
SIMD and GPU architectures
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From superscalar to SIMD and GPU architectures

• Superscalar / dynamic scheduling /  
Coherence / Consistency etc…
– single execution flow
– very high complexity
– too much implementation overhead

• Simultaneous MultiThreading (SMT)
– parallelism is made visible to software– parallelism is made visible to software
– limited number (two/four) of separate 

execution flows sharing hardware units

• To achieve large scale parallelism:
– rebalance control vs. data processing
– most resources should go to processing
– control should possibly be shared across 

execution resources



Single Instruction Multiple Data (SIMD)

• Multiple compute units driven by the same control
• Processor needs to fetch and decode only one instruction
• Unlike scalar processor, SIMD operations are typically 

performed on vector of data
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Single Instruction Multiple Data (SIMD)

• SIMD is a broad concept:

• can apply to coarse-grain architectures:
– SIMD compute systems made of a front-end 

processor  and an array of multiple processors 
working lock-step (i.e. doing all the same thing at working lock-step (i.e. doing all the same thing at 
the same time)

• or to fine-grain architectures:
– multiple identical compute units are instantiated 

within the processor datapath and steered by a 
single control unit



Coarse grain SIMD (processor array)

• The front-end, sequential processor broadcasts the 
commands to SIMD processors (Processing Elements, PEs)
– normally, the front-end is a general-purpose CPU handling the non-

parallelizable part of the program
– When the front-end encounters a parallel task (e.g. instructions 

working on vectors), it issues a command to the PEs
– although the PEs execute in parallel, some units can be allowed to 

skip particular instructionsskip particular instructions

• Alternately, all PEs can execute computation steps 
synchronously, avoiding broadcast cost to distribute results

• Each PE has a local memory not directly accessible by the 
control unit or other PEs

• Some PEs can be disabled, in case their portion of data must 
not be processed
– All PEs work in lockstep except those that are masked out



Fine-grained SIMD (SIMD extensions)

• One processor, with multiple identical execution units
– also called “lanes” or “slots”

• The processor has larger registers (e.g. 128 bits) that can be 
partitioned to store multiple data (e.g. four 32-bit values)
– Vector length = register width / type size
– Data fields are usually variable-sized

• The typical solution adopted by current commercial processors• The typical solution adopted by current commercial processors
– SIMD/multimedia extensions: SIMD instructions and registers added 

to the base processor ISA



Conditional execution in SIMD architectures

• How to handle conditional if-then-else in processor 
arrays?
– The Control Unit checks if data in each PE meets the condition
– If it does, it sets the mask bits so those processors will 

participate in the operation, while the remaining ones will not
– Unmasked processors execute the THEN part
– Afterwards, mask bits (for original set of active processors) are – Afterwards, mask bits (for original set of active processors) are 

flipped and unmasked processors perform the ELSE part

ELSE part

THEN part
if (A>0)

A=A-1;
else

A=A+1;

A={ 3, -7, -1, 12 … }

A is in fact a vector, and 
the above operation is 
performed on each of its 
components



Advantages (and disadvantages) of SIMDs

• Alternative model for exploiting ILP
– If code is vectorizable, then better resource and energy 

efficiency than out-of-order processors
• More lanes, slower clock rate

– Scalable if elements are independent
– But, if there is dependency:

• One stall per vector instruction rather than one stall per vector • One stall per vector instruction rather than one stall per vector 
element

• Programmer in charge of giving hints to the compiler
• Design issues:

– number of lanes, functional units and registers, length of vector 
registers, exception handling, conditional operations

• Fundamental design issue is memory bandwidth
– Especially with virtual address translation and caching



Advantages (and disadvantages) of SIMDs

• Less hardware than multiprocessors (MIMDs):
– only one control unit� Control units are complex

• Less memory needed than MIMD 
– Only one copy of the instructions need to be stored
– Allows more data to be stored in memory

• Much less time required for communication between PEs and 
data movement

• Single instruction stream and synchronization of PEs make • Single instruction stream and synchronization of PEs make 
SIMD applications easier to program, understand, and debug
– similar to sequential programming

• In case of a coarse-grain SIMD system, control flow and 
scalar operations can be executed on the front-end unit, while 
PEs are executing parallelized instructions

• MIMD architectures require explicit synchronization primitives
– these may create a substantial amount of additional overhead



Advantages (and disadvantages) of SIMDs

• During a communication operation between PEs
– PEs send data to a neighboring PE in parallel and in lock-step
– No need to create a header with routing information since “routing” 

is determined by program steps
– the entire communication operation is executed synchronously
– SIMDs are deterministic and have much more predictable running 

time
– Can normally compute a tight, worst-case upper bound to the time – Can normally compute a tight, worst-case upper bound to the time 

required for both computation and communication operations

• Less complex hardware in SIMD since no message decoder 
is needed in the PEs
– MIMDs need a message decoder in each PE

• Disadvantages:
– for applications that are not straightforward to parallelize, it may be 

very difficult to achieve a good utilization of the compute resources



Where are SIMD architectures used?

• Several classes of applications have data parallelism 
– Scientific and engineering applications
– Multimedia applications

• In commercial processors, SIMD extensions are most 
often used for multimedia applications
– in fact, they are typically called multimedia extensions, e.g. in 

x86x86

• SIMD machines typically focus on vector operations
– Support some vector and possibly matrix operations in hardware
– Usually limit or provide less support for non-vector type 

operations involving data in the “vector components”

• General purpose SIMD computers
– May also provide some vector/matrix operations in hardware, but 

there is more support for traditional type (scalar) operations



Multimedia Applications and SIMD

• Short data types, narrower than the native word size
– Graphics systems use 8 bits per primary color
– Audio samples use 8-16 bits
– Use a 256-bit adder for

• 16 simultaneous operations on 16 bits
• 32 simultaneous operations on 8 bits

• Regular data access pattern• Regular data access pattern
– Data items are contiguous in memory 

• Data streaming through a series of processing stages
– some temporal reuse for such data streams

• A few specific features that may occur sometimes:
– many constants
– short iteration counts
– saturation arithmetic
– etc.



Vector architectures

• “Vector” architectures
– more or less the same as SIMD
– sometimes, vector and SIMD are used interchangeably, although 

some authors highlight a few differences between the two
• Basic idea:

– Read sets of data elements into “vector registers”
– Operate on those registers
– send the results back to memory– send the results back to memory

• Registers are controlled by compiler
– Register files act as compiler controlled buffers
– Used to hide memory latency
– Leverage memory bandwidth

• Vector loads/stores deeply pipelined
– memory latency experienced once per vector Load/Store
– instead, in regular architectures, memory latency is experienced 

once for each element in the vector



SIMD vs. Vector 

• A few differences:
• Multimedia SIMD extensions fix the number of operands in 

the opcode
– Vector architectures have a VLR to specify the number of operands

• Multimedia SIMD extensions
– No sophisticated addressing modes (strided, scatter-gather)
– No mask registers (in some architectures)

• The above features 
– enable vector compiler to vectorize a larger set of applications
– make it harder for compiler to generate SIMD code and make 

programming in SIMD assembly more difficult

• Differences, anyway, tend to be subtle
– SIMD extensions are increasingly being extended by manufacturers 

(e.g., see Intel’s MMX � SSE � AVX)



SIMD vs. Vector 

• SIMD meant for direct use by programmers
– rather than for automated code generation by compilers
– although there are “SIMD-izing” compilers, i.e. compilers extracting 

parallel SIMD patterns from sequential code

• Recent x86 compilers
– Capable for FP intensive apps

• Why is SIMD popular? • Why is SIMD popular? 
– Little hardware costs and complexity
– Need smaller memory bandwidth than vector
– Separate data transfers aligned in memory 

• with Vector: a single instruction might cause 64 memory accesses, 
making it very likely to incur a page fault in the middle of the vector!

– Use much smaller register space
– Fewer operands
– No need  for sophisticated mechanisms of vector architecture



SIMD example (MIPS)

• Example (DXPY):

L.D F0,a ;load scalar a

MOV F1, F0 ;copy a into F1 for SIMD MUL

MOV F2, F0 ;copy a into F2 for SIMD MUL

MOV F3, F0 ;copy a into F3 for SIMD MUL

DADDIU R4,Rx,#512 ;last address to load

Loop:Loop:

L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]

MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]

L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]

S.4D 0[Ry],F8 ;store into Y[i], Y[i+1],Y[i+2],Y[i+3]

DADDIU Rx,Rx,#32 ;increment index to X

DADDIU Ry,Ry,#32 ;increment index to Y

DSUBU R20,R4,Rx ;compute bound

BNEZ R20,Loop ;check if done



Commercial SIMD architectures

• Intel SIMD extensions
– MMX: Multimedia Extensions (1996)
– SSE: Streaming SIMD Extensions (1999)
– AVX: Advanced Vector Extension (2010)

• PowerPC
– Altivec– Altivec

• ARM
– NEON

• MIPS
– MIPS-3D



Motorola/Freescale ALTIVEC

• Altivec is the Motorola implementation of SIMD
– vector unit handles multiple pieces of data simultaneously 

in parallel with a single instruction 

• added 162 new PowerPC instructions
– functionality similar to what is offered in the scalar units, 

just extrapolated into the SIMD domain
– new instructions for field permutation and formatting
– load/store instruction options for cache management
– instructions that control four data prefetch engines

• AltiVec vector unit never generates exceptions



Motorola/Freescale ALTIVEC

• “vector” instructions:
– each AltiVec instruction specifies up to three source operands 

and a single destination operand
• Target applications for AltiVec technology include:

– image and video processing systems
– virtual reality
– scientific array processing systems
– network infrastructure such as Internet routers, etc...– network infrastructure such as Internet routers, etc...



Motorola/Freescale ALTIVEC

• Four 128-bit vector execution units:
– VIU1: executes AltiVec simple integer 

instructions
– VIU2: executes AltiVec complex integer 

instructions
– VPU: executes AltiVec permute instructions
– VFPU: executes AltiVec floating-point – VFPU: executes AltiVec floating-point 

instructions
• 32-entry, 128-bit vector register file 

(VRs)
• 16-entry, 128-bit renamed buffer



Motorola/Freescale ALTIVEC

• Vector registers (VRs)
– used as source and destination 

operands for AltiVec load, store, 
and computational instructions

• AltiVec's 128-bit wide vectors 
can be subdivided into:
– 16 elements, where each element 

is either an 8-bit signed or is either an 8-bit signed or 
unsigned integer, or an 8-bit 
character

– 8 elements, where each element 
is a 16-bit signed or unsigned 
integer 

– 4 elements, where each element 
is either a 32-bit signed or 
unsigned integer, or a single 
precision (32-bit) IEEE floating-
point number



Motorola/Freescale ALTIVEC

• Data types

char
short
long

unsigned
signed
bool

vector float

vector

vector float
vector pixel



Commercial SIMD architectures: Intel
– Intel MMX (1996)

• Repurpose 64-bit floating point registers
• Eight 8-bit integer ops or four 16-bit integer ops

– Streaming SIMD Extensions (SSE) (1999)
• Separate 128-bit registers: 8 16-bit ops, 4 32-bit ops, or two 64-bit ops
• Single precision floating point arithmetic

– Double-precision floating point in
• SSE2 (2001), SSE3(2004), SSE4(2007)

– Advanced Vector Extensions (2010)
• Four 64-bit integer/fp ops



Commercial SIMD architectures: Intel

Intel® SSE
Vector size: 128bit
Data types: 
8,16,32,64 bit integers
32 and 64bit floats 
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float 

MMX™
Vector size: 64bit
Data types: 8, 16 and 32 bit integers
Vector Lane (VL): 2,4,8
For sample on the left: Xi, Yi 16 bit 
integers



Commercial SIMD architectures: Intel

Intel® AVX Intel® MICIntel® AVX
Vector size: 256 bit
(Extendible to 512 and 1024 bits for 
future generations)
Four 64-bit integer/fp ops
Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float

(Like the others, operands must be 
consecutive and aligned memory 
locations)

Intel® MIC
Vector size: 512bit
Data types: 
32 and 64 bit integers
32 and 64bit floats 
(some support for 16 bits floats) 
VL: 8,16
Sample: 32 bit float



Programming with vector/SIMD extensions

• How to use SIMD (or 
other) machine 
instructions from high-
level code?

• asm
– inject assembly code from 

C/C++ sources
– details depend on 

compiler implementation

// Add 10 and 20 to register %eax
__asm__ ( "movl $10, %eax;”

"movl $20, %ebx;”
"addl %ebx, %eax;”   );

. . . . . 

int no = 100, val ;
asm ("movl %1, %%ebx;"

"movl %%ebx, %0;"
: "=r" ( val )   // output– details depend on 

compiler implementation
– some trickery to specify 

operands
• “intrinsics”

– syntactically, look like 
function calls

– each intrinsic directly 
corresponds to a specific 
processor instruction

– again, details depend on 
compiler implementation

: "=r" ( val )   // output
: "r" ( no )     // input
: "%ebx" // clobbered register

); 
. . . . .

#include <xmmintrin.h>

__m128 source0 = {1.1, 2.2, 3.3, 4.4};  
__m128 source1 = {10.1,20.2,30.3,40.4};
__m128 dest;  float 
printarray[FLOAT_ARRAYSIZE] 

__attribute__ ((aligned (16)));
dest = _mm_shuffle_ps (source0, source1, 

_MM_SHUFFLE(0, 1, 2, 3));



Programming with vector/SIMD extensions

• Use Performance Libraries 
• Compiler: Fully automatic vectorization
• Cilk Plus Array Notation 
• Compiler: Auto vectorization hints

( #pragma ivdep , …)

• User Mandated Vectorization ( SIMD 

Ease of use
Little control

• User Mandated Vectorization ( SIMD 
Directive)

• Manual CPU Dispatch 
(  __declspec(cpu_dispatch …) )

• SIMD intrinsic class (F32vec4 add )
• Vector intrinsic ( mm_add_ps() )
• Assembler code ( addpsv )

Programmer 
Control



Various Intel codes from a C routine
static double A[1000], B[1000],

C[1000];
void add() {

int i;
for (i=0; i<1000; i++)
if (A[i]>0)
A[i] += B[i];
else 
A[i] += C[i];

}

.B1.2::
movaps xmm2, A[rdx*8]
xorps xmm0, xmm0
cmpltpd xmm0, xmm2
movaps xmm1, B[rdx*8]
andps xmm1, xmm0
andnps xmm0, C[rdx*8]
orps xmm1, xmm0
addpd xmm2, xmm1
movaps A[rdx*8], xmm2
add       rdx , 2

}
add       rdx , 2
cmp rdx, 1000
jl .B1.2

.B1.2::
movaps xmm2, A[rdx*8]
xorps xmm0, xmm0
cmpltpd xmm0, xmm2
movaps xmm1, C[rdx*8]
blendvpd xmm1, B[rdx*8], xmm0
addpd xmm2, xmm1
movaps A[rdx*8], xmm2
add       rdx, 2
cmp rdx, 1000
jl .B1.2

.B1.2::
vmovaps ymm3, A[rdx*8]
vmovaps ymm1, C[rdx*8]
vcmpgtpd ymm2, ymm3, ymm0
vblendvpd ymm4, ymm1,B[rdx*8], ymm2
vaddpd ymm5, ymm3, ymm4
vmovaps A[rdx*8], ymm5
add       rdx, 4
cmp rdx, 1000
jl .B1.2

SSE4.1

SSE2

AVX



AltiVec Programming

• GNU Compiler Collection, IBM Visual Age Compiler and 
other compilers provide intrinsics
– access AltiVec instructions directly from C and C++ programs

• The “vector ” storage class is introduced
– permits the declaration of native vector types
– e.g., “vector unsigned char A ;” declares a 128-bit vector 

variable named “A” containing sixteen 8-bit unsigned charsvariable named “A” containing sixteen 8-bit unsigned chars

• AltiVec C extensions map into AltiVec instructions
– For example, vec_add() maps into one of four AltiVec 

instructions (vaddubm , vadduhm , vadduwm, or vaddfp ) 
depending upon the types of the arguments to vec_add() .



AltiVec Programming: vec_add

• Example:
– each element of a is added to the corresponding element of b
– each sum is placed in the corresponding element of d

d = vec_add(a,b);

equivalent to:

for(i=0; i<4; i++){
d[i] = a[i]+b[i];

}

for(i=0; i<n; i++){
d[i] = a[i]+b[i];

}

Floating point operands and addition:

equivalent to:

Integer operands and addition:



GPU

• Graphics Processing Unit (GPU)
– dedicated super-threaded, massively data 

parallel coprocessor
• Historically, followed a different path 

from SIMD
– Hardware acceleration of dedicated graphics 

processing functionsprocessing functions
• Now General-Purpose GPU (GPGPU)

– General purpose programming model based 
on graphics-free API 

– Pushed by emerging general-purpose 
programming models:

• NVIDIA’s  Compute Unified Device Architecture 
(CUDA), 2007

• Khronos Group’s  Open Computing Language 
(OpenCL), 2009

The 2008 IEEE paper 
presenting Tesla.
“Tesla” is today the code 
name of a family of 
products including 
devices like K20, K20X, 
also used in HPC 



Current GPGPUs

CPU model

GPU model



Current GPGPUs

• The GPU is viewed as a compute device that:
– Is a co-processor to the CPU or host
– Has its own DRAM (global memory in CUDA parlance)
– Runs many threads in parallel

• Data-parallel portions of an application run on the device 
as kernels which are executed in parallel by many as kernels which are executed in parallel by many 
threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few heavy ones



Current GPGPUs

• GPU is a in fact SIMD device � works on 
“streams” of data
– Each “GPU thread” executes one general instruction on 

the stream of data that the GPU is assigned to process
– sometimes called single instruction multiple thread

(SIMT)

• Compute power comes from a vertical hierarchy:• Compute power comes from a vertical hierarchy:
– e.g., NVIDIA:  set of Streaming Multiprocessors (SMs)
– each SM has a set of 32 Scalar Processors (SPs)

• Maxwell has 128 SPs, Kepler has 196 SPs, Fermi 2.1 had 
48 SPs

• The quantum of scalability is the SM
– larger (and more expensive) GPUs have more SMs
– Fermi can have up to 16 SMs on one GPU card



Graphics computing

• Workload and Programming Model provide lots of parallelism:
– Graphics applications provide large groups of vertices at once
– Vertices can be processed in parallel
– Apply the same transform to all vertices

• Triangles contain many pixels
– Pixels from a triangle can be processed in parallel
– Apply the same shader to all pixels

• Very efficient hardware to hide serialization bottlenecks



The Graphics Pipeline

Vertex Transform & LightingVertex Transform & Lighting

Triangle Setup & RasterizationTriangle Setup & Rasterization

Texturing & Pixel ShadingTexturing & Pixel Shading

Depth Test & BlendingDepth Test & Blending

FramebufferFramebuffer



Applications of Computer Graphics

• Climate
– E.g.: Comprehensive Earth System 

Model at 1KM scale, enabling 
modeling of cloud convection and 
ocean eddies

• Biology
– E.g.: Coupled simulation of entire 

cells at molecular, genetic, cells at molecular, genetic, 
chemical and biological levels

• Astrophysics
– E.g.: Predictive calculations for 

thermonuclear and core-collapse 
supernovae, allowing confirmation 
of theoretical models.

• Gaming applications
• etc…



Evolution of GPUs

Early Graphics accelerators:

• Key abstraction of real-time 
graphics

• Hardware directly resembled 

VertexVertex

RasterizeRasterize
• Hardware directly resembled 

the pipeline structure
• One chip/board per stage
• Fixed data flow through pipeline

PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer



Evolution of GPUs

Early GPUs:

• Everything was a fixed function, 
with a certain number of modes

• Number of modes for each 

VertexVertex

RasterizeRasterize
• Number of modes for each 

stage grew over time
• Hard to optimize hardware
• Developers wanted more 

flexibility

PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer



Evolution of GPUs

Programmable GPUs:

• Remains a key abstraction
• Hardware still directly resembled 

the pipeline structure
• but, Vertex & Pixel processing 

VertexVertex

RasterizeRasterize

• but, Vertex & Pixel processing 
became programmable
– new stages added

• GPU architecture increasingly 
centers around shader
execution

PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer



Evolution of GPUs

Programmable GPUs:

• Exposing a (initially limited) 
instruction set for some stages

• Limited instructions & 
instruction types and no control 

VertexVertex

RasterizeRasterize

instruction types and no control 
flow at first

• Then expanded to full ISA
PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer



Evolution of GPU architectures

CPU
Co

Processor

Input stage

Vertex shader 
stage

Geometry shader 
stage

Graphics 
memory

Memory

Rasterizer stage

Frame 
buffer

Pixel shading 
stage

1970-1980: floating 
point co-processors 
attached to 
microprocessors

Late 1990s: graphics chips needed 
to support 3-D (graphics APIs such 
as DirectX and OpenGL)
Graphics chips generally had a 
pipeline structure: a sequence of 
highly specialized operations

Mid 2000s: 
General-Purpose 
GPUs (GPGPUs)

DRAM



Evolution of GPUs

GPUs with 
programmable shading

Nvidia GeForce
GE 3 (2001) with 

programmable shading

General-purpose computing on 
graphics processing units 

(GPGPUs)

GPU Computing 

1970 2010200019901980

Atari 8-bit computer 
text/graphics chip

IBM PC Professional 
Graphics Controller 

card 

S3 graphics cards-
single chip 2D 

accelerator

OpenGL graphics API

Hardware-accelerated 
3D graphics

DirectX graphics API

Playstation

programmable shading



GPU acceleration: New areas

• Embedded/Automotive
• “Infotainment”
• etc…

• NVIDIA PX

NVIDIA Jetson TK1

– Self Driving Car Computing

• NVIDIA CX
– Digital Cockpit Computer NVIDIA Jetson TX1



GPGPU: main players

(NVIDIA Fermi Architecture) (Intel i7 with Processor Graphics)(AMD Tahiti Architecture)



GeForce 6 Series Architecture (2004-5)

• Fixed-pipeline 
architecture
– still no GPGPU

• Compliant with 
Microsoft DirectX 
9.0c specification 9.0c specification 
and OpenGL 2.0



NVIDIA G80 chip/GeForce 8800 card (2006)

• First GPU for HPC 
as well as graphics 
– unified processors 

could perform vertex, 
geometry, pixel, and 
general computing 
operations

• Could now write 

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

• Could now write 
programs in C rather 
than graphics APIs

• Single-instruction 
multiple thread 
(SIMT) 
programming model

Load/store

Global Memory

Load/store Load/store Load/store Load/store Load/store

G80 Device:
• Processors execute computing threads
• Thread Execution Manager issues threads
• 128 Thread Processors grouped into 16 

multiprocessors (SMs)
• Parallel Data Cache enables thread cooperation



NVIDIA Fermi architecture (Sept 2009)

• First implementation: Tesla 20 
series

• 16 Streaming Multiprocessors 
(SMs)
– each having 32 stream processing 

engines (SPEs): up to 512 cores 
• Many innovations 

– e.g., L1/L2 caches, unified device 
memory addressing, ECC memory,…

– e.g., L1/L2 caches, unified device 
memory addressing, ECC memory,…

• ~3 billion transistor chip
• Number of cores limited by power 

considerations
– e.g. C2050 has 448 cores

GF100: NVIDIA Fermi
• GPU/CPU Host interface: PCI-Express v2 bus (peak transfer rate of 8GB/s)
• DRAM: up to 6GB of GDDR5 DRAM, 64-bit addressing capability
• Clock frequency: ~1.5GHz,   Peak performance: 1.5 TFlops.
• DRAM bandwidth: 192GB/s



Fermi Streaming Multiprocessor (SM)
• 32 CUDA cores 

– Fully pipelined Integer ALU and FPU
– 32-bit Integer operations
– IEEE-754:2008 Double Precision Operations
– Support for: Boolean, shift, move, compare, convert, 

bit-field extract, bit-reverse insert
• 32K of 32-bit register file
• 64 KB of RAM with a configurable partitioning of 

shared memory and  L1 cache 48:16 or 16:48 
• 16 Load/Store units

– source and destination addresses to be calculated 
for 16 threads per clock

– source and destination addresses to be calculated 
for 16 threads per clock

– Load and store the data from/to cache or DRAM
• 4 Special Function Unit (SFU) for transcendental 

instructions:
– e.g. sin, cosine, reciprocal, and square root
– Each SFU executes one instruction per thread, per 

clock; a warp executes over eight clocks. 
– The SFU pipeline is decoupled from the dispatch 

unit, allowing the dispatch unit to issue to other 
execution units while the SFU is occupied.

• Dual Warp Scheduler simultaneously schedules 
and dispatches instructions from two independent 
warps

• GF104/GF114 are also 16 CUDA cores FP64 
capable, 8 SFU and 4 dispatched units*



Fused MultiplyAdd (FMA)

• MAC: (non-fused): A = 
Normalize_and_Round(Normalize_and_Round(B*C) + D) 

• FMA: (fused): A = 
Normalize_and_Round(Extended_Precision_with_No_Inte
rmediate_Rounding(B*C ) + D)



The Fermi GigaThread™ Thread Scheduler

• Global GPU scheduler:
• Schedules thread blocks to various SMs

– Check for resources availability
– Example: 

• each thread can use only 63 registers
• Only 16 threadblocks per SM

• 10x faster application context switching (Compared to G80)
• Concurrent kernel execution 
• Out of Order thread block execution• Out of Order thread block execution
• Dual overlapped memory transfer engines



The Fermi Dual Warp Scheduler
• “Local” SM scheduler

– handles groups of 32 parallel threads called 
warps

• Each SM has two warp schedulers and two 
instruction dispatch units

– allow two warps to be issued and executed 
concurrently

• Selects two warps and issues one instruction 
from each warp to a SM part, i.e. a group of 
16 cores, 16 load/store units, or 4 SFUs16 cores, 16 load/store units, or 4 SFUs

– most instructions can be dual issued (exceptions 
include double precision instructions, which 
cannot be dual issued)

– efficient scheduling allow near-peak HW 
performance

• Because warps execute independently, 
Fermi’s scheduler does not need to check for 
dependencies within the instruction stream

– however, the architecture with four dispatcher 
units do have a check for dependencies

• Max 48 Warps per SM Fermi 
SM



Fermi Shader Clock

• On GF100/104/110/114:
– Within the SM itself different units operated on different clocks

• schedulers and texture units operating on the core clock (607 MHz)
• CUDA cores, load/store units, and SFUs operated on the shader

clock, which ran at twice the core clock (1215 MHz). 

– With Fermi, a warp would be split up and executed over 2 cycles 
of the shader clock; of the shader clock; 

• 16 threads would go first, and then the other 16 threads over the 
next clock.

• The shader clock allows a full warp to be executed over a single 
graphics clock cycle (at 607 MHz) while only using enough 
hardware for half of a warp

• Half Warp is the true working unit



Thread and Warp Scheduling

• An SM can switch 
between warps with no 
overhead
– warps with instruction 

whose inputs are ready are 
eligible to execute, and will 
be considered when be considered when 
scheduling

– When a warp is selected 
for execution, all active 
threads execute the same 
instruction in lockstep 
fashion

• Applies to both Fermi and 
Kepler



The Fermi Memory Subsystem

• One L1 cache per SM multiprocessor 
and unified L2 cache that services all 
operations (load, store and texture)

• 768 KB of L2 Cache
• The per-SM L1 cache is configurable to 

support both shared memory and 
caching of local and global memory 
operations: operations: 
– the 64 KB memory can be configured as 

either 48 KB of Shared memory with 16 KB 
of L1 cache, or 16 KB of Shared memory 
with 48 KB of L1 cache

• ECC Memory Support
• Fast Atomic Memory Operations

– Performance is up 20x faster 
compared to Tesla 



The Kepler Architecture
• A representative device: GK110 (2013)

– CUDA Computer Capability 3.5 
– 7.1 billion transistors, 28nm manufacturing process
– 3x Performance per Watt on Fermi

• Drop Shader Clock, Doubling Resources
– One Clock (~700MHz) = Power efficiency

• Streaming Multiprocessor (SMX)
– 15 SMX each composed by 192 CUDA cores

• GigaThread globlal scheduler
– distributes thread blocks to SM thread schedulers – distributes thread blocks to SM thread schedulers 

and manages the context switches between threads 
during execution

• Host interface
– GPU-CPU connected via a PCI-Express v3 bus 

(peak transfer rate: 16 GB/s).
• DRAM

– six 64-bit memory controllers
• L2 cache: 2x Capacity compared to Fermi
• Example of other devices:

– GK104 GPU, GTX 680 card: 1536 cores, 195 watts 
(March 2012)

– GXT 690 has two dies, 3072 cores (2 x 1536 cores), 
300 watts (April 2012)

– CUDA Computer Capability 3.0



Kepler new features
• Dynamic Parallelism

– GPU can generate new work for itself, synchronize on results, and control the 
scheduling of that work via dedicated, accelerated hardware paths, without 
involving the CPU

• Hyper-Q
– multiple CPU cores can launch work on a single GPU simultaneously, increasing 

GPU utilization and reducing CPU idle times
– 32 simultaneous, hardware‐managed connections (work queues) between the 

host and the GPU (Fermi has only a single connection)
• Grid Management Unit

‐

• Grid Management Unit
– Dynamic Parallelism requires an advanced grid management and dispatch 

control system
– The Grid Management Unit (GMU) manages and prioritizes grids to be executed

• NVIDIA GPUDirect™
– multiple GPUs within a single computer, or even in different servers across a 

network, can directly exchange data without needing to go to CPU/system 
memory

• Shuffle Instruction
– Kepler implements a new Shuffle instruction which allows threads within a warp 

to share data without using shared memory, e.g.:   __shf() ,  __shfl_up() , 
__shfl_down() ,  __shfl_xor()



Kepler Grid Management Unit



Kepler Streaming Multiprocessor (SMX)

• 192  single precision CUDA cores 
– Fully pipelined Integer ALU and FPU
– 32-bit Integer operations

• 64 double precision units
– not present in all Kepler GKxxx)
– IEEE-754:2008 Single and Double Precision 

• 32 Load/Store units
– source and destination addresses can be calculated for 

32 threads per clock
– Load and store the data from/to cache or DRAM

• 32 Special Function Unit
– transcendental instructions such as sin, cosine, 

reciprocal, and square root
– SFU pipeline is decoupled from dispatcher � can issue 

to other execution units while the SFU is occupied
• 64K of 32-bit register file
• A 4-Warp Scheduler simultaneously schedules 

and dispatches instructions through 8 dispatch 
units

• 64 KB of RAM
– configurable partitioning of shared memory and  L1 

cache (48/16 or 16/48 or 32/32 KB)
• 48 KB Read-Only Data Cache



Kepler Quad Warp Scheduler

• handles groups of 32 parallel threads 
(warps)

• Each SMX features 4-warp schedulers 
and 8 instruction dispatch units
– allows 4 warps to be issued and 

executed concurrently
– selects 4 warps, and 2 independent 

instructions per warp can be dispatched 
each cycle
instructions per warp can be dispatched 
each cycle

• Uses deterministic information (e.g. 
Math pipeline latencies) to resolve 
data hazard
– remove Fermi complex hardware
– improved power efficiency

• Kepler GK110 allows double precision 
instructions to be paired with other 
instructions
– unlike Fermi, which only permits single 

issue of DP instructions



Kepler Memory Subsystem hints
• Single unified memory request path for load and 

store operations
• One L1 cache per SM multiprocessor
• Unified 1536 KB L2 cache serving all operations

– load, store and texture
• The per-SM L1 cache is configurable to support 

both shared memory and local/global memory 
caching

– The 64 KB memory can be configured as either 48 KB – The 64 KB memory can be configured as either 48 KB 
of Shared memory with 16 KB of L1 cache, or 16 KB / 
48 KB, or 32 KB / 32 KB

• 48 KB Read-Only Data Cache
– In Fermi it was accessible only by the Texture unit

• ECC Memory Support
– Read-Only Data Cache supports single‐error 

correction through a parity check
– Note: ECC consumes bandwidth

• Fast Atomic Memory Operations
– Same performance of Fermi but more operations are 

supported



Kepler vs. Fermi



NVIDIA Maxwell architecture and GPUs (2014)

• First used in GeForce GTX 750 and the GeForce GTX 
750

• new design for the Streaming Multiprocessor (SM)
• considerable improvements in power efficiency
• increased the amount of L2 cache from 256 KB on 

GK107 to 2 MB on GM107GK107 to 2 MB on GM107
• cut the memory bus from 192 bit on GK106 to 128 bit on 

GM107 (for power saving)



The Maxwell Architecture

• GM 204 (Date: 2015)
– 5.2 Billion Transistors
– 2x performance vs. GK104
– 16 SMM
– 256-bit GDDR5
– Maxwell is born for PC Gaming 

Market (for now)Market (for now)

• Maxwell Streaming 
Multiprocessor (SMM)
– 128 CUDA Cores
– 2x perf/watt vs GK104
– Improved scheduler
– New Datapath organization
– +40% delivered performance per 

CUDA core



NVIDIA 2016 Roadmap

• What’s next?... NVIDIA Pascal architecture (2016)?



NVIDIA CUDA Devices

• CUDA-Enabled 
Devices

• Characterized by:
– Compute Capability 
– Number of 

MultiprocessorsMultiprocessors
– Number of CUDA Cores

SM: Stream Multiprocessor (the 
analog of a CPU core)
SP: Stream Processor 
(the analog of an ALU)



Device Compute Capability vs. CUDA version

• “Compute Capability of a Device” refers to hardware
– Defined by a major revision number and a minor revision number
– Example:

• Tesla C1060 is compute capability 1.3
• Tesla C2050 is compute capability 2.0
• Fermi architecture is compute capability 2
• Kepler architecture is compute capability 3• Kepler architecture is compute capability 3
• Titan X is compute capability 5.2

– A higher compute capability indicates a larger set of features 
available from the hardware

• The “CUDA Version” indicates what version of the 
software you are using to write code
– right now, the most recent version of CUDA is 7.5



Compatibility Issues

• The basic rule: the CUDA 
Driver API is backward, but 
not forward compatible
– makes sense: the functionality 

in later versions increases, and 
was not there in previous 
versionsversions



GPUs and current trends in computing

• Many new applications in today’s mass computing 
market have been traditionally considered 
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and 

manipulation, 3D imaging and visualization, Consumer game 
physics, and virtual reality products, …

– These “super-apps” represent and model physical, concurrent – These “super-apps” represent and model physical, concurrent 
world

• Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management

• GPU architectures and related programming models 
seem to meet particularly well this emerging scenario in 
computing



GPU performance gains over CPUs
• E.g.: GeForce 8800 GTX vs. 2.2GHz Opteron 248 
• Compute power:

– 500+ GFLOPS   vs.   10+ GFLOPS (roughly)
• Memory Bandwidth:

– 100+ GB/s vs.  10+ GB/s (roughly)
• 10×××× speedup in a kernel is typical

– as long as the kernel can occupy enough parallel threads
• As high as 25×××× to 400×××× speedup• As high as 25×××× to 400×××× speedup

– if the function’s data requirements and control flow suit the GPU and 
the application is optimized



GPUs and HPC: Top500



GPUs and HPC: Tesla S1070 blade



Tesla S1070 blade

• up to 4 teraflops
• 1U rack-mount system
• 240 computing cores per processor 
• Frequency of processor cores:

– 1.296 to 1.44 GHz

• SP FP peak:
– 3.73 to 4.14 TFlops– 3.73 to 4.14 TFlops

• DP FP peak:
– 311 to 345 GFlops

• Memory Bandwidth:
– 408 GB/sec 

• Dual PCI Express 2.0 
• Max Power: 800 W 



Tesla T10

• 240 streaming processors/cores 
(SPs) organized as 30 streaming 
multiprocessors (SMs) in 10 
independent processing units 
called Thread 
Processors/Clusters (TPCs)Processors/Clusters (TPCs)

• A TPC consists of 3 SMs; A SM 
consists of 8 SPs

• Collection of TPCs is called 
Streaming Processor Arrays 
(SPAs)



Titan Supercomputer Oak Ridge National Laboratory

• Nov 2012: World’s fastest 
computer (TOP500 list)

• 18,688 NVIDIA Tesla 
K20X GPUs

• 20 petaflops
• Upgraded from Jaguar • Upgraded from Jaguar 

supercomputer
– 10 times faster
– 5 times more energy 

efficient than 2.3-petaflops 
Jaguar system

– while occupying the same 
floor space

http://nvidianews.nvidia.com/Releases
/NVIDIA-Powers-Titan-World-s-
Fastest-Supercomputer-For-Open-
Scientific-Research-
8a0.aspx#source=pr



GPU energy efficiency

• CPU vs. GPU
• Energy consumed by a single floating point operation:

– 1690 pJ/flop (CPU)   vs. 140 pJ/flop (GPU)

• Latency vs. Throughput
• Caches vs. Explicit Managment of On-chip Memory



Vector Processors vs. GPU

• An example of a vector processor with 4 lanes vs.
a multithreaded GPU processor with 4 SIMD 
Lanes (bottom figure)
– GPUs typically have 16 or (many) more SIMD Lanes

• “Control processor” in the Vector system:
– supplies scalar operands for scalar-vector operations
– increments addressing for unit and non-unit stride 

accesses to memoryaccesses to memory
– performs other accounting-type operations

• Peak memory performance
– only occurs in a GPU when the Address Coalescing

unit can discover localized addressing
– Similarly, peak computational performance occurs 

when all internal mask bits are set identically
– Note: the SIMD Processor has one PC per SIMD 

thread to help with multithreading



Vector Processors vs. GPU

• GPU Grid and Thread Block are abstractions for programmers
• “SIMD” Instruction on GPU = Vector instruction on Vector
• Instructions of each thread is 32-element wide

– thread block with 32 threads =
strip-minded vector loop with a length of 32 in a vector  processor

• Loops in Vector Processors and GPUs:
– both rely on independent loop iterations– both rely on independent loop iterations

• GPU:
– Each iteration becomes a thread on the GPU
– Programmer specifies parallelism
– grid dimensions and threads/block
– Hardware handles parallel execution and thread management
– Trick: have 32 threads/block, create many more threads per multi-

processor to hide memory latency



Vector Processors vs. GPU

• Conditional Statements
Vector: 
– mask register part of the architecture
– Rely on compiler to manipulate mask register
GPU:
– Use hardware to manipulate internal mask registers– Use hardware to manipulate internal mask registers
– Mask register not visible to software
– Both spend time to execute masking

• Gather-Scatter
GPU: 
– all loads are gathers and stores are scatters
– Programmer should make sure that all addresses in a gather or 

scatter are adjacent locations


