8.22 Accoppiamento mutuo

Dopo aver presentato il trasformatore ideale, vale la pena introdurre qualche
aspetto della realta fisica: nella pratica tecnica, il trasformatore ¢ una macchina
elettrica costituita, nella sua piu semplice accezione, da due circuiti mutuamente
accoppiati, come quelli schematicamente indicati in Figura 8.100. Per la verita, le
due spire sono spesso avvolte su un supporto di materiale ferromagnetico, ma
questo dettaglio al momento & poco interessante e verra chiarito in quel che

segue.
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Figura 8.100: circuiti elettromagneticamente non accoppiati ed accoppiati.

In un primo momento si immagini che le due spire siano poste a grande
distanza, tanto che i campi magnetici sostenuti da una spira non interagiscano
con quelli dell’altra. In questa situazione, ai capi delle due spire si raccoglieranno

le tensioni



di,

n=hige
di,
vz :LZE .

In cio non vi € nulla di veramente nuovo: era gia noto che ai capi di un induttore
percorso da una corrente variabile dovesse manifestarsi una tensione variabile.
Le due costanti L, e L, sono le induttanze proprie dei due avvolgimenti e sono
da ritenersi quantita positive.

Si avvicinino ora i due avvolgimenti: in questa nuova situazione, i campi prodotti
dalle due spire interagiranno ed alle due precedenti tensioni si sommeranno due

nuovi contributi, secondo le generiche relazioni

diy
dt
di; . . .
v, =1L, T + un nuovo termine dovuto alla prima spira.

vy =14 + un nuovo termine dovuto alla seconda spira,

Per comprendere appieno il funzionamento di due circuiti accoppiati, e
doveroso allora specificare meglio che cosa rappresentino questi due nuovi
contributi. Il primo circuito genera un campo magnetico variabile nel tempo ed
induce nel secondo circuito una f.e.m. variabile, che determina il passaggio di
una corrente. Questa corrente indotta nel secondo circuito, a sua volta, produce
un campo magnetico variabile nel tempo, che genera nel primo circuito una
seconda forza elettromotrice, e cosi via. Le stesse cose possono essere dette per
il secondo circuito e si dice cosi che i due circuiti sono mutuamente accoppiati
per mezzo del campo di induzione magnetica. La due correnti variabili nel tempo
sono, in ultima analisi, sostenute non solo dai rispettivi generatori, ma anche
dall'induzione dovuta all’altra.

Naturalmente, non tutte le linee di campo prodotte dal primo (e dal secondo)

circuito si concatenano con il secondo (o con il primo) circuito; alcune saranno



disperse nel senso che, pur essendo prodotte da uno dei due circuiti, non
raggiungono l'altro. Si paragoni la spira ad una fontana che schizza acqua (il
campo di induzione magnetica nella metafora) in tutte le direzioni: solo una
piccola parte dell’acqua spruzzata raggiunge la seconda spira. Ai fini pratici e
necessario evitare, almeno limitare, questa dispersione, e pertanto un
accoppiamento mutuo non viene realizzato in aria, ma le due spire vengono
avvolte, come mostrato in Figura 8.101, su un supporto di materiale
ferromagnetico, un buon ferro, che ha il compito di intrappolare la maggior parte
delle linee di campo induzione magnetica al suo interno. I due avvolgimenti
vengono, pertanto, realizzati su un materiale ferromagnetico che, a causa della
elevata permeabilita magnetica, riesce a trattenere gran parte del campo di
induzione magnetica al suo interno, rendendo il ferro tubo di flusso per questo
campo. Questo argomento va approfondito nei corsi di Macchine Elettriche,
allorquando si presentano in maniera piu specifica e diffusa i circuiti accoppiati
su un materiale ferromagnetico.

Nella Figura 8.101 si e rappresentato anche un alimentatore collegato alla porta
primaria ed un carico collegato alla porta secondaria, per ricordare il maggiore

impiego che viene fatto del trasformatore monofase.

Figura 8.101: due avvolgimenti su ferro.

Tornando al generico accoppiamento di Figura 8.100, le relazioni che lo

definiscono sono quindi



Quando si opera in regime sinusoidale, ricordando che al posto della derivata
rispetto al tempo e possibile sostituire 'operatore jw, i precedenti legami nel

dominio del tempo si trasformano nelle nuove relazioni algebriche complesse

{V1 = jwly I + joM;; I,
VZ =j(l)M21 71 +_](1)L2 72 .

Si noti come i valori delle due tensioni v,(t) e v,(t), al generico istante
temporale t, non dipendono da quelli delle correnti allo stesso istante, ma dalle
loro derivate. I coefficienti di autoinduzione L; e L,, come si € gia sottolineato,
sono positivi; quelli di mutua induzione M;, e M,; possono essere positivi
oppure negativi a seconda dei riferimenti scelti per i versi delle correnti. Ora

accade, come si mostrera nel seguito, che
Mi; = My,

vale a dire che le due induttanze mutue del doppio bipolo sono uguali. Questo
legame € molto importante, in quanto riduce da quattro a tre i parametri che

caratterizzano un doppio bipolo accoppiamento mutuo:

1. L,, detto autoinduttanza del circuito primario,
2. L,, detto autoinduttanza del circuito secondario,

3. M, detta mutua induttanza.



[ primi due sono sempre positivi; il terzo puo assumere qualsiasi segno. Il segno
di M dipende dal senso di avvolgimento delle spire e dal verso delle correnti.
Supponendo di fissare il verso delle correnti, per indicare anche sullo schema

grafico il segno di M, si adotta la convenzione mostrata in Figura 8.102.

Figura 8.102: convenzioni di segno per M.

Si osservi con attenzione la Figura 8.102: se alle due porte del doppio bipolo e
stata fatta, come d’abitudine, la convenzione dell’utilizzatore, allora M € positivo
quando i due pallini neri sono affiancati; in caso contrario, M & da ritenersi
negativo. Il segno del flusso di mutua induzione dipende dalla convenzione
scelta per il primo e per il secondo circuito. Pertanto, anche se per il calcolo del
flusso si conviene di scegliere sempre come verso della normale quello che
‘vede’ il verso positivo della circuitazione in senso antiorario (terna levogira),
resta ancora un grado di liberta nella scelta delle due normali relative ai due
circuiti, come e indicato sempre nella Figura 8.102.

Dimostrare che i due coefficienti di mutua induzione sono uguali non € cosa

semplicissima e, per comprenderla appieno, c’e bisogno di strumenti avanzati



del calcolo differenziale. Si parta dalla potenza istantanea assorbita dal doppio

bipolo accoppiamento mutuo, definita dalla relazione

(¢ )iy (£) + v, ()i, (t L, 4 +M i +(M di+L iz
p(t) = v ()i  (t) + v, (D), )_<1dt 12 dt)ll ( 21 gy 2dt>

Ricordando che la potenza istantanea e pari alla derivata dell’energia rispetto al

tempo, e possibile scrivere la relazione precedente in termini differenziali
dU = p(t) dt = (Llil + MZliZ) dl1 + (inz + Mlzil) dlz .

Allora, dato che I'energia e una funzione di stato, quest’'ultima relazione deve
risultare un differenziale esatto, dato che solo sotto questa ipotesi una
variazione finita di energia non dipende dal percorso seguito, cioe risulta
indipendente dal modo in cui si € andati dalla condizione iniziale a quella finale.

Pertanto, occorre che siano uguali le due derivate

a(Llil + M21i2) _ a(LZLZ + MlZil)
di, di, '

da cui discende immediatamente I'asserto

M12=M21=M.

Dimostrato che c’e bisogno di un solo coefficiente per descrivere
I'accoppiamento mutuo, € opportuno chiedersi se tra questi tre parametri non
esista qualche altro legame. La risposta a questa domanda discende, come non e

difficile rendersi conto, ancora dalla considerazione dell’energia elementare



dU == Llil dll + inz dlz + M(ll dlz + iz dll) .

Essa puo essere integrata membro a membro e fornire, a meno di una costante
additiva di integrazione, che si assume nulla per correnti nulle, I'energia

assorbita dal nostro doppio bipolo al generico istante t di funzionamento

U(E) = 5 Ly B0+ M 5(0) (0) 45 L (D).

Essendo il doppio bipolo in esame passivo, questa energia deve descrivere una
quantita che non cambi segno e che risulti sempre positiva. La sua forma
funzionale suggerisce di porre in evidenza un termine, sicuramente positivo,

riscrivendola in modo che

1 Mi(t) Lpi3(t)
U(t)—ELlllz(t) 1+2L_1l1(t) L_ll%(t) .

Cio che determina il segno dell’energia e la parte in parentesi quadra
nell’espressione precedente, che puo essere allora pensata come un trinomio di

secondo grado in forma adimensionale, precisamente

ui) L, , M
=—x“+2—x+1,
Llif Ly Ly

y=2
in cui si € indicato con x =i,(t)/i;(t) il rapporto tra le due correnti. Ora,
affinché anche il secondo membro sia una quantita sempre positiva, al piu nulla,
si deve avere per tutti i valori della variabile x, cioé per ogni condizione di

funzionamento, che il discriminante del trinomio non sia positivo



Si riconosce nella funzione y definita in precedenza una parabola; piu
precisamente, si tratta dell'insieme di parabole ad asse verticale, disegnato in
Figura 8.103. Questa figura lascia intuire anche graficamente il motivo per cui il
discriminante deve essere minore di zero: se cosi non fosse, allora per alcuni
valori della variabile x, che rappresentano, in ultima analisi, possibili condizioni
di funzionamento, potrebbe accadere che I'energia diventi negativa, eventualita

che bisogna scongiurare, se si vuole che il doppio bipolo sia passivo.

Figura 8.103: energia assorbita dal doppio bipolo accoppiamento mutuo.

In altri termini, &€ essenziale fare in modo che I'’equazione di secondo grado

2o t1=0
LT

ammetta soltanto radici complesse e coniugate, al piu, reali e coincidenti, e cio si

ottiene imponendo semplicemente che il discriminante non sia positivo, vale a



dire sia negativo o nullo. Ora, imporre che il discriminante sia minore di zero,

equivale a scrivere che
2
M“<LiL,.

Si tratta di una condizione che deve sempre essere verificata, per fare in modo
che l'energia assorbita dal mutuo accoppiamento sia, in ogni istante e per
qualunque valore del rapporto tra le correnti di uscita e di ingresso, una quantita

positiva, al piu nulla in un punto. Comunque, nel caso limite
M2 == L1 L2 )

si e in condizione di accoppiamento perfetto ed esiste un valore del rapporto
delle correnti per cui I'energia del campo di induzione magnetica & nulla. In
questa particolare condizione di funzionamento e evidente che i campi
magnetici, sostenuti dalle due bobine, siano uguali in modulo ed opposti in

verso, in modo da produrre un campo risultante nullo. Se, invece, accade che
2
M- <LL,,

si € in condizioni di accoppiamento non perfetto e 'energia presenta un minimo,

il cui valore € positivo. Al coefficiente k

M

VIiL;

k =

viene dato il nome di coefficiente di accoppiamento: esso varia tra —1 e 1 e,

quando k — %1, 'avvolgimento tende ad essere perfetto.



» Accoppiamento perfetto

Si soffermi, ora, I'attenzione su un caso particolare di accoppiamento, quello
perfetto. Come si € gia sottolineato in precedenza, si parla di accoppiamento
perfetto quando tra i diversi parametri sussiste la relazione M? = L, L,, che si

puo porre, introducendo un nuovo parametro a, nella forma equivalente

Ly
M
Operando in regime sinusoidale, si puo scrivere che

{Vl = jwl, I, + joM I,,
VZ =_](1)M 71 +_](1)L2 72 .

Dividendo membro a membro queste due ultime equazioni, allo scopo di
considerare il rapporto tra la tensione alla porta primaria e quella alla porta

secondaria, si ha

_ s M3 _
Vi Jjwl, ly +L_1 l2 Ly Vi
—_ = - M-_ L — =M=a e d _—=a’
Ve JOM T 4321, V2

cioe, si e ottenuta la prima relazione che definisce il trasformatore ideale. Si

ricava poi la corrente I, riscrivendo la prima equazione nella forma

-V M-
Vo jwL, Ly *

Siccome L; = Ma, la precedente relazione diventa



I
I, : I,.

- jwlL; a

Questa ultima uguaglianza richiama alla memoria quella gia vista nel caso del
trasformatore ideale I, = —al,. Ma, come si osserva, vi € la presenza anche di un
altro addendo, che puo essere interpretato come una corrente relativa alla prima

maglia, che attraversa la reattanza wL,, posta in parallelo alla porta primaria.

1

—Ia:l

Figura 8.104: primo circuito equivalente in accoppiamento perfetto.

Si osservi con cura la Figura 8.104: la rete mostrata soddisfa I’equazione per le

tensioni che definisce il trasformatore ideale ed, in forza della LKC, deve essere

- e 1- Vv,
11=11+10=_512 +]wL .
1

Cio che conta davvero ricordare e che si e fatto tutto cio per capire che si passa
dal concetto di trasformatore ideale a quello piu realistico dell’accoppiamento
mutuo, aggiungendo alla prima maglia del trasformatore ideale una induttanza,

proprio come mostrato in Figura 8.104.



Si fa notare esplicitamente che, nel caso in cui l'induttanza L; assuma valori
molto elevati, la precedente relazione approssima molto bene quella del

trasformatore ideale, tanto che si puo scrivere

115—_12, Se Ll_)oo.
a

Esempio 12 - Si valutino le potenze, attiva e reattiva, erogate dal generatore di

tensione nella rete operante in regime sinusoidale.

Dati: e(t) = E sen(wt), j(t) = —J cos(wt + 1/4), w = 1 krad/s, E = 100v2, ] =
20, Rl = R2 = 10, R3 = 2.5, L= SmH, Cl = 0.1mF, Cz = 0.4‘mF, Ll = 10mH,
L, =2.5mH,|M| =5mH.

Per applicare il metodo dei fasori, si calcolano anzitutto le reattanze

1 1
X=C()L:5, Xl:w_C'l:10, X2=w_6‘2=25, XL1=(L)L1:10

e poi si trasformano le sinusoidi nei fasori corrispondenti, secondo una

convenzione ai valori efficaci, assumendo



e(t) = 100vV2 sen(wt)

E =100,
j(t) = =20 cos(wt + m/4) ] =

10V2 e /m/* = 10(1 — j) .

N
N
La condizione

M?=1L1,L,=25-10"°
manifesta la presenza di accoppiamento perfetto e la rete assegnata puo essere

trasformata come indicato in figura, avvalendosi di un trasformatore ideale

caratterizzato da un rapporto di trasformazione pari a

Ry JAR

2
M
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Riportando al primario la resistenza R; e la reattanza X,,

R30 == a2R3 =10 ) XZO = a2X2 == 10,

la rete puo ulteriormente semplificarsi come di seguito mostrato.



Dovendo valutare la potenza complessa erogata

P=EI =Pg+jQg,
occorre determinare la corrente I che interessa il generatore di forza
elettromotrice. Appare immediata I'opportunita di semplificare ulteriormente la

rete, valutando l'impedenza equivalente ‘vista’ dai morsetti AB, comprensiva

della reattanza X;

Z = (_jX1) I [Rz + (jXLl) Il (R30 _szo)] =5-10j.

Applicando la LKT, si puo scrivere



E=R+jX)I+Z(1+]).
Dalla precedente relazione si deduce immediatamente che

- E-Z]
| =———F""—=6+12j.
Ri+jX+7Z

In definitiva, la potenza e data da
P =P;+jQz =600—1200f — Pr=0.6kW, Qz =—12kVAr.
Terminato I'esempio, si ritorni all’accoppiamento perfetto. Se, per ricavare la

corrente, invece di usare la prima relazione che definisce la tensione alla prima

porta, si fosse deciso di usare I'altra che fornisce la tensione alla seconda porta
VZ =_]C()M 71 +]0)L2 72 ,

con un ragionamento del tutto analogo al precedente, si sarebbe potuto scrivere

L= oM M2 jwal, a? a

-V, L,- vV, 1- 1/- V,
I —_— == 12 — - .
JwL,

Nella Figura 8.105 si riporta anche il circuito equivalente che corrisponde a

questa equazione: la reattanza wL, € posta in parallelo alla porta secondaria e

Vs

72 =72_70 =72 _]a)LZ




Figura 8.105: secondo circuito equivalente in accoppiamento perfetto.

Il circuito equivalente di Figura 8.105, tuttavia, viene scarsamente adoperato,
dato che per consuetudine il carico viene posto in parallelo alla porta secondaria
e, pertanto, conviene utilizzare il circuito di Figura 8.104, al fine di realizzare

efficacemente il riporto al primario.

» Accoppiamento non perfetto
Anche in questo caso si comincia dalle due relazioni che definiscono il doppio
bipolo accoppiamento mutuo e, poiché si € in condizioni di accoppiamento non

perfetto, deve essere
M?<LL,.
Le induttanze proprie L; e L, sono dei numeri positivi che, dovendo soddisfare

la precedenze disuguaglianza, e sempre possibile immaginare come la somma di

due contributi positivi
L=LP+1P, L, =19 +1Y,

in cui i due contributi L(ll) e L(zl) vengono scelti in maniera tale da soddisfare

I'uguaglianza



_ ;@
Mz =LY

Questa scomposizione, che potrebbe apparire un mero artificio matematico,
trova un riscontro nelle applicazioni. Prima di procedere oltre, € opportuno
spiegarla con un esempio numerico. Si supponga che siano stati assegnati i

valori
Ly=10mH, L,=6mH, M =5mH.

E facile controllare che il doppio bipolo lavora in condizioni di accoppiamento

non perfetto, essendo
M?=25-10"°<L;L, =60-107°.
Tuttavia e sempre possibile immaginare che L, sia la somma di due induttanze
L =(5+5)mH oppure L; =(8+2)mH.

L’importante € che la somma delle due induttanze in cui si immagina scomposto
il valore di L; diano, in ogni caso, per somma 10 mH. La stessa cosa si puo
pensare di fare per L,.

Riassumendo, si € immaginato di scomporre in due contributi le autoinduttanze

delle porte primaria e secondaria e le suddivisioni imposte verificano il sistema

IV + 1P =1,
LV + 1P =1,.
VLY = M2,



costituito da tre equazioni e quattro incognite
o ;@ ;@ ;@
Ll ) Ll ) LZ ) LZ .

Una incognita e di troppo e, pertanto, e possibile fissarla a piacimento: in genere,
si usa considerare L(ZZ) nullo, ma si sarebbe potuto altrettanto correttamente

. 2 ‘e . .
considerare nullo L(1 ), e semplificare il precedente sistema come

LV + 1P =1,
LV =1,.
LML, = M2,

La soluzione del sistema fornisce i tre valori

MZ
, P =L -—, 1P =1,.

2
o M
1 LZ

L,
Ad esempio, usando i valori assegnati in precedenza, risulta il sistema

LV +1¥ =10-1073,
L1 =6-1073,
1V =416-1073,

che fornisce i tre valori

LM =416mH, 1P =583mH, LY =6mH.



Sostituendo la scomposizione appena sviluppata nella definizione del doppio

bipolo, si ottiene

Vy=jo|l+ 1P| T +joMT,,
VZ :]C()M 71 +](I)L(22) 72 .

Queste relazioni si possono, ovviamente, scrivere nella forma equivalente

Vi, =jwlP T +joM T, +|jolP 1,

~

V,=joM T, +jwl?PT,.

Se nella prima relazione fosse assente il termine ja)L(lz) 1, si poteva concludere
che si era in presenza delle stesse equazioni del caso dell’accoppiamento
perfetto. Tuttavia, I'aggiunta di questo termine comporta soltanto la piccola, ma

sostanziale, modifica indicata in Figura 8.106.

- Q) -
Il ® Ll 12
a:l [ -
+ +
vl a L(ll) Vz

Figura 8.106: primo circuito equivalente in accoppiamento non perfetto.

Allora, quando si € in condizioni di accoppiamento non perfetto, e possibile

passare dall’accoppiamento perfetto a quello non perfetto, aggiungendo in serie

alla prima porta una induttanza di valore L(lz).



Resta solo da specificare il valore della costante a. Dalla relazione imposta che

definisce la parte di accoppiamento perfetto
Dy _
Ly7L, = M?,
segue immediatamente che

LY M

== (nell’esempio a = 0.83).

In genere, se il trasformatore e ben progettato, I'induttanza L(lz), anche detta

induttanza longitudinale, & piccola rispetto alle altre due L(ll) e L,, dette
induttanze trasverse o trasversali, che sono piu grandi: & compito del corso di
Macchine Elettriche fornire qualche valore piu preciso di questi parametri. Per
ora basta riassumere dicendo che, con riferimento al circuito di Figura 8.106, il
generico parametro longitudinale di un trasformatore e piu piccolo di quello

trasversale.

Esempio 13 - Il doppio bipolo mostrato in figura opera in regime sinusoidale.

Determinare la sua rappresentazione in termini di impedenze.




Dati: L; =L, =20mH,M =10 mH,R = 20, w = 1 krad/s.

La rappresentazione in termini di impedenze & formalmente definita per mezzo

della trasformazione lineare di carattere generale

{Vl = 21171 + ZmTZ )
VZ == Zm71 + 22272 )

che, nel caso in cui il doppio bipolo si riduca ad un accoppiamento mutuo,

diventano

{Vl = jwL, I, + joM I,
72 =](1)M 71 +](1)L2 70 .

Nel caso in esame, alle due relazioni ora scritte va aggiunta quella che esprime la

LKC al nodo A

Eliminando da queste relazioni la corrente I, si ottiene il sistema

Vs

R

Vs
R )

Vl =]a)L1 71 +](,()M 72 —]a)M

kVZ =](,UM 71 +](1)L2 72 —]a)Lz



che individua una rappresentazione implicita per il doppio bipolo in esame.

Dalla seconda equazione, portando tutti i termini in V, al primo membro,

discende pure che

— JoMR JwL,R -
2= 1 +——F 1,
R+ jwL, R+ jwL,

da cui, per confronto, si ricavano le due impedenze

o v,
=5+5_], ZZZ=[7_]

2

jwL,R

7.<0 R+ jwL,

v joMR _
— = =10+ 10j.

Z, =|= ==
m [11 . - R+jwL,

I,=

Sostituendo la tensione V, appena trovata nella prima equazione, si ha pure

. M2

R+ jwl,

Per controllare i calcoli sviluppati, lo studioso lettore puo riottenere la matrice

delle impedenze nella via piu usuale, vale a dire adoperando le definizioni

. v, . Vv,
el el
Iy 1,5 Iy 1,5

E evidente che dovra ritrovare le stesse impedenze calcolate in precedenza.
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Si discute, infine, in qualche dettaglio il caso in cui L(lz)viene scelto pari a zero. In
questo caso, seguendo un ragionamento simile a quello appena sviluppato, non e

difficile verificare che si puo adoperare il circuito mostrato in Figura 8.107.



Il I2
v 1 T
+ +
7, oL v,

Figura 8.107: secondo circuito equivalente in accoppiamento non perfetto.

L’'induttanza longitudinale e passata dalla porta primaria a quella secondaria.

Inoltre, per quanto riguarda il valore di a si trovera che

Ly M
a=—=—.
(1)

M Lz

Nel caso generale, assumendo non nulli i quattro parametri, il doppio bipolo
accoppiamento mutuo si puo schematizzare per mezzo del circuito di Figura

8.108: si provi a verificarlo, ripetendo quanto appreso nei due precedenti casi.

2 -
T
_|_
\Z

Figura 8.108: terzo circuito equivalente in accoppiamento non perfetto.

In esso nessun parametro, longitudinale o trasversale che sia, e stato ritenuto

nullo e si ha che



P M
= o
M L,



