
SIMD and GPU architectures

IntroductionIntroduction

From superscalar to SIMD and GPU architectures

• Superscalar / dynamic scheduling /
Coherence / Consistency etc…
– single execution flow
– very high complexity
– too much implementation overhead

• Simultaneous MultiThreading (SMT)
– parallelism is made visible to software– parallelism is made visible to software
– limited number (two/four) of separate

execution flows sharing hardware units

• To achieve large scale parallelism:
– rebalance control vs. data processing
– most resources should go to processing
– control should possibly be shared across

execution resources

Single Instruction Multiple Data (SIMD)

• Multiple compute units driven by the same control
• Processor needs to fetch and decode only one instruction
• Unlike scalar processor, SIMD operations are typically

performed on vector of data

Single Instruction Multiple Data (SIMD)

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU ALU ALU ALU ALU ALU

Control

Single Instruction Multiple Data (SIMD)

• SIMD is a broad concept:

• can apply to coarse-grain architectures:
– SIMD compute systems made of a front-end

processor and an array of multiple processors
working lock-step (i.e. doing all the same thing at working lock-step (i.e. doing all the same thing at
the same time)

• or to fine-grain architectures:
– multiple identical compute units are instantiated

within the processor datapath and steered by a
single control unit

Coarse grain SIMD (processor array)

• The front-end, sequential processor broadcasts the
commands to SIMD processors (Processing Elements, PEs)
– normally, the front-end is a general-purpose CPU handling the non-

parallelizable part of the program
– When the front-end encounters a parallel task (e.g. instructions

working on vectors), it issues a command to the PEs
– although the PEs execute in parallel, some units can be allowed to

skip particular instructionsskip particular instructions

• Alternately, all PEs can execute computation steps
synchronously, avoiding broadcast cost to distribute results

• Each PE has a local memory not directly accessible by the
control unit or other PEs

• Some PEs can be disabled, in case their portion of data must
not be processed
– All PEs work in lockstep except those that are masked out

Fine-grained SIMD (SIMD extensions)

• One processor, with multiple identical execution units
– also called “lanes” or “slots”

• The processor has larger registers (e.g. 128 bits) that can be
partitioned to store multiple data (e.g. four 32-bit values)
– Vector length = register width / type size
– Data fields are usually variable-sized

• The typical solution adopted by current commercial processors• The typical solution adopted by current commercial processors
– SIMD/multimedia extensions: SIMD instructions and registers added

to the base processor ISA

Conditional execution in SIMD architectures

• How to handle conditional if-then-else in processor
arrays?
– The Control Unit checks if data in each PE meets the condition
– If it does, it sets the mask bits so those processors will

participate in the operation, while the remaining ones will not
– Unmasked processors execute the THEN part
– Afterwards, mask bits (for original set of active processors) are – Afterwards, mask bits (for original set of active processors) are

flipped and unmasked processors perform the ELSE part

ELSE part

THEN part
if (A>0)

A=A-1;
else

A=A+1;

A={ 3, -7, -1, 12 … }

A is in fact a vector, and
the above operation is
performed on each of its
components

Advantages (and disadvantages) of SIMDs

• Alternative model for exploiting ILP
– If code is vectorizable, then better resource and energy

efficiency than out-of-order processors
• More lanes, slower clock rate

– Scalable if elements are independent
– But, if there is dependency:

• One stall per vector instruction rather than one stall per vector • One stall per vector instruction rather than one stall per vector
element

• Programmer in charge of giving hints to the compiler
• Design issues:

– number of lanes, functional units and registers, length of vector
registers, exception handling, conditional operations

• Fundamental design issue is memory bandwidth
– Especially with virtual address translation and caching

Advantages (and disadvantages) of SIMDs

• Less hardware than multiprocessors (MIMDs):
– only one control unit� Control units are complex

• Less memory needed than MIMD
– Only one copy of the instructions need to be stored
– Allows more data to be stored in memory

• Much less time required for communication between PEs and
data movement

• Single instruction stream and synchronization of PEs make • Single instruction stream and synchronization of PEs make
SIMD applications easier to program, understand, and debug
– similar to sequential programming

• In case of a coarse-grain SIMD system, control flow and
scalar operations can be executed on the front-end unit, while
PEs are executing parallelized instructions

• MIMD architectures require explicit synchronization primitives
– these may create a substantial amount of additional overhead

Advantages (and disadvantages) of SIMDs

• During a communication operation between PEs
– PEs send data to a neighboring PE in parallel and in lock-step
– No need to create a header with routing information since “routing”

is determined by program steps
– the entire communication operation is executed synchronously
– SIMDs are deterministic and have much more predictable running

time
– Can normally compute a tight, worst-case upper bound to the time – Can normally compute a tight, worst-case upper bound to the time

required for both computation and communication operations

• Less complex hardware in SIMD since no message decoder
is needed in the PEs
– MIMDs need a message decoder in each PE

• Disadvantages:
– for applications that are not straightforward to parallelize, it may be

very difficult to achieve a good utilization of the compute resources

Where are SIMD architectures used?

• Several classes of applications have data parallelism
– Scientific and engineering applications
– Multimedia applications

• In commercial processors, SIMD extensions are most
often used for multimedia applications
– in fact, they are typically called multimedia extensions, e.g. in

x86x86

• SIMD machines typically focus on vector operations
– Support some vector and possibly matrix operations in hardware
– Usually limit or provide less support for non-vector type

operations involving data in the “vector components”

• General purpose SIMD computers
– May also provide some vector/matrix operations in hardware, but

there is more support for traditional type (scalar) operations

Multimedia Applications and SIMD

• Short data types, narrower than the native word size
– Graphics systems use 8 bits per primary color
– Audio samples use 8-16 bits
– Use a 256-bit adder for

• 16 simultaneous operations on 16 bits
• 32 simultaneous operations on 8 bits

• Regular data access pattern• Regular data access pattern
– Data items are contiguous in memory

• Data streaming through a series of processing stages
– some temporal reuse for such data streams

• A few specific features that may occur sometimes:
– many constants
– short iteration counts
– saturation arithmetic
– etc.

Vector architectures

• “Vector” architectures
– more or less the same as SIMD
– sometimes, vector and SIMD are used interchangeably, although

some authors highlight a few differences between the two
• Basic idea:

– Read sets of data elements into “vector registers”
– Operate on those registers
– send the results back to memory– send the results back to memory

• Registers are controlled by compiler
– Register files act as compiler controlled buffers
– Used to hide memory latency
– Leverage memory bandwidth

• Vector loads/stores deeply pipelined
– memory latency experienced once per vector Load/Store
– instead, in regular architectures, memory latency is experienced

once for each element in the vector

SIMD vs. Vector

• A few differences:
• Multimedia SIMD extensions fix the number of operands in

the opcode
– Vector architectures have a VLR to specify the number of operands

• Multimedia SIMD extensions
– No sophisticated addressing modes (strided, scatter-gather)
– No mask registers (in some architectures)

• The above features
– enable vector compiler to vectorize a larger set of applications
– make it harder for compiler to generate SIMD code and make

programming in SIMD assembly more difficult

• Differences, anyway, tend to be subtle
– SIMD extensions are increasingly being extended by manufacturers

(e.g., see Intel’s MMX � SSE � AVX)

SIMD vs. Vector

• SIMD meant for direct use by programmers
– rather than for automated code generation by compilers
– although there are “SIMD-izing” compilers, i.e. compilers extracting

parallel SIMD patterns from sequential code

• Recent x86 compilers
– Capable for FP intensive apps

• Why is SIMD popular? • Why is SIMD popular?
– Little hardware costs and complexity
– Need smaller memory bandwidth than vector
– Separate data transfers aligned in memory

• with Vector: a single instruction might cause 64 memory accesses,
making it very likely to incur a page fault in the middle of the vector!

– Use much smaller register space
– Fewer operands
– No need for sophisticated mechanisms of vector architecture

SIMD example (MIPS)

• Example (DXPY):

L.D F0,a ;load scalar a

MOV F1, F0 ;copy a into F1 for SIMD MUL

MOV F2, F0 ;copy a into F2 for SIMD MUL

MOV F3, F0 ;copy a into F3 for SIMD MUL

DADDIU R4,Rx,#512 ;last address to load

Loop:Loop:

L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]

MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]

L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]

S.4D 0[Ry],F8 ;store into Y[i], Y[i+1],Y[i+2],Y[i+3]

DADDIU Rx,Rx,#32 ;increment index to X

DADDIU Ry,Ry,#32 ;increment index to Y

DSUBU R20,R4,Rx ;compute bound

BNEZ R20,Loop ;check if done

Commercial SIMD architectures

• Intel SIMD extensions
– MMX: Multimedia Extensions (1996)
– SSE: Streaming SIMD Extensions (1999)
– AVX: Advanced Vector Extension (2010)

• PowerPC
– Altivec– Altivec

• ARM
– NEON

• MIPS
– MIPS-3D

Motorola/Freescale ALTIVEC

• Altivec is the Motorola implementation of SIMD
– vector unit handles multiple pieces of data simultaneously

in parallel with a single instruction

• added 162 new PowerPC instructions
– functionality similar to what is offered in the scalar units,

just extrapolated into the SIMD domain
– new instructions for field permutation and formatting
– load/store instruction options for cache management
– instructions that control four data prefetch engines

• AltiVec vector unit never generates exceptions

Motorola/Freescale ALTIVEC

• “vector” instructions:
– each AltiVec instruction specifies up to three source operands

and a single destination operand
• Target applications for AltiVec technology include:

– image and video processing systems
– virtual reality
– scientific array processing systems
– network infrastructure such as Internet routers, etc...– network infrastructure such as Internet routers, etc...

Motorola/Freescale ALTIVEC

• Four 128-bit vector execution units:
– VIU1: executes AltiVec simple integer

instructions
– VIU2: executes AltiVec complex integer

instructions
– VPU: executes AltiVec permute instructions
– VFPU: executes AltiVec floating-point – VFPU: executes AltiVec floating-point

instructions
• 32-entry, 128-bit vector register file

(VRs)
• 16-entry, 128-bit renamed buffer

Motorola/Freescale ALTIVEC

• Vector registers (VRs)
– used as source and destination

operands for AltiVec load, store,
and computational instructions

• AltiVec's 128-bit wide vectors
can be subdivided into:
– 16 elements, where each element

is either an 8-bit signed or is either an 8-bit signed or
unsigned integer, or an 8-bit
character

– 8 elements, where each element
is a 16-bit signed or unsigned
integer

– 4 elements, where each element
is either a 32-bit signed or
unsigned integer, or a single
precision (32-bit) IEEE floating-
point number

Motorola/Freescale ALTIVEC

• Data types

char
short
long

unsigned
signed
bool

vector float

vector

vector float
vector pixel

Commercial SIMD architectures: Intel
– Intel MMX (1996)

• Repurpose 64-bit floating point registers
• Eight 8-bit integer ops or four 16-bit integer ops

– Streaming SIMD Extensions (SSE) (1999)
• Separate 128-bit registers: 8 16-bit ops, 4 32-bit ops, or two 64-bit ops
• Single precision floating point arithmetic

– Double-precision floating point in
• SSE2 (2001), SSE3(2004), SSE4(2007)

– Advanced Vector Extensions (2010)
• Four 64-bit integer/fp ops

Commercial SIMD architectures: Intel

Intel® SSE
Vector size: 128bit
Data types:
8,16,32,64 bit integers
32 and 64bit floats
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float

MMX™
Vector size: 64bit
Data types: 8, 16 and 32 bit integers
Vector Lane (VL): 2,4,8
For sample on the left: Xi, Yi 16 bit
integers

Commercial SIMD architectures: Intel

Intel® AVX Intel® MICIntel® AVX
Vector size: 256 bit
(Extendible to 512 and 1024 bits for
future generations)
Four 64-bit integer/fp ops
Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float

(Like the others, operands must be
consecutive and aligned memory
locations)

Intel® MIC
Vector size: 512bit
Data types:
32 and 64 bit integers
32 and 64bit floats
(some support for 16 bits floats)
VL: 8,16
Sample: 32 bit float

Programming with vector/SIMD extensions

• How to use SIMD (or
other) machine
instructions from high-
level code?

• asm
– inject assembly code from

C/C++ sources
– details depend on

compiler implementation

// Add 10 and 20 to register %eax
__asm__ ("movl $10, %eax;”

"movl $20, %ebx;”
"addl %ebx, %eax;”);

.

int no = 100, val ;
asm ("movl %1, %%ebx;"

"movl %%ebx, %0;"
: "=r" (val) // output– details depend on

compiler implementation
– some trickery to specify

operands
• “intrinsics”

– syntactically, look like
function calls

– each intrinsic directly
corresponds to a specific
processor instruction

– again, details depend on
compiler implementation

: "=r" (val) // output
: "r" (no) // input
: "%ebx" // clobbered register

);
.

#include <xmmintrin.h>

__m128 source0 = {1.1, 2.2, 3.3, 4.4};
__m128 source1 = {10.1,20.2,30.3,40.4};
__m128 dest; float
printarray[FLOAT_ARRAYSIZE]

__attribute__ ((aligned (16)));
dest = _mm_shuffle_ps (source0, source1,

_MM_SHUFFLE(0, 1, 2, 3));

Programming with vector/SIMD extensions

• Use Performance Libraries
• Compiler: Fully automatic vectorization
• Cilk Plus Array Notation
• Compiler: Auto vectorization hints

(#pragma ivdep , …)

• User Mandated Vectorization (SIMD

Ease of use
Little control

• User Mandated Vectorization (SIMD
Directive)

• Manual CPU Dispatch
(__declspec(cpu_dispatch …))

• SIMD intrinsic class (F32vec4 add)
• Vector intrinsic (mm_add_ps())
• Assembler code (addpsv)

Programmer
Control

Various Intel codes from a C routine
static double A[1000], B[1000],

C[1000];
void add() {

int i;
for (i=0; i<1000; i++)
if (A[i]>0)
A[i] += B[i];
else
A[i] += C[i];

}

.B1.2::
movaps xmm2, A[rdx*8]
xorps xmm0, xmm0
cmpltpd xmm0, xmm2
movaps xmm1, B[rdx*8]
andps xmm1, xmm0
andnps xmm0, C[rdx*8]
orps xmm1, xmm0
addpd xmm2, xmm1
movaps A[rdx*8], xmm2
add rdx , 2

}
add rdx , 2
cmp rdx, 1000
jl .B1.2

.B1.2::
movaps xmm2, A[rdx*8]
xorps xmm0, xmm0
cmpltpd xmm0, xmm2
movaps xmm1, C[rdx*8]
blendvpd xmm1, B[rdx*8], xmm0
addpd xmm2, xmm1
movaps A[rdx*8], xmm2
add rdx, 2
cmp rdx, 1000
jl .B1.2

.B1.2::
vmovaps ymm3, A[rdx*8]
vmovaps ymm1, C[rdx*8]
vcmpgtpd ymm2, ymm3, ymm0
vblendvpd ymm4, ymm1,B[rdx*8], ymm2
vaddpd ymm5, ymm3, ymm4
vmovaps A[rdx*8], ymm5
add rdx, 4
cmp rdx, 1000
jl .B1.2

SSE4.1

SSE2

AVX

AltiVec Programming

• GNU Compiler Collection, IBM Visual Age Compiler and
other compilers provide intrinsics
– access AltiVec instructions directly from C and C++ programs

• The “vector ” storage class is introduced
– permits the declaration of native vector types
– e.g., “vector unsigned char A ;” declares a 128-bit vector

variable named “A” containing sixteen 8-bit unsigned charsvariable named “A” containing sixteen 8-bit unsigned chars

• AltiVec C extensions map into AltiVec instructions
– For example, vec_add() maps into one of four AltiVec

instructions (vaddubm , vadduhm , vadduwm, or vaddfp)
depending upon the types of the arguments to vec_add() .

AltiVec Programming: vec_add

• Example:
– each element of a is added to the corresponding element of b
– each sum is placed in the corresponding element of d

d = vec_add(a,b);

equivalent to:

for(i=0; i<4; i++){
d[i] = a[i]+b[i];

}

for(i=0; i<n; i++){
d[i] = a[i]+b[i];

}

Floating point operands and addition:

equivalent to:

Integer operands and addition:

GPU

• Graphics Processing Unit (GPU)
– dedicated super-threaded, massively data

parallel coprocessor
• Historically, followed a different path

from SIMD
– Hardware acceleration of dedicated graphics

processing functionsprocessing functions
• Now General-Purpose GPU (GPGPU)

– General purpose programming model based
on graphics-free API

– Pushed by emerging general-purpose
programming models:

• NVIDIA’s Compute Unified Device Architecture
(CUDA), 2007

• Khronos Group’s Open Computing Language
(OpenCL), 2009

The 2008 IEEE paper
presenting Tesla.
“Tesla” is today the code
name of a family of
products including
devices like K20, K20X,
also used in HPC

Current GPGPUs

CPU model

GPU model

Current GPGPUs

• The GPU is viewed as a compute device that:
– Is a co-processor to the CPU or host
– Has its own DRAM (global memory in CUDA parlance)
– Runs many threads in parallel

• Data-parallel portions of an application run on the device
as kernels which are executed in parallel by many as kernels which are executed in parallel by many
threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few heavy ones

Current GPGPUs

• GPU is a in fact SIMD device � works on
“streams” of data
– Each “GPU thread” executes one general instruction on

the stream of data that the GPU is assigned to process
– sometimes called single instruction multiple thread

(SIMT)

• Compute power comes from a vertical hierarchy:• Compute power comes from a vertical hierarchy:
– e.g., NVIDIA: set of Streaming Multiprocessors (SMs)
– each SM has a set of 32 Scalar Processors (SPs)

• Maxwell has 128 SPs, Kepler has 196 SPs, Fermi 2.1 had
48 SPs

• The quantum of scalability is the SM
– larger (and more expensive) GPUs have more SMs
– Fermi can have up to 16 SMs on one GPU card

Graphics computing

• Workload and Programming Model provide lots of parallelism:
– Graphics applications provide large groups of vertices at once
– Vertices can be processed in parallel
– Apply the same transform to all vertices

• Triangles contain many pixels
– Pixels from a triangle can be processed in parallel
– Apply the same shader to all pixels

• Very efficient hardware to hide serialization bottlenecks

The Graphics Pipeline

Vertex Transform & LightingVertex Transform & Lighting

Triangle Setup & RasterizationTriangle Setup & Rasterization

Texturing & Pixel ShadingTexturing & Pixel Shading

Depth Test & BlendingDepth Test & Blending

FramebufferFramebuffer

Applications of Computer Graphics

• Climate
– E.g.: Comprehensive Earth System

Model at 1KM scale, enabling
modeling of cloud convection and
ocean eddies

• Biology
– E.g.: Coupled simulation of entire

cells at molecular, genetic, cells at molecular, genetic,
chemical and biological levels

• Astrophysics
– E.g.: Predictive calculations for

thermonuclear and core-collapse
supernovae, allowing confirmation
of theoretical models.

• Gaming applications
• etc…

Evolution of GPUs

Early Graphics accelerators:

• Key abstraction of real-time
graphics

• Hardware directly resembled

VertexVertex

RasterizeRasterize
• Hardware directly resembled

the pipeline structure
• One chip/board per stage
• Fixed data flow through pipeline

PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer

Evolution of GPUs

Early GPUs:

• Everything was a fixed function,
with a certain number of modes

• Number of modes for each

VertexVertex

RasterizeRasterize
• Number of modes for each

stage grew over time
• Hard to optimize hardware
• Developers wanted more

flexibility

PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer

Evolution of GPUs

Programmable GPUs:

• Remains a key abstraction
• Hardware still directly resembled

the pipeline structure
• but, Vertex & Pixel processing

VertexVertex

RasterizeRasterize

• but, Vertex & Pixel processing
became programmable
– new stages added

• GPU architecture increasingly
centers around shader
execution

PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer

Evolution of GPUs

Programmable GPUs:

• Exposing a (initially limited)
instruction set for some stages

• Limited instructions &
instruction types and no control

VertexVertex

RasterizeRasterize

instruction types and no control
flow at first

• Then expanded to full ISA
PixelPixel

Test & BlendTest & Blend

FramebufferFramebuffer

Evolution of GPU architectures

CPU
Co

Processor

Input stage

Vertex shader
stage

Geometry shader
stage

Graphics
memory

Memory

Rasterizer stage

Frame
buffer

Pixel shading
stage

1970-1980: floating
point co-processors
attached to
microprocessors

Late 1990s: graphics chips needed
to support 3-D (graphics APIs such
as DirectX and OpenGL)
Graphics chips generally had a
pipeline structure: a sequence of
highly specialized operations

Mid 2000s:
General-Purpose
GPUs (GPGPUs)

DRAM

Evolution of GPUs

GPUs with
programmable shading

Nvidia GeForce
GE 3 (2001) with

programmable shading

General-purpose computing on
graphics processing units

(GPGPUs)

GPU Computing

1970 2010200019901980

Atari 8-bit computer
text/graphics chip

IBM PC Professional
Graphics Controller

card

S3 graphics cards-
single chip 2D

accelerator

OpenGL graphics API

Hardware-accelerated
3D graphics

DirectX graphics API

Playstation

programmable shading

GPU acceleration: New areas

• Embedded/Automotive
• “Infotainment”
• etc…

• NVIDIA PX

NVIDIA Jetson TK1

– Self Driving Car Computing

• NVIDIA CX
– Digital Cockpit Computer NVIDIA Jetson TX1

GPGPU: main players

(NVIDIA Fermi Architecture) (Intel i7 with Processor Graphics)(AMD Tahiti Architecture)

GeForce 6 Series Architecture (2004-5)

• Fixed-pipeline
architecture
– still no GPGPU

• Compliant with
Microsoft DirectX
9.0c specification 9.0c specification
and OpenGL 2.0

NVIDIA G80 chip/GeForce 8800 card (2006)

• First GPU for HPC
as well as graphics
– unified processors

could perform vertex,
geometry, pixel, and
general computing
operations

• Could now write

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

• Could now write
programs in C rather
than graphics APIs

• Single-instruction
multiple thread
(SIMT)
programming model

Load/store

Global Memory

Load/store Load/store Load/store Load/store Load/store

G80 Device:
• Processors execute computing threads
• Thread Execution Manager issues threads
• 128 Thread Processors grouped into 16

multiprocessors (SMs)
• Parallel Data Cache enables thread cooperation

NVIDIA Fermi architecture (Sept 2009)

• First implementation: Tesla 20
series

• 16 Streaming Multiprocessors
(SMs)
– each having 32 stream processing

engines (SPEs): up to 512 cores
• Many innovations

– e.g., L1/L2 caches, unified device
memory addressing, ECC memory,…

– e.g., L1/L2 caches, unified device
memory addressing, ECC memory,…

• ~3 billion transistor chip
• Number of cores limited by power

considerations
– e.g. C2050 has 448 cores

GF100: NVIDIA Fermi
• GPU/CPU Host interface: PCI-Express v2 bus (peak transfer rate of 8GB/s)
• DRAM: up to 6GB of GDDR5 DRAM, 64-bit addressing capability
• Clock frequency: ~1.5GHz, Peak performance: 1.5 TFlops.
• DRAM bandwidth: 192GB/s

Fermi Streaming Multiprocessor (SM)
• 32 CUDA cores

– Fully pipelined Integer ALU and FPU
– 32-bit Integer operations
– IEEE-754:2008 Double Precision Operations
– Support for: Boolean, shift, move, compare, convert,

bit-field extract, bit-reverse insert
• 32K of 32-bit register file
• 64 KB of RAM with a configurable partitioning of

shared memory and L1 cache 48:16 or 16:48
• 16 Load/Store units

– source and destination addresses to be calculated
for 16 threads per clock

– source and destination addresses to be calculated
for 16 threads per clock

– Load and store the data from/to cache or DRAM
• 4 Special Function Unit (SFU) for transcendental

instructions:
– e.g. sin, cosine, reciprocal, and square root
– Each SFU executes one instruction per thread, per

clock; a warp executes over eight clocks.
– The SFU pipeline is decoupled from the dispatch

unit, allowing the dispatch unit to issue to other
execution units while the SFU is occupied.

• Dual Warp Scheduler simultaneously schedules
and dispatches instructions from two independent
warps

• GF104/GF114 are also 16 CUDA cores FP64
capable, 8 SFU and 4 dispatched units*

Fused MultiplyAdd (FMA)

• MAC: (non-fused): A =
Normalize_and_Round(Normalize_and_Round(B*C) + D)

• FMA: (fused): A =
Normalize_and_Round(Extended_Precision_with_No_Inte
rmediate_Rounding(B*C) + D)

The Fermi GigaThread™ Thread Scheduler

• Global GPU scheduler:
• Schedules thread blocks to various SMs

– Check for resources availability
– Example:

• each thread can use only 63 registers
• Only 16 threadblocks per SM

• 10x faster application context switching (Compared to G80)
• Concurrent kernel execution
• Out of Order thread block execution• Out of Order thread block execution
• Dual overlapped memory transfer engines

The Fermi Dual Warp Scheduler
• “Local” SM scheduler

– handles groups of 32 parallel threads called
warps

• Each SM has two warp schedulers and two
instruction dispatch units

– allow two warps to be issued and executed
concurrently

• Selects two warps and issues one instruction
from each warp to a SM part, i.e. a group of
16 cores, 16 load/store units, or 4 SFUs16 cores, 16 load/store units, or 4 SFUs

– most instructions can be dual issued (exceptions
include double precision instructions, which
cannot be dual issued)

– efficient scheduling allow near-peak HW
performance

• Because warps execute independently,
Fermi’s scheduler does not need to check for
dependencies within the instruction stream

– however, the architecture with four dispatcher
units do have a check for dependencies

• Max 48 Warps per SM Fermi
SM

Fermi Shader Clock

• On GF100/104/110/114:
– Within the SM itself different units operated on different clocks

• schedulers and texture units operating on the core clock (607 MHz)
• CUDA cores, load/store units, and SFUs operated on the shader

clock, which ran at twice the core clock (1215 MHz).

– With Fermi, a warp would be split up and executed over 2 cycles
of the shader clock; of the shader clock;

• 16 threads would go first, and then the other 16 threads over the
next clock.

• The shader clock allows a full warp to be executed over a single
graphics clock cycle (at 607 MHz) while only using enough
hardware for half of a warp

• Half Warp is the true working unit

Thread and Warp Scheduling

• An SM can switch
between warps with no
overhead
– warps with instruction

whose inputs are ready are
eligible to execute, and will
be considered when be considered when
scheduling

– When a warp is selected
for execution, all active
threads execute the same
instruction in lockstep
fashion

• Applies to both Fermi and
Kepler

The Fermi Memory Subsystem

• One L1 cache per SM multiprocessor
and unified L2 cache that services all
operations (load, store and texture)

• 768 KB of L2 Cache
• The per-SM L1 cache is configurable to

support both shared memory and
caching of local and global memory
operations: operations:
– the 64 KB memory can be configured as

either 48 KB of Shared memory with 16 KB
of L1 cache, or 16 KB of Shared memory
with 48 KB of L1 cache

• ECC Memory Support
• Fast Atomic Memory Operations

– Performance is up 20x faster
compared to Tesla

The Kepler Architecture
• A representative device: GK110 (2013)

– CUDA Computer Capability 3.5
– 7.1 billion transistors, 28nm manufacturing process
– 3x Performance per Watt on Fermi

• Drop Shader Clock, Doubling Resources
– One Clock (~700MHz) = Power efficiency

• Streaming Multiprocessor (SMX)
– 15 SMX each composed by 192 CUDA cores

• GigaThread globlal scheduler
– distributes thread blocks to SM thread schedulers – distributes thread blocks to SM thread schedulers

and manages the context switches between threads
during execution

• Host interface
– GPU-CPU connected via a PCI-Express v3 bus

(peak transfer rate: 16 GB/s).
• DRAM

– six 64-bit memory controllers
• L2 cache: 2x Capacity compared to Fermi
• Example of other devices:

– GK104 GPU, GTX 680 card: 1536 cores, 195 watts
(March 2012)

– GXT 690 has two dies, 3072 cores (2 x 1536 cores),
300 watts (April 2012)

– CUDA Computer Capability 3.0

Kepler new features
• Dynamic Parallelism

– GPU can generate new work for itself, synchronize on results, and control the
scheduling of that work via dedicated, accelerated hardware paths, without
involving the CPU

• Hyper-Q
– multiple CPU cores can launch work on a single GPU simultaneously, increasing

GPU utilization and reducing CPU idle times
– 32 simultaneous, hardware‐managed connections (work queues) between the

host and the GPU (Fermi has only a single connection)
• Grid Management Unit

‐

• Grid Management Unit
– Dynamic Parallelism requires an advanced grid management and dispatch

control system
– The Grid Management Unit (GMU) manages and prioritizes grids to be executed

• NVIDIA GPUDirect™
– multiple GPUs within a single computer, or even in different servers across a

network, can directly exchange data without needing to go to CPU/system
memory

• Shuffle Instruction
– Kepler implements a new Shuffle instruction which allows threads within a warp

to share data without using shared memory, e.g.: __shf() , __shfl_up() ,
__shfl_down() , __shfl_xor()

Kepler Grid Management Unit

Kepler Streaming Multiprocessor (SMX)

• 192 single precision CUDA cores
– Fully pipelined Integer ALU and FPU
– 32-bit Integer operations

• 64 double precision units
– not present in all Kepler GKxxx)
– IEEE-754:2008 Single and Double Precision

• 32 Load/Store units
– source and destination addresses can be calculated for

32 threads per clock
– Load and store the data from/to cache or DRAM

• 32 Special Function Unit
– transcendental instructions such as sin, cosine,

reciprocal, and square root
– SFU pipeline is decoupled from dispatcher � can issue

to other execution units while the SFU is occupied
• 64K of 32-bit register file
• A 4-Warp Scheduler simultaneously schedules

and dispatches instructions through 8 dispatch
units

• 64 KB of RAM
– configurable partitioning of shared memory and L1

cache (48/16 or 16/48 or 32/32 KB)
• 48 KB Read-Only Data Cache

Kepler Quad Warp Scheduler

• handles groups of 32 parallel threads
(warps)

• Each SMX features 4-warp schedulers
and 8 instruction dispatch units
– allows 4 warps to be issued and

executed concurrently
– selects 4 warps, and 2 independent

instructions per warp can be dispatched
each cycle
instructions per warp can be dispatched
each cycle

• Uses deterministic information (e.g.
Math pipeline latencies) to resolve
data hazard
– remove Fermi complex hardware
– improved power efficiency

• Kepler GK110 allows double precision
instructions to be paired with other
instructions
– unlike Fermi, which only permits single

issue of DP instructions

Kepler Memory Subsystem hints
• Single unified memory request path for load and

store operations
• One L1 cache per SM multiprocessor
• Unified 1536 KB L2 cache serving all operations

– load, store and texture
• The per-SM L1 cache is configurable to support

both shared memory and local/global memory
caching

– The 64 KB memory can be configured as either 48 KB – The 64 KB memory can be configured as either 48 KB
of Shared memory with 16 KB of L1 cache, or 16 KB /
48 KB, or 32 KB / 32 KB

• 48 KB Read-Only Data Cache
– In Fermi it was accessible only by the Texture unit

• ECC Memory Support
– Read-Only Data Cache supports single‐error

correction through a parity check
– Note: ECC consumes bandwidth

• Fast Atomic Memory Operations
– Same performance of Fermi but more operations are

supported

Kepler vs. Fermi

NVIDIA Maxwell architecture and GPUs (2014)

• First used in GeForce GTX 750 and the GeForce GTX
750

• new design for the Streaming Multiprocessor (SM)
• considerable improvements in power efficiency
• increased the amount of L2 cache from 256 KB on

GK107 to 2 MB on GM107GK107 to 2 MB on GM107
• cut the memory bus from 192 bit on GK106 to 128 bit on

GM107 (for power saving)

The Maxwell Architecture

• GM 204 (Date: 2015)
– 5.2 Billion Transistors
– 2x performance vs. GK104
– 16 SMM
– 256-bit GDDR5
– Maxwell is born for PC Gaming

Market (for now)Market (for now)

• Maxwell Streaming
Multiprocessor (SMM)
– 128 CUDA Cores
– 2x perf/watt vs GK104
– Improved scheduler
– New Datapath organization
– +40% delivered performance per

CUDA core

NVIDIA 2016 Roadmap

• What’s next?... NVIDIA Pascal architecture (2016)?

NVIDIA CUDA Devices

• CUDA-Enabled
Devices

• Characterized by:
– Compute Capability
– Number of

MultiprocessorsMultiprocessors
– Number of CUDA Cores

SM: Stream Multiprocessor (the
analog of a CPU core)
SP: Stream Processor
(the analog of an ALU)

Device Compute Capability vs. CUDA version

• “Compute Capability of a Device” refers to hardware
– Defined by a major revision number and a minor revision number
– Example:

• Tesla C1060 is compute capability 1.3
• Tesla C2050 is compute capability 2.0
• Fermi architecture is compute capability 2
• Kepler architecture is compute capability 3• Kepler architecture is compute capability 3
• Titan X is compute capability 5.2

– A higher compute capability indicates a larger set of features
available from the hardware

• The “CUDA Version” indicates what version of the
software you are using to write code
– right now, the most recent version of CUDA is 7.5

Compatibility Issues

• The basic rule: the CUDA
Driver API is backward, but
not forward compatible
– makes sense: the functionality

in later versions increases, and
was not there in previous
versionsversions

GPUs and current trends in computing

• Many new applications in today’s mass computing
market have been traditionally considered
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and

manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products, …

– These “super-apps” represent and model physical, concurrent – These “super-apps” represent and model physical, concurrent
world

• Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management

• GPU architectures and related programming models
seem to meet particularly well this emerging scenario in
computing

GPU performance gains over CPUs
• E.g.: GeForce 8800 GTX vs. 2.2GHz Opteron 248
• Compute power:

– 500+ GFLOPS vs. 10+ GFLOPS (roughly)
• Memory Bandwidth:

– 100+ GB/s vs. 10+ GB/s (roughly)
• 10×××× speedup in a kernel is typical

– as long as the kernel can occupy enough parallel threads
• As high as 25×××× to 400×××× speedup• As high as 25×××× to 400×××× speedup

– if the function’s data requirements and control flow suit the GPU and
the application is optimized

GPUs and HPC: Top500

GPUs and HPC: Tesla S1070 blade

Tesla S1070 blade

• up to 4 teraflops
• 1U rack-mount system
• 240 computing cores per processor
• Frequency of processor cores:

– 1.296 to 1.44 GHz

• SP FP peak:
– 3.73 to 4.14 TFlops– 3.73 to 4.14 TFlops

• DP FP peak:
– 311 to 345 GFlops

• Memory Bandwidth:
– 408 GB/sec

• Dual PCI Express 2.0
• Max Power: 800 W

Tesla T10

• 240 streaming processors/cores
(SPs) organized as 30 streaming
multiprocessors (SMs) in 10
independent processing units
called Thread
Processors/Clusters (TPCs)Processors/Clusters (TPCs)

• A TPC consists of 3 SMs; A SM
consists of 8 SPs

• Collection of TPCs is called
Streaming Processor Arrays
(SPAs)

Titan Supercomputer Oak Ridge National Laboratory

• Nov 2012: World’s fastest
computer (TOP500 list)

• 18,688 NVIDIA Tesla
K20X GPUs

• 20 petaflops
• Upgraded from Jaguar • Upgraded from Jaguar

supercomputer
– 10 times faster
– 5 times more energy

efficient than 2.3-petaflops
Jaguar system

– while occupying the same
floor space

http://nvidianews.nvidia.com/Releases
/NVIDIA-Powers-Titan-World-s-
Fastest-Supercomputer-For-Open-
Scientific-Research-
8a0.aspx#source=pr

GPU energy efficiency

• CPU vs. GPU
• Energy consumed by a single floating point operation:

– 1690 pJ/flop (CPU) vs. 140 pJ/flop (GPU)

• Latency vs. Throughput
• Caches vs. Explicit Managment of On-chip Memory

Vector Processors vs. GPU

• An example of a vector processor with 4 lanes vs.
a multithreaded GPU processor with 4 SIMD
Lanes (bottom figure)
– GPUs typically have 16 or (many) more SIMD Lanes

• “Control processor” in the Vector system:
– supplies scalar operands for scalar-vector operations
– increments addressing for unit and non-unit stride

accesses to memoryaccesses to memory
– performs other accounting-type operations

• Peak memory performance
– only occurs in a GPU when the Address Coalescing

unit can discover localized addressing
– Similarly, peak computational performance occurs

when all internal mask bits are set identically
– Note: the SIMD Processor has one PC per SIMD

thread to help with multithreading

Vector Processors vs. GPU

• GPU Grid and Thread Block are abstractions for programmers
• “SIMD” Instruction on GPU = Vector instruction on Vector
• Instructions of each thread is 32-element wide

– thread block with 32 threads =
strip-minded vector loop with a length of 32 in a vector processor

• Loops in Vector Processors and GPUs:
– both rely on independent loop iterations– both rely on independent loop iterations

• GPU:
– Each iteration becomes a thread on the GPU
– Programmer specifies parallelism
– grid dimensions and threads/block
– Hardware handles parallel execution and thread management
– Trick: have 32 threads/block, create many more threads per multi-

processor to hide memory latency

Vector Processors vs. GPU

• Conditional Statements
Vector:
– mask register part of the architecture
– Rely on compiler to manipulate mask register
GPU:
– Use hardware to manipulate internal mask registers– Use hardware to manipulate internal mask registers
– Mask register not visible to software
– Both spend time to execute masking

• Gather-Scatter
GPU:
– all loads are gathers and stores are scatters
– Programmer should make sure that all addresses in a gather or

scatter are adjacent locations

