
8.22 Accoppiamento mutuo 

 

Dopo aver presentato il trasformatore ideale, vale la pena introdurre qualche 

aspetto della realtà fisica: nella pratica tecnica, il trasformatore è una macchina 

elettrica costituita, nella sua più semplice accezione, da due circuiti mutuamente 

accoppiati, come quelli schematicamente indicati in Figura 8.100. Per la verità, le 

due spire sono spesso avvolte su un supporto di materiale ferromagnetico, ma 

questo dettaglio al momento è poco interessante e verrà chiarito in quel che 

segue. 
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Figura 8.100: circuiti elettromagneticamente non accoppiati ed accoppiati. 

 

In un primo momento si immagini che le due spire siano poste a grande 

distanza, tanto che i campi magnetici sostenuti da una spira non interagiscano 

con quelli dell’altra. In questa situazione, ai capi delle due spire si raccoglieranno 

le tensioni 

 



{ 
𝑣1 = 𝐿1

𝑑𝑖1
𝑑𝑡
 ,

𝑣2 = 𝐿2
𝑑𝑖2
𝑑𝑡
 .

 

 

In ciò non vi è nulla di veramente nuovo: era già noto che ai capi di un induttore 

percorso da una corrente variabile dovesse manifestarsi una tensione variabile. 

Le due costanti 𝐿1 e 𝐿2 sono le induttanze proprie dei due avvolgimenti e sono 

da ritenersi quantità positive. 

Si avvicinino ora i due avvolgimenti: in questa nuova situazione, i campi prodotti 

dalle due spire interagiranno ed alle due precedenti tensioni si sommeranno due 

nuovi contributi, secondo le generiche relazioni 

 

{ 
𝑣1 = 𝐿1

𝑑𝑖1
𝑑𝑡
 + un nuovo termine dovuto alla 𝑠𝑒𝑐𝑜𝑛𝑑𝑎 spira,

𝑣2 = 𝐿2
𝑑𝑖2
𝑑𝑡
 + un nuovo termine dovuto alla 𝑝𝑟𝑖𝑚𝑎 spira.

 

 

Per comprendere appieno il funzionamento di due circuiti accoppiati, è 

doveroso allora specificare meglio che cosa rappresentino questi due nuovi 

contributi. Il primo circuito genera un campo magnetico variabile nel tempo ed 

induce nel secondo circuito una f.e.m. variabile, che determina il passaggio di 

una corrente. Questa corrente indotta nel secondo circuito, a sua volta, produce 

un campo magnetico variabile nel tempo, che genera nel primo circuito una 

seconda forza elettromotrice, e così via. Le stesse cose possono essere dette per 

il secondo circuito e si dice così che i due circuiti sono mutuamente accoppiati 

per mezzo del campo di induzione magnetica. La due correnti variabili nel tempo 

sono, in ultima analisi, sostenute non solo dai rispettivi generatori, ma anche 

dall’induzione dovuta all’altra. 

Naturalmente, non tutte le linee di campo prodotte dal primo (e dal secondo) 

circuito si concatenano con il secondo (o con il primo) circuito; alcune saranno 



disperse nel senso che, pur essendo prodotte da uno dei due circuiti, non 

raggiungono l’altro. Si paragoni la spira ad una fontana che schizza acqua (il 

campo di induzione magnetica nella metafora) in tutte le direzioni: solo una 

piccola parte dell’acqua spruzzata raggiunge la seconda spira. Ai fini pratici è 

necessario evitare, almeno limitare, questa dispersione, e pertanto un 

accoppiamento mutuo non viene realizzato in aria, ma le due spire vengono 

avvolte, come mostrato in Figura 8.101, su un supporto di materiale 

ferromagnetico, un buon ferro, che ha il compito di intrappolare la maggior parte 

delle linee di campo induzione magnetica al suo interno. I due avvolgimenti 

vengono, pertanto, realizzati su un materiale ferromagnetico che, a causa della 

elevata permeabilità magnetica, riesce a trattenere gran parte del campo di 

induzione magnetica al suo interno, rendendo il ferro tubo di flusso per questo 

campo. Questo argomento va approfondito nei corsi di Macchine Elettriche, 

allorquando si presentano in maniera più specifica e diffusa i circuiti accoppiati 

su un materiale ferromagnetico. 

Nella Figura 8.101 si è rappresentato anche un alimentatore collegato alla porta 

primaria ed un carico collegato alla porta secondaria, per ricordare il maggiore 

impiego che viene fatto del trasformatore monofase. 
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Figura 8.101: due avvolgimenti su ferro. 

 

Tornando al generico accoppiamento di Figura 8.100, le relazioni che lo 

definiscono sono quindi 



 

{ 
𝑣1 = 𝐿1

𝑑𝑖1
𝑑𝑡

+𝑀12  
𝑑𝑖2
𝑑𝑡
 ,

𝑣2 = 𝑀21  
𝑑𝑖1
𝑑𝑡

+ 𝐿2
𝑑𝑖2
𝑑𝑡
 .

 

 

Quando si opera in regime sinusoidale, ricordando che al posto della derivata 

rispetto al tempo è possibile sostituire l’operatore 𝑗𝜔, i precedenti legami nel 

dominio del tempo si trasformano nelle nuove relazioni algebriche complesse 

 

{ 
𝑉1 = 𝑗𝜔𝐿1 𝐼1 + 𝑗𝜔𝑀12 𝐼2 ,

𝑉2 = 𝑗𝜔𝑀21 𝐼1 + 𝑗𝜔𝐿2 𝐼2 .
 

 

Si noti come i valori delle due tensioni 𝑣1(𝑡) e 𝑣2(𝑡), al generico istante 

temporale 𝑡, non dipendono da quelli delle correnti allo stesso istante, ma dalle 

loro derivate. I coefficienti di autoinduzione 𝐿1 e 𝐿2, come si è già sottolineato, 

sono positivi; quelli di mutua induzione 𝑀12 e 𝑀21 possono essere positivi 

oppure negativi a seconda dei riferimenti scelti per i versi delle correnti. Ora 

accade, come si mostrerà nel seguito, che 

 

𝑀12 = 𝑀21 , 

 

vale a dire che le due induttanze mutue del doppio bipolo sono uguali. Questo 

legame è molto importante, in quanto riduce da quattro a tre i parametri che 

caratterizzano un doppio bipolo accoppiamento mutuo: 

 

1. 𝐿1, detto autoinduttanza del circuito primario, 

2. 𝐿2, detto autoinduttanza del circuito secondario, 

3. 𝑀, detta mutua induttanza. 

 



I primi due sono sempre positivi; il terzo può assumere qualsiasi segno. Il segno 

di 𝑀 dipende dal senso di avvolgimento delle spire e dal verso delle correnti. 

Supponendo di fissare il verso delle correnti, per indicare anche sullo schema 

grafico il segno di 𝑀, si adotta la convenzione mostrata in Figura 8.102. 

 

 

Figura 8.102: convenzioni di segno per 𝑀. 

 

Si osservi con attenzione la Figura 8.102: se alle due porte del doppio bipolo è 

stata fatta, come d’abitudine, la convenzione dell’utilizzatore, allora 𝑀 è positivo 

quando i due pallini neri sono affiancati; in caso contrario, 𝑀 è da ritenersi 

negativo. Il segno del flusso di mutua induzione dipende dalla convenzione 

scelta per il primo e per il secondo circuito. Pertanto, anche se per il calcolo del 

flusso si conviene di scegliere sempre come verso della normale quello che 

‘vede’ il verso positivo della circuitazione in senso antiorario (terna levogira), 

resta ancora un grado di libertà nella scelta delle due normali relative ai due 

circuiti, come è indicato sempre nella Figura 8.102. 

Dimostrare che i due coefficienti di mutua induzione sono uguali non è cosa 

semplicissima e, per comprenderla appieno, c’è bisogno di strumenti avanzati 



del calcolo differenziale. Si parta dalla potenza istantanea assorbita dal doppio 

bipolo accoppiamento mutuo, definita dalla relazione 

 

𝑝(𝑡) = 𝑣1(𝑡)𝑖1(𝑡) + 𝑣2(𝑡)𝑖2(𝑡) = (𝐿1
𝑑𝑖1
𝑑𝑡

+𝑀12  
𝑑𝑖2
𝑑𝑡
) 𝑖1 + (𝑀21  

𝑑𝑖1
𝑑𝑡

+ 𝐿2
𝑑𝑖2
𝑑𝑡
) 𝑖2 . 

 

Ricordando che la potenza istantanea è pari alla derivata dell’energia rispetto al 

tempo, è possibile scrivere la relazione precedente in termini differenziali 

 

𝑑𝑈 = 𝑝(𝑡) 𝑑𝑡 = (𝐿1𝑖1 +𝑀21𝑖2) 𝑑𝑖1 + (𝐿2𝑖2 +𝑀12𝑖1) 𝑑𝑖2 . 

 

Allora, dato che l’energia è una funzione di stato, quest’ultima relazione deve 

risultare un differenziale esatto, dato che solo sotto questa ipotesi una 

variazione finita di energia non dipende dal percorso seguito, cioè risulta 

indipendente dal modo in cui si è andati dalla condizione iniziale a quella finale. 

Pertanto, occorre che siano uguali le due derivate 

 

𝜕(𝐿1𝑖1 +𝑀21𝑖2)

𝜕𝑖2
=
𝜕(𝐿2𝑖2 +𝑀12𝑖1)

𝜕𝑖1
 , 

 

da cui discende immediatamente l’asserto 

 

𝑀12 = 𝑀21 = 𝑀 . 

 

Dimostrato che c’è bisogno di un solo coefficiente per descrivere 

l’accoppiamento mutuo, è opportuno chiedersi se tra questi tre parametri non 

esista qualche altro legame. La risposta a questa domanda discende, come non è 

difficile rendersi conto, ancora dalla considerazione dell’energia elementare 

 



𝑑𝑈 = 𝐿1𝑖1 𝑑𝑖1 + 𝐿2𝑖2 𝑑𝑖2 +𝑀(𝑖1 𝑑𝑖2 + 𝑖2 𝑑𝑖1) . 

 

Essa può essere integrata membro a membro e fornire, a meno di una costante 

additiva di integrazione, che si assume nulla per correnti nulle, l’energia 

assorbita dal nostro doppio bipolo al generico istante 𝑡 di funzionamento 

 

𝑈(𝑡) =
1

2
 𝐿1 𝑖1

2(𝑡) + 𝑀 𝑖1(𝑡) 𝑖2(𝑡) +
1

2
 𝐿2 𝑖2

2(𝑡) . 

 

Essendo il doppio bipolo in esame passivo, questa energia deve descrivere una 

quantità che non cambi segno e che risulti sempre positiva. La sua forma 

funzionale suggerisce di porre in evidenza un termine, sicuramente positivo, 

riscrivendola in modo che 

 

𝑈(𝑡) =
1

2
𝐿1𝑖1

2(𝑡) [1 + 2
𝑀

𝐿1

𝑖2(𝑡)

𝑖1(𝑡)
+
𝐿2
𝐿1

𝑖2
2(𝑡)

𝑖1
2(𝑡)

] . 

 

Ciò che determina il segno dell’energia è la parte in parentesi quadra 

nell’espressione precedente, che può essere allora pensata come un trinomio di 

secondo grado in forma adimensionale, precisamente 

 

𝑦 = 2
𝑈(𝑡)

𝐿1𝑖1
2 =

𝐿2
𝐿1
𝑥2 + 2

𝑀

𝐿1
𝑥 + 1 , 

 

in cui si è indicato con 𝑥 = 𝑖2(𝑡)/𝑖1(𝑡) il rapporto tra le due correnti. Ora, 

affinché anche il secondo membro sia una quantità sempre positiva, al più nulla, 

si deve avere per tutti i valori della variabile 𝑥, cioè per ogni condizione di 

funzionamento, che il discriminante del trinomio non sia positivo 

 



∆

4
= (

𝑀

𝐿1
)
2

−
𝐿2
𝐿1
≤ 0 . 

 

Si riconosce nella funzione y definita in precedenza una parabola; più 

precisamente, si tratta dell’insieme di parabole ad asse verticale, disegnato in 

Figura 8.103. Questa figura lascia intuire anche graficamente il motivo per cui il 

discriminante deve essere minore di zero: se così non fosse, allora per alcuni 

valori della variabile 𝑥, che rappresentano, in ultima analisi, possibili condizioni 

di funzionamento, potrebbe accadere che l’energia diventi negativa, eventualità 

che bisogna scongiurare, se si vuole che il doppio bipolo sia passivo. 

 

 

Figura 8.103: energia assorbita dal doppio bipolo accoppiamento mutuo. 

 

In altri termini, è essenziale fare in modo che l’equazione di secondo grado 

 

𝐿2
𝐿1
𝑥2 + 2

𝑀

𝐿1
𝑥 + 1 = 0 

 

ammetta soltanto radici complesse e coniugate, al più, reali e coincidenti, e ciò si 

ottiene imponendo semplicemente che il discriminante non sia positivo, vale a 



dire sia negativo o nullo. Ora, imporre che il discriminante sia minore di zero, 

equivale a scrivere che 

 

𝑀2 ≤ 𝐿1 𝐿2 . 

 

Si tratta di una condizione che deve sempre essere verificata, per fare in modo 

che l’energia assorbita dal mutuo accoppiamento sia, in ogni istante e per 

qualunque valore del rapporto tra le correnti di uscita e di ingresso, una quantità 

positiva, al più nulla in un punto. Comunque, nel caso limite 

 

𝑀2 = 𝐿1 𝐿2 , 

 

si è in condizione di accoppiamento perfetto ed esiste un valore del rapporto 

delle correnti per cui l’energia del campo di induzione magnetica è nulla. In 

questa particolare condizione di funzionamento è evidente che i campi 

magnetici, sostenuti dalle due bobine, siano uguali in modulo ed opposti in 

verso, in modo da produrre un campo risultante nullo. Se, invece, accade che 

 

𝑀2 < 𝐿1 𝐿2 , 

 

si è in condizioni di accoppiamento non perfetto e l’energia presenta un minimo, 

il cui valore è positivo. Al coefficiente 𝑘 

 

𝑘 =
𝑀

√𝐿1𝐿2
 

 

viene dato il nome di coefficiente di accoppiamento: esso varia tra −1 e 1 e, 

quando 𝑘 → ±1, l’avvolgimento tende ad essere perfetto. 

 



• Accoppiamento perfetto 

Si soffermi, ora, l’attenzione su un caso particolare di accoppiamento, quello 

perfetto. Come si è già sottolineato in precedenza, si parla di accoppiamento 

perfetto quando tra i diversi parametri sussiste la relazione 𝑀2 = 𝐿1 𝐿2, che si 

può porre, introducendo un nuovo parametro 𝑎, nella forma equivalente 

 

𝐿1
𝑀
=
𝑀

𝐿2
= 𝑎 . 

 

Operando in regime sinusoidale, si può scrivere che 

 

{ 
𝑉1 = 𝑗𝜔𝐿1 𝐼1 + 𝑗𝜔𝑀 𝐼2 ,

𝑉2 = 𝑗𝜔𝑀 𝐼1 + 𝑗𝜔𝐿2 𝐼2 .
 

 

Dividendo membro a membro queste due ultime equazioni, allo scopo di 

considerare il rapporto tra la tensione alla porta primaria e quella alla porta 

secondaria, si ha 

 

𝑉1

𝑉2
=
𝑗𝜔𝐿1
𝑗𝜔𝑀

∙
 𝐼1 +

𝑀
𝐿1
 𝐼2

𝐼1 +
𝐿2
𝑀
 𝐼2

=
𝐿1
𝑀
= 𝑎   →    

𝑉1

𝑉2
= 𝑎 , 

 

cioè, si è ottenuta la prima relazione che definisce il trasformatore ideale. Si 

ricava poi la corrente 𝐼1, riscrivendo la prima equazione nella forma 

 

𝐼1 =
𝑉1
𝑗𝜔𝐿1

−
𝑀

𝐿1
𝐼2 . 

 

Siccome 𝐿1 = 𝑀𝑎, la precedente relazione diventa 



 

𝐼1 =
𝑉1
𝑗𝜔𝐿1

−
1

𝑎
𝐼2 . 

 

Questa ultima uguaglianza richiama alla memoria quella già vista nel caso del 

trasformatore ideale 𝐼2 = −𝑎𝐼1. Ma, come si osserva, vi è la presenza anche di un 

altro addendo, che può essere interpretato come una corrente relativa alla prima 

maglia, che attraversa la reattanza 𝜔𝐿1, posta in parallelo alla porta primaria. 
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Figura 8.104: primo circuito equivalente in accoppiamento perfetto. 

 

Si osservi con cura la Figura 8.104: la rete mostrata soddisfa l’equazione per le 

tensioni che definisce il trasformatore ideale ed, in forza della LKC, deve essere 

 

𝐼1 = 𝐼1
∗
+ 𝐼0 = −

1

𝑎
𝐼2 +

𝑉1
𝑗𝜔𝐿1

 . 

 

Ciò che conta davvero ricordare è che si è fatto tutto ciò per capire che si passa 

dal concetto di trasformatore ideale a quello più realistico dell’accoppiamento 

mutuo, aggiungendo alla prima maglia del trasformatore ideale una induttanza, 

proprio come mostrato in Figura 8.104. 



Si fa notare esplicitamente che, nel caso in cui l’induttanza 𝐿1 assuma valori 

molto elevati, la precedente relazione approssima molto bene quella del 

trasformatore ideale, tanto che si può scrivere 

 

𝐼1 ≅ −
1

𝑎
𝐼2 ,   se   𝐿1 → ∞ . 

 

Esempio 12 - Si valutino le potenze, attiva e reattiva, erogate dal generatore di 

tensione nella rete operante in regime sinusoidale. 
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Dati: 𝑒(𝑡) = 𝐸 sen(𝜔𝑡), 𝑗(𝑡) = −𝐽 cos(𝜔𝑡 + 𝜋/4), 𝜔 = 1 𝑘𝑟𝑎𝑑/𝑠, 𝐸 = 100√2, 𝐽 =

20, 𝑅1 = 𝑅2 = 10, 𝑅3 = 2.5, 𝐿 = 5 𝑚𝐻, 𝐶1 = 0.1 𝑚𝐹, 𝐶2 = 0.4 𝑚𝐹, 𝐿1 = 10 𝑚𝐻, 

𝐿2 = 2.5 𝑚𝐻, |𝑀| = 5 𝑚𝐻. 

 

Per applicare il metodo dei fasori, si calcolano anzitutto le reattanze 

 

𝑋 = 𝜔𝐿 = 5 ,   𝑋1 =
1

𝜔𝐶1
= 10 ,   𝑋2 =

1

𝜔𝐶2
= 2.5 ,   𝑋𝐿1 = 𝜔𝐿1 = 10 

 

e poi si trasformano le sinusoidi nei fasori corrispondenti, secondo una 

convenzione ai valori efficaci, assumendo 



 

𝑒(𝑡) = 100√2 sen(𝜔𝑡) → 𝐸 = 100 ,

𝑗(𝑡) = −20 cos(𝜔𝑡 + 𝜋/4) → 𝐽 = 10√2 𝑒−𝑗𝜋/4 = 10(1 − 𝑗) .
 

 

La condizione 

 

𝑀2 = 𝐿1 𝐿2 = 25 ∙ 10
−6 

 

manifesta la presenza di accoppiamento perfetto e la rete assegnata può essere 

trasformata come indicato in figura, avvalendosi di un trasformatore ideale 

caratterizzato da un rapporto di trasformazione pari a 

 

𝐿1
𝑀
=
𝑀

𝐿2
= 𝑎 = 2 . 

 

R3

R2R1
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+



 

 

Riportando al primario la resistenza 𝑅3 e la reattanza 𝑋2, 

 

𝑅30 = 𝑎
2𝑅3 = 10 ,   𝑋20 = 𝑎

2𝑋2 = 10 , 

 

la rete può ulteriormente semplificarsi come di seguito mostrato. 

 



R2R1

B

A

XL1

X

E

J

J

R30

X20

X1

I

+



 

 

Dovendo valutare la potenza complessa erogata 

 

𝑃̇ = 𝐸 𝐼
∗
= 𝑃𝐸 + 𝑗𝑄𝐸  , 

 

occorre determinare la corrente 𝐼 che interessa il generatore di forza 

elettromotrice. Appare immediata l’opportunità di semplificare ulteriormente la 

rete, valutando l’impedenza equivalente ‘vista’ dai morsetti 𝐴𝐵, comprensiva 

della reattanza 𝑋1 

 

𝑍̇ = (−𝑗𝑋1) ∥ [𝑅2 + ( 𝑗𝑋𝐿1) ∥ (𝑅30 − 𝑗𝑋20)] = 5 − 10𝑗 . 

 

R1

B

A

X

E

J

J

Z

I + JI
+



 

 

Applicando la LKT, si può scrivere 



 

𝐸 = (𝑅1 + 𝑗𝑋) 𝐼 + 𝑍̇ ( 𝐼 + 𝐽 ) . 

 

Dalla precedente relazione si deduce immediatamente che 

 

𝐼 =
𝐸 − 𝑍̇𝐽

𝑅1 + 𝑗𝑋 + 𝑍̇
= 6 + 12𝑗 . 

 

In definitiva, la potenza è data da 

 

𝑃̇ = 𝑃𝐸 + 𝑗𝑄𝐸 = 600 − 1200𝑗   →    𝑃𝐸 = 0.6 𝑘𝑊 ,   𝑄𝐸 = −1.2 𝑘𝑉𝐴𝑟 . 

 

Terminato l’esempio, si ritorni all’accoppiamento perfetto. Se, per ricavare la 

corrente, invece di usare la prima relazione che definisce la tensione alla prima 

porta, si fosse deciso di usare l’altra che fornisce la tensione alla seconda porta 

 

𝑉2 = 𝑗𝜔𝑀 𝐼1 + 𝑗𝜔𝐿2 𝐼2 , 

 

con un ragionamento del tutto analogo al precedente, si sarebbe potuto scrivere 

 

𝐼1 =
𝑉2
𝑗𝜔𝑀

−
𝐿2
𝑀
𝐼2 =

𝑉2
𝑗𝜔𝑎𝐿2

−
1

𝑎
𝐼2 = −

1

𝑎
(𝐼2 −

𝑉2
𝑗𝜔𝐿2

) . 

 

Nella Figura 8.105 si riporta anche il circuito equivalente che corrisponde a 

questa equazione: la reattanza 𝜔𝐿2 è posta in parallelo alla porta secondaria e 

 

𝐼2
∗
= 𝐼2 − 𝐼0 = 𝐼2 −

𝑉2
𝑗𝜔𝐿2

 . 

 



a : 1
+



+



V2

I2I2
 *I1

V1

I0

  L2

 

Figura 8.105: secondo circuito equivalente in accoppiamento perfetto. 

 

Il circuito equivalente di Figura 8.105, tuttavia, viene scarsamente adoperato, 

dato che per consuetudine il carico viene posto in parallelo alla porta secondaria 

e, pertanto, conviene utilizzare il circuito di Figura 8.104, al fine di realizzare 

efficacemente il riporto al primario. 

 

• Accoppiamento non perfetto 

Anche in questo caso si comincia dalle due relazioni che definiscono il doppio 

bipolo accoppiamento mutuo e, poiché si è in condizioni di accoppiamento non 

perfetto, deve essere 

 

𝑀2 < 𝐿1 𝐿2 . 

 

Le induttanze proprie 𝐿1  e 𝐿2 sono dei numeri positivi che, dovendo soddisfare 

la precedenze disuguaglianza, è sempre possibile immaginare come la somma di 

due contributi positivi 

 

𝐿1 = 𝐿1
(1)
+ 𝐿1

(2)
 ,   𝐿2 = 𝐿2

(1)
+ 𝐿2

(2)
 , 

 

in cui i due contributi 𝐿1
(1)

 e 𝐿2
(1)

 vengono scelti in maniera tale da soddisfare 

l’uguaglianza 



 

𝑀2 = 𝐿1
(1)
𝐿2
(1)
 . 

 

Questa scomposizione, che potrebbe apparire un mero artificio matematico, 

trova un riscontro nelle applicazioni. Prima di procedere oltre, è opportuno 

spiegarla con un esempio numerico. Si supponga che siano stati assegnati i 

valori 

 

𝐿1 = 10 𝑚𝐻 ,   𝐿2 = 6 𝑚𝐻 ,   𝑀 = 5 𝑚𝐻 . 

 

È facile controllare che il doppio bipolo lavora in condizioni di accoppiamento 

non perfetto, essendo 

 

𝑀2 = 25 ∙ 10−6 < 𝐿1𝐿2 = 60 ∙ 10
−6 . 

 

Tuttavia è sempre possibile immaginare che 𝐿1 sia la somma di due induttanze 

 

𝐿1 = (5 + 5) 𝑚𝐻   oppure   𝐿1 = (8 + 2) 𝑚𝐻 . 

 

L’importante è che la somma delle due induttanze in cui si immagina scomposto 

il valore di 𝐿1 diano, in ogni caso, per somma 10 𝑚𝐻. La stessa cosa si può 

pensare di fare per 𝐿2. 

Riassumendo, si è immaginato di scomporre in due contributi le autoinduttanze 

delle porte primaria e secondaria e le suddivisioni imposte verificano il sistema 

 

{ 

𝐿1
(1)
+ 𝐿1

(2)
= 𝐿1 ,

𝐿2
(1)
+ 𝐿2

(2)
= 𝐿2 .

𝐿1
(1)
𝐿2
(1)
= 𝑀2 .

 

 



costituito da tre equazioni e quattro incognite 

 

𝐿1
(1)
 ,   𝐿1

(2)
 ,   𝐿2

(1)
 ,   𝐿2

(2)
 . 

 

Una incognita è di troppo e, pertanto, è possibile fissarla a piacimento: in genere, 

si usa considerare 𝐿2
(2)

 nullo, ma si sarebbe potuto altrettanto correttamente 

considerare nullo 𝐿1
(2)

, e semplificare il precedente sistema come 

 

{ 

𝐿1
(1)
+ 𝐿1

(2)
= 𝐿1 ,

𝐿2
(1)
= 𝐿2 .

𝐿1
(1)
𝐿2 = 𝑀

2 .

 

 

La soluzione del sistema fornisce i tre valori 

 

𝐿1
(1)
=
𝑀2

𝐿2
 ,   𝐿1

(2)
= 𝐿1 −

𝑀2

𝐿2
  ,   𝐿2

(1)
= 𝐿2 . 

 

Ad esempio, usando i valori assegnati in precedenza, risulta il sistema 

 

{ 

𝐿1
(1)
+ 𝐿1

(2)
= 10 ∙ 10−3 ,

𝐿2
(1)
= 6 ∙ 10−3 ,

𝐿1
(1)
= 4.16 ∙ 10−3 ,

 

 

che fornisce i tre valori 

 

𝐿1
(1)
= 4.16 𝑚𝐻 ,   𝐿1

(2)
= 5.83 𝑚𝐻 ,   𝐿2

(1)
= 6 𝑚𝐻 . 

 



Sostituendo la scomposizione appena sviluppata nella definizione del doppio 

bipolo, si ottiene 

 

{ 
𝑉1 = 𝑗𝜔 [𝐿1

(1)
+ 𝐿1

(2)
] 𝐼1 + 𝑗𝜔𝑀 𝐼2 ,

𝑉2 = 𝑗𝜔𝑀 𝐼1 + 𝑗𝜔𝐿2
(2)
 𝐼2 .

 

 

Queste relazioni si possono, ovviamente, scrivere nella forma equivalente 

 

{ 
𝑉1 = 𝑗𝜔𝐿1

(1)
 𝐼1 + 𝑗𝜔𝑀 𝐼2 + 𝑗𝜔𝐿1

(2)
 𝐼1  ,

𝑉2 = 𝑗𝜔𝑀 𝐼1 + 𝑗𝜔𝐿2
(2)
 𝐼2 .

 

 

Se nella prima relazione fosse assente il termine 𝑗𝜔𝐿1
(2)
 𝐼1, si poteva concludere 

che si era in presenza delle stesse equazioni del caso dell’accoppiamento 

perfetto. Tuttavia, l’aggiunta di questo termine comporta soltanto la piccola, ma 

sostanziale, modifica indicata in Figura 8.106. 

 

a : 1
+



+



  L1
(2)

  L1
(1)V1 V2

I2I1

 

Figura 8.106: primo circuito equivalente in accoppiamento non perfetto. 

 

Allora, quando si è in condizioni di accoppiamento non perfetto, è possibile 

passare dall’accoppiamento perfetto a quello non perfetto, aggiungendo in serie 

alla prima porta una induttanza di valore 𝐿1
(2)

. 



Resta solo da specificare il valore della costante a. Dalla relazione imposta che 

definisce la parte di accoppiamento perfetto 

 

𝐿1
(1)
𝐿2 = 𝑀

2 , 

 

segue immediatamente che 

 

𝑎 =
𝐿1
(1)

𝑀
=
𝑀

𝐿2
   (nell’esempio 𝑎 = 0.83) . 

 

In genere, se il trasformatore è ben progettato, l’induttanza 𝐿1
(2)

, anche detta 

induttanza longitudinale, è piccola rispetto alle altre due 𝐿1
(1)

 e 𝐿2, dette 

induttanze trasverse o trasversali, che sono più grandi: è compito del corso di 

Macchine Elettriche fornire qualche valore più preciso di questi parametri. Per 

ora basta riassumere dicendo che, con riferimento al circuito di Figura 8.106, il 

generico parametro longitudinale di un trasformatore è più piccolo di quello 

trasversale. 

 

Esempio 13 - Il doppio bipolo mostrato in figura opera in regime sinusoidale. 

Determinare la sua rappresentazione in termini di impedenze. 

 

 



 

Dati: 𝐿1 = 𝐿2 = 20 𝑚𝐻, 𝑀 = 10 𝑚𝐻, 𝑅 = 20, 𝜔 = 1 𝑘𝑟𝑎𝑑/𝑠. 

 

La rappresentazione in termini di impedenze è formalmente definita per mezzo 

della trasformazione lineare di carattere generale 

 

{ 
𝑉1 = 𝑍̇11𝐼1 + 𝑍̇𝑚𝐼2 ,

𝑉2 = 𝑍̇𝑚𝐼1 + 𝑍̇22𝐼2 ,
 

 

che, nel caso in cui il doppio bipolo si riduca ad un accoppiamento mutuo, 

diventano 

 

{ 
𝑉1 = 𝑗𝜔𝐿1 𝐼1 + 𝑗𝜔𝑀 𝐼0 ,

𝑉2 = 𝑗𝜔𝑀 𝐼1 + 𝑗𝜔𝐿2 𝐼0 .
 

 

Nel caso in esame, alle due relazioni ora scritte va aggiunta quella che esprime la 

LKC al nodo 𝐴 

 

𝐼2 = 𝐼0 +
𝑉2
𝑅
 . 

 

Eliminando da queste relazioni la corrente 𝐼0, si ottiene il sistema 

 

{
 
 

 
 

 
𝑉1 = 𝑗𝜔𝐿1 𝐼1 + 𝑗𝜔𝑀 𝐼2 − 𝑗𝜔𝑀 

𝑉2
𝑅
 ,

𝑉2 = 𝑗𝜔𝑀 𝐼1 + 𝑗𝜔𝐿2 𝐼2 − 𝑗𝜔𝐿2  
𝑉2
𝑅
 ,

 

 



che individua una rappresentazione implicita per il doppio bipolo in esame. 

Dalla seconda equazione, portando tutti i termini in 𝑉2 al primo membro, 

discende pure che 

 

𝑉2 =
𝑗𝜔𝑀𝑅

𝑅 + 𝑗𝜔𝐿2
 𝐼1 +

𝑗𝜔𝐿2𝑅

𝑅 + 𝑗𝜔𝐿2
 𝐼2 , 

 

da cui, per confronto, si ricavano le due impedenze 

 

𝑍̇𝑚 = [ 
𝑉2

𝐼1
 ]
𝐼2=0

=
𝑗𝜔𝑀𝑅

𝑅 + 𝑗𝜔𝐿2
= 5 + 5𝑗 , 𝑍̇22 = [ 

𝑉2

𝐼2
 ]
𝐼1=0

=
𝑗𝜔𝐿2𝑅

𝑅 + 𝑗𝜔𝐿2
= 10 + 10𝑗 . 

 

Sostituendo la tensione 𝑉2 appena trovata nella prima equazione, si ha pure 

 

𝑍̇11 = 𝑗𝜔𝐿1 +
𝜔2𝑀2

𝑅 + 𝑗𝜔𝐿2
= 2.5 + 17.5𝑗 . 

 

Per controllare i calcoli sviluppati, lo studioso lettore può riottenere la matrice 

delle impedenze nella via più usuale, vale a dire adoperando le definizioni 

 

𝑍̇11 = [ 
𝑉1

𝐼1
 ]
𝐼2=0

 ,   𝑍̇𝑚 = [ 
𝑉2

𝐼1
 ]
𝐼2=0

= [ 
𝑉1

𝐼2
 ]
𝐼1=0

 ,   𝑍̇22 = [ 
𝑉2

𝐼2
 ]
𝐼1=0

 . 

 

È evidente che dovrà ritrovare le stesse impedenze calcolate in precedenza. 

 

Si discute, infine, in qualche dettaglio il caso in cui 𝐿1
(2)

viene scelto pari a zero. In 

questo caso, seguendo un ragionamento simile a quello appena sviluppato, non è 

difficile verificare che si può adoperare il circuito mostrato in Figura 8.107. 

 



a : 1

+



+



  L1
(1)

  L2
(2)

I2I1

V1
V2

 

Figura 8.107: secondo circuito equivalente in accoppiamento non perfetto. 

 

L’induttanza longitudinale è passata dalla porta primaria a quella secondaria. 

Inoltre, per quanto riguarda il valore di 𝑎 si troverà che 

 

𝑎 =
𝐿1
𝑀
=
𝑀

𝐿2
(1)
 . 

 

Nel caso generale, assumendo non nulli i quattro parametri, il doppio bipolo 

accoppiamento mutuo si può schematizzare per mezzo del circuito di Figura 

8.108: si provi a verificarlo, ripetendo quanto appreso nei due precedenti casi. 

 

a : 1
+



+



I1 I2

V2V1   L1
(1)

  L1
(2)

  L2
(2)

 

Figura 8.108: terzo circuito equivalente in accoppiamento non perfetto. 

 

In esso nessun parametro, longitudinale o trasversale che sia, è stato ritenuto 

nullo e si ha che 



 

𝑎 =
𝐿1
(1)

𝑀
=
𝑀

𝐿2
(1)
 . 

 


