SIMD and GPU architectures

Introduction



From superscalar to SIMD and GPU architectures

o Superscalar / dynamic scheduling /
Coherence / Consistency etc...
— single execution flow
— very high complexity
— too much implementation overhead
e Simultaneous MultiThreading (SMT)
— parallelism is made visible to software
— limited number (two/four) of separate
execution flows sharing hardware units
 To achieve large scale parallelism:
— rebalance control vs. data processing
— most resources should go to processing

— control should possibly be shared across
execution resources

—
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Single Instruction Multiple Data (SIMD)

Multiple compute units driven by the same control
Processor needs to fetch and decode only one instruction

Unlike scalar processor, SIMD operations are typically
performed on vector of data
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Single Instruction Multiple Data (SIMD)
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Single Instruction Multiple Data (SIMD)

e SIMD is a broad concepit:

SIMD Instruction Pool

———|PU|

e can apply to coarse-grain architectures:

— SIMD compute systems made of a front-end
processor and an array of multiple processors __ mmd
working lock-step (i.e. doing all the same thing at
the same time)
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 or to fine-grain architectures:

— multiple identical compute units are instantiated I
within the processor datapath and steered by a

single control unit




Coarse grain SIMD (processor array)

The front-end, sequential processor broadcasts the
commands to SIMD processors (Processing Elements, PESs)

— normally, the front-end is a general-purpose CPU handling the non-
parallelizable part of the program

— When the front-end encounters a parallel task (e.g. instructions
working on vectors), it issues a command to the PEs

— although the PEs execute in parallel, some units can be allowed to
skip particular instructions

Alternately, all PEs can execute computation steps
synchronously, avoiding broadcast cost to distribute results

Each PE has a local memory not directly accessible by the
control unit or other PEs

Some PEs can be disabled, in case their portion of data must
not be processed

— All PEs work in lockstep except those that are masked out



Fine-grained SIMD (SIMD extensions)

One processor, with multiple identical execution units
— also called “lanes” or “slots”
The processor has larger registers (e.g. 128 bits) that can be
partitioned to store multiple data (e.g. four 32-bit values)
— Vector length = register width / type size
— Data fields are usually variable-sized
The typical solution adopted by current commercial processors

— SIMD/multimedia extensions: SIMD instructions and registers added
to the base processor ISA

Vo

v
|
'g[i | s';ﬁ I vl.s l Olwlh Irzinllllrs |1$4

Vi

i[z]

V2

W3

il

i El Bl

V4

Va

|
(S | S
.
:

V31 |

0

127

i L4 " L 4
\ 'WIDE UNIT

Sixteen 8-bit Operands

Eight 16-bit Operands
Four 32-bit Operands

Example: AltiVec



Conditional execution in SIMD architectures

 How to handle conditional if-then-else in processor
arrays?
— The Control Unit checks if data in each PE meets the condition

— If it does, it sets the mask bits so those processors will
participate in the operation, while the remaining ones will not

— Unmasked processors execute the THEN part

— Afterwards, mask bits (for original set of active processors) are
flipped and unmasked processors perform the ELSE part
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Advantages (and disadvantages) of SIMDs

Alternative model for exploiting ILP

— If code is vectorizable, then better resource and energy
efficiency than out-of-order processors

* More lanes, slower clock rate
— Scalable if elements are independent

— But, if there is dependency:

« One stall per vector instruction rather than one stall per vector
element

Programmer in charge of giving hints to the compiler

Design issues:

— number of lanes, functional units and registers, length of vector
registers, exception handling, conditional operations

Fundamental design issue is memory bandwidth
— Especially with virtual address translation and caching



Advantages (and disadvantages) of SIMDs

Less hardware than multiprocessors (MIMDs):
— only one control unit - Control units are complex
Less memory needed than MIMD

— Only one copy of the instructions need to be stored
— Allows more data to be stored in memory

Much less time required for communication between PEs and
data movement

Single instruction stream and synchronization of PEs make
SIMD applications easier to program, understand, and debug
— similar to sequential programming

In case of a coarse-grain SIMD system, control flow and
scalar operations can be executed on the front-end unit, while
PEs are executing parallelized instructions

MIMD architectures require explicit synchronization primitives
— these may create a substantial amount of additional overhead



Advantages (and disadvantages) of SIMDs

e During a communication operation between PEs

PEs send data to a neighboring PE in parallel and in lock-step

No need to create a header with routing information since “routing”
IS determined by program steps

the entire communication operation is executed synchronously
SIMDs are deterministic and have much more predictable running
time

Can normally compute a tight, worst-case upper bound to the time
required for both computation and communication operations

e Less complex hardware in SIMD since no message decoder
IS needed in the PEs

MIMDs need a message decoder in each PE

 Disadvantages:

— for applications that are not straightforward to parallelize, it may be

very difficult to achieve a good utilization of the compute resources



Where are SIMD architectures used?

Several classes of applications have data parallelism
— Scientific and engineering applications
— Multimedia applications

In commercial processors, SIMD extensions are most
often used for multimedia applications

— in fact, they are typically called multimedia extensions, e.g. in
x86

SIMD machines typically focus on vector operations
— Support some vector and possibly matrix operations in hardware

— Usually limit or provide less support for non-vector type
operations involving data in the “vector components”

General purpose SIMD computers

— May also provide some vector/matrix operations in hardware, but
there is more support for traditional type (scalar) operations



Multimedia Applications and SIMD

Short data types, narrower than the native word size
— Graphics systems use 8 bits per primary color
— Audio samples use 8-16 bits
— Use a 256-bit adder for
* 16 simultaneous operations on 16 bits
» 32 simultaneous operations on 8 bits
Regular data access pattern
— Data items are contiguous in memory

Data streaming through a series of processing stages
— some temporal reuse for such data streams

A few specific features that may occur sometimes:
— many constants

— short iteration counts

— saturation arithmetic

— etc.



Vector architectures

“Vector” architectures
— more or less the same as SIMD

— sometimes, vector and SIMD are used interchangeably, although
some authors highlight a few differences between the two

Basic idea:

— Read sets of data elements into “vector registers”
— Operate on those registers

— send the results back to memory

Registers are controlled by compiler

— Register files act as compiler controlled buffers

— Used to hide memory latency

— Leverage memory bandwidth

Vector loads/stores deeply pipelined

— memory latency experienced once per vector Load/Store

— Instead, in regular architectures, memory latency is experienced
once for each element in the vector



SIMD vs. Vector

A few differences:

Multimedia SIMD extensions fix the number of operands in
the opcode

— Vector architectures have a VLR to specify the number of operands
Multimedia SIMD extensions

— No sophisticated addressing modes (strided, scatter-gather)

— No mask registers (in some architectures)
The above features

— enable vector compiler to vectorize a larger set of applications

— make it harder for compiler to generate SIMD code and make
programming in SIMD assembly more difficult

Differences, anyway, tend to be subtle

— SIMD extensions are increasingly being extended by manufacturers
(e.g., see Intel's MMX - SSE - AVX)



SIMD vs. Vector

« SIMD meant for direct use by programmers
— rather than for automated code generation by compilers
— although there are “SIMD-izing” compilers, i.e. compilers extracting
parallel SIMD patterns from sequential code
 Recent x86 compilers
— Capable for FP intensive apps
 Why is SIMD popular?
— Little hardware costs and complexity
— Need smaller memory bandwidth than vector

— Separate data transfers aligned in memory

» with Vector: a single instruction might cause 64 memory accesses,
making it very likely to incur a page fault in the middle of the vector!

— Use much smaller register space
— Fewer operands
— No need for sophisticated mechanisms of vector architecture



L.D
MOV
MOV
MOV
DADDIU
Loop:
L.4D
MUL.4D
L.4D
ADD.4D
S.4D
DADDIU
DADDIU
DSUBU
BNEZ

SIMD example (MIPS)

 Example (DXPY):

FO,a
F1, FO
F2, FO
F3, FO
R4,Rx,#512

F4,0[RX]

F4,F4,FO0

F8,0[Ry]
F8,F8,F4

O[Ry],F8
RX,RXx,#32
Ry,Ry,#32

R20,R4,Rx

R20,Loop

;load scalar a

;copy a into F1 for SIMD MUL
;copy a into F2 for SIMD MUL
;copy a into F3 for SIMD MUL
;last address to load

Jload X[i], X[i+1], X[i+2], X[i+3]
;axX[i],axX[i+1],axX[i+2],axX[i+3]
Jload Y[i], Y[i+1], Y[i+2], Y[i+3]
;axX[i]+Y[i], ..., axX[i+3]+Y[i+3]
;store into Y[i], Y[i+1],Y[i+2],Y[i+3]
‘increment index to X
;increment index to Y
;compute bound
;check if done



Commerclal SIMD architectures

Intel SIMD extensions

— MMX: Multimedia Extensions (1996)

— SSE: Streaming SIMD Extensions (1999)
— AVX: Advanced Vector Extension (2010)

PowerPC
— Altivec

ARM
— NEON

MIPS
— MIPS-3D



Motorola/Freescale ALTIVEC

 Altivec Is the Motorola implementation of SIMD
— vector unit handles multiple pieces of data simultaneously
In parallel with a single instruction
e added 162 new PowerPC instructions

— functionality similar to what is offered in the scalar units,
just extrapolated into the SIMD domain

— new instructions for field permutation and formatting
— load/store instruction options for cache management
— Instructions that control four data prefetch engines

o AltiVec vector unit never generates exceptions



Motorola/Freescale ALTIVEC

e “vector” instructions:

— each AltiVec instruction specifies up to three source operands
and a single destination operand

o Target applications for AltiVec technology include:
— image and video processing systems
— virtual reality
— scientific array processing systems
— network infrastructure such as Internet routers, etc...

VA
vB
vC

vT




Motorola/Freescale ALTIVEC

* Four 128-bit vector execution units:
— VIUL: executes AltiVec simple integer

instructions _

— VIU2: executes AltiVec complex integer e | e
instructions VI 1

— VPU: executes AltiVec permute instructions VL2 -

— VFPU: executes AltiVec floating-point VFRY -
instructions - ;

o 32-entry, 128-bit vector register file
(VRS)

o 16-entry, 128-bit renamed buffer



Motorola/Freescale ALTIVEC

e Vector registers (VRS)
— used as source and destination

operands for AltiVec load, store, 1286
and computational instructions =T
« AltiVec's 128-bit wide vectors e I“
can be subdivided into: ] P P P R Y
_ 16 elementS, Whel‘e each element :E 1:2;3,24;5;“' ': 3 -:;13:11L1E|11-|T11:15J1s
Is either an 8-bit signed or il IR : :
unsigned integer, or an 8-bit @
c h aracter Pﬂgg&* ra Vector Registers (VRs) e
— 8 elements, where each element
Is a 16-bit signed or unsigned
integer i

— 4 elements, where each element
IS either a 32-bit signed or
unsigned integer, or a single
precision (32-bit) IEEE floating-
point number

Figure 7-1. Vector Registers (VREs)



Motorola/Freescale ALTIVEC

Data types

unsigned char

vector signed short
bool long

vector float

vector pixel

128 bits —> -
32 bits —>

16 bits —

-~
-
8 bits — r—\—

1 2 3 45 6 7 8 9 101112 13 14 15 16
1 2 3 a 5 6 7 8
1 2 3 a

Three alternative vector register data layouts



Commercial SIMD architectures: Intel

— Intel MMX (1996)
* Repurpose 64-bit floating point registers
» Eight 8-bit integer ops or four 16-bit integer ops
— Streaming SIMD Extensions (SSE) (1999)
» Separate 128-bit reqgisters: 8 16-bit ops, 4 32-bit ops, or two 64-bit ops
» Single precision floating point arithmetic
— Double-precision floating point in
« SSEZ2 (2001), SSE3(2004), SSE4(2007)

— Advanced Vector Extensions (2010)

» Four 64-bit integer/fp ops

1999

2000

2004 2006

2007

2008

2009

2010\11

SSE

SSE2

SSE3 SSSE3

SSE4.1

SSE4.2

AES-NI

AVX

70 instr

Single-
Precision
Vectors

Streaming
operations

144 instr

Double-
precision
Vectors

8/16/32

64/128-bit
vector
integer

13 instr 32 instr
Complex Decode
Data

47 instr
Video

Graphics
building
blocks

Advanced
vector instr

8 instr

String/XML
processing

POP-Count
CRC

7 instr

Encryption
and
Decryption

Key
Generation

~100 new
instr.

~300 legacy
sse instr
updated

256-hit
vector
3 and 4-

operand
instructions



Commercial SIMD architectures: Intel

X4opY4 X3opY3 X20pY2 XlopY1

MMX™

Vector size: 64bit

Data types: 8, 16 and 32 bit integers
Vector Lane (VL): 2,4,8

For sample on the left: Xi, Yi 16 bit
integers

X4opY4 X3opY3 X20pY2 XlopY1

Intel® SSE

Vector size: 128bit

Data types:

8,16,32,64 bit integers

32 and 64bit floats

VL: 2,4,8,16

Sample: Xi, Yi bit 32 int / float



Commercial SIMD architectures: Intel

255 128 127 0
X7 X4

X8opY: X7opY! X6opY! X50pY5 X4opY: X3opY. X20pY| XlopY

Intel® AVX

Vector size: 256 bit

(Extendible to 512 and 1024 bits for
future generations)

Four 64-bit integer/fp ops

Data types: 32 and 64 bit floats

VL: 4, 8, 16

Sample: Xi, Yi 32 bit int or float

(Like the others, operands must be
consecutive and aligned memory
locations)

511 255
. X9 X8 X7 ! X6 X5 X4 X3 X2 X1

. YO[ YBIYZIY6IY5!Y4 Y3 Y2 Y1

o .. . ... XSopYS X8opYE ... ...
Intel® MIC
Vector size: 512bit
Data types:

32 and 64 bit integers

32 and 64bit floats

(some support for 16 bits floats)
VL: 8,16

Sample: 32 bit float



Programming with vector/SIMD extensions

How to use SIMD (OI’ /I Add 10 and 20 to register %eax
other) machine __asm__ ("movl $10, %eax;”

: : : "movl $20, %ebx;”
Ig\slgluggdogg from high- "addl %ebx, %eax;” );
asm

int no =100, val :
asm ("movl %1, %%ebx;"
"movl %%ebx, %0:"

— Inject assembly code from
C/C++ sources

— details depend on L= ( val ) // output
compiler implementation " (no) /linput

— some trickery to specify . "%ebx" // clobbered register
operands );

“Intrinsics”

— syntactically, look like #include <xmmintrin.h>
function calls

— each intrinsic directly __m128 source0 ={1.1, 2.2, 3.3, 4.4};
corresponc_ls to a s_;pec|f|c ~_m128 sourcel ={10.1,20.2,30.3,40.4};
processor instruction __m128 dest; float

printarray[FLOAT _ARRAYSIZE]
__attribute__ ((aligned (16)));

dest = _mm_shuffle_ps (source0, sourcel,
_MM_SHUFFLE(O, 1, 2, 3));

— again, details depend on
compiler implementation



Programming with vector/SIMD extensions

Ease of use
Little control

N

N

Programmer
Control

Use Performance Libraries

Compiler: Fully automatic vectorization
Cilk Plus Array Notation

Compiler: Auto vectorization hints

( #pragma ivdep , ...)

User Mandated Vectorization ( SIMD
Directive)

Manual CPU Dispatch

( __ declspec(cpu_dispatch ...) )
SIMD intrinsic class (F32vec4 add )
Vector intrinsic ( mm_add_ps() )
Assembler code ( addpsv )



Various Intel codes from a C routine

static double A[1000], B[1000],
C[1000];

void add() {

int i

for (i=0; i<1000; i++)

if (A[i]>0)

AJi] += BJi];

else

AJi] += CIi;

} <Y

-
.B1.2:

vmovaps  ymma3, AJrdx*8]

vmovaps  ymml, C[rdx*8]

vempgtpd ymmz2, ymm3, ymmO
vblendvpd ymm4, ymm1,B[rdx*8], ymm2
vaddpd ymmb5, ymma3, ymm4
vmovaps  A[rdx*8], ymm5

add rdx, 4
cmp rdx, 1000
1 .B1.2

»

AVX

.B1.2::

movaps xmmz2, A[rdx*8]

xorps xmmaQO, xmmO

cmpltpd

movaps xmm1l, B[rdx*8]

XxmmO, xmm?2

andps xmml, xmmO

andnps xmmaO, C[rdx*8]

orps xmm1l, xmmoO
addpd xmm2, xmml

movaps A[rdx*8], xmm2

SSE?2

add rdx , 2

cmp rdx, 1000

jl .B1.2

.B1.2:

movaps xmmz2, A[rdx*8]
Xorps XxmmO, xmmO
cmpltpd  xmmO, xmm2
movaps xmm1, C[rdx*8]
blendvpd xmm1, B[rdx*8], xmmO
addpd xmm2, xmm1l
movaps A[rdx*8], xmm2
add rdx, 2

cmp rdx, 1000

jl

.B1.2

SSE4.1




AltiVec Programming

GNU Compiler Collection, IBM Visual Age Compiler and
other compilers provide Iintrinsics
— access AltiVec instructions directly from C and C++ programs

The “vector ” storage class is introduced

— permits the declaration of native vector types

— e.g., “vector unsigned char A ;" declares a 128-bit vector
variable named “A’ containing sixteen 8-bit unsigned chars

AltiVec C extensions map into AltiVec instructions

— For example, vec_add() maps into one of four AltiVec
Instructions (vaddubm, vadduhm, vadduwm, or vaddfp )
depending upon the types of the arguments to vec_add()



AltiVec Programming: vec_add

 Example:
— each element of a is added to the corresponding element of b
— each sum is placed in the corresponding element of d

d = vecC add(a’b), Elemert— 0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
Lo e e e i Iy ]a
equivalent to: Lttt e e e e e e e e e g e
YY YY YY YY YY YY YY YY YY YY YY YY YY YY YY YY
Integer operands and addition: B R R R

for(i=0; i<n; i++){
d[i] = afi]+b[i];
}

Floating point operands and addition:
for(i=0; i<4; i++){
d[i] = afiJ+bli];
}



GPU

e Graphics Processing Unit (GPU) e
— dedicated super-threaded, massively data T P
parallel coprocessor = Bl

« Historically, followed a different path
from SIMD

— Hardware acceleration of dedicated graphics
processing functions
NVIDIA TesLA: A UNIFIED

* Now General-Purpose GPU (GPGPU) Gt

COMPUTING ARCHITECTURE
— General purpose programming model based ‘
on graphics-free API

— Pushed by emerging general-purpose
programming models:

 NVIDIA's Compute Unified Device Architecture

(CUDA), 2007 The 2008 IEEE paper
» Khronos Group’s Open Computing Language oo o e code

(OpenCL), 2009 name of a family of

products including
devices like K20, K20X,
also used in HPC



Current GPGPUSs

25 GB/sec
to memory

LZ Cache
" ———

Texture Cache L1 Cache Constant Cache

8KB _10KB_ L 8KB

EEENEEEEN) ENEEEEEEN) / GPU model
EEEEEEEEN) EEEEEEEEN)
EEEEEEEEE) [TTITTIIT1]



Current GPGPUSs

« The GPU is viewed as a compute device that:
— |Is a co-processor to the CPU or host
— Has its own DRAM (global memory in CUDA parlance)
— Runs many threads in parallel

o Data-parallel portions of an application run on the device
as kernels which are executed in parallel by many

threads
» Differences between GPU and CPU threads
— GPU threads are extremely lightweight
« Very little creation overhead

— GPU needs 1000s of threads for full efficiency
« Multi-core CPU needs only a few heavy ones



Current GPGPUSs

GPU is a in fact SIMD device - works on
“streams” of data

— Each “GPU thread” executes one general instruction on
the stream of data that the GPU is assigned to process

— sometimes called single instruction multiple thread
(SIMT)

Compute power comes from a vertical hierarchy:

— e.g., NVIDIA: set of Streaming Multiprocessors (SMs)

— each SM has a set of 32 Scalar Processors (SPs)

« Maxwell has 128 SPs, Kepler has 196 SPs, Fermi 2.1 had
48 SPs

The quantum of scalabllity is the SM
— larger (and more expensive) GPUs have more SMs
— Fermi can have up to 16 SMs on one GPU card

’>
>/>

B Instructions
(] Data
B Results



Graphics computing

 Workload and Programming Model provide lots of parallelism:
— Graphics applications provide large groups of vertices at once
— Vertices can be processed in parallel
— Apply the same transform to all vertices

* Triangles contain many pixels
— Pixels from a triangle can be processed in parallel
— Apply the same shader to all pixels

« Very efficient hardware to hide serialization bottlenecks




The Graphics Pipeline

Depth Test & Blending




Applications of Computer Graphics

Climate

— E.g.: Comprehensive Earth System
Model at 1KM scale, enabling
modeling of cloud convection and
ocean eddies

Biology

— E.g.: Coupled simulation of entire
cells at molecular, genetic,
chemical and biological levels

Astrophysics

— E.g.: Predictive calculations for
thermonuclear and core-collapse
supernovae, allowing confirmation
of theoretical models.

Gaming applications
etc...




Evolution of GPUSs

Rasterize

Test & Blend

Early Graphics accelerators:

« Key abstraction of real-time
graphics

 Hardware directly resembled
the pipeline structure

* One chip/board per stage

* Fixed data flow through pipeline



Evolution of GPUSs

Early GPUs:

« Everything was a fixed function,
with a certain number of modes

e Number of modes for each
stage grew over time

 Hard to optimize hardware

* Developers wanted more
flexibility

Rasterize

Test & Blend




Evolution of GPUSs

Programmable GPUs:

« Remains a key abstraction

_ « Hardware still directly resembled
Rasterize the pipeline structure

* but, Vertex & Pixel processing
became programmable
— new stages added

 GPU architecture increasingly
Test & Blend centers around shader
execution

4 U



Evolution of GPUSs

Programmable GPUs:

e EXxposing a (initially limited)

Instruction set for some stages

Rasterize » Limited instructions &
Instruction types and no control

flow at first
 Then expanded to full ISA

Test & Blend




Evolution of GPU architectures

1970-1980: floating
point co-processors

attached to
MICroprocessors

Late 1990s: graphics chips needed
to support 3-D (graphics APIs such
as DirectX and OpenGL)

Graphics chips generally had a
pipeline structure: a sequence of
highly specialized operations

[~
]
[

[ 0f B B[ B §

DRAM

Mid 2000s:
General-Purpose
GPUs (GPGPUs)



Atari 8-bit computediBM PC Professional

Evolution of GPUSs

GPU Computing

General-purpose computing on
graphics processing units
(GPGPUs
GPUs with
programmable shading

Nvidia GeForce
GE 3 (2001) with
programmable shading

DirectX graphics API
OpenGL graphics API

Hardware-accelerated
3D graphics
S3 graphics cards-
single chip 2D
accelerator

Playstation

text/graphics chip Graphics Controller

. card . | .

| | ! I
1980 1990 2000 2010



GPU acceleration:

Embedded/Automotive
“Infotainment”
etc...

NVIDIA PX
— Self Driving Car Computing

NVIDIA CX
— Digital Cockpit Computer

New areas




GPGPU: main players

ATi

o
NVIDIA.

(NVIDIA Fermi Architecture)

I ll DEDNW|

GRAPHICS

P ]

e e ———— —— —
il |l | e el [ el i

TTTITITIIIE
(AMD Tahiti Architecture)

= Processor

" i
W Graphics &

(Intel i7 with Processor Graphics)



GeForce 6 Series Architecture (2004-5)

* Fixed-pipeline
architecture

Host

I e e A S —

— still no GPGPU Vertex Pocessig
« Compliant with

Microsoft DirectX
9.0c specification

[}
Cull / Clip / Setup [

| Z-Cull 1-'—- Rasterization I

and OpenGL 2.0 éragment Froresiing s IL . U.H | } o —




NVIDIA G80 chip/GeForce 8800 card (2006)

First GPU for HPC
as well as graphics
— unified processors

Host
Input Assembler

Thread Execution Manager

could perform vertex,
geometry, pixel, and

general computing
operations
Could now write
programs in C rather
than graphics APIs

Single-instruction
multiple thread .
(SIMT) .
programming model

Parallel Data

Cach Cach Cach Cach Cach Cache Cach Cache
[ [rextore || [} {vexture] | {Q}{Jrexure [{ |} {{rexure | || Wt | |rexture [ { ||| {vexture || |W} {{rexture | }]§|{{rexture

Load/store

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Load/store Load/store Load/store Load/store Load/store

G80 Device:

Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors grouped into 16
multiprocessors (SMs)

Parallel Data Cache enables thread cooperation



NVIDIA Fermi architecture (Sept 2009)

* First implementation: Tesla 20
series

e 16 Streaming Multiprocessors
(SMs)

— each having 32 stream processing
engines (SPEs): up to 512 cores

 Many innovations

— e.g., L1/L2 caches, unified device
memory addressing, ECC memory,...

« ~3 billion transistor chip
 Number of cores limited by power

considerations Fermis 165 ar positonsd roet  common L2 cache, Each M i vl
rectangular strip that contain an orange portion {(scheduler and dispatch), a green portion
— e.g. C2050 has 448 cores fexecution unit), and light biue portion register fil and L cache.

GF100: NVIDIA Fermi

 GPU/CPU Host interface: PCI-Express v2 bus (peak transfer rate of 8GB/s)
« DRAM: up to 6GB of GDDR5 DRAM, 64-bit addressing capability

* Clock frequency: ~1.5GHz, Peak performance: 1.5 TFlops.

« DRAM bandwidth: 192GB/s



Fermi Streaming Multiprocessor (SM)

32 CUDA cores
— Fully pipelined Integer ALU and FPU
— 32-bit Integer operations
— |EEE-754:2008 Double Precision Operations

— Support for: Boolean, shift, move, compare, convert,
bit-field extract, bit-reverse insert

32K of 32-bit register file

64 KB of RAM with a configurable partitioning of
shared memory and L1 cache 48:16 or 16:48
16 Load/Store units

— source and destination addresses to be calculated
for 16 threads per clock

— Load and store the data from/to cache or DRAM
4 Special Function Unit (SFU) for transcendental
Instructions:

— e.g. sin, cosine, reciprocal, and square root

— Each SFU executes one instruction per thread, per
clock; a warp executes over eight clocks.

— The SFU pipeline is decoupled from the dispatch
unit, allowing the dispatch unit to issue to other
execution units while the SFU is occupied.

Dual Warp Scheduler simultaneously schedules
and dispatches instructions from two independent
warps

GF104/GF114 are also 16 CUDA cores FP64
capable, 8 SFU and 4 dispatched units* Fermi Streaming Multiprocessor (SM)



Fused MultiplyAdd (FMA)

Multiply-Add (MAD):

+
- I
CUDA Core

Fused MUltlply-Add (FMA) Dispatch Port

=
+
- I

« MAC: (non-fused): A =
Normalize _and_Round(Normalize_and_Round(B*C) + D)
« FMA: (fused): A =
Normalize_and_ Round(Extended Precision_with_No_Inte
rmediate_Rounding(B*C ) + D)




The Fermi GigaThread™ Thread Scheduler

Global GPU scheduler:

Schedules thread blocks to various SMs
— Check for resources availability

— Example:
» each thread can use only 63 registers
e Only 16 threadblocks per SM

10x faster application context switching (Compared to G80)
Concurrent kernel execution

Out of Order thread block execution

Dual overlapped memory transfer engines

Serial Kernel Execution Concurrent Kernel Execution



The Fermi Dual Warp Scheduler
“Local” SM scheduler

— handles groups of 32 parallel threads called e W
warps T

Each SM has two warp schedulers and two
Instruction dispatch units
— allow two warps to be issued and executed

concurrently : :
Selects two warps and issues one instruction

from each warp to a SM part, i.e. a group of
16 cores, 16 load/store units, or 4 SFUs I vrzmndons

— most instructions can be dual issued (exceptions
include double precision instructions, which
cannot be dual issued)

— efficient scheduling allow near-peak HW
performance
Because warps execute independently,
Fermi’s scheduler does not need to check for
dependencies within the instruction stream

— however, the architecture with four dispatcher
units do have a check for dependencies

Max 48 Warps per SM

Instruction Dispatch Unit

time

T

Fermi
1 SM



Fermi Shader Clock

 On GF100/104/110/114:

— Within the SM itself different units operated on different clocks
« schedulers and texture units operating on the core clock (607 MHz)
 CUDA cores, load/store units, and SFUs operated on the shader
clock, which ran at twice the core clock (1215 MHz).
— With Fermi, a warp would be split up and executed over 2 cycles
of the shader clock;

» 16 threads would go first, and then the other 16 threads over the
next clock.

* The shader clock allows a full warp to be executed over a single
graphics clock cycle (at 607 MHz) while only using enough
hardware for half of a warp

« Half Warp is the true working unit



Thread and Warp Scheduling

e An SM can switch

between warps with no W,
overhead =

eligible to execute, and will
be considered when

Ws
— warps with instruction _
whose inputs are ready are {”2

scheduling

— When a warp is selected Wi | Executing W
for execution, all active — "
threads execute the same Wiitiiies foi: dits
instruction in lockstep
fashion Ready to execute

« Applies to both Fermi and
Kepler



The Fermi Memory Subsystem

One L1 cache per SM multiprocessor Fermi Memory Hierarchy

Thread

and unified L2 cache that services all
operations (load, store and texture)

768 KB of L2 Cache —It

The per-SM L1 cache is configurable to !

support both shared memory and

caching of local and global memory

operations: |

— the 64 KB memory can be configured as

either 48 KB of Shared memory with 16 KB
of L1 cache, or 16 KB of Shared memory
with 48 KB of L1 cache

ECC Memory Support

F a.St Ato m i C M e m O ry O p e rati O n S 300% Radix Sort using Shared Memory

500%

450%

— Performance is up 20x faster P

350%

300% —

compared to Tesla —
100% —— 200% —

150% —

50% 100%
50%
0%

0%

GT200 Archi Fermi Archi

Physics i such as fluid sil i i benefit from Fermi’s
caches. For convex shape collisions, Fermi is 2.7x faster than GT200.




The Kepler Architecture

A representative device: GK110 (2013)
— CUDA Computer Capability 3.5
— 7.1 billion transistors, 28nm manufacturing process
— 3x Performance per Watt on Fermi

Drop Shader Clock, Doubling Resources
— One Clock (~700MHz) = Power efficiency

Streaming Multiprocessor (SMX)
— 15 SMX each composed by 192 CUDA cores

GigaThread globlal scheduler

— distributes thread blocks to SM thread schedulers
and manages the context switches between threads
during execution

Host interface

— GPU-CPU connected via a PCI-Express v3 bus
(peak transfer rate: 16 GB/s).

DRAM

—  Six 64-bit memory controllers
L2 cache: 2x Capacity compared to Fermi

Example of other devices:

— GK104 GPU, GTX 680 card: 1536 cores, 195 watts
(March 2012)

— GXT 690 has two dies, 3072 cores (2 x 1536 cores),
300 watts (April 2012)

— CUDA Computer Capability 3.0




Kepler new features

Dynamic Parallelism

— GPU can generate new work for itself, synchronize on results, and control the
scheduling of that work via dedicated, accelerated hardware paths, without
involving the CPU

Hyper-Q
— multiple CPU cores can launch work on a single GPU simultaneously, increasing
GPU utilization and reducing CPU idle times

— 32 simultaneous, hardware-managed connections (work queues) between the
host and the GPU (Fermi has only a single connection)
Grid Management Unit

— Dynamic Parallelism requires an advanced grid management and dispatch
control system

— The Grid Management Unit (GMU) manages and prioritizes grids to be executed

NVIDIA GPUDirect™

— multiple GPUs within a single computer, or even in different servers across a
network, can directly exchange data without needing to go to CPU/system
memory

Shuffle Instruction

— Kepler implements a new Shuffle instruction which allows threads within a warp
to share data without using shared memory, e.g.: __shf() , _ shfl up() ,
__shfl_down() , __shfl_xor()




Kepler Grid Management Unit

Fermi Workflow

Stream Queue
Ordered quewes of grids

lﬂne-way Flow

- -

" WorkDistributor ~__
Tracks blocks issued from grids ™,

1B Active Grids |

Kepler Workflow

Stream Queues
Ordered gueues of grids

CUDA-Created
Work

L
Grid Management Unit
Pending & suspended grids

100HY5 o pending grids

3
Two-way link allows
pausing dispatch

r

— Work Distributor T

Actively dispatching grids

32 Active Grids | /_/

‘SMH ‘ SMX SMX




Kepler Streaming Multiprocessor (SMX)

192 single precision CUDA cores
— Fully pipelined Integer ALU and FPU
— 32-bit Integer operations

64 double precision units
— not present in all Kepler GKxxx)
— |EEE-754:2008 Single and Double Precision

32 Load/Store units

— source and destination addresses can be calculated for
32 threads per clock

— Load and store the data from/to cache or DRAM

32 Special Function Unit

— transcendental instructions such as sin, cosine,
reciprocal, and square root

— SFU pipeline is decoupled from dispatcher - can issue
to other execution units while the SFU is occupied

64K of 32-bit register file

A 4-Warp Scheduler simultaneously schedules
and dispatches instructions through 8 dispatch
units

64 KB of RAM

— configurable partitioning of shared memory and L1
cache (48/16 or 16/48 or 32/32 KB)

48 KB Read-Only Data Cache

+

Register File (65,536 x 32-bit)
3 R 3 £ 3 k3 3 L S 3 3 3 £ R 3 R 3 R 3 £ 2 k3 3 R 3 k3

Dispatch Dispatch ispatch Dispatch ispatc Dispatch Dispatch
T T + g

+@ 3

Gore Core Core - Core Gore Care - weT SFU Core Core Care - Corz Core Gore - LosT SFU
care mcm-cmem um-mm SFU Corel Core cm-t_:ou Core cm- Lois

Core Gore o] [ e e e

Core :wul:nu-mncmc:--mm SFU
o e o [ o e e [ o
Tl LI

: o7 SFU
o e e R o o ol R o~ s o o o [ o e o R o s

o o o R % o [ =~ o 5o o o [ 54 oo o [ -
e ] Bl I &

Core Core Care - Core Core Core - tosT SFU Core Core c:.u- Core Core Core - LosT SFU
SFU o
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Kepler Quad Warp Scheduler

handles groups of 32 parallel threads
(warps)

Each SMX features 4-warp schedulers
and 8 instruction dispatch units

— allows 4 warps to be issued and
executed concurrently

— selects 4 warps, and 2 independent
instructions per warp can be dispatched
each cycle

Uses deterministic information (e.g.
Math pipeline latencies) to resolve
data hazard

— remove Fermi complex hardware

— improved power efficiency

Kepler GK110 allows double precision
Instructions to be paired with other
Instructions

— unlike Fermi, which only permits single
iIssue of DP instructions




Kepler Memory Subsystem hints

Single unified memory request path for load and
store operations

One L1 cache per SM multiprocessor

Unified 1536 KB L2 cache serving all operations
— load, store and texture
The per-SM L1 cache is configurable to support

both shared memory and local/global memory
caching

— The 64 KB memory can be configured as either 48 KB
of Shared memory with 16 KB of L1 cache, or 16 KB /
48 KB, or 32 KB/ 32 KB

48 KB Read-Only Data Cache
— In Fermi it was accessible only by the Texture unit
ECC Memory Support

— Read-Only Data Cache supports single-error
correction through a parity check

— Note: ECC consumes bandwidth
Fast Atomic Memory Operations

— Same performance of Fermi but more operations are
supported

Kepler Memory Hierarchy

— + —

Thread
Yy
/ h

e

Shared ) |
Cache | | Data Cache |
L —— a8 vacit

_ Memory

la ) LRead-ﬂniy

|

N




Kepler vs. Fermi

FERMI FERMI KEPLER KEPLER

GF100 GF104 GK104 GK110
Compute Capability 2.0 2.1 3.0 3.5
Threads [ Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 3 3 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2716-1 2716-1 2n32-1 2n32-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

Compute Capability of Fermi and Kepler GPUs



NVIDIA Maxwell architecture and GPUs (2014)

First used in GeForce GTX 750 and the GeForce GTX
750

new design for the Streaming Multiprocessor (SM)
considerable improvements in power efficiency

Increased the amount of L2 cache from 256 KB on
GK107 to 2 MB on GM107

cut the memory bus from 192 bit on GK106 to 128 bit on
GM107 (for power saving)



The Maxwell Architecture

e GM 204 (Date: 2015)

— 5.2 Billion Transistors

— 2X performance vs. GK104

— 16 SMM

— 256-bit GDDR5

— Maxwell is born for PC Gaming

Market (for now)

 Maxwell Streaming

Multiprocessor (SMM)

— 128 CUDA Cores

— 2x perf/watt vs GK104

— Improved scheduler

— New Datapath organization

— +40% delivered performance per
CUDA core




NVIDIA 2016 Roadmap

 What's next?... NVIDIA Pascal architecture (2016)?

Pascal
Unified Memary
3D Memory
NVLink

o

@
o
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Dynamic Parallelism




NVIDIA CUDA Devices

Card Compute Capabillty Humbor of Ll Mumbar of LPg
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Devices Tesa i 37 e e
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- . m 12 v
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Device Compute Capability vs. CUDA version

o “Compute Capability of a Device” refers to hardware
— Defined by a major revision number and a minor revision number
— Example:

* Tesla C1060 is compute capability 1.3

» Tesla C2050 is compute capability 2.0

« Fermi architecture is compute capability 2
« Kepler architecture is compute capability 3
« Titan X is compute capability 5.2

— A higher compute capability indicates a larger set of features
available from the hardware

« The “CUDA Version” indicates what version of the
software you are using to write code
— right now, the most recent version of CUDA is 7.5



Compatibility Issues

e The basic rule: the CUDA
Driver API I1s backward, but
not forward compatible Apps, Apps, Apps,

— makes sense: the functionality Libs & Libs & Libs &
In later versions increases, and
was not there in previous

. N -~
versions 4 4

1.0 11 20
Driver Driver Driver

Compatible Incompatible

Plug-ins  Plug-ins  Plug-ins -



GPUs and current trends in computing

 Many new applications in today’s mass computing
market have been traditionally considered
“supercomputing applications”
— Molecular dynamics simulation, Video and audio coding and

manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products, ...

— These “super-apps” represent and model physical, concurrent
world

e Various granularities of parallelism exist, but...

— programming model must not hinder parallel implementation
— data delivery needs careful management

e GPU architectures and related programming models

seem to meet particularly well this emerging scenario in
computing
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GPU performance gains over CPUs

E.g.: GeForce 8800 GTX vs. 2.2GHz Opteron 248

Compute power:
— 500+ GFLOPS vs. 10+ GFLOPS (roughly)

Memory Bandwidth:

— 100+ GB/s vs. 10+ GB/s (roughly)

10x speedup in a kernel is typical

— as long as the kernel can occupy enough parallel threads

As high as 25x to 400x speedup

— if the function’s data requirements and control flow suit the GPU and
the application is optimized
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GPUs and HPC: Top500

RANK SITE

1

10

Maticnal Super Computer Center
in Guangzhou
China

DOE/SC/0ak Ridge Mational
Laboratory
United States

DOE/MNNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science [AICS)
Japan

DOE/SC/Argonne Mational
Laboratory
United States

Swiss Naticnal Supercomputing
Centre [C5C5)
Switzerland

Texas Advanced Computing
Center/Univ. of Texas
United States

Forschungszentrum Juelich
[FZJ)
Germany

DOE/MNSA/LLNL
United States

Government
United States

SYSTEM

CORES

Tianhe-2 [MilkyWay-2] - TH-IVB-FEF Cluster, 3,120,000

Intel Xeon E3-2692 12C 2.200GHz, TH
Express-2, Intel Xeon Phi 3151P
NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz,

Cray Gerini interconnect, [RRRINIY K20
Cray Inc.

Sequoia - BlueGene/Q, Power BAC 16C 1.60
GHz, Custom
IBM

K computer, SPARCES Vllifx 2.0GHz, Tofu
imterconnect
Fujitsu

Mira - BlueGene/Q, Power BAC 1&C 1.60GHz,
Custom
IEM

Piz Daint - Cray XC30, Xeon ES-2670 8C
2.600GHz, Aries interconnect |, [SRYINI K20k
CrayInc.

Stampede - PowerEdge C8220, Xeon E3-2680
8C 2.700GHz, Infiniband FDR, Intel Xeon Phi
SE10P

Dell

JUQUEEN - BlueGeneg/Q, Power BAC 16C
1.600GHz, Custom Interconnect

IBM

Yulcan - BlueGene/Q, Power BAC 14C
1.600GHz, Custom Interconnect
IEM

Cray C5-5torm, Intel Xeon E3-Z2660v2 100
2.2GHz, Infiniband FOR, [QMIE K40
Cray Inc.

260,640

1,572,864

705,024

786,432

115,784

462,462

458,752

393,214

72,800

RMAX
(TFLOR/S]

33.862.7

17,5500

171732

10,510.0

8,586.6

6,271.0

3,168.1

5,008.9

42933

39770

RPEAK
(TFLOR/S)

24,902.4

T N5

20,132.7

11,280.4

10,066.3

7.788.9

8,220.1

5,872.0

5,033.2

6,131.8

POWER
(Kw]

17,808

8,209

7,390

12,660

3,745

2325

4,510

2,301

1,972

1,459



GPUs and HPC: Tesla S1070 blade

16-kbyte shared memory

8 cores Core | Core | Core | Core | Core | Core | Core | Core

Thread Processor Array (TPA)

o //
ot [m ] T

Thread Processor Cluster AVIDI A
(TPC) i

24 cores

N
Tesla T10 S\ \‘\

TPC | TPC TPC
TPC | TRC | TPC | TPC

T10

2|3

240 cores

NN

Thread dispatcher A

x16 PCle

Tesla T10 Teska T10

e o]

Tesla T10 Tesla T10

x16 PCle x16 PCle
Tesla S1070 1U

PCle
switch

] [ 1
x16 PCle x16 PCle

I. The Tesla S1070 | U rack-mount system contains 960 cores
within four Tesla T10 PCI Express boards. Dual x16 PC| Express
connections link the system to a host.

960 cores




Tesla S1070 blade

up to 4 teraflops
1U rack-mount system
240 computing cores per processor

Frequency of processor cores:
— 1.296 to 1.44 GHz

SP FP peak: o scaomw

_ 3.73t0 4.14 TFlops ' J o J

DP FP peak: =

— 311 to 345 GFlops ,- N
Memory Bandwidth: g [ oo I
— 408 GB/sec L ™
Dual PCI Express 2.0 e e Testa

Max Power: 800 W Monionng 4.0GBDRAM 4:GP:DRAM |




Tesla T10

o 240 streaming processors/cores
(SPs) organized as 30 streaming

multiprocessors (SMs) in 10 ||

Independent processing units
called Thread
Processors/Clusters (TPCs)

e A TPC consists of 3 SMs; A SM
consists of 8 SPs

e Collection of TPCs is called
Streaming Processor Arrays
(SPAS)

8co

res

16-kbyte shared memory

Core | Core | Core | Core | Core | Core | Core | Core

Thread Processor Array (TPA)

24 cores

CCCCC

e
[otzea | |
Thread Processor Cluster

(TPC)

Tesla T10 L \\\

T10

TPC | TPC | TPC TPC

TPC | TPC | TPC | TPC | TPC

Thread dispatcher /:
p g

1 Thread

confext

4-Gbyte memory




Titan Supercomputer Oak Ridge National Laboratory

 Nov 2012: World’s fastest
computer (TOP500 list)

e 18,688 NVIDIA Tesla
K20X GPUs

o 20 petaflops
« Upgraded from Jaguar

supercomputer
— 10 times faster
— 5times more energy http://nvidianews.nvidia.com/Releases
efficient than 2_3_petaﬂops INVIDIA-Powers-Titan-World-s-
Fastest-Supercomputer-For-Open-
Jaguar SyStem Scientific-Research-

— while occupying the same 8a0.aspx#source=pr

floor space



GPU energy efficiency

CPU vs. GPU

Energy consumed by a single floating point operation:
— 1690 pJd/flop (CPU) vs. 140 pJ/flop (GPU)

Latency vs. Throughput
Caches vs. Explicit Managment of On-chip Memory




Vector Processors vs. GPU

An example of a vector processor with 4 lanes vs.

a multithreaded GPU processor with 4 SIMD
Lanes (bottom figure)

— GPUs typically have 16 or (many) more SIMD Lanes

“Control processor” in the Vector system:
— supplies scalar operands for scalar-vector operations

— increments addressing for unit and non-unit stride
accesses to memory

— performs other accounting-type operations

Peak memory performance

— only occurs in a GPU when the Address Coalescing
unit can discover localized addressing

— Similarly, peak computational performance occurs
when all internal mask bits are set identically

— Note: the SIMD Processor has one PC per SIMD
thread to help with multithreading

—

Instruction
f cache

v
’—{ Instruction register ‘
;""\_nﬁ'i""[_i"] [Was ><| [Masd
Control F/F‘i‘ _f;ﬁ” rf{il ﬁﬁ”
processer ry T] T T r'w Y| T Tl

[
0

4 5 G 7

Vector registers

60 61 62 63
vd v 4 4

Vector load/store unit

A

L A
Memaory interface
unit

12

SIMD Thread Scheduler
nstruction
cache Dispatch unit

‘ Instruction register

Registers

1023 || 1023 || 1023 || 1023
v4 4 v i

SIMD Load/store unit
+4 L2 [z 4
\ Address coalescing unit ‘

v
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Vector Processors vs. GPU

GPU Grid and Thread Block are abstractions for programmers
“SIMD” Instruction on GPU = Vector instruction on Vector

Instructions of each thread is 32-element wide
— thread block with 32 threads =
strip-minded vector loop with a length of 32 in a vector processor

Loops in Vector Processors and GPUSs:
— both rely on independent loop iterations

GPU:

— Each iteration becomes a thread on the GPU

— Programmer specifies parallelism

— grid dimensions and threads/block

— Hardware handles parallel execution and thread management

— Trick: have 32 threads/block, create many more threads per multi-
processor to hide memory latency



Vector Processors vs. GPU

e Conditional Statements
Vector:
— mask register part of the architecture
— Rely on compiler to manipulate mask register
GPU:
— Use hardware to manipulate internal mask registers
— Mask register not visible to software
— Both spend time to execute masking

o Gather-Scatter
GPU:
— all loads are gathers and stores are scatters

— Programmer should make sure that all addresses in a gather or
scatter are adjacent locations



