z,y) & differenziabile in (x,yo) se nel punto é derivabile par-
zialmente rispetto ad entrambe le variabili e, denotato con

4 = df (o, y0): (A, Ay) > 9L (0,0 A+ 9 (2, 10) Ay

dy
il differenziale totale di f, risulta Af = df + o(Az) per Az = Az + j Ay — 0, cioé
ase Wrfuerftd
(12) A s Appcarmoli

Dim. (del teor. 1.1) Supponiamo che f sia derivabile e mostriamo la differenziabilita e la (1.1).
Facciamo tendere Az a 0 per valori reali, cioé prendiamo Az = Az reale: chiaramente il rapporto
incrementale convergera ancora a f’(zp). Essendo

f(zo +Az) — f(20)  f(zo + Az, y0) — f(xo,¥0)

Az Az ’

la f(z,y) & derivabile rispetto a z e risulta fz(z0,y0) = f/(20). Ragioniamo analogamente, dando
a Az valori immaginari, Az = j Ay, con Ay reale tendente a 0; anche in questo caso il limite sara

26
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f'(20). Poiché
fz0+Az) — f(z0) _ 1 f(wo,90 +Ay) — f(z0,50)

Az j Ay y
troviamo f derivabile pure rispetto a y e soddisfacente I'uguaglianza
1
(1.3) ;fy(ﬂfmyo) = f"(20) = fx(z0,90),

quindi la (1.1). Resta da mostrare la (1.2). A tale scopo osserviamo che, esprimendo Az = Az+j Ay
in forma algebrica, mediante la (1.1) possiamo riscrivere il differenziale come segue

df = fz(x0,y0) Az + fy(zo,y0) Ay

(1.4) = fo(z0,y0) Az + 3 fy(20,y0) Ay = fu(z0,y0) Az
e quindi per la (1.3)
Af —df _

. . Af
Aim - Jim o fz(x0,90) = fe(z0,y0) — fz(x0,90) =0,

come volevamo.

Proviamo ora 'olomorfia di f in zgp, supponendo la differenziabilita e la condizione di Cauchy-
Riemann (1.1). Osserviamo che possiamo esprimere il differenziale mediante la (1.4), cioé df =
fa(zo,y0) Az, poiché questa ¢ stata ricavata da (1.1). Quindi, usando 'ipotesi di differenziabilita,

abbiamo A A
Aim Af}; = fo(z0,y0) + lim % = fe(z0,y0) +0,
vale a dire, il rapporto incrementale converge, cioé¢ f ¢ olomorfa in zg, la derivata essendo fz(zo,¥yo)-
Diremo che f & olomorfa in €2 se risulta olomorfa in ogni punto di €2. Possiamo
allora considerare la funzione derivata f': z € Q — f/(z) € C. In questo caso, la
condizione di Cauchy-Riemann & un’identita in 2:

(1.5) fol,y) = %fy@,y), YpuogAegalene

il valore comune essendo f’(z). Per quanto riguarda la condizione di differenziabilita,
ricordiamo che una condizione sufficiente & f € C(f2).

ESEMPIO 1.2. Verifichiamo ’olomorfia in C della funzione esponenziale
f(z) = exp(z) = exp(z + jy) = e” (cosy + j siny).
In effetti, f ¢ differenziabile poiché di classe C*. Inoltre

fo(z,y) = €” (cosy + j siny),
fy(z,y) = e” (=siny + j cosy) = je” (cosy + j siny),
dunque f verifica la condizione di Cauchy-Riemann. Pertanto, la funzione esponenziale

¢ olomorfa in C e risulta Vz d

& (§
Analogamente, possiamo verificare l'olomorfia in C della potenza z™, n € N, e la
formula per la derivata D 2" = n 2" L.
Non ¢ invece olomorfa, pur essendo di classe C*°(R?), la funzione f(z) = z =
x — jy, in quanto non soddisfa la condizione di Cauchy-Riemann, risultando f, = 1,
1

Una funzione olomorfa in C si dice funzione intera; per quanto visto, tali risultano
I’esponenziale e la potenza.

Come accennato, ’olomorfia ¢ una condizione di estrema regolarita; le conside-
razioni seguenti mirano ad illustrare questo punto. Un risultato emblematico é il
seguente teorema di Goursat, che qui ci limitiamo ad enunciare.

z:ez
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TEOREMA 1.3. La derivata di una funzione olomorfa in un aperto  é anche
essa olomorfa in €.

Il teorema assicura la derivabilita di f’, cioé che f sia dotata di derivata seconda; il
teorema si puo quindi applicare a f’, provando cosi che f ha la derivata terza. Iterando
il ragionamento, vediamo che una funzione olomorfa in €2, cioé dotata di derivata prima
nel campo complesso, & in realta indefinitamente derivabile e di classe C*°(£2). Questa
proprieta é certamente sorprendente, in confronto a quanto accade per le funzioni di
variabile reale. Per illustrare ulteriormente la condizione di olomorfia, riscriviamo
l'uguaglianza di Cauchy-Riemann. Esprimiamo f(z,y) = u(z,y) + jv(z,y) in forma
algebrica; dunque u e v sono funzioni reali in ). La derivabilita parziale di f equivale
a quella delle due funzioni u e v e risulta f; = u; + jv,, fy = uy + jv,. Pertanto la
(1.5) diviene

] 1 .
um+jvm:5uy+vy:—juy+vy

e, separando il reale dall’immaginario, esprimiamo l'uguaglianza (1.5) tra quantita
complesse mediante il sistema di due uguaglianze tra quantita reali
Uy = Uy
(1.6) { Uy = Uy
ESERCIZIO 1.4. Ricavare dalle (1.6) le uguaglianze
O(u,v)
1.7 — =
MO 8(z.v)
Usando le condizioni di Cauchy-Riemann (1.6), & facile mostrare la seguente
PROPOSIZIONE 1.5. Sia f olomorfa nell’aperto connesso 2. La funzione f

risulta costante in ciascuna delle sequenti ipotesi: (a) f & reale; (b) f & immaginaria;
(c) |f] & costante; (d) arg f & costante.

Uy Uy

o ol | = uatuy = oy =11 (2)f.
z Yy

Dim. (a) In effetti, I'ipotesi che f = u+ j v abbia valori reali significa v = 0 e quindi (1.6) implicano
che u ha gradiente nullo in €, pertanto & costante. Analogamente (b). La condizione in (c) &
u? + v2 = k costante. La conclusione é banale se k = 0: supponiamo quindi k > 0. Derivando
rispetto a x e a y, otteniamo le uguaglianze

{ UUy +VVg =0

(1.8) Uuy +vvy =0

Questo, per ogni punto z = x + jy € §2 fissato, pud essere interpretato come un sistema lineare nelle
due incognite u = u(z,y) e v = v(z,y), il cui determinante dei coefficienti & (1.7). Essendo |f(z)| > 0,
il sistema ha una soluzione non banale e il determinante é nullo, quindi sono nulle in ogni punto di
Q le derivate delle funzioni u e v, che dunque risultano costanti. (d) I valori di f giacciono su una
fissata semiretta uscente dall’origine, quindi esistono a, b € R, non entrambi nulli, tali che

aulw,y) +bo(z,y) = 0,
per ogni (z,y) € Q. La tesi si ottiene allora similmente al caso (c), osservando che il determinante in
(1.7) & nullo, avendo le colonne proporzionali.

Geometricamente, nei casi (a), (b) e (d) i valori assunti dalla funzione f appar-
tengono ad una retta, nel caso (c) essi sono su una circonferenza. Piu in generale,
si mostra che, essendo f olomorfa in un aperto connesso, se i valori di f apparten-
gono ad una linea unidimensionale del piano, la funzione & costante. (Vedere anche
osservazione 1V.2.3.)

Valgono regole di derivazione per somma, prodotto, rapporto, funzione composta,
funzione inversa, formalmente identiche a quelle nel caso delle funzioni di variabile



1. FUNZIONI OLOMORFE 29

reale. Ad esempio, seguendo le notazioni del paragrafo 1.5.2, fissando nell’insieme Ay,
una determinazione di log z, otteniamo una funzione olomorfa e risulta

d jes L
dz gz-z.

Conseguentemente alla scelta della determinazione di logz, dato a € C, in Ay,
abbiamo una determinazione olomorfa della potenza z® = exp(«alog z):
a a—1

d
— 2% =az =a—.
dz z

1.1. Funzioni armoniche. Sia 2 un aperto di R?.

DEFINIZIONE 1.6. Si dice che una funzione u definita in Q & armonica nell’a-
perto se ¢ di classe C?(f2) e soddisfa identicamente la condizione

0? 0?

0.

Il simbolo A denota l’operatore di Laplace (talvolta indicato anche con V?), che
applicato alla funzione u ¢ la somma delle derivate seconde pure; la (1.9) prende il
nome di equazione di Laplace e (insieme alla condizione che le derivate seconde siano
continue) definisce le funzioni armoniche. Esempi banali di funzioni armoniche sono i
polinomi di grado (non superiore a) 1 in = e y, che hanno le derivate seconde nulle.
Per mostrare altri esempi di funzioni armoniche, mettiamo in luce un fondamentale
legame con le funzioni olomorfe.

PROPOSIZIONE 1.7. Parte reale e coefficiente dell’immaginario di una funzio-
ne olomorfa sono funzioni armoniche.

Dim. Sia f = u + jv olomorfa nell’aperto Q. Per il teorema di Goursat f € C°°(Q2) e quindi tali
risultano anche u e v. Inoltre, vale la condizione di Cauchy-Riemann, che in termini di u e v si
scrive mediante il sistema (1.6). Derivando la prima equazione rispetto a z, la seconda rispetto a
y e sommando membro a membro, essendo le derivate seconde miste di v uguali per il teorema di
Schwarz, troviamo uzz + uyy = 0 in ogni punto, quindi « & armonica in 2. Analogamente possiamo
ragionare su v.

ESEMPIO 1.8. In virtu della proposizione 1.7, considerando la funzione intera
f(z) = e* = e®(cosy + j siny), troviamo le funzioni armoniche in tutto il piano
u(z,y) = e*cosy, v(z,y) = e*siny.

Essendo 22 = (z+jy)? = 2 —y?+2 j x y, troviamo le funzioni armoniche u(z,y) =
2?2 —y? e v(z,y) = 2xy. Pill in generale, parte reale e coefficiente dell’immaginario
di f(z) = 2™ sono polinomi armonici omogenei di grado n.

Considerando f(z) = log z, troviamo le funzioni u(z,y) = § log(z?+y?), armonica
in R? — {(0,0)}, e v(z,y) = arctan(y/x), armonica in ciascuno dei semipiani {(z,y) €
R? : 2> 0}e{(z,y) eR? : <0}

ESERCIZIO 1.9. (a) Verificare direttamente in base alla definizione che le fun-
zioni u e v dell’esempio 1.8 sono armoniche. (b) Sia p(z,y) = az? + bz y + cy? un
polinomio omogeneo di grado 2; dire sotto quale condizione sui coefficienti a, b e ¢ esso
risulta armonico in R2.

Torneremo sulle funzioni armoniche nel capitolo XIII.
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2. Serie di potenze nel campo complesso

Una serie di funzioni € una serie del tipo

(2'1) f1+f2+"'+fn+"'

dove f1, fa,... sono funzioni (a valori complessi) definite in uno stesso insieme E.
Fissato z € F, resta individuata la serie numerica

(22) f[i2) + fa(2) + -+ ful2) +- -

Se tale serie numerica risulta convergente, diremo che la serie di funzioni (2.1) converge
nel punto z. L’insieme (eventualmente vuoto) dei punti z € E nei quali la serie (2.1)
converge si dice insieme di convergenza puntuale; in esso risulta definita la funzione
somma. La convergenza puntuale € spesso insufficiente per garantire alcune proprieta
della somma, o la possibilita di effettuare alcune operazioni sulla serie; si introducono
nozioni piu forti di convergenza. Diremo che la serie (2.1) converge totalmente in
F C FE se in tale insieme & maggiorata da una serie numerica convergente, cioé esiste
una serie numerica

(2.3) My+ Mo+ + My + -

convergente tale che Vz € F e Vn € Nrisulti | f,,(2)| < M,. E chiaro che la convergenza
totale implica quella puntuale. Come accennato, I'importanza della convergenza totale
é che essa permette di estendere alla somma di una serie alcune proprieta dei termini
della serie stessa. Ad esempio

PROPOSIZIONE 2.1. La somma di una serie totalmente convergente di funzioni
continue é continua.

OSSERVAZIONE 2.2. Per il seguito sara utile il risultato seguente. Se > f,, converge
totalmente in F e g & una funzione limitata in F, anche la serie ) gf, ottenuta
moltiplicando ogni termine per g converge totalmente in F. In effetti, se |g] < K e la
(2.3) maggiora »_ f,, la serie numerica (2.3) moltiplicata per K maggiora Y gf,.

Una serie di potenze é una serie di funzioni i cui termini sono delle potenze, cioé
una serie del tipo

+o00
(2.4) an"=ag+arzt+ a2’ ot an 2+
n=0

I numeri complessi a,, n € Ny, sono detti coefficienti della (2.4). Piu in generale,
possiamo considerare serie del tipo

“+o0
(2.5) Z an (z —20)",
n=0

essendo zp un fissato numero complesso; zg si dice punto iniziale della serie. Poiché
i risultati nel caso generale sono perfettamente analoghi a quelli nel caso particolare
della serie (2.4) in cui zp = 0, ci limiteremo a quest’ultimo. Un esempio & fornito
dalla serie geometrica. Essa converge nel cerchio aperto D(0; 1) e totalmente in ogni
cerchio D(0; r), con 0 < r < 1.

La serie converge nel punto iniziale z = 0, riducendosi al termine costante ag.
Fondamentale ¢ il seguente risultato, noto come lemma di Abel.
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TEOREMA 2.3. Se la serie (2.4) converge in un punto ¢ # 0, essa converge
assolutamente in ogni z € C tale che |z| < |[C].

Dim. Poiché la serie > an (™ converge, il termine generale ¢ infinitesimo, quindi limitato, cioé risulta
lan¢™| < M, ¥n € Ny, per un’opportuna costante M > 0. Ne segue |anz"| = |an("||2/¢|" <
M |z/¢|™ e la serie (2.4) & maggiorata da un multiplo della serie geometrica di ragione |z/{| < 1.

Definiamo il raggio di convergenza della serie (2.4):
p=sup{|z| : z€C, la(2.4) converge in z}.

Osserviamo che p € [0,+00]. Usando il teorema 2.3, & possibile mostrare che p ¢
caratterizzato nel modo seguente:

(1) la serie (2.4) converge solo per z = 0 se e solo se p = 0;

(2) se p € ]0,+00][, la serie (2.4) converge assolutamente per |z| < p e non
converge per |z| > p;

(3) la serie converge in ogni z € C se e solo se p = +o0.

Inoltre

TEOREMA 2.4. Una serie di potenze con raggio di convergenza positivo converge
totalmente in ogni cerchio compatto contenuto internamente al cerchio di convergenza.

In altri termini, detto p > 0 il raggio di convergenza, la serie converge totalmente
nel cerchio dei numeri z tali che |z| < r, per ogni fissato r < p.

Proviamo a studiare la convergenza assoluta della serie (2.4) mediante il criterio
del rapporto; a tal fine, supponiamo che i termini della successione (a,) siano non-
nulli per n abbastanza grande. Il rapporto tra il modulo di un termine e quello del
precedente &

A

|6Ln+1 ZnJr n |an+1| ‘Z|
lan 2" |an| .

(2.6)

lanta]
C lan] ~
E chiaro che, se [ = 0, i rapporti in (2.6) convergono a 0 per ogni z € C, quindi la
serie (2.4) converge assolutamente in ogni punto e ha pertanto raggio di convergenza
infinito: p = +00. Se | = 400, i rapporti in (2.6) divergono per z # 0, quindi la serie
converge solo nel punto iniziale e ha raggio di convergenza 0: p =0. Se 0 <[ < +00, i
rapporti in (2.6) convergono a [ |z|, quindi, per il criterio del rapporto, la serie converge
per |z| < 1/l e non converge per |z| > 1/I: il raggio di convergenza ¢ dunque p = 1/1.
Con le convenzioni 1/0 = 400, 1/ + 0o = 0, in ogni caso possiamo dire che il raggio
di convergenza & p = 1/I. Otteniamo dunque

Supponiamo che la successione dei rapporti |a,+1|/|an| ammetta limite: [ = lim

PROPOSIZIONE 2.5. (a) Se 1imw|62+1 =1 € [0,+oc], il raggio di convergenza
n n

ep=1/1. (b) Selim {/|a,| =1 € [0, +0oc], il raggio di convergenza & p=1/I.

Il risultato in (b) si ottiene analogamente ad (a), utilizzando pero il criterio della
radice.
In generale, vale la seguente formula di Cauchy-Hadamard

1

ini limsup,, {/an|
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+oo

ESEMPIO 2.6. La serie esponenziale Z = ha raggio di convergenza infinito,
= nl
“+oo
converge cioé Vz € C. La serie Z n! 2" ha raggio di convergenza 0, cioé converge solo
n=0

in 0. La serie geometrica ovviamente ha raggio di convergenza p = 1.

Supponiamo che la serie (2.4) abbia raggio di convergenza positivo e finito, 0 <
p < 4o00. In generale, nulla si puo dire nei punti della circonferenza del cerchio di
convergenza, potendosi presentare tutte le eventualita.

ESEMPIO 2.7. Le tre serie

—+o0 —+o0 “+oo

" " 2"
2 L X
n=0 n=1 n=1

hanno tutte raggio di convergenza p = 1. La prima € la serie geometrica e, come &
noto, non converge in alcun punto z con |z| = 1. E possibile mostrare che la seconda
serie converge in ogni z € C tale che |z| = 1, escluso z = 1. Infine, la terza serie
converge in ogni z con |z| = 1.

ESERCIZIO 2.8. Dimostrare il teorema 2.4. (Suggerimento: scegliere ¢ verifi-

cante r < |(| < p e adattare la dimostrazione del lemma di Abel.)

2.1. Proprieta della somma di una serie di potenze. Data la serie (2.4), la

serie
—+oo
E nap 2"t

n=1

i cui termini sono le derivate dei termini della (2.4), si dice serie derivata (prima).

PROPOSIZIONE 2.9. La serie derivata ha lo stesso raggio di convergenza del-
la (2.4).
Limitiamoci a verificare ’enunciato nel caso in cui sia possibile calcolare il raggio

di convergenza della (2.4) mediante il punto (a) della proposizione 2.5, cioé risulti
‘an-%-ll

p =1/, dove [ = lim o Possiamo allora valutare il raggio di convergenza della
serie derivata con lo stesso criterio:
n+1)|a a n+1
lim P Dol _ gy lannntl ;0
" n|an| nay n

Possiamo considerare le serie derivate successive:
—+oo

Zn(n—l)anzn_z,

n=2

—+oo

Zn(nf1)~~(nfk+1)anz"*k,

n=k

si dicono serie derivata seconda, ..., k-sima, ... La serie derivata seconda & serie
derivata della serie derivata prima e cosi via. Esse hanno tutte lo stesso raggio di
convergenza della serie di partenza (2.4). Si dimostra il seguente
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TEOREMA 2.10. La somma di una serie di potenze con raggio di convergenza
positivo (eventualmente infinito) & indefinitamente derivabile nei punti interni al cer-
chio di convergenza. Le derivate successive si calcolano derivando termine a termine
la serte.

Piu esplicitamente, detto p € ]0, +o00] il raggio di convergenza della (2.4) e indicata
con

+oo
flz) = Z ap 2"
n=0

la somma, f ¢ indefinitamente derivabile per |z| < p e risulta, Vk € N,

“+o0
f®(2) = Zn(nf De-(n—k+1)a,z""
n==k
Alla dimostrazione del teorema 2.10, premettiamo il
LEMMA 2.11. Per ogni z9,Az € C, con Az # 0, e n > 2, risulta

(z0 + Az)™ — 20 n_ n e
I —nagp T < (1) 182 (120l + Az 2.

(2.7) A, 0

Dim. Usando la formula del binomio di Newton, maggioriamo il primo membro di (2.7) con

n n—2
n _ _ n k—
X () el M1al = < 142l 35 (1) bl sl

D’altra parte,
n—2

(20l + 1222 =37 ("

k=0 k

n n(n—1) (n—2)! ny /m—2
(k+2>:(k+2)(k+1) k!(nfka)!S(2>( k )

La tesi (2.7) segue mettendo insieme le tre relazioni precedenti.

2
> |Zo|n_k_2‘AZ‘k

eperk=0,...,n—2

Dim. (del teor. 2.10) Basta mostrare il risultato per la derivata prima. Fissato zg interno al cerchio
di convergenza, cioé verificante |zg| < p, scegliamo r € ]|zg|, p[. Detta fi la somma della serie derivata
prima, per Az verificante 0 < |Az| < r—|zo[, abbiamo |z0|+|Az| < r e usando il lemma 2.11 troviamo

(20 + A2)" — 25
Az

+o0 n
< |Az| Z (2) lan| ™2
n=2

ed ¢é sufficiente passare al limite per Az — 0, poiché la serie nell’'ultimo membro converge, essendo la
serie dei moduli della serie derivata seconda calcolata in 7 (e divisa per 2).

n—1
20

w _fl(ZO)’ <D lanl
z n=2

E facile legare i coefficienti della (2.4) ai valori della somma f e delle sue derivate
in 0. In effetti, risulta f(0) = ao. Inoltre f’(0) =1-a; e in generale f*)(0) = k!ay,
OvVVero

*) (0
(2.8) ak:fi(), k=0,1,...
k!
In virta di queste uguaglianze, la serie (2.4) si riscrive
S~ /(0)

(2.9) > "
n=0 .
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Data una funzione f, indefinitamente derivabile intorno a 0, la serie (2.9) si dice serie
di Mac Laurin di f. Nel caso di una serie di potenze (2.5) di punto iniziale zg € C,
alle (2.8) subentrano le uguaglianze

(k)
(2.10) aszT('ZO)? k=01,...
e alla (2.9) subentra la
IX )y
(2.11) ZfT('O)(z—zo)",
n=0 ’

che si dice serie di Taylor di f di punto iniziale zg. Dunque la serie di Mac Laurin é
la serie di Taylor di punto iniziale zg = 0. Le uguaglianze (2.10) forniscono il seguente
principio di identita delle serie di potenze:

TEOREMA 2.12. Una serie di potenze con raggio di convergenza positivo coin-
cide con la serie di Taylor della sua somma (con lo stesso punto iniziale).

L’enunciato precedente estende il principio di identita dei polinomi.

ESEMPIO 2.13. La serie esponenziale considerata nell’esempio 2.6 é la serie di
Mac Laurin della funzione esponenziale f(z) = e*. Come subito si verifica, le due
serie

+oo 2n +0oo 2n+1
z z
1) = B R
2 e 2

sono le serie di Mac Laurin di cos z e sin z, rispettivamente. Entrambe hanno raggio
di convergenza infinito. Ricordando la serie geometrica, abbiamo 'uguaglianza

=Y, <,
1—=z2 P}

che fornisce lo sviluppo di Mac Laurin della funzione f(z) =1/(1 — 2).

Gli sviluppi

+oo 2 +oo IZn +oo z2n+1
e 222057 COS.I':ZO(—I) m, SIH.I‘ZX:O(—l) m

sono ben noti nel campo reale, cioé valgono Vr € R. Essi permettono di prolungare a
C la funzione esponenziale e le funzioni trigonometriche, in maniera diversa da quanto
fatto nei paragrafi 1.5.1 e 1.5.3. Per la prima uguaglianza, ponendo

+00 on

L -

(2.12) e* =) o

n=0
per ogni z € C prolunghiamo a C l'esponenziale. Calcoliamo e’V in base alla defini-
zione (2.12), per y € R; separando il reale dall’immaginario, troviamo:

Gy S TR y?n!
JY — CC —1)" . —1)"
S nz:% nl nz::o( ) (2n)!+]nz::0( V ey

e quindi, in virtu dei ricordati sviluppi di Mac Laurin di coseno e seno,

e’V =cosy + j siny.
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Pertanto, a partire dalla definizione (2.12), dimostriamo la formula di Eulero (I.5.1),
che precedentemente abbiamo usato come definizione. A partire dalla (2.12), ¢ facile
altresi mostrare che vale la (1.5.2).

Mettiamo in luce un’ulteriore proprieta della somma di una serie di potenze. Sia

+oo
&= anm,  l2l<op,
n=0

essendo il raggio di convergenza della serie p > 0. Consideriamo z; interno al cerchio
di convergenza, |z1| < p; potendosi la serie derivare indefinitamente termine a termine,
VEk € Ny, abbiamo

(2.13) f<’€]>€(!z1) = io (Z) an 2k

D’altra parte,

(2.14) M=(z— 24 m)t = En: <Z> R (2= 2)®,

k=0
in virtu della formula del binomio di Newton. Pertanto da (2.13) ricaviamo

f(z) = :Z:an o= io an i (Z) R (5 )k

(2.15) P=Satemativzly Mg Be
n\ ,_ f®) (2
:Z(z—zl)kZan<k>zl kzz%(z—zl)k.
k=0 n=k k=0 ’

I possibile verificare che i passaggi indicati sono leciti per |z — 2| < p—|21|. Dunque,
per tali z, f(z) si esprime come somma della serie di potenze di punto iniziale z;
nell’'ultimo membro della (2.15); il raggio di convergenza di tale serie & maggiore o
uguale a p — |z1]. (La serie & scritta come serie di Taylor di punto iniziale z; della sua
somma f, com’¢ chiaro, per il principio di identita, teorema 2.12.)

DEFINIZIONE 2.14. Sia Q un aperto di C. Una funzione f: 2 — C si dice
analitica in § se, per ogni z; € {2, esiste un intorno di z; contenuto in {2 nel quale
f risulta somma di una serie di potenze. Equivalentemente, per ogni z; € Q, f &
sviluppabile in serie di Taylor di punto iniziale 2.

E chiaro che una funzione analitica ¢ indefinitamente derivabile. Inoltre, la somma
di una serie di potenze con raggio di convergenza positivo & analitica nel cerchio
di convergenza. Mostreremo in seguito ’analiticita delle funzioni olomorfe e quindi
(nell’ambito della teoria da noi sviluppata) analiticita e olomorfia saranno sinonimi.

ESERCIZIO 2.15. Scrivere la serie di Mac Laurin di f(z) = ze®. Scrivere la
serie di Taylor di punto iniziale zy = 1 della funzione f(z) = e®.

ESERCIZIO 2.16. Sia f(z) = 2°sinz. Valutare f(*°9(0). (Suggerimento:
scrivere lo sviluppo di Mac Laurin.)

ESERCIZIO 2.17. Scrivere lo sviluppo di Taylor di f(z) = 2", Vz € C, essendo
n € N, di punto iniziale z; € C. Confrontare con (2.14).



CAPITOLO III

Integrazione nel campo complesso

1. Integrali curvilinei

Consideriamo inizialmente il caso di una funzione complessa di variabile reale. Sia
f(t) = u(t) + jov(t) una funzione continua in un intervallo [a,b]; u e v denotano la
parte reale ed il coefficiente dell’immaginario di f. Introduciamo l'integrale definito
di f su [a,b] ponendo

(1.1) /abf(t) dt = /abu(t) dt—&—j/:v(t) dt.

Poniamo inoltre [;* f(t)dt = — f; f(t)dt e [T f(t)dt = 0. Molte delle note proprieta
fondamentali dell’integrale di funzioni reali continuano a valere. Ad esempio, la li-
nearita rispetto all’integrando (in effetti, & chiaro che la definizione (1.1) & obbligata
per estendere l'integrale in modo da mantenere la linearita), o la proprieta additi-
va rispetto all’intervallo di integrazione. Un’altra proprieta & espressa dalla seguente

disuguaglianza; supponiamo a < b:
b
< [1rwlar.
a

/ab F(t) dt

Invero, la disuguaglianza é ovvia se il primo membro & nullo. In caso contrario, posto w = f; f(t)dt,

risulta dolle S [% /:f(t)dt] :/ Re |:7f t)} dt</ [f()|dt.

Sia ora v un arco di curva regolare e sia z = z(t), t € [a, b], una rappresentazione
parametrica regolare di . Scrivendo in forma algebrica, abbiamo

x = z(t)
{ Y= y(t) t € la,b].

In particolare, z € C([a,b]), ovvero z, y € C*([a,b]); inoltre 2'(t) = 2'(t) + jy'(t),
vt € [a, b].

Sia f = f(z) una funzione continua nei punti di 7. Definiamo {’integrale curvilineo
di f esteso a v (orientata nel verso delle ¢ crescenti) ponendo

b
(1.3) /f(z)dz:/ f(z(t) 2/ () dt

Osserviamo che f(z(t)) 2/(t) = f(z(t),y(t)) [/ (t) + j ¥'(¢)] e quindi fv f(2)dz é 'inte-
grale curvilineo esteso a 7y della forma differenziale

(1.4) fdz+jfdy

36

(1.2)
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i cui coeflicienti sono f e j f, a valori complessi. Se scriviamo f = u + jv in forma
algebrica, abbiamo

F®)) 2 (t) = [ula(t),y(t) +jv(@(),y(t)] - [2'(t) + 59/ (t)]

e quindi
(1.5) /f(z)dz:/udx—vdy+j/vdx+udy,
8! gl 8!

dove i due integrali curvilinei a secondo membro sono di forme differenziali a coefficienti
reali.

Si estendono all’integrale curvilineo in campo complesso le proprieta note per
I'integrale curvilineo di forme differenziali a coefficienti reali. In particolare, 'integrale
non dipende dalla rappresentazione parametrica fissata. Un’altra proprieta é che,
invertendo il verso di percorrenza di v, l'integrale si muta nell’opposto; formalmente,

(1.6) / FOLES / f(2)dz,

dove appunto —v indica la curva percorsa in verso opposto.

ESEMPIO 1.1. Calcoliamo l'integrale curvilineo della funzione f(z) = 2", esteso
alla circonferenza «y di centro 0 e raggio p, percorsa in verso antiorario; n € Z e p > 0
sono fissati. Una rappresentazione parametrica regolare di 7 é

2(t) = pet, te[0,2q].

Dunque 2/(t) = jpelt e

2 2m
(1.7) /f(z) dz :/ preitjpeltdt :jp"H/ et gy
Y 0 0
Pern#—-1,én+1#0e

oyt — 1 d gy

(n+1)j dt

Dunque, per la formula fondamentale del calcolo integrale,

n+1
n _p n+1)jt t:27"_
[yz dz_in—l—l[e( )J]t:O =0, n#*-1.

Per n = —1, lintegrando nell’ultimo membro di (1.7) vale costantemente 1, quindi
d
(18) [Z =2
y 2

Notiamo che in ogni caso l'integrale non dipende da p. Analogamente, possiamo
considerare il caso di f(z) = (2 — 2z9)", con 7y circonferenza di centro zg.
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Come osservato, 'integrale curvilineo appena introdotto ¢ analogo a quello del-
le forme differenziali. Una nozione essenzialmente diversa di integrale curvilineo si
ottiene integrando rispetto alla lunghezza d’arco ed é analoga a quella di integrale
curvilineo di una funzione continua:

(1.9) /f ds—/ F(0) |2 (1)) dt

Tale nozione ¢ indipendente dalla rappresentazione parametrica; essa ¢ indipendente
pure dal verso di percorrenza, cioé, in contrasto con (1.6), abbiamo

(1.10) / f(z)ds :/f(z) ds
(In effetti, v non ¢é orientata.) La disuguaglianza

(1.11) z)dz

/\f Vds < M1,

segue da (1.2); qui abbiamo posto M = max,c~ |f(z)| e denotato con [ la lunghezza
di 7.

Le nozioni di integrale curvilineo introdotte si estendono subito al caso di una
curva vy generalmente regolare.

L’integrale curvilineo spesso si considera come funzione di . Siano f una funzione
continua in un aperto {2 e 7 un arco di curva contenuto in 2. Un caso in cui l'integrale
f7 f(2) dz si calcola facilmente & quello in cui f sia la derivata di una funzione olomorfa,
esista cioé¢ una F, olomorfa in Q, primitiva di f: f = F'. Se z = 2(t), t € [a,b], &
una rappresentazione parametrica di «y, Uespressione f(z(t)) z'(t) é allora la derivata
(rispetto a t) della funzione composta F'(z(t)). Dunque, per la formula fondamentale
del calcolo integrale, abbiamo

/ f2)dz = [F((0)]' =" = F(a1) - Flz0),

dove abbiamo indicato con z; = 2(b) e zg = z(a) gli estremi di . In particolare, I'inte-
grale non dipende da 7, ma solo dagli estremi (e dal verso di percorrenza). Viceversa,
supponiamo che l'integrale curvilineo di f abbia tale proprieta, sia cioé indipendente
da ~. Separando il reale dall’immaginario, vediamo che questa proprieta di indipen-
denza vale per i due integrali a secondo membro della (1.5). Com’é noto, questo vuol
dire che le forme

udr —vdy, wvdr+udy,

sono differenziali esatti, esistono cioé due funzioni U = U(z,y) e V = V(z,y) diffe-
renziabili in €2, tali che

dU =udzx —vdy, dV =vdx+udy,

vale a dire, Uy = u, Uy = —v, V; = v, V, = u. La funzione F' = U + jV risulta
differenziabile in §2 e verifica

Fm:Ux+]Vm:u+3v:fa

Fy=Uy+jVy=—v+ju=jf.
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Equivalentemente, dall’indipendenza dell’integrale dal cammino, ricaviamo che la for-
ma differenziale (1.4) & esatta, cioé esiste F tale che F, = f e F,, = j f. Dunque F' ¢
olomorfa in 2, in quanto verifica la condizione di Cauchy-Riemann (II.1.5), e risulta
primitiva di f. In definitiva, 'indipendenza dal cammino dell’integrale curvilineo di
f (che equivale a dire che I'integrale esteso ad una qualunque curva chiusa ¢ nullo)
é condizione necessaria e sufficiente perché la funzione sia dotata di primitiva. Come
gia osservato e come preciseremo in seguito (teorema di Goursat), questo implica che
f & a sua volta olomorfa.

OSSERVAZIONE 1.2. Possiamo usare le considerazioni precedenti per ottenere im-
mediatamente il caso n # —1 dell’esempio 1.1. In effetti, risulta
1
n _ di Caia
dz n+1
e quindi 'integrale in questione é nullo.

Un’operazione importante sara quella di integrazione di una serie. Ci limitiamo
ad enunciare il risultato seguente.

PROPOSIZIONE 1.3. Supponiamo che la serie di funzioni continue
(1.12) h+fo+ -+t

converga totalmente sulla curva . In tali ipotesi, la somma f & anche essa continua
e la serie puo essere integrata termine a termine, cioé vale l'uguaglianza

(1.13) [yf(z)dz:i[yfn(z)dz.

2. Teorema e formule integrali di Cauchy

Fin qui abbiamo semplicemente supposto f continua nei punti di . Supponiamo
ora f olomorfa in ) aperto contenente 7. Dunque, vale la condizione di Cauchy-
Riemann (II.1.5), ovvero f, = j fz, che dice che la forma differenziale (1.4) ¢ chiu-
sa. Analogamente, usando la versione (II.1.6) della condizione di Cauchy-Riemann,
vediamo che sono chiuse le forme differenziali che figurano a secondo membro in (1.5).

Per chiarire meglio le proprieta degli integrali curvilinei nel caso delle forme dif-
ferenziali chiuse, ricordiamo le formule di Gauss. Sia D un dominio regolare, a n + 1
contorni: Iy contorno esterno e I'y,...,T",, contorni interni (eventualmente non pre-
senti). Le curve I'g, I, ..., T, sono dunque chiuse. Per convenzione, se I' & una curva
chiusa, la intenderemo orientata positivamente se percorsa in verso antiorario, e scri-
veremo —I" per indicare la curva percorsa in verso orario, cioé negativo. La frontiera
FD del dominio D ¢ 'unione dei suoi contorni I'g,I'y,...,I',; essa viene usualmente
orientata scegliendo il verso positivo sul contorno esterno e quello negativo sui contorni
interni. Se indichiamo con +F'D la frontiera cosi orientata, in virti della convenzione
introdotta, possiamo scrivere

(2.1) +FD =TqU(=T1)U---U(=Ty).

Siano ora X = X (z,y) e Y = Y (x,y) funzioni continue in D, con le derivate X, e Yy;
in tali ipotesi, valgono le uguaglianze

(2.2) // dexdy:/ Y dy, // Xydedy = — Xdz.
D +FD D +FD
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Chiaramente, ogni integrale esteso a +F D ¢ somma di integrali estesi ai singoli con-
torni, ciascuno con l'orientamento che gli compete in quanto parte della frontiera di

S e S (T

In particolare, se la forma X dx + Y dy é chiusa, risulta
(2.3) Xd:c—|—Ydy://(—Xy—i—Yx)d:Edy:O,
+FD D

essendo 'integrando nell’ultimo membro nullo.

Per enunciare il seguente risultato, introduciamo una convenzione: l’ipotesi f
olomorfa nel dominio D vuol dire che esiste un aperto 2 O D tale che f sia olomorfa
in €.

TEOREMA 2.1 (Teorema integrale di Cauchy). Se f ¢ olomorfa nel dominio D,
risulta

(2.4) LFD f(z)dz=0.

OSSERVAZIONE 2.2. La dimostrazione si ottiene subito dalle formule di Gauss,
cfr. (2.3), supponendo f; e f, continue. E possibile dimostrare il teorema senza questa
ipotesi aggiuntiva. Come abbiamo anticipato (teorema di Goursat), se f & olomorfa
in Q, risulta f € C*(Q), ma questo risultato segue dal teorema di Cauchy.

ESEMPIO 2.3. f(z) = 1/z & olomorfa per z # 0. Siano 7; e v, due circonferenze
di centro 0 e raggi 71 e 73, con 0 < 71 < 7r3. Se D ¢ la corona circolare da esse
delimitata, f & olomorfa in D e quindi vale (2.4). D’altra parte, +FD = v U (—71),
dunque

O:AFDf(z)dz:/mf(z)dz—[hf(z)dz

/Wf(Z)dz=/%f(z)dz,

cioé l'integrale non dipende dal raggio della circonferenza; questo € in accordo con
quanto visto precedentemente nell’esempio 1.1. Piu in generale, sia v una curva re-
golare chiusa che circonda 0 (vale a dire v ¢ la frontiera di un dominio limitato, a
cui 0 ¢ interno). Possiamo trovare la circonferenza - di raggio abbastanza piccolo in
modo che « e y; formino la frontiera di un dominio regolare D, non contenete 0, in
cui quindi f é olomorfa. Dunque, usando il teorema di Cauchy, troviamo

/dz dz .
— = — =27y.
’YZ 71 Z

ovvero
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N
\ L/
v

ESEMPIO 2.4. Sia f olomorfa nell’aperto semplicemente connesso 2. Fissato
zp € §Q, possiamo definire la funzione

Fe) = [ HQ)de.

Non c’é¢ bisogno di specificare il cammino, poiché l'integrale ¢ indipendente per il
teorema di Cauchy. Si mostra che F' é una primitiva di f.

Ricaviamo ora alcune conseguenze del teorema di Cauchy. Cominciamo dalla
seguente fondamentale formula di rappresentazione.

TEOREMA 2.5 (Formula di Cauchy). Se f ¢ olomorfa nel dominio D, per ogni
punto zy interno a D risulta

(25) feo) =g [ L

27j Jirp % — %0

La formula (2.5) lega i valori di f nei punti interni a D a quelli assunti sulla
frontiera: la funzione é univocamente determinata dalla sua restrizione su F'D.

f(z)
zZ— 20
di centro zo e raggio p & contenuto internamente a D; diciamo D, il dominio ottenuto privando D
dei punti interni a detto cerchio.

Dim. La funzione F: z — ¢ olomorfa in D — {z}; se 0 < p < dist(zo, F'D), il cerchio chiuso

A

>

>

La funzione F' essendo olomorfa in D,, possiamo applicare il teorema di Cauchy. A tal fine, osserviamo
che risulta
+FD, = +FD U (~=,),

dove 7, indica la circonferenza di centro zo e raggio p (percorsa in verso antiorario). Pertanto
z z z
NS (C Iy S WY O
+FD, 2= 20 +FD 2 — 20 vp T 20
ovvero

[ [,
(2.6) AFDZ?ZOdz_/’;p27ZOd.

Osserviamo che il primo membro non dipende da p, quindi il secondo membro € costante rispetto a
tale parametro. Per calcolarne il valore, passiamo al limite per p — 0.
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16,

Np 220

LEMMA 2.6. Risulta lim

p—0

2 =273 f(20)-

Intuitivamente, il risultato ¢ chiaro: essendo f continua in zg, per p piccolo i valori di f(z) con
z € 7, sono vicini a f(z0) e quindi il valore dell’integrale ¢ vicino a

@dzzf(zo)/ L dz = f(z0)275,
v,

z—2z0 » 2= 20

Yo
I'ultima uguaglianza essendo conseguenza delle considerazioni svolte nell’esempio 1.1. Questo ragio-
namento si pud rendere rigoroso come segue. Per ogni € > 0, esiste § > 0 tale che |z — 20| < § =

|f(2) — f(20)] < &; ne segue, per 0 < p < 4,
< [ VDS,
¥

[ Ltz
v, P P

» %~ 20

f(2) = f(z0)

Y z— 20

dz

ovvero vale la tesi.
A questo punto, & chiaro che per il lemma da (2.6) segue la tesi (2.5).

OSSERVAZIONE 2.7. L’uguaglianza (2.5) a volte & detta I formula di Cauchy,
mentre la seguente é detta II formula di Cauchy:

/ f(2) dz=0
+FD ? — 20 ’

per ogni zg esterno a D. Quest’ultima segue immediatamente dal teorema di Cauchy,
osservando che per zg esterno la funzione F(z) = f(z)/(z—z0) é olomorfa nel dominio.

Il teorema di Cauchy ha il seguente inverso.

TEOREMA 2.8 (di Morera). Sia f una funzione continua in un aperto €.
Se lintegrale esteso ad ogni curva chiusa v contenuta in 0 é nullo, f é olomorfa
nell’aperto.

Dim. In base alle considerazioni fatte nel paragrafo 1, 'ipotesi assicura che f ¢ dotata di primitiva,
quindi & derivata di una funzione olomorfa e, per il teorema di Goursat, & olomorfa a sua volta.

OSSERVAZIONE 2.9. Basta prendere v = F'T', con T triangolo contenuto in §2.

3. Conseguenze della formula di Cauchy

Per studiare le proprieta locali delle funzioni olomorfe, studieremo come 1’espres-
sione integrale a secondo membro della (2.5) dipende dal punto zy. Per evidenziare
il fatto che nella formula il punto sara considerato variabile, conviene riscrivere la
formula cambiando leggermente notazioni:

(3.1) £(z) = 1/+ 1) 4.

27§ JyppC—2

Nell’espressione a secondo membro, dunque, z varia nell’interno di D e figura come
parametro. Enunciamo il seguente risultato, che illustra alcune proprieta delle funzioni
definite mediante integrale.

PROPOSIZIONE 3.1. Dati un arco di curva v e una funzione g continua nei
punti di v, la funzione

_ [ 9
f(Z)/YC—Zd<7 ZGC*’Y?
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é indefinitamente derivabile. Le derivazioni possono essere effettuate sotto il segno di
integrale, cioé Yn € N risulta

(3.2) f<">(z)n!/(cf(§))n+ldg, z€C—r.

Tralasciamo la dimostrazione, insistendo piuttosto sulla possibilita di derivare
sotto il segno di integrale. Ad esempio, per la derivata prima, abbiamo

f’(Z)—gz/vcg(_Oz dC—A(?Z é’(_oz) dc .

La derivazione sotto il segno di integrale consiste formalmente nello scambiare il sim-
bolo di derivata con quello di integrale; nell’ultimo membro, abbiamo usato il simbolo
di derivata parziale, perché I'integrando dipende dalla variabile di integrazione (, ol-

tre che dal parametro z. Essendo — 9(9) = 9(9) , ricaviamo il caso n = 1 della

9z (—z (C—2)?

formula (3.2). In generale, abbiamo

ey [9© . _ [ 9@
/ (z)_dz"LC—zdc_[yaz”C—de

T
e poiché g? <g<—<)z =n! © _g(f))nH ricaviamo la (3.2).
I chiaro che unendo la formula di Cauchy (2.5) e la proposizione 3.1, otteniamo
I'indefinita derivabilita delle funzioni olomorfe (teorema II.1.3 di Goursat). In effetti,
data f olomorfa nell’aperto €2, basta considerare i domini (ad esempio, i cerchi chiusi)

contenuti in €.

TEOREMA 3.2. Se f ¢ olomorfa nel dominio D, essa é indefinitamente deriva-
bile e nei punti internt, Yn € Ny, valgono le uguaglianze

(3.3) f(n)(z) = 2T7Lr!j LFD (¢ ;f(zc))n+1 dg.

Le (3.3) si dicono formule di Cauchy per le derivate.

In realta, mediante la formula di Cauchy possiamo mostrare I’analiticita di una
funzione olomorfa, cio¢ la possibilita di rappresentarla localmente come somma di una
serie di potenze.

TEOREMA 3.3 (Analiticita delle funzioni olomorfe). Se f é olomorfa in Q, essa
¢ analitica nell’aperto, cioé ogni zg € Q ha un intorno (contenuto in Q1) nel quale f &
somma di una serie di potenze di punto iniziale zg:

o0
F(2) =) an(z—20)".
n=0
In base al principio di identita delle serie di potenze (teorema I1.2.12) risulta,

Vn € Ny,
S (20)

(3.4) an = —
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Dim. Fissato zp € €2, sia D un cerchio chiuso di centro zg, contenuto in €2; diciamo p > 0 il raggio.
Per la formula di Cauchy (2.5), abbiamo

(3.5) f) = —— O g, selz—zol <.
275 Jic—z0l=p ¢ — 2

Riscriviamo l'integrando in (3.5). Osserviamo che

1 2()2 1 Srecd 1
Screzize €l Bndezd nzvers s z0eg]i_SATIAO]
¢— 20
Inoltre, essendo ¢ — zo| = p > |z — 20| e quindi
ozl _lzzzol o)
¢ —20 p
usando la serie geometrica, possiamo scrivere
lmento 1 1 1 e i(zfzo)n_i (z — 20)"
C—z (-2 (_Z2Z% (-2 \¢(—2 Eoii(0—283)9+20'
¢— 2o
la serie convergendo totalmente al variare di ¢ € F'D. Pertanto, da (3.5) ricaviamo
1 > (z —2z0)"
(3.6) fz) = — FQ) A2 tdc, se |z — 20| < p.
275 Ji¢—z0l=p | 5=0 (€ = 20)
Per la proposizione 1.3 ¢ lecita l'integrazione termine a termine: per |z — zg| < p risulta
oo
! 1)
(3.7) IR R =2 S P
nzzo 275 Ji¢—zol=p (€ —20)" 1"

Ponendo Vn € Ny
sl cfrico 11 K. A
27 Jic—zol=p (= 20)"*

arriviamo allo sviluppo in serie di potenze.

OSSERVAZIONE 3.4. Le (3.4) seguono pure confrontando le espressioni dei coeffi-
cienti a,, con le formule di Cauchy per le derivate (3.3). Nel mostrare ’analiticita, non
abbiamo supposto a priori I'indefinita derivabilita, che dunque segue anche per questa
via, ricordando i risultati sulle serie di potenze (teorema I1.2.10). Lo sviluppo sussiste
in ogni cerchio di centro zg contenuto in ). I coefficienti della serie non dipendono dal
raggio del cerchio (si tratta della serie di Taylor di punto iniziale zg), quindi il raggio
di convergenza ¢ almeno pari alla distanza di zo dalla frontiera di Q (& +o0, nel caso

Q=0).




CAPITOLO 1V

Proprieta delle funzioni analitiche

1. Zeri delle funzioni analitiche. Principi di identita

Sia f definita in ; diremo che zp € €2 € uno zero di f se in tale punto la funzione

si annulla: f(z9) = 0. Supponiamo ora f analitica in €, quindi indefinitamente
derivabile. Diremo che zy é zero di ordine N € N di f se
(1.1) flzo) == fN V() =0, [M(z0) #0,

cioé zg é zero di f, ma non annulla tutte le derivate, N essendo 'ordine della prima
derivata di f diversa da 0 in zp; uno zero di ordine 1 é detto anche zero semplice.
Dunque, zy zero di ordine N di f significa che lo sviluppo di Taylor di f intorno a zg

¢ (N) (4 (N+1) (4
f(z)—W(Z—ZO)N+W(Z—ZO)N+1+...’

essendo diverso da zero il coefficiente del primo termine.

ESEMPIO 1.1. 1l punto zg = 0 & zero semplice della funzione sinz, poiché
D sinz|z=z0 # 0; lo sviluppo di Mac Laurin, com’¢ noto, é
. 22 20 27
SNE= T T 120 5040
Il punto zp = 0 ¢ zero doppio (di ordine 2) della funzione f(z) = 1 — cos z, in quanto
f(0) = f(0) =0, f”(0) # 0; lo sviluppo di Mac Laurin &

#2a e zA 28 28

1-cosz =5 =51 750 ~ 10320

Uno zero di un certo ordine N € N sara detto zero di ordine finito; diremo che z
é zero di ordine infinito se annulla f e tutte le derivate:

0= f(z0) = f'(0) =+ = f™(a0) = -+
PROPOSIZIONE 1.2. Sia f analitica in un aperto Q0 di C e siano zg € Q e
N € N. Le sequenti proprieta sono equivalenti:
(1) zp & zero di ordine N di f;
(2) intorno a zo risulta f(z) = (2 — 20)N¢(2), con ¢ analitica e priva di zeri;
(z — 2z0)N

Dim. Ci limitiamo a (1) = (2); le altre implicazioni seguono similmente. Sia zo zero di ordine N;
sviluppando f in serie di Taylor intorno a 2o, in virtu delle (1.1), scriviamo

R

4o

converge per z — zo ad un valore non nullo.

+oo s(n)(,
(1.2) =3 T (o gy = o 20V o),
n=N :

45
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dove
+oo N)
f(n+ (ZO) n
2) = ——— (22— 20
() nz;; CESSIL )
¢ una funzione definita intorno a zg, analitica e quindi in particolare continua in zg. Inoltre ¢(zp) =
(N)
fT('ZO) # 0, quindi ¢(z) # 0 in un intorno di zg.

ESEMPIO 1.3. Usando (3) = (1) della proposizione 1.2 & immediato verificare
che f(2) = (1 — cos 2?) sin( e — 1) ha in 0 uno zero di ordine 7.

COROLLARIO 1.4. Uno zero di ordine finito é isolato, cioé esiste un suo intorno
nel quale non cadono altri zeri della funzione.

Ovviamente, se zg € zero di ordine infinito, f si annulla in un intorno: infatti

T r(n)(,
Fy =3 L) (o oy o,
n=0

n!

essendo per ipotesi i coefficienti della serie tutti nulli. Se 2 & connesso, in realta la
funzione é identicamente nulla. Precisamente, vale il seguente risultato.

PROPOSIZIONE 1.5. Se f é analitica nell’aperto connesso 2 ed ammette uno
zero di ordine infinito, essa si annulla in ogni punto.

Dim. Diciamo A l’insieme degli zeri di ordine infinito di f e B = Q — A il complementare; dunque
20 € B significa che tale punto non annulla f, o & zero di ordine finito. E facile convincersi che i due
insiemi sono aperti. Questo vale per A, poiché per ogni suo punto, come visto, troviamo un intorno
nel quale f ¢ identicamente nulla, che ¢ quindi formato da zeri di ordine infinito, cioé ¢ contenuto
in A. D’altra parte, se zg € B, o f(z0) # 0 e quindi per la continuita f(z) rimane non nulla in un
intorno, o zo é zero di ordine finito e quindi isolato: in ogni caso troviamo un intorno del punto in
cui non cadono zeri di ordine infinito, cioé contenuto in B. Essendo evidentemente 2 = AU B e
AN B =0, per I'ipotesi di connessione di 2 uno tra i due insiemi ¢ vuoto. Se f ha uno zero di ordine
infinito, ¢ A # () e quindi necessariamente risulta B = ), cioé¢ Q = A, vale a dire che ogni punto &
zero (di ordine infinito).

Dal risultato precedente, segue il primo principio di identita.

TEOREMA 1.6 (I principio di identita delle funzioni analitiche). Siano f e g
funzioni analitiche in un aperto connesso. Se esiste un punto nel quale coincidono le
due funzioni e ordinatamente tutte le derivate, le due funzioni coincidono ovunque.

Dim. Per ipotesi, esiste zo in cui risulta f(™ (z9) = g(™ (20), ¥n € Np. Evidentemente, il caso g = 0
& contenuto nella proposizione 1.5. Il caso generale segue da questo particolare, ragionando sulla
differenza f — g, per la quale zgp é zero di ordine infinito.

Dal primo principio si ricava il secondo.

TEOREMA 1.7 (IT principio di identita delle funzioni analitiche). Siano f e
g funzioni analitiche in un aperto connesso. Se l'insieme dei punti in cui le fun-
zioni coincidono ammette un punto di accumulazione appartenente all’aperto, le due
funzioni coincidono ovunque.

Dim. Siano f e g funzioni analitiche in €2 aperto connesso. Per ipotesi, 'insieme

E={zeQ : f(z) =g(»)}
ha un punto di accumulazione zg € Q2. Ovviamente E ¢é I'insieme degli zeri della funzione differenza
h = f — g, analitica in Q. Il punto zg, essendo di analiticita e quindi di continuita, & zero di h. Esso
non ¢ isolato, in quanto per costruzione in ogni suo intorno cadono infiniti punti di E, cioé zeri di h.

Pertanto zg ¢ zero di ordine infinito e, in virtu del I principio (nella forma della proposizione 1.5), h
¢ identicamente nulla, cioé f e g coincidono.
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OSSERVAZIONE 1.8. L’ipotesi che zp appartenga a () é essenziale per la conclusione.
Ad esempio, consideriamo la funzione f(z) = sin(1/z), analitica nell’aperto connesso
) = C —{0}. L’insieme degli zeri ¢ formato dai reciproci dei numeri k7, con k €
Z—{0}, ed ammette zy = 0 come punto di accumulazione, che perd non é di analiticita.
Evidentemente f non ¢ identicamente nulla in .

Come conseguenza dei risultati precedenti, abbiamo il seguente principio.

TEOREMA 1.9 (Permanenza delle proprieta analitiche). Una proprieta espres-
sa da un’uguaglianza tra funzioni analitiche in un aperto connesso, che valga in un
insieme dotato di punti di accumulazione appartenenti all’aperto, vale in tutto l’aperto.

ESEMPIO 1.10. Per il IT principio di identita esiste un’unica estensione dell’e-
sponenziale come funzione intera.

ESEMPIO 1.11. A scopo illustrativo, consideriamo un’applicazione alle funzio-
ni circolari. Quando abbiamo esteso seno e coseno al campo complesso, abbiamo
osservato che continua a valere la relazione fondamentale

cos?z+sinz=1, VzeC.

La verifica si ottiene con un calcolo diretto. Vogliamo ricavare tale relazione in appli-
cazione del principio di permanenza delle proprieta analitiche. Osserviamo che essa
consiste nell'uguaglianza tra le funzioni f(z) = cos® z 4 sin® z e g(z) = 1, analitiche
in C. L’uguaglianza ¢ nota per z = x € R, cioé nei punti dell’asse reale, e pud essere
estesa al piano complesso mediante il secondo principio di identita.

Come ulteriore applicazione, ricaviamo la formula di addizione del coseno:

cos(z + w) = cos zcosw — sin zsinw .

Tale formula ¢ ben nota per z e w reali. Fissato w € R, estendiamo la formula a z €
C mediante il principio di permanenza delle proprieta analitiche e, successivamente,
mantenendo z fissato, allo stesso modo estendiamo la formula a w € C.

ESERCIZIO 1.12. Sia zg zero di ordine N > 1 di f. Osservare che zg é zero di
ordine N — 1 della derivata f’.

ESERCIZIO 1.13. Mostrare che se zq € zero di ordine M di f e zero di ordine N
di g, esso é zero di ordine M + N del prodotto fg. Ad esempio, dire qual é I'ordine
di zg = 0 come zero della funzione

f(z) = (e* —1) (1 — cos z) sin® z.

ESERCIZIO 1.14. Sia Y7 jan (2 — 20)" una serie di potenze con raggio di
convergenza pg tale che 0 < py < 400. Scelto z; nel cerchio di convergenza, |21 — zo| <
po, € detto p; il raggio di convergenza della serie di Taylor di punto iniziale z; della
somma, mostrare le disuguaglianze

po— |21 — 20| < p1 < po + |21 — 20]

2. Proprieta di media e principio di massimo modulo

Come conseguenza della formula di Cauchy, ricaviamo la proprieta di media delle
funzioni analitiche.
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TEOREMA 2.1. Sia f una funzione analitica nell’aperto 2. Se il cerchio chiuso
di centro zg e raggio v & contenuto in Q, risulta

1
2.1 2 z)ds.
) e =5y [ 10

b 2mr

Osserviamo che nell’'uguaglianza (2.1) la quantita 2 7 r & la lunghezza della circon-
ferenza di centro z e raggio r, alla quale ¢ esteso 'integrale, quindi a secondo membro
figura l'integrale diviso per la lunghezza, cioé la media integrale di f: essa uguaglia il
valore di f nel centro.

Dim.  Applichiamo la formula di Cauchy a f sul cerchio chiuso di centro zp e raggio r; una
rappresentazione parametrica della circonferenza ¢ z = zg + reit, 0 <t < 27
1 1 2w Jt .
£(z0) :7,/ cfilz) Applickzicff” fleonre™ Paccippy
27 j J|z—zg|=r Z — 20 2mj Jo relt
1 2m X 1
=— flzo+reit)ydt = / f(z)ds,
27 Jo 277 J|z—zg|=r

poiché r dt = ds.

Mediante la proprieta di media, possiamo ricavare il seguente

TEOREMA 2.2 (Principio di massimo modulo). Sia f olomorfa nell’aperto con-
nesso Q2. Se f non ¢ costante, |f| & privo di massimi relativi.

Dim. Mostriamo che, se |f| ha un massimo relativo, f risulta costante. Sia dunque zg9 € £ punto
di massimo relativo per |f|: esiste quindi un intorno di tale punto nel quale |f| assume valori non
superiori a |f(z0)l, vale a dire che per r» > 0 opportuno risulta

(2.2) [z—z20l<r = zeQelf(z)| <|f(20)]-

Per la proprieta di media, se 0 < p < r abbiamo

S 1ol ds = 2m L)l = ‘/“Hﬂz) wj <[ el

e quindi
S @G ds 0.
Z*ZO :p

Poiché per (2.2) I'integrando ¢ non-positivo, questo implica che esso & identicamente nullo, cioé |f(2)|
vale costantemente |f(zo)| sulla circonferenza di centro zp e raggio p. Per D'arbitrarieta di p < r,
risulta |f| costante nel cerchio di centro zp e raggio r. In virtu della proposizione II.1.5, f risulta
costante in tale cerchio e quindi, per il secondo principio di identita, in 2.

OssERVAZIONE 2.3. In effetti si dimostra che, se f non costante é olomorfa in un aperto connesso
€2, essa é un’applicazione aperta, cioé trasforma sottoinsiemi aperti di 2 in aperti, quindi 'immagine di
un intorno di z¢ contiene un intorno di f(zo), nel quale cadono punti w = f(z) tali che | f(z)| > | f(z0)|-
Questo implica che |f| sia priva di massimi relativi.

Dal teorema 2.2 ricaviamo subito

TEOREMA 2.4. Se f é continua in un dominio limitato ed olomorfa nei punti
interni, il massimo di |f| ¢ assunto sulla frontiera.

Osserviamo che il massimo esiste essendo |f| continua su un compatto. Detto D
il dominio, la tesi vuol dire che risulta Vz € D

()] < max |f].
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3. Ulteriori proprieta

Se f ¢ una funzione intera, possiamo svilupparla in serie di Mac Laurin:
—+o0
f(z) = E an 2",
n=0

dove

Qn

GO Ry
|z|=r

= - 2
n! 27 j Zntl 7

con r > 0 arbitrario. Ne segue

1
3.1 nl £ —
(31) ol <5 [

essendo M, = max;—, |f(z)|. (Queste sono dette disuguaglianze di Cauchy.) Una
immediata applicazione delle (3.1) ¢ il seguente

M,

rn’

f(2)

| 48 <

TEOREMA 3.1 (di Liouville). Ogni funzione intera limitata é costante.

Dim. Dalle (3.1) passando al limite per r — +o0, otteniamo a, = 0, Vn € N, quindi f(z) = ao,
vz € C.

Il teorema di Liouville consente di dimostrare facilmente il seguente

TEOREMA 3.2 (fondamentale dell’Algebra). Nel campo complesso ogni polino-
mio di grado positivo ha almeno uno zero.

Dim. Sia P un polinomio di grado positivo. Per assurdo, supponiamo P(z) # 0, Vz € C. Ne segue
che f = 1/P ¢ una funzione intera. Inoltre, essendo lim P(z) = oo, risulta le f(z) =0e fe
z oo z oo

limitata. Per il teorema di Liouville, f & costante, quindi tale risulta pure P, contro il fatto che esso
ha grado positivo.

4. Sviluppo di Laurent

Nel paragrafo I11.3 abbiamo mostrato la sviluppabilita in serie di Taylor delle fun-
zioni olomorfe, lo sviluppo valendo in ogni cerchio contenuto nell’aperto di olomorfia.
Otterremo in questo paragrafo uno sviluppo piil generale, che consentira di rappresen-
tare una funzione olomorfa mediante una serie bilatera di potenze, anche in situazioni
in cui lo sviluppo di Taylor non ¢é applicabile.

Una serie bilatera di potenze ¢ una serie del tipo

+o0

n

(41) E Cn (Z - ZO) )
n=-—oo
dove zg € C ¢ fissato e i coefficienti ¢,, sono assegnati numeri complessi. Compaiono
dunque in generale anche potenze di z — 2y con esponente negativo; se ¢,, = 0, Vn < 0,
la serie si riduce ad una ordinaria serie di potenze. Diremo che la serie (4.1) converge
se risultano convergenti separatamente le due serie
—1

+oo
(4.2) Z en (2 —20)", Z cn (2 —20)",
n=0

n—=—oo
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e in tal caso porremo chiaramente

+oo —1 +oo
Z en(z—20)" = Z cn(z—20)" | + ch (z — 2z0)"
n=—oo n=-—oo n=0

Osserviamo che la seconda serie in (4.2) & una serie di potenze di punto iniziale zg,
quindi converge in un cerchio di centro z, cioé per |z — zo| < R, con R € ]0, +o¢]. La
prima serie in (4.2) & una serie di potenze in 1/(z—2p), quindi converge per |z—zo| > r,
dove r € [0,4o00[; noi supporremo r < R, in modo che la serie (4.1) converga nella
corona circolare r < |z — zp| < R.

A

Piu precisamente, le due serie (4.2) convergono totalmente in ogni corona circolare
del tipo ' < |z — z9] < R/, con r < ' < R’ < R, e quindi la (4.1) puo essere integrata
termine a termine. Una serie bilatera puo essere altresi derivata termine a termine nei
punti interni alla corona circolare in cui converge.

Mostriamo la possibilita di sviluppare in serie bilatera di potenze una funzione
olomorfa in una corona circolare.

TEOREMA 4.1 (Sviluppo di Laurent). Sia f olomorfa nella corona circolare di
centro zy determinata dalle disuguaglianze r < |z — 29| < R, dove 0 < r < R < 4o0.
In questa ipotesi, esistono dei coefficienti ¢, complessi in modo che risulti

+oo
(4.3) f(z) = Z en(z—20)", r<l|z—2)]|<R.

n=-—oo

Ricordiamo che l'ipotesi significa che esiste un aperto {2 contenente la corona
circolare chiusa (cioé comprendente le due circonferenze che la delimitano), nel quale
f & olomorfa.

Dim. La dimostrazione & analoga a quella del teorema II1.3.3. Diciamo D la corona circolare, I'y- e
T'r le due circonferenze che la delimitano e rappresentiamo f nei punti interni mediante la formula
di Cauchy. Osserviamo che +FD =T'r U (—I';), quindi per r < |z — 29| < R abbiamo

1 J(¢ 1 J(¢ 1 f(¢
(4.4) =g [ Mg L[ Mg LS g
27nj JyFp C— 2 27 Jrg C— 2 27§ Jr,. C— 2
Procedendo esattamente come per la (II1.3.7), il primo integrale nell’ultimo membro si scrive

1 £

27j Jrg C—2

“+oo
d¢ = Zan(z—zo)",
n=0

avendo posto Vn € Ny

(4.5) R _ O e

" 275 Jry (C—z0)nt!
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Per trattare il secondo integrale nell’ultimo membro della (4.4), procediamo analogamente. Essendo
in tale integrale | — zo| = r < |z — 20|, possiamo scrivere

gnto. 1 e A1 1 e Ji" (¢ — z)™
(—2z z—-20—(—2) z-—=z0 1— ¢ — 20 _m:O(z—zo)erl
z— 20
e quindi, posto n = —(m + 1), ovvero m = —(n + 1),
- 3 lemnr
Wi (€= 20) (¢ —20)n+1”
Dunque
—1
1
N f(g) d<= Z bn(Z7Z())n,
2mj o, c—2 T 2=
dove per n = —1,—-2,...
1
(4.6) Qg

- 275 Jr, (C—20) !
Pertanto otteniamo 1'uguaglianza (4.3) ponendo ¢, = an, per n > 0, e ¢y = by, per n < 0.

Osserviamo che le formule (4.5) e (4.6) sono molto simili, 'unica differenza essendo
nella circonferenza su cui si integra. Poiché in entrambi i casi 'integrando ¢ olomorfo
nella corona circolare, in ciascun integrale possiamo sostituire la circonferenza di in-
tegrazione con un’altra I', di centro zp, intermedia, cioe di raggio p con r < p < R,
ottenendo Vn € Z

(4.7) Cn = 1./ 1(©) d¢.

27 Jr (¢ —z0)"*!

Quando faremo riferimento allo sviluppo di Laurent di f nella corona circolare, ci
riferiremo all'uguaglianza (4.3), con i coefficienti dati dalle (4.7). In effetti, lo sviluppo
di Laurent ¢ I'unico mediante il quale si puo rappresentare una funzione olomorfa in
una corona circolare in serie bilatera, come si ricava dalla seguente

PROPOSIZIONE 4.2 (Principio di identita delle serie bilatere di potenze). Se
le due serie

+0o too
Z cn (2 —20)", Z dp (2 —20)",
n=-—oo n=-—oo

convergono in una stessa corona circolare di centro zy (dotata di punti interni) e hanno
la medesima somma, esse sono identiche, cioé Yn € Z risulta ¢, = dy,.

Dim. Poniamo
“+o0
=Y dn(z—z0)",

n=-—oo

per r < |z — 29l < R, con 0 < r < R < 400 opportuni, e facciamo vedere che i coefficienti dp
coincidono con i coefficienti ¢y, dello sviluppo di Laurent di f nella corona, dati dalle (4.7). Infatti,
per k € Z fissato, abbiamo

1 f(2) / k—1
= [ 22 dn(z—20)" """ d
Cck 577 Jr (5= 20)i T dz = O :Z n (2 — 20) z
o0 1
= Z _ ./(Z—Zo)n_k_ldz:dk
27‘('] T

n=-—oo
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in quanto (cfr. esempio I11.1.1)
;/(z )l s — {0, sen#k
275 Jr 1, sen=k

Esaminiamo ora alcune situazioni frequenti in cui useremo lo sviluppo di Laurent
per studiare una funzione f olomorfa intorno ad un punto zg.

Il primo caso che consideriamo é quello in cui f & olomorfa in un intorno di
zp € C. In tal caso, possiamo considerare una corona circolare di centro zy descritta
dalle disuguaglianze r < |z — z9| < R, con R fissato e r > 0 arbitrariamente piccolo, e
scrivere lo sviluppo di Laurent di f in tale corona. Osserviamo che i coefficienti non
dipendono da r. Inoltre, per il teorema di Cauchy, risulta ¢, = 0, per n < 0, essendo
per tali indici le funzioni

f(©)
(C _ Zo)n+1

olomorfe intorno a zg, e lo sviluppo si riduce a quello di Taylor. (Questo segue pure
in base al principio di identita delle serie bilatere, proposizione 4.2.)

Il caso successivo & quello in cui f é olomorfa in un intorno di zy € C, escluso
il punto zg, cioé in un cerchio bucato privandolo del centro. In questo caso, con le
corone circolari del tipo r < |z — z9| < R per r — 0 invadiamo tutto il cerchio bucato
0 < |z — 29| < R. Troviamo pertanto che lo sviluppo vale in tale insieme e, come
vedremo, permettera di studiare la funzione intorno a zg.

Un altro caso ¢ quello di una funzione f olomorfa in un intorno del punto co.
Consideriamo ora corone circolari di centro 0, del tipo r < |z| < R, con r > 0 fissato e
R — +00. In questo modo otteniamo lo sviluppo per r < |z|, che useremo per studiare
f intorno a oo.

Una funzione olomorfa é rappresentabile mediante serie di Laurent in ogni corona
circolare contenuta nell’aperto di olomorfia. Fissato il centro, per una stessa funzione
possono esserci diverse corone circolari con tale proprieta.

=) (¢ —20) """

(—

ESEMPIO 4.3. La funzione

¢ olomorfa in C — {1}; puo essere sviluppata in serie di Laurent in due corone circolari
di centro 0: a) il cerchio |z| < 1, b) l'insieme |z| > 1.

A
|z| > 1
//’——\\\
7z N
é N
e \
/ \
J 2] <11
s 21Accg
| I
\ !
\ /
\ /
N 7/
N '$
J 15
< | .-
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In entrambi i casi, lo sviluppo cercato & una serie di potenze in z (eventualmente con
esponenti anche negativi).

a) Essendo f olomorfa nel cerchio |z| < 1, lo sviluppo di Laurent coincide con
quello di Taylor. Per scriverlo, basta ricordare la serie geometrica:

1 2 n
=1l4+z4+2z°+---+2"+---.
1—=2
b) Anche per |z| > 1 possiamo utilizzare la serie geometrica, ma di ragione 1/z:
“+o0 n —1

1 1 1 1 1
1—2 z 1-1/z z F\z

n=—oo

La funzione

¢ olomorfa nell’insieme C — {0}, che puo essere considerato una corona circolare di
centro 0. Per scrivere lo sviluppo di Laurent, ¢ sufficiente ricordare lo sviluppo di
Mac Laurin della funzione esponenziale:

—+oo oo -1 +oo

1 Z" izt 1 z2%
h = — —_— = —_— = _—
PR A P

Questo ¢ lo sviluppo di Laurent di A sia intorno a 0 che intorno a oco.

5. Singolarita isolate

Diremo che zy € C & una singolarita isolata della funzione f se f & olomorfa in
un intorno di zg, escluso il punto; vale a dire che esiste R > 0 tale che f sia olomorfa
per 0 < |z — 20| < R.

Diremo che la singolarita isolata zg di f & eliminabile se f ha un prolungamento
olomorfo in zp, cioé esiste una funzione g, olomorfa in un intorno di zy (incluso zp),
coincidente con f nei punti di tale intorno distinti da zg.

ESEMPIO 5.1. La funzione

ha in zy = 0 una singolarita isolata; essa ¢ eliminabile. E ben noto che f si prolunga
per continuita in 0, assegnandole in tale punto il valore 1. Per rendersi conto che il
prolungamento per continuita é olomorfo in 0, basta usare lo sviluppo di Mac Laurin
di sin z:

sinz 1 Jf(—l)” %iss Ji:.o(—l)" 2
z oz — (2n + 1)! _n:O (2n+1)!
22
nicp_eZdele<sclenze
6 + 120

La serie di potenze ha raggio di convergenza +oco e la sua somma g, che é una funzione
intera, coincide con f in C — {0}.
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ESERCIZIO 5.2. Verificare che le funzioni
e —1 1—cosz

fiz) = ——, faz) =

z 22
presentano entrambe una singolarita eliminabile in zy = 0.

Il seguente risultato fornisce alcune caratterizzazioni del fatto che una singolarita
isolata sia eliminabile.

PROPOSIZIONE 5.3. Sia zg una singolarita isolata della funzione f. Le se-
guenti proposizioni sono equivalenti:
(1) zo é singolarita eliminabile;
(2) f converge in zp;
(3) f e limitata intorno a zo;
(4) nello sviluppo di Laurent di f intorno a zo sono nulli i coefficienti ¢, con
indice n < 0, cioé lo sviluppo consiste in una ordinaria serie di potenze.

Dim. E chiaro che (1)=(2)=(3). Mostriamo I'implicazione (3)=>(4). Supponiamo quindi che
esistano R > 0 e M > 0 tali che |f(2)| < M, per 0 < |z — 29| < R; scegliamo p € |0, R| e consideriamo
la circonferenza I' =T',, di centro zg e raggio p nella formula (4.7) per calcolare i coefficienti ¢, dello
sviluppo di Laurent. In tal modo per n < 0 otteniamo

1 1 M —0
sk [ MO :
r

£5 s< —21p——=Mp " —0.
™

o 156 © 1
, |z — =0t 27 pnt
Mostriamo l'implicazione (4)=-(1). Per ipotesi, lo sviluppo di Laurent & privo di potenze con
esponente negativo; per 0 < |z — 29| < R (con R > 0 opportuno)
400

flz)= Z cn (z—20)".

n=0
La serie a secondo membro converge per |z — zg| < R, compreso zp, e la sua somma fornisce il
prolungamento di f olomorfo in zg.

Nel seguito, nel caso di una singolarita eliminabile noi prolungheremo la funzione
nel punto in modo da ottenere una funzione olomorfa. Consideriamo ora le singolarita
isolate non eliminabili. Le classificheremo in base al comportamento della funzione
intorno ad esse. Per studiare tale comportamento, useremo lo sviluppo di Laurent. Sia
dunque zp una singolarita isolata della funzione f; scriviamo lo sviluppo di Laurent
di f intorno a zy separando le potenze con esponente negativo e quelle con esponente
non-negativo:

—1 +oo
(5.1) flz)= Z en(z—20)" + ch (z—20)", 0<]z—2)|<R.
n=-—oo n=0
Le potenze con esponente negativo sono singolari in zg; chiamiamo caratteristica, o
parte singolare, di f intorno a zy la somma:
-1
(5.2) S()= > enlz—2)",
n=-—o00

mentre chiamiamo parte olomorfa di f intorno a z:

+oo
(5.3) O(z) = Z en (2 —20)".
n=0
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Osserviamo che la serie (5.2) converge in C — {2}, la somma S essendo olomorfa in
tale insieme. La serie (5.3) converge per |z — zg| < R (zp compreso) e la somma O ¢
olomorfa; lo sviluppo di Laurent (5.1) si riscrive

f(2) =8(2) + O(2) .
Il comportamento di f intorno a zy dipende dalla parte singolare S.

DEFINIZIONE 5.4. Diremo che zp & un polo di f se la serie (5.2) si riduce ad
una somma finita, cioé¢ solo un numero finito di coefficienti ¢,, con n < 0 sono diversi
da 0 (non sono tutti nulli, poiché zy non é eliminabile). Precisamente, diremo che zg
é polo di ordine N € N se c_y # 0, mentre ¢_, = 0, Vn > N. Un polo di ordine 1 &
detto anche polo semplice.

Diremo che zy € una singolarita essenziale se infiniti ¢, con indice n < 0 sono
diversi da 0. In altri termini, una singolarita essenziale é una singolarita isolata che
non sia eliminabile, né polo.

Dunque, se zg é polo di ordine N, la parte singolare ¢ un polinomio di grado N
in1/(z—2p):

1L "Ieae 17 AnnC-nNcca
(5.4) S() = ;T oy

mentre nel caso di singolarita essenziale essa ¢ effettivamente una serie con infiniti
termini non nulli.

ESEMPIO 5.5. Consideriamo le funzioni dell’esempio 4.3. f ha in zp = 1 un
polo semplice; lo sviluppo di Laurent intorno a 1 ¢é

-1
z) = .
La funzione h presenta in zy = 0 un polo semplice.
Vediamo qualche altro esempio. La funzione

1 1 1
5.5 = = _
(5:5) 9(2) 22-324+42 2z-2 2z2-1
ha in 1 e 2 poli semplici. Ad esempio, scriviamo lo sviluppo di Laurent intorno a 1,
quindi per 0 < |z — 1| < 1; essendo

1 1 +oo
= = - 1" -1 1
el e DD S (R

n=0

abbiamo

1 g
o)== Y-,
n=0

z—1
Dunque la parte singolare e la parte olomorfa intorno a 1 sono rispettivamente
—+o0

-1 5 1
S =1, 0 ==Y (-1"=—.
n=0
La funzione
e® 1 1 = Z"



56 IV. PROPRIETA DELLE FUNZIONI ANALITICHE

ha in zg = 0 un polo di ordine 2.

La funzione
+oo n -1 YE
e o (32" z
Naps Z nl 1 Z (—n)!

n=0

ha in zp = 0 una singolarita essenziale.

ESERCIZIO 5.6. Determinare lo sviluppo di Laurent, la parte singolare e la
parte olomorfa intorno a 2 della funzione g definita in (5.5).

ESERCIZIO 5.7. Mostrare che, se z5 € C é polo di ordine N di f, esso é polo
di ordine N + 1 di f’. Se zg € singolarita essenziale di f, lo & anche di tutte le sue
derivate.

Vediamo ora alcune caratterizzazioni.

PROPOSIZIONE 5.8. La singolarita isolata zg di f é un polo se e solo se f
diverge in 2q:

Zlgr;() f(z) =00.

Dim. Se zp € polo di ordine N € N, intorno a zp abbiamo

1Bases

(5.6) f(2)= ——x D en-n(z—20)", z#z.

(z—20)N =,
La somma ¢(z) della serie di potenze a secondo membro ¢ olomorfa intorno a zg, compreso il punto,
con ¢(zp) = c_n # 0, quindi f diverge in z9. Supponiamo f divergente. Poiché |f| diverge positi-
vamente in zg, intorno a zg f & diversa da 0 e possiamo considerare g = 1/f (20 ¢ escluso perché f
non ¢é definita in tale punto). Inoltre g ¢ infinitesima in zg, quindi ponendo g(zp) = 0 otteniamo il
prolungamento per continuita in zp; per la proposizione 5.3, esso € olomorfo e la funzione g ha uno
zero isolato, quindi di ordine finito, in zg. Detto N I’ordine, possiamo scrivere g(z) = (z — 20)N ©(2),
con ¢ funzione olomorfa e non nulla intorno a zp. Pertanto 1/¢ ¢ analitica e sviluppandola in serie
di potenze intorno a zg abbiamo

“+oo
’ y Z an (2 — 20)"
f(Z) _ _ n=0 ao al

(z — 20)N p(2) (z — 20)N - (z — z0)N i (z — z0)N-1 i

Questo ¢ lo sviluppo di Laurent di f intorno a zo; per concludere, osserviamo che ag = 1/¢(z9) # 0.

Nella caratterizzazione precedente non interviene esplicitamente ’ordine del polo,
come invece accade nella proposizione seguente.

PROPOSIZIONE 5.9. Sia zy una singolarita isolata della funzione f. Le se-
guenti proposizioni sono equivalenti:
(1) zo & polo di ordine N;
(2) (2 —20)Y f(z) converge in zy ad un valore non nullo;
(3) f & non nulla intorno a zy e la funzione

1/f(2), z# 2z

0, zZ =2

g(z) =

ha in zg uno zero di ordine N ;
7
(4) esiste una funzione ¢ analitica e priva di zeri in un intorno di zg, tale che

per z # zy misulti f(2) = (z — 20) " Nep(2).
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ESERCIZIO 5.10. Ragionando direttamente con gli sviluppi di Laurent, o usando
la proposizione 5.9 e esercizio 1.13, provare che, se zy & polo di ordine M di f e di
ordine N di g, esso é polo di ordine M + N del prodotto fg. Cosa si puo dire se 2 &
polo di ordine M di f e zero di ordine N di g7

Dalle caratterizzazioni precedenti, segue una caratterizzazione per le singolarita
essenziali.

PROPOSIZIONE 5.11. La singolarita isolata zy & essenziale se e solo se f non
ammette limite in zg.

Piu precisamente, se I é un qualsiasi intorno della singolarita essenziale zg nel
quale f ¢& olomorfa (escluso zp), risulta
(5.7) sup |f(2)] = +o0, inf |f(z)|=0.

z€l—{z0} zel—{z0}

Infatti, se I’estremo superiore fosse finito, f sarebbe limitata e zy sarebbe una sin-
golarita eliminabile, per la proposizione 5.3. Se l'estremo inferiore fosse positivo, f
sarebbe diversa da zero intorno a zp e 1/f sarebbe limitata, quindi prolungabile come
funzione olomorfa in zy; ne seguirebbe z; singolarita eliminabile o polo di f, contro
Iipotesi. Se zg é singolarita essenziale di f, lo é anche della funzione f — w, Yw € C,
quindi, oltre le (5.7), abbiamo
5.8 inf z)—w|=0.
(58) it 1) )
Segue il

TEOREMA 5.12 (di Casorati-Weierstrass). In ogni intorno di una singolarita
essenziale, una funzione assume valori arbitrariamente prossimi a qualsiasi numero
complesso fissato.

Tale teorema mostra il comportamento estremamente irregolare di una funzione
nell’intorno di una sua singolarita essenziale. In effetti, sussiste un risultato piu preciso,
che ci limitiamo ad enunciare.

TEOREMA 5.13 (di Picard). In ogni intorno di una singolarita essenziale, una
funzione assume come valori tutti i numeri complessi, con al pit un’unica eccezione.

Che un valore eccezionale possa effettivamente presentarsi é mostrato dalla fun-
zione e'/#, che non si annulla.

ESEMPIO 5.14. In relazione a quanto detto nell’esercizio 5.10, é interessante
osservare che, invece, se zg € singolarita essenziale delle funzioni f e g, non & detto
che lo sia pure del prodotto fg. Considerare il caso delle funzioni f(z) = e'/* e
g(z) = e ¥* con z; = 0.

Siano ora f e g due funzioni olomorfe in un intorno di zy (compreso), non identica-
mente nulle, ma con g(zp) = 0. Pertanto zy & zero isolato di g e possiamo considerare
la funzione rapporto

f(z)

") =5

intorno a zg, escluso pero il punto zg che risulta quindi una singolarita isolata. Vo-
gliamo studiare tale singolarita. Sia zg zero di ordine M € Ny di f (M = 0 significa
che zp non & zero) e di ordine N € N di g. Valgono dunque i seguenti risultati:

Y
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e se M > N, il punto zy € una singolarita eliminabile; precisamente, se M > N
il punto é uno zero di ordine M — N del prolungamento;
e se M < N, il punto 2y & un polo di ordine N — M.

Per la verifica, in base alle ipotesi scriviamo
con ¢ e 1 funzioni olomorfe e diverse da zero intorno a zy. Pertanto
f(2) m-n $(2)
h(z) = =(z—z f

E allora chiaro il risultato per M > N. Nel caso M < N, sviluppiamo in serie di
potenze intorno a zq la funzione ¢/1:

—+o0
h(z) = (z — z)M—N an (2 —20)" = 0 + @ + e
Y e

e osserviamo che ag = ¢(z0)/1(20) # 0. Possiamo anche usare la proposizione 5.9.

ESEMPIO 5.15. Esaminare alla luce del risultato precedente la funzione dell’e-
sempio 5.1 e quelle dell’esercizio 5.2. Inoltre studiare le funzioni

sin z e*—1
hl(Z) = hg(z) = .

= , .
1—cosz sin z

ESEMPIO 5.16. Se f é olomorfa e non identicamente nulla, ’espressione

f'(z) _d
=—1
ORI og f(z)
si dice derivata logaritmica di f. Se il punto zp & uno zero (isolato) di f, esso & polo
semplice della derivata logaritmica. Se zp & un polo di f, esso & uno zero di g = 1/f
(proposizione 5.9). Essendo ¢'/g = —f f'/f*> = —f'/f la derivata logaritmica di g,
anche in questo caso zg € polo semplice della derivata logaritmica di f.

6. Olomorfia e singolarita all’co

Sia f una funzione olomorfa intorno all’co; possiamo quindi rappresentarla in serie
di Laurent

+o00
(6.1) f(z)= Z 27!

n=—oo
Per z — oo, sono convergenti le potenze con esponente non-positivo, mentre le altre
risultano divergenti. Chiameremo dunque parte olomorfa di f intorno a oo la somma
delle potenze con esponente non-positivo in (6.1):

0

O(z) = Z cn 2",

n=—oo

e chiameremo caratteristica, o parte singolare, di f intorno a oo la somma delle potenze
con esponente positivo:

+oo
S(z) = Z R,
n=1
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Diremo che f é olomorfa in oo se S = 0, cioé se risulta ¢, = 0, Yn > 0; in tal caso,
porremo f(co) = ¢g = lim f(z). Diremo che co é polo di ordine N € N se risulta
zZ—00

¢y #0ec, =0,Vn > N; pertanto I'uguaglianza (6.1) si riduce a
0
f(z) = Z et ez +enzY.
n=-—o00
Diremo che co é una singolarita essenziale se infiniti coefficienti ¢,, con n > 0 sono
diversi da 0.

OSSERVAZIONE 6.1. Studiare f intorno all’co equivale a studiare g(z) = f(1/2)
intorno a 0.

Valgono caratterizzazioni analoghe a quelle viste nel caso di un punto al finito.
Ad esempio, I’olomorfia all’co equivale sia alla convergenza all’oo, che alla limitatezza
in un intorno dell’co; in base a questo, il teorema 3.1 di Liouville si pud enunciare nel
modo seguente: “Ogni funzione olomorfa in C = C U {oo} ¢é costante”.

1 P(z) ) I ? Se; )
ESEMPIO 6.2. Sia f(z) = W una funzione razionale, rapporto tra i polinomi
z

P, di grado M, e @, di grado N. Essa é olomorfa all’co se M < N; ha un polo di
ordine M — N se M > N.

Le funzioni e?, sin z, cos z, hanno nel punto oo una singolarita essenziale.

ESERCIZIO 6.3. Sia f una funzione intera. Se oo é un polo di ordine N, f é un
polinomio di grado N.

ESERCIZIO 6.4. Sia f una funzione con un numero finito di singolarita in C.
Mostrare che f differisce per una costante dalla somma delle caratteristiche nei punti
di singolarita. (Suggerimento: osservare che la differenza ¢ priva di singolarita in Ce
applicare il teorema di Liouville.)



CAPITOLO V

Residui e applicazioni

1. Residui

Siano zy € C e f una funzione olomorfa in un intorno di zp, escluso al piu zy. Si
chiama residuo di f in zp la quantita

(1.1) Rlzo] = Rylz0] = Rlz0; f] 2m/f

essendo I' una circonferenza di centro zy contenuta nell’intorno. Osserviamo innanzi-
tutto che, per il teorema di Cauchy, I'integrale in (1.1) non dipende da I'. E chiaro
inoltre che, se f ¢ olomorfa anche in zg, il residuo ¢ nullo. Confrontando (1.1) con le
formule (IV.4.7) che definiscono i coefficienti dello sviluppo di Laurent intorno a zo,
vediamo che risulta

(1.2) R[ZO] =C-1-
ESEMPIO 1.1. Ricordando lo sviluppo di Laurent della funzione f(z) = 1/(1—%)
intorno a zy = 1, vediamo subito che il residuo & Ry[1] = —1.

La funzione g(z) = 272 ha residuo nullo in zy = 0, ma non & olomorfa in tale
punto, che é un polo doppio.

Sia ora f olomorfa intorno a co. Si dice residuo nel punto all’co di f la quantita

(13) Rloe] = Ryloc] = Ripes ] = 5= [ 1t

dove IT" & una circonferenza di centro 0 contenuta nell’intorno; l'orientamento scelto é
quello negativo (orario), che le compete come frontiera di un intorno di co. Vediamo
che risulta

(1.4) Rloco] = —c_1,

dove c_; é coefficiente dello sviluppo di Laurent di f intorno a co. Osserviamo che ¢_1
¢, nel caso del punto co, un coefficiente della parte olomorfa; in effetti, puo risultare
Ry[oo] # 0 anche se f ¢ olomorfa in co.

ESEMPIO 1.2. La funzione f(z) = 1/z ¢ olomorfa all’co e risulta f(c0) = 0, ma
Rf[oo] =—1.

Riguardo al calcolo del residuo nel punto all’co, diamo i seguenti risultati.

LEMMA 1.3. Sia f olomorfa intorno a co.

e Se f(z) converge per z — oo, cioé f & olomorfa anche all’oco, risulta
R[oo] = lim z[f(c0) — f(2)].
Z—r00

60
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In particolare, se z f(z) converge per z — oo, & f(oo) =0 e
R[oo] = — lim z f(2).
z

—00

e [l calcolo del residuo di f all’co equivale a quello del residuo della funzione

1\ 1
9(z) =—f <z> 2
nel punto 0, cioé risulta Rs[oo] = R4[0].

OSSERVAZIONE 1.4. Ovviamente R[oc] non dipende da 3"+ ¢, 2" nello sviluppo
di Laurent. Ad esempio, se f(z) = Z(z) = P(z)/Q(z) & una funzione razionale,
effettuando la divisione tra P e @) come nella (3.2) che segue, troviamo
R[oo; f] = Roo; R/Q) .
Vediamo due teoremi fondamentali per il seguito.

TEOREMA 1.5 (I teorema dei residui). Se f é olomorfa nel dominio regolare
D, escluso un numero finito di punti interni z1, ..., z,, Tisulta

LFDf(z)dz =27 (R[z1] + - + Rlz]) -

Dim. Scegliamo ¢ > 0 in modo che i cerchi chiusi di raggio § e centri z1, ..., zn siano a due a due
disgiunti e contenuti internamente a D, e consideriamo il dominio D’ ottenuto privando D dei punti
interni a tali cerchi, in modo che f sia olomorfa in D’.

A

>

Applichiamo il teorema III1.2.1 di Cauchy a f in D’; a tal fine, osserviamo che, dette I'1,..., [, le
circonferenze che delimitano i cerchi, risulta

+FD' =+FDU(-T'1)U---U(-Ty).
O:/;FDf(z)dzf f(z)dz—-- / f(z)dz,

AFDf(z)dz:/Fl f(z)dz+-~~+/rnf(z)dz

e per concludere basta riconoscere che risulta

Pertanto

ovvero

f(z)dz=2mjR[=],..., f(z)dz =2mj Rlzn].
Iy T

TEOREMA 1.6 (IT teorema dei residui). Se f & olomorfa in C, escluso un numero
finito di punti zq, ..., z,, Tisulta

Rlz1] + -+ + Rlzn] + R[oo] =
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Dim. Sia D un cerchio di centro 0 e raggio maggiore di max {|z1],...|zn|}, in modo che z1,..., 2,
siano interni, e applichiamo il I teorema dei residui:

/ f(z)dz =27 (Rlza] + -+ Rlen]) .
+FD
E sufficiente allora osservare che risulta
/ f(z)dz = —27j R[o0].
+FD

ESEMPIO 1.7. Verifichiamo la tesi del II teorema dei residui nel caso della
funzione

1 1 1
1.5 = _-
(15) -324+2 z-2 z-1’
che ha poli semplici nei punti 1 e 2 ed é olomorfa all’co. Da (1.5) ricaviamo R[1] = —1,

R[2] = 1, mentre usando il lemma 1.3 troviamo R[oco] = 0 e quindi
R[1] 4+ R[2] + R[] =

OSSERVAZIONE 1.8. L’enunciato del I teorema dei residui estende quello del teore-
ma di Cauchy, che riguarda il caso in cui non ci siano singolarita. Il I teorema genera-

lizza inoltre la formula di Cauchy, in quanto, se f é olomorfa, la funzione g: z — M
Z— 20

ha in zg residuo pari a f (zo)' per vedere cio, basta sviluppare in serie di Taylor f:

zZ— 20 Z—Zo

flz) Z f(" Zo )

ottenendo cosi lo sviluppo di Laurent intorno a zg.

2. Calcolo del residuo nei poli

Nelle applicazioni, sara fondamentale per calcolare i residui avere dei procedimenti
che non richiedano di valutare l'integrale che compare nella definizione, cfr. (1.1) e
(1.3). E possibile dare metodi elementari per il calcolo del residuo nei poli. Per
cominciare, supponiamo zg € C polo semplice di f. Dunque, la parte singolare di f
intorno al punto si riduce ad un unico termine:

c_1
Z) =
fle)= ==
essendo O la parte olomorfa. Ne ricaviamo

lim (z — z0) f(z) = zh—I?o (cc14+ (2 —20) O(2)) =c—1+0=1c_4

z—20

(2),

e quindi per (1.2) abbiamo subito
LEMMA 2.1. Se zy & polo semplice di f, vale la formula
(2.1) Rylzo] = Jim (=~ 20) f(2).

E frequente I'uso della formula precedente quando f & espressa come rapporto di
funzioni olomorfe:

(2.2) f(2) =

In questo caso (2.1) si particolarizza come segue.
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LEMMA 2.2. Se f ¢ espressa mediante la (2.2), con zy zero semplice di B, risulta

Dim. Osserviamo che B’(z) # 0, quindi il secondo membro di (2.3) ¢ definito, e 2o ¢ polo semplice
di f se A(z0) # 0, o singolarita eliminabile se A(zg) = 0. Per verificare la formula, scriviamo
A(z) zZ—20
(z — 20) f(2) = (2 — 20) =AQR) o0
B(z) B(z) — B(z0)
e passiamo al limite per z — zp usando (2.1) a primo membro e osservando che nell’ultimo membro
figura il reciproco del rapporto incrementale di B in zg.

OSSERVAZIONE 2.3. Benché la formula sia valida, se A(zp) = 0 la funzione f ha
prolungamento olomorfo in zy, dunque il residuo é banalmente nullo e quindi il ricorso
alla (2.3) & superfluo.

ESEMPIO 2.4. Per calcolare il residuo della funzione

sin z

in 0, possiamo usare (2.3):

R[0] = ~1.

CoS 2 |,_g

Nell’applicare (2.3) la scelta delle funzioni A e B non ¢ unica. Calcoliamo ad
esempio il residuo in zg = 0 della funzione

224242
cosz (22 —2z2)°

Una scelta naturale ¢ A(z) =22 +2z+2 e B(z) = cosz (22 — 2):

A(z) 224242
B'(z) —sinz(22—2)+cosz(2z—1)"
2
2
La scelta A(z) = fi fiEndag e B(z) = 2z? — z porta una leggera semplificazione nel
Ccos 2

calcolo della derivata:
Alz) 224 2+2 1
B'(z) cos z 2z—-1"

Il residuo vale —2.

ESERCIZIO 2.5. Calcolare il residuo di tan z in 7/2. Calcolare il residuo in 0 di
e —1
24 ——
(24) 1—cosz
Calcolare i residui di
1

(22 —-4z+3)sinz

nei punti 0, 1, 3.

La formula (2.3) si generalizza come segue.



64 V. RESIDUI E APPLICAZIONI

LEMMA 2.6. Se f ¢ espressa mediante la (2.2), con zy zero di ordine (maggiore
di 0 uguale a) N — 1 di A e zero di ordine N di B, con N € N, risulta

AN ()
B (z0)

Evidentemente, il lemma 2.2 contiene il caso N = 1.

Dim. Le ipotesi assicurano che zg sia polo semplice (o singolarita eliminabile, se esso & zero di ordine
maggiore di N — 1 di A) di f, quindi il residuo si calcola con la formula (2.1). A tale scopo, usando
gli sviluppi di Taylor di A e B intorno a zg, scriviamo

(2.5) Rflz] = N

AN (z5) AW () ANHD ()
T N )t Sy (B )
(z —20) f(z) = B (z)  BOFD () BNT2)(z) 3
N Ny TR gy G

e quindi abbiamo la (2.5) passando al limite per z — 2.

ESEMPIO 2.7. La funzione
f(z) =

1 —cosz

sin z

ha in zp = 0 un polo semplice, essendo tale punto zero semplice del numeratore e zero
doppio del denominatore. Per calcolare il residuo, usiamo la formula (2.5) con N = 2:
R0] =222 =9,
cos z | z=0

ESEMPIO 2.8. Come osservato nell’esempio IV.5.16, se zp & uno zero di f, esso
¢ un polo semplice della derivata logaritmica f'/f. Detto N l'ordine, mediante la
formula (2.5) con A = f’ e B = f, troviamo subito che il residuo ¢ Ry, ¢[20] = N.
(Cfr. Esempio 2.7.)

Mediante la (2.1) troviamo facilmente che, se zg & polo di ordine N di f, risulta
Ry /¢[20] = —N. Notiamo che questo risultato si puo anche ottenere dal caso pre-
cedente, considerando g = 1/f. Infatti, per la proposizione IV.5.9 zg & uno zero di
ordine N di g e, come visto nell’esempio IV.5.16 le derivate logaritmiche di g e f sono
opposte.

OSSERVAZIONE 2.9. Siano A, B e C funzioni olomorfe intorno a zg, zero di ordine
N —1di A, di ordine N di B, mentre C(zg) # 0. Il punto zy & quindi polo semplice di

E chiaro che

. Az . Az
Rylzo] = 2151;10(2' B ZO)B(Z; Clz) = zlgIzlg(Z a ZO)BEZ; C(z0)
A(N—l)(ZO)
=N % .
BN (z) )
Ad esempio, se .
S 7wz

&= e
con A(z) =sinmz, B(z) = (2 —1)? e C(2) = 1/(2® + 1), per 2o = 1 abbiamo N =2 e
mecosm 1 s

Hallm 2 wegatoaegionieg
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Consideriamo adesso il caso di un polo di ordine superiore. Sia zy polo di ordine
N della funzione f: lo sviluppo di Laurent intorno a zy ¢ dunque

+oo
@)= en(z—20)"
n=—N
e quindi abbiamo
—+oo
(z—20)N f(2) = Z cn (2 — 20)VH7.
n=—N

La serie a secondo membro € lo sviluppo di Taylor del prolungamento olomorfo in
2o del primo membro e in tale sviluppo c¢_1 = Ry¢[zo] & il coefficiente della potenza
(2 — 29)V 1. Pertanto (cfr. (II1.3.4)) abbiamo la formula

1 r dN—l ¢
(2.6) Rylzo] = (N —1)! Zli)n;() dzN-1 [(’Z - 20) f(z)] )

Osserviamo che nella (2.6) ¢ necessario il passaggio al limite formalmente, poiché
(z — 20)N f(2) non & definita in 2.
Per il seguito, ¢ utile generalizzare la (2.6) ed indicare una formula per tutti i
coefficienti della parte singolare di f intorno a zg:
1 dN—n

(2.7) C2pe= N = zli—>Hzlo L= [(,zz—zo)Nf(z)]7 n=1,...,N.

OSSERVAZIONE 2.10. T coefficienti ¢_,, si possono scrivere come residui in zg di
opportune funzioni:

¢—n = Rl20; (z — 20)" ' f(2)].
Una proprieta ovvia (essendo il residuo definito mediante un integrale), ma talvolta
utile per semplificare i calcoli, & la linearita di R[zp;-]:
(2.8) Rlz0; af + Bg] = aR|zo; f] + BR[z0: 9],

per ogni «, 5 € C e f, g olomorfe intorno a zy. Tale formula ¢ interessante nel caso
che g abbia residuo nullo, ad esempio, sia olomorfa in zy € C.

ESEMPIO 2.11. La funzione

1
f(Z)— 22(172)
ha in zg = 0 un polo doppio; calcoliamo il residuo. Applicando la (2.6), troviamo
1 .. d 1 1

R[0] = =1.

T Sd 12 (1-2)2|,_,
Il residuo puo essere calcolato anche in applicazione del II teorema dei residui, os-
servando che 'unica altra singolarita di f ¢ il polo semplice 1 e con la formula (2.1)
abbiamo R[1] = —1; inoltre per il primo caso del lemma 1.3 troviamo subito R[occ] = 0.
Pertanto ricaviamo R[0] = —R[1] = 1.

In questo semplice esempio, volendo evitare il ricorso alla formula (2.6), possiamo
usare la linearita. Poiché come ¢ ovvio R[0;1/2?%] = 0, troviamo

e iR Al s o | SR g R
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ESEMPIO 2.12. Consideriamo la funzione razionale
2422241
&)= =T
22(22 442 +41)
Essa ha un polo doppio in 0, poli semplici nei punti —2F+/3; il punto oo & di olomorfia,
in quanto f converge, e f(00) = lim,_,, f(2) = 1. Calcoliamo i residui. Usando (2.3)
troviamo A )
25422241
R[-2 3= ———+
[-2% V3] 22(2z + 4)

z=—2FV3
Per il calcolo effettivo, vale la pena notare che —2 — v/3 e —2 + /3 sono reciproci,
quindi

\/gzz2+2+z*2 (—2F V3)2 + 2+ (—2+V3)?

R[-2 2
[ + ] 2z +4 =273 ¢2x/§
e dunque R[—2 F /3] = :F%.
In 0 usiamo (2.6):
dozt+22+1
R0 = — —5—F—| =-4.
0=% =i 0

11 calcolo si semplifica leggermente nell’applicare la formula (2.6) osservando che f(z) =

% e che g(z) = zj_fjj_l ¢ olomorfa in 0; pertanto il residuo di f coincide con
quello della funzione h(z) = #7;1 = f(2) — g(2):
d 1
R[0; f] = R|O;h] = — 59— =—4.
10: /] [0: 2] dz 22 +4z+1|,_,

Per calcolare il residuo in oo usiamo il lemma 1.3:
22(22 4+ 4z4+1) — (24 +222+1)

Hlegs l ot el v (23125 M Creco ey mraveni
Osserviamo che, in accordo con il II teorema dei residui, risulta
(2.9) R[0] + R[-2 + V3] + R[-2 — V3] + R[] = 0.
ESEMPIO 2.13. Calcoliamo il residuo della funzione f(z) = 1_?282 nel polo
doppio zp = 0. In base alla (2.6), abbiamo
2 .z 25 % 2 .z 1— L2 02 G
R[0] = lim D z%e :hm(ze +2%e%)(1 —cosz) — z?e*sinz
z—0 1l—cosz 20 (1 —cosz)?
. 22(1 —cosz) — 2%sinz
=2+ lim
2—0 (1 —cosz)?

e Pultimo limite vale 0, in quanto in quanto (esiste finito e) la funzione & dispari.
Dunque R[0] = 2. Conviene in effetti pitt semplicemente scrivere

2z 2 2
z‘e z z
— = —— 4 D ——
1 —cosz 1—-cosz 1—cosz
2 . . . . . . . .
e notare che D ;—=— ¢ funzione dispari, in quanto derivata di una funzione pari,

quindi (il limite) in 0 si annulla.
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ESERCIZIO 2.14. Ricordando lo sviluppo di Mac Laurin di e*, osservare che

R 0;67 =R 0;1i =R O;; + R O;#
1—cosz 1—cosz 1—cosz 1—cosz

e, nell’ultimo membro, il secondo residuo é relativo ad un polo semplice, mentre il
primo ¢ nullo, poiché 1/(1 — cos z) & una funzione pari. Per lo stesso motivo, il residuo
coincide con quello della funzione (2.4), che ha un polo semplice.

Calcolare il residuo pure osservando che 1/(1—cos z) —2/z? ha in 0 una singolarita
eliminabile.

ESERCIZIO 2.15. Mostrare che la funzione f dell’esempio 2.12 verifica

S1(2) =16,

per ogni z nell’aperto di olomorfia. Per il secondo punto del lemma 1.3 risulta quindi
R[oo] = —R[0]. Dunque & pure R[—2 4 /3] = —R[-2 — /3].
ESERCIZIO 2.16. Calcolare i residui di
1
(22 +1)2
nei punti Fj. Verificare che essi sono coniugati. Valutare il residuo all’co e verificare
che la somma dei residui é nulla.

ESERCIZIO 2.17. Osservare che, nel ricavare (2.6), l'ipotesi che z sia polo di
ordine N non ¢é stata usata interamente: é servito solo ¢_,, = 0, Yn > N. Cosa si puo
dire su (2.6) se c_y = 0 (cioé 2 ¢ polo di ordine minore di N, o punto di olomorfia)?

ESERCIZIO 2.18. Calcolare R[0, (1 —cos z) 2] osservando che esso coincide con
quello di z[(1 — cosz)™2 — (22/2)?], che ha in 0 un polo semplice. Osservare anche

che non ¢ lecito sostituire direttamente 1 — cos z con linfinitesimo equivalente 22/2,
in quanto R[0,2/(2?/2)?] = 0. Confrontare con l'esercizio 44 del Fascicolo.

3. Applicazioni alla decomposizione in fratti semplici

In questo paragrafo ci occupiamo di funzioni razionali, cioé rapporti tra polinomi
P(z)
Q=)
Innanzitutto, richiamiamo ’operazione di divisione euclidea: data una coppia di poli-
nomi (P, @), con @ diverso dal polinomio nullo, & univocamente determinata un’altra
coppia di polinomi (S, R) con le seguenti proprieta

e risulta P = SQ + R,

e R ¢ il polinomio nullo, o ha grado minore del grado di Q.

(3.1) R(z) =

L’operazione (P, Q) — (S, R) & detta appunto divisione di P per @, S si dice quoziente
e R si dice resto della divisione; se R ¢ il polinomio nullo, si dice che P é divisibile per
Q, o anche che @ divide P. Dunque, possiamo riscrivere la (3.1) come segue:

P(z R(z
(2) =S(z) + (2) )
Q(z) Q(z)
La funzione razionale nell’ultimo membro della (3.2) ha numeratore con grado minore
del denominatore; una funzione razionale siffatta é detta funzione razionale propria.

(3.2) R(z) =
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A meno del termine polinomiale S, possiamo sempre ridurci ad una funzione razionale
propria.

Richiamiamo ora la decomposizione in fratti semplici delle funzioni razionali. Per
fare questo, dobbiamo prima parlare della fattorizzazione dei polinomi. Sia

(3.3) Q2)=ap+arz+---+aynzV

un polinomio di grado N > 0. Per il teorema fondamentale dell’algebra, @ ha almeno
uno zero in C. In effetti, usando questo insieme al ben noto teorema di Ruffini (il
resto della divisione di @ per z — ¢ ¢é la costante Q(c), quindi @ ¢ divisibile per z — ¢
se e solo se Q(c) = 0), si mostra che nel campo complesso @) ha esattamente N zeri,

se ciascuno viene contato secondo il suo ordine. Detti dunque z1, ..., 2z gli zeri a due
a due distinti e Ny, ..., Ny i rispettivi ordini, risulta
(3.4) Ni+:+Ny=N

e (Q si fattorizza come segue:
(35) Q(Z):CLN (Z_Zl)Nl"'(Z—Zk)N’“,

Un errore frequente nello scrivere la fattorizzazione é quello di dimenticare il coef-
ficiente direttivo an. Data la funzione razionale % in (3.1), possiamo fattorizzare
numeratore e denominatore e semplificare gli eventuali fattori comuni, in modo da
rappresentare % come rapporto di polinomi primi tra loro. Nel seguito supporremo
che il grado di P sia minore del grado di @ e che i due polinomi siano primi tra loro.

3.1. Fratti semplici nel campo complesso. Nel campo complesso si dicono
fratti semplici le epressioni del tipo
c

(z —zo)™’
dove ¢,z9 € C (¢ # 0) e n € N. Data la funzione razionale #, supponiamo che il

denominatore @ sia fattorizzato come in (3.5); in questa ipotesi, Z si decompone in
un unico modo come somma di fratti semplici:

3. PRI ol
Q) ~ L Gz

I coefficienti ¢, sono opportuni numeri complessi, univocamente determinati dalla
(3.6). Frequentemente nel seguito avremo bisogno di decomporre una funzione ra-
zionale in questa maniera. Per ottenere la decomposizione, al lettore é certamente
noto il metodo dei coefficienti indeterminati, che consiste nello scrivere formalmente
la (3.6) con i coefficienti incogniti da determinare appunto, liberare dal denominatore,
ottenendo cosi un’uguaglianza tra due polinomi, e ricavare i coefficienti della decom-
posizione come soluzioni del sistema lineare ottenuto uguagliando ordinatamente i
loro coefficienti. Tale procedimento diventa laborioso al crescere del grado N di Q.
Esponiamo ora un modo di procedere basato sul calcolo dei residui.

Nella decomposizione evidentemente figurano fratti semplici con denominatori del

tipo (z — z;,)"™, che dividono @, cioé i numeri z,,, m = 1,...,k, sono gli zeri di Q. La
somma dei termini corrispondenti ad un fissato zero z,, é esplicitamente

Cm,1 Cm,Nm
(3.7) —+ -+

Z— Zm, (2 — 2p)Nm
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La somma degli altri termini nella (3.6) ¢ olomorfa in z,,, quindi (3.7) & la parte
singolare di # intorno a z, e pud essere determinata mediante le formule (2.7). In
altre parole, per n =1,..., Ny,

Cmn = C—n[zm]
¢ il coefficiente di (z — 2, ) ™" nello sviluppo di Laurent di Z intorno a zy,.

ESEMPIO 3.1. Decomponiamo in fratti semplici la funzione dell’esempio 2.11:
1
f(Z)— 22(172,)'
La decomposizione & del tipo

1 a b c
3.8 S . AT
(38) 22(1—2) gat Pritecpics «

con a, b, ¢ costanti opportune. Moltiplicando ambo i membri per 22 (1 — z), otteniamo
l=az(1—2)+b(1—2)—cz®=—(a+c)2>+(a—b)z+b

e uguagliando ordinatamente i coefficienti dei polinomi nei due membri

a+c = 0
a—b =0
b =1
Dunque a =b =1, ¢ = —1 e la decomposizione &
1 1 1 1

22(172)_24_22 z—1"

Procediamo ora mediante il calcolo dei residui. Con riferimento alla (3.8), per
quanto visto nell’esempio 2.11 abbiamo a = R¢[0] =1, ¢ = R¢[1] = —1; inoltre

1
1—=2

b= lim 2° f(z) =
z—0

e ritroviamo la decomposizione.
Vale la pena sottolineare che in questo semplice esempio possiamo arrivare alla
decomposizione direttamente

1 _(1—z2)+22_1+z+ 1 11 1
y2(qeadgyriico 2044-202p Luigi @ 11—z 22 2z 1-2z°

ESERCIZIO 3.2. Decomporre in fratti semplici ————-.
22(22-1)

OSSERVAZIONE 3.3. Dalla (3.6) e da quanto detto, ricaviamo il seguente enunciato:
Una funzione razionale propria é somma delle caratteristiche nei suoi poli. Questo vale
a meno di una costante additiva pure se il grado del numeratore ¢ maggiore o uguale
di quello del denominatore. In tal caso, il polinomio S nella (3.2), privato del termine
costante, ¢ la caratteristica nel punto all’co. (Confrontare con l'esercizio IV.6.4.)



70 V. RESIDUI E APPLICAZIONI

3.2. Fratti semplici nel campo reale. Ci occupiamo qui di funzioni razionali
a coeflicienti reali. Una tale funzione razionale puo essere decomposta in fratti semplici
nel campo complesso come visto prima; vogliamo perd discutere una decomposizione
in fratti direttamente nel campo reale, che spesso € piu opportuna. Svolgiamo preli-
minarmente alcune ulteriori considerazione sui polinomi nel campo reale. Sia dunque
@ un polinomio a coefficienti reali, dato dalla (3.3). Poiché @Q(z) si calcola a partire
da z e dai coefficienti mediante sole addizioni e moltiplicazioni, abbiamo Q(z) = Q(Z)
(cfr. esempio 1.1.3):

QR)=as+arz+-+anzN =G+ @z + - +an 2N = Q(2)

poiché i coefficienti sono reali. Una funzione con la proprieta f(Z) = f(z) si dice her-
mitiana; dunque un polinomio a coefficienti reali & hermitiano. Ne segue chiaramente
che, se zp & uno zero non reale di @, & zero pure Zg: Q(Zp) = Q(20) = 0. Piu precisa-
mente, essendo anche le derivate di () a coefficienti reali e quindi hermitiane, vediamo
che zp e Zp hanno lo stesso ordine. Dunque, se nella fattorizzazione (3.5) compare il
fattore (z — z9)™V°, compare anche (2 — z5)N° e quindi @ ¢ divisibile per il prodotto.
Scrivendo zp = 0 + jw in forma algebrica, ¢ Zg =0 — jw e

(z—2)(z—Z)=(z—-0)+w? =22 +pz+gq,

dove p = —20 e ¢ = 0?+w?; notiamo che il trinomio nell’ultimo membro ha coefficienti
reali e discriminante negativo: A = p? —4qg = —4w? < 0.

In generale, il polinomio @ avra degli zeri reali a due a due distinti x1, ..., xx,
di ordini rispettivamente Ni,..., N, e degli zeri complessi non reali a due a due
distinti, che si presentano a coppie di numeri coniugati zi1,Zz1, ..., 2h,2n, di ordini
rispettivamente M, ..., M} (eventualmente k = 0, cioé nessuno zero ¢ reale, o h = 0,
cio¢ ogni zero ¢ reale). Alla (3.4) subentra

(3.9) Ni+-+ N +2(M;+---+My)=N
e la fattorizzazione (3.5) si riscrive (indicando con z la variabile reale)

(3.10) Q(x) = ay (x —2)™ - (x —zp) " (2® +pra + @)™ - (2% +pr o+ qn) M,

con i trinomi di secondo grado che vi figurano aventi ciascuno discriminante negativo.
Nel campo reale chiameremo fratti semplici, oltre le espressioni precedentemente

considerate
c

(x — )"
con ¢, g € R e n € N, anche espressioni del tipo
ar+b
(@2 +pz+q"

con a,b,p,q € R, n € N e il trinomio a denominatore con discriminante negativo:
A=p2—4¢<0.

Se la funzione razionale #Z ha coefficienti reali e il denominatore @ si fattorizza
come in (3.10), #Z ha la seguente decomposizione in fratti semplici nel campo reale:

Nm

i amnchrbmn
(3.11) R(z) = et Z Z

m=1 m=1 n=1 p x—l—qm)

3
—
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La prima doppia sommatoria corrisponde agli zeri reali di @ (chiaramente, non ¢
presente se k = 0) e coincide nelle decomposizioni (3.6) e (3.11), mentre la seconda
¢ determinata dagli zeri complessi (e manca se h = 0). Anche i coefficienti della
decomposizione (3.11) sono univocamente determinati e, per calcolarli, si pud adottare
il metodo dei coefficienti indeterminati, analogamente a prima. Alternativamente,
i coefficienti ¢, , relativi agli zeri reali si possono calcolare mediante la teoria dei
residui. E possibile ricavare una formula per scrivere il fratto in (3.11) corrispondente
ad una coppia di zeri complessi coniugati semplici di Q. Siano dunque zp =0+ jw e
Zo = 0 — jw zeri semplici. Osserviamo che, essendo # hermitiana, risulta
(3.12) R[Zo] = R[z0],
quindi i termini in (3.6) corrispondenti a zy e Zg (per z = & € R) sono coniugati,
dunque, posto R[zg] = a + j 3, la loro somma &

a+jp alz—o0)—Pw

.1 2 =2 .
(3.13) Rex—a—jw (r —0)? + w?

ESEMPIO 3.4. Decomponiamo nel campo reale la funzione
rico 1"l Anno 4
(z—1)(22+1)"

Gli zeri del denominatore sono 1 e F7, tutti semplici, quindi poli semplici di Z. Inoltre

R(x) =

1 ‘ 1 1 147
Rl:—’ R ==t 2 = — = s
W=3. Ril=g=95 o 2(-1-j) 1
dunque
Luigi Grego Lyjpar
RB(z) = ~ e .
@ =571 371

ESEMPIO 3.5. Decomponiamo nel campo reale la funzione
4z — 16
#\8)s (22 —8x +65) (22 —4dx +49)
Essendo (2% —4x +49) — (2* — 82 + 65) = 4z — 16, ¢ chiaro che risulta
1 1
22 —8x+65 a22—4x+49°
Dato che i due trinomi a denominatore hanno entrambi discriminante negativo, proce-

diamo alla decomposizione anche mediante la formula (3.13). Gli zeri del denominatore
sono 4+ 75 e 2+ 3+/5j; inoltre

(3.14) R(z) =

4z — 16 285
) 2 _ 4z +49 (44752 —4(4+75)+49
RA+7j] =t —=2rT2J =
4 +77] 22— 8 14
r=4477
2 J

16 +56j —49 — 16 —28; +49 14’
quindi il fratto corrispondente alla coppia di zeri coniugati 4 + 7 j si scrive

1
14 Studi di Napd

(z—4)2+72 (z—-4)2+72°
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Analogamente
4z — 16
, 2 _8x+65 J
R[2+3+v5j]= £ -SL1 D9 -7
| V53] 2z -4 65’

z=2+35j

quindi il fratto corrispondente alla coppia di zeri coniugati 2 + 3 /5 j si scrive

1
-——=3v5
65 P 1

a2t VAR -7+ (BVAP

e ritroviamo la (3.14).

OsseRrvazIONE 3.6. Come vedremo, nelle applicazioni capita spesso di dovere scrivere una
funzione razionale

b
R(z) = s GZF2 T
z2 +pr+q
a coefficienti reali e con discriminante del denominatore negativo, A = p? — 4¢q < 0, nella forma
B(z) = c(x—o)+d

(z—0)2+w?’

essendo o F jw gli zeri complessi coniugati del denominatore e ¢ e d opportuni coefficienti. Per
arrivare a tale espressione non vale assolutamente la pena di usare la formula (3.13), ma molto piu
semplicemente

ar+b  a(lr—o)+b+ao
224+pr+q  (z—0)2+w?

ESERCIZIO 3.7. Mediante la teoria dei residui, decomporre in fratti semplici nel

K(x) =

campo reale . Osservare che la decomposizione si ottiene direttamente:

z(22422+5)
1 715+22+2272272z

z(224224+5) 5 z(2242z45)

Decomporre in fratti semplici sia in C che in R.

2341 A +1

3.3. La formula di Hermite. E opportuno illustrare una decomposizione che
consiste nello scrivere una funzione razionale come somma di fratti semplici con espo-
nente n = 1 nella (3.6) e (3.11) e di un termine sotto forma di derivata di un’altra fun-
zione razionale. La decomposizione differisce formalmente da quella in fratti semplici
nel caso di zeri multipli del denominatore e in alcune applicazioni é preferibile.

Nel campo complesso, osserviamo che i termini nella (3.6) con esponente n > 1
sono derivate di funzioni razionali. In questo modo, arriviamo alla uguaglianza

A d P(z)

,%’(Z)ZQ(Z):ZZ_’ZWL-F@ B56)

m=1

dove
Ol Sqeyie-1li, Rase Tyfyen

(con riferimento alla (3.5), gli eponenti sono tutti abbassati di una unita) e P ¢ un
polinomio di grado minore di N — k.
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Accoppiando i termini coniugati (per z = x € R), nel campo reale arriviamo ad
una decomposizione del tipo

k

h 2y
Cm.1 Qm,1 T+ b1 d P((ﬂ)
174 i > + > > qlernics d

m=1 m=1

dove
Qz)=(z—az)M 1 (@ —ap)V @2 pra+q) M (@2 ppa 4+ )M

(con riferimento alla (3.10), gli eponenti sono tutti abbassati di una unita) e P & un
polinomio di grado minore di N — k — 2h.

OSSERVAZIONE 3.8. Risulta ¢,,1 = R[z,,] e i fratti semplici corrispondenti a
coppie di zeri coniugati si calcolano come in (3.13) anche se 'ordine & maggiore di 1.

Riportiamo un caso particolare che ricorre spesso nelle applicazioni e che puo
facilmente essere verificato direttamente (w € C — {0}):

1 1 Baj 1 n d z
(22 +w?)2 202 \22+4+w?  dz 224w?)’
ESERCIZIO 3.9. Scrivere mediante la formula di Hermite
1 1
(22 +2+1)2° 2(22422+5)2°
(Per la seconda espressione, cfr. esercizio 3.7.)



CAPITOLO VI

Z-trasformazione

1. Generalita sulle successioni

In questo paragrafo consideriamo funzioni complesse definite sull’insieme dei nu-
meri interi Z, cioé successioni con insieme degli indici Z. Invece di denotare una tale
funzione con (an)nez, la indicheremo con (a(n))nez, o semplicemente con (a(n)), o
anche con a(n). Esempi notevoli sono

1 =0 1 >0
s(n) =4 & se n o R sen >
0, sen#0 0, sen<0

ESEMPIO 1.1. Dati f: R — C e 7 > 0, la successione
a(n) = f(n1), VnezZ,
si dice campionamento di f con passo T.

Se (a(n))nen, € una successione con indici in Ny, cioé definita per n > 0, possiamo
canonicamente prolungarla a Z ponendo a(n) = 0, ¥n < 0. Per sottolineare il fatto
che la successione cosl ottenuta ha i termini con indice negativo nulli, scriveremo a
volte a(n) u(n). Nel seguito considereremo prevalentemente successioni definite in Z.

E chiaro che due successioni possono essere sommate o moltiplicate termine a
termine. Introduciamo ora 'operazione di prodotto di convoluzione, o semplicemente
convoluzione. Date a(n) e b(n), si chiama convoluzione la successione c¢(n) definita
ponendo

+oo
(1.1) cn)= > a(n—k)bk), VneL,

k=—o00
supposta la serie convergente. Per indicare che ¢(n) ¢ la convoluzione di a(n) e b(n),

scriveremo c(n) = a(n) * b(n).

ESEMPIO 1.2. La successione d(n) ¢ I'unita rispetto al prodotto di convoluzione:
a(n) * 6(n) = a(n), per ogni successione a(n). Piu in generale, per m € Z fissato, la
convoluzione con d(n —m) ¢ la traslazione

a(n)*x0(n—m) =aln—m).
ESEMPIO 1.3. Calcoliamo u(n) * u(n). Il termine n-simo &

+oo

> uln —k)u(k).

k=—o0

74
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Notiamo che u(n — k) u(k) # 0se esolosen —k > 0e k > 0, ovvero 0 < k < n.
Questo ¢ impossibile se n < 0, quindi per tali indici risulta u(n — k) u(k) = 0, Vk € Z.
Inoltre, pern >0e 0 <k <n, ¢ u(n — k) u(k) =1 e quindi

—+o0 n
> un—k)uk)=> 1=n+1.
k=—00 k=0

Dunque u(n) xu(n) = (n+ 1) u(n).
2. Trasformazione e trasformazione inversa

DEFINIZIONE 2.1. Diremo che a(n) ¢ Z-trasformabile se esiste z € C — {0}
che rende la serie
+oo

(2.1) 3t ai:)

n—=—oo

convergente. Chiameremo allora la somma in (2.1) Z-trasformata della successione
a(n) (nel punto z) e la indicheremo con Z[a(n)] (o Z[a(n)](z)).
Data una successione a(n) in Ny, diremo che essa ¢ Z-trasformabile in senso
unilatero se la serie
+oo

a(n)

(2.2) Dnivrsi
n=0

converge. In tal caso diremo la somma Z-trasformata unilatera di a(n) e la indi-

cheremo con Z,[a(n)]. A volte, in contrapposizione alla Z-trasformazione unilatera,

chiameremo la trasformazione definita dalla (2.1) Z-trasformata bilatera.

Piu precisamente, la (2.1) & una serie bilatera di potenze, che noi supporremo con-
vergente in una corona circolare aperta di centro 0 e in tale corona considereremo la Z-
trasformata, che é una funzione olomorfa. La corona si dice dominio della trasformata.
Osserviamo che il dominio é parte integrante della definizione di Z-trasformata.

La serie (2.2) ¢ una serie di potenze in 1/z e quindi, se converge in un punto
z € C, essa converge in tutti i punti esterni ad un cerchio di centro 0. Pertanto, il
dominio di una Z-trasformata unilatera ¢ un intorno di oo, nel quale essa é olomorfa,
oo compreso. La Z-trasformata unilatera é un caso particolare di Z-trasformata:

Zula(n)] = Zla(n) u(n)].
La Z-trasformazione ¢ la corrispondenza che associa ad una successione trasfor-
mabile a(n) la sua Z-trasformata. Analogamente per la trasformazione unilatera. La
Z-trasformazione é invertibile: interpretare una funzione f, olomorfa in un’assegnata

corona circolare di centro 0, come Z-trasformata equivale a sviluppare la funzione

in serie di Laurent nella corona. Se ¢, sono i coefficienti di Laurent di f, abbiamo
+oo

f(z) = Z ¢n 2" nella corona circolare e confrontando con (2.1) troviamo

n=—oo

dove

(2.3) aln) =c_, = % /F f(z) 2" tdz,
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e I' ¢ una circonferenza di centro 0 nella corona. In particolare, f ¢ una trasformata
unilatera se & olomorfa in un intorno di co, compreso co. In tal caso, le (2.3) forniscono
a(n) =0, ¥Yn < 0, mentre

(2.4) a(n) = —R[oo; f(2) 2" Y, VneNg.

Se f & una funzione razionale, applicando il I teorema dei residui troviamo
(2.5) a(n) = ZR[zk; f(z)2"7Y
k

dove i punti zj sono le singolarita al finito di f(z) 2”1

ESEMPIO 2.2. Ovviamente Z[6] = 1, il dominio essendo C. Immediatamente
dalla definizione, abbiamo pure

+<><>1 1

z
( 6) Z[u(n)] 7;:0: omn 1_1/2 2 —1 ’ |Z| >
Inoltre
—1 +oo q %
(27)  Zl-u(-n—1)] = _n;fn S —n§_lj P =1l-r— =, <L

OSSERVAZIONE 2.3. Le due trasformate in (2.6) e (2.7) sono date dalla stessa
espressione z/(z — 1), che pero nei due casi va considerata in due corone circolari di
centro 0 distinte: I'insieme dei punti esterni al cerchio di raggio 1 e il cerchio stesso,
rispettivamente. Appare quindi evidente la necessita di indicare il dominio, oltre alla
espressione della trasformata.

Nel caso di trasformata unilatera (la (2.6) tra i due esempi), il dominio & implicito
nell’epressione della trasformata, essendo il pitt ampio intorno di co nel quale essa é
olomorfa.

3. Proprieta della trasformazione

Illustriamo ora alcune proprieta della Z-trasformazione, che si ricavano facilmente
dalla definizione. Innanzitutto, la Z-trasformazione & un operatore lineare, cioé, date
due successioni a(n) e b(n) trasformabili in una stessa corona circolare e due numeri
complessi a e 3, la successione ava(n) + B b(n) & trasformabile e risulta

(3.1) Zlaa(n) + Bb(n)] = a Zla(n)] + 8 Z[b(n)].

e (Riscalamento) Dati ora a(n) trasformabile e A € C — {0}, vogliamo calcolare
Z[A"a(n)] (o meglio, vogliamo legare questa trasformata a quella di a(n)):

XX Naln X an
Zvam)= Y XA 5 o)

e quindi

(3.2) 2\ a()(=) = Zlam) (5) -
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Il dominio della trasformata di A™ a(n) ¢ la corona dei numeri z tali che z/X appartenga
al dominio della trasformata di a(n). Ad esempio, abbiamo

n z

In particolare, per 9 € R,
njd ] z
Zle u(n)]fiz_ejﬂ, |z| > 1

e quindi

njv —njd njd —njo
Z[cosndu(n)] = Z, [e —|—2e ] x Zule ]"‘QZu[e ]

atel z P z
T 2\z—ei®  z— e )]

Essendo inoltre (z — ¢/?) (z— e 7Y) = (z—cos )2 +sin® ¥ = 22 —2z cos ¥+ 1, troviamo
in definitiva

z —cosV

Analogamente,
in ¢
(3.4) Zlsinndu(n)] = 2 ——mv |z > 1.

22 —2zcosV +1

o (Traslazione) Fissato k € Z, calcoliamo
+oo
(

Zlan+ k)= ) 2 Z :nj—rkk = 2" Z

n—=—oo n—=—oo n—=—oo

e quindi (il dominio non cambia)
(3.5) Zla(n + k)] = 2* Zla(n)].

Ad esempio,

Sia ora k € N e calcoliamo
—+oo

0
Zdatn ] = S ) SR 5 el

n=0 n=0 n=
.oz )

_ Lk
—+* (Zula(m)] - a(0) - 2 -
e quindi
(3.6) Zula(n + k)] = 2" Zu[a(n)] = a(0) 2* —a(1) "1 — - —a(k — 1)z
OSSERVAZIONE 3.1. E chiaro dalla definizione (2.2) che risulta
a(0) = lim Z[a(n)).
Analogamente
a(k) = lim Z,[a(n+k)].

zZ—00
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e quindi da (3.6) ricaviamo una formula ricorrente per invertire la Z,:

a(k) = zli—>Holo {zk Zula(n)] — a(O)zk - a(l)zk_1 - —a(k- 1)2} .

e La serie in (2.2) puo essere derivata termine a termine:

+oo
< Zufaln) = 3 (-n) 2

e quindi ricaviamo la formula fondamentale

(3.7) Zulna(n)] = —= T Zula(n)].
Ad esempio
(38) Zlun)) == T 2lutn)) = T 55 = 5

e (Trasformata della convoluzione) Supponiamo a(n) e b(n) trasformabili in una
stessa corona circolare. Nei punti di tale corona vale I'uguaglianza

(3.9) Zla(n) xb(n)] = Zla(n)] - Z[b(n)],
cioé la trasformata della convoluzione ¢ il prodotto delle trasformate. Invero

+oo +o0
Zla(n) xb(n)] = Z z " Z a(n —

n=-—0oo k=—o0

+oo +oo

> ¥ aln- b

n=—o0 k=—o0

E lecito invertire le due sommatorie

“+o0 “+o0
Zlam) xbm)] = Y bk)z™F D a(n—k)z= ",
k=—o0 n=-—00

A questo punto la formula (3.9) segue subito, osservando che la sommatoria pit interna
fatta al variare di n non dipende da k, la somma valendo Z[a(n)].

e Diremo che la successione a(n) & periodica di periodo k € N se verifica a(n+k) =
a(n), Yn € Z. Una successione periodica assume un numero finito di valori, quindi
¢ limitata e dunque trasformabile in senso unilatero per |z| > 1, la (2.2) essendo
maggiorata da un multiplo della serie geometrica di ragione 1/|z|, e vale la formula:

a(0)2* +a(l)zF 1+ +alk—1)2

(3.10) Zula(n)] = ThADY

La (3.10) si ottiene raggruppando a k a k i termini nella serie (2.2) e tenendo conto
della periodicita:

Wan) I amtnk) X1 = am) Y am)
ZZ Zm-‘rnk _Zznk Z am k1 :
n=0

n=0 n=0m=0 m=0
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ESEMPIO 3.2. Calcoliamo la trasformata unilatera della successione sinnj.
Come ¢ noto,
sin g R z
22 —2zcos T +1 22417

Z [Sinnz] =2z
u 2 A=l

Possiamo procedere anche mediante la formula per la trasformata unilatera di una
successione periodica:

a(n) :sinng =...,0,1,0,—1,0,1,0,~1,...
¢ periodica di periodo 4, con a(0) =0, a(1) =1, a(2) =0 e a(3) = —1, quindi
Z {sinnz}—ZS_z—z 2 dodl ==
¢ 21 24 -1 T(2-1D(2+1) 22+1°

ESERCIZIO 3.3. Ricavare in dettaglio la (3.4). Fissato p > 0, in applicazione
della (3.2) mostrare inoltre per |z| > p le uguaglianze

z — pcost

n 3 =
Z[p" cosni u(n)] 222_23pcosi9+ﬂ2,

psin v

" sin no = .
Z[p" sinndu(n)] = z P P

Calcolare Z[(n+ 1) u(n)] sia osservando che Z[(n+ 1) u(n)] = Z[nu(n)]+ Zu(n)]
e quindi ricordando alcune trasformate calcolate, sia in applicazione della (3.6), sia
ricordando I’esempio 1.3 e usando la formula (3.9) per la trasformata della convolu-
zione.

Mostrare le uguaglianze Z[(n — 1) u(n — 1)] = ﬁ e
(3.11) Zlnn—1)un—-1)] = (2’2_721)3

4. Equazioni ricorrenti, problemi ai valori iniziali

Un’applicazione importante della Z-trasformazione riguarda i problemi ai valori
iniziali per le equazioni ricorrenti in Nj.
Un’equazione ricorrente (lineare a coefficienti costanti) ¢ un’equazione del tipo

(4.1) y(n+ k) + Agry(n+k— 1)+ + Ao y(n) = a(n),

dove Ay, ..., Ax_;1 costanti e a(n), n € Ny, successione sono date; I’equazione (4.1) si
dice di ordine k. Una soluzione ¢ una successione y(n), n € Ny, che la rende soddisfatta
per ogni n. Un problema ai valori iniziali per la (4.1) consiste nel ricercare soluzioni
con i primi k£ termini assegnati:

{ y(n+k) + Apry(n+k—1)+ -+ Agy(n) = a(n)
y(0), y(1),..., y(k — 1) assegnati

Tale problema é analogo a quello per le equazioni differenziali. Valgono per il pro-
blema (4.2) esistenza e unicita di soluzione; la soluzione si costruisce induttivamente.
Fissati i valori iniziali, possiamo considerare la soluzione come “risposta” al dato a(n):

a(n) = y(n).

(4.2)
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ESEMPIO 4.1. Possiamo formulare come problema ai valori iniziali quello della
ricerca di una espressione per la somma dei primi n numeri naturali: y(n) =1+ 2+
<o+ 4mn, Vn € N. In effetti y(n+1) = y(n) + n+ 1 e questa uguaglianza vale anche per
n = 0 se poniamo y(0) = 0. Arriviamo dunque al problema del primo ordine

(4.3) { y(n+1) - y(n)y=(o7)l I é

Per risolvere il problema (4.2) mediante la Z-trasformazione, supponiamo che il
termine noto a(n) e la soluzione y(n) siano trasformabili ed effettuiamo i seguenti pas-
si. Applichiamo la trasformazione unilatera ad ambo i membri dell’equazione; nel fare
questo, usiamo la formula (3.6), tenendo presenti i valori iniziali. Ricaviamo dall’ugua-
glianza cosi ottenuta la trasformata della successione incognita Y = Y (z) = Z,[y(n)].
Per ottenere la soluzione, antitrasformiamo. Illustriamo questo modo di procedere per
risolvere il problema (4.3). La trasformata del primo membro dell’equazione &

Zuly(n+1) —y(n)] = 2Y —2y(0) =Y = (2 - 1) Y

mentre (cfr. esercizio 3.3) la trasformata del secondo membro &
2

z
W+l = ———.
Zu[n +1] o1
Dunque ricaviamo
52
Y=—+—.
(z—1)%
Ricordando la (3.11) e la (3.5), troviamo
-3 eydp z ~n(n—-1) (n+1)n
y(’ﬂ) - Zu |:Z (Z T 1)3:| i 2 u(n - 1) “Reng - 9 U(’ﬂ) ¢

Usiamo il procedimento per il problema generale (4.2). Trasformando ambo i
membri dell’equazione, otteniamo

P(2)Y(2) — Q(2) = Zyla(n)],
dove
P(z) = 2Kt A2+ Ay

¢ il polinomio caratteristico, ottenuto sostituendo alla traslazione la corrispondente
potenza di z, mentre

k
Q) =Y Ap["y(0) + 2" y(1) + -+ zy(m — 1)]

¢ un polinomio di grado al piu k, i cui coefficienti dipendono dai valori iniziali e
dai coefficienti della equazione. (Per uniformita, abbiamo posto A = 1.) Dunque
ricaviamo

(4.4) Y(z) = gg; + % Zu[a(n)].

Il reciproco H = 1/P del polinomio caratteristico ¢ detto funzione di trasferimen-
to. L’antitrasformazione si riduce a quella di una funzione razionale olomorfa all’cc.
Questo ¢ chiaro per il termine /P a secondo membro di (4.4). Per quanto riguarda
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l'altro termine, detta h(n) = Z, }[H] Pantitrasformata della funzione di trasferimento,
ricordando la formula (3.9) per la trasformata della convoluzione, abbiamo

—1

H(z) Zu[a(n)] Z—) h(n) *a(n).
Pertanto, troviamo la formula
(4.5) y(n) = 2,1 [Q/P) + h(n) x a(n).

OSSERVAZIONE 4.2. Per la linearita del problema (4.2), la soluzione si ottiene
come somma y(n) = y1(n) + y2(n) delle soluzioni dei problemi

yin+k)+Aiypi(n+k—1)+---+ Agy1(n) = a(n)

(8! { () =)= =pk-1)=0
(4.7) {yz("+k)+Ak—1y2(”+k—1)+"'+A0y2(”)—0
' y2(0) = y(0), y2(1) = y(1),..., ya(k) =y(k - 1)

Il problema (4.6) ha la stessa equazione di (4.2) e valori iniziali nulli, mentre il problema
(4.7) ¢ relativo all’equazione omogenea associata e i valori iniziali coincidono con quelli
di (4.2). E chiaro che

yi(n) = h(n)xa(n),  y2(n) = 2;'(Q/P)].

OSSERVAZIONE 4.3. L’inversa h(n) = Z;![H] della funzione di trasferimento
risolve il problema

{ h(n+k)+ Ar_1h(n+k—1)+---+ Agh(n) = 5(n)
hO)=h(1)=---=h(k—1)=0

Discutiamo il problema della inversione della Z,-trasformazione. Come indicato,
il problema equivale ad effettuare lo sviluppo in serie di Laurent intorno all’co

ESEMPIO 4.4. Mediante la formula di antitrasformazione (2.4) calcoliamo

-

dove A € C — {0} e k € N. Dunque a(n) ¢ I'opposto del residuo all’'co della funzione

razionale g(z) = SNSRI . dunque chiaro che a(n) = 0se n —k+ 1 < 0, cioé
z

_ )\)k
n < k—1. Per n > k — 1, la funzione g é olomorfa in 0 e ha come unica singolarita
(al finito) il punto A, che & un polo di ordine k. Quindi

a(n) = Ry[A\] = T _1 o [Dkflzn]zz/\ _ (k ﬁ 1) kA

Per n > 0, il risultato segue anche usando la formula di Cauchy per le derivate (II1.3.3)
per la funzione f(z) = 2".

Quando possibile di ricondursi a sviluppi noti.
ESEMPIO 4.5. Per calcolare
271

u

[el/z 272]
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ricordiamo lo sviluppo di Mac Laurin dell’esponenziale:

el/zz_Q—Jrzool—l —fil i—Z natd C; u(n —2)
_n:O n! zn+2 _n:2 (n—2)! 2 (n—2)!

Come anticipato, frequente nelle applicazioni ¢ la Z,-antitrasformazione di una
funzione razionale, cio¢ rapporto tra polinomi #Z = P/Q. Questa ¢ una trasformata
unilatera se e solo se ¢ olomorfa all’co, quindi se e solo se P ha grado non superiore
a @; a meno di un termine costante, #Z é una funzione razionale propria e puo allora
essere decomposta in fratti semplici, cfr. paragrafo V.3, e per la linearita il problema
si riduce all’antitrasformazione di questi ultimi. A tale scopo, notiamo per k > 2 la
formula

(4.8) z {A”k <Z:1>u(n—k)} = ﬁ 2] > A > 0,

dove naturalmente la successione da trasformare si intende nulla per n < k. La (4.8)
segue dal caso particolare A = 1 mediante la (3.2). Nel caso particolare, la formula
segue da (2.6) derivando k — 1 volte:

+o00
((f__ll))li :Zn(n+1)...(n+k_2)z—n—k+1

n=1
—+o0

=> (m—k+1)(m-k+2)---(m—1)z"

m=k

e quindi ¢ sufficiente dividere ambo i membri per (k — 1)!. La (4.8) segue pure
dall’esempio 4.4 mediante la (3.5).
Chiaramente da (4.8) segue una formula di antitrasformazione. Ad esempio

e quindi per la (3.5) ritroviamo

s 22 _(n+1)n _(n+1)n
Z"l[(z—l)?&_ 5 u(n—l)—fu(n).

Possiamo anche dedurre dalle formule per la trasformazione ricavate nei paragrafi
precedenti altrettante formule di antitrasformazione.

ESEMPIO 4.6. Come illustrazione, consideriamo le formule (3.5) e (3.6) per la
traslazione. Posto f(z) = Z[a(n)], la (3.5) si scrive Z[a(n + k)] = 2* f(2), per k € Z
fissato, e quindi

2P () = aln+ k) = 27 f(2)l(n + k).
In particolare,
2" F(2)]) = 20 f(2))(n+ k)
notiamo che, per k € N, dobbiamo supporre 2* f(z) olomorfa all’'co e questo implica

che a(n) =0, per n < k — 1, quindi non c’¢ differenza tra (3.6) e (3.5).

Altre formule di antitrasformazione sono indicate nel capitolo XIV.
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ESEMPIO 4.7. Calcoliamo

o P
S

A scopo illustrativo, proponiamo diversi modi di calcolo dell’antitrasformata.
I) decomponendo in fratti semplici:

z =z 1 1 . 1— (="
22—-1 2\z—-1 z+1) = 2 ’

IT) Mediante la formula di antitrasformazione (2.5). Per n > 0, le singolarita al finito

di Zf—il sono i poli semplici F1. Essendo
2% 1 74 (—=1)n1!
R[l] = — = - R|-1] = — =
1] 22/ppolt “pe 1] 2P, AC 20 202
ritroviamo
Z-1 z _ 1= (=)™
Batlet = 1 2 '
II1) riconducendoci all’antitrasformata di z/(22 + 1):
e e
2t -1 (2/5)"+1| 7 (2/4)" +1
=¢hi-liZal 221 J =471t sinng u(n).

IV) basato sulla serie geometrica:

z 1 1 1 1+1+1+ 71+1+1+
z2—17z1_(1/z)27z 22 24 ademicd 2028 '
V) basato sulla formula per la trasformata di successioni periodiche:

- R RS O
z: LQ_J_ZU {22_1 —0,1,0,1,...

periodica di periodo 2.

ESEMPIO 4.8. Calcoliamo

z
Z = .
2 =5
Ragioniamo in base alla definizione; per |z| > 1:
z 1 1 1 1 1
= — == (1+=+=+ ) =2.[{0,0,1,0,0,1,.. }].
23—1 221-1/23 22<+z3+26+ ) 2. [{0,0,1,0,0 H

Allo stesso risultato arriviamo ricordando la formula per la trasformata di una succes-
sione periodica; se a(n) ha periodo 3, risulta

a 23 a Z2 a z
Zulo(my) = LU H A2 +aD)

che coincide con 'espressione da antitrasformare se a(0) = a(1l) =0 e a(2) = 1.
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Decomponendo in fratti semplici:

P 1 Z<1/3 z/3+2/3>

23—1:223—1: 21 2242+1

1 2 2
= 3 Zu [1 — (cosn37r+ V3 sinn?’ﬁ)] ;

Mediante la formula di antitrasformazione. Per n > 0, le singolarita di zf—il sono

: g 4 (2 i4
i poli semplici zg =1, 21 = €757, 25 = €737, Inoltre

" 22
Rlz] = =— =k
bl = 323 Greco D3

Quindi

-1 ol 1 i2m(n—2 j4m(n—2
2 LS_J = 3 (14 oD i)

1 . ej%(”*m + efj%(W‘*Q)
— 2 (119e7(n—2)
3 ( +2e

2

1
=3 (1 +2(=1)"cos g(n . 2)) :
ESEMPIO 4.9. Risolviamo il problema in Ny

(4.9) { y(n+2) —3y(n+1)+2y(n)=1
y(0)=1, y(1) =2
La trasformata unilatera del primo membro é
Zuly(n +2) = 3y(n+1) + 2y(n)] = 2°Y — 2%y(0) — 2y(1)
=3[2Y — zy(0)] +2Y

=(22=324+2)Y — 22+ 2

Notiamo che il fattore che moltiplica Y ¢ il polinomio caratteristico. Come é noto, la
trasformata del secondo membro ¢

Dunque ricaviamo
zé B z
22 —3z+2 & (z—=1)(22-32+2)°
Osservando che 22 — 32+ 2 = (2 — 1)(z — 2), otteniamo
z z

e A P s TP

z-! [ & 2} = 2"u(n).

z —

Y =

Antitrasformiamo.

Per antitrasformare l’altro termine, decomponiamolo in fratti semplici (mettendo da
parte un fattore z):

c2(1] R[] | R[2]
PrlREzoD) Rigatd Bacopilol 7509y
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Inoltre

1 1

072[1]227221:—1, R[l}:D27221:—1
© 1
R[2] = G|, =1.

Pertanto

z > z z z

(z=1)(22-32+2) (2—1)2_2—1+z—2

Chiaramente

z—1
D’altra parte, dalla (3.8) vediamo che

z-1 [(1)] — nu(n).

zul[ : }u(n), zul[ : }2%(71).

In definitiva,
y(n) = 2"u(n) — nu(n) —u(n) + 2"u(n) = 2" — (n + 1)]u(n) .
ESEMPIO 4.10. Risolviamo il problema ai valori iniziali:
{ y(n+2)+y(n) =(-1)"n
y(0) =y(1)=0
La trasformata del primo membro dell’equazione ¢ (22 + 1) Y. Inoltre

£l == G RN =~ i =~

Dunque
(22+1)Y:—4 Ay Pgtitacnica o dffle Scieny
(z+1)2 (224 1) (2 +1)2
Resta da antitrasformare, e a tal fine decomponiamo in fratti semplici il secondo
membro, tenendo un fattore z “da parte”:

1 A B Cz+D
)12 241 G 21
Moltiplicando per (z + 1)? e ponendo z = —1, troviamo B = 1/2. La costante A
¢ il residuo del primo membro in z = —1, che é polo di ordine 2, quindi si calcola,
dopo aver moltiplicato per (z + 1)2, derivando e ponendo z = —1; dunque A = 1/2.
Moltiplicando per z e passando al limite per z — oo, troviamo 0 = A + C, quindi
C = —1/2. Infine, ponendo z = 0 troviamo D = 0. Pertanto

z ica ol z Zi z 22
(224+1)(z+1)2 " 2\z+1 (z+1)2 22+41)°
Come visto, i primi due fratti sono le Z,-trasformate di (—1)" e —(—1)" n, rispettiva-
mente. D’altra parte, evidentemente il terzo fratto € la trasformata della successione
1,0,-1,0,... = cosn%. In definitiva
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Per antitrasformare, potevamo anche osservare che
z 1241 —(241)?

(224D (+12 2 @2+ (z+1)2



CAPITOLO VII

Estensioni della nozione di integrale

1. Funzioni integrabili e sommabili

In questo paragrafo estendiamo la teoria dell’integrazione, a partire dal caso delle
funzioni continue su intervalli compatti. Vogliamo rimuovere I'ipotesi di compattezza.
Il primo caso che consideriamo & quello di una funzione continua su un intervallo non
compatto perché non limitato superiormente o inferiormente, o limitato ma privato
di un estremo. Sia dunque f continua in [a,b[, dove —c0 < a < b < +o0. Per
ogni T € Ja,b[, f ¢ continua sull’intervallo compatto [a,T] ed ha quindi significato
I'integrale

T
(1.1) / f(t)dt.
Esaminiamo tale espressione come funzione di T', per T" — b—.

DEFINIZIONE 1.1. La funzione f si dice integrabile in [a, b se I'integrale in (1.1)
converge per T'— b—. In tal caso, poniamo

b T
(1.2) / f(t)dt = lim ft)dt.
a T—b— J,
La funzione f si dice sommabile in [a, [ se il modulo |f]| & integrabile.

Notiamo che l’espressione

T
(13) [ s,

analoga a (1.1), ma con |f| in luogo di f, & funzione crescente di T', quindi regolare in
b: la condizione di sommabilita consiste dunque nella finitezza del limite.

Analogamente si ragiona nel caso che f sia continua in un intervallo del tipo ]a, b].
Esaminiamo 1’espressione

b
(1.4) /S f(e)dt,

definita per S € ]a, b[, al tendere di S — a+; f & integrabile se l’espressione converge,
e in tal caso 'integrale su ]a,b] & per definizione pari al limite. Similmente per la
sommabilita.

LEMMA 1.2. Una funzione sommabile é integrabile.

Dim. Basta esaminare il caso f reale, continua in [a,b[. Definiamo la parte positiva e la parte
negativa di f:

(1.5) f+(t):max{f(t),()}:w7

2

f-(t) = min {f(¢),0} = w

87
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AN :

| | A

E chiaro che f- <0< fi, f = f+ + f—, |f| = f+ — /-, dunque —|f| < f— <0 < fy < |f] e quindi
T T T T
- [ uwlas [ roas [ nwas [l

Notiamo che l'integrale di f4 é crescente e quello di f— & decrescente, quindi sono entrambi regolari
e, se f & sommabile, convergono. Pertanto risulta convergente pure

/an(wdt=/an_(t)dt+/an+<t>dt,

vale cioé la tesi.

Il risultato del lemma 1.2 non si inverte, esistono infatti funzioni integrabili, ma
non sommabili. Una tale funzione si dice semplicemente integrabile e si parla di
integrale improprio.

ESEMPIO 1.3. Consideriamo la funzione
sint
f@t)= —

sull’intervallo [0, +oco[. In 0 la funzione non ¢ definita, ma si prolunga per continuita
assegnandole il valore 1. Tracciamo i diagrammi di f e |f]:

B area da sommare W arca da sottrarre

sint

B area da sommare

Il diagramma di f oscilla intorno all’asse delle ascisse e, intuitivamente, l'integrale
di f su [0,+00[ & somma delle aree dei rettangoloidi relativi a f aventi per basi gli
intervalli [k, (k4 1)7n], K = 0,1,2,...; tali aree vanno perod prese con segno: quelle
dei rettangoloidi al disopra dell’asse vanno sommate, quelle dei rettangoloidi al disotto
dell’asse vanno sottratte, e in questa operazione c’¢ una compensazione per la quale
lintegrale ¢ finito (converge), cioé f ¢ integrabile.

D’altra parte, il diagramma di | f| si ottiene da quello di f ribaltandone le porzioni
al disotto dell’asse, quindi I'integrale di | f| su [0, +00[ si ottiene sommando le aree dei
rettangoloidi, tutte con segno positivo, senza alcuna compensazione, per cui l'integrale

¢ infinito (diverge), dunque f non ¢ sommabile.
In effetti, 'integrabilita non ¢é difficile da verificare. Essendo la funzione continua, la questione
¢ Pintegrabilita intorno a +oo, ad esempio su [1, +oo[; per T' > 1, integrando per parti troviamo

TCls T T
sint t t
/ di— |- cos _ / cos dt
1 t t |4 1 t2

ed entrambi i termini a secondo membro convergono per T — 400, il secondo essendo la funzione
integranda sommabile. Verifichiamo pure che la funzione non é sommabile. Anche in questo caso,
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basta considerare I’intervallo [1,4o00[. Notiamo la disuguaglianza |sin t| > sin?¢t, quindi

T s T atas2 T T
t t 1 1 1 2t
/Mdtzf &dt:,/ ,dt_,/ cos2t .,
1 t 1 t 2/1 t 2 /1 t

e per concludere osserviamo che nell’ultimo membro il primo integrale diverge, poiché 1/¢ non &
integrabile, mentre il secondo integrale converge, in quanto, ragionando come prima, vediamo che
(cos 2t)/t & integrabile.

In definitiva, f é semplicemente integrabile su [0, +oo] e
+oo o
t
/ sint .
0 t

Proseguiamo nell’estensione della nozione di integrale e consideriamo il caso di
una funzione f continua su un intervallo del tipo ]a,b[, con —co < a < b < 4o0.
Scegliamo ¢ € ]a, b] e studiamo f su ciascuno degli intervalli a, c] e [, b]: ad entrambi
manca un solo estremo e quindi essi sono del tipo considerato precedentemente.

é un integrale improprio.

DEFINIZIONE 1.4. Diciamo che f ¢ integrabile in ]a, b se essa risulta integrabile
su entrambi gli intervalli ]a,c] e [¢,b] (nel senso della definizione 1.1). In tal caso,
poniamo

b c b
(1.6) / () dt :/ £(1) dt+/ £t dt.
Anche in questo caso, diremo f sommabile se |f| ¢ integrabile.

I due integrali a secondo membro della (1.6) sono intesi secondo la definizione 1.1.
In altri termini, se f & integrabile in ]a, b[, definiamo 'integrale ponendo

b c T
[ rwae= gim [ pwas pm [ raa

dove i limiti devono esistere finiti entrambi, separatamente.

Notiamo che la definizione non dipende da c¢: vale a dire che per ogni altra scelta
di un punto ¢ € Ja,b[, né la condizione di integrabilita, né il valore dell’integrale
cambiano. Infatti abbiamo

/:f(t)dtz/Scf(t)dt+/:/f(t)dt, /C/Tf(t)dt:/CTf(t)dt—/CC/f(t)dt.

Infine, consideriamo il caso di f continua in un intervallo ]a,b] privato di un
numero finito di punti interni ¢; < -+ < ¢,. Poniamo ¢y = a e ¢,41 = b, quindi

cop<cr <---<cp<Cpyi,
ed esaminiamo f su ciascuno degli intervalli |¢;, ¢;11[, ¢ =0,1,...,n.

DEFINIZIONE 1.5. Diciamo che f ¢ integrabile in ]a, b se essa risulta integrabile
in ogni intervallo |¢;, ¢;41[, ¢ =0, 1,...,n. In tal caso, poniamo

b n Cit1
(1.7) / f(t)dt:Z/ F(t)dt.
@ i=0 Y i

Diremo f sommabile se |f| ¢ integrabile.
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OSSERVAZIONE 1.6. L’integrale non cambia modificando l'integrando f in un nu-
mero finito di punti. Precisamente, sia f integrabile in (a,b) e sia g definita in (a,b)
tale che g(t) = f(t) salvo che in un numero finito di punti. In queste ipotesi, pure g ¢

integrabile e risulta
b b
/g(t)dt:/ F(#)dt.
a a

ESERCIZIO 1.7. Verificare che la funzione (sint)/t? & integrabile in [1, +oo[ per
p > 0 ed & sommabile per p > 1. (Confrontare con l'esempio 1.3.) Notare che, con
opportuni cambiamenti di variabile, si ricava in particolare che gli integrali

+oo —+oo
/ sin e* du, / sinu’du (p=1/2),
0 1

sono semplicemente convergenti, pur non essendo infinitesimi gli integrandi.

1.1. Integrale a valor principale. Diamo in questo paragrafo una nozione di
integrale piu debole di quella introdotta per le funzioni integrabili.

DEFINIZIONE 1.8. Sia f continua nell’intervallo [a, b], escluso un punto interno
¢ € ]a, b|. L’espressione

c—e b
(1.8) / sayars [ pieyin= /[a,b]_]c_w%[ () dt

é definita per £ > 0 abbastanza piccolo. Diremo che 'integrale di f esiste nel senso del
valor principale se l'espressione in (1.8) converge per € — 0+. In tal caso, il limite si
dice integrale di f su [a, b] nel senso del valor principale e si indica con v.p. f; ft)dt.
In altri termini, poniamo

b c—e b
V.p./ F(t)de = lim. (/ swyar [ f(t)dt).

Sia ora f continua in R = ]—o00, +00[. Diremo che l'integrale di f su R esiste nel
senso del valor principale se I’espressione

R
(1.9) [R f(t)dt

converge per R — +o0o. In tal caso poniamo

“+oo R
v.p./ f@)dt = lim / f)de.
A3 R—+oco | _p

OSSERVAZIONE 1.9. Secondo la definizione 1.5, f ¢ integrabile in [a,b] se ¢ inte-
grabile in [a,c| e in ]¢,b], dunque per € — 0+ entrambi gli integrali che figurano a
primo membro in (1.8) sono convergenti e tale risulta pure la somma, quindi I'integra-
le di f esiste nel senso del valor principale; chiaramente (nel caso di convergenza, il
limite della somma ¢é la somma dei limiti) i valori dell’integrale secondo le due nozioni
coincidono. D’altra parte, pud accadere che separatamente i due integrali a primo
membro in (1.8) non convergano, mentre converge la somma; cioé¢ U'integrale esiste
nel senso del valor principale, ma non del senso dell'integrabilita. Ad esempio, questo
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accade per la funzione f(t) = 1/t sull’intervallo [—1,1]. Osserviamo che f & continua
n [—1,1] — {0} ed & dispari, quindi Ve € 0, 1]

—51 1
[ qaes [ gae=o
it ot

e v.p. f_ll 1/tdt = 0. E chiaro che 1/t non ¢ integrabile, poiché ciascuno degli integrali
diverge:

11 e—0+
/ < dt = —loge ——— 400
€

e, similmente, l'altro diverge negativamente (I’espressione (1.8) si presenta in forma
indeterminata oo — 00).

Analoghe considerazioni valgono nel caso dell'intervallo |—oo, +0o[. La funzione
f & integrabile in |—o00, +00[ se lo & in [0, 4+00[ e in |—o0, 0], cioé se le due espressioni

R 0
(1.10) /Of(t)du /_Rf(t)dt,

convergono separatamente per R — +oo. L’integrale in (1.9) é la loro somma e quindi
converge anch’esso. D’altra parte, 'integrale in (1.9) puo risultare convergente anche
senza che convergano gli integrali (1.10). Questo accade ad esempio per la funzione
f(t) =t/(t* +1): essa non ¢é integrabile in [0, +oo[ né in ]—o0, 0] poiché

R 0
lim —dt = +00, lim ——dt = —0,
R—)+oo/0 t2+1 R—+o00 7Rt2+1

mentre (per la simmetria) VR > 0 risulta f_RR # dt = 0 e quindi

+oo t

1.2. Criteri di sommabilita. In generale, studiare 'integrabilita o la somma-
bilita di una funzione in base alla definizione puo essere molto laborioso. Formuliamo
in questo paragrafo alcune condizioni sufficienti ad assicurare la sommabilita (o la
non sommabilita) di una funzione, che non richiedono di valutarne esplicitamente 1’in-
tegrale. In base al lemma 1.2 (dato nel primo caso di definizione di sommabilita,
ma che si estende ovviamente a tutti gli altri casi considerati), queste permettono di
mostrare anche 'integrabilita. Possiamo chiaramente limitarci a considerare funzioni
non-negative. Stabiliremo i nostri criteri di sommabilita e di non sommabilita pro-
cedendo per confronto, in base alla ovvia osservazione seguente. Se f e g sono due
funzioni verificanti 0 < f < g, valgono le implicazioni:

g sommabile = f sommabile;

f non sommabile = ¢ non sommabile.

OSSERVAZIONE 1.10. E chiara I’analogia con il caso delle serie a termini non-
negativi, cfr. paragrafo I.A.

Considereremo dunque una classe di funzioni per le quali la sommabilita si studia
facilmente in base alla definizione e con queste confronteremo la generica funzione
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assegnata. Poiché tutti i casi in cui abbiamo dato la nozione di sommabilita si ricon-
ducono a quello della definizione 1.1 di una funzione continua in un intervallo del tipo
[a,b], 0 ]a,b], ci limiteremo a questo caso.

La classe di funzioni che considereremo é quella delle potenze. Nel caso dell’inter-
vallo [a, b[ limitato (cioé b € R), consideriamo la funzione

(1.11) g(t) = ﬁ

e determiniamo i valori di @ > 0 per cui essa ¢ sommabile. Notiamo che la funzione
diverge in b. Per a # 1, abbiamo

/aT %dt — 1 [(b 1 T—T o (b—a)l=e — (b= T)1

— 1) 1-a —t)ot e

t=a
e quindi l'integrale diverge per a > 1 e converge per o < 1; in quest’ultimo caso,
abbiamo

Tse Ul (b—a)l==

li =
- ), -1t 1-a

Per a = 1, abbiamo:

T 207 b—T T—b—

/ —dt = —log —— —— +00.
. b—t b—a

In definitiva, g ¢ sommabile se e solo se & < 1. Ricaviamo facilmente il seguente

criterio di sommabilita, o non sommabilita.

PROPOSIZIONE 1.11. Sia f > 0 continua in [a,b]. Se esistono K >0 ea <1

tali che risulti
K
H< —
0 < G5

in un intorno sinistro di b, la funzione é sommabile. Se risulta

K
f(t)ZE

in un intorno sinistro di b, con K > 0, la funzione f non é sommabile.

Lasciamo al lettore il compito di svolgere analoghe considerazioni nel caso del-
I'intervallo ]a, b] limitato. Noi esaminiamo il caso di un intervallo non limitato. Per
semplicita, consideriamo l'intervallo [1,+o00[ e determiniamo per quali & > 0 la fun-
zione

(1.12) o) =

é sommabile. Notiamo che la funzione ¢ infinitesima a +o0o. Per a # 1, abbiamo

14 11—«
1 T -1
/ R
1 te l1—«

quindi l'integrale diverge se o < 1 e converge per o > 1. Con calcoli analoghi a quelli
gia svolti, vediamo che l'integrale diverge anche per a« = 1. Dunque la funzione g &
sommabile se e solo se @ > 1. Ne ricaviamo subito il seguente criterio.



1. FUNZIONI INTEGRABILI E SOMMABILI 93

PROPOSIZIONE 1.12. Sia f > 0 continua in [1,+o00[. Se esistono K > 0 e
a > 1 tali che risulti
K
£ < o
per t abbastanza grande, la funzione ¢ sommabile. Se risulta

K
f(t) = 7
per t abbastanza grande, con K > 0, la funzione f non é sommabile.

OSSERVAZIONE 1.13. E opportuno illustrare graficamente le considerazioni svolte.
Consideriamo prima l'intervallo limitato [a, b[. L’espressione che definisce ¢ in (1.11)
¢ crescente con «a (per la precisione, questo vale per ogni ¢ fissato se l'intervallo ha
ampiezza non superiore a 1, come ¢ lecito supporre essendo i nostri ragionamenti si-
gnificativi per ¢ vicino a b). Nella figura seguente consideriamo 'intervallo [1, 2], per
alcuni valori di a. Geometricamente, la sommabilita di ¢ significa che il rettangoloi-
de ad essa relativo ha area finita e questo accade se il diagramma non sale troppo
rapidamente. Se f diverge, la disuguaglianza

K
1) < G2
del lemma si enuncia dicendo che f ¢ infinita in b di ordine non superiore a a.
Consideriamo ora l'intervallo non limitato [1, +oo[. L’espressione (1.12) che defi-
nisce g in questo caso é decrescente con a. Stavolta, il rettangoloide relativo a g ha
area finita se il diagramma della funzione si schiaccia sull’asse delle ascisse abbastanza
rapidamente. La disuguaglianza

K
f(t) < e
si enuncia dicendo che f é infinitesima a 400 di ordine non inferiore a «.
a=2 :
g(t) = ——2
| 2-0)°
|
a=1
A |
|
|
=3
|
|
1
|
! g(t) = =
|
Lifica o= i : 1 i5aze
| | 1 1
| | | =3
: N :&2 a=la=2
1 2 1 z

t
e
ESEMPIO 1.14. La funzione t — ——= ¢é sommabile in (—1, 1), essendo infi-
— (-1.1)
nita in entrambi gli estremi di ordine 1/2. La funzione t — e~
quanto infinitesima di ordine infinitamente grande a Foo.

2 . . .
" & sommabile in R, in
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ESEMPIO 1.15. Studiamo la sommabilita su [0, 7] della funzione
1
H)=—"
1) a+bcost
al variare di a,b € R non entrambi nulli. Se |a| > |b| il denominatore non si annulla
e f & continua, quindi sommabile su [0, 7]. Supponiamo ora |a| < |b], quindi b # 0, e
mostriamo che f non é sommabile facendo vedere che essa ¢ infinita di ordine maggiore

o uguale a 1 in un punto. Poiché risulta a/b € [—1,1], esiste o € [0, 7] tale che
costyg = —a/b. Ne segue

lim [(t — o) f(t)] =

t—to m tl{%

t—to
cost — costg

€ [1/]b], +oc],

- |bSiI’lt0|
avendo posto 1/|sintg| = +oo se sintg = 0. Scelto k € ]0,1/[b][, risulta | f(t)| > k/|t —
to| per |t — to| > 0 abbastanza piccolo, quindi f non é sommabile per il lemma 1.11.

ESERCIZIO 1.16. Studiare la sommabilita su [0, 27] della funzione
Ji
t) =
9(t) a+bcost + csint
al variare di a, b, ¢ € R non tutti nulli. (Suggerimento: osservare che

beost + csint = /b2 + ¢? cos(t — 1)
per un opportuno t; € [0, 27], quindi ci si riconduce al caso precedente della funzione

f)

1.3. Sommabilita per funzioni di pia variabili. Esaminiamo il caso delle
funzioni di due variabili; considerazioni analoghe si possono fare nel caso generale.

Nel seguito, quando parleremo di insiemi misurabili, intenderemo misurabili se-
condo Peano-Jordan. Sia f una funzione continua in un insieme misurabile X non
compatto. Indichiamo con J# (X) la classe degli insiemi compatti misurabili contenuti
in X. Dunque, per ogni K € #(X) ha significato I'integrale

(1.13) / |fldzdy.

Diremo che f & sommabile in X se l'insieme numerico descritto dall’integrale (1.13)
al variare di K € ¢ (X) ¢ limitato.
Sia f sommabile in X. Se f > 0, definiamo 'integrale ponendo

(1.14) /dexdyz sup /dexdy.

KeX (X)

In generale, se f é reale, la decomponiamo nella somma della sua parte positiva e della
sua parte negativa, f = fi + f_, come nella dimostrazione del lemma 1.2, e poniamo

(1.15) // fdxdy—/ frdzdy — // _)dzdy,

dove gli integrali a secondo membro sono di funzioni non-negative e sono intesi nel
senso della (1.14). Per f complessa, ragioniamo su parte reale e coefficiente dell’im-
maginario.

Osserviamo che non ¢ necessario considerare tutti gli elementi di # (X). Diremo
che la successione (K,,), di elementi di ¢ (X) ¢é invadente X se gode delle proprieta:
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e ¢ crescente, cioé risulta K, C K, 41, Vn € N;
e per ogni K € J#(X), esiste n € N tale che K C K,,.

LEMMA 1.17. La funzione f ¢ sommabile se e solo se il limite

lim// |f|dx dy
n K7Z

¢ finito. In caso di sommabilita, risulta

//demdy—liyrln//K”fdzdy.

Applicando il lemma 1.17, verifichiamo che la funzione f(z,y) = e~ *~v” ¢ sommabile
in R2. Scegliamo come domini invadenti i cerchi chiusi di centro 'origine:

x

Co={(z,y) : s +92<n?}, neN.

Su ogni cerchio l'integrale di f si calcola facilmente passando a coordinate polari:

// e Y dmdyz?ﬁ/ e_pzpdp:w(l— e_"z).
Gt 0

Pertanto, passando al limite per n — +o00, troviamo f sommabile e

(1.16) // eV drdy =7.
RQ

D’altra parte, come domini invadenti possiamo anche scegliere i quadrati
Qn:[_nan]x[_nan]a n € N.

Essendo f prodotto di funzioni di una sola variabile, 'integrale su @,, si scrive come
prodotto di due integrali semplici:

2 2 Y 2 4 2 2 2 2
// e v Y dxdy:/ e 7 dx/ e Y dy</ e 7 dz),

n

poiché i due integrali differiscono solo per il nome della variabile di integrazione.
Passando al limite e confrontando con (1.16), troviamo infine

(1.17) /+OO e~ dz = /7.

— 0o

! wate . ciom2 Scipns
Notiamo che le primitive di e non sono elementarmente esprimibili.
Osserviamo che per le funzioni di piu variabili non abbiamo dato la nozione di

integrabilita.

ESERCIZIO 1.18. Denotato con P il punto di coordinate (x,y), considerare per

o > 0 la funzione

1
P) = f(z, = (2% )2 o
f(P) = f(z,y) = (=" +y) 55

Mostrare che f ¢ sommabile in A = {P : 0 < OP < 1} se e solo se a < 2 ed ¢
sommabile in B = {P: OP > 1} se e solo se a > 2.
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1.4. Cenni sull’integrale di Lebesgue. Per motivi di spazio e per non appe-
santire queste lezioni, non riteniamo opportuno introdurre la teoria dell’integrazione
di Lebesgue, ma in questo paragrafo ci limiteremo a pochi cenni, sottolineando alcune
esigenze di una teoria dell’integrazione piti generale di quella esposta, che riguarda le
funzioni con un numero finito di discontinuta.

Uno dei problemi fondamentali dell’analisi ¢ quello del passaggio al limite sotto
il segno di integrale. Nella sua formulazione pit semplice, il problema ¢ il seguente.
Siano fn, n € N, e f definite nell’intervallo (a,b) e supponiamo che f(z) = lim,, f,(z),
per x € (a,b). In queste ipotesi, vogliamo ottenere

(1.18) /abf(:o do = n%n/ab Fol@) de.

L’uguaglianza si puo riscrivere

/ablirrbnfn(x)dx I lirrbn/:fn(x)dx,

che giustifica la terminologia usata. Abbiamo gia incontrato il problema del passaggio
al limite sotto il segno di integrale. Ad esempio, il risultato del lemma II1.2.6 puo
essere visto in questa ottica. Questo vale anche per i lemmi 2.11 e 2.12 che seguono.
Essendo la somma di una serie convergente il limite della successione delle somme
parziali, anche il problema di integrare termine a termine una serie rientra in quello
di passaggio al limite sotto il segno di integrale, come pure quello di derivare sotto il
segno di integrale, essendo la derivata il limite del rapporto incrementale.

Prima di porre il problema della validita dell’uguaglianza (1.18), bisogna vedere se
il primo membro ha significato, cioé la teoria dell’integrazione nota é applicabile alla
funzione f. B chiaro che supponiamo integrabile ogni f,,, ma puo accadere che il limite
puntuale f sia, ad esempio, discontinua in ogni punto dell’intervallo (a,b), quindi tale
funzione non rientra nella teoria da noi esposta. Non rientra in generale neppure nella
teoria dell’integrazione secondo Riemann, che non abbiamo discusso. Le ipotesi che
si fanno usualmente sul tipo di convergenza delle f, verso f servono soprattutto ad
assicurare che f sia integrabile. Per ottenere risultati generali di passaggio al limite
sotto il segno di integrale, occorre poter considerare classi pitt ampie di funzioni. Le
funzioni di cui tratta la teoria della misura di Lebesgue si chiamano funzioni misura-
bili (secondo Lebesgue). Esse costituiscono una classe estremamente ampia; diventa
delicato dare un esempio di funzione non misurabile. Tale classe é chiusa rispetto alla
convergenza puntuale di successioni.

D’altra parte, le funzioni con cui avremo a che fare saranno nella maggior parte dei
casi del tipo considerato sin qui, avranno cioé un numero finito di puti di discontinuita,
0, se definite in intervalli non limitati, avranno un numero finito di discontinuita in ogni
sottointervallo limitato. Piu in generale, supporremo che ogni funzione considerata sia
di questo tipo, una volta modificata opportunamente. Diamo la definizione di insieme
di misura nulla.

DEFINIZIONE 1.19. Un insieme F C R ha misura nulla secondo Lebesgue se
per ogni € > 0, esiste una successione (finita o numerabile) di intervalli Ja,, b,[ che
ricoprono E e tali che la somma delle ampiezze sia minore di ¢:

Ulan ba[2E, ) (bn —an) <.

n n
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Gli insiemi di misura nulla si dicono anche trascurabili.

Si dice che una proprieta & ¢ verificata quasi ovunque (q.o.) nell’insieme X C R
se esiste un sottoinsieme trascurabile £ C X tale che & valga in X \ E. In altri
termini, I'insieme

{zeX : Zefalsainz }

ha misura nulla.

Chiaramente, ogni insieme finito o numerabile é trascurabile; in particolare, Q
é trascurabile. Esistono insiemi trascurabili piti che numerabili. Vediamo qualche
esempio di proprieta verificata q.o.: risulta 2 > 0 per q.0. € R; la successione di
funzioni f,(x) = =™ converge q.o. nell'intervallo [0,1] alla funzione f = 0.

La teoria dell’integrazione di Lebesgue non distingue tra funzioni coincidenti quasi
ovunque (quello che accade negli insiemi di misura nulla ¢ ininfluente: per tal motivo,
essi sono detti trascurabili). Questo ¢ analogo a quanto detto nell’osservazione 1.6 per
la teoria dell’integrazione qui esposta. Consideriamo ad esempio la seguente funzione
di Dirichlet, definita nell’intervallo [0, 1]:

)1, sexeQnio,1];
f(x)_{o, sez €0,1]\Q.

La funzione f & discontinua in ogni punto dell’intervallo [0, 1], ma risulta f(z) =0 q.o. e
quindi, modificandola in un insieme trascurabile, otteniamo la funzione identicamente
nulla: ai fini dell’integrazione, f puo essere sostituita con quest’ultima.

Nel seguito, supporremo che ogni funzione considerata possa essere modificata
su un insieme trascurabile in modo da rientrare nella teoria dell’integrazione da noi
esposta, cioé abbia su ogni intervallo limitato un numero finito di discontinuita. Que-
sto consente anche di considerare funzioni definite q.0., poiché queste possono essere
prolungate in maniera arbitraria sui sottoinsiemi trascurabili.

Diamo ora alcuni risultati fondamentali della teoria dell’integrazione secondo Le-
besgue. In ciascuno degli enunciati seguenti, il lettore puo intendere I'ipotesi di som-
mabilita per le funzioni considerate nel senso della teoria qui esposta; in ogni caso
perd cercheremo di formulare gli enunciati nella maniera pitt aderente alla teoria del-
I'integrazione di Lebesgue. Ci occupiamo innanzitutto del passaggio al limite sotto il
segno di integrale.

TEOREMA 1.20 (di Lebesgue della convergenza dominata). Siano f,, n € N,
funzioni sommabili in X e convergenti q.o. a f in X. Supponiamo inoltre che esista
g sommabile in X e verificante

(1.19) |fr(@)] < g(z), perqo. xz€X, perogni neN.

In queste ipotesi, la funzione f & sommabile in X ed & lecito il passaggio al limite sotto

il segno di integrale
/ f(x)dx = hm/ fn(z)dx.
X noJx

La condizione (1.19), cioé¢ che le f,, siano maggiorate da una stessa funzione
sommabile, da il nome al teorema.
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ESEMPIO 1.21. Risulta

+oo d
lim/ Y
n Jo 1+ zn

Ci occupiamo ora delle formule di riduzione. Ci limitiamo al caso delle funzioni
di due variabili; nel caso generale si possono svolgere considerazioni analoghe.

TEOREMA 1.22 (di Fubini). Sia f = f(x,y) una funzione sommabile in R2.
Per q.o. y € R, la funzione x — f(x,y) ¢ sommabile in R e la funzione

e

¢ sommabile in R. Per q.o. x € R, la funzione y — f(x,y) & sommabile in R e la
funzione

:cH/Rf(w,y)dy

¢ sommabile in R. Inoltre risulta

(1.20) //R2 f(:c,y)dxdy:/Rdy/Rf(m,y)dx:/Rd:c/Rf(x,y)dy.

In particolare, 'uguaglianza tra il secondo e il terzo membro in (1.20) significa
che ¢ possibile invertire ’ordine di integrazione.
Il seguente teorema fornisce un criterio di sommabilita.

TEOREMA 1.23 (di Tonelli). Se uno dei due integrali iterati

(1.21) Lav [ewiaz. [ ao [ iula.

¢ finito, la funzione f = f(x,y) & sommabile in R2.

Frequentemente, si usa il teorema di Tonelli per assicurare la condizione di som-
mabilita di f, in modo da applicare poi il teorema di Fubini.

Una applicazione importante dei teoremi di Fubini e Tonelli riguarda la defini-
zione del prodotto di convoluzione (o semplicemente convoluzione) tra due funzioni
sommabili.

DEFINIZIONE 1.24. Date le funzioni g e h sommabili in R, si chiama convolu-
zione di g per h la funzione g * h sommabile in R definita ponendo

+oo
(1.22) g*h(x) = / g(y) h(z — y) dy, per q.o. z € R.
(Osservare I’analogia con la formula (VI.1.1).)

Per giustificare la definizione 1.24, osserviamo che la funzione f(z,y) = g(y) h(x —
y) & sommabile in R? per il teorema di Tonelli, in quanto, ponendo t = z — ¥,

/_:o dy/_:O l9(y) h(z —y)ldz = /_:O Ig(y)ldy/_:o |h(t)] dt < +o0.

Il teorema di Fubini garantisce allora la possibilita di definire la funzione g*h mediante
la (1.22) e la sua sommabilita. Inoltre, invertendo l'ordine di integrazione,

(1.23) /+°og 455 St /+Oog(y) 0 /m Pkt

— 00 — 00 — 00
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OSSERVAZIONE 1.25. 11 prodotto di convoluzione é associativo e commutativo,
cioé, se f, g e h sono sommabili, risulta

(fxg)xh=[fx(gxh), fxg=gxf.

OSSERVAZIONE 1.26. Mostriamo che risulta

(1.24) f(=x)*xg(—2) = (f x 9)(—x).
In effetti
+oo +oo
f(=z)* g(—x) =/_ f(—y)g(—(x—y))dy=/_ f(=y)g(—z +y)dy
“+o0
— [ rwgt-e-tit=(f <g)(-a).

In particolare, (1.24) implica che f * g ¢ pari se f e g sono entrambe funzioni pari o
funzioni dispari.

2. Calcolo degli integrali definiti

In questo paragrafo mostriamo ’applicazione dei teoremi dei residui al calcolo di
alcuni integrali definiti.

2.1. Integrali di funzioni razionali di coseno e seno. Consideriamo integrali

del tipo
2w
(2.1) 2 (cos v, sind) di,
0

essendo Z(X,Y’) una funzione razionale delle due variabili reali X e Y, continua sulla
circonferenza unitaria di equazione X2 + Y2 = 1. Valendo la relazione fondamentale
cos? 9+sin® ¥ = 1, la funzione integranda in (2.1) & continua. Ricordando le espressioni
(I5.6) di cos¥ e sin¥ mediante la formula di Eulero e ponendo z = e/?, scriviamo

1 -1 - 1d
Z+ /257 1n19=z ./27 dz:je]ﬂd’ﬁ@dﬁzf—z_
2 27 J z

ost =

Inoltre, al variare di ¢ in [0,27], z descrive (in verso antiorario) la circonferenza
unitaria I' nel piano complesso. Pertanto, I'integrale (2.1) si trasforma nel seguente

1‘/%<z+1/z,z—1'/z>dz,
JJr 2 2] z

%/1‘%1(2) dz

per un’opportuna funzione razionale %7, e puo essere calcolato mediante il I teorema
dei residui:

che ¢ del tipo

27
Z(cos¥,sind) dd =27 (R[z1] + - + R[z])
0

essendo chiaramente R[z], ..., R[z,] 1 residui di #; nei suoi poli che cadono interna-
mente a I', cioé di modulo minore di 1.
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OSSERVAZIONE 2.1. Qualche semplice considerazione permette di estendere il
procedimento ad integrali leggermente pin generali di (2.1).

(i) Poiché l'integrando Z(cos¥,sin ) & periodico di periodo 27, I'integrale esteso
ad un qualsiasi intervallo di ampiezza pari al periodo [a,a + 27], Va € R, uguaglia
quello esteso all’intervallo [0, 2 7]:

27

a+27
/ 2 (cosd,sind) d = 2 (cos ¥, sin ) dif.
a 0

(ii) Notiamo che
1

/ X(cos ) dv = 3 R(cos ) d,
0

poiché l'integrando Z(cos ¥) & funzione pari.
(iii) Consideriamo 'integrale

—Tr

/ 2 (cos? ¥, sin ¥ cos ¥, sin? 0) dof
0

essendo Z funzione razionale. Le espressioni da cui dipende & nell’integrando possono
essere scritte come funzioni razionali di cos2 e sin29:
14 cos29 1—cos29

2 ’ 2
e quindi chiaramente con la sostituzione ¢ = 21 l'integrale si trasforma in uno del
tipo (2.1).

ESEMPIO 2.2. Consideriamo ad esempio l'integrale

T 1—2cos?
—— 3.
/W5—4cosq9

1
cos? 0 = sinﬁcosﬂzisin%?, sin® 9 =

Procedendo come indicato, giungiamo all’integrale
1/ 1—(2—1—1/2)%:1/ 22 —z+1 ©s
jJr5=2(z+1/2) 2  jJrz(222-52z+2)
Le singolarita dell’integrando che cadono internamente al cerchio unitario sono 0 e
1/2, con residui

22 —z+1 1
1/2| = ——— = —=
Rl1/2] z(42z—5) am1/2 2

A, 22— 241
2225242

R[] ==,

z=0
e quindi I'integrale & nullo.

OSSERVAZIONE 2.3. Vale la pena, a scopo illustrativo, provare a calcolare l'inte-
grale anche mediante la sostituzione razionalizzante t = tan g, che comporta

1—t? 2dt
cosﬁ:m, ¥ = 2arctant, dﬂ:m.
Quando ¢ varia tra —7 e 7, t varia tra —oo e +00. Pertanto l'integrale si trasforma in
+o0 2
3t —1
2.2 2 dt .
(22) /_OO (9t2+1) (1+12)

Per valutare tale integrale, bisogna decomporre in fratti semplici 'integrando. Nel
paragrafo 2.2 illustreremo il calcolo mediante la teoria dei residui.
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ESEMPIO 2.4. Ricaviamo una formula per I'integrale

(2.3) == /O " g

a+bcosx + csinx

con a, b e ¢ € R verificanti a® > b2 +¢? (cfr. esercizio 1.16). Questa condizione assicura
che il denominatore non si annulli e sia concorde col coefficiente a, Vr € R, quindi
I'integrando & continuo. Chiaramente, anche I ¢ concorde con a. Il caso b = ¢ =0
é banale, poiché l'integrando risulta costante, quindi supponiamo che uno almeno dei
due coefficienti sia non nullo. Con la posizione z = e/*, abbiamo

z+41/z +eo? 1/z 1

) 5 —g(az2+2a2+d),

a+bcosx +csinx=a-+b

dove a =b—jc#0,e

1_2/ dz
Y lpje1 @22 +2az+a’

Osserviamo che |z| = 1 = a 22 +2a 2+ a # 0 (questa ¢ la continuita dell’integrando).
Infatti, se |z] = 1, per la disuguaglianza triangolare abbiamo

la2® +2az+a|>2az|— (|az?[+ &) =2(Ja] — |a]) > 0.

Detti 21 e 2o gli zeri di a2? +2az + @& e supposto com’d lecito |z1| < |22, risulta

2129 = @/a, quindi |z1]|22] = |@|/|a] = 1 e dunque |z1]| < 1 < |22|. Per il I teorema
dei residui, l'integrale vale I = (2/4) 2rj R[z1]. D’altra parte
1 1 1
R[Zl] = =t = s
a(zi—2)  £2\/a2 —|af? 2va? —b% — 2

dove la determinazione della radice é quella aritmetica del numero reale positivo a® —
|a|? = a? — b% — 2.

In definitiva,
(2.4) I =27

Ad esempio,

/2“ dx 27 2m dx 2
0

4+3cosx+251nac:%’ o beosz+3sinz—7 15
Chiaramente, usando il suggerimento dell’esercizio 1.16, sarebbe bastato stabilire una
formula per integrali del tipo

m dx
/0 a+bcoszw’

ESEMPIO 2.5. Calcoliamo 'integrale

2 2
o / cos"T
0o 2-+cosx
Effettuando la sostituzione z = ¢/ come indicato, I'integrale si trasforma in
1 / 2422241
=— | 55—5—F7—=dz
2§ Jr 22(22+42+1)
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il cui integrando é stato studiato nell’esempio V.2.12. Per quanto visto, l'integrale
vale

I =n(R[0] + R[-2 4+ V3]) = 4= (% - 1) .

2.2. Integrali di funzioni razionali. Ci occupiamo ora di integrali di funzioni
razionali del tipo
T P()

25) . O

dzx ,

con P e @ polinomi primi tra loro.
2.2.1. Integrale nel caso di sommabilita. Cominciamo dal caso in cui P e @ veri-
ficano le seguenti ipotesi:

(a) @ é privo di zeri reali, cioé Q(x) # 0, Vz € R;
(b) grado@ > grado P + 2.

L’ipotesi (a) assicura che l'integrando # = P/Q in (2.5) sia continuo in R, mentre
l'ipotesi (b) assicura che esso sia infinitesimo a Foo di ordine almeno 2. Pertanto
I'integrale converge assolutamente.

Le singolarita della funzione #(z) = P(z)/Q(z) sono gli zeri del denominatore e
non cadono sull’asse reale, per U'ipotesi (a). Scegliamo il semicerchio D di centro 0
formato dai punti z con Imz > 0, con raggio r abbastanza grande in modo che le
(eventuali) singolarita con coefficiente dell’immaginario positivo, diciamole z1, . .., 2y,
cadano internamente.

Applicando il teorema dei residui, otteniamo quindi

T

(2.6) X (x)dx + /1" R(z)dz=2mj (R[z1] + - + Rlz]) -

Il

Per r — +o0 il primo integrale converge all’integrale cercato (2.5). In virtu dell’ipotesi
(b), 'integrale su T',. & infinitesimo; essendo la funzione 22%(z) convergente per z — oo,
essa ¢ limitata, cio¢ |22%(z)| < M, per |z| abbastanza grande, quindi

/FT%’(Z)dz’: /FTZQL;(Z)dz

z
Pertanto, passando al limite in (2.6), otteniamo la formula

M M r—o+oo

<rtr—=m— ——0
72 r

+o0
(2.7) R(x)dx =27 (Rlz1] + - + Rlz]) -

—0o0
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ESEMPIO 2.6. Consideriamo

+oo 1
2. —dzx.
(2.8) /oo P dx

Le singolarita della funzione %(z) = 1/(1 + 2*) sono le soluzioni dell’equazione z* =

—1, vale a dire ¥/—1, cio¢ z, = e/3Hikz | = 0,1,2,3. Quelle che cadono nel
semipiano Imz > 0 sono zg = e€’7 e z; = /127, Sia D il semicerchio di raggio
r> 1.

Ly

Applicando il teorema dei residui, troviamo dunque

' X (z)dz +/F A (z)dz =27 j (R[20] + R[21])

-

e passando al limite per r — 400 ricaviamo

oo dy
/ 4% 1 27 j(R[z0] + Rl[z1]) -

oo 142t
Inoltre, ricordando che z,% = —1, abbiamo
1 2k 2k
R = — = — = — —
(2] 4z 4z} 4
e quindi

/+oo dx 9 L Zo+ 21 7r,<l+j 1+]> T
—_— = 2T = —— _ —_— —_— = —.

o Tat 7T 2’\Vve' Ve Vet Ve) T va
OSSERVAZIONE 2.7. Per rendersi conto dell’efficienza del metodo di calcolo espo-

sto, calcolare l'integrale (2.8) in maniera elementare.

ESEMPIO 2.8. Calcoliamo col metodo dei residui 'intergrale (2.2). Consideria-
mo dunque la funzione razionale

322 -1
(92241)(1+22)°
che verifica le condizioni (a) e (b). Le singolaritd sono Fj/3 e Fj, quindi quelle con

coefficiente dell’immaginario positivo sono j/3 e j. Pertanto, applicando la formula
(2.7) abbiamo

#(z) =

s 3t2 -1 i i ]
/oo OE+ (110 dt:27rj(R[j/3]—|—R[]]).
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Inoltre

Rifg =2 o

1+22 182

z=3/3

e quindi 'integrale & nullo.

ESEMPIO 2.9. Calcoliamo l'integrale
oo dx
(2.9) I:/_OO gy
Le singolarita dell’integrando
1
2622314
sono gli zeri del denominatore, determinati nell’esempio 1.4.3. Usando (2.7), troviamo
quindi

#(z) =

I=27j(R[2Y3 /5] + R[2Y/3 &/37] 4 R[21/3 &757])
e bisogna solo calcolare i residui. Abbiamo
1
62°5—622
z
6(2% —4)|,o91/2 5

'ultima uguaglianza essendo conseguenza del fatto che, per z = 21/3 75 | risulta 25 —
223 +4 =0e quindi 2% — 22 = 22 — 4. A questo punto, il residuo si calcola molto
facilmente:

z

- 6 _ -3 -
2=21/3¢l 5 6(2 z ) 2=21/3 ¢l %

R[2Y/3 %) =

21/3 3% 21/3 675 (—/3 — j)
(1++v3j—4) 243 '
Analogamente possiamo procedere per gli altri:

iTr . s .
R[2'/3 i) = 2136707 (= = V3) _ 2125 (V3 ) ;
24/3 243

R[21/3 ejgw] B 91/3 gig™ = \/g) B 21/3 6=i% (—27)
24+/3 24+/3

R[2'/3 /5] =
6

e dunque
21/3(ei% —35) (=24 91/3
I=27j i A £ J)z T cosT.
24/3 3V3 9
ESERCIZIO 2.10. Verificare I'uguaglianza

Foo 1 s
2.10 ———dzr = —.
(2.10) /, o T+2227 772

Mostrare che 'uguaglianza (2.10) si ricava anche mediante derivazione sotto il segno
di integrale, come indicato. Per a > 0 troviamo ovviamente

/+°° 1 w
5 dr = —,
oo Gt Vva
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quindi derivando rispetto ad a

/+°° LR
oo @22 T 20

da cui segue (2.10) ponendo a = 1.
Calcolare l'integrale anche tenendo conto della formula di Hermite del paragrafo
V.3.3.

2.2.2. Integrale a wvalor principale. Indeboliamo le ipotesi del paragrafo 2.2.1.
Precisamente, sostituiamo le condizioni (a) e (b) con le piu deboli:

(a’) gli (eventuali) zeri reali di @ sono semplici;
(b’) grado@ > grado P + 1.

Se le condizioni (a) e (b) non valgono entrambe, l'integrale (2.5) non & assolutamente
convergente, ma sotto le ipotesi (a’), (b’) si dimostra che esso esiste nel senso del valor
principale. (In effetti, questo seguird pure dal ragionamento che stiamo per esporre.)

Consideriamo per semplicita il caso in cui @ abbia un unico zero reale x1, che per
ipotesi e semplice. Il ragionamento seguito precedentemente deve essere modificato,
sia perché se D & un semicerchio, (per r grande) sul diametro che fa parte della
frontiera cadra la singolarita x1, sia perché il passaggio al limite per I'integrale esteso
a I', @ meno immediato se la condizione (b’) sostituisce (b). La prima difficolta si
supera scegliendo come dominio D il semicerchio di centro 0 e raggio r formato dai
punti del semipiano dei numeri z con Im z > 0, privato dei punti del cerchio aperto di
centro z e raggio € che gli appartengono; per r > 0 sufficientemente grande e ¢ > 0
sufficientemente piccolo (in particolare, |z1]| + ¢ < 7), tutte le (eventuali) singolarita
di Z(z) = P(z)/Q(z) con coefliciente dell'immaginario positivo sono interne a D e #Z
é olomorfa sulla frontiera, che & composta dai segmenti di estremi —r, x1 —€ e x1 +¢,
r dell’asse reale, dalla semicirconferenza I';. e dalla semicirconferenza . di centro 1,
raggio ¢, formata dai punti z con Imz > 0 e percorsa da 1 — ¢ a x1 + €.

—r r1—€ L] xT1+€ T

Applicando il I teorema dei residui, troviamo quindi

/m_a%(x)d:c—i— H(z)dz + S %(x)dm—f—/ H(z)dz
(2.11) —r e wite r,

=2mj (R[z1] + - + Rlzn]) -
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La somma dei due integrali estesi ad intervalli dell’asse reale tende, per r — +o00 e
¢ — 0+, all’integrale (2.5) inteso nel senso del valor principale:

T1—€ r r—+oo, e—=0+ +oo
/ X(x)dx + Z(x) dx v.p. Z(x)dz .

—-r x1+e€ —00
Esaminiamo i due integrali estesi alle semicirconferenze, nel passaggio al limite. Come
gia osservato, se grado = grado P + 1 lo studio del limite dell’integrale esteso a I',
richiede un ragionamento pit preciso di quello fatto precedentemente, che era basato
sull’ipotesi (b). Inoltre, lo studio dell’integrale esteso a 7. ¢ una difficolta nuova.

Vediamo ora due risultati che ci permetteranno di effettuare i passaggi al limite.

Fissato zg € C, consideriamo I'angolo A di vertice zg e delimitato dalle semirette

uscenti da zg di anomalie ¥g e 91, dove 0 < ¥ — g < 27
A={ze€C : Yy <arg(z—2z) <V }.

A A

Yo

20 L >

LEMMA 2.11 (del grande cerchio). Sia f continua nei punti di A con |z—zg| > 1o,
per un rg > 0. Se z f(z) converge per z — oo, (z € A), detto

= lim z f(2)
Z— 00
ed indicato con I, ’arco di circonferenza di centro zg e raggio r > 1o contenuto in A,
risulta
dim [ feyds =i i),
LEMMA 2.12 (del piccolo cerchio). Sia f continua nei punti di A con 0 < |z —
20| < €0, per un gg > 0. Se (z — 20) f(2) converge per z — zg, (2 € A), detto

l= ILm (z — 20) f(2)

ed indicato con . Uarco di circonferenza di centro zy e raggio € < gg contenuto in A,
risulta
Jim / F ARy asip gleali S
e—0+ e
Nei due enunciati, gli archi I, e 7. sono percorsi in verso antiorario, cioé nel verso
indotto da quello positivo sulle circonferenze di centro zg di cui essi fanno parte. Le
dimostrazioni dei due lemmi sono analoghe e si possono effettuare ragionando come
in quella del lemma II1.2.6.
Torniamo al calcolo dell’integrale (2.5). Per passare al limite nell’integrale esteso a
[, in (2.11), usiamo il lemma 2.11 con f =%, zo = 0, 99 = 0, ¥; = 7, quindi ’angolo
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A ¢ il semipiano rappresentato da y = Im z > 0; nell’ipotesi (b’), 2 Z(z) converge per
z — oo e per il lemma V.1.3 risulta

= lim 2%(z) = —R[] .

zZ—00

Pertanto

T'BI-‘POO s H(z)dz = —7j R[] .
Per passare al limite nell’integrale esteso a 7., usiamo il lemma 2.12 con f = %,
20 = 21, Yo = 0, ¥ = 7; nell’ipotesi (a’), (z — x1) Z(z) converge per z — z; e risulta
(cfr. (V.2.1))

= lim (z —x1) Z(2) = Rlzq].

Z—Iq

Pertanto

lim H(z)dz = —mj R[x1].

e—0+ e

In definitiva, passando al limite in (2.11), otteniamo

+o0
(2.12)  v.p. R(x)dx =2mj (R[z1] + - + R[zn]) + 7j R[z1] + 7 j R[] .

— 00

E facile convincersi che, nel caso generale, dette z1,...,x,, le singolarita reali di
Z = P/Q, che sono tutte poli semplici, e z1,...,2, le singolaritd con coefficiente
dell’immaginario positivo, la formula (2.12) si generalizza come segue

+00 n m
(2.13) v.p. R(x)de =27 Rlz]+7j Y Rlay] +7j R[]
> k=1 k=1

OSSERVAZIONE 2.13. Se Z ha coeflicienti reali, i residui R[zy] e R[oo] sono reali
come pure l'integrale di £, quindi prendendo le parti reali di ambo i membri in (2.13)
abbiamo

400 n n
v.p. %(x)d;v:%rRe{jZR[zk]} :—27rIm{ZR[zk]} .
- k=1 k=1
ESEMPIO 2.14. Le singolarita della funzione #Z(z) = Tcga2i2n0 i punti z =
z
ej%+j%”k, k = 0,1,2. Di queste, 29 = %—&—j@ ha coefficiente dell’immaginario
positivo, z; = —1 é reale e zo = Zj ha coefficiente dell'immaginario negativo. Inoltre

R[oo] = 0 e (analogamente al caso dell’integrale (2.8))

1 2k 2k
R = —=a — = ——,

bl =323 "3
Pertanto dalla formula (2.13) otteniamo

R R | 20 -1 T
P. — dr=—21i2 A =T VB =
Vp/ 1+a3 Tig —mig =g (V3 V3

— 00



108 VII. ESTENSIONI DELLA NOZIONE DI INTEGRALE

2.2.3. Osservazioni. Se Z ¢ funzione pari, abbiamo

400 1 +o0

; X (x)dx = 3 X (x)dx

— 00

e 'ultimo integrale & del tipo (2.5).
Consideriamo ora l'integrale
“+o0
(2.14) R(x")dx ,
0

doven >2e % = P/Q, con grado Q) > grado P+ 1. Notiamo che per n = 2 ricadiamo
nel caso precedente. Supponiamo per semplicita che la funzione razionale %2 non abbia
singolarita sul semiasse reale non-negativo. Consideriamo come dominio D il settore
circolare formato dai punti z del cerchio di centro 0 e raggio r > 0 con 0 < arg z < 27”:

Ly

27
ren

r

Applichiamo il T teorema dei residui. A tal fine, osserviamo che sul raggio di
estremi r e/, 0 risulta z = z(t) = /% t, con t che varia da r a 0. Pertanto

T T m
(2.15) / R de+ | B dz— F / Ry dt =277y Ryl
0 r, 0 1
dove z1, ...,z sono le singolarita di Z(z") interne a D. Il primo e 'ultimo integrale
coincidono e per r — 400 convergono all'integrale cercato (2.14), mentre l'integrale
esteso a I',. ¢ infinitesimo (grado Q(2") > grado P(z")+n > grado P(2")+2). Pertanto
da (2.15) ricaviamo

+oo m,

7 27y ip IR "
(216) s %(1’ )dl‘ = m kz::lRf[Zk] = —¢€ Sin% kz::lRf[Zk] .

sono i poli semplici

ESEMPIO 2.15. Le singolarita della funzione f(z) =

o, 1+ 2n
2= n Ik L =0,...,n—1, erisulta
1 Zk Zk
Rlawl = — = —=——"

nzy, n 2y n

L’unica singolarita con argomento tra 0 e 2% & z. Pertanto la (2.16) ci da
+oo j T
1 T el m/n
(2.17) / ndx:—e_]ﬁ i (— ) :';'
o 14z sin 7 n sin(m/n)

Confrontare con (2.8) ed esaminare per n — +o0.
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ESERCIZIO 2.16. Calcolare

509 dx
0 x6—2x3+4

cfr. esempio 2.9, osservando che l'integrando é funzione di 3.

2.3. Altri integrali. Ci occupiamo ora di integrali del tipo

+oo
(2.18) Plz) eI da |
o Q2)
con @« € R. Per o = 0 lintegrale si riduce a quello gia considerato (2.5), quindi
supporremo « # 0.
Osserviamo che, se P e @ hanno coefficienti reali, la parte reale e il coefficiente
dell'immaginario di (2.18) sono rispettivamente

iR P(z) cos ax dx 6 Plw)
—o Q) ’ o Q)

Notiamo che le proprieta di sommabilita della funzione integranda sono le stesse di
% = P/Q, poiché | /%] = 1, Vz € R; quindi, se valgono le ipotesi (a) e (b), 'integrale
converge assolutamente. Se vale (a) e grado@ = grado P + 1, l'integrale converge
semplicemente. Se @ ha zeri reali semplici, I'integrale va inteso nel senso del valor
principale.

Cosideriamo il caso @ > 0. Poiché se Im z > 0, risulta |e/“*| < 1, se vale Iipote-
si (b) possiamo ragionare come nel paragrafo 2.2.1, risultando infinitesimo 'integrale
esteso a I',.. D’altra parte, se grado Q = grado P + 1, il lemma del grande cerchio non
¢ sufficiente per passare al limite nell’integrale su T',., poiché I'espressione z %Z(z) /%>
non ammette limite per z — oo, Im 2z > 0. In questo caso usiamo invece il seguente.

sin ax dz .

(2.19)

LEMMA 2.17 (di Jordan). Sia g continua neipuntiz € C conImz > 0 e|z| > ro,
per un ro > 0. Selim, o g(2) =0 e a > 0, risulta

(2.20) lim g(2)e?**dz =0.

r——4o00 T..

In questo modo, otteniamo la formula

+oo P ) n m
(2.21) v.p. i) e dr=27j Z Rlzi) +mj Z Rlzy],
o Q) ot ot
dove z1, ..., z, sono gli zeri di @) con coefficiente dell’immaginario positivo, x1, ..., Tmx,

sono gli zeri reali (tutti semplici) e i residui a secondo membro sono relativi alla
funzione z — €% P(2)/Q(z).

ESEMPIO 2.18. Calcoliamo

“+o0 ej T
I= / ——dx.
oo X2+ 142+ 50
Gli zeri del trinomio a denominatore nell’integrando sono —7 £ j complessi coniugati

non reali, quindi l'integrando ¢ continuo in R; inoltre esso ¢ infinitesimo di ordine 2
per x — +00, quindi l'integrale converge assolutamente. Come caso particolare della
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formula (2.21), abbiamo I = 27 j R[—7 + j], il residuo essendo relativo alla funzione
ausiliaria

el ?
1= w50
che per z = = € R si riduce all’integrando. Essa ha in —7 4 j un polo semplice, quindi
ez e~ 7i—1
R[-7T+j]= ——— = -
2z4+ 14 R 27
e dunque
+oo ejx 71 T o
[m mdmzﬂ'e :g(COS’z*]Sln?).

ESERCIZIO 2.19. Verificare I'uguaglianza
+oo ejx T de
/ md‘rzm(Cosg"_]slng).
ESEMPIO 2.20. Calcoliamo
+00 s
/ sin de
O w

Ricordiamo che l'integrale converge semplicemente, ma non assolutamente, cfr. esem-
pio 1.3. Inoltre, essendo 'integrando funzione pari, abbiamo

T ging 1 [T gingz
de = - dr .
0 T 2 ) =z

Consideriamo dunque 'integrale
+oo jx
e
v.p. / —dzx.
T

— 00

— 00

Tale integrale é inteso nel senso del valor principale, poiché la funzione integranda
e’?/z ha in 0 un polo semplice; il residuo vale 1. La formula (2.21) fornisce

“+o0 INE:
(2.22) v.p./ —dr=mj
X

—0o0

e quindi, prendendo il coefficiente dell’immaginario in entrambi i membri, troviamo

T sinx T
de = —.
0 X 2

OSSERVAZIONE 2.21. Passando alle parti reali in (2.22), otteniamo

—+oo
V.p./ co;x dx =0,

— 00

che ¢é ovvia, poiché l'integrando ¢ funzione dispari. Osservazioni elementari di questo
tipo possono aiutare a controllare i calcoli.

OSSERVAZIONE 2.22. La funzione

Si(m):/ ydt
0 t
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si chiama seno integrale, o seno campionatore. Evidentemente é una funzione dispari,
il cui diagramma ¢ asintotico a destra alla retta orizzontale di equazione y = 7 ed ¢
tracciato in figura.

| s

I T 27 37 4 5w 6

o[
- -

ST 2

ESEMPIO 2.23. Calcoliamo

+oo
COST T
oo 4x? =162+ 15
Il denominatore si annulla nei punti 3/2 e 5/2; tali punti annullano anche il numeratore
e sono discontinuita eliminabili per l'integrando, che quindi risulta continuo in R.

Inoltre I'integrando ¢ O(z~2) per x — 400, quindi I'integrale converge assolutamente.
Consideriamo la funzione ausiliaria
ej Tz

&)= m 715

per z = z € R, 'integrando ¢é la parte reale di f(x), quindi risulta

I=Re (V.p. /_:o f(=) dx) :

L’integrale di f ¢ inteso nel senso del valor principale per i poli reali 3/2 e 5/2, essendo
Pesponenziale privo di zeri. Per la (2.21), abbiamo

+oo
V.p.[ f(@)de = jn(Ry[3/2) + Ry[5/2) .

Poiché

-3 1 j 5
eJETr 7] ]Eﬂ—

B3/ = =2 =2, Ryls/2l=
2

e j
1 A Napalid)
85-16 4

troviamo infine

+oo ;
COSTTX . J ™
—  _dr=R “lnanto_cl)
/_OO 422 16z +15 e<”2) 2
Osserviamo che risulta

el ejT((&C72)
422 — 16z +15 4(xz—2)2-1"

+oo “+ oo ejﬂ't
1= v.p./ flz)dx = v.p./ v dt

oo —o0

too cosmt . +t° gsinwt
= dt+j v.p. dt
Ceo 4tZ2—1 Lo 4t2—1

e 'ultimo integrale & nullo, in quanto l'integrando ¢ funzione dispari. Dunque I ¢ reale.

ESEMPIO 2.24. Calcoliamo

T 1 —cos2rx
I = ——dx.
/ @ -2 *

f(@) =

quindi

—0o0
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La funzione integranda ¢ continua in R (in F1 presenta discontinuita eliminabili) ed
¢ O(x~8) per  — Foo, quindi I'integrale converge assolutamente. Consideriamo la
funzione ausiliaria

] 1 ej27rz

f(z):m;

per z = z € R, 'integrando é la parte reale di f(x). Il denominatore ha zeri doppi nei
punti v/1, ovvero F1, Fj. I punti reali F1 sono poli semplici, essendo zeri semplici
del numeratore. I punti Fj sono poli doppi. Applichiamo il I teorema dei residui a f
sul dominio D in figura:

—r —1—¢ _1 —1+4e
L’unica singolarita interna € j. In questo modo otteniamo

T 1—¢
oy /+FD 1) dz:/_r f(z)dz — 5 (2) dz+/_1+af(x) da

[ s@dst [ g@des [ feds =20 Rl
o I4e T,
Per il lemma 2.11 del grande cerchio, risulta

lim / f(z)dz=0,
r,

r—-+00

mentre per il lemma 2.12 del piccolo cerchio

lim / f(z)dz = jnR[-1],  lim / F(=)dz = jm R[1].

e—0+ e—0+

Dunque, passando al limite per 7 — 400 e € — 0+, troviamo

I =Re (V.p. /+0° f(z) dx) =7 Re {j(R[—I] + R[1] + 2R[j])}.

—00

(’integrale di f ¢ inteso nel senso del valor principale per la presenza dei poli reali.)
Abbiamo

j27 2z 2
R[1] = lim(z — 1) f(2) = lim kapieh" & (hm z—1 )

I
|
)

3
<.
7 N
H;‘
w

e, analogamente, R[—1] = —g j. Inoltre, essendo

#=1= (=) +j2" + %2+ %) = (2 = )N +42* -2 - j),
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troviamo
Isit ej27'rz

z=j

—2mj eI (23 522 — 2 — ) — (1 — e9272)2(32% + 252 — 1)
RS —

2=j
g —8me 2™ +12(1 — e™27) 3 (2m +3)e 2"
T (—45)° 0 165 '
Pertanto
o . 3-(2r+3)e T o
I = 27 —= =—(2 1-— ™.
wRe{]( 8]+ 167 >} 8(7r+3)( e™°T)

(Notiamo che

oo sin27a it
v.p. [m mdaj =1Im (v.p./Oo fx) da:)

S Im{% 2 +3)(1— e*2”)} enge
che & immeditato, essendo la funzione integranda dispari.)

Il caso @ < 0 puod essere ricondotto al precedente mutando x in —z, o trattato
ragionando in maniera analoga, considerando perd domini del tipo

Il lemma di Jordan si modifica subito per mostrare che, nel caso o < 0, l'integrale
esteso alla semicirconferenza I';,. considerata ora ¢ infinitesimo. In tal modo, la formula
(2.21) si modifica come segue:

T PE) w — ~
(2.24) v.p. ——e&dr = 27} Z Rlzp] — 7 j Z Rlxy],
oo Q(2) o ey
dove pero questa volta zq, ..., z, sono gli zeri di Q) con coefficiente dell’immaginario

negativo.
Consideriamo ora l'integrale
(2.25) /W‘” P() oz g,
o—joo Q(Z)
dove o, € R, @ # 0. L’integrale & esteso alla retta verticale di equazione Rez = o,
orientata dal basso verso l’alto.
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A

Facciamo le seguenti ipotesi:

(a”) @ non ha zeri con parte reale uguale a o;
(b’) grado@ > grado P + 1.

L’integrale ¢ (almeno) semplicemente convergente. Notiamo che se @ > 0 I’esponen-
ziale e*# ¢ limitato per x = Rez < o, essendo |e*?| = e** < e®?, mentre se a < 0
risulta limitato per x = Re z > ¢. Consideriamo i domini

A

a>0 a<0

Con opportune versioni del lemma di Jordan per mostrare che gli integrali sulle semi-
circonferenze sono infinitesimi al divergere del raggio, otteniamo le formule seguenti,
analoghe alle (2.21) e (2.24).

Per a > 0:
“iiaB(E) -
(2.26) / e®dz=27mj Y Rlz],
o—joo Q(Z) ;
dove z1,...,2, sono gli zeri di () con parte reale minore di ¢. I residui sono relativi
alla funzione z — e** P(z)/Q(z).
Per a < 0:
HooRle) :
2.27 / edz=-2mj Rz,
( ) g—joo Q(Z) kzzl [ ]
dove z1, ..., 2z, sono gli zeri di @ con parte reale maggiore di o.

Il procedimento si estende, con ovvie modifiche, al caso in cui @ ha zeri semplici
con parte reale uguale a o; 'integrale dovra essere inteso nel senso del valor principale.

E possibile analogamente trattare il caso o = 0, usando il lemma del grande
cerchio. Ad esempio, se vale (a”) e grado @ > grado P + 2, I'integrale

[ e

¢ assolutamente convergente. Inoltre risulta R[oo] = 0, quindi per il II teorema dei re-
sidui (Teorema V.1.6) i secondi membri di (2.26) e (2.27) coincidono (dove chiaramente
i residui sono relativi alla funzione P/Q); il valore comune ¢ quello dell’integrale.
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ESEMPIO 2.25. Sia ¢ > 0. Abbiamo

o+joo e? 5 — O7 seozSO;
- 1+22 " | 27j (R[] + R[-j]) =2mj sina, sea>0.

3. La funzione gamma

La funzione gamma ¢é definita mediante 'integrale euleriano di seconda specie

+oo
(3.1) I'(z) = / e 7 lat,
0

dove z é un numero complesso.

La sommabilita della funzione integranda t — e~ per z = z + jy fissato
dipende da x = Re z, in quanto |t*7!| = t*~L. L’integrando & continuo, quindi local-
mente sommabile, in ]0, +oo[, mentre per alcuni valori di z non risulta continuo in 0,
dunque la sommabilita va studiata intorno a 0 e a +o0o. Intorno a 0 il fattore e~*
é ininfluente, essendo continuo e positivo; in altri termini, I'integrando ha le stesse
proprieta di sommabilita della potenza t*~! ed & dunque sommabile se e solo se z > 0.
Intorno a +oo, per la presenza dell’esponenziale I'integrando ¢ sommabile per ogni x.
In definitiva, la (3.1) consente di definire I'(z) nel semipiano Re z > 0.

ttz—l

Si mostra che I' é olomorfa in tale semipiano.

TEOREMA 3.1. La funzione I' & olomorfa nel semipiano Rez > 0 e si puo
derivare indefinitamente sotto il segno di integrale:

+oo
(3.2) I‘(k)(z):/ e~ 't*"(logt)¥dt, VkeN.
0

Calcoliamo qualche valore della funzione I'. Evidentemente T'(1) = 1. E facile
mostrare una fondamentale relazione per la I', detta relazione di ricorrenza:

(3.3) T(z+1) =2T(2), Rez > 0.
Basta infatti supporre inizialmente z > 0 ed integrare per parti. Ne segue, Vk € N,
(3.4) Fz+k+1)=E+k)(z+k—-1)---2T(2).

In particolare,
I'(n+1)=nl!, Vn € Ny
In questo senso, I' generalizza il fattoriale. Usando (1.17) troviamo un altro valore

notevole
1 dighpoli” | dittecni
(=)= e ‘tT2dt =2 e T dr =+/1.
2 0 0

Usando la (3.4), troviamo

(Q)-r(o) Q)5 r(Q)-2r() 2w
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e in generale

(3.5) F<k+1+%>=<k+%> (k—%)%ﬁ

ESERCIZIO 3.2. Verificare, Vk € Ny, I'uguaglianza
(3.6) 22k+1 g T (k +1+ %) =(2k+1)!Vx.

Mediante la relazione di ricorrenza é possibile prolungare la funzione I'. In effetti,

scritta la relazione di ricorrenza nel modo seguente
'z+1
(3.7 I'(z) = I+1 ,
z

osserviamo che il secondo membro ha significato per Re(z + 1) > 0, vale a dire Re z >
—1, e z # 0. Dunque l'uguaglianza (3.7) consente di definire I'(z) per tali valori.
Geometricamente, al semipiano Rez > 0 viene aggiunta la striscia —1 < Rez < 0,
privata del punto O.

A questo punto, il secondo membro della (3.7) ha significato per z # 0 verificante
Re(z+1) > —1,cioé Rez > —2,e z+1 # 0, cioé¢ z # —1; geometricamente, all’insieme
cui eravamo arrivati al passo precedente aggiungiamo la striscia —2 < Rez < —1
privata del punto —1.

E chiaro ora che iterando il procedimento si estende I' a C — {0,—1,-2,...}. E
chiaro pure che il prolungamento risulta olomorfo in tale insieme, quindi gli interi
non-positivi sono singolarita isolate della funzione I'. Essi risultano poli semplici; ad
esempio, risulta
limzI'(z) =lmI'(z+1)=T(1)=1.
z—0

z—0

v

-3 -2-1 |0
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Nella figura seguente ¢ tracciato il diagramma della funzione y = I'(x), restrizione di
I all’asse reale (privato dei punti 0,—1,—2,...).

A

20

v

y=T(z)

I
—_

—20

E interessante mostrare un altro modo di studiare la I" e giungere al suo prolunga-
mento. Per Rez > 0, decomponiamo I'integrale (3.1) che definisce I'(z) nella somma
di due termini, uno “cattivo” ed uno “buono”

1 “+o00
(3.9) T(z) = / et gt 4 / e~ dt = P(2) + Q(2).
0 1
L’integrale
“+ o0
(3.9) Q(z) = / ettt at
1

é assolutamente convergente, senza alcuna limitazione su z, per la presenza dell’espo-
nenziale nell’integrando. E possibile mostrare che @ ¢ olomorfa, quindi é una funzione
intera.

Per P(z), come detto, la sommabilita dell’integrando va studiata intorno a 0 e
sussiste per Rez > 0; P risulta olomorfa nel semipiano definito da tale limitazione.
Ne segue ’olomorfia della I'. Essendo @ intera, la regolarita di I' dipende da quella di
P: esaminiamola in maggiore dettaglio. Usando lo sviluppo di Mac Laurin, scriviamo

T \n
e—tzz(nt!)

n=0

e quindi
t 1 1 = (*1)n +n—1
—tyz—1 __ 42— z+n—
e 't =t + g OIpCh t .
n=1

La serie nell’ultimo membro, per z fissato con Re z > 0, é totalmente convergente per

t €10,1]. In effetti,
|tz+n71‘ i tReernfl S 1’

in quanto Re z4+n—1 > 0, quindi la serie ¢ maggiorata dalla serie numerica convergente
+oo 1

1 51+ E dunque possibile integrare termine a termine:

—+oo

+oo n i
P(Z) = /1 e*ttzfl dt — /1 Z Q tZ+nfl dt =1 Z (—1') /1 tZJrnil dt7
0 001y Rék: n: 0

n=0
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OVVero
Zm (="
fll= — (z+n)n!’

Pertanto, per Re z > 0,

“+o00
="
3.10 I'(z) = S — .
(3.10) @ =3 G+ 9@
Il secondo membro di tale uguaglianza ha significato anche per z fuori dal semipiano
Rez > 0. L’espressione
(="

(z+mn)n!’
che al variare di n costituisce il termine generale della serie, ¢ olomorfa in C — {—n} e
in —n ha un polo semplice. La serie converge (totalmente in ogni £ C C con distanza
positiva da {0,—1,—2,...}, cioé per il quale esista § > 0 tale che risulti |z + n| > 4,
Vz € E, Vn € Np) e la somma ¢ olomorfa in C —{0,—1,—-2,...}. Calcoliamo il residuo
diT"in —n, n € Ng:
y (=)™
Rr[-n]= lim (z+n)T(z) = .

z——n n!

Si prova che I & priva di zeri, quindi il reciproco % ¢ una funzione intera, presen-
tando nei punti 0, —1, —2, ... singolarita eliminabili, che risultano zeri semplici per il
prolungamento.



CAPITOLO VIII

Elementi di analisi funzionale

1. Spazi di Lebesgue

Fondamentale per il seguito ¢ lo spazio L!(a, b) delle funzioni sommabili in un dato
intervallo (a, b) di R. Ricordiamo che due funzioni uguali quasi ovunque si identificano.
La quantita

b
(L1) el = / (1) d.

si chiama norma (in L') e gode delle seguenti proprieta

(1) ||lz|l1 = 0 se e solo se x = 0;

(2) (omogeneita) [zl = |af lz]1;

(3) (disuguaglianza triangolare) ||z 4+ yll1 < ||z|l1 + ||y,
per ogni z, y € L*(a,b) e a € C.

Denotiamo inoltre con Li (a,b) lo spazio vettoriale delle funzioni localmente

sommabili in (a,b), cioé sommabili sui sottointervalli compatti.
Il prodotto di convoluzione, introdotto nel paragrafo VII.1.4 per funzioni somma-

bili, in alcuni casi puo essere definito per x,y € Llloc(R). Supponiamo ad esempio

x(t) = y(t) = 0, per q.o. t < 0. In tale ipotesi, z(s) y(t — s) pud risultare non-nullo
solo se 0 < s < t; questo ¢ chiaramente impossibile, se ¢t < 0. Pertanto risulta

t
(1.2) oxy(t) = ult) [ a()ut ) ds.
0
dove
1,set>0
1.3 u(t)=14 ' -

(13) ®) {07 set <0
¢ detta funzione gradino unitario (o anche funzione di Heaviside). In particolare,

uxu(t) =tu(t).
E definita pure la convoluzione di z € L!(R) con il gradino, che & limitato, e risulta

x*u(t)—/+Oox(s)u(t—s)ds—/t x(s) ds,

— 00 — 00
cioé z * u ¢ la funzione integrale di x (con estremo inferiore —00).

Sia f € L*(a,b). Si dimostra che la funzione integrale

F(t):/ f(s)ds
119
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¢ continua in (a,b) (F & continua pure in ciascuno degli estremi che risultasse finito),
derivabile q.o. e risulta F'(t) = f(t) per q.o. t € (a,b) (teorema fondamentale del
calcolo integrale).

DEFINIZIONE 1.1. Una funzione continua x sull’intervallo [a, b] si dice assolu-
tamente continua se ¢ derivabile q.o., 2’ € L'(a,b), e Vt € [a, b] risulta

(1.4) x(t) = z(a) + /x’(s) ds.

Osserviamo che la (1.4) non segue dall’ipotesi di derivabilita e dalla sommabilita
della derivata. Esistono funzioni continue strettamente crescenti con derivata q.o.
nulla, che quindi non verificano (1.4).

ESEMPIO 1.2. Chiaramente é assolutamente continua una funzione di classe
Cl([a,b]), o C! a tratti (cioé continua, con derivata continua in [a,b] privato un
numero finito di punti interni, che siano discontinuita di prima specie). Pi in generale,
é assolutamente continua ogni funzione lipschitziana.

Se x e y sono assolutamente continue in [a, b], vale la formula di integrazione per
parti:

Analogamente a L', consideriamo lo spazio L?(a,b) delle funzioni = a quadrato
sommabile su (a,b), con la norma (in L?)

2 1/2
(1.5) =]z = {/ Iﬂc(t)th} ;

che gode delle stesse proprieta di || ||;. Notiamo che il prodotto di due funzioni a
quadrato sommabile é sommabile, come conseguenza della ovvia disuguaglianza

|z + |y[”
5, o

Per y = 1, abbiamo |z| < (Jz]? + 1)/2. Ne segue linclusione L?(a,b) C L'(a,b), se
Pintervallo (a,b) ¢ limitato, poiché in tal caso le funzioni costanti sono sommabili.
La (1.6) implica la disuguaglianza di Cauchy-Schwarz

(1.7) eyl < llzll2 lyll2 -

La quantita

(1.6) lzyl <

b
(2,9) = / () g dt

si dice prodotto scalare in L?(a,b) e ha le seguenti proprieta: per ogni z,y, z € L?(a,b)
e per ogni a € C, risulta
(1) (z,2) >0, e (z,z) =0 se e solo se x = 0;
(2) (az,y) = a(z,y);
B) (@+y,2) = (x,2) + (y,2);
4 (

4) (y,2) = (z,y).
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DEFINIZIONE 1.3. Tl quadrato della norma

b
(18) el = (2,2) = / w(0)|2 dt

¢ detto energia di z. Si dice che una successione (z,,) di funzioni in L?(a,b) converge
nel senso dell’energia a x € L*(a,b) se risulta

lim ||z, — z|j2 = 0.
n
DEFINIZIONE 1.4. Due vettori « e y si dicono ortogonali se (z,y) = 0. 1l
vettore nullo ¢ banalmente ortogonale ad ogni vettore, quindi considereremo vettori

non nulli. Un insieme di vettori S C L?(a,b) (non contenente il vettore nullo) si dice
sistema ortogonale se i suoi elementi sono a due a due ortogonali, cioé

r,yesS, z#y = (2,y)=0.

S si dice ortonormale se inoltre i suoi elementi hanno tutti norma 1: ||z|| = 1, Va € S.
In altri termini, S é ortonormale se, per ogni coppia di vettori x e y in S, risulta

)1, sex=y
19) <z,y>{0, O

E chiaro che, se S & un sistema ortogonale, dividendo ciascun elemento per la sua
norma otteniamo un sistema ortonormale. Inoltre, se z1,...,x, sono vettori a due a
due ortogonali, si verifica facilmente che risulta

(1.10) loy + -+ zall® = e + -+ llzall?.
Questa uguaglianza generalizza il teorema di Pitagora.

ESEMPIO 1.5. Consideriamo il sistema trigonometrico in L?(0,2):
(1.11) 1, cost, sint, cos2t, sin2t, ..., cosnt, sinnt, ...
Tale sistema ¢ ortogonale, risultando per m,n € N

(1,cosnt) = (1,sinnt) = (cosmt,sinnt) =0
eperm#n
(cosmt,cosnt) = (sinmt,sinnt) =0.
Inoltre
L3 =2m, [lcosnt|3=sinnt|}=r
e quindi il sistema

1 cost sint cos2t sin2t cosnt sinnt

(1.12) Nyt i ety = v e

é ortonormale.

Analoghe considerazioni valgono per il sistema esponenziale in L*(0,2):
(1.13) Jht keZ.
Esso é ortogonale, risultando

; ; 0 se k#£h
jkt _jhty _ ) ’
(e’ e ){277, sek=nh.
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Il sistema
ol kit

Vor’

(1.14) keZ,
é ortonormale.

Le funzioni dei sistemi trigonometrico ed esponenziale sono periodiche di periodo
2m. Piu in generale, sia 7 > 0 e indichiamo con wy = 27” la pulsazione. 1 sistemi di
vettori:

(1.15) 1 coswgt sinwgt cosnwot sinnwgyt
’ VT’ T/27 7/27.”, T/2 ’ 7/2 - ia
e
ejk?wot
(1.16) ke,

)
VT
sono formati da funzioni periodiche di periodo 7. Essi si dicono rispettivamente sistema
trigonometrico (normalizzato) e sistema esponenziale (normalizzato), in L%(0, 7).

OSSERVAZIONE 1.6. Per ogni k € N, le coppie di vettori
coskwot, sinkwgt, e gikwot — gmikwot

generano lo stesso sottospazio, poiché per la formula di Eulero i vettori di una coppia
si esprimono come combinazione lineare degli altri; in effetti, risulta V¢ € (0, 7)

(1.17) agcoskwot + bpsinkwyt = cpelFwot 4 ¢ e dkwot
se e solo se i coefficienti ay, by, cx e c_j sono legati dalle relazioni

— jb i
(1.18) e R +2] E,

che equivalentemente si scrivono
(1.19) ap =cp+c_p, bp=7j(ck—c_g)-

Ad esempio, le (1.19) si ottengono ponendo t =0 e t = 7/(4k) in (1.17).

2. Generalita sui segnali

Un segnale é una funzione di variabile reale
z:te ECR—x(t) €C.

In molte questioni, € comodo considerare segnali definiti q.o. Definiamo varie opera-
zioni sui segnali; le illustrazioni grafiche saranno date supponendo i segnali reali.

Dato to € R, il segnale t — xz(t — tg) si dice traslato del segnale x(t): ritardato di
to se tg > 0, anticipato di —tq se ty < 0; esso € definito per t —ty € E. Si dice riflesso
nel tempo il segnale ¢t — x(—t); & definito per —t € E. Il segnale ¢ — —x(¢) si dice
ribaltato; & definito in F.
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4 x(t) 4 x(t —to)
\ A . \ faciopfoI”

v

x(—t) 4 —x(t)
™ / . TN .
Yaehsd / N C

Dato a > 0, il segnale t — z(at) si dice riscalato di fattore a: compresso o dilatato
a seconda che sia @ > 100 < a < 1; & definito per at € E.

o foicing /i BN Uniy/ it debi\ S/ \i Navg
NGOl 11 o, decse Ao

sin % sint sin2t

ESERCIZIO 2.1. Disegnare il diagramma di x,,(t) = arctannt, t € R, al variare
di n € N. Disegnare il diagramma del limite puntuale della successione (zy, ).

Ricordiamo che u indica il gradino unitario. Per a, b € R

1 t 1 b>t
u(t—a): ,set>a u(b—t): , se b >
0,set<a 0,seb<t

e, sea<b,

1 t<b
(B tomlfieb)=ApDliCAZ IO T
0,set<aeset>0b
u(t —a) u(b—1)
Al

1F-

I
I
I
]
I
I
[ a -

- ———— =4

Il segnale u(t — a) — u(t — b) si chiama impulso unitario rettangolare, o finestra

rettangolare, di durata b — a e centrato in “T'H’.
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u(t —a) —u(t —b)

1 R e — |

a+b

o p------

oOt--—-—---

|
b—a

Il simbolo II, o anche RECT, indica la finestra di durata 1 centrata in 0:

1,se —1/2<t<1/2

TI(t) = RECT(t) = u(t + 1/2) — u(t — 1/2) = {O ot 12eseto 1)

Osserviamo che la moltiplicazione di un segnale per u(t — a) ha effetto di azzerarne
i valori per ¢t < a, la moltiplicazione per u(b — t) azzera i valori per t > b, mentre la
moltiplicazione per la finestra u(t —a) — u(t — b) azzera i valori per ¢ non appartenente
all’intervallo (a, b).

Un segnale z definito nell’intervallo (0,7) puo essere sempre visto come la restri-
zione a tale intervallo di un segnale periodico di periodo 7; in altri termini, x puo
essere prolungato a R per periodicita con tale periodo.

Un segnale periodico pud essere visto come sovrapposizione di traslati. Dato z,
definiamo xo(t) = x(t) [u(t) — u(t — 7)], che coincide con x nell’intervallo (0,7) ed &
nullo fuori di questo. Se x ha periodo 7, risulta q.o.

“+oo

(2.1) zt)= Y wo(t—k7).

k=—oc0

I possibile considerare in luogo di u(t) —u(t—7) qualsiasi finestra u(t —a) —u(t—a—7),
a € R, di durata pari al periodo 7, cio@ posto x,(t) = z(t) [u(t — a) — u(t — a — 7)],
risulta pure
“+o0
z(t)= Y zalt—k7).
k=—o0

Inversamente, assegnato xy q.o. su R, non necessariamente nullo fuori dell’intervallo
(0,7), se la serie in (2.1) converge, il segnale = & periodico di periodo 7: esso si chiama
replica periodica di periodo T di xg. La serie converge certamente se xo € nullo fuori
di un intervallo limitato (non necessariamente (0, 7)), poiché in tal caso essa & in ogni
punto ¢ una somma finita, o anche se xo(¢) ¢ infinitesimo per ¢ — Foo di ordine
abbastanza grande.

ESEMPIO 2.2. Consideriamo la finestra triangolare (centrata in 0, di durata 2)
A(t) rappresentata in figura:

v
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Evidentemente
0,set<—-1lot>1
At)=<¢1+t,se —1<t<0
1—-t,se0<t<1
ovVVvero

Aty =14+ [ult+1)—u@®)]+Q—1t) [u®t) —ut—1)] =1 —|t]) [ult+1) —ult—1)].
Tracciamo i diagrammi delle repliche periodiche di A di periodi 2 e 1:

1

a1l

-3 ) -1 1 2 3

In particolare, la replica di periodo 1 é la funzione costante uguale a 1. Invero, detta
x, per definizione risulta

(2.2) z(t) =Y Alt—k).

kEZ

Essendo x periodica di periodo 1, basta calcolarla per 0 < ¢ < 1. Per tali valori di ¢,
se k #0 e k # 1, il corrispondente addendo in (2.2) ¢ nullo, quindi

(2.3) 2(t) = At) + At —1).

Inoltre ¢ A(t) =1 —t e, poiche —1 <t—-1<0,épure At—1)=1+(t—-1) =t
Pertanto (2.3) implica
z@t)=1—t+t=1.

Osserviamo che risulta

(2.4) A(t) =TI« T1(¢) .
Invero, essendo II pari, abbiamo
+oo —+oo
M« II(t) = / I(s)II(t — s)ds = / I(s) (s —t)ds

0,set<—1,0t>1,
O+I(t) =¢1+t,se —1<t<0,
1—-%t,se0<t<l.

ESEMPIO 2.3. Trasformiamo A(t) nel segnale x(t) rappresentato in figura:



126 VIII. ELEMENTI DI ANALISI FUNZIONALE

: i
He=
Abbiamo z(t) = T A( W). Graficamente
2 /2
1 t—m
A(JQ)/’\ A5 ) 1o N
|
T I IS 5 I jus : 3eT1
2 2 B i 27
s t—m % us 3
34(53) tﬂ+ i
| g T gr

ESEMPIO 2.4. Siano sin, t e sin_ ¢ la parte positiva e la parte negativa di sin ¢,
cfr. (VIL.1.5).

A
—27 - T 27 37 47
sing t
A
—27 —7 s 2 3T 4
sin_ ¢t
Osserviamo che
sin_t = —sing (t — ).

Inoltre siny t si ottiene come replica periodica di periodo 27 di

(2.5) sint [u(t) —u(t — )],

L~

27 -7 ‘ T 2 3T A7

sint [u(t) — u(t — )]

mentre la replica periodica di periodo 7 del segnale (2.5) & |sint|.

27 —T ‘ T 2m 37 47
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Sia z un segnale positivo. Da —1 < cost < 1 segue —x(t) < z(t) cost < x(t),
quindi il diagramma del segnale z(t)cost & compreso tra quelli di = e del segnale
ribaltato —x: graficamente, il fattore x(¢) modifica I'ampiezza delle oscillazioni di
cost. Questa operazione si chiama modulazione del segnale portante cost per mezzo
del segnale modulante x(t). Piu in generale di cost, si puod considerare cos(wt — @), o

sin(wt — ).
3. Serie di Fourier

Si dice polinomio trigonometrico di ordine (minore o uguale a) n € Ny un’espres-
sione del tipo

n n
(3.1) pn(t) = ag + Z(ak coskwyt+ bysinkwyt) = Z cp el kwot

k=1 k=—n
essendo ¢y = ag e i coeflicienti ¢ e c_j, legati ad ay, e by, dalle (1.18), ovvero (1.19), per
k € N. Calcoliamo I'energia di p,,; ricordando ’ortogonalita del sistema trigonometrico
e del sistema esponenziale, per il teorema di Pitagora abbiamo

n n
e
Ipnll3 = 7 laof? + 5 37 (lawl® +10ef?) =7 3 Jexf?.

k=1 k=—n

Assegnato x € L?(0,7), cerchiamo la migliore approssimazione nel senso dell’e-
nergia mediante polinomi trigonometrici. In altri termini, cerchiamo p, in modo da
minimizzare energia ||z — p,||3.

LEMMA 3.1. L’energia ¢ minima se e solo se i coefficienti sono definiti dalle

formule
1 T
ag = 7/ x(t) dt,
T Jo
(3.2)
2 (7 2 (7 .
ar=— [ z(t)coskwotdt, bp=— [ x(t)sinkwytdt,
T Jo T Jo
k=1,...,n, ovvero
1 /7 L
(3.3) cr = 7/ x(t)e IRt gt
T Jo
|k| < n.

Con tale scelta dei coefficienti, x—p,, & ortogonale agli elementi e/ "« del sistema
esponenziale, con |h| < n. Inoltre risulta

n
(3.4) lz = palls = 2l =7 > lexl*.
k=—n

Dim. Sia py il polinomio trigonometrico definito in (3.1), con i coefficienti (3.3) e mostriamo la
proprieta di ortogonalita. In effetti, usando l'ortogonalita del sistema esponenziale e ricordando che
gli elementi hanno tutti energia pari a 7, abbiamo

(I—pm I~ }Lwot) £ (a77 e]hwot) —cp (e]hwot7 e]hwot) =7cp —Tcp=0.
Siaoraq(t) => p__, dx el kwot yn arbitrario polinomio trigonometrico di ordine n e mostriamo

che risulta ) )
lz = pnll” < flz —qll=.
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Essendo anche p, — ¢ un polinomio trigonometrico di ordine n, per quanto visto esso é ortogonale a
T — pn. Per il teorema di Pitagora, abbiamo

n
(3.5) Iz = qll* = llz = pnll® + 0 — qlI* = e = pal® +7 > lex —dil*.
k=—n

Il primo termine nell’ultimo membro non dipende dalla scelta di g. Il secondo termine é chiaramente
non-negativo e nullo se e solo se ¢ = pp, mostrando evidentemente che p, €& 'unico polinomio che
rende minima ’energia. Infine, scegliendo invece ¢ = 0 in (3.5) otteniamo la (3.4):

n
I2ll3 = lle = pall3 +7 > lexl®.
k=—n

Notiamo che i coefficienti definiti in (3.2) e (3.3) non dipendono da n. Conside-
riamo le serie

—+oo +oo
(3.6) ao+Z(akcoskwot+bksinkwot): Z cpelkwot
k=1 k=—o0

che si dicono serie trigonometrica e serie esponenziale di Fourier di x. Il polino-
mio trigonometrico p,, € la somma parziale n-sima. La minimalita di p,, consente di
ottenere il seguente risultato.

TEOREMA 3.2. Ogniz € L?(0,7) ¢ somma della sua serie di Fourier nel senso
dell’energia:

+00 oo ,
(3.7) x(t) :ao—l—Z(ak coskwot+ bysinkwgt) = Z cp e Fwot
k=1 k=—oc0

Esplicitamente, la convergenza delle serie vuol dire che risulta
(3.8) lm 2 — pul2 = 0.
Noi ci limitiamo ad osservare che, se per = € L?(0,7) vale la (3.7) per certi coefficienti

ak, b e ¢, questi sono dati necessariamente dalle (3.2) e (3.3). In effetti, ad esempio,
dall’uguaglianza

—+oo
x(t) = Z cp el ot
k=—o00

nel senso dell’energia, moltiplicando scalarmente ambo i membri per e/ "0t con h € Z
fissato, per la continuita del prodotto scalare e I'ortogonalita del sistema esponenziale,
abbiamo

—+oo —+oo
(SC, ejhw(]t): § /‘ Cke']kwot, eghwot — E Ck(ejkzwgt7 ejhwot):chT
k=—o00 k=—o0

e quindi otteniamo la (3.3) con h in luogo di k.
Da (3.4) e (3.8) segue

400 400
.
(3.9) ol = 7laol” + 5 > (lanl* +10ul) =7 3 lewl?,
k=1 k=—o00

che prende il nome di uguaglianza di Parseval. Essa implica che

(3.10) lim apy= lim b, = lim ¢ =0.
k——4o0 k——+o0 k—Foo
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L’uguaglianza di Parseval (3.9) si generalizza come segue. Se oltre alla (3.7) vale la
seguente

—+oo
y(t) = Z dy, el ot

k=—o00
nel senso dell’energia, risulta
400 L
(3.11) (x,y) =71 Z e dy -
k=—o0

3.1. Osservazioni. Ricordiamo che L?(0,7) C L(0,7), essendo l'intervallo li-
mitato. Le formule (3.2) e (3.3) hanno significato anche per z € L'(0,7), poiché i
fattori per cui é moltiplicato 2 nei rispettivi integrandi sono limitati. Se x ¢ L2(0,7),
viene meno la convergenza nel senso dell’energia del teorema 3.2. Dato = € L'(0,7),

si usa la notazione
+o0

T~ ag+ Z(ak cos kwot + by, sin kwot)
k=1
per indicare che la serie a destra ¢ la serie di Fourier di x, cioé i coefficienti sono
definiti dalle (3.2); non & supposto alcun tipo di convergenza per la serie.
Sia € L'(0,7) un segnale periodico di periodo 7; in questo paragrafo faccia-
mo alcune osservazioni sui coefficienti della serie di Fourier. Se sard necessario far
riferimento esplicito al segnale, indicheremo i coefficienti con ay[x], bi[z], ck[x].

(1) Per la periodicita, possiamo sostituire nelle formule (3.2) e (3.3) all’intervallo (0, 7)
un qualsiasi intervallo (a,a + 7) di ampiezza pari a 7, cioé risulta

1 a+T1
ag = f/ x(t) dt,

2
9 a+T1 2 a+T

ak:,/ x(t) coskwo tdt, bk:f/ z(t)sinkwotdt, keN,
T Ja T Ja
1 a+T )

Csz/ o(t)e Tt dt ke .
T a

(2) In particolare, possiamo scegliere l'intervallo (—7/2,7/2). E chiaro allora che, se
x & pari, sono nulli tutti i coefficienti by e la serie di Fourier é in soli coseni, cioé si

riduce a
+oo

ag +Zakcoskzwot;
k=1
se x & dispari, sono nulli tutti i coefficienti ay e la serie di Fourier ¢ in soli seni, cioé
si riduce a

+oo
Z brsinkwgt.
k=1

(3) I coefficienti sono infinitesimi, cio¢ valgono le (3.10). Se = ¢ L?(0,7), queste non
seguono come prima, non valendo 'uguaglianza di Parseval, ma sono conseguenza del



130 VIII. ELEMENTI DI ANALISI FUNZIONALE

TEOREMA 3.3 (di Riemann-Lebesgue). Se z € L'(a,b), con (a,b) intervallo di
R, risulta

b
(3.12) lim z(t)e!“tdt =0.

w—Foo [,

Chiaramente in (3.12) ¢ w € R.
(4) Siano a e b numeri reali, non entrambi nulli: esiste quindi ¢ € R tale che

a ) b
—_—, SN = —F/—————.
Va2 +b? VR

cosp =

Dunque, per a € R,

acosa+ bsina = v/ a? + b? (cos pcosa + sin psina) = va? + b2 cos(a — ).

E chiaro che questa uguaglianza vale (Vo € R) se a = b = 0.

Sia x un segnale reale. Procediamo in questo modo con ciascun termine della serie
trigonometrica di Fourier. Posto Ay = ag e Ay, = \/aj + b2, k € N, possiamo pertanto
scrivere la serie come segue

+oo

Ap + ZAk cos(kwot — ¢r) .
k=1

3.2. Convergenza puntuale della serie di Fourier. Il teorema 3.2 mostra la
convergenza della serie di Fourier nel senso dell’energia, non in senso puntuale. Per
enunciare un risultato sulla convergenza puntuale, premettiamo la seguente

DEFINIZIONE 3.4. Sia x un segnale definito in R. Diciamo che x & regolarizzato
in ¢y € R se valgono le condizioni

e x ¢ continuo in tg, o ty ¢ discontinuita di I specie e risulta

_ xto—) + x(tot) |

.’Ii(to) 2 )
e esistono finite in tg derivata sinistra e derivata destra:
t) — x(to— t) —x(t
(3.13) lim 20 = 2ltn) lim 20 = ltot)
t—to— t—to t—to+ t—to

In particolare, = é regolarizzato in ogni punto in cui ¢ derivabile. Assegnando il
valore 1/2 al gradino in 0, otteniamo un segnale regolarizzato in ogni punto di R:

1,set>0
u(t) =<1/2,set=0
0,set<0

Sussiste il
TEOREMA 3.5. Sia x € L'(0,7) periodico di periodo T. Se x ¢ regolarizzato in

to, la sua serie di Fourier converge a x(tg) in tale punto.

OSSERVAZIONE 3.6. Il teorema 3.5 assicura, in particolare, che se x & derivabile in
R, la sua serie di Fourier converge a z in ogni punto. Osserviamo esplicitamente che,
invece, esistono funzioni continue con serie di Fourier divergente in qualche punto.
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3.3. Esempi.

ESEMPIO 3.7. Scriviamo la serie di Fourier del segnale x periodico di periodo
2 tale che

1,se0<t<
(3.14) a(t)y =4 i
—1,senm<t<2m

11
— 1 1 1

(N YT
Essendo il segnale dispari, risulta
ar =0, Vk € Ny,
mentre
9 [T 0, per k pari,
bk:f/ sinktdt =< 4 ) )
T Jo —, per k dispari.
km
Inoltre, Vk € Z,
0, per k pari,
= 2
Ck ——, per k dispari.
jkm
Pertanto
+oo +o0
4 1 2 1 -
t)=— sin(2k — 1)t = — g @kt
«(?) wg;2k—lbm( ) jwk22m2k—le

Questa uguaglianza vale nel senso dell’energia. Ponendo x(kw) = 0, Vk € Z, il segnale
x & regolarizzato in ogni punto, quindi I'uguaglianza vale anche in senso puntuale,
vVt € R. Riportiamo qui di seguito i diagrammi dei primi polinomi trigonometrici di
Fourier p,, di x:

A
[

ESEMPIO 3.8. Scriviamo la serie di Fourier del segnale periodico di periodo 7
tale che

(3.15) z(t) =t, O<t<rT.

(Onda a dente di sega.) Il diagramma di z(t) ¢ tracciato in figura:
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Valutiamo esplicitamente gli integrali (3.2) con z(t) = ¢, per 0 < ¢t < 7:
1 /7 T 1

ay = f/ tdt = - (= — X area triangolo).
T Jo 2 T
Per k € N abbiamo
) T pa 2
ap = 7/ tcoskwotdt = —2/ scosksds
T Jo 2T 0
con la sostituzione wgt = s. Inoltre, integrando per parti

271' 1 o 1 271'
/ scosksds:f[ssinks]o 77/ sinksds =0
0 k k Jo

e quindi a; = 0. Con analoghi calcoli, troviamo

0
272

2
1 71'
by /0 ssinksds:f% [scosks]i #:7#.
Pertanto, nel senso dell’energia (cio¢ in L?(0, 7)), risulta

—+o0

—Zé sinkwgt.

k=1

(3.16) () =

[NV

Notiamo che l'uguaglianza a; = 0, per k € N, segue facilmente se osserviamo che il
segnale x(t) — 7/2 ¢ dispari e la sua serie trigonometrica di Fourier (che ¢ quindi di
soli seni) differisce solo per il termine costante da quella di x:

aglx(t) — 7/2] = aglz(t)] — ak[7/2] = ar[z(t)] — 0, keN.

Riportiamo qui di seguito i diagrammi di alcuni polinomi trigonometrici di Fourier p,
di z, cioé somme parziali della serie (3.16):

-7 T 27 37 - ' ™ 27 37

T T

277

) T T T T
sinwgt — 5— sin 2wt — 7 sin 3wot — - — sindwot — — sin 5wl
27 3T i 5

Questi diagrammi mostrano la convergenza puntuale della serie di Fourier. In effetti,
ponendo z(k7) = 7/2, Vk € 7Z, otteniamo un segnale regolarizzato in ogni punto,
quindi possiamo applicare il teorema 3.5 e pertanto I'uguaglianza (3.16) vale anche in
senso puntuale, Vt € R.

Analogamente possiamo scrivere la serie esponenziale di Fourier, oppure possiamo
ricordare le (1.18):

ooyl Bojitecriica keN.

Dunque
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ESEMPIO 3.9. Scriviamo la serie di Fourier dell’onda triangolare x(t), replica
periodica di periodo 2 del segnale A(t), cfr. esempio 2.2. Cominciamo con la serie
trigonometrica. Essendo il periodo 7 = 2, é wg = w. Poiché x & un segnale pari,
abbiamo

b, =0, VkeN.
Risulta poi

N | =

ag =

Inoltre, ricordando come ¢ definito A, per k € N troviamo

1 0 1
ak:/ x(t)coskﬁtdt:/ (1+t)cosk7rtdt+/ (1 —t)coskmtdt

-1 —1 0

ed essendo

1
/ coskntdt =0,
-1

integrando per parti, abbiamo ancora

1 9 1
k:—Q/ tcoskmtdt = —— ([tsinkﬂrt](l]—/ sinlmrtdt)
0 km 0

0, per k pari,

=— 2 [coslmrt]é =

(km)?

72,2 per k dispari.

D’altra parte cg = ag = % e per k € N, essendo b, = 0, risulta
ay 0, per k pari,

Ck:c_k:?: k2227
™

per k dispari.

Pertanto la serie di Fourier é

1 2 too el 2n+1)nwt

cos(2n+1)mt
)=+ - )
=(?) 2+w2n;oo @n+1)2 sz:: 2n+1)2

Osserviamo che il segnale considerato nell’esempio 3.7 & —x'(t/7).
Riportiamo qui di seguito i diagrammi dei primi polinomi trigonometrici di Fourier
Py di

—1 \ 1 3 -1 \ 1 3

(/)*—1+—07TL (1)*—+ osmt+ —5cos3mt
t) = 08 3(t) = S S
1 B) 3 C 3 5 C g o

Questi diagrammi mostrano la convergenza puntuale della serie di Fourier. Valgono
le ipotesi del teorema di convergenza puntuale.
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ESEMPIO 3.10. Scriviamo la serie di Fourier di |sint|, cfr. esempio 2.4. Essendo
il periodo 7, abbiamo wg = 2 e, Vk € Z,

1 (7 ; 1 [T elt— e 0t .
ck:f/ sinte_]%tdt:f/ -~ eiZktg
0 0

m 0 23
1 [ej(172}c)t]g [e—j(1+2k)t]g 9
To2mj\ jA-2k  —j(l+2k) | w(d-4k2)"
Quindi c_j = ¢x. Ne segue
2
ag = Co = —
s
eper ke N
ap =cp +c —20—74 b =7(ck —c_g)=0
k= Ck -k = k—w(1_4k2), k= J\Ck -k) =Y,

l'ultima uguaglianza essendo chiara poiché |sint| é funzione pari. Pertanto

(3.17) | sint| 2+4§ . Slipanis f L J2kt
. smt| = — — —— COS = — —F € .
R e mLtésenio—dl £2

Le uguaglianze (3.17) valgono sia nel senso dell’energia che in senso puntuale V¢ € R.
Riportiamo qui di seguito i diagrammi dei primi polinomi trigonometrici di Fourier p,
di x:

2
polt) ==

Analogamente, si puo scrivere la serie di Fourier di sin, ¢. Il periodo ¢ 27 e wg = 1;
con calcoli simili ai precedenti, troviamo, Vk € Z — {F1},

0, per k dispari,

C — k .
m, per pari,
1
cr1 = F—.
F1 :F4j
D’altra parte ag = co = 1/m e, VE € N — {1},
0, per k dispari,
ap = 2 . bk =0.
, per k pari;

71— k2)

Inoltre

) 1
ay=c+c_1 =0, bl:](clic_l):§'
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Pertanto
+oo
1 2 1 1
Sin+t: ;‘F;;WCOS?kt‘FiSIHt
(3.18) TorER 1 ; elt e Jt
I Z 76321“71‘/4*77
T, 1—4k2 435 434
Osservato che
) |sint| + sint
sing t = ————

2 )

notiamo che la serie trigonometrica si scrive subito a partire dalla (3.17) sommando
sint e dividendo ambo i membri per 2: queste operazioni conservano la convergenza
nel senso dell’energia, quindi la serie in (3.18) ¢ la serie di Fourier di sin; ¢. Riportiamo
qui di seguito i diagrammi dei primi polinomi trigonometrici di Fourier di x:




CAPITOLO IX

Trasformazione di Laplace

In questo capitolo trattiamo la trasformazione di Laplace, che presenta diverse
analogie con la Z-trasformazione, sia per quanto riguarda la teoria, sia per i problemi
che si risolvono mediante le due trasformazioni.

1. La trasformata di Laplace

DEFINIZIONE 1.1. Sia z € L{ ([0,+00c]). Si dice che z ¢ trasformabile (in
senso unilatero) in s € C se ¢t — z(t)e *! ¢& integrabile in [0, +o00[. La trasformata
unilatera di z & la funzione di variabile complessa

T

+oo
(1.1) fu[x]ZX(SF/O e(®)e ™ dt= lm | w(t)e " dt.

Si dice che x ¢ assolutamente trasformabile in s € C se t — z(t) e ** & sommabile in
[0, +o0]. E chiaro che lassoluta trasformabilita implica la trasformabilita.

Fondamentale ¢ il seguente

TEOREMA 1.2. Se il segnale x & %, -trasformabile in s € C, esso ¢é trasforma-
bile anche in ogni s € C con Res > Re sg.

La trasformabilita significa integrabilita della funzione integranda; riguardo al teorema, ci li-
mitiamo ad osservare che un risultato analogo a proposito della assoluta trasformabilitd é banale,
poiché

Res >Reso = |z(t)e Y < |z(t)e %0, per qoo. t > 0.
La quantita
(1.2) oy = inf{ Res : z ¢ trasformabile in s }

si chiama ascissa di convergenza. La trasformata X (s) & dunque definita nel semipiano
di convergenza formato dai numeri s € C tali che Res > o,.

A

Notiamo che il semipiano di convergenza coincide con l'intero piano complesso nel caso
Op = —00.

136
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Nelle applicazioni, useremo la trasformata unilatera; ¢ comodo perd considerare
la trasformata bilatera.

DEFINIZIONE 1.3. Sia « € L] _(R). Si dice che z ¢ trasformabile secondo
Laplace in s € C se t — z(t) e ** ¢ integrabile in R. La trasformata (bilatera) di x &

la funzione di variabile complessa
+oo
(1.3) Zla] = X(s) = / 2(t) et dt .

Si dice che z ¢ assolutamente trasformabile in s se ¢ — x(t) e”** ¢ sommabile in R.

L’integrabilita in R vuol dire integrabilita in | — 00, 0] e in [0, +oo[ e

+o0 0 +o00
/ x(t)e—“dt:/ x(t)e—stdtJr/ z(t)e *tdt,
0

— 00 — 00
dove ciascuno dei due integrali a secondo membro ¢é inteso come limite. L’ultimo inte-
grale ¢ la trasformata unilatera del segnale z (ristretto a [0, +oc[). Il primo integrale
a secondo membro mutando ¢ in —t si riscrive

+oo
/ z(—t)e” ")t at
0

e quindi rappresenta la trasformata unilatera di ¢ — x(—t), valutata in —s. Pertanto
(1.4) ZNx(t)|(s) = Lulo(—1)](=s) + Lulz(t)](s) -

Dette o1 1'ascissa di convergenza di %, [x(t)] e —oy quella di %, [z(—t)], il secondo
termine a secondo membro di (1.4) & definito per Res > o7, mentre il primo per
Re(—s) > —o29, ovvero Res < o2. Noi supporremo o1 < o2 e quindi la trasformata
bilatera Z[x(t)] ¢ definita nella striscia verticale, detta striscia di convergenza, degli
s € C tali che 07 < Res < o3:

A

La striscia di convergenza, che puo essere un semipiano destro (o2 = +00) o sinistro
(01 = —o0) o lintero piano complesso, ¢ detta dominio della trasformata.

La (1.4) esprime la trasformata bilatera come somma di trasformate unilatere;
d’altra parte chiaramente la trasformata unilatera é un caso particolare della bilatera:

(1.5) Zulz(t)] = ZL[x(t) u?)] .

Prevalentemente ci occuperemo della trasformata bilatera, limitandoci ad indicare le
modifiche, quando necessarie, per la trasformata unilatera. La trasformazione (bilatera
o unilatera) & la corrispondenza che associa al segnale trasformabile la sua trasformata:

Lix— L], Ly x— Lyl
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Evidentemente sono operatori lineari: se x e y sono trasformabili in una stessa striscia
verticale e a, 8 € C, avx + By ¢é trasformabile e risulta
Loz + Pyl = aZz]+ 8Lyl

Vediamo qualche esempio di #-trasformata.

ESEMPIO 1.4. In base alla definizione, abbiamo

+o0 1
(1.6) g@@ﬂ:iﬂﬂ:/ e*tdt =1, Res>0.
0 S
Analogamente
0 1
(1.7) g}ﬂ%ﬂz—/ et ldt =", Res<0.

Confrontando (1.6) e (1.7) appare chiara la necessita di indicare il dominio della
trasformata. Altre semplici trasformate sono
efs to

+oo
(1.8) Llu(t —t9)] = / e tdt = , Res>0,

to S

+oo
g[u(t) e%0 t] — éfu[eso t] :/ e*(S*SO)t dt
0

(1.9) 1
= , Res > Resg,
S — 8o
et — L le it 1 1 1
ﬁ@mgk]ffh}.< - >
(1.10) : 2] 2j\s—J s+J
:524—1’ Res>Rej =0,
e analogamente
s
(111) fu[cost} = m, Res > 0.

Introduciamo una classe di funzioni importante nella teoria della trasformazione
di Laplace.

DEFINIZIONE 1.5. Un segnale z € L (R) & detto di ordine esponenziale se
esistono 01,09 € R, con 01 < 09, tali che

(1.12) lim z(t)e 7t* =0, lim z(t)e 72t =0.

t—+o0 t——o00

Ad esempio, per z(t) = e~ Il possiamo scegliere oq e oy qualsiasi verificanti —1 <
—st A

01 < 09 < 1. Se x ¢ di ordine esponenziale, la funzione ¢ — z(t)e & sommabile in
R, per ogni s € C verificante
(113) 01 <Res<oy.

In effetti, data la locale sommabilita di z, occorre verificare la sommabilita solo intorno
a Foo. Per la prima delle (1.12), intorno a +oo risulta |z(¢)] < e, da cui segue

|(E(t) efst‘ < e(olfRes)t
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e quindi la sommabilitd intorno a 4+oo. Analogamente si stabilisce la sommabilita
intorno a —oo. Pertanto x & trasformabile (Uintegrale di Laplace & assolutamente
convergente) nella striscia formata dagli s verificanti (1.13).

OSSERVAZIONE 1.6. Se il segnale z(t) ¢ nullo intorno a —oo, la seconda delle
(1.12) & verificata con oy arbitrariamente grande, quindi la striscia (1.13) diviene un
semipiano destro o3 < Res; questo € in accordo col caso della trasformata unilatera,
in cui il segnale & z(t) u(t). Alla stessa maniera, se z(t) ¢ nullo intorno a 400, si puod
prendere o arbitrariamente vicino a —oo e la striscia (1.13) diviene un semipiano
sinistro Re s < 5.

2. Proprieta fondamentali

Cominciamo con I'osservare che la trasformata di Laplace ¢ una funzione olomorfa
nel dominio.

TEOREMA 2.1. La trasformata di Laplace é olomorfa nella striscia di conver-
genza. Le derivate si calcolano derivando sotto il segno di integrale:

+oo

(2.1) XHF () = / (=t z(t)e *tdt = Z[(-t)* x(t)], VkeN,
La (2.1) si dice I formula fondamentale (iterata) per la trasformata di Laplace.
ESEMPIO 2.2. Dalla I formula fondamentale, ricaviamo

pdfo1 k!

(2.2) ZLItFu(t)] = Zu[t"] = (—1) G~ g Res>0.
Piu in generale, ricordando la (1.9)

s k!
(23) gu[tkeot]zm, ReS>ReSO.

ESEMPIO 2.3. L’olomorfia permette di calcolare facilmente X(s) = #[e "]
Invero, per i criteri di sommabilitd vediamo che ¢t — et e~5t ¢ sommabile in R,

Vs € C, quindi X é funzione intera. Dalla definizione di #-trasformata, abbiamo

B S +oo 5 +oo R
e/ X(s)=e"" /4/ e et dt :/ e~ (t+s/2)7 gt

—0o0 o)

e l'ultimo integrale non dipende da Res, come si vede con la sostituzione 7 = t +
Res/2. Per la condizione di Cauchy-Riemann, la funzione intera s — e~ /% X(s) ¢
indipendente anche da Im s, quindi é costante; per s = 0 vale /7, per la (VIL.1.17).

Pertanto
(2.4) X(s) = #le ] = 7 v /4.

Vediamo ora la seconda formula fondamentale, per la trasformata della derivata.
Ci limitiamo ai segnali di ordine esponenziale.

TEOREMA 24. (a) Se x ¢ assolutamente continuo (sugli intervalli compatti) e
di ordine esponenziale, vale la formula

(2.5) Ll ()] = s X(s).
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(b) Se x & assolutamente continuo (sugli intervalli compatti contenuti) in [0, +00[
e di ordine esponenziale, vale la formula

(2.6) Zux' ()] = s X(s) — x(0).
Dim. Le formule si ottengono integrando per parti; ad esempio

+oo0
L= (t)] =/_oo z'(t)e St dt
= [m(t) efSt] j: + s/+00 z(t)e *tdt = s X(s)

— 00

poiché da (1.12) e (1.13) segue lim =z(t)e 5% =0.
t—Foo

Le (2.5) e (2.6) si iterano: se x & di classe C*~1 e 2(*~1) & assolutamente continua,
valgono le formule

(2.7) 2B ()] = s* X(s);

(2.8) Zz® ()] = s* X (s) — s* L x(0) — sF722/(0) — - - — 2FD(0).
Mettiamo in luce una proprieta della trasformata unilatera.

TEOREMA 2.5 (comportamento asintotico). Se l’integrale di Laplace di x con-
verge assolutamente (ad esempio, x & di ordine esponenziale), risulta

(2.9) lim Z,[z(t)] = 0.

Re s—+oco

Dim. Ricordiamo innanzitutto che il dominio di .%,[z] & un semipiano destro, quindi possiamo far
tendere Re s a +00. Poiché per q.o. t € [0, +oo] risulta

lim =x(t)e ¥t =0,
Re s—+o0

la (2.9) segue, se possiamo giustificare il passaggio al limite sotto il segno di integrale nell’espressione
che definisce %, [z]. A tale scopo, usiamo il teorema di Lebesgue della convergenza dominata: per
trovare una maggiorante sommabile, fissiamo s¢ tale che la funzione t ~— x(t) e~%0 ¢ sia sommabile in
[0, +00[ e osserviamo che, per Re s > Re sg, risulta

lz(t)e %0t > |z(t)e™*t|, per q.o0.t € [0, +oo].
Spesso si cerca di ricavare informazioni sul segnale x dalla sua trasformata X.
Dalla formula (2.6) otteniamo due risultati di questo tipo: i teoremi del valore iniziale
e finale.

TEOREMA 2.6. Sia x assolutamente continuo (sugli intervalli compatti conte-
nuti) in [0, +ool. Sia X(s) = Z,[z(t)].

(Valore iniziale) Se x e x’ sono di ordine esponenziale, vale la formula
21 = li =orsili X(s).
( 0) JU(O) ti%lJr l‘(t) Re sgnJroo y (S)

(Valore finale) Se x’ & sommabile, risulta x convergente a 400, assolutamente
trasformabile per Res > 0 e vale 'uguaglianza

(2.11) tllgloox(t) = ilg(l) s X(s).
Res>0

Dim. La (2.10) segue da (2.6), poiché per il teorema 2.5 risulta _ lim  %,[z'(t)] = 0.

Re s—+o0
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Riguardo al teorema del valore finale, osserviamo innanzitutto che la sommabilita significa as-
soluta trasformabilita in s = 0. Questo implica che z’ sia assolutamente trasformabile per Res > 0.
Inoltre, per ’assoluta continuita abbiamo

t
z(t) = z(0) +/ 2/ (1) dr
0
e quindi z(t) converge per t — 400, essendo =’ sommabile:

“+ oo
(2.12) lim () = 2(0) +/ o (1) dr.
t——4o0 0
Ne segue che z(t) ¢ limitato e dunque anch’esso assolutamente trasformabile, quindi X (s) & definita,
per Res > 0. D’altra parte, poiché per Res > 0 risulta |z/(t) e~ %] < |2/(¢)|, per q.o. t € [0, +00],
mediante il teorema della convergenza dominata, abbiamo

—+o0 400

lim sX(s) =x(0)+ lim x'(t)e St dt = x(0) +/ ' (t)dr.
s—0 s—0 Jo 0

Res>0 Res>0

Confrontando questa uguaglianza con la (2.12), otteniamo la (2.11).

3. Proprieta formali
Elenchiamo alcune formule, che seguono subito dalla definizione, mediante le quali
si opera con la trasformata.

o Traslazione in #:
ZLla(t—to)] = e X(s),
L) ult —tg)] = e 5 Llx(t + to) u(t)] .
e Traslazione in s:
ZLla(t)e™'] = X (s — so).

e Riscalamento e riflessione: a € R — {0},

ZLla(at)] = X(f) )

= m -
e Coniugazione:

2 [e0] =X@).

In particolare, x reale <= X hermitiana.

Per la formula di traslazione in t, basta effettuare un cambiamento di variabile:
400 —+o0
Llalt —to)] = / 2t —to) et dt = / 2(r) e TH0) dr — =510 pla(t)].
— 00 — 00
Analoghi passaggi portano alla formula di traslazione in s. Vediamo la formula di riscalamento, per
a > 0; con la sostituzione 7 = at, troviamo

+o0 1 +oo s
ZLlz(at)] = / z(at)e 5tdt = 7/ z(t)e"a T dr
11, GO
e quindi la formula. Per il caso della riflessione, cioé¢ a < 0, 'unica modifica ¢ che nell’ultimo integrale
in questo caso gli estremi sono invertiti. Anche la formula per la trasformata del segnale coniugato &
semplice:

2 [+0] :/Jroowe”tdt:/+wmdt=/_:0x(t)e—§tdt,

— o0 — o0

poiché lintegrale del coniugato é il coniugato dell’integrale e quindi la formula.
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Nlustriamo le proprieta precedenti con qualche esempio. La (1.9) ¢ un caso partico-
lare della formula di traslazione in s. Generalizziamo le (1.10) e (1.11); per w € R—{0},
per Res > 0 abbiamo

Ll + L lemiv] 1 1 1
Lulcoswt] = [T ]+ Zule ] = =—ch : -2
s—jw Ss+jw 52 +w?

2 2

e analogamente
w

24+ w?’

Osserviamo inoltre che queste seguono da (1.11) e (1.10) mediante la formula di cam-
biamento di scala: ¢ sufficiente considerare il caso w > 0. Ancora, le due formu-
le si ricavano l'una dall’altra per derivazione rispetto a ¢, mediante la II formula
fondamentale.

ESEMPIO 3.1.
FLlsintu(t — 7/4)] = e~ 1% L, [sin(t 4+ 7/4)]
_z Zu[sint] + Zyfcost] e”1% 1+s
V2 V2 s2+1°
ESEMPIO 3.2. Calcoliamo #[e~!*l]. Possiamo scrivere per q.o. t
eIt = e7tu(t) + etu(—t).

Zulsinwt] =

=€

Per la formula di traslazione
1
—t

)] = — ~1.
ZLle u(t)] T Res >
D’altra parte, per la formula di riflessione
1
daen L pHcagioni yR
Zleu(=0)(s) = Lle7u®)l(=s) = ——~
per Re(—s) > —1, ovvero Re s < 1. Dunque per —1 < Res < 1 abbiamo
1 1 2

(3.1) Lle M) =

s—|—1+—s—|—1 T1_
4. La trasformata della convoluzione

TEOREMA 4.1. Se x e y sono assolutamente trasformabili (cioé gli integrali di
Laplace convergono assolutamente) in una stessa striscia, risulta

(4.1) Lo xy) = L[x] - Ly).

La formula si ricava similmente all’analoga formula (X.4.1) per la Z-trasformata.
Notiamo che x * y puod essere definita anche se z e y non sono sommabili.

ESEMPIO 4.2. Data x € L'(0, +c0), la funzione integrale

y(t) = /Ot x(r)dr

¢ limitata in [0,4o0c[, quindi assolutamente trasformabile per Res > 0; & facile
mostrare che

(12) 2| [ wtryar] = 1 2utoto)
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in applicazione della II formula fondamentale, poiché ¢y’ = x e y(0) = 0. La (4.2) segue
pure dalla formula per la trasformata della convoluzione, in quanto (prolungando x a
R ponendo z(t) = 0 per ¢ < 0) risulta Vt € R, cfr. (VIII.1.2)

u(t) /Ot 2(r)dr = (:v(t) u(t)) sult) .

5. Trasformata unilatera di segnali periodici

TEOREMA 5.1. Sia © un segnale periodico di periodo 7 > 0, sommabile in
(0,7). In queste ipotesi, la funzione t — x(t)e™ 5t & sommabile su (0,+00) per ogni
s € C conRes > 0, quindi x ¢ assolutamente £, -trasformabile. Inoltre, posto xo(t) =
x(t) [u(t) — u(t — 7)), risulta

Llxo(t)]
(5.1) Zulx(t)] = 1 e-s7"
Dando per buona la assoluta trasformabilita, ci limitiamo a mostrare la formula.
Per la periodicita, abbiamo
2o(t) =xz(t)u(t) —z(t)ult —7) =z(@)ut) —z(t — 1) u(t — 1)
e quindi, per la formula di traslazione in ¢, ricaviamo
Llxo(t)] = Lu[z(t)] — €7 Lfa(t)]
da cui segue subito la (5.1).
ESEMPIO 5.2. Calcoliamo la trasformata di z(t) = sint [u(t) — u(t — 7)]: per
la formula di traslazione in ¢,
14 e77°
241
Notiamo che Z[xo] ¢ funzione intera. Dalla (5.2) possiamo ricavare ad esempio

%] sint|] mediante la (5.1), poiché |sin| si ottiene come replica periodica di periodo
m di 2o(t):

(5.2) Llxo(t)] = Llsintu(t)] + L[sin(t — 7)) u(t — 7)) =

1 1+ e 7°
1—e 7™ 241
Facendo la replica periodica di periodo 27 di zg, otteniamo sin; ¢, quindi, analoga-
mente a prima, troviamo

(5.3) L] sint|] =

5.4 Lulsing 1] = N .
( ) [sm+ ] 1— e27s 241 (1 — e*WS) (32 + 1)

ESERCIZIO 5.3. Calcolare Z[xo] in (5.2) direttamente dalla definizione della
trasformata mediante integrale.

6. Antitrasformazione

La trasformazione di Laplace é iniettiva, cioé segnali con la stessa trasforma-
ta in una stessa striscia sono uguali q.o. Vale inoltre la seguente formula di anti-
trasformazione di Riemann-Fourier: se il segnale x(t) ¢ regolarizzato in ogni punto,
risulta

1 o+j oo
(6.1) x(t) = 27Tjv.p./ajoo X(s)e*tds,
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essendo la retta di equazione Re s = o interna al dominio della trasformata.

Il problema di antitrasformare una funzione razionale fratta puo essere risolto in
maniera completamente elementare. Osserviamo che, se la funzione razionale
P(s)
Q(s)
é una .Z,-trasformata, deve essere infinitesima all’infinito, quindi é una funzione
razionale propria. Basta allora decomporla in fratti semplici e ricordare la (2.3):

X(s)=%(s) =

-1 S0 t
c g“ c © tn—l
(s — sp)™ (n—1)!
Ad esempio, se gli zeri di @ sono semplici s1, ..., sy, la decomposizione &

RJs RJs,,
%(S):Q+...+Q
5§ — 81 S — Sp

e quindi, antitrasformando otteniamo la formula dello sviluppo di Heaviside:
u—l {P(S)} _ P/(Sl) eIty P;(Sn) et >0,

Q(s)]  Q'(s1) Q' (sn)
Se Z ha coefficienti reali, conviene decomporre in fratti nel campo reale. Se @) ha zeri
multipli, si puo usare la formula di Hermite.

ESEMPIO 6.1.
_ ) ) : )
o\ BT 50 - - = —
X [5(s2+1)] Zu L 2 + 1] (t) —u(t)cost.
Alternativamente, usiamo la (4.2):
oiﬂ 1 i ! | : ,i,ﬂ 1 1 t
2 N S C d . |
(6 ) “ .8(82+1)_ /0 “ |:32_|_1:|(T)d7- /0 sinTdr

ESEMPIO 6.2. Per w > 0, abbiamo

1 1 1 d S
g—l i Niowoli |42 00, -1 Sa
u [(52+w2)2] Qw2 |:82+0J2 +ds 52—|—w2]
1

1 .
=_— | —sinwt—tcoswt | u(t).
2w? \w

ESEMPIO 6.3. Antitrasformiamo Z(s) = 2. Le singolarita sono F1. Z(s) &
olomorfa in ciascuna delle “strisce” verticali A={s€C : Res< -1}, B={se€C :
—1<Res<1l}eC={seC : Res>1}. Dall’esempio 3.2 sappiamo che in B ¢é

R(s) = e "],

Consideriamo s € C:
1 1 zt

%(S):erl_sfl

In A, essendo & pari, risulta
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Il calcolo della %, di una funzione razionale propria si effettua facilmente anche
mediante la formula (6.1) di Riemann-Fourier. Si perviene ad un integrale del tipo

1 oI p(s)

2 7Tj o—j oo Q(S)

con t > 0. La funzione P/Q ¢ olomorfa in un semipiano destro e l'integrale ¢ esteso ad
una retta verticale contenuta in tale semipiano, cioé con o sufficientemente grande; il
denominatore () é privo di zeri sulla retta. Se grado @@ > grado P + 2, I'integrale é as-
solutamente convergente. Se grado (Q = grado P + 1 esso é semplicemente convergente

per t > 0 e va inteso nel senso del valor principale per ¢ = 0.
L’integrale ¢ del tipo (VII.2.25). Per ¢ > 0 abbiamo

ZMP/QI =) Rlsws ¢*'P(s)/Q(s)],

dove i punti s € C sono i poli di P/Q. Cosi abbiamo, ad esempio

etds

7

1 1 o . .
2 | sy | = RO+ AU+ AL

dove i residui sono relativi alla funzione S(:Ttrl) Dunque ritroviamo (¢ > 0)
1 e’ t

L | =14 —

v [5(52+1)] + 252

7. Applicazioni

est

557 =1—cost.
s

s=j s=—7

Mediante 1'uso della %, -trasformazione risolviamo i problemi ai valori inziali per
equazioni differenziali lineari a coefficienti costanti in [0, +oo[. Il modo di procedere
¢ analogo a quello usato per risolvere i problemi ai valori iniziali per le equazioni
ricorrenti mediante la Z-trasformazione. Consideriamo ad esempio il problema del
secondo ordine
(1) { e )

y(0) e y'(0) assegnati

E noto il teorema di esistenza e unicita, nel caso che il termine noto sia continuo. Se
x ¢ localmente sommabile in [0, +oo, esiste un’unica y € C1([0, +o00[), soddisfacente
le condizioni iniziali, con y’ localmente assolutamente continua in [0, +oo[ e tale che
Pequazione sia verificata per q.o. t € (0, +00).
Illustriamo ora il metodo risolutivo basato sulla %, -trasformazione.

(a) Supponiamo che il termine noto z e la soluzione y siano .%,-trasformabili e appli-
chiamo la trasformazione ad ambo i membri dell’equazione. Per trasformare il primo
membro, usiamo la linearita e la seconda formula fondamentale (2.8): ¢ necessario
conoscere i valori iniziali. Posto Y = %, [y], abbiamo

Ly +ay +byl =s*Y —y(0)s —y'(0) +asY —ay(0) +bY
=(s’4+as+bY —y0)s—y'(0) —ay(0) = X.
(b) Ricaviamo Y da questa uguaglianza:

1 y(0) s +y'(0) +ay(0)

2 Y =—— X
(7.2) (s) s24+as+b () + s24+as+b
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(c) A questo punto antitrasformiamo. Notiamo che s? + as + b ¢ il polinomio ca-
ratteristico dell’operatore differenziale. Il secondo termine a secondo membro del-
la (7.2) & una funzione razionale, i cui coefficienti dipendono dai valori iniziali e
I’antitrasformazione non presenta problemi. La funzione

1

(7.3) ) = s

cioé il reciproco del polinomio caratteristico, si dice funzione di trasferimento.
Osserviamo che per la linearita del problema, la soluzione di (7.1) si pud decom-
porre nella somma y = y; + yo delle soluzioni dei problemi

yi +ay; +byr = x(t)
(74) {yxmzyumzo

Yo +ayy +by2 =0
(75) {yimziwxyam=yﬂn

Il problema (7.4) ha valori iniziali nulli e il termine noto dell’equazione (detto forza-
mento) coincidente con quello del problema originale (7.1), mentre il problema (7.5)
ha termine noto nullo e gli stessi valori iniziali del problema (7.1). In particolare,
ragionando come prima per (7.1), posto Y7 = %, [y1], troviamo

1

Yi(s) = s2+as+b

X(s)=H(s)X(s)

e quindi, ricordando la formula per la trasformata della convoluzione, otteniamo la
formula risolutiva

(7.6) yi(t) = 71 [H(s)] *a(t).

u

Il procedimento esposto si estende subito alle equazioni a coefficienti costanti di
ordine qualsiasi

y(n) +an_1 y(nfl) +---+ay y/ —+ apgy = x(t) g

Ad esempio, se i valori iniziali sono tutti nulli, trasformando ambo i membri dell’e-
quazione, troviamo Y (s) = H(s) X(s), essendo

(s) -
H(s) =
"+ ap_18" 4+ +a1s+ag

la funzione di trasferimento, reciproco del polinomio caratteristico, e quindi pervenia-
mo alla soluzione data da (7.6) con y in luogo di y;.

ESEMPIO 7.1. Risolviamo il problema in [0, +oo[:

//_|_ -1
b Lvo 2 rm=o

Trasformando ambo i membri, ricaviamo

1

Y:5(52+1)
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e quindi y(¢t) = 1 — cost, per t > 0, ricordando Pantitrasformata dell’esempio 6.1.
Alternativamente, essendo i valori iniziali nulli, ¢ y = y; (con le notazioni precedenti),
quindi

¢
y(t) = (sintu(t)) xu(t) = / sinTdr = —[cosT]h =1 — cost.
0
ESERCIZIO 7.2. Mostrare che il problema:

"+ oy =sint
(7.8) { W) = 4/(0) = 0

ha la soluzione y(t) = 3(sint — tcost).
ESEMPIO 7.3. Risolviamo il problema in [0, +oo[:
y' =5y +6y=tell
{ y(0) =y'(0) =1
%, ~trasformiamo ambo i membri dell’equazione:
Ly =5y +6y] =5Y —s—1-5(sY —1)+6Y
defy2 —53—1(—16)}/1—3—1-4; ,
Lt et = a3 L[] = e Dpargi GoaE
Ricaviamo Y; osservato che s> — 55+ 6 = (s — 2) (s — 3), possiamo scrivere
s—4 1
G-2(-3) (-2 (-3 (-4
Per antitrasformare, decomponiamo in fratti semplici. Risulta
s—4 _ R2]  R[3 2 1

[R)(FLOF) TegleTigo’ I_Fguiio Acqndeinic 2

Y =

Analogamente
1 _ R[2] R[3] R[4] c_a[4]
(s—2)(s=3)(s—4)2 s—2 s—-3 s—4 (s—4)2’
essendo c¢_s[4] un coefficiente dello sviluppo di Laurent intorno a 4. Inoltre
1 1 1

Rm_(2—3)(2—4)2_ 4’ R[3]_(3—2)(3—4)2_1’

1 3 1 1
R[4}_D32—53+63:4_ 1 —l=ggamy
(Potevamo ricavare R[4] mediante il secondo teorema dei residui: essendo chiaramente R[oco] = 0,

risulta R[4] = —R[2] — R[3].)
Pertanto
2 1 1/4 1 3/4 1/2

Y =

s—2 s—3 s—2 s—3 s—4+(5—4)2
A 34, 12

s—2 s—4 (s—4)?

e quindi (per ¢t > 0)
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Alternativamente scriviamo y = y; +y2 (con le notazioni usate precedentemente). Per
quanto visto, risulta

ya(t) = L1 {( P 2 } =2¢e% — &%,

s—2)(s—3)
D’altra parte, osservato che la funzione di trasferimento é
1 1 1
Hiak= (s —2)(s—3) T 5-3 s5-2
e quindi
h(t) = 27 [H(s)] = € — e,
abbiamo

Inoltre (per ¢t > 0)

¢ ¢
(e u(t))  (t e u(t)) = / T et 2077 dr = ezt/ T dr
0 0

e similmente

Dunque

t 3 2t
y1(t):§ e4t_1 e4t_eT+ o3t

e arriviamo nuovamente alla soluzione y(t) trovata prima.
ESERCIZIO 7.4. Risolvere il problema in [0, +-00[:
{ y' =12y + 2Ty =te’t
y(0)=1, y'(0)=3
e verificare che la soluzione ¢&

95 1 1 t
y(t) — Tt 7t.

3t , + o9t L
06 T T3 T3
Analogamente, risolvere il problema in [0, +-00[:
{ y”—9y’+14y=teE’t
y(0) =2, ¥'(0) =9
e verificare che la soluzione &
44 1 t 21
= 22t Lot b ost A
v=5° "3%° 5° T:°
ESEMPIO 7.5. Risolviamo il problema in [0, +oo[:
{ y"+10y +41y = e Plsindt
y(0) =1, y'(0) =-1
%, -trasformando ambo i membri dell’equazione, troviamo
4

2
10 41)Y —-s—-9= ———
(s +10s+41) s TEEEST
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e quindi ricaviamo mediante la formula di Hermite
a s+9 4
~ (s+5)2+16 h [(s+ 5)2 + 162
_ s+5+4 4 1 d 5+
_(s+5)2+16+2~16 (s+5)2+16+ds(s+5)2+16)'

Dunque
t 33
y(t) = e~ ot {(1 — 8) cosdt+ 3 sin4t} .

ESEMPIO 7.6. Risolviamo il problema in [0, +oo[:
{ y' — 4y +49y =4 elcosTt
y(0) =1, y'(0) =4

Procedendo come indicato, ricaviamo
B s 4(s—4)
52 —4s5+49 * (2 —4s4+49)[(s —4)? + 49]
e ricordando la decomposizione dell’esempio V.3.5

s—1 1
s2 —4s+49 + (s —4)2 449"

Y

Y =

Infine, essendo
s—1 s—2+1

2—4s5+49 (s—2)2+45’
vediamo facilmente che la soluzione &

e4t

1
t) = e (cos3x/5t+ sin3\/5t) + —sin7t.
y() 3v5 7




CAPITOLO X

Trasformazione di Fourier

1. Trasformata di Fourier in L'(R)

DEFINIZIONE 1.1. Sia € L*(R) un segnale sommabile. La trasformata di
Fourier di z é la funzione di variabile reale definita ponendo

+oo
(L.1) Flr] = #(w) = X(w) :/ w(t)e 7@t dt, weR.
La trasformazione di Fourier ¢ ’operatore .% : x — X che associa a x la sua trasformata
X.

Osserviamo che

e 79t = coswt — jsinwt

e per w € R risulta |[e™7“?| = 1, V¢t € R, quindi I'integrale in (1.1) & assolutamente

convergente.
Segnaliamo che la definizione data in (1.1), che noi seguiremo qui, non ¢ 'unica usata per la
trasformata di Fourier, che a volte viene definita ponendo

it 2 jwtd 1 i ) jwtd
F 7/ tye 7 t, o Flx] = #/ t)ye™ t.
[x] - z(t) [x] = | z(

OSSERVAZIONE 1.2. E evidente il legame tra la trasformazione di Fourier e quella
di Laplace: se I'integrale di Laplace é assolutamente convergente, per ogni s = o+ j w
nella striscia di convergenza, risulta

(1.2) L))o +jw) = Flz(t) e (w).

In particolare, se 'asse immaginario ¢ interno alla striscia di convergenza assoluta, é

Z[z](w) = Z[x](jw).
Alcune proprieta fondamentali della trasformazione sono contenute nella seguente

PROPOSIZIONE 1.3. La trasformazione ¢ lineare, cio¢ per ogni x,y € L'(R) e
a, f € C, risulta

(1.3) Floz+ Yyl = aFlz] + B Fy.
La trasformata X (w) & continua e limitata; essa inoltre & infinitesima per w — Foo.

Dim. La (1.3) & ovvia. E immediata anche la limitatezza della trasformata:

—+oo
(1.4) X@)< [ eldt= el o € .
—o0
La continuita vuol dire che per ogni wg € R risulta
+o0 .
(1.5) X(wo) = lim X(w)= lim x(t)e @t dt

w—rwQ w—rwQ — 0

150
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e segue dal teorema VII.1.20 di Lebesgue sulla convergenza dominata. Infine I'uguaglianza
(1.6) lim X(w)=0

w—F oo

é conseguenza del teorema VIIL.3.3 di Riemann-Lebesgue.

ESEMPIO 1.4. Calcoliamo .Z[II]. In base alla definizione, abbiamo

, vz
H(t)e*f“’tdt:/ e 1wl =
—1/2 W/2

(ovviamente prolungata in w = 0). Piu in generale,
sin(T w/2)
w/2

Questo esempio mostra che in generale X ¢ L(R).

ESEMPIO 1.5. Abbiamo

oo sinw/2

(L.7) ZI(t)] = /

— 00

F(/T)] =

0 : +oo . 1 1
}’[e*m] = / eIt gt 4+ / e tTIwt g = — — :
& 0 l—jw —-1—-jw

e quindi
2
1+w?’
Questa uguaglianza segue subito dalla formula (IX.3.1) mediante il legame con la
trasformata di Laplace.

(1.8) Fle I =

ESEMPIO 1.6. Calcoliamo .# [ ] In base alla definizione,

1+ ¢2

1 “+oo efjwtd
R I
y[l—kt?] /,OO 1+ 2

e questo integrale si calcola col metodo dei residui, esposto nel paragrafo VII.2.3.

—Jwz
Essendo i residui della funzione ausiliaria f(z) = &
1+ 22
et
R :FJ = -y
agl F2J

abbiamo
me ¥, sew >0

+oo efjwt
——dt=<7m,sew=0
oo 1122 ’

e, sew <0

e quindi in definitiva

el

1
(1.9) F {
Confrontare con (1.8).

ESEMPIO 1.7. Per calcolare la trasformata ﬁ[e_tz] possiamo usare il legame
con la trasformazione di Laplace e la formula (IX.2.4):

(1.10) Fle | =vr [e52/4] = me /4,

s=jw
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Un’altra formula che si verifica facilmente ¢ la seguente.

TEOREMA 1.8 (formula di moltiplicazione). Per z,y € L*(R), dette X e Y le
rispettive . -trasformate, risulta

—+oo —+o0

(1.11) X (1) y(t) dt = / 2O Y (1) dt .

—00 —00

Dim. Notiamo che X (¢)y(t) ¢ sommabile in R, in quanto prodotto della funzione sommabile y(t)
per la funzione limitata X (¢); analogamente, z(t) Y (t) ¢ sommabile. Per mostrare la (1.11), basta
osservare che per il teorema di Tonelli la funzione f(t,7) = y(t)e 9! z(7) & sommabile in R? e
quindi usare il teorema di Fubini per invertire I’ordine di integrazione:

/_:o X@®)yt)dt = /_:o y(t) dt/_:o x(r)e It dr
-/ :o syar [ +: esra=[amyoa.

— 00

1.1. Inversione della trasformazione di Fourier. La trasformazione di Fou-
rier é iniettiva, nel senso che

Fle]=0 = x(t)=0 per qo.t€R.
Piu in generale, vale il seguente

TEOREMA 1.9. Sex € L'(R) e pure X = Z[x] € L*(R), risulta, per q.o. t € R,

1 Lige?

(1.12) z(t) X(w)el* ! dw.

L .
Notiamo che, se X € L'(R), x coincide q.0. con una funzione continua. Senza
supporre X sommabile, I'integrale va inteso nel senso del valor principale.

TEOREMA 1.10 (Formula di antitrasformazione). Sia z € L'(R). Se z ¢
regolarizzato in ty € R, risulta

“+ o0

1 ,
(1.13) x(to) = 5. VP X(w)el“todw.
T

— 00

In particolare, se x € L!(R) & continuo e C! a tratti e X € L'(R), vale (1.12) per
ogni t € R.

Il secondo membro della (1.12) definisce I'antitrasformazione di Fourier .# ~1[X].
Notiamo che essa ¢ analoga alla trasformazione: mutando ¢ in —¢ in (1.12), troviamo
2r x(—t) = F[X(w)], che si riscrive

(1.14) F|Fz@)]] =27 x(—t).

Se in aggiunta z ¢ pari, abbiamo Z[Z[z]] = 27 2. In questo modo, ad esempio,
possiamo ricavare la (1.8) da (1.9) e viceversa.

ESERCIZIO 1.11. Verificare la validita di (1.13) nel caso x(t) = II(¢), regolariz-
zato in F1/2 assegnando il valore 1/2.
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2. Proprieta formali

Elenchiamo alcune proprieta della trasformata, facili da verificare in base alla
definizione.

e Traslazione in ¢:
Fla(t —to)] = e “h Fla(t)].
e Traslazione in w:
Flrt)ed 0t = X(w—wp).

e Modulazione:

X(w— JY + X —Je¢
ﬂ[x(t) cos(wo t + 90)] n (w—wp)e +2 (w+wo)e .
e Riscalamento e riflessione:

1 w
Flz(at)) = =X (—) .

|al

e Coniugazione:

e Se x & pari, risulta

+o0 oo

ﬁ[m]:/ x(t)coswtdt:2/ x(t) coswt dt.

—o0 0
In particolare, x reale e pari <= X reale e pari.

e Se z ¢é dispari, risulta

+oo +oo
y‘[x]:—j/ x(t)sinwtdt:—Qj/ x(t)sinwtdt.
0

— 00
In particolare, x reale e dispari <= X immaginaria e dispari.

Le formule di traslazione in ¢, traslazione in w, riscalamento e riflessione si ricavano allo stesso
modo delle corrispondenti formule per la trasformazione di Laplace. Per la formula della modulazione,
¢ sufficiente scrivere

ed(wot+e) 1 g—i(wot+¢)

2

mediante la formula di Eulero ed applicare le proprieta di linearita e di traslazione in w. Anche
la formula per la trasformata del segnale coniugato si prova come nel caso della trasformazione di
Laplace:

cos(wot+ ¢) =

F [m] = /+oo%e_j“tdt = /+DO z(t)e I (W)t dt = /+00 z(t)e=Id (=)t gt

—o0 —o0 —o0

e quindi la formula. Le altre proprieta sono immediate.

Illustriamo le proprieta precedenti con qualche esempio. Per la formula di risca-
lamento, troviamo
sin(T w/2)
Tw/2

in accordo con quanto visto nell’esempio 1.4. Ancora, da (1.10) ricaviamo

Fle V2 =Var e/,

F(t/T) =T
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cioé per calcolarne la trasformata, basta moltiplicare e=t*/2 per v2m. Per la formula
della modulazione, troviamo
1 1

— ¢l =
(e Nidgos] 1+(w+1)2+1+(w—1)2'

3. Le formule fondamentali

Vediamo in questo paragrafo le formule per la derivata della trasformata e per la
trasformata della derivata.

TEOREMA 3.1 (I formula fondamentale). Sia z € L'(R). Se anche t — tx(t) €
LY(R), la trasformata X = F[z] ¢ di classe C*(R) e risulta

(3.1) X'(w) = Z[(=jt)x(1)].
La (3.1) si riscrive

d oo

dw

+oo o

z(t)eIwtdt :/ x(t) % e Iwtqt
w

e consiste nella possibilita di derivare sotto il segno di integrale. La formula (3.1) si
puo iterare.

COROLLARIO 3.2. Sia z € L'(R). Se anche t — t"z(t) € L*(R), per un
n € N, la trasformata X = Fx] ¢ di classe C™(R) e risulta

(3.2) X® (W)= Z[(—jt)F xt)], perk=1,...,n.

—0o0 — 00

Notiamo soltanto che dalla sommabilita di z(t) e t" x(t) segue quella di t* z(t),
per k=1,...,n, in virta della disuguaglianza |t|* < 1+ [t|?, V¢ € R. 1l fattore t" pesa
intorno a Foo; il corollario 3.2 mostra dunque che il buon comportamento all’infinito
del segnale x implica regolarita di carattere differenziale per la trasformata X. In
particolare,

COROLLARIO 3.3. Sia z € L*(R) nulla fuori di un intervallo limitato. La
trasformata X = F[z] ¢ di classe C*°(R) e risulta

(3.3) X®(w) = Z[(—it)* x(t)], VE €N,

ESEMPIO 3.4. Possiamo applicare il corollario 3.3 alla funzione z(t) = II(¢) del-
Pesempio 1.4, ed il corollario 3.2, Vn € N, alla funzione z(t) = e~ It dell’esempio 1.5,
ottenendo che entrambe le trasformate sono di classe C*°(R). (Invero, tenendo pre-
sente il legame con la trasformazione di Laplace, le due trasformate di Fourier sono
funzioni analitiche in R.)

Invece la funzione x(t) = 1/(1 + t2) dell’esempio 1.6 non verifica le ipotesi del
teorema 3.1, non essendo ¢ — tx(t) sommabile in R; in effetti la trasformata non ¢
derivabile in 0.

Vediamo ora la formula per la trasformata della derivata.

TEOREMA 3.5 (II formula fondamentale). Se x & assolutamente continua e
z,2’ € LY(R), risulta

(3-4) Fl' )] =jw Fla(t)].
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Dim. Essendo x assolutamente continua, risulta, Vt € R,
t
z(t) = z(0) + / z'(7)dr
0

e quindi I'ipotesi 2’ € L*(R) implica che x(t) converge per ¢t — Foo; poiché anche z € L (R), il limite
€ necessariamente 0:

(3.5) lim «(t)=0.

t—Foo
Integrando per parti, allora abbiamo
+o0 1 . +oo <
y[x/]zf :E/(t)e_]“’tdt:[:p(t)e_]“t]tz—l-jw/ z(t)e TYldt = jw Flx].
— 00 — 00

Notiamo che la sola ipotesi # € L' (R) non implica la (3.5).

Anche la (3.4) puo essere iterata.

COROLLARIO 3.6. Se z ¢ di classe C" ' (R), n € N, e 2"~V ¢ assolutamente
continua, con z,’,. ..,z € LY(R), risulta

(3.6) FlW (1) = (jw)* Flzt)], perk=1,...,n.
Dunque, essendo % [x(™] infinitesima per w — Foo, risulta

FE™] _ on
Gar @)

In particolare, per n > 2 é garantita la sommabilita della trasformata. Il corollario 3.6
mostra che la regolarita di carattere differenziale del segnale x implica il buon com-
portamento all’infinito della trasformata X. Pertanto le due proprieta si scambiano
I'una nell’altra passando da z alla trasformata X.

Flx(t)] =

OsSERVAZIONE 3.7. La proprieta fondamentale della .#-trasformazione ¢ dunque di far corrispon-
dere all’operazione algebrica di moltiplicazione del segnale z(t) per —jt, 'operazione di derivazione
per la trasformata e, viceversa, di far corrispondere all’operazione di derivazione del segnale z(t),
l'operazione algebrica di moltiplicazione per jw per la trasformata.

ESEMPIO 3.8. Calcoliamo la . -trasformata del segnale
A) = (1+1) fult +1) —u(®)] + (1 =) [u(t) —u(t - 1)],
cfr. esempio VIII.2.2. Essendo A assolutamente continua, calcoliamo la derivata:
(3.7) Nit)=ult+1)—2u(t)+ult—1)=T(t+1/2) — Tt —1/2).

Applichiamo la trasformazione ad ambo i membri. Usiamo la IT formula fondamentale
per il primo membro; per il secondo membro, usiamo la formula di traslazione in t e
ricordiamo la (1.7):

ejw/2M = e*jw/QM = (ejw/2 _ efjw/Q) M

Cw FIA] —
jw FIA] w/2 w/2 w/2
e quindi ricaviamo
| 2
ZIAT — sinw/2
(3.8) F[A] ( o2 ¢

E possibile anche usare la I formula fondamentale. A tal fine, scriviamo

Alt) =u(t+1) —u(t — 1) + tlu(t+1) — 2u(t) + u(t — 1)]
=1I(t/2) +j (=4 t) [I(¢ + 1/2) = TI(¢ — 1/2)]
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e quindi trasformando

FIA] =2 sinw i d (eF/2 _ a-iw/?) sinw/2
w/2
sinw d (sinw/2)?
=2 NI i L W
w dw w
i sinw Ray (sinw2/2)2 A4 sinw/2 cosw/2 .
w w w

Pertanto ritroviamo la (3.8). Notiamo che la trasformata ¢ una funzione reale pari,
come era prevedibile, essendo tale pure A.

ESEMPIO 3.9. Calcoliamo la trasformata di
z(t) = (1 =) [u(t+1) —u(t - 1)] = (1 - *)11(£/2) .

Per la formula di cambiamento di scala, da (1.7) ricaviamo

sinw
Zl/2) =22
e quindi per la (3.1)
sin w d? sinw

3.9 X =2 —
(39) («) —
Calcoliamo la derivata in (3.9) mediante la formula® di Leibniz:

d? sinw d? . o 1 sin w 9 Ccos w P sin w

— = — (sihwx — | =— — .

dw? w dw? w w w? w3

Dunque, per w # 0,

(3.10) X(w)=4 < ;

Inoltre chiaramente

X(O):/+00x(t)dt=/1 (1—t2)dt:§.

—o0 -1

ESEMPIO 3.10. La trasformata del segnale
zo(t) = (1% —t) e [u(t) — u(t — 1))

si trova facilmente in base alla definizione:

1
Xo(t):/ (2 —t) eIt gy
0

e l'integrale si calcola per parti. A scopo illustrativo, usiamo la I formula fondamentale;
a tal fine, scriviamo xo(t) = —(5t)2 yo(t)—Jj (—j t) yo(t), dove yo(t) = e’ [u(t)—u(t—1)]
e dunque

Xo(w) = =Y (w) = j Yg(w),

ILa formula permette di calcolare le derivate di ordine superiore di un prodotto

n

D' (fg)=_ (:) Fiteth gttt

k=0
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Essendo 2 P2y
) —Jjw _ 1
Yo(w>:/ 1T = S
0 1-jw
troviamo 1 1
7‘7 e —Jw ) —Jw _
Yo(w) = . J —,
g 1-jw (1 —1JjW)2 e
e Iv e ¥ e Y —
Y/ = — 2 -2 .
R T Y R P e Rl R
Pertanto

1—jw _q 1—jw 4 q 1-jw 1 i iw—3
KiopepiFn 094 booreT ot e hina (b 16) 15 ¢
(1-jw) (1-jw)? (1-jw)?

ESEMPIO 3.11. Calcoliamo X (w) = ﬁ[e*ﬁ] usando le proprieta fondamentali
della trasformazione; la trasformata é stata calcolata nell’esempio 1.7.

Osserviamo che X ¢ una funzione reale pari, poiché tale ¢ z(t) = e~
ja'(t) = —2jtx(t) e quindi j F[2'(t)] = 2 F[—jtx(t)], ovvero

—wX(w)=2X"(w).

Questa ¢ un’equazione differenziale a variabili separabili, il cui integrale generale é
X(w) = X(0) e/, Per concludere, basta osservare che X (0) = f_+°o et dt = /7.

o0

¢ Tnoltre

3.1. La trasformata di funzioni a decrescenza rapida. Una classe di funzio-
ni particolarmente importante nella teoria della .Z-trasformazione ¢ quella . = ¥ (R)
di Schwartz o delle funzioni a decrescenza rapida.

DEFINIZIONE 3.12. Una funzione x € C*(R) & detta a decrescenza rapida se,
insieme con tutte le derivate, é infinitesima di ordine infinitamente grande a Foo, cioé
risulta, Vn, k € Ny,

lim t"z®™(t)=0.

t—F oo

ESEMPIO 3.13. Appartiene chiaramente a . ogni funzione di classe C*°(R)
nulla fuori di un intervallo limitato. La funzione z(t) = e=!" & a decrescenza rapida,
pur essendo non-nulla in ogni punto.

Per quanto ovvio, osserviamo esplicitamente che la funzione ¢ +— 1/(1 +t2) non &

a decrescenza rapida, pur essendo infinitesima a Foo.

Per i criteri di sommabilita, evidentemente .#(R) C L(R). Inoltre le derivate di
una funzione a decrescenza rapida sono anch’esse a decrescenza rapida, come pure il
prodotto di una funzione a decrescenza rapida per un polinomio. Poiché le funzioni
di . hanno buon comportamento all’infinito e regolarita C°°, in virtu delle formule
fondamentali, lo stesso vale per le loro trasformate di Fourier; dunque, Z[x] € .7,
Ve € . Inoltre si pud applicare la formula di antitrasformazione. Pertanto vale il
seguente

TEOREMA 3.14. La trasformazione di Fourier

F: S =S
¢ biunivoca. La trasformazione inversa
F L5

e definita nella (1.12).
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4. La trasformata della convoluzione
TEOREMA 4.1. Se z,y € L*(R), risulta
(4.1) Flzxy] = Fla]- Z[y].
Dim. Osserviamo che, Vw € R, risulta

—Jjwt _ a—Jwt too o~
e zxy(t) = e z(T)y(t —7)dr

oo

+oo L )
= / eI Tx(r)e I Tyt — 1) dr

o .
= (e 7«ta(t)) * (eI« y(t)).
Essendo .Z [z * y] 'integrale del primo membro, la formula (4.1) segue ricordando che 'integrale del
prodotto di convoluzione ¢ il prodotto degli integrali, cfr. la (VII.1.23):

Flowal = [ e teny@a= [ (eI 00) - (e ) @

= Uoioo e I la(t) dt} : |:/-::%Oe_j“”ty(t) dt} = Zz] - Fly).

ESEMPIO 4.2. La trasformata di A calcolata nell’esempio 3.8 puo essere ottenuta
anche dalla formula (4.1), ricordando la (VIII.2.4):

FINw) = Feme] = (52

Procedendo formalmente, ricaviamo la trasformata del prodotto dalla (4.1), che

riscriviamo
Flrxy=XY.
Applicando ad ambo i membri la % ed usando (1.14), troviamo
FIXY] = F[Fxxy]| =2mx*y(-t).
Inoltre Z[X]| = 27wa(—t), F[Y] = 27wy(—t) e per l'osservazione VII.1.26 risulta
x(—t) x y(—t) = (z * y)(—t). Pertanto
1

(4.2) ﬁ‘[XY]:ﬂy[X]*E[Y].

E da notare a proposito di questa formula perd che X,Y € L'(R) # X -Y € L'(R).
La (4.2) vale certamente per X,Y € .7.

ESERCIZIO 4.3. Dimostrare che, se z,y € .7, risulta x xy € .. (Suggerimento:
passare alle trasformate di Fourier.)



CAPITOLO XI

Distribuzioni

1. Introduzione

In questo capitolo ci occupiamo della teoria delle distribuzioni, che dal punto di
vista matematico nascono dall’esigenza di estendere alcune operazioni fondamentali
dell’analisi, prima fra tutte la derivazione. Nell’ambito della teoria classica, I'opera-
zione di derivazione non é sempre possibile; nell’ambito delle distribuzioni essa puo
essere effettuata senza restrizioni e risulta un’operazione continua. Vedremo anche
che sara possibile effettuare una notevole estensione della trasformazione di Fourier,
rispetto alla definizione data nel capitolo X.

D’altra parte, bisogna pure sottolineare che le distribuzioni trovano notevoli ap-
plicazioni in fisica. La teoria delle distribuzioni permette ad esempio una trattazione
rigorosa delle cosiddette funzioni impulsive, che erano gia usate in fisica in maniera
piuttosto empirica. Il prototipo delle funzioni impulsive é la ¢ di Dirac, introdotta in
vari modi non rigorosi, pitt 0 meno equivalenti tra loro.

(a) Essa era definita come la funzione §(t) su R nulla per ¢ # 0 e tale che

(1.1) /+OO S(t)dt =1;

—00

¢ chiaro che non esiste alcuna funzione con queste proprieta.
(b) Un altro modo di introdurre la § era come limite di una successione di funzioni,
ad esempio

zn(t) =nIl(nt) =nlu(t+1/(2n)) —u(t —1/(2n))]

(1.2) {n,se—;ngt<21n,

0, altrimenti.

Osserviamo che per n — oo, lintervallo [-1/(2n),1/(2n)] si contrac al punto 0.
Inoltre, Vn € N, risulta

(1.3) /m wn(t)dt =1

— 00

e si desidera che tale proprieta valga anche per § = lim,, x,,, cioé sia soddisfatta la
(1.1). E evidente pero che la relazione di limite non puo essere intesa in senso puntuale,
poiché in tal caso si ricade nella definizione precedente.

159
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400
(1.4) / 0(t) p(t) dt = ¢(0) .

— o0
Mostreremo che anche tale proprieta, con il concetto di funzione dell’analisi matema-
tica classica, é impossibile.

L’introduzione delle distribuzioni richiede dunque di cambiare punto di vista, mo-
dificando il concetto di funzione. L’idea di funzione come legge di corrispondenza tra
insiemi numerici risulta inadeguato. In effetti, tale idea mostra delle difficolta gia
quando si considerano le funzioni sommabili o localmente sommabili secondo Lebe-
sgue, che sono definite a meno di un insieme trascurabile. Per una tale funzione z, non
& appropriato parlare di valore assunto in un punto preciso. Spesso essa figura sotto
il segno di integrale, moltiplicata per una ¢ appartenente ad una classe di funzioni
regolari, ed & determinata dalla azione che in tal modo esercita su ¢:

+o00
(1.5) ©— /_ x(t) p(t) dt.

Per tal motivo, ¢ viene detta funzione test. Dunque x é interpretata come il funzionale
lineare definito dalla (1.5) sulla classe delle funzioni test. Questo approccio é analogo
al modo di introdurre la § presentato nel punto (c); & necessario perd definire la classe
delle funzioni test e precisare quali saranno i funzionali lineari da considerare.

2. Lo spazio delle funzioni test

Cominciamo introducendo il supporto di una funzione continua.

DEFINIZIONE 2.1. Sia ¢: R — C una funzione continua. Il supporto di ¢, che
denoteremo con supp ¢, € la chiusura dell’insieme

{teR : o(t)#£0}.

Equivalentemente, supp ¢ € il complementare del pitt grande aperto di R sul quale ¢
¢ identicamente nulla.

Possiamo ora introdurre lo spazio delle funzioni test.
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DEFINIZIONE 2.2. Lo spazio delle funzioni test, che indicheremo con ¥ =
2(R), ¢ formato dalle funzioni (complesse) di classe C*°(R) a supporto compatto. In
particolare, per ogni funzione ¢ € 2, esiste un intervallo compatto [a,b] (dipendente
da ¢) tale che ¢(t) = 0, Vt & [a,b]. 2 risulta uno spazio vettoriale (su C) definendo
la somma ed il prodotto per uno scalare in senso puntuale.

ESEMPIO 2.3. La funzione

e s
(2.1) aft) = et’-1 . se —1<t<1,
0, altrimenti

1
appartiene a 2. In effetti, ¢t — e**-1 ¢ indefinitamente derivabile in | — 1, 1] e tutte le
derivate sono infinitesime per ¢t — —1+ e per t — 1—. Inoltre chiaramente supp a =
[—1,1].

In 2 si introduce una nozione di convergenza. Siano (p,) una successione in 2 e

» € Z; si dice che (g,,) converge a ¢ in Z e si scrive @, 2, ¢ se valgono le condizioni

(1) per ogni k € Ny, w%k) — ) uniformemente su R, cioé risulta

limsup | (t) — o™ ()| = 0;
" teR

(2) esiste un intervallo compatto [a,b] che contiene i supporti di tutte le ¢,
n € N, cioé tale che

on(t) =0, Vt & [a,b], Vn € N.
E chiaro che, se ¢ appartiene a 2, anche tutte le derivate ¢*) sono in 2; inoltre

suppg D supp g’ D suppp”’ D .- .

3. Le distribuzioni

DEFINIZIONE 3.1. Si dice distribuzione ogni funzionale (o forma) lineare su &
che sia continuo rispetto alla convergenza di funzioni test. L’insieme delle distribuzioni
si denota con 2’ = 2'(R) e si rende uno spazio vettoriale definendo la somma e il
prodotto per uno scalare in senso puntuale.

Dunque T € 9’ se T: 2 — C ¢é lineare, cioé verifica
T(cp+dyp)=cTo+dTy
per ogni v, € Z e ¢,d € C, ed & continuo in 2, cioé
@nzﬂp = Tp,—TpinC.
Notiamo che per la linearita é sufficiente verificare la continuita di 7" in 0, cioé
<pn2>0 = Ty, —0inC.

Dato T € &', il valore assunto in ¢ € & viene usualmente denotato, invece che con
T'(¢), mediante il simbolo

(3.1) (T,9),

che si chiama crochet o simbolo di dualita.
Vediamo ora alcuni esempi fondamentali di distribuzioni.
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ESEMPIO 3.2. Ad ogni z € L (R) si associa una distribuzione T, definita
ponendo

+oo
(3.2 Toe)= [ eyt voeo.

— 00
L’integrale in (3.2) converge assolutamente pur essendo x solo localmente sommabile,
poiché ¢ ha supporto compatto, cioé é nulla fuori di un intervallo limitato. E ovvio

che T, é lineare. Anche la continuita é molto semplice; se ¢, 2, 0, troviamo |[a, b]
tale che supp @, C [a,b], Vn € N, e quindi

b
(T )] < 5Up [] / e (8))

¢ infinitesimo poiché lim,, sup |¢,| = 0.

Si mostra che, se z,y € Ll (R) e risulta T,, = T, cioé (T, @) = (T}, ¢), Yo €
2, risulta pure z(t) = y(t) per qo. t € R, cioé z e y sono lo stesso elemento di
L{ (R) (ricordiamo che funzioni coincidenti q.o. si identificano). Questo permette di
identificare T, con z; in questo senso, vale l'inclusione L{. . C 2'. Le distribuzioni del

tipo T}, cioé le funzioni localmente sommabili, si dicono distribuzioni regolari.

Come vedremo con gli esempi successivi, esistono distribuzioni non regolari, cioé
che non sono funzioni localmente sommabili. Se T' € 2’ ¢ una generica distribuzione,
T & un funzionale definito in 2 e quindi la notazione T'(t), ¢ € R, non & corretta.
D’altra parte, in vista del caso delle distribuzioni regolari, che sono effettivamente
delle funzioni di variabile reale, spesso con abuso di notazioni la distribuzione si denota
anche con T'(t); questo permettera come vedremo di indicare in maniera semplice
alcune operazioni sulle distribuzioni. Sempre con abuso di notazioni, il valore di T su
© si indica pure con l'integrale, cioé si scrive

+oo

(T(t), (1)) = / T(t) p(t) dt

— 00

pur non essendo in generale T' definita mediante integrale.

ESEMPIO 3.3. La distribuzione § di Dirac, o impulso unitario concentrato in 0,
é definita ponendo

(3.3) (6,0) =0(0), Vpe.

Mostriamo che § non é una distribuzione regolare, cioé una funzione localmente sommabile. Ragio-

nando per assurdo, supponiamo che esista § € LllOC tale che

“+oo
6.0y = [ s e di=p0), vee.
—o0
Ponendo in tale uguaglianza ¢(t) = a(nt), n € N, dove « ¢ la funzione definita in (2.1), essendo in
tal caso supp ¢ = [—1/n,1/n] e max|p| = p(0) = 1/ e, ricaviamo

1 1 1/n

s =lewemn< 7 [ pola
e €J—-1/n
e 'integrale nell’ultimo membro tende a zero per n — oo.

Se a € C & uno scalare, chiaramente ¢é

(ad,p) =ap(0), Voeg.
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La distribuzione a ¢ si dice impulso di area a (concentrato in 0); se a € R, essa si
rappresenta graficamente con un segmento orientato uscente dall’origine, di lunghezza

|a|, orientato verso l'alto se a > 0 e verso il basso se a < 0.

a a>0 a<0

v
v

ESEMPIO 3.4. La distribuzione valor principale di 1/t, che si denota con v.p.1/t,
é definita da

1 %%
(3.4) <v.p. 7o <p> = V.p./ @ dt, YoeD.

— 00

La funzione test ¢ € Z é nulla intorno a Foo; l'integrale é inteso nel senso del valor principale poiché,
se ¢(0) # 0, 'integrando ¢ infinito in 0. Dunque

+oo t +oo t —e t
v.p./ @dt: lim (/ Mdt+/ mdt).
— oo t e—0+ c t —ool b

Mutando t in —t, ’ultimo integrale a secondo membro si trasforma in un integrale esteso all’intervallo
[e, +00[, quindi
4o t 400 ) — o(—t +oco 1) — o(—t
vo [T g g [TTADECD gy [T O 0D,
oot e—0+ J, t o t

Per l'ultima uguaglianza, ¢ sufficiente osservare che I'integrando & convergente per ¢ — 0, cioé ha una
discontinuita eliminabile, essendo ¢ derivabile in 0:

lim PO = (=) (s@(t) —¢(0) (=) — #(0)

t—0 t t—0 t —t

) = 2¢'(0).

4. Operazioni sulle distribuzioni

Introduciamo alcune operazioni sulle distribuzioni. Per diverse di queste, ad esem-
pio la traslazione, la definizione & perfettamente chiara nel caso delle funzioni, perché
é data in senso puntuale; per estendere la definizione alle distribuzioni in generale,
seguiremo il caso delle funzioni come guida.

e Traslazione. Siano z localmente sommabile e ty € R; anche il segnale traslato
t — x(t —tg) ¢ localmente sommabile, quindi una distribuzione. Con un cambiamento
di variabile, per un’arbitraria ¢ € 2 abbiamo

+oo
[ at-wea

o
_ / w(t) @(t + to) dt = (x(t), p(t + to)) .

— 00

(2(t —t0), (1))
(4.1)

Dunque, il valore di z(t — tg) su ¢(t) & pari al valore di z(t) su p(t + tg). Questa
definizione si estende subito al caso di una distribuzione qualsiasi T'; indicheremo con
T(t — to) la distribuzione traslata, che ¢ definita ponendo

(4.2) (T(t—t0),(t)) = (T(t),0(t +10)), Vo€,

I chiaro che t +— o(t + t) ¢ una funzione test e il secondo membro di (4.2) definisce
una distribuzione.
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Si apprezza nella (4.2) I'utilita dell’abuso di notazioni T'(¢), e analogamente T'(¢ — tg). Notiamo
che, per introdurre 'operazione di traslazione per le distribuzioni, tale operazione ¢é stata scaricata
sulla funzione test. E questo un modo di procedere che useremo spessissimo.

Ad esempio,

(0(t —to), p(t)) = (6(t), (t +t0)) = (o) -
La distribuzione §(t —tg) si chiama impulso unitario concentrato in to ed & suscettibile
di una rappresentazione grafica analoga alla §:

| to ]
Una distribuzione T si dice periodica di periodo 7 > 0 se verifica
Tt+7)=T(1).
Una distribuzione regolare x = T}, & periodica se e solo se lo & come funzione.

e Riscalamento e riflessione. Dati un segnale localmente sommabile x e a € R—{0},
anche il segnale t — z(at) & localmente sommabile, quindi una distribuzione e risulta
per p € P
+oo

(x(at), o(t)) = / £(at) plt) dt

0= e ()

Se T' ¢ una distribuzione, il riscalamento T'(a t) ¢ la distribuzione che a ¢(¢) associa il
valore di T sulla funzione test ﬁcp(t/a):

(4.3)

(1.49) Tatoo) = (10 0 (1)) wes.

|al
Ad esempio,
(8(at). () = 77 2(0).
Una distribuzione T si dice pari [dispari] se verifica
T(-t)=T(@), [T(=t)=-T(@)].

Ad esempio, § & pari; v.p. 1/t & dispari. Una distribuzione regolare = T, & pari o
dispari se e solo se ¢ tale come funzione.

ESERCIZIO 4.1. Verificare che, Ya € R\ {0}, Vto € R, risulta

5lat —to) = ﬁ 5t —to/a).

e Prodotto per una funzione. Date a € C*° e T € %', si definisce la distribuzione
aT prodotto di a per T' ponendo

(4.5) (aT, o) =(T,ap), VYpeg.
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N

Notiamo che se ¢ é una funzione test, tale ¢ pure oy, essendo a € C; inoltre
se ©n £y p, risulta pure « 4 a ¢, quindi il secondo membro di (4.5) definisce
effettivamente una distribuzione. Fondamentale é la proprieta di campionamento della
¢, espressa dalla formula seguente:

(4.6) alt) 8(t — to) = alto) 6(t — to).

A primo membro figura il prodotto della funzione « per I'impulso concentrato in
to € R, mentre a secondo membro compare il prodotto dell’impulso per la costante
a(tp). Ad esempio

sintd(t) =0, sinto(t +7/2) =sin(—7/2)6(t + 7/2) = =5(t + 7/2).

e Limite e serie. Siano (7},) una successione di distribuzioni e T una distribuzione.
Si dice che T ¢ il limite di (7},), o che (T},) converge a T nel senso delle distribuzioni,

e si scrive T, 2/) T, se risulta
(T, ) = lim(T,, v), VoeP.

In altri termini, (7},) converge a T' puntualmente su Z.

Mostriamo che la successione (x,,) di distribuzioni regolari definite in (1.2) con-
verge a d nel senso delle distribuzioni; dunque questa é la corretta nozione di limite
da usare nel punto (b) del paragrafo 1. Per il teorema della media,

1/(2n)
@ne)=n [ plt)dt = p(tn).
—1/(2n)
con —1/(2n) <t, <1/(2n), e passiamo al limite per la continuita di ¢ in 0.
Si dice che T ¢ la somma della serie ) T, in 2’ e si scrive

+oo
T=>T, n7,
n=1

se risulta
400
(T,0) = (Tn,0), Vo€
n=1
Anche in questo caso la convergenza é puntuale su Z; equivalentemente, la successione
delle somme parziali converge in 2’. Un esempio importante di distribuzione definita
mediante una serie € il treno di impulsi; dato 7 > 0, poniamo

+oo
(4.7) sr= Y d(t—n7).
n=-—oo
Evidentemente si tratta di una distribuzione periodica di periodo 7. Per ogni ¢ € 2,

risulta
“+oo

(sm0) = Y @(nT),

n=—oo

la serie essendo in realtd una somma finita, poiché per |n| grande risulta n 7 & supp .
Piu in generale, data una qualsiasi successione (¢, )nez di numeri complessi, possiamo
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definire la distribuzione

400
Z end(t—nT).
n=-—oo
Ad esempio, dato il segnale continuo «, definiamo il campionamento con passo T > 0:
+00 too
Z at)d(t—nT) = Z ant)é(t—nT).
n=—oo n=—oo

e Convoluzione. Supporto di una distribuzione. Sia Q C R un aperto; si dice che
la distribuzione T' € 2’ ¢ nulla in Q se risulta

wED, suppy C = (T, @) =0.

Se x € Li. ., la distribuzione regolare T}, ¢ nulla su  se e solo se risulta z(t) = 0, per
q.o. t € Q. Si dice che due distribuzioni 7T} e T3 sono uguali in 2 se 77 — 75 é nulla in
Q.

Il complementare del piti grande aperto in cui 7' ¢ nulla si dice supporto della
distribuzione T'. Ad esempio, ¢ é nulla in Q = R — {0}, quindi il supporto & compatto:
suppé = {0}. Se T =T, con x continua, il supporto di T}, coincide con supp z nella

definizione 2.1.

OSSERVAZIONE 4.2. Si puo parlare di supporto di una = € Llloc(R). Il supporto
non cambia modificando x su un insieme trascurabile.

OSSERVAZIONE 4.3. Se T € 2’ ha supporto compatto, si pud definire (T, ) per
@ € C'°°, non necessariamente a supporto compatto. A tale scopo, scegliamo ¢ € ¥
tale che ¢y = 1 in un aperto contenente supp 7', e poniamo

(4.8) (T,0) =(T Y ).

Si verifica che ’espressione non dipende da .

Definiamo ora il prodotto di convoluzione tra distribuzioni. Cominciamo dal caso
delle funzioni. Sappiamo che se z,y € L', risulta  * y € L' e quindi puo essere
interpretata come distribuzione:

+oo +oo
@rne) = [ edt [ aeut-)ds

=ufi :Om<s> s [ :Oym ol + 5) dr.

La funzione 9 : s — (y(r), o(r+s)) & di classe C*°. Se y ha supporto compatto, anche
1 ha supporto compatto, quindi appartiene a & e possiamo scrivere

(49) (5, ) = {20 = ((5), (y(r), ol +5) ).

La (4.9) suggerisce allora di definire la convoluzione di due distribuzioni T S, con S
a supporto compatto, mediante la formula

(4.10) (T 5 5(t), (1)) = (T(5), (S(r), ol +5) ).

In effetti, s — (S(r), o(r + s)) & una funzione test. Per l'osservazione 4.3, T' % S pud
essere definita mediante (4.10) anche se T" ha supporto compatto. Inoltre TS = Sx*T.
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ESEMPIO 4.4. La § é l'unita del prodotto di convoluzione, cioé risulta
(4.11) Txo=T, VT € 9.
Basta osservare che, Yy € 2, risulta

(0(r), p(r +5)) = [p(r +5)] .o = @(s) .
Piu in generale, si verificano le formule
+o00
(4.12) T(t)*6(t—to) =T(t—to), Txs,= » T(t—nr).

ESEMPIO 45. Se T € 2" e ¢ € 9, oppure T € 2’ ha supporto compatto e
1 € C*°, la convoluzione T x ¢ =1 x T & la funzione di classe C*° definita da

teR— (T(r),¥(t—71)).
ESEMPIO 4.6. Se S € 2’ ha supporto compatto, vale 'implicazione

T, 27 = T,x82TxS.

4.1. Derivata di distribuzioni. Data T € 2, si dice derivata di T, e si indica
con 1", la distribuzione definita ponendo

(4.13) (T',p)=—(T,¢'), VYpe2.

Evidentemente ¢’ € 2 e lespressione a secondo membro ¢ continua su 2, quindi
definisce effettivamente una distribuzione. Nel caso in cui T' = T, = x sia una distri-
buzione regolare con z di classe C1, o pilt in generale assolutamente continua (sugli
intervalli compatti), la (4.13) si riduce alla formula di integrazione per parti: con
T' = 2/, risulta

—+oo “+oo

| wwewi=- [ awewa,

— 00 — 00

essendo ¢ nulla intorno a Foo.
PROPOSIZIONE 4.7. Se T, é una distribuzione regolare con x assolutamente

continua sugli intervalli compatti di R, la derivata nel senso delle distribuzioni coincide
con la derivata ordinaria, cioé risulta T = Tyr.

Mostriamo che § ¢ la derivata distribuzionale del gradino:
(4.14) u =4.
In base alla definizione (4.13), Yy € 2,

+oo
<m@=—wwv=5£ Sty dt = —[p()] 7™ = 9(0) = (6.

OsseRVAZIONE 4.8. 1l gradino u(t) ¢ dotato di derivata ordinaria Du (limite puntuale del rappor-
to incrementale) nulla in ogni punto ¢ # 0: Du(t) = 0, Vt # 0. Dalla derivata ordinaria, che ¢ dunque
definita q.o., non ¢ possibile ricostruire la u(t); & possibile invece mostrare che u ¢ determinata dalla
(4.14) a meno di una costante additiva, cioé se 2’ = § in &/, risulta z = u + ¢, con ¢ costante. In
questo senso, quella distribuzionale é la “giusta” nozione di derivata.
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La (4.14) mostra che in corrispondenza della discontinuita di « in 0, nella de-
rivazione compare un impulso concentrato in tale punto, di area 1, pari al salto di
discontinuita; questo vale piu in generale. Consideriamo una funzione x per la quale
ogni intervallo compatto [a,b] si possa decomporre in un numero finito di intervalli
[tkytk+1], & due a due privi di punti interni comuni, sui quali = sia assolutamente con-
tinua (ridefinendo opportunamente i valori negli estremi): una tale funzione ha solo
discontinuita di I specie, in numero finito o un’infinita numerabile, ma priva di punti
di accumulazione al finito; inoltre ¢ derivabile (in senso ordinario) g.o. con derivata
Dz localmente sommabile.

PROPOSIZIONE 4.9. La derivata distribuzionale ' di x ¢ somma della derivata
ordinaria Dx ed impulsi concentrati nei punti di discontinuita, ciascuno con area pari
al salto di discontinuita:

(4.15) o' =Dx(t)+ Y [w(tt) — 2(te—)] 6(t — i)
k

Dim. B sufficiente considerare il caso di un’unica discontinuita to; integrando per parti, Vo € 2,
abbiamo

—+o0 to 400
@) =) == [ s Od=- [ c0pa- [ a0

- to 3900
= —e() ()] + [ Da(t) o(t) dt — [a(t) (0] + / Da(t) p(t) dt

to

+oo
= [olto)  alto-)elt) + [ Da®)e(t)dt.
ESEMPIO 4.10. Dato a > 0, calcoliamo la derivata del segnale

1,se —a<t<a,
0,set<—aot>a.

z(t) =u(t+a) —ult—a)=1(t/(2a)) = {

Il segnale & discontinuo in Fa, con salti di discontinuita 4+1; inoltre la derivata ordinaria
é nulla q.o., quindi

2'(t)=06(t+a)—6(t—a).

Graficamente:

—a

to] [Naccioppali’l Qe
z(t) =u(t+a) —u(t—a) () =6(t+a)—d(t—a)

v

Q-4

ESEMPIO 4.11. Calcoliamo la derivata del segnale

sint, per 0 <t <m/2,
0, pert<0et>m/2.

x(t) = sint [u(t) — u(t — 7/2)] = {
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Il segnale ¢ discontinuo in 7/2, con salto di discontinuita —1; la derivata ordinaria &

cost, per 0 <t < m/2,
0, pert<0et>m/2.

Dzx(t) = cost|u(t) —u(t — 7/2)] = {

Graficamente:
1 1
: ~ »
-1
z(t) = sint [u(t) — u(t — 7/2)] @' (t) = cost [u(t) —u(t — 7/2)] — 6(t — 7/2)

Valgono le seguenti formule (identiche a quelle nel caso delle funzioni):
(aT) =d'T+aT, (T(at)) =aT(at).
Per la prima, abbiamo, V¢ € 2,
((aT),p) = —(aT,¢') = —(T,(ap) —a' p) = (' T+ aT' ).

Per la seconda, abbiamo

((T(at)), (1)) = —(T(at),¢'(t)) = —ﬁ (T(t),¢'(t/a))
1

— - (T, et/ ) = = (0T (@), p(t/a)) = 0T (@), (1)

al "~ al
Per quanto riguarda la derivata della convoluzione, vale la formula
(4.16) (P%'S)22UpiR §' PRI,
In particolare, T ¢’ = (T * )’ = T’ e (se definita) la convoluzione T * u & primitiva
diT: (Txu) =T+ =T*5="T.
La derivazione ¢ un’operazione continua in 2':

(4.17) T, 5T = 1,57, T=%T, > 17=T.
n n

ESEMPIO 4.12 (Formula di Poisson). Sia z il segnale periodico di periodo 7 > 0
che vale z(t) = ¢ per 0 < t < 7, considerato nell’esempio VIII.3.8. Ricordiamo lo
sviluppo in serie di Fourier; posto wy = 27 /7, risulta

T 1 ;
4.18 ==+7) — elkwot
(4.18) x(t) 2+J,§Okwoe

nel senso dell’energia su ogni intervallo limitato e quindi anche in &2’. Deriviamo nel
senso delle distribuzioni. La derivata ordinaria di « & Dx(t) = 1, per t # k7, k € Z;
in questi punti  é discontinuo, con salto di discontinuitd —7. Pertanto

+oo
(4.19) 1—7 Z (5(t—k7‘)=—z elhwot
k=—o0 k#0
Osservando che il primo addendo a primo membro ¢ il termine escluso nella sommatoria
a secondo membro (per k = 0), da (4.19) otteniamo 1'uguaglianza
—+o0

+oo
(4.20) T Y St—kr)= ) ekt

k=—0c0 k=—oc0
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che prende il nome di formula di Poisson. Ricordando la definizione (4.7) del treno di
impulsi, la (4.20) si riscrive

1 +oo
4.21 c== Y ekt
( ) ) T k=—o0 )

e si puo interpretare come lo sviluppo in serie di Fourier del treno di impulsi (¢, = 1/,
Vk € Z).

Le distribuzioni sono indefinitamente derivabili; la derivata n-sima di T' € 2’ &
(4.22) (T™, ) = (-1)™(T, ™), Voe9.
ESEMPIO 4.13. Per ogni n € N, risulta
(6™, 0) = (~)""M(0), Ypeg.

5. d-successioni

Come abbiamo osservato, ¢ ¢ il limite nel senso delle distribuzioni della successione
di funzioni (nII(nt)). Questo & un caso particolare del seguente

+oo
TEOREMA 5.1. Se x € L] ¢ integrabile con / x(t) dt =1, risulta
— o0

’

1
(5.1) nx(nt) — 0.
Dim. Consideriamo le primitive di nz(nt); poniamo

F(t) = /_ too a(r) dr

e Fp(t) = F(nt), Vn € N, Vt € R; le F}, sono assolutamente continue sugli intervalli limitati e
F! (t) = nz(nt). Inoltre risulta

—o0
/ z(t)dt =0, set <0,

lim Fp () = 7 =29,

1 / z(t)dt=1, set >0,

— o0
ovvero limy Fy,(t) = u(t), per ¢t # 0. Poiché supy |Fy| = supg |F|, le F, sono equilimitate. Pertanto,
fissata ¢ € Z, mediante il teorema di Lebesgue della convergenza dominata otteniamo
—+o0 —+o0
lim(Fo, o) =lim [ Fu@e@dt= [ u@ et = (ue),
— 00

—0o0

’
cioé Fip Z, u. Basta allora derivare, ricordando la (4.14), e usare la continuita dell’operazione di
derivazione: la (5.1) ¢ precisamente la convergenza delle derivate in 2’.

ESEMPIO 5.2. Ricordando (VIL.1.17) e esempio VII.2.20, otteniamo le seguenti
relazioni di limite:
n 2,5 ne 't 2,5 sinnt 2,5
(1 +n?t?) ’ VT ’ Tt '
Da quanto detto negli esempi 4.5 e 4.6, vediamo che qualsiasi distribuzione T puo
essere approssimata con delle funzioni. Se z € 2 nel teorema 5.1 (ad esempio, x
multiplo di « definita in (2.1)), le T,, = T * nx(nt) sono funzioni di classe C*° che

tendono a T in 2'.
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6. Distribuzioni temperate. Trasformazione di Fourier

Ci occupiamo ora di estendere la trasformazione di Fourier alle distribuzioni. De-
finiremo la trasformata di Fourier in un sottospazio di &', lo spazio delle distribuzioni
temperate, che si costruisce scegliendo come funzioni test le funzioni a decrescenza ra-
pida introdotte nel paragrafo X.3.1, procedendo esattamente come abbiamo fatto per
introdurre 2’ a partire da 2. Introduciamo una nozione di convergenza nello spazio

.

DEFINIZIONE 6.1. Siano (p,) una successione in .% e ¢ € .%; si dice che (¢,,)
. Lo 7 .
converge a @ in . e si scrive p,, — ¢ se, Vk,p € Ny, risulta

lim sup }tp [<p£{“) (t) — Sﬁ(k)(t)” =0.
n teR

Si dice distribuzione temperata ogni funzionale lineare e continuo su .. Lo spazio
delle distribuzioni temperate si denota con ..

Osserviamo che Z é un sottospazio di .¥; inoltre la convergenza in 2 ¢é piu forte
di quella in ., ciog, se (¢,) ¢ una successione in Z e ¢ € 7, vale 'implicazione

(6.1) ono = oD

Ne segue che, se T € ./, la sua restrizione a & ¢ lineare e continua su 2, cioé
appartiene a 2’. Inoltre si mostra che, se T, S € .%/,

(62) <T790>:<S;§0>7 Vpe? = <T7§0>:<va>a Vpe s

Pertanto ogni distribuzione temperata T € .’ ¢ identificabile con la sua restrizione
a 2, quindi ¢ una distribuzione in 2’. Equivalentemente, le distribuzioni temperate
sono gli elementi di 2’ prolungabili a . come funzionali continui.

ESEMPIO 6.2. Non tutte le distribuzioni regolari, cioé¢ le funzioni L] ., sono
distribuzioni temperate: € necessario un controllo sul comportamento all’infinito; ad
esempio, non individua una distribuzione temperata e’. Sono invece distribuzioni
temperate le funzioni L' (con la posizione (3.2)), L? e pitt in generale L? con 1 < p <
oo. Individua una distribuzione temperata ogni funzione z(t) per la quale esiste p > 0
tale che

x(t
14 tp
in particolare, ogni funzione a crescenza lenta, cioé per la quale esistono K > 0ep > 0
tali che

[z(t)] < K (1+ [t[7).
Sono altresi temperate le derivate di distribuzioni temperate, le distribuzioni periodi-
che, le distribuzioni a supporto compatto (ad esempio, la §). v.p. 1/t é temperata.

In effetti, mediante le funzioni a crescenza lenta si caratterizzano le distribuzioni temperate:

TEOREMA 6.3. Ogni distribuzione temperata é una funzione a crescenza lenta, o una derivata
di una funzione a crescenza lenta.

Si dice che T,, = T in .’ se {T,,, ) — (T, ), Vp € 7.
Introduciamo ora la trasformazione di Fourier in .7”.
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DEFINIZIONE 6.4. Se T € .%’, si chiama trasformata di Fourier di T, e si
denota con Z[T], la distribuzione temperata definita da

(6.3) <9[T]’ <,0> = (T, y[@b ) Vpe s

Dunque, la trasformazione viene scaricata sulla funzione test. Dal paragrafo X.3.1,
sappiamo che Z[y] € . & una funzione test per T € .’. Inoltre si mostra che
F:. S — & é continua, cioé

S 7
on — @ =  Floal — Flg|,

quindi il secondo membro di (6.3) ¢ continuo in ¢ e definisce effettivamente una
distribuzione temperata.

OsseRvAZIONE 6.5. Come ricordato, se ¢ ¢ una funzione a decrescenza rapida, tale risulta
pure la trasformata % . E interessante osservare che non vale I’analogo, se consideriamo lo spazio
2 di funzioni test. Se ¢ € Z e ¢ # 0, la trasformata .# ¢ non ha supporto compatto. In effetti,
Flpl(w) = Zle](jw) e £ ¢ ¢ una funzione intera; se .Z ¢ avesse supporto compatto, per il IT principio
di identita (teorema IV.1.7) risulterebbe Z ¢ = 0 e, per linvertibilita della trasformazione, ¢ = 0,
contro le ipotesi.

Notiamo che, se T = T, = x € L*, la (6.3) si riduce alla formula di moltiplicazione
(X.1.11); quindi anche la definizione di trasformata di Fourier di distribuzioni viene

introdotta a partire dal caso delle funzioni.
Per costruzione,

F: S =T
Si prova che la trasformazione ¢ lineare, continua e biunivoca, 'inversa ¢ definita da
(6.4) (FUT),0) = (T, F 7 el), Vpe,

con .7 ~Yy] data da (X.1.12), e risulta anch’essa continua. Si estendono inoltre le
proprieta note per la trasformata in L', ad esempio, le formule fondamentali:

(#I1) = ZI-itT@®),  FIT)=jwT).
Invero, verifichiamo la seconda:

(ZFIT'],0) = (T, Zle)) = ~(T, (F[¢))) = (T, F[-jte]) = (F[T],5te) = (jt FT], ).

Un altro approccio per definire la trasformata di Fourier in ./ ¢ mediante ap-
prossimazione: se x, sono funzioni convergenti in .’ alla distribuzione z € ., si
pone

Flx] = 1171313‘[%] in.".

Il limite esiste e non dipende dalla particolare approssimazione.
Notiamo il seguente risultato.

PROPOSIZIONE 6.6. Se T ha supporto compatto, Z T & una funzione di classe
C™ e risulta F T(w) = (T(t), e I«t).

Il crochet (T, e=7*%) va interpretato come in (4.8).

6.1. Esempi. e Calcoliamo .#[d]; per ¢ € ., abbiamo

+oo
(Z[0], ) = (6, Z[#l) = Z[p)(0) = / p(t)dt = (L, ),

e quindi
(6.5) Fo=1.
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Ad esempio, da (6.5) mediante la II formula fondamentale, ricaviamo
(6.6) F0'] = jw Z[0] = jw.

Alcuni risultati diventano particolarmente semplici quando vengono riscritti in
termini della trasformata di Fourier. Come illustrazione, traduciamo l’enunciato del
teorema 5.1 sulle d-successioni mediante la Z-trasformazione, nel caso x € L'(R).

L’ipotesi fj;o x(t) dt = 1 significa X (0) = 1, quindi per la formula di riscalamento

Flnznt)] = X(w/n) 2> X(0)=1= 2[5
Cancellando la trasformazione (antitrasformando), otteniamo la tesi del teorema.

e Analogamente alla trasformata di d, possiamo calcolare Z[1]:

+o0o
(#le) = (1 2leh = [ 2lelw) do =27 6(0)

per la formula di antitrasformazione in ., quindi
(6.7) F[]=270.

Notiamo che la (6.7) segue dalla (6.5) mediante la (X.1.14) (estesa a .#’), semplice-
mente applicando la .Z-trasformazione ad ambo i membri.
Usando (6.7) e la proprieta di traslazione in w, abbiamo

Fe] + Fle 7]

Flcost] = . = (8w —1)+6w+1))
Flsint] = Fle ];]«?[e—ﬂ [Gre g(é(w_ 1) = 6(w + 1))

Da (6.7) ricaviamo

Flt) =j.7[-jt-1] F] =2mj6 .

e Mediante la formula di Poisson (4.21) e le proprieta della trasformazione, da
(6.7) ricaviamo la trasformata del treno di impulsi:

1 X 27 X
T — o Flelkwot] — 20 i
Flse] = - > Fle == > 6w — kwo)
k=—oc0 k=—oc0
e quindi
(6.8) Fsr] = wo Swy -
e Risulta
1
(6.9) Flul=vp.— +70.
jw
Essendo v/ = 4, applicando la .Z-trasformazione, per la II formula fondamentale

troviamo jw .Z u(w) = 1, cioé la distribuzione temperata Y = & u risolve l'equazione
jwY = 1. Si ricava quindi

1
(6.10) Fu=vp —+cd,
Jw
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per un’opportuna costante c. Per calcolare ¢, osserviamo che u(t) + u(—t) = 1 q.o. e
quindi da (6.10) e (6.7), usando la formula di riflessione e ricordando che ¢ ¢ pari e
v.p. 1/w ¢é dispari, ricaviamo

1 1
P.— — V.p. — = = =1 =
v.p B +céd(w) —v.p T +cd(—w) =2cd(w) = .Z 2 d(w),

che implica ¢ = 7, ovvero la tesi.

ESEMPIO 6.7. Calcoliamo la trasformata di
1,t>0,
t) =
sen(t) {—1, t<0.

Osserviamo che risulta sgn(t) = 2u(t) — 1, per q.o. t € R. Ne segue

Flsen(t)] = F2u(t) — 1] =2 (V.p. jiw + 7r5) —2nd =v.p j%

ESEMPIO 6.8. Dall’esempio 6.7, applicando la trasformazione ad ambo i membri

segue Z[v.p.2/(jw)] = F|[F[sgnt]] = 2rsgn(—t) = —2wsgnt e quindi
(6.11) F {V.p. ﬂ = —jrsgnw.
ESEMPIO 6.9. Calcoliamo
)

La trasformata si ricava immediatamente dall’esempio X.1.4:

1 t t
—g|lag|Z = — e
x=slz[3n(3)]]-n(z)
Alternativamente,

X-7 Kv.p. 1) sint} _ % {y {v.p. ﬂ w-1)-7 [V.p. 1] W+ 1)},

quindi per (6.11)
X = _g [sgn(w — 1) — sgn(w + 1)] = 7 [u(w + 1) — u(w — 1)].

e Trasformata dell’integrale. Sia z € L'(R); la funzione

yt»—)/

é continua e limitata, quindi a crescenza lenta e dunque una distribuzione temperata.
Inoltre

y(t) = x = u(t).
Procedendo formalmente, otteniamo

7z [/t 2(s) ds] — X(w)- (V.p. Jiw + mS(w)> g )i(f:) + 7 X(0) 5(w)

-0
Tale formula é certamente valida se x ¢ nullo fuori di un intervallo limitato, essendo
allora X € C°. In generale, la formula richiede che esista v.p. X (w)/w: questo accade,
ad esempio, se & pure tx(t) € L', che assicura X € C!.
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6.2. Teoremi di campionamento. Calcoliamo la trasformata di una distribu-
zione periodica.

TEOREMA 6.10 (I teorema di campionamento). Sia
+oo

z(t) = Z xo(t —kT) in. S

k=—o00

e supponiamo che Xo(w) = Flxo] sia una funzione continua in R. In queste ipotesi,
risulta

+oo
(6.12) X(w) =wp Z Xo(kwo)o(w — kwo) .

k=—o00

Dim. Osserviamo che la replica periodica si ottiene come convoluzione di zg con il treno di impulsi
x = xo * $r (cfr. la seconda delle (4.12)), quindi trasformando e usando la formula per la trasformata
della convoluzione, abbiamo

X = Xo - wo Swy -

A questo punto non resta che applicare la proprieta di campionamento della d.

1
loc

zo(t) = x(t) [u(t) —u(t —7)],

la trasformata Xy € C°°, per la proposizione 6.6 (o anche il corollario X.3.3). Inoltre
(6.12) segue subito dallo sviluppo in serie di Fourier. Si verifica che 'uguaglianza

+oo
x(t) = Z cp e Fwot

Osserviamo che, se x € L; . & periodica di periodo 7 e

k=—oc0
vale in ./, dove i
1 /7 '
ck:f/ x(t) e IR0t gt kelZ,
T Jo
sono 1 coefficienti della serie di Fourier. Trasformando, abbiamo
+oo +oo
X= Y azldb = >" 2red(w—kwo)
k=—o0 k=—o0

e risulta
21 e, = wo Xo(kwo) , VkeZ.

ESEMPIO 6.11. Calcoliamo la Z-trasformata dell’onda triangolare x, replica
periodica con periodo 2 di

2ot) = A(t) = (1+ 1) [ult + 1) — u(®)] + (1 — ¢) [u(t) — u(t — 1)],

cfr. esempio VIIL.2.2 e esempio X.3.8. Essendo xg somma di segnali che sono prodotto
di un polinomio per una finestra, deriviamo nel senso delle distribuzioni fino a che non
rimangano solo impulsi:

zo(t) =u(t +1) — 2u(t) +u(t —1)
(solo derivata ordinaria, essendo xg assolutamente continua) e

zg(t) =06(t+1)—268(t) +6(t—1).
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Applicando la .Z-trasformazione, otteniamo quindi
—w? Xo(w) = e/ =24 7% = 2cosw — 2
da cui

(6.13) Xo(w) = 2 L8

w?

Notiamo che questa formula coincide con la (X.3.8).
Usiamo ora la formula (6.12) del I teorema di campionamento. Essendo il periodo
T = 2, risulta wg = 7; dunque

1—coskmn
Xo(kwo) = 2W

e conviene distinguere i casi k pari e k dispari:

0, per k # 0 pari,
X()(ko.)()) = 4

@n s 1)zaz Por k= 2n+ Ldispari, (n €Z).
Inoltre

Xo(0) = L})ILIBXO(W) =1.
Pertanto la trasformata della replica periodica é

4 X 1
(6.14) X(w) =md(w) + ~ > mé(w—(QnJrl)w).

La (6.14) ¢ in accordo con quanto visto nell’esempio VIIL.3.9.

ESEMPIO 6.12. Calcoliamo la trasformata e scriviamo la serie di Fourier della
replica periodica x di periodo 7 = 27 del segnale

xo(t) = tsint [u(t + m) — u(t — 7)].
Per trasformare xg osserviamo che zq(t) = j (—jt) yo(t), dove
yo(t) = sint [u(t + 7) — u(t — 7)),

quindi per la I formula fondamentale

X(](w) :] jiw }/()(UJ) >

Per calcolare Y), deriviamo yg due volte nel senso delle distribuzioni:
yh(t) = cost [u(t + ) — u(t — )],
(y{ coincide con la derivata ordinaria, essendo yg assolutamente continuo)
Y (8) = —yo(t) = 8(t + ) + 3(t — 7).

Applichiamo ora ad ambo i membri la .#-trasformazione; a primo membro usiamo la
IT formula fondamentale:

—w?Yy(w) = —Yo(w) — /™Y 4 eI
e quindi per w # +1
eITW _ eTITwW sin 7w
Y. = =2 ——
o) w? -1 T
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Dunque

X ciegnd sirumu_2 TcosmTw  2wsinmw
olw) = dw 1—w? ( heigd (1—w2)2>'
(X ¢ reale pari, com’era chiaro essendo x( reale pari.) Essendo il periodo 7 = 2,
risulta wy = 1 e dobbiamo campionare nei punti k£ € Z. Per k # +1, dalla formula
trovata ricaviamo
27 (—1)*
1 k2
D’altra parte, mediante la regola de L’Hopital, troviamo

Xo(k)

. . m(l—w?)cosmw+2wsinTw ™
Xo(1) = iﬂXo(w) = 20£1_)rn1 1= >

Possiamo anche valutare la derivata come segue

sinTw  sin7(l —w) 1-—w 9 ™ 9
= = O((w—-1)%) = O((w—1
T = ) Y 0w = 1) = T+ 0w = 1),
quindi
d sinmw o d ..
dw 1—w?| _; dw l4w|,_, 4
Inoltre Xo(—1) = Xo(1). Pertanto
T 0 27 (—1)k
X(w)=-50w-1)~58w+1)+ > T 0w — k).
keZ—{—1,1}
Lo sviluppo in serie di Fourier si scrive
eft eIt (k.
- ) jkt
x(t) 1 7 + Z 12 ©

kezZ—{—1,1}

coskt,

+oo k
cost (-1)
1——+2

che vale sia nel senso dell’energia che in quello puntuale.
Alternativamente, possiamo osservare che x si ottiene moltiplicando per sint la
replica periodica z di periodo 27 di

20(t) =tu(t+ ) —u(t —7)],
quindi X si ricava da Z mediante la formula di modulazione.

ESEMPIO 6.13. Calcoliamo la trasformata della replica periodica di periodo 7
del segnale

xo(t) = (cost — 1) [u(t + 7/2) — u(t)] + (1 — cost) [u(t) — u(t — 7/2)].
Osserviamo che xg ¢ dispari; invero, posto
x1(t) = (1 — cost) [u(t) —u(t — 7/2)],
risulta
zo(t) = 21(t) — 21(—1)

e quindi
Xo(w) = Xl(w) = Xl(—W) )
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Inoltre, posto
xo(t) = u(t) —u(t — 7/2),

abbiamo per la formula di modulazione

XQ(W — 1) + X2(w + 1)
B) .

La trasformata X5 si calcola subito in base alla definizione; per w # 0:

Xi(w) = Xo(w) —

WX
e Jv2 —1

X2<w>:/2 e/l dt = j
0

w
Pertanto per w € R — {71,0, 1}
e~ Jiws _ Feglefie -3 _1 e it F _1
X =J <
1§55 Cacgioppol 2 ( Baligeenica fo_dollg, 5o
_e’j“’%— ej“’%+jw
=il
w -1
e quindi
eTIWI 1 e IYI 4w e¥I -1 e¥E —juw
X = - —
ow) =7 w + w?—1 R— w?—1
cosTw—1 sin § w 2jw
=2j—2 125 2 _ _ .
] w e 1—w?2 1-—w?
Notiamo che X é funzione immaginaria dispari.
Alternativamente, per calcolare X, scriviamo
20(t) = aa(t) = 2a(0),

con

x3(t) =u(t 4+ 7/2) — 2u(t) + u(t — 7/2), x4(t) = cost x3(t) .

Per trasformare x3 deriviamo nel senso delle distribuzioni e applichiamo la trasforma-
zione:

eIWE 24 eIwW3E cosTw—1
Xa(w) = ‘ Sy LAy
jw w
Per trasformare x4, usiamo il metodo del riciclo: deriviamo due volte nel senso delle
distribuzioni

oy (t) = —za(t) + 0(t +7/2) — 6(t — /2) — 24" (t)
e quindi applichiamo la trasformata
2jsinfw—-2jw
1 — w?
In questa maniera ritroviamo ’espressione precedente

Xo(w) = Xy(w) — X3(w).

Essendo il periodo 7 = m, risulta wy = 2 e bisogna campionare negli interi pari: i punti
#+1 non intervengono nel campionamento. D’altra parte chiaramente X((0) = 0. Per

X4(w)
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k # 0, abbiamo
(—1)F —1 45k

Xo(2k) =2 -
0(2k) =2j—57 1 4k2
Cadiipc k=2npari,n#0
_ )T 1-16m2" ( » Tento A ’
o 1-2@2n+1
—2j k=2n+1 dispari.
T @ns DI —4@n+ DY’ P Caccioppol
Dunque

c n

n#0

1—2@n+n
—4J E: Gn+DA-a@n+17 @ 402

ESEMPIO 6.14. Calcoliamo la trasformata del prolungamento periodico del
segnale definito in (—m, ) ponendo

3sint, —mw<t<O0,
z(t)y =< .
sindt, 0<t<m.

Il prolungamento periodico x si ottiene come replica periodica di periodo 2 7 del segnale
l‘o(t) = 3$1(t) + l‘g(t) N
dove
x1(t) = sint [u(t + 7) — u(t)], xo(t) = sin3t [u(t) — u(t —m)].
Per trasformare x1, usiamo il metodo del riciclo; deriviamo due volte nel senso delle
distribuzioni:
z{(t) = —z1(t) — 0(t +7) — 6(t)
e applichiamo la trasformazione:
ed™w 41
X —
1) 1—w?

Analogamente per trasformare xs:
x5 (t) = —9xa(t) +36(t) +36(t — 7);
14 e Jmw

XQ(LU)Z?) 9—0.)2

Pertanto per w # £1 e w # +3
ejﬂw_|_1 1+ e—jﬂw

Xo(w) = 3X1(w) + XQ(OJ) =-3

1— w? 9 —w?
Risulta wg = 1; calcoliamo
. . A 3
Xo(tl)y=lim Xo(wp==3 lim S—rm=hli=Fgay;
. 14 edmw T
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Inoltre, per k € Z — {-3,-1,1, 3},

0, k dispari,
Xo(k) = 6 6 48 .
TR R ARy Fpar

Pertanto

X(w):§7rj[5(w+1)—5(w—1)]+gj[5(w+3)—5(w—3)]

2
+o0 1
—48 d(w—2n).
2 A—dn?) @ —dn) @20
n=-—oo
Lo sviluppo in serie trigonometrica é
3 1 48 <X cos2nt
6.15 t) = —sint+ —sin3t — — .
(6.15) o(t) = g sint + 5 sin 71'712:0(174712)(974n2)

Osserviamo che z(t) — % sint — % sin 3¢ é funzione pari, quindi il suo sviluppo contiene
solo termini in coseno, in accordo con quanto mostra la (6.15).

ESERCIZIO 6.15. Calcolare .Z[u(t —a) —u(t —b)] in ciascuno dei seguenti modi.
1) Mediante la definizione. 2) Riconducendosi a .Z[II] mediante le proprieta della
trasformazione. 3) Derivando nel senso delle distribuzioni. 4) Riconducendosi a .7 [u]
mediante le proprieta della trasformazione.

ESERCIZIO 6.16. Ricondurre il calcolo della trasformata del segnale periodico
z considerato nell’esempio 6.12 allo sviluppo in serie di Fourier dell’onda a dente di
sega, considerata nell’esempio VIII.3.8.

Vediamo ora la trasformata di un segnale campionato.

TEOREMA 6.17 (II teorema di campionamento). Sia
+oo

z(t)= > ylkr)dt—kr) inS,

k=—o00

con y(t) funzione continua a crescenza lenta. In queste ipotesi, risulta

—+oo
1
6.16 X(w)=— Y(w-—-k .
(6.16) @=7 3 Y- ke)
7. Trasformata di Laplace di distribuzioni

Estendiamo la trasformazione di Laplace alle distribuzioni. Poniamo

ZLa®))(o+jw) = F[a(t) e (),

supponendo che z(t) e~?? sia una distribuzione temperata. Ad esempio,
Zlo)=1.
Se z(t) ¢ nulla in | — 00, 0], la trasformata ¢ unilatera; la denotiamo con %,. Elen-

chiamone alcune proprieta:
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e X(s) = _%,[z] & una funzione analitica in un semipiano destro; inoltre
X'(s) = Zu|-tz(t)].
e La seconda formula fondamentale si scrive:
L) =5 Lulz] = s X(s).
Questa formula differisce solo apparentemente da quella per le funzioni.
e &, ¢ iniettiva.
Consideriamo il problema di Cauchy

(7.1) { P[D]y = 6(t)

y distribuzione nulla in | — oo, 0]

dove P[D] é un operatore differenziale lineare a coefficienti costanti. _%,-trasformando
ambo i membri, abbiamo

—_

e quindi
y(t) =2, [H(s)].
Pertanto la funzione di trasferimento H(s) ¢ la trasformata della risposta all’impulso

nel sistema ingresso—uscita rappresentato dall’operatore P[D].

ESEMPIO 7.1. Data la distribuzione f nulla in |—oc, 0], consideriamo il problema
(7.2) P[D]y =f
) y distribuzione nulla in | — oo, 0]
Da (4.16) segue
P[D|(y = f) = (P[Dly) = .
Quindi, se y risolve (7.1), ritroviamo che la soluzione di (7.2) &
yx*f.

Infatti,

PDJ(y=f)=(P[Dly)«f=0xf=f.



CAPITOLO XII

Problemi ai limiti

1. Introduzione

Consideriamo ’equazione differenziale ordinaria lineare del secondo ordine

(1.1) y' +ai(x)y +ax(x)y = f(z),

dove i coeflicienti a; e as e il termine noto f sono funzioni reali continue nell’intervallo
[a,b]. E noto che tale equazione ammette infinite soluzioni. In particolare, I'insieme
delle soluzioni dell’equazione omogenea associata

Y +ai1(z)y' +az(x)y =0

¢ un sottospazio vettoriale di dimensione 2 di C?[a, b]; se y1 e y2 sono integrali indi-
pendenti, 'integrale generale si scrive y = c1y1 + c2y2, con ¢1 e co costanti arbitrarie.
L’integrale generale dell’equazione completa (1.1) si scrive

(1.2) Y =cC1y1 +cy2 + 2,

essendo z una soluzione di (1.1).

Ricordiamo che il problema di Cauchy relativo all’equazione (1.1) consiste nell’as-
segnare i valori di y e di ¢’ in uno stesso punto dell’intervallo [a,b]. Vale il seguente
risultato di esistenza e unicita: per ogni zg € [a,b] e per ogni Yo,y € R, esiste un’u-
nica y € C2%[a,b] che soddisfa (1.1) in tutti i punti dell'intervallo [a,b] e verifica le
condizioni iniziali y(zo) = yo, ¥’ (x0) = (-

In questo capitolo esamineremo un problema diverso relativo all’equazione (1.1),
consistente nel ricercare soluzioni dell’equazione soddisfacenti una condizione in a e
una in b. Un problema di questo tipo, essendo le condizioni aggiuntive assegnate negli
estremi dell’intervallo, si dice problema ai limiti. Ad esempio, costituisce un problema
al limiti la ricerca di integrali y di (1.1) con valori assegnati y(a) e y(b) negli estremi.
Gli esempi seguenti mostrano che per i problemi ai limiti la situazione & notevolmente
diversa rispetto al problema di Cauchy.

ESEMPIO 1.1. Consideriamo il problema

y"+y=0 in[0,n]
(1.3) { y(0) = a, y(m) = B,

essendo « e [ costanti assegnate. L’integrale generale dell’equazione é
y=cjcosx + casinz,

con c; e cy costanti arbitrarie. Evidentemente, per ogni scelta delle costanti, risulta
y(0) = —y(7), quindi se il problema (1.3) ha soluzione, risulta necessariamente o =

182
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—f. E chiaro inoltre che, se tale condizione ¢ soddisfatta, sono soluzioni del problema
tutte e sole le funzioni

Y = QCcosSx + casinx,
con ¢y costante arbitraria; in particolare, il problema ha infinite soluzioni.
ESEMPIO 1.2. E subito visto che il problema
(1.4) {y”+y:01nmwm]
y(0) = o, y(w/2) =3,
ammette, per ogni « e 8 valori assegnati, I'unica soluzione
y=cacoszc+ Bsinz.
Piu in generale, invece di y(a) e y(b), si assegnano i valori delle espressioni
ary(a) + Pry'(a),  oay(b) + B2y’ (b),

essendo (a1, 81) # (0,0) e (ag,B2) # (0,0) coppie fissate. Dati due numeri reali v; e
v, consideriamo dunque il seguente problema

Y +a1(2)y' +as(@)y = f() in [a,
(1.5) { c19(a) + Py (@) = 11, cy(®) + Bry (0) = 72

OSSERVAZIONE 1.3. E sufficiente considerare i problemi con valori assegnati negli
estremi nulli. Invero, se w € C?[a, b] soddisfa le condizioni

ayw(a) + Brw'(a) =1, asw(b) + Baw'(b) = 72,
e yo € C?[a, b risolve

{ Yo + a1(x) yo + az(x) yo = f(z) — [w” + a1 (z) w’ + az(z) w]
aryo(a) + Pryola) =0, azyo(b) + B2yy(b) =0,

la somma y = yo + w risolve il problema

{ Y+ a1 (z)y +ax(x)y = f(x)
ary(a) + 1y’ (a) =71, azy(b) + B2y’ (b) = 12,

Notiamo che, comunque fissati w(a), w'(a), w(b), w’(b), & possibile trovare w polinomio
di grado non superiore a 3.

Un risultato che useremo spesso ¢ il seguente.

LEMMA 1.4. Se y1 e y2 sono derivabili e verificano le condizionsi
ary1(a) + Biyi(a) =0
ary2(a) + fryz(a) =0

con (a1, 1) # (0,0), il loro wronskiano si annulla in a:

(1.6)

yi(a)  y2(a)

W@ = \yi0) wia)

=0.

Dim. Le (1.6) possono essere riguardate come un sistema lineare omogeneo nelle incognite a1 e 81, il
cui determinante dei coefficienti é il wronskiano di y1 e y2, calcolato in a. Poiché il sistema ammette
una soluzione (a1, 1) # (0,0), risulta W(a) = 0.
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2. Equazioni in forma autoaggiunta

Riscriviamo l'equazione (1.1) in una forma pit maneggevole per i nostri scopi. La

funzione
p(m) _ efa ay(T)dr

appartiene a C''[a, b] ed é positiva in ogni punto, quindi equazione (1.1) é equivalente
alla seguente
(2.1) —p(@)y" —p(x) ar(2) y' — p(z) az(z)y = —p(z) f(=),
ottenuta moltiplicando ambo i membri per —p(z). Osservando che p’ = pa; e ponendo
q=—paz, F=—pf, la(2.1) diviene
(2.2) —(p(@)y) +alz)y = F(x).
La (2.2) si chiama equazione in forma autoaggiunta. Nel seguito considereremo sempre
equazioni in forma autoaggiunta. Introdotto 'operatore differenziale lineare (in forma
autoaggiunta)

(2.3) LiyeClab] - —(p@)y) +qla)y € Cla.b],

I’equazione si scrive semplicemente

Ly=F.
Per 'operatore £ vale la seguente identita di Lagrange, per ogni y, z € C?[a, b]:
(2.4) 2Ly —yLz=(p(yz' —y'z)) =(@W),

di facile verifica diretta. W & il wronskiano di y e z.
Mettiamo in luce una proprieta dell’operatore L che giustifica I'appellativo di
autoaggiunto. Consideriamo il sottospazio dello spazio reale L?(a,b)

(2.5) X ={y € C%[a,b] : ary(a) + B1y/(a) = aay(b) + B2y (b) = 0}
LEMMA 2.1. Per ogni y,z € X, risulta
(2.6) (Ly,z) = (y,Lz).

Dim. Per il lemma 1.4, il wronskiano di y e z si annulla in a e b, W(a) = W(b) = 0, quindi, per
I’identita di Lagrange,

b
(Ly,2) — (y,£2) = / (sLy — yCz) de = [pW]5 = 0.

3. La funzione di Green. Il teorema dell’alternativa

Osserviamo che l'introduzione dello spazio in (2.5) consente di scrivere sintetica-
mente le condizioni ai limiti: y € X.
Consideriamo il problema ai limiti

Ly=f

o (o7

e il corrispondente problema relativo all’equazione omogenea associata
Ly=20

(3.2) { Y

dove p € Clla,b], p > 0, q, f € Cla,b].



3. LA FUNZIONE DI GREEN. IL TEOREMA DELL’ALTERNATIVA 185

PROPOSIZIONE 3.1. Se il problema (3.2) ammette solo la soluzione banale, il
problema (3.1) ammette, per ogni f € Cla,b], un’unica soluzione.

L’unicita & chiara. Per costruire una soluzione del problema (3.1), consideriamo
soluzioni non banali y; e yo dell’equazione omogenea associata Ly = 0, verificanti
rispettivamente le condizioni

(3.3) ayi(a) + Pryy(a) =0, oy (b) + Bayz(b) = 0.

Possiamo determinare y; risolvendo il problema di Cauchy

{ Ly=0
y(a) = —pu, y’(a) =

e similmente y- risolvendo il problema di Cauchy

{ Ly=0

y(b) = —B2, y'(b) = ay

E chiaro che risulta

(3.4) azy1(b) + B2y (b) #0,  arya(a) + Prys(a) #0.

Ad esempio, se fosse aoy1(b) + B2y} (b) = 0, la funzione y; sarebbe soluzione di (3.2)
e quindi, per l'ipotesi, sarebbe la soluzione banale, che ¢ falso. Le (3.4) implicano che
Y1 € Yo sono indipendenti: se fossero dipendenti, sarebbero proporzionali e quindi le
(3.4) sarebbero in contrasto con le (3.3).

Determiniamo la soluzione di (3.1) mediante il metodo di Lagrange della variazione
delle costanti, che consiste nel cercare y sotto la forma

(3-5) y(x) = cr(z) 41 (2) + ca(2) ya(2)

con ¢ e ¢y funzioni da determinare. L’equazione Ly = f é una condizione da soddi-
sfare, mentre abbiamo due funzioni da determinare: possiamo pensare di imporre una
condizione aggiuntiva su c¢; e c3. Essendo

Ly = Llcryr + cayp] = *(P (cryr +c2 y2)/)/ +q(cryr +c2y2),
dobbiamo calcolare y' = (¢1 y1 + ¢2 ¥2)’; imponiamo la condizione
Ay +chy2 =0,
che garantisce che la derivata di y si calcoli come se ¢; e ¢o fossero costanti:
(3.6) (cr1yr +cay2) =cry] +cays.
A questo punto

~(pleryr +e22)) = —((0¥}) 1)

!

— ((pyh) e2)’

=—(py1) 1 —pyich — (Pys) ca —pysch

Lleryr +eaye] = 1 Lya] + 2 Lly] —p(yr¢1 +ya¢5) = —p (Y1) +ya65).
Pertanto la condizione Ly = f si scrive y] ¢} + y4 ¢ = —f/p e giungiamo al sistema

{ hyr+chy2 =0
QYL+ cyyy=—f/p
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nelle incognite ¢} e ¢,. Il determinante dei coefficienti ¢ il wronskiano W che risulta
diverso da zero in ogni punto, essendo y; e y2 indipendenti. Ricaviamo pertanto

ZL‘O vl Sy Ly 0| Sy

W =f/p vl pW’ P W i —f/p| T pW
Osserviamo che la funzione pW & costante in [a, b], poiché per l'identita di La-

grange

!
1

(pW) =y2Llyr —y1Ly2 =0,
essendo Ly, = Ly, = 0.
Ricordando che 3’ si calcola come se c¢; e co fossero costanti, vediamo che la
condizione aiy(a) + B1y'(a) = 0 diviene

0= c1(a) (aay1(a) + Pryi(a)) + c2(a) (eny2(a) + Brys(a) ,

e quindi, per (3.3) e (3.4) equivale a ca(a) = 0. Allo stesso modo, la condizione
agy(b) + B2y’ (b) = 0 significa ¢;(b) = 0. Pertanto

x b
cm):}% / F(€) i (€) de q(m)z—ﬁ / F(E) ya(€) de

ed in definitiva

x b
B7) oy = —]% lyz(x) / F(E) 11 (€) dé + 31 (x) / 1) 12(6) dg] .
Se poniamo
Y1 (3?) yz(f)
oW a<wr<E<Dh
(3.8) G(z,6) =

4&%%$Q,a§£§x§b

possiamo riscrivere (3.7) come segue

b
(3.9) y@%=/<%%®f@ﬂé

La funzione G = G(x, &) si dice funzione di Green del problema (3.1). Essa ¢ reale,
continua in [a,b]? e simmetrica, cioé verifica G(z, &) = G(&, ).
¢ i,
bn ey
_ n@p(©

Glr.§) = -1

o -
[y S

ESEMPIO 3.2. Troviamo la funzione di Green relativa al problema

{ -y =f in[01]
y(0) =y(1) =0
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L’equazione omogenea associata ¢ —y”’ = 0, il cui integrale generale ¢ y = ¢o+ ¢y, con
o e ¢ costanti arbitrarie; possiamo scegliere y;(x) = z e ya(x) = 1 —z. Il wronsikiano

z 1—=x
1 -1
e poiché p = 1, risulta pWW = —1. Pertanto

z(l-¢), 0<a<{<1

W = =—<z—-142z=-1

G(z,¢) =
1-2)¢, 0<&<az<1

ESEMPIO 3.3. Troviamo la funzione di Green relativa al problema

{ -y —y=f in[0,7/2]
y(0) =y(7/2) =0

L’equazione omogenea associata ¢ y” +y = 0 e possiamo scegliere y;(x) = sinz e
ya2(x) = cosx. Il wronsikiano &

sinx cosx

cosr —sinx

e risulta pW = —1. Pertanto

sinzcosé, 0<ax<EL

IE

G(z,§) =

sinfcosr, 0<E{<x< 3

Elenchiamo ulteriori proprieta della funzione di Green. Per ogni £ € ]a, b fissato,
risulta:
e G(-,¢) € Cla,bNC?([a,b]—{£}), con & discontinuita di I specie per le derivate
e risulta LG(-,€) =0 in [a,b] — {&} e valgono le condizioni ai limiti
O[lG(CL,f) +61Gm(aa 5) - 07 aQG(ba 5) +62Gx(ba 5) - 07
e p(:)G.(+€) ha in x = £ salto di discontinuita pari a —1.
Le prime due si verificano immediatamente, osservando che su [a, £[ la funzione G(-, §)

¢ proporzionale a y;, mentre su |£,b] & proporzionale a y,. Calcoliamo il salto di
discontinuita. La derivata é

Y1 () y2(§)

—Scuggy £ o a<lxz<E
(3.10) Gleg=y
y1(§) vo(x
o §<z<b
e quindi
POICE+.6) = Cale= €] = gy 1 (€) () ~ 1 (©)1a(6)] = L.

Usando le proprieta di G, & possibile anche verificare a posteriori che, per ogni f €
Cla, b], la funzione y data dalla (3.9) ¢ di classe C?[a, b] e risolve il problema (3.1).
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OSSERVAZIONE 3.4. Per ogni & € ]a, b| fissato, la funzione G(-, ) soddisfa 'equa-
zione

(3.11) LG(-&) =6(-—¢)
nel senso delle distribuzioni. Per questo motivo, G si dice soluzione fondamentale del
problema (3.1).

Per la verifica, osserviamo che la derivata distribuzionale di G(-,€) coincide con
quella ordinaria, che & data dalla (3.10). La derivata distribuzionale di p G, (-, ) risulta
somma della derivata ordinaria (che esiste in [a,b] — {£}) ed un impulso concentrato
in &, di area pari al salto di discontinuita in tale punto, che come osservato vale —1.

A complemento della proposizione 3.1, enunciamo il

TEOREMA 3.5 (dell’alternativa). Si verifica una delle due eventualita:

(1) 4l problema (3.2) ha solo la soluzione banale e, per ogni f € Cla,b], il
problema (3.1) ha un’unica soluzione;

(2) il problema (3.2) ammette soluzioni non banali e il problema (3.1) ha solu-
zione se e solo se f & ortogonale a tutte le soluzioni di (3.2).

In altri termini, unicita e risolubilita per ogni f o valgono entrambe o falliscono
entrambe.

4. Il problema di Sturm-Liouville

Assegnate le funzioni continue p, q,r sull’intervallo [a,b], con p derivabile e p’
continua, consideriamo ’equazione omogenea

(4.1) ~(p(2)y) +a(z)y = Mr()y,
dove A ¢ un parametro numerico. Date (a1, 1) # (0,0) e (ag, B2) # (0,0), conside-
riamo il problema di Sturm—Liouville

(4.2) { —(p(x) y/)/ + q(x) y= )‘T(x) Y
ary(a) + P1y'(a) =0, axy(b) + B2y’ (b) =0

consistente nella ricerca di integrali dell’equazione verificanti le condizioni negli estre-
mi. La funzione identicamente nulla banalmente risolve (4.2), per ogni valore del
parametro A\. Un valore di A per cui esistono soluzioni non banali si dice autova-
lore del problema; ogni soluzione non banale corrispondente si dice autofunzione, o
autosoluzione, associata all’autovalore A. Per 'omogeneita del problema, le autofun-
zioni relative ad un fissato autovalore (aggiungendo la soluzione banale) formano uno
spazio vettoriale, che si dice autospazio. Un autovalore si dice semplice se il relativo
autospazio ha dimensione 1.

Come osservato, le condizioni ai limiti si esprimono mediante la relazione y € X,
essendo X definito in (2.5), e il problema (4.2) si riscrive

(4.3) { gyE:XM(x) ’

ESEMPIO 4.1. Consideriamo il problema di Sturm—Liouville

y'+Ay=0 1in [0,7]
(44) { y(0) = y(r) = 0
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Per A = 0 il problema ha solo la soluzione banale. Infatti, I’equazione diviene 3" = 0,
quindi y(z) = co+crz, con ¢ e ¢ costanti. Imponendo le condizioni ai limiti, troviamo
y=0.

Anche per A < 0 c’é¢ solo la soluzione banale. In effetti, 'integrale generale
dell’equazione differenziale ¢ y(z) = ¢; eV—ArT 4 Co e"/j’”, con ¢ e co arbitrarie.
Imponendo le condizioni ai limiti, perveniamo al sistema

{ y(0) =1+ =0

y(r) = VAT Lpe VAT =
nelle incognite ¢; e ¢o. Essendo il determinante dei coefficienti
1 1

AT e\/j)\‘/r?éo’

= e

e\/—kﬂ' e —AT

deve essere ¢; = ¢ = 0, cioé come detto y = 0.

Consideriamo il caso A > 0. L’integrale generale dell’equazione si scrive y(z) =
c1 coS VAT + o sin VA T, con c; e co arbitrarie. Esaminiamo le condizioni ai limiti.
Chiaramente 5(0) = ¢; = 0. Inoltre y(7) = cysin VA7 = 0 e poiché stiamo cercando
di soddisfare tale condizione con ¢y # 0, dobbiamo avere sin v Ar = 0, vale a dire

VAT =nr, neN.
Pertanto il problema ammette soluzioni non banali in corrispondenza dei valori
My =12, neN.

Questi sono dunque gli autovalori del problema e, per ogni n € N fissato, le autofun-
zioni associate a A, sono y(z) = csinnx, al variare di ¢ # 0.

Nell’esempio discusso il problema ammette una successione di autovalori: questo,
come vedremo, accade in generale. Un’altra proprieta che vale in generale é I’ortogo-
nalita di autosoluzioni corrispondenti ad autovalori distinti. In effetti, le autosoluzioni
sin nx sono a due a due ortogonali: se n % m, risulta

s s
/ sin nz sinmx dx = 2 / sinnzsinmzdr =0.
0 —T

Precisamente, vale il seguente risultato

PROPOSIZIONE 4.2. Supponiamo p, p’, q, v funzioni reali continue in [a,b].
Se Ym € yn sono autofunzioni del problema (4.2) associate agli autovalori \py e Ay
distinti, esse sono ortogonali rispetto al peso r, cioé risulta

b
(4.5) / Ym (z) yn(z) r(z)de = 0.

Dim. La proprieta di ortogonalita segue subito dal fatto che £ é autoaggiunto. Invero, risultando
Ym,Yn € X, abbiamo

A (T Yms yn) = (LYms Yn) = Ym, LYn) = An (Ym, 7 Yn)
e quindi la tesi, essendo Ay, # Ap.

OSSERVAZIONE 4.3. In casi particolari, possiamo concludere con 'ortogonalita an-
che indebolendo o modificando le condizioni ai limiti. Ripercorrendo la dimostrazione
del lemma 2.1, vediamo quanto segue:

se p(a) = 0, possiamo rinunciare alla condizione nell’estremo a;
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se p(b) = 0, possiamo rinunciare alla condizione in b;
se p(a) = p(b), Vortogonalita vale se W(a) = W(b), che certamente &
soddisfatta nel caso delle condizioni y(a) = y(b) e y'(a) = y'(b).

Ci occupiamo adesso dell’esistenza di autovalori. Consideriamo il particolare
problema di Sturm-Liouville

—(y) +ay
4.6
(*9) L L
che si chiama problema di Picard.
TEOREMA 44. Sep > 0, r > 0 e g > 0, il problema (4.6) ammette una

successione di autovalori, che sono positivi e semplici; possono essere ordinati in una
successione crescente

=Ary
0

D<A <A< <A< -ee
e risulta lim, A\, = +o00. Le relative autofunzioni y,, n € N, formano un sistema
ortonormale completo. Inoltre, per ogni n > 1, la autofunzione y, ha esattamente
n—1 zeri in Ja,b|.
L’ortogonalita ¢ intesa rispetto al peso r, cfr. (4.5).
Dim. Ci limitiamo a verificare alcune delle affermazioni contenute nell’enunciato.

o Gli autovalori sono positivi. Se A & un autovalore e y una autofunzione associata, moltiplicando
scalarmente ambo i membri dell’equazione per y, troviamo (Ly,y) = A (ry,y). Inoltre

b b
(Ly,y) :/ [~y + qylydz = —[py’y]ZJr/ p(y")? + qy®] da
b
= [+ ar?lde >0

b
(ru.9) = [ oy do >0,
a

dunque A > 0.

e Gli autovalori sono semplici. Siano y; e y2 autovettori relativi ad uno stesso autovalore A;
dunque essi sono soluzioni di una medesima equazione omogenea. Il wronskiano
yi(z)  y2(z)
yi(x)  yi(@)
si annulla in a e in b, quindi, come & noto, ¢ identicamente nullo sull’intervallo, W = 0, e i due
integrali sono linearmente dipendenti.

W(z) =

Il teorema 4.4 si applica al problema (4.4). In particolare, & chiaro che la autoso-
luzione y,(x) = sinnz ha n — 1 zeri in |0, 7[.
5. L’equazione di Bessel
Un esempio fondamentale € costituito dall’equazione di Bessel

7 l/ 712 _
(5.1) y+oy+(1-—5)y=0,

dove v & un parametro, in generale complesso. Gli integrali di (5.1) si dicono funzioni
di Bessel di parametro (o ordine) v.
L’equazione si integra per serie: é possibile trovare un integrale del tipo

+oo +oo
(5.2) y(x) = a Z ap 22k = Z ap 2
k=0 k=0



5. ’EQUAZIONE DI BESSEL 191

Tralasciando i calcoli, da (5.2) troviamo l'integrale (I" ¢ la funzione gamma di Eulero,
cfr. paragrafo IV.3):

(— 1)k 2k+v
(53) J it k' 1_‘ k+1+V) (*) 9

che si chiama funzione di Bessel di prima specie. La serie converge per ogni x e
definisce J,(z) come prodotto di 2 per una funzione trascendente intera.

Essendo 1/T funzione intera, J, ¢ definita dalla (5.3), Vv, e risolve 'equazione
(5.1).

Per scrivere l'integrale generale, abbiamo bisogno di due integrali linearmente
indipendenti. Osserviamo che I'equazione (5.1) non cambia mutando v in —v e quindi
sara integrale anche J_,:

(54) Zk'rk+1—u) <*>2k R

Come detto v € in generale complesso; noi ci limiteremo a v reale, » > 0. Se v non é
intero, J, e J_, sono linearmente indipendenti; ad esempio (per v > 0), risulta

lim J,(z) =0,  lim |J_,(z)] = o0.
z—0 z—0

ESEMPIO 5.1. In base alla definizione

too k 2 4 6
(=1)F rax\2k x x x
J = — = 1—— _— = ..
o) kZ:O (kD)2 (2) T 61 2304 "

2k+1 g ) x2 ozt x8
Zk' k+1 ( ) _2{ _8+192_9216+"'}'

Calcoliamo J 1e J_ 1 Immediatamente dalla definizione abbiamo

_1 to© k
_(T\2 (-1 2%+1
%(x)_<2> ’;22k+1k!1“(k+1+1/2)x '

Pertanto, ricordando (IV.3.6),

2 1 XX (D 3 g di |
J%(CU) z /7 Z(Q(k—|-)1)!x2k+ Z\/;smx.

J

Analogamente

M\»—A

)k
\[ Zz%klr k+1/2) " e

Nel caso che v sia intero, i due integrali definiti da (5.3) e (5.4) risultano linear-
mente dipendenti.
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5.1. Zeri delle funzioni di Bessel. Supporremo in questo paragrafo v reale e
v > —1. La funzione J, ha in ]0, +00[ una successione di zeri

£V,1<€u,2<"'<§y,k<"'

Le funzioni

(5.5) z €10,1] — J (& k), k=1,2,...

posseggono una proprieta di ortogonalita che é contenuta nell’'uguaglianza
1 0, se h #k

(5.6) /0 xJy (&) I (& px) de = %[J,L(fu7h)]2 seh—k

Tale proprieta si puo ricondurre al risultato di ortogonalita tra autofunzioni di pro-
blemi ai limiti, relative ad autovalori distinti. Ci limitiamo a mostrare la prima delle
(5.6). Invero, come si verifica facilmente, per ogni & > 0, la funzione y(z) = J, (£ )
risolve la seguente equazione

1 l/ 2_1/72 —
(5.7) Yoy +(€- 5 )y=0,

ovvero, in forma autoaggiunta,
2

v
(5.8) —(@y) + —y=Ery,

che ¢ del tipo (4.1) con p(x) = x, q(z) = v?/x, r(z) = v e A = £2. Notiamo che
p(0) = 0, quindi possiamo usare l'osservazione 4.3. Fissati &1,&s > 0 zeri distinti,
consideriamo y1(x) = J,(§12) e ya2(x) = Jy(§22). Poiché yo(1) =0 = y1(1), se & e &
sono zeri distinti, troviamo

/ zy1(x) yo(x)dx =0.
0



CAPITOLO XIII

Equazioni differenziali alle derivate parziali

1. Generalita

Un’equazione differenziale alle derivate parziali é un’equazione del tipo
ou ou omu omu\ 0
3z o B B ) T O

che esprime un legame (mediante la funzione F') tra la funzione di pit variabili u,
le variabili indipendenti z1,...,z,, ed alcune derivate di u. L’ordine massimo m di
derivazione che compare nella (1.1) si chiama ordine dell’equazione. Una soluzione
classica dell’equazione € una funzione w di classe C™ in un aperto di R™ verificante
I’equazione in ogni punto.

L’equazione si dice lineare se F' dipende linearmente da u e da tutte le sue derivate.
Un’equazione lineare del secondo ordine in due variabili si scrive

0%u 0%u 0%u ou Ou
a1 5 F2a12 57— +ax 5 +b1 — +by — +cu=f,

Ox? Oz Oy Oy oz Oy
con i coefficienti a;j, b;, c e il termine noto f funzioni di x e y.

Le piu importanti equazioni a derivate parziali della fisica matematica sono di
questo tipo. Pertanto é su di queste che ci concentreremo. Prevalentemente, conside-
reremo equazioni in due variabili (1.2).

(1.1) F (xl,...7 T,y U,

(1.2)

ESEMPIO 1.1. Le equazioni di Laplace e di Poisson sono

(1.3) Au =0, Au=f,
dove , ,
0 0

Af@‘}'""”@

¢ loperatore Laplaciano, spesso indicato anche con V2.
L’equazione delle onde (in due variabili) &

0?u  O%u
14 — —— =0.
(14) oxr2  0Oy? .
L’equazione del calore (in una variabile spaziale) &
ou  d*u
1. — ==
(15) ot Ox? %

Nelle applicazioni, una questione fondamentale consiste nel ricercare una soluzione
di un’equazione differenziale in un dominio D, soddisfacente ulteriori condizioni sulla
frontiera di D. Tale questione si chiama problema al contorno per un’equazione alle

193
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derivate parziali ed & di essa che ci occuperemo prevalentemente, per 'equazione (1.2).
Il tipo di condizioni aggiuntive dipende dal segno del determinante

(1 6) A= a1l a2

Su di esso si basa la classificazione delle equazioni differenziali del tipo (1.2).

A >0 in D: 'equazione si dice ellittica;

A <0 in D: V'equazione si dice iperbolica;

A =0 in D: l'equazione si dice parabolica.
L’equazione si dice di tipo misto se in D si verificano almento due delle condizioni
precedenti. L’equazione di Laplace é ellittica; I’equazione delle onde é iperbolica;
I’equazione del calore ¢ parabolica.

2. Equazioni di Laplace e Poisson

Sia € un aperto di R"™; le soluzioni dell’equazione di Laplace

0%u 0%u
Ox? 0x?
si dicono funzioni armoniche in 2. Piu generale é ’equazione di Poisson
Au=f inQ,

essendo f continua in (). Per tale equazione consideriamo due problemi al contorno.
Sia D un dominio regolare (connesso).

Problema di Dirichlet. Cerchiamo u € C2(D) N C°(D) tale che

{Au:f in D

(2.1)
u=gq su F'D

dove f continua in De g continua su F'D sono funzioni assegnate.
Problema di Neumann. Cerchiamo u € C2(D) N C*(D) tale che

{Au:f in D

g—g:g su FD

(2.2)

dove f continua in D e g continua su F'D sono funzioni assegnate. v é il versore

normale a F'D orientato verso ’esterno e g—g ¢ la derivata normale.

Le questioni che esamineremo sono: esistenza e unicita di soluzioni, dipendenza
della soluzione dai dati f e g. Fondamentale per affrontare questi problemi ¢ lo studio
delle proprieta delle funzioni armoniche.

2.1. Funzioni armoniche. Sia  un aperto di R”. Una funzione u € C?(2)
si dice armonica in 2 se il suo laplaciano é identicamente nullo nell’aperto, Au = 0.
Come visto nella proposizione I1.1.7, sono funzioni armoniche in due variabili parte
reale e coefliciente dell'immaginario delle funzioni olomorfe.

Elenchiamo alcune proprieta fondamentali delle funzioni armoniche.

TEOREMA 2.1 (Indefinita derivabilita). Ogni funzione armonica in § & di classe
C>=(9Q).
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TEOREMA 2.2 (Proprieta di media). Sia w armonica in Q. Per ogni sfera
chiusa B = B(Py,r) contenuta in §Q, risulta

(2.3) u(Pp) = HHS% /FB u(P)do.

Ad esempio, in due variabili B ¢é il cerchio di raggio r e centro Py = (xo,¥o),
v = FD ¢ la circonferenza che lo delimita, di lunghezza 27r; 'uguaglianza (2.3)
diventa
1
2.4 = — ds.
(2.4 o) = g [ (e s

OSSERVAZIONE 2.3. (a) La proprieta di media sulle superfici sferiche espressa dalla
(2.3) & equivalente alla versione sulle sfere piene

(2.5) w(Py) = m; P /B w(P)dP.

In effetti, la (2.5) segue dalla (2.3) integrando in coordinate sferiche; la (2.5) implica
la (2.3) derivando rispetto al raggio r di B.

(b) La proprieta di media caratterizza le funzioni armoniche, nel senso che, se
u € C°(Q) verifica la (2.3) per ogni sfera chiusa B C (, essa ¢ armonica in Q, cio¢
u€ C%Q) e Au=0.

TEOREMA 2.4 (Principio del massimo). (a) Ogni funzione non costante armo-
nica in un aperto connesso & priva di estremi relativi. (b) Sia D un dominio limitato;
una funzione u € C2(D) N CY(D) armonica in D assume massimo e minimo sulla
frontiera:

minu < u(P) < maxu, VPeD.
FD FD

Dimostreremo queste proprieta in dimensione 2, ricavandole da noti risultati per
le funzioni olomorfe. Per fare questo, dobbiamo invertire in un certo senso la proposi-
zione I1.1.7. Precisamente, cerchiamo di capire se, assegnata una funzione u armonica
in un aperto Q di R?, esista una funzione f olomorfa in Q di cui essa ¢ la parte reale,
cioé esista v definita in  tale che f = uw + jv sia olomorfa nell’aperto. Una v con
tale proprieta sara anch’essa armonica e si dird armonica coniugata a u; il legame tra
u e v é costituito dalle condizioni di Cauchy-Riemann (I1.1.6), quindi v ha le deriva-
te parziali assegnate. E chiaro dunque che v deve essere una primitiva della forma
differenziale

(2.6) —uy de + uz dy .

La condizione di chiusura della forma (2.6) si scrive —u,, = uz, e quindi equivale alla
armonicita di u. Dunque

PROPOSIZIONE 2.5. In un aperto semplicemente connesso, ogni funzione ar-
monica & dotata di armonica coniugata, cioé & la parte reale di una funzione olomorfa.

La proposizione 2.5 consentira di dedurre le menzionate proprieta per le funzioni
armoniche a partire da quelle delle funzioni olomorfe. Un esempio é quello della inde-
finita derivabilita; per definizione, una funzione armonica ¢é di classe C2, ma essendo la
parte reale di una funzione olomorfa, essa risulta di classe C'>°. Nel caso in cui 2 non
sia semplicemente connesso, in generale non possiamo vedere una funzione armonica
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come parte reale di una funzione olomorfa. Possiamo pero fare questo localmente,
cioé in un intorno del generico punto di 2; questo consente ugualmente di ottenere
la regolarita C'*°: per verificarla, basta ragionare sui cerchi (che evidentemente so-
no semplicemente connessi) contenuti in §2. Ricordiamo la proprieta di media per le
funzioni olomorfe, cfr. paragrafo IV.2. Sia f olomorfa in €2; per ogni cerchio chiuso
B(zg,7) C Q, detta v(r) la frontiera, risulta

fleo)= — [ f(z)ds.

211 J ()

Scrivendo f = u + j v in forma algebrica, abbiamo

1

w(zo, yo) + jv(xo,y0) = o /( )[U(xay) + jv(x,y)]ds
~(r

e la (2.4) si ottiene separando reale dal’immaginario. Mediante la proprieta di media,
si dimostra il seguente

TEOREMA 2.6 (di Liouville). Una funzione armonica in tutto lo spazio R™, che
sta limitata superiormente o inferiormante, é costante.

Dim. Ad esempio, supponiamo u > 0 armonica in R™ e mostriamo che u & costante. Scelto Py € R™
arbitrariamente, per la proprieta di media abbiamo, Vr > 0, (per comodita di notazioni, cosideriamo
il caso n = 2)

1 ORy)?

— u(P)dP < — w(P)dP = w u(0).

w2 JpyP<r w2 Jop<ryop, wr

Passando al limite per 7 — +o0, troviamo u(Pp) < u(0). Scambiando il ruolo di Py e O, otteniamo

laltra disuguaglianza u(O) < u(Py) e quindi u(Py) = u(O). La tesi segue per l'arbitrarieta di Pp.

u(Po) =

Il principio del massimo segue dalla proprieta di media. Ci limitiamo per sempli-
cita ai punti di estremo assoluto: supponiamo P, punto di massimo assoluto di u in
) e mostriamo che la funzione é costante. Cominciamo mostrando che u é costante
su un qualsiasi cerchio chiuso B = B(FP,r) contenuto in . Per la proprieta di media
(2.5), abbiamo

u(Pp) = %/BU(P) dpP

e quindi
/ [u(Py) — u(P)]dP =0.
B

L’integrando ¢ non-negativo, quindi esso ¢ identicamente nullo, cioé u = u(Fp) su B.
Il ragionamento precedente mostra che l'insieme

E={PcQ : ulP)=maxu }

é aperto. Per la continuita di u, ¢ aperto anche il complementare (2 — E e quindi,
essendo 2 connesso e E # () poiché Py € E, risulta E = §, cio¢ u ¢ costante in 2. Nel
caso di un punto di minimo, si ragiona allo stesso modo.

L’altro enunciato segue poi da questo. Notiamo che per il teorema di Weierstrass
u € dotata di minimo e di massimo in D. Se uno di essi fosse assunto in un punto
interno, u sarebbe costante (almeno se Deé connesso) e il risultato sarebbe banale. Si
mostra che I'ipotesi di connessione non é necessaria.
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OSSERVAZIONE 2.7. L’ipotesi di limitatezza di D & essenziale. Ad esempio, la
funzione u(x,y) = e*siny & armonica nella striscia D = R X [0, 27], identicamente
nulla sulla frontiera, ma

infu=—o0, sup u = 400.
D D

Dal principio del massimo segue subito un risultato di unicita per il problema
(2.1) di Dirichlet relativo all’equazione di Poisson.

COROLLARIO 2.8. Il problema di Dirichlet per I’equazione di Poisson ha al pit
una soluzione.

Dim. Se u; e u2 sono soluzioni, la differenza u = u1 — u2 verifica Au = 0, cioé é armonica, in De
u =0 su FD. Pertanto u = 0 in D, cioé u; = uo.

Veniamo al problema di Neumann. Ricaviamo alcune identita integrali che vanno
sotto il nome di formule di Green. Cominciamo con alcune uguaglianze ovvie; se
u € C?(D) e v € CY(D), risulta

Ay =divVu, div(v Vu) = Vu - Vo + v Au.

Applichiamo il teorema della divergenza al campo vettoriale v Vu:

(2.7) /(Vu~Vv+vAu)dP:/ va—da
D FD

Questa ¢ la prima formula di Green. Invertendo il ruolo di u e v (supposta anche
quest’ultima di classe C%(D)), abbiamo pure

/(Vu-Vv—&—uAv)sz u@do

D ov

e sottraendo

(2.8) /(vAu—uAv)dP: (vau —uav>da.
D FD ov ov

Questa & la seconda formula di Green. Consideriamo alcuni casi particolari delle
formule precedenti. Poniamo v =1 in (2.7):

(2.9) / AudP = /FD 2= do .

Questa uguaglianza implica immediatamente la seguente condizione di compatibilita
per il problema di Neumann:

COROLLARIO 2.9. Siano f € C(D) e g € C(FD). Se il problema (2.2)
ammette soluzione, vale l'uguaglianza

(2.10) /DfdP:/Fngo.

ESEMPIO 2.10. E facile verificare che u(z,y) = % (2% + y?) risolve nel cerchio D
di centro O e raggio 1 il problema di Neumann

Au=2 inD
Ju=1 suFD

Osserviamo esplicitamente che vale la condizione di compatibilita (2.10).
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Prendiamo ora v = u armonica in (2.7):

ou
2.11 /VuzdP:/ u — do.
(2.11) DI | icatiogy

Se inoltre g—g =0 su FD, risulta

/ |Vul>dP =0
D

e quindi Vu = 0 in D. E chiaro che, se u ¢ soluzione del problema di Neumann (2.2),
lo & pure u + ¢ per ogni costante ¢, essendo le condizioni del problema imposte sulle
derivate, dunque non c¢’¢ unicita di soluzione. Le considerazioni precedenti forniscono
subito un risultato di unicita a meno di una costante:

COROLLARIO 2.11. Due soluzioni del problema di Neumann (2.2) differiscono
per una costante.
Dim. Ricordiamo che D & connesso. Se uj e ug risolvono entrambe il problema (2.2), la differenza

ou

u = uq] — uz € armonica in D e soddisfa = 0 su F'D. Pertanto é costante.

2.2. Risoluzione del problema di Dirichlet per I’equazione di Laplace
in un cerchio. Sia D il cerchio di centro l'origine O e raggio R. Consideriamo il
problema di Dirichlet su D relativo all’equazione di Laplace:
{Au =0 inD

(2.12)
u=g suvy(R)=FD

dove ¢ continua su y(R) = F'D ¢ una funzione assegnata. Costruiremo la soluzione
mediante il metodo di separazione delle variabili. Adoperiamo le coordinate polari

T = pcost, y = psind
e definiamo

U(p,¥) = u(pcosd, psind) .
Con abuso di notazioni, confonderemo u e U, cioé considereremo u funzione di p e ¢.
Il laplaciano si esprime in termini delle derivate rispetto a p e ¢:

(2.13) Au = Ugy + Uyy = pljuw + Upp + %up.

L’equazione di Laplace si riscrive dunque come segue

(2.14) upp-i-%up—&-%uwzo, p<R, 0<9<2m.

Cerchiamo soluzioni del tipo

(2.15) u(p,9) = v(p) w(?).

Una soluzione di questo tipo sard detta soluzione elementare. L’equazione diviene
() w(®) + 0 (p)w(H) + 5 0(p) " (9) = 0,

ovvero

(2.16) PP (p) +pv'(p) _  w"(¥)

v(p) S w(@)
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In questa uguaglianza, il primo membro dipende esclusivamente da p, il secondo mem-
bro dipende da 1. L’uguaglianza é possibile solo se i due membri sono uguali ad una
stessa costante, che indichiamo con A. Pertanto

w// (19)

w@) A

(2.17)
p*v" (p) +pv'(p)
v(p)
La prima equazione si riscrive w”’ + Aw = 0. Cerchiamo soluzioni non identicamente
nulle che abbiano un prolungamento periodico di periodo 2w. Per A < 0 non ce ne

sono. Per A = 0, le soluzioni ammissibili sono le costanti. Per A > 0, l'integrale
generale é

=A

w = acos VI + bsin VI

ed ¢ periodico di periodo 27 se e solo se VA ¢ intero. Dunque A = n?, con n € Ny. In
corrispondenza di tali valori di A, troviamo le soluzioni

w = acosny + bsinnd .
Consideriamo ora la seconda equazione in (2.17) per i valori di A trovati:
(2.18) P’V +pv —n?v=0.
Si tratta di un’equazione di Eulero. Per n = 0, I'integrale generale ¢
v=a+blogp.
Per n > 0, ponendo v = p® nell’equazione, scriviamo 1’equazione caratteristica
ala—1)+a-n*=0,
che ha le soluzioni o = Fn. Pertanto 'integrale generale &
v=ap"+bp .

Dunque, v é continua in 0 se e solo se b = 0. In definitiva, troviamo le soluzioni
elementari

(2.19) un(p,9) = p" (ay cosnd + by, sinnd) .
Notiamo che
p" cosnd = Rez" = Re(z + jy)", p"sinnd = Im 2" = Im(z + jy)".
Dobbiamo soddisfare la condizione al contorno, che si riscrive
u(R,9) = g(¥), 0<9<2r.

(Con abuso di notazioni, consideriamo g dipendente da 1J.) La condizione al contorno
é verificata da una soluzione elementare solo per dati g particolari. Per g continua
generica, possiamo pensare di soddisfarla con una somma finita o una serie di soluzioni
elementari

+oo
(2.20) u(p,9) = Z p" (ay cosnd + by, sinnd) .

n=0
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Se la serie converge in maniera opportuna, si puo dimostrare che la somma ¢ armonica
per p < R e continua per p < R. La condizione al contorno diventa
—+oo
g(v¥) = Z R"™ (a,, cosnd + by, sinnd) .
n=0
Tale uguaglianza & possibile se e solo se a secondo membro compare la serie di Fourier
di g, cioé
1 2
ag = 5= g(t)dt,
2m Jy
(2.21)
1 2m 1 2T
R"ay, = f/ g(t) cosntdt, R"b, = f/ g(t)sinntdt,
0 0

s ™

per ogni n € N. Sotto 'ipotesi che g sia continua, é possibile giustificare il procedimen-
to esposto e mostrare che esso fornisce la soluzione (unica) del problema. Inseriamo
nella (2.20) i coefficienti dati dalle (2.21); essendo

cos nt cosnd + sinnt sinny = cosn(¥ —t),

troviamo
1 +oo p n 2w
u(p,9) = ag + o 321 (E) /0 g(t) cosn(¥ —t)dt.

E possibile invertire sommatoria e integrale e scrivere

+oo n
-1+ QZO (%) cosn(¥ — t)] dt.

In effetti, la serie in (2.22) & totalmente convergente al variare di ¢ € [0, 27], per ogni
¥ e p < R fissati, e quindi puo essere integrata ternine a termine.
Calcoliamo la somma della serie in (2.22). Il termine generale & la parte reale di

((p/ R)el (’9*’5))”. La somma cercata ¢ dunque la parte reale della somma della serie
19—t):

27
(2:22) upt) = 3= [ ot

:271

geometrica di ragione (p/R)e’(

“+o0
5 (ﬁ ej(M))" . dica e d
—\R 1— £ei9-1)
Essendo
1 _ ReI' 4 pel”  RZ42jRpsin(9 —t) — p?

—1+2

1— £ei0=t) — Reit —pel’  R2—2Rpcos(¥—t)+p?’
prendendo la parte reale e inserendola in (2.22), ricaviamo

1 R27p2

27
(2.23) u(p, ) = /0 I B3R peos( 1 £ 2

= dt.
2T

L’integrale a secondo membro della (2.23) si chiama integrale di Poisson. Detti P € D
il punto di coordinate polari (p,d) e Q € y(R) = FD il punto di coordinate polari

(R, t), risulta OQ" = R?, OP" = p?,
PQ° =|Re’ — pel?|> = R* — 2R pcos(¥ — t) + p2,
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quindi la (2.23) si riscrive

La funzione

u(P) = 2R

verifica u € C2(D) N C(D) e Au=0 in D, cioé ¢ soluzione del problema.
La funzione
1 R*-0P :
K(PvQ):ijv PEDvQEFDv
2tk pQ

si chiama nucleo di Poisson.

3. L’equazione del calore

L’equazione del calore ¢&
ou_ o (Fu, P P
ot 0x2  dy? 022 )

E un’equazione di tipo parabolico, che regge il fenomeno della conduzione del calore
attraverso un mezzo isotropo omogeneo, in assenza di sorgente; il punto (z,y, z) varia
in un dominio dello spazio R?, mentre ¢ > 0 & una variabile temporale. La funzione
incognita u = u(x,y, 2, t) rappresenta la temperatura nel punto (z,y, z) all’istante t.
C > 0 é una costante che dipende dal mezzo.

Noi considereremo una semplificazione unidimensionale della (3.1) di un filo sottile
disposto lungo l'asse x. Le altre due dimensioni si immaginano trascurabili. Per
semplicita, supponiamo inoltre che sia C' = 1. Il caso generale si tratta analogamente,
o si riconduce al caso in esame con un cambiamento di variabili. Dunque ’equazione
é

(3.1)

2
52 ou_ oy
ot Ox?
ESERCIZIO 3.1. Mostrare che, se u = u(z,t) verifica (3.2), la funzione v(z,t) =
u(x, Ct) verifica
ov 0%
ot 0z’
3.1. Il problema di Cauchy nel semipiano. Immaginiamo un file illimitato,
che occupi interamente ’asse x, e descriviamo come evolve la temperatura quando é
assegnata in ogni punto all’istante iniziale. Dunque consideriamo il seguente problema

di Cauchy
ou  0%u
(3.3) ot~ 922’
u(z,0) =up(x), VreR

VreR, Vt>0

nel semipiano R x [0, +o0].
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t

U= U z
Supponiamo u(+, t), Uy (-, t) € uyy (-, t) sommabili su R, V¢ > 0. Inoltre, per ogni T' > 0,
esista f = fr(z) sommabile su R tale che
lug(z,t)| < f(x), Ve eR, Vte[0,T].

Quest’ultima ipotesi permettera di derivare sotto il segno di integrale la funzione

—+oo
t— / u(z,t) dx

e altre espressioni simili.
Per risolvere il problema (3.3), usiamo la trasformazione di Fourier rispetto alla
variabile x:
“+o0
Zlf] = / e~ f(z)dz, wER.
— 00

Applicando la trasformazione ad ambo i membri dell’equazione u; = u,;, otteniamo
Joz[ut] - y[umm] .
Indichiamo con 4 = 4(w, t) la trasformata di u(-,t). Notiamo che
+o0 ) d +o0 €
Flw] = / eI uy(z,t) de = — e 7 u(x,t) dz
dt J_

per lipotesi fatta. Consideriamo la variabile w come parametro. Per la seconda
formula fondamentale, vediamo che 4(w,-) risolve, Vw € R, l'equazione differenziale
ordinaria

— 00

T (w,t) = —w? i(w,t)
e quindi
W(w,t) = clw)e ™"

La condizione iniziale implica @(w,0) = tg(w), dunque

(3.4) a(w,t) = tig(w)e 1.

Per ricavare u, dobbiamo antitrasformare. Tenendo presente che
2 ]. m2

3.5 eiw t = 9 |: e4t:|

(3:9) e

e ricordando che la trasformata della convoluzione é il prodotto delle trasformate,
riconosciamo nel secondo membro della (3.4) la trasformata di

]. (E2

(3.6) u(z,t) = W [ % ug(x)],
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che fornisce la soluzione del problema.
La funzione

]. 502
3.7 K(x,t) = —— e %
() (it) 2/t

si chiama soluzione fondamentale dell’equazione del calore. La soluzione data dalla
(3.6) si scrive

(3.8) u(z,t) = K(z,t) xug(z) .
OSSERVAZIONE 3.2. Risulta
+oo
(3.9) K(z,t)dx =1, YVt >0.
— 00

Questa uguaglianza ¢ il caso w = 0 di (3.5). Inoltre

1 T
Kx,t)=—K|—,1).
=75 ( )
Ne segue, per il teorema sulle J-successioni
tgr& K(z,t) =d(z)
e ancora

tli%1+ u(x,t) = t£%1+K(x, t) x ug(x) = 0(x) *x up(z) = up(x).

4. L’equazione delle onde

Per semplicita, nel seguito ci limiteremo all’equazione delle onde in una variabile
spaziale

(41) Utt — Uggy — 0.

Si tratta di un’equazione iperbolica. L’operatore differenziale lineare che a primo
membro ¢ applicato a u si chiama operatore delle onde, o d’Alembertiano, e si denota
con [J. Notiamo per esso la “fattorizzazione”

o2 H? 0 0 0 0
(i2) szw(aﬁax) (61&(%)

In effetti, per u € C?, risulta
(e = ug)e + (U — Ug)w = Utt — Ugs -

Con il cambiamento di variabili

(4.3) E=z+t, n=x—t,
abbiamo - ¢
_sTn S
L= 5 t 5
quindi
o _1(o 9\ o0 _1(0 o
o6 2\or ot)’ on  2\9x ot)’
e (4.2) fornisce
0? 0? ok
=4
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4.1. 11 problema di Cauchy nel semipiano. Consideriamo il seguente pro-
blema

Pu  0%u

- = >

92 922’ VeeR, Vt>0
(4.4) w(z,0) = f(z), VreR

ui(z,0) = g(z), VreR
nel semipiano

(4.5) {(z,t) : z€eR, t>0}.

t

_ _ T
u=7, Ut =g

Le funzioni f e ¢ definite in R sono assegnate. Esso si dice problema di Cauchy,
poiché sono imposte le due condizioni iniziali. Usando il cambiamento di variabili
(4.3), Pequazione si riscrive

Pu 0 0 "
ocon  0c oy
(Con abuso di notazioni, consideriamo u funzione di £ e n.) Notiamo che il semipiano
(4.5) si trasforma nel semipiano del piano &, 7

{(EmeR® : ¢>n}.

Dalla (4.6) segue che g—nu & costante rispetto a &, g—nu = h(n) per un’opportuna
funzione h. Integrando rispetto a 7, otteniamo che u si esprime come somma di una
funzione di £ e una di n:

(4.6) 0.

u(§,n) = (§) + ¥(n) .

Tornando alle variabili z e ¢,
(4.7) w(z,t) =P(x+t)+V(z—1t).

Questa ¢ la soluzione generale dell’equazione in (4.4). Le condizioni iniziali divengono
allora

(48)  u(@,0)= (@) + V(@) = fl@),  ule,0) = ¥(2) - ¥'(z) = g(a).

Ricaviamo ® e ¥ in termini di f e g da queste uguaglianze. Sia (xg,%p) un punto del
semipiano (4.5), cioé tg > 0. Dalla seconda uguaglianza, integrando abbiamo

zo+to
/ g(@) dz = B(zo + to) — U0 + to) — B(wo — to) + ¥(zo — to),

o—to
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mentre dalla prima otteniamo
flzo +1to) + fzo — to) = (20 + to) + ¥(zo + to) + P(x0 — to) + ¥(z0 — to),
quindi, sommando e dividendo per 2, ricaviamo
u(l’o,to) = (I’(JJO + to) + \I/(J}O — to)
(4.9) 1 1 [®otto
Z—[f(fﬂo+to)+f(xo—to)]+—/ g(w)dz.
2 2 zo—to

Da questa formula si evince che u(zg,tq) dipende solo da f e g sull’intervallo [xg —
to, Zo + to] (non su tutto R).

A t
to (fﬂo, o)

xg — to Zo zo + to

4.2. Problema misto nella semistriscia. Consideriamo il problema

(0%u  O%u
Mo termatica <zx< >
92 o 0, 0<z<m,Vt>0

(4.10) u(0,t) =u(m,t) =0, Vt>0

U($,0):f($), 0<z<mw

(ue(2,0) = g(2), 0<z<m

Le ultime due condizioni al contorno si interpretano come condizioni iniziali (all’istante
t = 0), quindi (4.10) si dice problema misto di Cauchy-Dirichlet. La funzione incognita
u ¢ definita nella semistriscia

S={(x,t)eR?® : 0<z <7, t>0}.

t

Moltiplichiamo per u; ambo i membri dell’equazione:

(4.11) 0= —Upyp us + U up = (ug)? — %(ux ug) .

2 0t
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Integriamo sul rettangolo [0, 7] x [0,T], per un certo T > 0:

/dx/ ut—i—u dt—/ dt/ 3xu$ut dzx

(4.12) = 2/0 [Vu(z, T)? — |Vu(z, 0)[] da

T
—/0 [ug () we(m,t) — us (0, 1) ue (0, 8)] dt,

dove Vu = (uy,u;) € il gradiente. Dalle condizioni al contorno u(0,t) = u(w,t) = 0,
Vt > 0, derivando rispetto a t, abbiamo u:(0,t) = u(m,t) = 0, V¢ > 0, quindi 'ultimo
integrale in (4.12) ¢ nullo. Inoltre, tenendo presenti le condizioni iniziali, abbiamo
ug(2,0) = g(x), uz(z,0) = f'(x), e riscriviamo la (4.12) come segue:

(4.13) / " [lua(a T + e, T) ] da = / "1F @ + l9(@)P] dx

Questa € detta equazione dell’energia e, data I'arbitrarieta di T', mostra che la quantita
a primo membro é costante.

La (4.13) permette di mostrare I'unicita di soluzione. In effetti, se u; e us risolvono
(4.10), la differenza u = u; — us soddisfa un problema analogo, con dati iniziali nulli;
in tal caso, il secondo membro in (4.13) ¢ nullo, cioé

(4.14) /0” [Juz(z, T)* + |ue(z, T)|*]dz = 0.

Per larbitrarieta di T > 0, (4.14) implica che u ha le derivate nulle nella semistriscia
e quindi é costante; annullandosi nei punti (0,¢) e (w,t), ¥Vt > 0, essa ¢ identicamente
nulla.

Per risolvere il problema (4.10), usiamo la trasformazione unilatera di Laplace
rispetto alla variabile ¢ (che per semplicita indichiamo con #); poniamo

+oo
(4.15) plocs) = Zluw ) = [ e utat) i

(supponendo la trasformabilita), dove s ¢ complesso. Supponendo di poter derivare
sotto il segno di integrale, abbiamo Z[us.] = ©., mentre per la seconda formula
fondamentale

Lluu) = s> ¢ — su(@,0) —uy(z,0) = s* o — s f(x) — g() .

Pertanto, trasformando ambo i membri dell’equazione in (4.10), arriviamo all’equa-
zione differenziale ordinaria per (-, s):

Prz :sQLp—Sf(l') —g(l’),
dove s figura come parametro. D’altra parte, dalle condizioni al contorno deduciamo
©(0,8) = p(m,s) =0.

Dunque (-, s) risolve il seguente problema di Picard (cfr. Paragrafo XI1.4)

—Poa + 5”0 =5 f(z) + g(x)
(10 { so((%ﬁ):ws(aﬁ,S):O ’
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Tale problema é risolubile per ogni f e g se e solo se il problema relativo all’equazione
omogenea associata

2
4.17

(.17) {2 o
ha solo la soluzione banale, ovvero —s2 non é autovalore, cioé s # jn, per un numero
n € Z — {0}. Dunque possiamo supporre Res > 0. Una volta risolto (4.16), per

ricavare u bisogna antitrasformare, u = £~ [p(z, -)].

ESERCIZIO 4.1. Verificare che, nel caso f(z) =sinz e g(z) = 0, Vx € [0, 7], il
procedimento esposto fornisce la soluzione

1
u(x,t) =sinz cost = 2 [sin(x + t) + sin(z — t)] .



CAPITOLO XIV

Riepilogo delle formule

1. Z-trasformazione e Z-trasformazione inversa

X am)  Raw)
Zlam)= Y — Zula(m)] =) —
n=—oo n=0

Zlaa(n) + Bb(n)] = a Zla(n)] + B Z[b(n)]

Zulp" cosnd] = z

z — pcost

22 — 2pzcosV + p?

Zulp"sinnd] = z

psind

22 — 2pzcosV + p?
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1. Z-TRASFORMAZIONE E z-TRASFORMAZIONE INVERSA

z-1 {z az+b }
22+ pz+gq

n 2b -
=q2 | acosnd + P sinng u(n),
4q —p?

2 p
p°—4qg <0, ¥ = arccos <>
2V

Zla(n + k)] = 2* Zla(n)] 27 F(2)](n) = 27 [fl(n + k)

Zula(n + k)] = 2* Zu[a(n)] —a(0) 2F — - —a(k - 1)z, keN

Zuna(m)] = -z &= zufa(m)] | Z7' PG = —n 2

dz

e R

a(0)zF +a()A2F "L+t alk — )ALz
ok _\k '

a(n) successione periodica di periodo k, A #0

Zla(n) *b(n)] = Zla(n)] - ZB()] | Z71[f-g] = Z71f]« 27g
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2. #-trasformazione e ¥-trasformazione inversa

N +oo
ZLlx] = X(s) :/_ z(t)e stdt | Llx] = Llru] :/0 2(t) et dt

ZLlax + Byl = a Zz] + 5 21y

k
T 2l = 2l0tal] | 27 [T x )| = otz )

ZLue® @) = s* X(s) — s 2(0) — s¥722/(0) — - - — 2F7D(0)




2. - TRASFORMAZIONE E #-TRASFORMAZIONE INVERSA

1 1
L1 = L) = %8 Res >0 35 {] = u(t)
sot 1 -1 1 sot
Llu(t)e® '] = ) Res > Resg Z, = u(t) e®
S — 8o S — 8o
y k!
fu[tke Ut] = (s — s0)F+1 , Res > Resg
1 1
—1 sot
27 | ] = O Gy
s 1 s
Zy|cosat] = 2o Res >0 P e B u(t) cos at
P s a 1 1 .
w[sinat] = T Res >0 PR o u(t) sin at

gli zeri di @ sono semplici s1,..., s,
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2 2] =XG) Zla(an] = - x ()

la] = \a

ZLlzt) et = X (s — s0) Lzt —tg)] = e *" X(s)

L) u(t —to)] = e Lla(t +to) u(t)]

Res—+o0

z(0) = t1_1>151+:1c(t) et ££n+ooSX(s) t_l}+moox(t) = Rggrg) sX(s)
es>0




3. #-TRASFORMAZIONE

3. Z-trasformazione

400
Fla) = #(w) = X@w) = |

z(t)ye I«tat, r € L'(R)

F: LY(R)

— Co (R)

L))o +jw) = Fz(t)e™"|(w)

Flaz+ Byl = a Fz] + 8.Z[y|

+oo 3
Flx] = V.p./ z(t)e It dt, r € L*(R)
— 00

F: L*(R) — L*(R)

|7 x5 = 27 [ll|3
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o _ sin(T' w/2) | sinat] w
FU/D = =7 75| =1(5,)
2a 1
7l a—altl] — _ T altl
Fe™ M) prael a>0 [a2+w2] S © ) a>0
Fle )= Vre
Fl] =1 Flc] =2mcd
2
Flu] =v.p. — + 7o F[sgnt] = v.p. —
Jjw
1 ) 2m
F [v.p. J = —jmsgnw Fsr] = wo Suwy wo=—

Fcost] = w(é(w - 1)+ 6w+ 1))

Flsint] = %(5((» —1) = 6w+ 1))




3. #-TRASFORMAZIONE

+oo +oo
X(t)y(t)dt:/ 2(t) Y (t) dt

— 00

Fla(t —to)] = e Fa(t)] | Zla(t)e’ ] = X (w — wo)

Fla(t) cos(wo t + ¢)] = X(w—wo)e?? + X(w—+wp)ed¥

Flossl= 7l 2] | Flovl = 5 Flal* 7l

XV ()= z[(=j0*e@)] | VO] = (Gw)* #lz?)

+o00
X(UJ):LUO Z Xo(kwo)é(w—kwo)

k=—0o0

—+o0

X(w):% > Y(w—kw)

k=—o00
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