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1.1. PERIODO DI UN PENDOLO =%

PROBLEMA 1.1
( Periodo di un pendolo x

Mediante considerazioni dimensionali determinare la dipendenza della frequenza di
oscillazione f di un pendolo inizialmente in posizione verticale dai parametri rilevanti
per il problema, ossia

o la lunghezza ¢ del pendolo
o la sua massa m
o l'accelerazione di gravita g

o la velocita iniziale v,

Soluzione

I parametri in gioco sono la massa del pendolo m, la sua lunghezza ¢, 1’accelerazione
di gravita g e la velocita iniziale vyg. Vogliamo con essi costruire una grandezza delle
dimensioni di un tempo, cioe

[m*Pgvd] = MALPTYHOT=21=0 — T (1.1.1)
Otteniamo il sistema
a«a = 0
B+y+é = 0
—2y—-46 =1

che puo essere risolto nella forma

=0
1-6
5_2
_ 149
vo= 2

ha le dimensioni di un tempo. La soluzione per il periodo sara quindi della forma

(W ¢
T—f(@) g (1.1.2)
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1.2. STUDIO SPERIMENTALE DEL PERIODO DEL PENDOLO »*

dove f & una funzione arbitraria del parametro adimensionale

2
v
I =2
lg
Questa funzione esprime una possibile dipendenza (che in effetti esiste) del periodo di
oscillazione di un pendolo dalla sua ampiezza. Il principio di isocronia delle oscillazioni,
valido approssimativamente per piccole ampiezze, ci dice che

lim f(x) = C (1.1.3)

dove C e una costante strettamente maggiore di zero. Risolvendo le equazioni del moto
si troverebbe che la formula e corretta, e che C = 271.

PROBLEMA 1.2
( Studio sperimentale del periodo del pendolo

Per studiare sperimentalmente la dipendenza del periodo del pendolo dai suoi parame-
tri si fanno 50 diversi misure, variando le caratteristiche del pendolo e la sua velocita
iniziale. Il pendolo viene sempre lanciato dalla posizione verticale.

Le misure sono riportate nella tabella posta di seguito (che per convenienza ¢ pos-
sibile scaricare in formato ASCII all’'indirizzo http://www.df .unipi.it/ cella/ueg/
PENDOLO . dat).

Si chiede di

o Rappresentare in un grafico il periodo T in funzione di /¢/g

o Trovare due combinazioni adimensionali indipendenti di T, g, vo, £ e m e rappre-
sentare la prima in funzione della seconda su un grafico.

o Commentare il risultato dei due grafici precedenti. Dire in particolare se quanto
ottenuto ha qualche relazione con la funzione f(x) definita nell’Esercizio

o In alcuni dei casi considerati il pendolo stava compiendo “piccole” oscillazioni?
Come sarebbe possibile dare una risposta quantitativa?

| #misura | oo (ms™ ') [ £(m) | m(kg) [ T(s) |
1 0.10 6.72 2.28 5.22
0.21 1.42 8.84 241
0.95 9.37 8.69 6.23
1.10 6.10 6.81 5.05
1.72 9.06 8.68 6.19
2.09 9.03 0.48 6.22
1.29 2.33 8.07 3.18

N OV Q1 x| W N
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1.2. STUDIO SPERIMENTALE DEL PERIODO DEL PENDOLO »*

8 1.67 3.61 5.79 3.96

9 2.11 3.52 6.92 3.96
10 3.57 9.5 2.09 6.51
11 2.86 4.54 4.33 4.54
12 4.30 9.44 4.79 6.57
13 5.11 9.98 9.62 6.83
14 4.82 8.67 5.36 6.37
15 491 6.87 1.41 5.74
16 5.30 7.14 6.05 5.89
17 3.77 3.17 4.79 3.96
P1 6.84 9.52 9.89 6.89
19 6.43 7.76 3.26 6.26
20 4.04 2.69 9.66 3.72
21 7.54 8.71 0.55 6.73
22 3.02 1.23 1.15 2.56
23 8.00 7.84 7.04 6.51
24 5.46 3.52 6.44 4.68
25 9.39 9.12 227 7.15
26 7.49 5.63 6.15 5.64
27 7.15 4.72 6.76 521
28 9.10 6.78 9.49 6.35
29 9.35 7.08 8.76 6.50
30 8.95 5.84 7.95 6.00
31 8.17 4.58 8.60 5.37
32 9.83 6.12 3.74 6.29
33 5.48 1.82 9.53 3.46
34 6.97 2.29 117 | 4.30
35 9.49 4.86 2.52 5.80
36 9.30 5.05 7.35 5.99
37 4.98 1.19 1.14 2.96
38 2.60 0.31 9.42 1.53
39 8.16 2.82 747 | 4.74
40 6.11 1.51 1.71 3.53
41 8.99 3.10 6.35 5.17
42 9.80 3.62 7.35 5.63
43 5.94 1.25 567 | 341
44 6.70 1.49 1.80 3.87
45 8.73 2.50 0.29 5.06
46 4.59 0.65 2.54 2.71
47 7.94 1.85 2.13 4.81
48 8.47 2.05 3.09 524
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1.2. STUDIO SPERIMENTALE DEL PERIODO DEL PENDOLO »*

49 7.47 1.49 6.25 5.14
50 6.28 1.04 9.55 4.50

Soluzione

Il periodo T misurato & rappresentato in funzione del valore di /¢/g in Figura

8 T | T | T | T | T | T | T | T | T | T | T

B OO i
o @]
00 g o N
6_ —]
@]
=4 7
@]
- O —
o o O Dati
S — T=2n (Lgp"”| |
(@]
0 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1

0 01 02 03 04 05 06 07 08 09 1 1.1
172
L/g) ()

Figura 1.1.: I periodi T; in funzione di //; /g per i dati in tabella (cerchi). Per confronto,
e riportata la retta T = 27r/(/g.

Per il secondo grafico richiesto una possibile scelta di parametri adimensionali indi-
pendenti e

II =

)§]

g
l

0
m = —2

5

e il valore di Il ricavato dai dati e rappresentato in funzione di I'l; in Figura
La combinazione I1; & il periodo misurato in unita /¢/g, invece I1; & la velocita
misurata in unita /g/.
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1.2. STUDIO SPERIMENTALE DEL PERIODO DEL PENDOLO »*

14 T T [
L (
® Dati
12 — — II=2m7 —
o
L ) _
[ ]
10— .. |
i . ..' _
eo®
8 ® ....‘ —
= woo ®°
- ® ...“ -

O | | |
0 1 2

IL,

Figura 1.2.: 1l valori II; ricavati dai dati in tabella in funzione dei valori ITj;. Per
confronto e riportata in rosso la costante 27r.

Osservando i due grafici si nota che nel primo (Figura i dati non si dispongono
su un’unica curva, cosa che accade per il secondo (Figura[1.2).

La ragione di questo e che, come ¢ possibile vedere studiando il moto del pendolo (o
come possiamo dedurre dall’analisi dimensionale condotta nell’Esercizio[1.1), il periodo
e proporzionale a ///g solo per piccole oscillazioni. In quel particolare regime si puo

dimostrare che vale la legge
14
T =2m,|— (1.2.1)
8

rappresentata in Figura [1.1{ dalla retta rossa. Come si vede alcuni dati corrispondono
alla (1.2.1), negli altri casi il periodo & sistematicamente maggiore.

Nel secondo grafico vediamo che i dati si allineano apparentemente su una curva ben
definita. In effetti I’analisi dimensionale ci dice che per i parametri adimensionali che
abbiamo scelto deve valere (vedere ’Equazione (1.1.2))

I = f ()
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1.3. PENDOLO SULLA LUNA %

e quindi abbiamo rappresentato nel grafico la funzione y = f(x?). Nel limite IT; — 0
che corrisponde alle piccole oscillazioni vediamo che

. 2 _
m,f () =2

in accordo con le considerazioni precedenti. Per quantificare tutto questo basta osservare
dal grafico in Figura(l.2|che il valore di IT si allontana da 27t all’”aumentare di IT;.

PROBLEMA 1.3
( Pendolo sulla luna x

Un pendolo di massa m = 107 'kg e lunghezza ¢/ = 1m viene lanciato sulla terra
(g = 9.822ms~2) dalla posizione di equilibrio con una velocita iniziale vp = 5ms~!.
In queste condizioni il periodo di oscillazione ¢ T = 2.1s. Sulla superficie della luna
l'accelerazione gravitazionale vale 1.625ms~2. Determinare sulla base di argomenti di-
mensionali come potrebbe essere costruito un nuovo pendolo e come dovrebbe essere
lanciato (cioe quali valori dovrebbero avere ¢, m, v) per ottenere lo stesso periodo di

oscillazione.

Soluzione

Riprendendo I’analisi svolta nell’esercizio[1.1|sappiamo che vale

)|

1.625
A= 080 = 0.165

Dato che il periodo deve essere lo stesso, dovremo scegliere dei nuovi parametri ¢/, m’ e

v}, in modo da avere
AW AN
tg)\g vg')\ g

Dato che non conosciamo la forma di f(x), dobbiamo imporre separatamente le due
condizioni

Sulla luna vale ¢’ = Ag, dove

e _ ¢
g g
% _
gg - g/g/

Come si vede la massa non gioca alcun ruolo. Invece dalla prima relazione segue che

!
=80 — )¢
g
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1.4. CADUTA DA UNA CALOTTA SEMISFERICA *

e sostituendo nella seconda abbiamo

2 _ iglv% — A2%2
8

Di conseguenza possiamo scegliere la massa arbitrariamente, ma dobbiamo ridurre la
lunghezza del pendolo e la velocita iniziale di un fattore A (circa 1/6). Notare che

2

&0
— ~ 2,
2 54

e quindi non ci aspettiamo di essere nel regime di piccole oscillazioni, nel quale potrem-
mo trascurare la dipendenza del periodo dalla velocita iniziale.

PROBLEMA 1.4
( Caduta da una calotta semisferica x

Una particella di massa m & appoggiata sul punto pit1 in alto di una calotta semisferica
di massa M e raggio R, libera di scorrere su un piano orizzontale. La particella viene
spostata leggermente e, sotto l'effetto della accelerazione di gravita g, inizia a cadere. Si
osserva che ad una altezza h da terra la particella si stacca dalla calotta. Sulla base di
considerazioni dimensionali determinare la dipendenza da / dai parametri m, M, Re g
che caratterizzano il problema.

Soluzione

Dobbiamo costruire con i parametri in gioco quantita con le dimensioni di una lunghez-
za. Osserviamo che possiamo ottenere una combinazione adimensionale

e, tolta m, 'unica combinazione possibile ¢ semplicemente R. Di conseguenza dovra

essere
= ra (3

dove ®(x) e una funzione arbitraria. Osserviamo che per ’angolo 6 al quale avviene il

distacco vale .
. m
sinf = E =0 (ﬁ)
e quindi 6 dipende solo dal rapporto delle masse (e non da g, ad esempio).
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2.1. TRIPLO PRODOTTO VETTORIALE %

PROBLEMA 2.1
( Triplo prodotto vettoriale *

Dimostrare 'identita

aA(EAa):(a.a)E—(a-E)z 2.1.1)

Soluzione

Supponiamo che i vettori b e & siano paralleli. Potremo allora porre b = AZ. Sostituendo
otteniamo
AGN(CANC)=A(@-c)c—A(d-c)c (2.1.2)

che & banalmente verificata. Se invece b e & sono linearmente indipendenti potremo
scrivere

aA(BAE)zA(EA6>+BE+c5 (2.1.3)
dove A deve essere uno scalare dipendente linearmente dal solo 4, B uno scalare di-
pendente linearmente da b e e C uno scalare dipendente linearmente da 7 e b. Non
e possibile costruire uno scalare dipendente linearmente dal solo 4. Invece possiamo
prendere B proporzionale a 4 - ¢ e C proporzionale a 4 - b. Quindi

E/\(EAE):kl(ﬁ~8)5+k2<ﬁ~5)8 (2.1.4)
dove ki e ko sono costanti numeriche. Prendendo b = ¢ troviamo
0=k (ﬁ-B)B+k2 (H-E)E (2.1.5)

e quindi k; + k, = 0. Infine prendendo @ = 2, b = § e & = 2 otteniamo
ENGNE) =k (2-2)T—ki(2-9)2 (2.1.6)

cioe
AR =k (2.1.7)

dacuik =1.

PROBLEMA 2.2
( Matrice di rotazione x x %

Scrivere esplicitamente la matrice R che rappresenta una rotazione di un’angolo 6 at-
torno ad un asse determinato dal versore 7. Questo significa che dato un vettore ¥
qualsiasi

¥ = RU

rappresenta il vettore ruotato. Considerare in particolareicasifi = £, 1 = e fi = Z.
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2.2. MATRICE DI ROTAZIONE * * %

Soluzione

Cerchiamo di determinare il piti generale vettore legato linearmente a @, tenendo pre-
sente che abbiamo a disposizione solo 7 e 6 per costruirlo. Esso dovra percio essere della
forma

7 =A(,0,0)A+B(n,0)0+C(A,0)ANT

dove A, B e C dovranno essere degli scalari. Infatti 7 e 71 A ¥ sono gli unici due vettori li-

nearmente indipendenti che ¢ possibile costruire, dato che oggetti pit1 generali come 7 A

(1 A D) e simili si riducono ad essi utilizzando I'identita dimostrata nell’Esercizio (2.1).
Veniamo adesso ai tre scalari. A dovra essere lineare in 7, e quindi della forma

A((n,0,0)=a(0)n-0
mentre dovra essere B(11,0) = b (0) e C (1,0) = c(0). Di conseguenza
7=a(0)(A-0)A+b(0)T+c(0)AANT

Possiamo adesso determinare le funzioni 4, b e ¢ considerando alcuni casi particolari.
Anzitutto, se T = 7 dovra essere anche 7 = 7, dato che la rotazione lascia invariato
un vettore allineato con I’asse di rotazione. Sostituendo otteniamo

A=a(0)n+b(0)n

equindia+b = 1.
Consideriamo adesso 7i = £ e /i = £. Abbiamo

7 = b(0)% +c(0)2A % = b(0)% +c(8)F

ma sappiamo che se applichiamo una rotazione di un angolo 6 attorno all’asse Z il
versore £ diviene
£ — cos 0% + sin 0

di conseguenza
cos0% +sinfj=b(0)X+c(0)y

e quindi

b() = cosb
c(@) = sinf
Il risultato finale &

7 =[1—cosf] (i-T)A+ cosbT +sinba AT

Determiniamo adesso la matrice R che corrisponde a questa trasformazione. Rendendo
espliciti gli indici abbiamo

v} = [cos 08 + (1 — cos 0) n;ng] vy + sin Oe;jn vk
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2.3. IL PRODOTTO VETTORIALE COME OPERATORE *

dove si sottoindende la somma sulle coppie di indici ripetuti. Di conseguenza
Rjx = [cos 00 + (1 — cos 8) niny] + sin Oe;jn;

ed esplicitamente

cos 6 + (1 — cos ) n? —sinfn, + (1 —cosf) nyn, sinfn, + (1 —cos) nyn,
R = sin®n; + (1 — cos0) n.n, cos 0 + (1 — cos6) ny —sinf ny + (1 — cos 0) nyn,
—sinfn, + (1 —cos@) nyn, sinfny+ (1 —cosf)nyn, cosf + (1 — cos 0) n2

Consideriamo adesso i casi particolari richiesti. Per # = £ vale n, = 1,n, =n, = 0e
quindi

1 0 0
R = 0 cosf —sinf
0 sinf cos@

Analogamente per 71 = §J abbiamo n, = 1 e n, = n, = 0, quindi
cosf 0 sin®
R = 0 1 0
—sinf 0 cos®
Infine per i = 2,dan, = 1 en, = n, = 0 segue
cosf —sinf 0

R = sinf cosf O
0 0 1

PROBLEMA 2.3
( Il prodotto vettoriale come operatore

Dato un vettore fissato @, possiamo definire una funzione che agisce su un vettore
qualsiasi 7 e lo trasforma in un altro

wWANT

f (9)

Si tratta di una funzione lineare (dimostratelo), che quindi puo essere rappresentata
dall’azione di una matrice che chiameremo Qg su 7

fo (9) = Qp @

Determinate esplicitamente gli elementi di Q4.
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2.3. IL PRODOTTO VETTORIALE COME OPERATORE «

Soluzione

La linearita si verifica immediatamente:

Fi (s +g5) = @n (adi+pb

Scriviamo 'equazione che definisce Q, cioe
Q0=w0NT

rendendo esplicite le componenti abbiamo

Qxx Qxy sz Ux C{)yvz - wZvy
Qur Quy Oy vy = W,V — WxUy
sz sz QZZ UZ (,(Jxvy - a]yvx

e confrontando le due espressioni vediamo che deve essere

0 _wZ (Uy
Qg = Wy 0 —Wy
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3.1. PROFONDITA DI UN POZZO *x

PROBLEMA 3.1
‘7 Profondita di un pozzo xx

Per determinare la profondita di un pozzo si lancia un sasso al suo interno, e si misura
dopo quanto tempo si sente il suono dell’urto sul fondo. Detta v; = 340m/s la velo-
cita del suono e T = 2s il tempo misurato determinare tale profondita. Che errore si
commette trascurando 1'effetto della velocita finita del suono?

Soluzione

Il tempo 7 e dato dalla somma del tempo di caduta 7, per il sasso e del tempo impiegato
dal suono T, per tornare all’osservatore. La caduta avviene, trascurando gli attriti, con
moto uniformemente accelerato quindi

1 o
h = Eg Tc
cioe
2h
c =\
8
Il suono si muove con velocita costante, quindi
h
Ts = —
Us
Il tempo misurato sara dunque
2h h
T=T+T=4—+—
& Us

Questa & un’equazione di secondo grado nell’incognita v/

2
h+ ?Vﬁ—vsr:o

che ammette come unica soluzione accettabile (perché positiva)

Vi = \F % + 0T _VEE g/ 3.1.1)

1 ZgT
3+

N\*—‘

Sostituendo i valori numerici abbiamo

TV/g/2 ~ 443m'/?

— 4+ =4/1 ~ 1.
2—|—2 +vs 03

e quindi i = 18.5 m. Trascurare la velocita finita del suono equivale a porre uguale a 1 il
denominatore della Eq. (3.1.1), e quindi ad una correzione del 6%.
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3.2. LUNGHEZZA DI UNA TRAIETTORIA *x

PROBLEMA 3.2
‘7 Lunghezza di una traiettoria xx

Una particella si muove nel piano in un’orbita descritta da

R(t) = aé, cos wt + bé, sin wt.
Mostrare che si tratta di un’orbita ellittica, calcolare il tempo necessario a percorrere
un’orbita completa ed esprimere la lunghezza di quest’ultima come integrale definito
(senza calcolarlo).

Soluzione

Possiamo riscrivere la legge oraria nella forma

x(t) = acoswt
y(t) = bsinwt
da cui segue
2 1P
2T =1

che rappresenta una ellisse avente gli assi coincidenti con quelli coordinati, di lunghezza
2a e 2b. Il tempo necessario a percorrere una intera orbita e chiaramente il periodo di
R(t), ossia
=T,
w
Per quanto riguarda la lunghezza, possiamo calcolare la velocita:

V(t) = —aw sin wt é, + bw cos wt &y

e integrare il suo modulo nel tempo per un periodo:

T T
(= / \V(t)|dt = / Va2w? sin? wt + P2w? cos? wtdt
0 0

27T
= \/u2 sin? u + b2 cos? udu
0

Questo integrale non si esprime in termini di funzioni elementari, a parte il caso banale
a = b (traiettoria circolare) nel quale si trova ¢ = 27ta.

PROBLEMA 3.3
( Raggiungere un oggetto che accelera xx

Un’automobile parte da ferma con moto uniformemente accelerato e accelerazione a.
Dopo un tempo 7 si lancia un proiettile che si puod supporre in moto con velocita costante
vp. Determinare la minima velocita vy necessaria a colpire I'automobile, in funzione di a
e T. Si puo considerare il moto puramente unidimensionale.
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3.3. RAGGIUNGERE UN OGGETTO CHE ACCELERA *x

Soluzione

Le leggi orarie di automobile e proiettile si possono scrivere nella forma

1
sa(t) = Eat2

Sp(t) = Uo(t — T) .

Proiettile e automobile si incontrano al tempo determinato da s4(f) = sp(t), con t > T.
Il tutto e rappresentato graficamente in Figura

50__8

40

30

20

10

Figura 3.1.: Figura per il problema.

Abbiamo quindi

1

“at> —vg(t—1) =0.
2
La velocita minima corrisponde alla condizione di tangenza tra retta e parabola,

A = v} —2avyT =0

cioé v9 = 0 oppure vy = 2a7. La prima possibilita corrisponde a un tempo t = 0, e
quindi deve essere esclusa. La seconda corrisponde a

> —4t(t—1) =0

cioe
t=2t.
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3.4. MOTO PERIODICO IN UN PIANO A VELOCITA NOTA xx

PROBLEMA 3.4
( Moto periodico in un piano a velocita nota

Una particella si muove in un piano orizzontale e al tempo ¢t = 0 si trova nell’origine. Le
velocita agli istanti successivi sono rappresentate nei grafici in Figura 3.2} che si ripetono
periodicamente. Trovare la traiettoria.

Vg

Figura 3.2.: Figura per il problema. Le velocita sono rappresentate solotrat =0et =T,
in seguito si ripetono periodicamente. La velocita massima € vy.

Soluzione

Il moto & identico nella direzione x e in quella y. Inoltre la velocita € sempre non negativa.
Di conseguenza la traiettoria sara la semiretta

xX=y, x> 0.

Pit1 in dettaglio, trat =0et = T/2 avremo
x = =at?

Yy = —at?

con

Trat=T/2et =T avremo

4

N———
N

T
X = —Umax + Umax | t —

NS N
~
|
Nl—= N =
N}
N

A

|
N N
~

N

T
y= vaax + Umax (t -
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3.5. VERTICI DI UN POLIGONO * * %

e analogamente negli intervalli successivi.

PROBLEMA 3.5
( Vertici di un poligono * * x

N punti materiali sono inizialmente posti nei vertici di un poligono regolare con N lati,
a una distanza R del centro. Istante per istante ciascun punto di muove con velocita
costante v nella direzione del successivo preso in senso orario. Trovare le traiettorie di
ciascun punto.

Figura 3.3.: Figura per il problema, nel caso N = 6.

Soluzione
Ad ogni istante possiamo scrivere la velocita di un punto nella forma
T = #é, + rbéy
ma per ragioni di simmetria i punti saranno sempre ai vertici di un poligono regolare,
ruotato e contratto rispetto al precedente. Allora dovra essere
r = —vcos«
r0 = vsina

dove a e 'angolo tra la velocita e il vettore che unisce il centro del poligono con il vertice

considerato,
Y
- \2 N/°
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3.6. FARFALLE KAMIKAZE * % %

Dalle due equazioni otteniamo subito

7 0
cosax  sina

ossia )
tanal = —f
r
da cui
tanailo r= —19
FTRNCLET:
e integrando
1
1 =——0+C.
o8’ tan« +

Imponendo le condizioni iniziali abbiamo infine

r = rpexp [_t ! (8—90)]

an«
che descrive una spirale. Notare che questa si restringe verso il centro tanto piu1 lenta-
mente quanto pitt N e grande. Nel limite il poligono diviene una circonferenza, e ciascun
punto si muove su una traiettoria circolare.

PROBLEMA 3.6
( Farfalle kamikaze x x %

Per spiegare il motivo che porta una farfalla notturna a cadere a spirale sulla fiamma
di una candela, si puo fare I'ipotesi che normalmente esse facciano riferimento alla luce
della luna per guidarsi, mantenendo costante I’angolo tra la direzione di provenienza
di questa e la propria direzione di volo. Mostrare che questa & una strategia suicida se
la luce di riferimento e quella di una fiamma vicina. Perche invece funziona se la luce &
molto lontana?

Soluzione
Possiamo scrivere la velocita nella forma
7 = Ré, + ROéy = —v cos aé, + vsin aéy

dove v ¢ il modulo della velocita (non necessariamente costante) e a 1’angolo fissato tra
la direzione del moto e la direzione della sorgente. Da questo segue

R = wvcosa

RO = —vsina
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3.7. RAGGIUNGERE UNA BOA * % %

e quindi
; R
0= — R tana.
Integrando abbiamo
R = Rge™ s

che per tana > 0 rappresenta una spirale logaritmica attorno all’origine. Se Ry ¢ molto
grande la traiettoria diviene essenzialmente rettilinea.

Raggiungere una boa x x x

‘7 PROBLEMA 3.7

Un nuotatore vuole raggiungere una boa posta ad una distanza d dalla riva. Si mette a
nuotare verso di essa riuscendo a mantenere una velocita costante in modulo vy rispetto
all’acqua. E pero presente una corrente diretta parallelamente alla riva di modulo vc.
Discutere la traiettoria del nuotatore nei tre casi v¢c > vy, Vc = Uy € V¢ < UN.

ve

M
A\

Figura 3.4.: Sistema di coordinate per il problema.

Soluzione

Fissiamo un sistema di riferimento cartesiano con origine nella boa, come in Figura.
Supponendo che il nuotatore parta dalla riva in un punto di coordinate (0, d) possiamo
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3.7. RAGGIUNGERE UNA BOA * % %

scrivere la sua velocita nella forma

LS S
ossia, componente per componente,
dx ; x ’
it~ N2 T2
dy y

it~ N

da cui otteniamo immediatamente una equazione per la traiettoria (8 = vc/vn)

dx «x x2
=B 1+
dy y P y?

Introduciamo la nuova variabile u(x) = x(y)/y e usando l'identita

d—x—i(u)— d—u+u
dy —dy " "V ay

possiamo riscrivere 1’equazione nella forma
du
]/@ =BV1+u?

che si integra immediatamente per separazione delle variabili:
Jteas)
1+ u? y

s = Blogy + Blog C

dove C e una costante di intregrazione. Quindi

da cui, ponendo u = sinhs

; = u = sinhs = sinh [log (Cy)ﬁ}

ossia

‘= % [Cﬁyuﬁ _ C*ﬁylfﬁ}

La costante di integrazione si determina imponendo le condizioni iniziali x =0,y =4,
e otteniamo
d |y [d\F!
o]
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3.7. RAGGIUNGERE UNA BOA * % %

Studiamo adesso i tre diversi casi.
Per vc < vy possiamo porre p =1 — € con 0 < € < 1. Abbiamo allora

= ()

e quindi x tende a zero per y — 0. Questo significa che il nuotatore raggiunge la boa.
Nel caso v, = vy abbiamo B = 1 e quindi

SHERE

La traiettoria & quindi parabolica e il nuotatore non riesce a raggiungere la boa, ma
arriva nel punto (—d/2,0) continuando a nuotare contro corrente senza muoversi.

Nel caso v, > vy abbiamo p =1+ e cone > 0 e quindi

SEAO

Segue che per y — 0 la coordinata x assume valori arbitrariamente grandi in modulo e
negativi. Questo significa che il nuotatore & trascinato dalla corrente.

0.0 ! ! ! L L L L ! L 1 1 1 1 1 L 1 . . L)

2 0.2 0.4 0.6 08 1.0
: B=1/4

-02} =12

-04 B —1

-0.6

B =11/10

i =3/2

-0.8 6 /

—1.0;

Figura 3.5.: Traiettorie per particolari valori di B. L’asse x del problema e verticale, d = 1.
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3.8. PREDA E PREDATORE »*

PROBLEMA 3.8
( Preda e predatore xx

Un coniglio si muove arbitrariamente nel piano mantenendo il modulo della sua velo-
cita v, costante. Una volpe lo insegue muovendosi anche essa con velocita costante in
modulo v,, dirigendosi istante per istante nella direzione del coniglio.

Dimostrare che indipendentemente dalla traiettoria scelta dal coniglio esso verra
raggiunto in un tempo finito se v, > v,.

Soluzione

Sia R, la posizione del coniglio e R, quella della volpe. Il quadrato della loro distanza si

puo scrivere come
2 = = 2
E — ’RC - Rv

e la sua derivata temporale come

2 =1 1 _‘c _'v
2 (k- k) (-0

Ma sappiamo che la velocita della volpe si scrive

e sostituendo otteniamo

dr? = 5y dR S
ar ~2(Rem Ro) T =200 R = Rof.
Possiamo scrivere inoltre
de? - 5z
I = 20, |R; — Ry| cos¢p —2v, |[Rc — Ry,
dove ¢ e I'angolo tra la velocita del coniglio e il vettore (RC — R},). In conclusione
otteniamo
e 2 ‘RC — Ry | (vccos¢p —vy) < 20 (v — vy)
che si puo anche scrivere nella forma
arl
E < (Uc - Uv)
ossia

/g S g()"l_ (vc _Uy)t.
Da questo segue che il coniglio verra raggiunto ad un tempo
o

t < .
vv_vc
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3.9. OTTO VOLANTE **

PROBLEMA 3.9
( Otto volante xx

Un punto materiale si muove nel piano su una guida descritta dall’equazione
y = Asinkx

mantendo costante la propria velocita lungo x, v, = vy.

Calcolare il valore massimo e minimo del modulo della velocita, e il valore massimo e
minimo del modulo della accelerazione. Riportare sulla traiettoria i punti corrispondenti
a questi valori.

Soluzione

» S

x  Umin; dmaz

o Umax; Qmin

Figura 3.6.: La guida descritta nel problema. I punti nei quali, in modulo, la velocita e
minima e I’accelerazione & massima sono indicati da una croce. I punti nei
quali la velocita € massima e 1’accelerazione € minima sono indicati con un
disco.

Il quadrato del modulo della velocita vale

? = 24P

Yy = Akx cos kx
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3.10. MOTO NEL PIANO: ACCERAZIONE E VELOCITA NOTI IN MODULO. xx

da cui
v* = 0§ (14 A%K* cos® kx) .

I valore minimo e quindi v,,;, = v, che si ottiene quando

x:%(g%-mn)

mentre il massimo vale vy, = V9V 1+ A%k? e si ottiene per

mrit
X = —

k

L’accelerazione e solo lungo y e vale
i = —Ak*%*sinkx = — Ak*v} sin kx

e i valori massimi e minimi del suo modulo sono
mrt
Amin = O/ X =

k

1 /7
Apay = Akzv(z), X = T (5 + mn) .

Le posizioni di questi punti sono indicate in Figura

PROBLEMA 3.10
(Moto nel piano: accerazione e velocita noti in modulo. xx &

Un punto materiale si muove in un piano con un’accelerazione e una velocita il cui
modulo e dato da |d| = ae |7] = v.

1. Se a(t) = ap e v(t) = vy, con ag e vy costanti, quanto vale I’angolo tra velocita e
accelerazione?

2. Per le stesse accelerazioni e velocita della domanda precedente determinare la
traiettoria.

3. Supponendo che per > 0 il modulo della velocita valga v(t) = pt, con B costante
positiva, come si deve scegliere a(t) affinche la traiettoria sia identica a quella
precedentemente determinata?

SoluzioneE|

1. Se il modulo della velocita e costante, allora 1’accelerazione tangenziale alla traiet-
toria deve essere nulla. Quindi l’accelerazione e perpendicolare alla velocita.

1Scritto del 20/1/2012
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3.11. UNA TRAIETTORIA IN COORDINATE POLARI %

2. Per quanto visto al punto precedente 1’accelerazione tangenziale € nulla. Quindi il
modulo dell’accelerazione e uguale al modulo dell’accelerazione normale, da cui

2
_%
ap =
P

dove p ¢ il raggio di curvatura della traiettoria, che ¢ quindi costante. Il moto e
quindi circolare uniforme, e la traiettoria una circonferenza di raggio R = v3/ ay.

3. Per avere ancora un moto circolare dovra essere

A1) = ot + 20 — g o’“

PROBLEMA 3.11
( Una traiettoria in coordinate polari x &

La traiettoria di una particella nel piano e descritta in coordinate polari dall’equazione

o4
~ cosf

dove d > 0 & una costante assegnata.
1. Rappresentare graficamente la traiettoria in un piano cartesiano.
2. Determinare il vettore accelerazione in coordinate polari, in funzione di 0, fed.

3. Determinare r(t), sapendo che il vettore velocita & costante ed ha modulo V, e che
r(0) =d.

Puo essere utile ricordare l'integrale indefinito

d
/ J; =tanx+C
cos? x

Soluzioneﬁ

Domanda 1 L’equazione si puo porre nella forma
d=rcosf =x

segue che la traiettoria & una retta verticale a una distanza d dall’origine.

2Primo esercizio scritto Fisica I del 10 settembre 2010
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3.11. UNA TRAIETTORIA IN COORDINATE POLARI *

Domanda 2 Dato che la traiettoria e rettilinea, 1’accelerazione vale

i= iiéy
Dato che
y=rsinf =dtan®@
troviamo
. d
¥y= cos2 6
¢ d 2d sin 0
.. sinf .
y= 2 3 6>
cos? 0 cos3 0
e dato che
éy = & sinf + &y cost
troviamo

(6 +26*tan 0) (¢, sin 6 + &y cos 0)

Domanda 3 Per il vettore velocita abbiamo
7= ye, = £V¢,

Segue immediatamente che

e quindi

)= 24 =T O £V

che imponendo r(0) = d si riduce a

r(t) = V2 + V22

Alternativamente si pu0 scrivere

d

0 =
cos2 0

o(t)
d/ LHZ =Vt
6(0) €os*0

Dato che r(0) = d deve essere 6(0) = 0, e quindi

ed integrando

dtanf(t) = Vit

d

cos 0

r= = dV/1+tan?0 = \/d2 + V212
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3.12. CADUTA DI UNA MONETA *x*

PROBLEMA 3.12
( Caduta di una moneta xx S

Figura 3.7.: La moneta considerata nel problema. La velocita angolare ¢ indicata con w,
quella del centro di massa (diretta verso il basso e variabile) con v(t).

I centro di una moneta di raggio R, inizialmente fermo, cade con accelerazione co-
stante 7 = —g7 verso il basso come in figura. La moneta inoltre ruota con una velocita
angolare costante w.

1. Scrivere il modulo della velocita del punto P posto sul bordo della moneta in
funzione del tempo, sapendo che all’istante iniziale questo si trova sulla verticale
del centro O, al di sopra di esso.

2. Ad unistante t > 0 qualsiasi determinare la posizione di un punto della moneta
con velocita nulla, se esiste.

3. Ad unistante t > 0 qualsiasi determinare la posizione di un punto della moneta
con accelerazione nulla, se esiste.

Soluzioneﬁ

Domanda 1

Il moto del punto P sara dato dalla composizione del moto circolare uniforme attorno ad
O e di quello uniformemente accelerato di quest’ultimo. Quindi, ponendo la posizione
iniziale di O nell’origine di un sistema di coordinate,

x = —Rsinwt
1
y = Rcoswt—igt2
e derivando

X = —Rwcoswt

Yy = —Rwsinwt— gt

da cui otteniamo il modulo della velocita

v = \/R2w2 + 212 + 2Rwgt sin wt

3Prova scritta 8 febbraio 2012
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3.13. LANCETTE DELL'OROLOGIO *

Domanda 2

Dato che il centro di massa si muove ad un dato istante con una velocita ¥ = —gtj un
punto della moneta potra essere fermo solo se questa velocita verticale € compensata
da quella del suo moto circolare. Questo puod accadere solo sul diametro orizzontale
della moneta, dove la velocita del moto circolare non ha componenti orizzontali. Inoltre
indicando con d la posizione sul diametro relativa ad O di P dovra essere

wd—gt=0

e quindi d = gt/w. Il punto cercato esistera solo per d < R, e quindi per t < wR/g.

Domanda 3

In questo caso & I'accelerazione del moto circolare che deve compensare quella uniforme
del centro di massa. Quindi il punto si trovera sul diametro verticale della moneta (dove
l’accelerazione centripeta non ha componenti orizzontali) e dovra essere

—wtd — g=0
dove d e ancora la posizione sul diametro di P relativa ad O. In conclusione
__38
d=-

ed il punto cercato esistera sempre, a condizione che sia w? > ¢/R.

PROBLEMA 3.13
( Lancette dell’orologio *

Alle tre del pomeriggio I’angolo tra la lancetta delle ore e quella dei minuti di un orologio
formano un angolo di 77/2. Calcolare dopo quanto tempo le lancette si sovrappongono.

Soluzione

La velocita angolare della lancetta dei minuti e

27 _
“n = 60 % 60"4°
e quella della lancetta delle ore
_ 271 -1
“o = T2 60 x 6098

L’angolo che ciascuna lancetta forma con la verticale ¢ data da

0 = wpt

7T
90 - E —‘F(Uot
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3.14. IL PROBLEMA DELLO SPAZZANEVE *x*

dove t ¢ il tempo trascosro dalle tre del pomeriggio. Le due lancette si sovrappongono
quando 6,, = 6,, cioe quando

7T

2
e risolvendo troviamo
po /210800 emin22s
Wy — Wy 11

PROBLEMA 3.14
( Il problema dello spazzaneve *x

Questo problema o una sua variante & molto noto. Ad una certa ora del mattino inizia
a nevicare, e a mezzogiorno uno spalaneve parte per pulire le strade. La neve continua
a cadere con intensita costante. Si sa che la velocita con cui procede lo spazzaneve e
inversamente proporzionale all’altezza della neve.

Nelle prime due ore di lavoro lo spazzaneve riesce a pulire 4km di strada. Nelle due
ore successive invece se ne liberano solo 2km. Si vuole sapere a che ora ha iniziato a
nevicare.

Soluzione

Poniamo t = 0 a mezzogiorno. Detto ty < 01’instante nel quale inizia a nevicare, avremo
che I'altezza della neve aumentera secondo la legge

h o (f—tp)

La velocita dello spazzaneve sara data di conseguenza da

v =
t—to
dove £ & una costante non nota con le dimensioni di una lunghezza. Lo spazio percorso
nelle prime due ore di lavoro sara dunque
T L to— 71

dt = Llo
o t—to & 0

51 =

dove T = 2h. Nelle due ore successive avremo invece

2T o
SQZ/ £ gt =rlogh =2t

t—1tp to— T

A noi interessa determinare t. Dividendo membro a membro le due relazioni precedenti
troviamo ;

0—T

log % — s

t()—ZT
log3—=- %2
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3.15. ROTOLAMENTO PURO E TRAIETTORIE *x*

e dato che s1/sp = 2 troviamo

ossia

tg—T _ <t0 —27)2
to to— T
Riordinando i termini abbiamo
(to—7)° = to (tp — 27)°
ossia, espandendo e semplificando,
BT — tot? —17° =0

Le soluzioni di questa equazione sono

e solo quella negativa e accettabile. Di conseguenza

1-5

5 T ~ —1h 14min10s

to =

quindi ha iniziato a nevicare alle 10y, : 45, : 50;.

PROBLEMA 3.15
( Rotolamento puro e traiettorie xx

Un cilindro di raggio rotola senza strisciare all'interno di una cavita, anche essa cilin-
drica, di raggio 2R. Inizialmente il cilindro si trova nella posizione in Figura Deter-
minare la traiettoria del punto P appartenente al cilindro inizialmente al centro della
cavita.
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3.15. ROTOLAMENTO PURO E TRAIETTORIE *x*

Figura 3.8.: 11 cilindro (in giallo) di raggio e la cavita cilindrica (di raggio 2R) che lo
contiene.

Soluzione

Figura 3.9.: Le coordinate « e f utilizzate per descrivere il moto del cilindro. Entrambi gli
angoli sono considerati crescenti in senso antiorario (nel caso rappresentato,
x>0ep <0.

Il centro del cilindro si muove su una circonferenza di raggio R centrata sulla cavita.
Scegliamo le coordinate « e § come in Figura Rispetto ad un sistema di coordinate
con origine al centro della cavita le coordinate del punto P saranno:

xp = Rsina — Rsinf
yp = —Rcosa+ Rcosf
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3.16. SALTO IN LUNGO »*

La condizione di puro rotolamento mette in relazione gli angoli « e B. Per trovare questa
relazione possiamo osservare che la velocita del punto di contatto tra cilindro e cavita
vale

v = Ri+ RB
ma questa velocita deve essere nulla, per cui & = — . Integrando troviamo
a=—-B+C

e dato che inizialmente « = p = 0 abbiamo C = 0. Di conseguenza

xp = 2Rsina
yp = 0

e il punto P si muove sul diametro orizzontale della cavita, yp = 0e —2R < xp < 2R.

PROBLEMA 3.16
( Salto in lungo *x

Un saltatore in lungo arriva alla fine della rincorsa con una velocita orizzontale vy. A
questo punto salta in una direzione che, nel suo sistema di riferimento, forma un angolo
« rispetto all’orizzontale. Sempre nel suo sistema di riferimento il modulo della velocita
immediatamente successiva al salto e vy.

Determinare 1’angolo « che corrisponde alla massima lunghezza del salto e calcolare
l’angolo a’ corrispondente nel sistema solidale al suolo.

Soluzione

Mettendosi nel sistema di riferimento solidale al suolo avremo le due componenti della
velocita iniziale della forma

Ux0 = UL+ UpCcosa

Uyo = Upsina
che sostituite nell’espressione della gittata

20,00 202
= % = &sintx <UL + cos a) (3.16.1)

Y0
ci fornisce la quantita da rendere massima variando «. Derivando otteniamo 1’equazione

14

oL
2cos’a+ —cosae—1=0
00

2
(49 1 (%8
—_L 4=
st =, V2T (4vo>
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3.17. MOTO ACCELERATO NEL PIANO S-V «

Se consideriamo I’Equazione vediamo che la soluzione accettabile deve essere
positiva. Infatti, se per assurdo la gittata massima si avesse per un valore di « > 71/2,
potremmo considerare § = 71/2 — a: ma dato che sinff = sina e cosp = —cosa
troveremmo un valore della gittata pit1 grande. Quindi

a 42’)0 2 4’00

Notare che per v; < vy abbiamo

V2 op (W)Z
cosa=—-——+o0|—

2 42)0 00

e quindi un angolo leggermente minore a 77/4, tendente a tale valore (che corrisponde
all’angolo ottimale da fermo). Per vy, >> vy abbiamo invece

2

UL UL 1 (4o

=_— £ 14+ = (=2
cosk 42)0 + <4Z70> * 2 <Z7L )

oL oL 1 [4vg 2
= —— — 1 — | —
4”00+<4U()> +4(UL)

e quindi un angolo che diventa molto piccolo.
La tangente dell’angolo nel sistema di riferimento solidale al suolo, infine, & data da
vy  sina

tana’ = < = TR
(2 %+coso¢

Per v; < vy abbiamo a’ — «. Per v;, > vy abbiamo invece a’ — 0.

PROBLEMA 3.17
( Moto accelerato nel piano s-v x

Studiare la relazione tra spostamento e velocita per un moto uniformemente accelerato,
e rappresentarla in un piano cartesiano con la posizione per ascissa e la velocita per
ordinata. Dedurne che esiste una funzione della velocita e della posizione, indipendente
dal tempo, che rimane costante.

Soluzione

Le leggi orarie sono

L,
s:so—i—vot—l—Eat

U =70+ at
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3.18. MOTO CIRCOLARE UNIFORME IN COORDINATE POLARI “FUORI CENTRO”
*

Ricavando il tempo dalla seconda equazione e sostituendono nella prima abbiamo
s:s()—i—i (v* — v5)
2a

Di conseguenza si ottengono delle parabole con asse sulla retta v = 0, come in Figu-
ra (3.10). Chiaramente la parabola passa dal punto s = sy, v = vp. Inoltre in vertice
corrisponde alla posizione per la quale la particella e ferma,

v
SV:SO—Z

Figura 3.10.: Alcune possibili curve nel piano s — v corrispondenti ad un moto accele-
rato. Gli esempi corrispondono alla stessa accelerazione positiva e diver-
se condizioni iniziali. La concavita cambierebbe verso per accelerazioni
negative.

L’espressione precedente si puo riscrivere nella forma

1 1
2 2
—v° —sa = Zvj —soa
2 270
e quindi la combinazione di velocita e posizione v?/2 — sa si mantiene costante durante

il moto.

PROBLEMA 3.18
(Moto circolare uniforme in coordinate polari “fuori centro” x

Si vuole studiare un moto circolare uniforme, che avviene su una circonferenza di raggio
R con velocita v, utilizzando un sistema di coordinate polari con origine posto sulla
circonferenza stessa, come in Figura

@ 53 versione del 5 ottobre 2016



3.18. MOTO CIRCOLARE UNIFORME IN COORDINATE POLARI “FUORI CENTRO”
*

=S

Figura 3.11.: Il sistema di coordinate scelto per studiare il moto circolare uniforme.

o Determinare I'equazione della circonferenza nella forma r = r(6), in un opportuno
intervallo per 0.

o Scrivere la componente radiale (diretta come é,) della velocita, e quella diretta
lungo é&.

o Determinare la relazione tra 6 e la velocita angolare del moto circolare.

o Scrivere le componenti dirette lungo é, e lungo ég dell’accelerazione.

Soluzione

Per trovare 1'equazione della circonferenza, basta considerare che il triangolo isocele
AOP (Figura|3.12) Deve essere
r = 2R cosf

e la circonferenza completa viene descritta ad esempio per 6 nell’intervallo—7/2 < 6 <
1t/2. 1l vettore posizione si scrive adesso nella forma usuale

7 =ré,
e derivando rispetto al tempo troviamo

T = e, + r0éy
= —2R0sin 0é, + 2RO cos B¢,
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3.18. MOTO CIRCOLARE UNIFORME IN COORDINATE POLARI “FUORI CENTRO”
*

€y
AN
P

=

Figura 3.12.: Costruzioni geometriche usata per risolvere l'esercizio. L’angolo alla
circonferenzaf e I’angolo al centro¢ insistono sullo stesso arco, e quindi
sono uno la meta dell’altro. Notare che i versori normali e tangenti 71 e T si
ottengono ruotando i versori &, e & di un angolo 0.

Per quanto riguarda la velocita angolare del moto circolare, abbiamo w = ¢ e dato
che ¢ = 20 sara w = 26, quindi

U = —Rwsin 6é, + Rw cos Hé,
Notare che si puo anche scrivere
7 = —Rw |[sinf cgs@ —cosf | sin®
sin ¢ cos 6
— _Rw 2sin 6 cos 0
N sin?§ — cos? 0
—sin20\ —sing¢
“ ( cos 26 ) = Rw ( cos ¢ )
Il versore che compare & chiaramente quello tangente alla circonferenza,

P —sing\ [ —2sinfcos®
“ \cos¢p ) \cos?’0 —sin?0
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3.18. MOTO CIRCOLARE UNIFORME IN COORDINATE POLARI “FUORI CENTRO”
*

Derivando ancora una volta troviamo 1’accelerazione. Possiamo scrivere direttamente
J e
id= —Rw SN ¢
dt cos ¢
. {cos
= —Rw¢ ( . ¢>
sin ¢
= —Rw?*n
T AN cos? § — sin® 0
- \sing /) \ 2sinfcosf

¢ il versore normale alla traiettoria. Alternativamente

dove

— (—Rwsin 0é, + Rw cos 0éy) = —Rw0 cos ¢, — Rwb sin 08y

dt
— Rw@ sin &5 — RwA cos 0é,

= —Rw? (cos 8¢, + sin 6éy)
da cui segue anche che
il = cos Bé, 4 sin 6é

Da notare che i versori i e T si possono ottenere rispettivamente con una rotazione 6 di
é;f e é@.
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4.1. PILA DI MATTONI

PROBLEMA 4.1
( Pila di mattoni

Figura 4.1.: La pila di mattoni, nel caso N = 4.

Si vogliono sovrapporre N mattoni di lunghezza 2d in modo da ottenere una pila in
equilibrio come in Figura Quale & la massima separazione orizzontale ottenibile tra
il centro di massa del mattone piti in basso e quello del mattone piti in alto?

Soluzione

Indichiamo con x; la posizione del centro di massa del blocco k-simo (k =0,--- N —1
partendo dal basso) rispetto a una origine fissata. Definiamo inoltre g la posizione del
centro di massa dellinsieme di tutti i blocchi a partire dal k-simo compreso. Avremo

Per avere equilibrio tutti i g dovranno essere compresi tra gli estremi del blocco k —
1-simo, cioe

X1 —d<gp<x1+d Vke{2, ---N}.

Possiamo inoltre porre senza perdere di generalita xo = 0. Dobbiamo quindi massi-
mizzare xy_1 variando xi,---xy_1 e tenendo conto dei vincoli precedenti. Dato che
xN—1 € una funzione lineare dei parametri il suo valore massimo dovra saturare tutte le
disuguaglianze precedenti, e quindi dovra essere

Gk = Xx—1+d (4.1.1)
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o pit1 esplicitamente (ponendo senza perdere di generalita xo = 0)

(x14+---+xy-1) =d

N-1
N5 (2t tanag) =2 +d
N_k(xk+---+xN_1):xk_1+d

XN-1=XN_2+d
ossia
(x14+--4+an_1)=(N—-1)d
(x2+--+xn-1) = (N—=2) (x1+4d)

(Xk+"'+xN_1) = (N—k) (xk_1+d)

XN-1=2XN-2+d

Sottraendo membro a membro da ciascuna equazione quella successiva abbiamo

L d
N1
xz:m+X]
=g T

XN-1=XN-2+d
Otteniamo in conclusione

N-1 1
Xn—1=d Y . (4.1.2)
k=1

Notare che questa serie diverge per N — oo, quindi con un numero sufficiente di blocchi
e possibile avanzare in orizzontale quanto si vuole. Il numero di blocchi richiesti cresce
perod esponenzialmente con la distanza desiderata, infatti

N1
Y~ =IlogN+1v+ey (4.1.3)
k=1 k

dove 7y e la costante di Eulero-Mascheroni (y = 0.57721 - - - ) e x5 un termine che tende
a zero con N.
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PROBLEMA 4.2
( Equilibrio ed energia potenziale xx

l g (M ik

Figura 4.2.: La sbarra sospesa.

Una sbarra di lunghezza ¢ e massa M é sospesa al soffitto tramite due molle di lun-
ghezza a riposo nulla e costanti elastiche ky, k». Ciascuna molla e collegata ad un estremo
della sbarra, e la distanza tra i punti A, B a cui sono fissate al soffitto vale d (vedere Fi-
gura [4.2). Determinare 1’angolo che la sbarra forma con la direzione orizzontale nella
posizione di equilibrio e la posizione del centro di massa

o minimizzando 'energia potenziale

o risolvendo le equazioni di equilibrio

Soluzione

Utilizziamo come coordinate 1’ascissa e ’ordinata x, y del centro di massa della sbarra
e l’angolo che la sbarra forma con la direzione orizzontale. Ponendo un sistema di
riferimento con origine nel punto medio tra A e B scriviamo l’energia potenziale come

x—gcos(ﬂ—ﬁ 2+ —ﬁsiné) ’
2 2 ¥y
x+£cos9—g 2+ +§sin9 ’
2 2 ¥y73

Determiniamo il minimo:

ou I 0
@—Mg—i—kl <y—251n0> + ko <y+2sm€> =0

a—u:kl <x—£c050+d) + ko <x+£c050—d>

k
U:ngJrEl

ko
T2

0

dx 2 2 2 2
ou l 14 ay . I
50 = k1E [(x — EcosG—l— 2) sinf — <y— 251n9> cos@]

l l dy . I
+k2§ {— <x+2cos(9—2> sinf + (y—|—25m9> COSQ:| =0
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Dalle prime due equazioni otteniamo

= kl_kz{sin@— Mg
YT kitk2 ki + ko

-kt o kh-kd

S S
Notare che se k1 = kx sihay = —]2\4—,{‘1? e x = 0. Sostituendo nella terza equazione
troviamo l’angolo
Mg kz — kl
tanf = —<
MY Thk

che possiamo utilizzare per calcolare x e y. Possiamo ad esempio riscrivere le relazioni
precedenti nella forma

_ k—-kt¢ tanf = Mg
4 ki +k22/1+tan?6 ki +k2
ki —ky ¢ tan 6 ki —kod

ki +ka2\/1+tan20 ki +k2

e sostituire.
Proviamo a scrivere invece le condizioni di equilibrio. Il diagramma delle forze che
agiscono sulla sbarra & in Figura

Figura 4.3.: Diagramma delle forze applicate alla sbarra. Tutti gli angoli sono presi
positivi nel verso antiorario.

Scriviamo la somma di tutte le forze orizzontali.
F, =k (xB — Xs) + kq (xA — XR)

Ma se teniamo conto che

Xg—Xg = g—x——cos@
B s = 5 7
d 14
XA —XR = —E—x—f—icose
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vediamo che
ou

Cox
Analogamente per la somma di tutte le forze orizzontali abbiamo

F, =

Fy =k (yp —ys) + ki (ya —yr) — Mg

e dato che

0.
YB—VYs = y+§sm€

l .
Ya—YrR = y—ism9

vediamo che

ol

ox
Infine scriviamo la somma dei momenti scegliendo come polo il centro di massa. Abbia-
mo

Fy:

M = —k2 (XB —xs) ﬁSiHG—{-kl (xA —xR> ﬁsjn@
¢ 1
+k2 (yB _ys) ECOSG _kl (yA _yR) EC()s@

e vediamo che

M:—E

Le condizioni di equilibrio si riducono quindi alle condizioni per il minimo del poten-
ziale determinate precedentemente.

PROBLEMA 4.3
( Asta vincolata ad una circonferenza *x

Un’asta di lunghezza 24 e massa m ha i suoi due estremi appoggiati ad una circonfe-
renza di raggio r > a, come in Figura Indicando con 6 1’angolo tra il segmento che
congiunge il punto medio della sbarra al centro della circonferenza, discutere i possibili
valori di 6 corrispondenti all’equilibrio, tenendo conto della presenza della gravita e di
attrito statico tra sbarra e circonferenza descritto da un coefficiente .

Soluzione

Scriviamo le condizioni di equilibrio per 1’asta, basandoci sullo schema in Figura[4.5 Le
forze N; sono le reazioni vincolari, perpendicolari alla supeficie della circonferenza,

—

N; = Nift
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Q

Figura 4.4.: L’asta ha gli estremi appoggiati sulla circonferenza.

e 1_3; le forze di atttrito, ad essa tangenti
FE=Ft

Abbiamo indicato con 71 il versore normale alla circonferenza, rivolto verso l'interno,
e con T quello tangente, rivolto in verso antiorario. Per la somma delle forze nella
direzione parallela all’asta abbiamo

(N1 —N2)cos B+ (Fi + F)sinp —mgsin = 0 (4.3.1)
e nella direzione perpendicolare

(N1 + Np)sinp — (F; — F;) cos p —mgcosf =0 (4.3.2)
Infine per il momento totale rispetto al centro della circonferenza

(FF+E)r—mgrsinBsing =0 (4.3.3)

L’angolo B, indicato nelle figure, € dato da

a
COSp = —
ﬁ r
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Q

Figura 4.5.: Le forze applicate all’asta.

Deve anzitutto essere

Ni > 0 (4.3.4)
N, > 0 (4.3.5)

in caso contrario ’asta si stacca dalla circonferenza. sappiamo inoltre che

R < uN (4.3.6)
B < uN 43.7)
Da notare che queste due condizioni sono piti restrittive delle (4.3.4) e (4.3.5).

Usando le tre equazioni (4.3.1), (4.3.2) e (4.3.3) possiamo esprimere F; in funzione di
N e F, in funzione di Ny, per un dato valore di 6. Otteniamo

1

F = Nltanﬁ—imgcosf)secﬁ
1

F = N2tan,8—§mgc0595ec,8

Abbiamo inoltre una relazione tra N7 ed N, che scriviamo nella forma
2Njcosp 2N cosfp

= 2cos® Bsinf
mg mg
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per futura convenienza. Sostituendo nella (4.3.6) e nella (4.3.7) abbiamo

1
‘Nl tan f — 5Mg cos OsecB| < ulNp (4.3.8)

1
‘Nz tan g — 2mgcos€secﬁ‘ < uN (4.3.9)
che sono equivalenti a

2N; 2N;
N;:;Sﬁ < cosf < (tanfB+ p) N;:;)S‘B
N; >0 (4.3.11)

(tan — p) (4.3.10)

per N; =1, 2. Se le disequazioni precedenti hanno soluzioni (tenendo conto del legame
tra N; ed Ny) allora avremo equilibrio. Conviene discutere graficamente nel piano X;-X»,
con

X = ZN;:;s B
La relazione tra N7 ed N, diviene
Xy — Xp = 2cos? Bsin 6 (4.3.12)
e le due disequazioni
(tanp —u) X; < cosf < (tanB+ u) X; (4.3.13)
X;i>0 (4.3.14)

Dobbiamo distinguere due casi. Se y < tan p possiamo scrivere le condizioni precedenti
nella forma
cos 6 cos 6
tanf+pu — P tanp —pu
X; >0

che possono avere soluzioni solo se cos > 0. Rappresentando in Figura {4.6 la re-
gione permessa, vediamo che questa viene intersecata dalla retta corrispondente alla
Equazione (4.3.12) per —6* < 6 < 6* dove 6* vale

H

6" = arct
e e B (tan? B — u?)

Notare che in assenza di attrito l'unico valore possibile € 6* = 0, e che nel limite y —
tan B si ha 6* — 71/2 (sbarra verticale).
Se invecey > tan 8 le disequazioni si riducono a

cosf > 0

cos @
tan g+ u

e ci troviamo nella situazione rappresentata in Figura [£.7, & sempre possibile cioe
trovare una posizione di equilibrio per —7/2 < 8 < /2.

>

i =

@ 65 versione del 5 ottobre 2016



u < tan . I valori estremi di sin osti tra loro
ta blu e viola.

.

Figura 4.




4.4. CATENARIA %%

PROBLEMA 4.4
( Catenaria xx

Un filo inestensibile, perfettamente flessibile, di lunghezza ¢ e densita lineare di massa
A & appeso ai suoi estremi a due punti separati orizzontalmente da una distanza 2a < /.
Se e presente un campo gravitazionale costante, determinare la forma che assume il filo
in condizioni di equilibrio.

Soluzione

Consideriamo un tratto di filo di lunghezza d¢. All’equilibrio la somma delle forze che
agisce su di esso deve essere nullo, cioe

T(C+d0)t (£ +dl) — T (£) £ (0) — Agdly =0

dove T & la tensione e T il versore tangente. Passando al limite d¢ — 0 possiamo
riscrivere questa equazione nella forma

d
—(TT) = 1
77 (TT) = Agy
Cercheremo la soluzione nella forma y(x). Per prima cosa vediamo che possiamo scri-

vere

d dxd 1 d

M_Mm_%+@ym

T
1 (2)

Sostituendo nell’equazione determinata precedente otteniamo

[1+2()}—Agm()

dove abbiamo posto w = . La prima componente di questa equazione da

<l =
dx [ /1 + w?
che si puo integrare direttamente in termini di una costante arbitraria k

T =kvV1+w?

Espandendo la derivata otteniamo invece
d T 1 T
LTI (D) cagir ()
i v (o) o (i) =2
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ma il primo termine € nullo, come si & appena visto, e sostituendo 1’espressione per la

tensione troviamo infine
k <d(30> =AgV1+w? G)

dx

Possiamo integrare la seconda componente per separazione delle variabili. L'integrale
necessario

/w(") dw Ag
_— = 2Xx
w(0) V1+ w? k

si calcola introducendo la variabilew = sinh ¢. Dato che 1 + sinh? ¢ = cosh? Cedw =

cosh ¢ d¢ otteniamo
sinh ! w(x) )\g
/ a¢ = —=x
sinh~! w(0) k
e quindi

w(x) = ;l—z = sinh [A + );ng}

dove A = sinh ' w(0). Resta da integrare ancora una volta I'espressione precedente,

_ kK Ag
y_)TgCOSh {A—Fkx} +B

Calcoliamo adesso le costanti arbitrarie imponendole condizioni al contorno. Scegliamo
un sistema di riferimento nel quale i punti di sospensione si trovano in

(1) =)

Deve quindi essere

_k Aga

h = /\gcosh[A—Fk]+B
_k Aga

h = /\—gcosh [ — k] + B

Sottraendo membro a membro troviamo che deve essere

cosh [ — Afa] = cosh [A + Afa]

che implica A = 0. Inoltre

- k Aga
B = h-— )Tg cosh |:k:|
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La costante k & ancora indeterminata. Per trovarla imponiamo che la lunghezza del filo
sia £. Ma questa e data da

€:/ V14 widx
:/ cosh [/\gx} dx
—a k
a
= 2B sinh <>
peinh {5

dove si & posto per semplicita p = k/(Ag). L'equazione
a la
inh | — ) =—- 441
o (5) =225 aay
ammette soluzioni per 8 se e solo se ¢ > 2a. Questo si puo capire ad esempio dallo

studio grafico riportato in Figura .

/

y = sinh (%)/ y

[ v=1l

Y

e

Figura 4.8.: A sinistra, la soluzione grafica dell’'Equazione (.4.1). La retta (in rosso) ha
un coefficiente angolare dato dal rapporto ¢/(2a). Si hanno soluzioni non
nulle (per a/p) solo se ¢/(2a) > 1. Le due rette disegnate corrispondono
al/(2a) =1et/(2a) = 3/2. A destra, esempi di profili per diversi valori
di B, prendendo i = a = 1. Risolvendo numericamente 1’Equazione
si trova che i valori scelti corrispondono a ¢ ~ 2.3504 (rosso, § = 1.0),
¢ ~ 3.62686 (verde, B = 0.5) e £ ~ 4.84016 (blu, = 0.4).

In conclusione la forma del filo sara

% =1+ g [cosh <Z> — cosh <Z>}

una curva detta catenaria. Al variare di f cambia la lunghezza del filo, come abbiamo
visto. Dato che la dipendenza da A e g & stata riassorbita in f, la forma del filo non
dipendera dalla sua massa e dall’accelerazione di gravita.
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Notiamo infine che la tensione del filo ¢ legata alla sua lunghezza. Anzitutto abbiamo
T(x) = BAZV1+w?

BAg cosh <2>

In particolare la tensione agli estremi vale

T(a) = T(—a) = PAgcosh (g)

2
- g (49) 142

Questa formula si puo interpretare facilmente, osservando che il seno dell’angolo che il
filo forma con la direzione orizzontale e dato da

tan 6(x)

1+ tan?6(x)
w

Nie=rs
= tanh (})
2B
e (5

ma all’equilibrio la componente verticale delle due tensioni agli estremi deve essere
uguale alla forza peso totale del filo, quindi

sinf(x) =

S~

2T(a)sinf(a) = Alg

che coincide con la (4.4.2).
Possiamo considerare due limiti. Se £ >> 2a ci aspettiamo che la pendenza del filo agli
estremi sia praticamente verticale, e quindi dovremmo avere

T(a) ~ %Mg

cioe le due tensioni agli estremi devono compensare la forza peso totale del filo. In effetti
le £ > 2a1’equazione (¢.4.1) ammette soluzione per valori 8 < 4, e in tale situazione si
puo sostituire il seno iperbolico con un esponenzialeﬂ quindi approssimativamente

ap

1Se x > 1 vale cosh x = %e" + %e*" ~ %e" esinhx = %ex _ %e*x ~ %e .

e“/ﬁzgu
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Approssimando anche il coseno iperbolico con un esponenziale otteniamo
1 .8 1
T(a) =T(—a) ~ 5¢ BAg = E/\Kg

Nel limite opposto, % = 1+econe < 1 ciaspettiamo invece che la pendenza del
filo ai punti di sospensione sia praticamente orizzontale. In questa situazione solo una
componente molto piccola della forza legata alla tensione ¢ diretta verticalmente, e pud
compensare la forza peso. Ci aspettiamo quindi che quando ¢ — 0 valga T — c0. In

effetti in questo limite possiamo usare l'approssimazione sinh x ~ x + %3 e riscrivere
I’Equazione (4.4.1) nella forma
3
a la
= === 443
(5) 55 a2

Z _ e <2£u _ 1) (4.4.4)

L’angolo del filo rispetto all’orizzontale diviene quindi

sinf(a) ~ 6(a) ~ ZKa’ |6 (;ﬂ - 1)
Aga
Vo (%-1)

+

I
N =

da cui

e la tensione

T(a) ~ BAg ~
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5.1. DOPPIO PIANO INCLINATO %

PROBLEMA 5.1
( Doppio piano inclinato x

Un punto materiale & vincolato a muoversi sulla superficie in Figura composta da
due piani inclinati (con diverso angolo di inclinazione) separati da un piano orizzontale.
Senza fare uso di principi di conservazione mostrare che in assenza di attrito se il punto
materiale viene lasciato andare sul primo piano ad una altezza h, si ferma sul secondo
ad una altezza h, = hy.

Figura 5.1.: Figura esercizio

Soluzione

Il moto sui piani inclinati sara uniformemente accelerato. Dato che il moto & rettilineo
l'accelerazione & parallela al piano, e possiamo determinarla considerando la proiezione
della forza di gravita e della reazione vincolare in tale direzione. In assenza di attrito la
reazione vincolare & normale al piano, quindi non contribuisce, e possiamo scrivere in
modulo

ma = mg sin 0;

Lo spazio percorso sul primo piano inclinato e la velocita saranno quindi date da
1 . ’
() = Egsmel t
v1(t) = gsinbqt
da cui possiamo determinare il tempo di arrivo sul piano orizzontale

h
sin 61

1 .
El(h,f) = Egsmeltif =

o1 [
1'f_Si1’191 g

Ul,f = Ul(t1,f> = \/Zghl .

cioe

e la velocita
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Notare che questo risultato non dipende dalla inclinazione del piano. Passando sul
piano orizzontale il modulo della velocita non cambiera (giustificheremo al termine
dell’esercizio questa affermazione) e la massa si muovera con velocita costante fino al
secondo piano inclinato, a cui arrivera a t = t; ;. Passando su quest’ultimo il modulo
della velocita rimarra ancora una volta invariato, e avremo adesso un modo decelerato
che potra essere descritto come

1 .
Ez(t) = Ul,f(t — t2,i) — Eg sin 92 (t — tz/l’)z
Z)z(t) = U,f— gsin 92(1‘ — t2,i)
L’altezza massima si raggiungera ad un tempo t, ¢ determinato da v (t,,f) = 0 cioe

Ul,f
gsint,

(frf —ti) =

e lo spazio percorso sara

1 vif hl

fz(tz,f) - Egsin(?z - sin 6y

corrispondente ad una altezza finale
]’lz = gz (tf,z) sin 92 = h1

Resta da giustificare la conservazione del modulo della velocita nella transizione pia-
no inclinato-piano orizzontale e viceversa. Osserviamo che a un dato istante il punto
materiale e sottoposto alla forza di gravita e a una reazione vincolare che sappiamo esse-
re normale al vincolo (assenza di attrito). Nel punto di raccordo la normale al piano non
e ben definita, e il problema diviene ambiguo. Discuteremo il significato di questa ambi-
guita in un prossimo problema. Per adesso la elimineremo modificando la superficie in
un intorno piccolo quanto vogliamo dello spigolo, in modo da renderlo sufficientemente

liscio (Figura[5.2).

V(O)\

—

V(&)
Figura 5.2.: Il raccordo regolarizzato tra piano inclinato e orizzontale.

Allora la reazione vincolare sara ben definita ad ogni istante, e non potra contribuire
in nessun caso alla accelerazione nella direzione tangenziale al piano. Quindi avremo
(usando il fatto che la derivata del versore tangente % & ad esso perpendicolare)

d g .  _ dt dv L.

(U.T):E.T_FU.E_E.T:g.T

dt
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da cui segue che
€
5-%(6)25-%(0)+/ g2t
0

dove € ¢ il tempo che la particella passa sulla parte “lisciata” del raccordo. Poiche
possiamo prendere piccolo quanto vogliamo segue che

-t(e) = 7- £(0).

PROBLEMA 5.2
( Moto su una spirale xx

Una particella materiale di massa m & libera di muoversi in presenza di una forza di
gravita F; = —mgé, su un vincolo privo di attrito dalla forma a spirale, descritto dalle
equazioni parametriche

x(¢) =pcos¢ (5.2.1a)

y(p) = psing (5.2.1b)
h

z2(9) = 59 (5.2.1c)

dove p, h sono costanti positive fissate. Al tempo t = 0 vale ¢ = 0 e la particella e
ferma. Determinare la legge oraria del moto e la reazione vincolare N.

Soluzione

1l punto materiale & sottoposto alla forza di gravita e alla reazione vincolare N. L'equa-
zione del moto sara dunque
mid = —mgé, + N 5.2.2)

In assenza di attrito la reazione vincolare & perpendicolare alla spirale, condizione che
possiamo scrivere come N - T = 0 dove T ¢ il versore tangente alla traiettoria. Questo
significa che se consideriamo 1’accelerazione nella direzione ¥ avremo

mi-t=-mgé; - T+N-t=—-mgé,-t

d’altra parte 1’angolo tra la verticale e la tangente alla traiettoria ¢ costante, quindi
I'accelerazione tangenziale e costante, uguale a quella di un punto materiale su un
piano inclinato nello stesso modo. Per verificare questo scriviamo il vettore posizione

e la velocita
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L+

Figura 5.3.: Una parte della spirale descritta dalle Equazioni (5.2.1a)-(5.2.1c). Si e scelto
p=2eh=1
dove abbiamo utilizzato le relazioni ¢, = ¢é, e &, = 0. Segue che

27péy + he,
(27mp)% + h?

T=

e quindi
~ 5 h .
T8, = —F———— =sinb
@rp) + 2
dove 0 e I’angolo tra I'orizzontale e la tangente alla traiettoria (notare che il denominato-
re ¢ lo spazio percorso ad ogni giro della spirale e il numeratore la variazione in altezza).

Valutiamo adesso 'accelerazione

R T S Y g
—dt—PG"q) Pq)dt 27T(Pz—PfP<p PP Cp zﬂq)z

ricordando che &, = ¢¢,. Le equazioni (5.2.2) si scrivono quindi

h |
m <P¢é¢ — p§%é, + anﬁéz) = —mgé, + N. (5.2.3)
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Proiettando nella direzione T

h
O N o D A
(Pq’e(p pP=ep + 27T€0‘32> T 86z T

cioe
<p¢'eqz — g8 + 27T€0€z> - (2mpég + héz) = —ge: - (2mpe, + he:)
e
h
o 27
$==8 2
P+ (%)
Da questo segue immediatamente
o
¢»=-8 2 zt
0+ (%)
¢ h
p= 58— P

Sostituendo nelle equazioni parametriche otteniamo le leggi orarie. Dalla Equazio-

ne (5.2.3) abbiamo
o s 2, h . 5
N=m {Pq’egv - P?zep + <27‘(¢ +g> Ez}

e sostituendo le espressioni $, ¢ ottenute precedentemente otteniamo la reazione vinco-
lare in funzione del tempo.

PROBLEMA 5.3
( Moto visScoSso x*

In presenza di una forza di attrito viscoso F = —A% una particella di massa m viene
lanciata verso l’alto con velocita iniziale di modulo vy. Determinare la massima altezza
raggiunta rispetto al punto di partenza. Determinare inoltre la velocita alla quale la
particella passa nuovamente dal punto di partenza, in particolare nel caso in cui vy €
molto grande. Cosa significa “molto grande” in questo caso?

Soluzione

L’equazione del moto per il moto nella direzione verticale si scrive

dv
me = —Av—mg.
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Questa e una equazione differenziale lineare a coefficienti costanti, del primo ordine,
che si puo risolvere con diversi metodi.
Possiamo procedere per separazione delle variabili, riscrivendola nella forma

1 do_ A
v~|—$dt_ m

e integrando membro a membro nel tempo:

1 do A
—_— —dt = — —dt.
/00+r1}gdt /Om

L'integrale al membro sinistro & immediato, quello a destra lo diviene col cambio di
variabile u = v(t):
v(t) 1 A
/ 7”186114 = ——t
0(0) U+ m

t)+ 58 A
logv()imgA = ——t.

ossia

Esplicitando la velocita abbiamo infine

_ mgy iy Mg
o(t) = (vo+ ! )e ! (5.3.1)

che puo essere usata per determinare il tempo t,,,, nel quale viene raggiunto l'altezza
massima, risolvendo v(t,,,y) = 0. Si ottiene

Ay 1 m Avg
mtmax — , tmax = 1 1+—].

Per avere lo spazio percorso integriamo direttamente la velocita:

t m mg Ay mg
S(t) = /O U(t) dt = 7\ (UO + 7)\ ) (1 —e m ) — Tt (5.3.2)
e sostituendo £,y

moy  m> Av
hmax = S(tmax) = TO - nglog (1 + m;) .

Troviamo adesso la velocita quando la particella passa nuovamente a s = 0. Possiamo
riadattare la soluzione (5.3.2) ponendo vy = 0, e ricavare il tempo di caduta
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che non & possibile risolvere esplicitamente in to. E chiaro perod che al crescere di vy
anche /i, cresce, e di conseguenza ty. Quindi dalla (5.3.1), sempre ponendo vy = 0,
otteniamo mg . mg mg

(k) = —2e mlo - ZS ~ TS

Questa approssimazione sara buona quando

Av Av
20> log <1 + 0)
mg mg
cioe quando vg > mg/A.
Un metodo alternativo per risolvere 'equazione differenziale e quello di cercare prima
tutte le soluzioni dell’equazione omogenea

do n A 0
- —0 =
dt  m
nella forma v = Ae ¥ dove k & una costante da determinare. Sostituendo troviamo la

condizione
K+ =0
m
e quindi un insieme di soluzioni dipendenti da un parametro arbitrario che rappresen-
tano la soluzione generale (I'equazione ¢ del primo ordine).
E necessario adesso aggiungere una soluzione particolare dell’equazione completa

dv n A
—+—v=—g.
at  m g
In questo caso possiamo farci guidare dall’intuizione fisica e cercare una soluzione a

velocita costante, che rappresenta la situazione in cui forze di attrito e di gravita si

bilanciano. Abbiamo v = —gm /A e quindi otteniamo la soluzione generale nella forma
£ = Ae—mt — 8™
v(t) e )

Ponendo v(t) = vy troviamo A = vy + gm/A e quindi la (5.3.1).

PROBLEMA 5.4
( Un problema inverso x

Una particella di massa m si muove nel piano sotto 1’azione di una forza della forma
F=F(r)é

dove r ¢ la distanza dall’origine del sistema di coordinate e ¢, il versore radiale. La sua
legge oraria si puo scrivere per t < t. nella forma

r(t) = Blte—1)

W= i

Disegnare qualitativamente la traiettoria e determinare F(r).
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Soluzione

Mentre t — t, la distanza dal centro diminuisce linearmente, mentre 1’angolo cresce
senza limite in valore assoluto. La traiettoria & quindi una spirale che viene percorsa in
senso orario mentre la particella “cade” sull’origine.

Sappiamo che il moto deve obbedire al secondo principio della dinamica

F =mad

e siamo in grado di calcolare 1’accelerazione. Scriviamo anzitutto il vettore posizione
nella forma

=

R =ré,

e derivando otteniamo velocita e accelerazione

V = i +rbe
i = 76, + 2108 + rbéy — roe,
e quindi
1 . . ..
aF(r)ér = (#—16%) &, + (210 + 1) &p. (5.4.1)

D’altra parte esplicitamente

P= —p
P =0
e
P S
o mBA(t—t)2 mr?
B 2L 2Lp
mp2(t—t)>  mrd’

Eguagliando la parte radiale nella (5.4.1) si ottiene

LZ

F(”):—W

mentre la parte angolare si annulla automaticamente.

PROBLEMA 5.5
( Moto periodico xx

Una particella di massa m € vincolata a muoversi su un piano inclinato di lunghezza ¢,
come rappresentato in Figura[5.4} Ai due estremi del piano & posta una barriera su cui la
particella rimbalza, senza modificare il modulo della propria velocita. Se vy € la velocita
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nel punto pit1 basso determinare il periodo del moto periodico. Studiare in particolare
cosa accade per grandi valori della velocita vy.

Figura 5.4.: Figura per il problema.

Soluzione

Il moto sul piano inclinato & uniformemente accelerato, con accelerazione a = gsin6. Il
periodo sara il doppio del tempo necessario per spostarsi dal punto pit1 basso al punto
piu alto. Possiamo allora scrivere

s(t) = vt — %gt2 sin 0
v(t) = wvy—gtsind.
La velocita si annulla al tempo ’
= g si(r)1 0
e lo spazio percorso a tale istante vale
)
¥ =slt) = 2gs(i)n9 '

Occorre distinguere due casi. Se s’ < /la particella non arriva mai alla barriera superiore,
e quindi il periodo e semplicemente

200

T=2= :
gsin@

Questo accade se per il modulo della velocita iniziale vale

vg < /2g€sin0.
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Invece se s’ > ¢ 1'urto con la barriera superiore avviene quando s(f,) = ¢, cioe
1 .
voty — Egtf, sinf = /¢

che significa

gt2sinf — 2upt, +20 = 0

v £ \/v% — 20gsinf

gsin®

tu:

Entrambe le soluzioni sono positive, ma solo la minore ¢ accettabile. L'altra corrisponde
al tempo in cui la particella, avendo superato la barriera, € tornata su di essa dopo
aver invertito il moto. Chiaramente T = 2t,. Notare che quando vy > fgsinf le due
soluzioni si comportano in modo molto diverso. Quella non accettabile diviene molto
grande (il moto si inverte a un tempo sempre maggiore)

v + /03 — 2{gsin6 20

gsinf ~ gsinéf

l’altra tende al tempo necessario a percorrere il tratto £ con velocita costante

Vg — /03 —20gsin® 4

gsinf 0

il che significa che se la velocita iniziale € molto grande gli effetti dell’accelerazione sono
trascurabili.

PROBLEMA 5.6
( Attraversamento di una buca xx

In un piano orizzontale (in presenza di gravita) & praticata una scanalatura triango-
lare come in figura, di altezza h e apertura angolare 26. Un punto materiale si muo-
ve sulla superficie risultante, che puo essere considerata un vincolo liscio, con spigoli
sufficientemente smussati.
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Figura 5.5.: Figura per il problema.

Dimostrare, senza utilizzare principi di conservazione, che I’angolo di uscita 6; e quello
di entrata 6, nella scanalatura sono uguali. Dire inoltre se la traiettoria all’uscita della
scanalatura e il prolungamento di quella in entrata.

Soluzione

Il moto sui due piani inclinati € un moto accelerato nella direzione perpendicolare alla
scanalatura, con accelerazione nella fase discendente e —a in quella ascendente. Nella
direzione parallela avremo un moto uniforme. La legge oraria sul piano discendente
sara

X = wvgcosbit+ %at2
y = vpsinbyt
Uy = Uvpcosby + at
vy = wvgsinb
e su quello ascendente
x = (vgcosby + Avy)t— %atz
y = vpsinbqt
vy = (vgcosb; + Avy) — at
vy = vpsinb,

Nel primo caso abbiamo usato un sistema di coordinate con origine nel punto di in-
gresso del punto materiale nel primo piano inclinato, asse x nella direzione di massima
pendenza del piano e asse y parallelo alla scanalatura. Nel secondo caso 1’origine & anco-
ra nel punto di ingresso del punto materiale (questa volta nel secondo piano inclinato),
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asse x nella direzione di massima pendenza e asse y parallelo alla scanalatura. Av, e
I'incremento di velocita dovuto alla accelerazione sul primo piano inclinato.

Si vede facilmente che il tempo di discesa t; ¢ uguale a quello di salita ¢;. Detta
¢ = h/ cos 8 la lunghezza di un piano inclinato abbiamo che t; soddisfa

1
f =ruvgcosbity+ Eatﬁ
mentre per f; vale
1
¢ = (Avy +vgcosby) ts — ~at?

2
ma Av, = at; per cui quest’ultima equazione diviene

1
0 =vycosbyts — Eat§ + atyts
che é chiaramente verificata da t; = t;. Allora all’uscita della scanalatura avremo
vy = vgcosb + aty — at
vy, = Uvgsinb;
il che significa 6; = 6».
Per rispondere alla seconda domanda notiamo che il moto in direzione trasversa € un

moto uniforme con velocita vp sin #, nel primo sarebbe in assenza della fenditura. Ma
nel secondo caso il tempo di attraversamento ¢ 2t;, nel primo sarebbe

2
t, = —tan@.
Vo COs 61

I due tempi coincidono se

—vgcosf + \/v% cos? 6y + 2gh
gcosf

———tanf =t; =
v cos 01

ossia (supponendo i > 0)
2q . gh
1++/1+29 q_vgcoszﬁl

Solo se questa ultima condizione & soddisfatta, o nel caso banale 6; = 0, le due traiettorie
risultano allineate.

gsinf =

PROBLEMA 5.7
( Moto su una guida con attrito x

Una particella di massa m e vincolata a muoversi su una guida descritta dall’equazione
y = f(x),in presenza di gravita e di un attrito dinamico descritto da un coefficiente
4. La funzione f(x) e identicamente nulla per x < 0, e la particella viene lanciata
da x = —L (con L > 0) con velocita iniziale vg > ./2¢u4L. Determinare f(x) per
x > 0 in modo tale che in tale regione per la particella valga ij = —g. Cosa succede se

vy < /2gmqL?
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Soluzione

Se jj = —g la particella sta accelerando liberamente verso il basso. Questo significa che
'unica forza in direzione verticale & quella di gravita, e 'attrito non contribuisce. Perche
questo accada é necessario che il modulo della reazione normale del vincolo sia nulla,
cioe il vincolo deve coincidere con la traiettoria della particella in caduta libera.

Per determinare quest’ultima si deve conoscere le condizioni iniziali a x = 0. La
velocita in quel punto sara orizzontale, e dovra essere

1
L = Uot — Eg;{dtz
v = vy— gHat
Dalla prima equazione troviamo

t_voj:\/vg—ZgLyd 570

8Hs

v=+/v3—2¢Lu,.

La soluzione pertinente e quella col segno positivo. La forma della guida sara dunque
descritta parametricamente da

e sostituendo nella seconda

x = t\/v3—2gLug
L o
= —_gt
y 58
ossia
_ 1 e
Y 203 —2gLug

Se vg < +/2gu4L la soluzione (5.7.1) non é reale. Questo significa che 'attrito ferma la
particella prima che questa possa arrivare in x = 0.

PROBLEMA 5.8
( Moto su un anello con attrito xx

Una particella materiale di massa m e vincolata a muoversi su una guida circolare di
raggio R, in presenza di un attrito descritto da un coefficiente y 4. Scrivere le equazioni
del moto per la particella (senza risolverle) in assenza di gravita.
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Soluzione

In coordinate polari la posizione della particella si puo scrivere
R = Ré,
e derivando due volte otteniamo 1’accelerazione
i = Réy — RO?é, .

Le forze in gioco sono la reazione vincolare normale alla guida,e I’attrito

- 0
F, = —uy|N|ég— .
a ]’ld| ’9|9|

Dal secondo principio della dinamica abbiamo allora

mR (B¢g — 6%¢,) = N¢, — yd|N]é9£‘.

Proiettando lungo la normale otteniamo una prima equazione

—mR* =N
mentre la proiezione lungo éy da
. 6 o 0
mRE = _MN’W = —mRydBZW.

Supponendo per esempio 6 > 0 abbiamo
0= —pq6”

che potrebbe essere integrata facilmente.

PROBLEMA 5.9
( Oscillatore con attrito »x*

Studiare il moto di una massa m che si muove su un piano orizzontale vincolata ad una
molla di costante elastica k e lunghezza a riposo nulla, in presenza di attrito statico e
dinamico descritto da coefficienti ys e p.
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Soluzione

Possiamo distinguere tre casi, a seconda della velocita della massa. Quando questa e
nulla possiamo scrivere I'equazione del moto nella forma

ma = —kx + F;
dove F; e I'attrito statico. Esso compensera la forza di richiamo della molla quando
kx| < psmg
e quindi la massa rimarra in equilibrio nell’intervallo

_Hmg __ Hsig
S cx< B (5.9.1)

in caso contrario verra accelerato, e si dovranno considerare i casi che seguono.
Quando la velocita della massa e diversa da zero possiamo scrivere le equazioni del
moto nella forma
ma + kx = Fugmg

dove il segno negativo si riferisce al caso v > 0 e quello positivo al caso v < 0. In ciascun
caso I'equazione del moto e quella di un oscillatore armonico sottoposto ad una forza
costante:

i+wix=F HaS

dove abbiamo posto w? = k/m. La soluzione generale sara la somma della soluzione
generale dell’equazione omogenea # + w?x = 0, cioe

x = A4 cos wt + B4 sinwt

e di una soluzione particolare dell’equazione completa. In questo caso possiamo vedere
che la funzione costante

N
soddisfa il problema, la soluzione completa sara quindi
x = A4 coswt + By sinwt F % .

Dobbiamo adesso raccordare la soluzione valida per v > 0 e quella valida per v < 0.
Chiaramente il raccordo avverra in un punto di inversione del moto. Immaginiamo
che inizialmente la massa sia in quiete in un punto x = —L < —pusmg/k. Dobbiamo
considerare il caso v > 0, e imponendo le condizioni iniziali avremo

xO(t) = (% - L) cos wt — %.

La velocita restera positiva per mezzo periodo, T = 27 /w. Per t = T/2 la particella
sara nuovamente in quiete nel punto

*O(T/2) =L - 2% .
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Se

0 _ Ha8 _ Hd&
x0(T/2) = L-203 <3

la particella si fermera definitivamente, altrimenti da questo momento dovremo conside-
rare il caso v < 0. Imponendo le condizioni x(T/2) = x(9(T/2)e v(T/2) = 0 troviamo
la nuova soluzione,

xXD(t) = (L — 3%) cos w (t - Z) + %

che sara valida per il successivo mezzo periodo. Avremo infine
Ha8
xX(T) = —L+ 4
Ripetendo il ragionamento vediamo che dopo ogni mezza oscillazione la distanza del

punto di inversione dall’origine si ridurra di 2u;¢/w?, sino a quando non verra a
trovarsi all’interno dell’intervallo (5.9.1), dove il moto terminera.

PROBLEMA 5.10
( Asta incernierata xx

Un’asta rettilinea € incernierata nel suo estremo inferiore ad un asse verticale, rispetto al
quale forma un angolo fisso &« < 71/2. L'asta ruota attorno all’asse con velocita angolare
costante w. Sull’asta e infilato un anello di massa m che puo scorrere lungo essa. Il
coefficiente di attrito statico e ys. Determinare le posizioni di equilibrio dell’anello.
Soluzione
La posizione dell’anello si puo scrivere
R = (%(t)

dove T & un versore parallelo alla guida

t(t) = coswé, + sinaé,(t)

e / ¢ la distanza dell’anello dalla cerniera (costante all’equilibrio). Sappiamo che €, ruota
con velocita angolare costante attorno all’asse. Calcoliamo velocita

¥ = lwsinaé,

e accelerazione
i = —lw?sin wép .

Le forze sono quella di gravita, F, = —mgé,, la reazione vincolare N, perpendicolare
all’asta:
N = Nn, 7 =sinaé; —cosaé,
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e l'attrito statico F A, parallelo ad essa
Fy=Fpt
Avremo quindi
—mlw?sin wéy = —mgé; + N + Fu
e proiettando nella direzione dell’asta otteniamo
—mlw? sinaéy, - T = —mgé, - T+ Fy

cioe
2

—mlw?sin* @ = —mg cos & + Fy

Proiettando perpendicolarmente all’asta abbiamo invece

—mbw?sinaé, - i = —mgé, - i+ N
cioe

mlw?sinacosa = —mgsina + N

Sappiamo inoltre che
[Eal < s N
da cui
w? ., . w? .
cosa — —— sin“a| < g [sina + —— sina cos &

L’argomento del valore assoluto a destra & sempre positivo nell’intervallo considerato.
Distinguiamo i due casi. Nel primo

lw? cos
— < ——
g sin” «
lw? S cosx — Ygsina
§  Hssinacosa+ sin® w

che ha per soluzione (notare che il limite inferiore diviene negativo se ys > cota)

. 2
Cos o — Ug Sin i fw Ccos &
Hs < <

yssinoccosoc+sin2a g ~ sin’a

(5.10.1)

Nel secondo
lw? cos
— 2 -
g sin“ w

2
lw 2

(sin®a — pgsinwcosa) < cosa+ pgsina
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che ha per soluzione, nel caso y; < tanu,

cosa _ lw? Cos & + Us Sina
r e ok (5.10.2)
sIn” w g SIN” & — Y SIN X COS &
¢ 2
cosa _ fw
— < — (5.10.3)
sin” « g
per ys > tana.
Riassumendo, in assenza di attrito abbiamo un"unica posizione di equilibrio
gcosw
l=—"—73—
w?sin”
per 0 < s < tana abbiamo l'intervallo
cosa — Jssina cos i + Yssina
8 _CWIRIRE <y 80T (5.10.4)
W* U SN cos & + siN” « W= sin” & — YU SIN & COS &

e per us > tana tutte le posizioni di equilibrio sono possibili.

PROBLEMA 5.11
( Disco rotante xx

Un disco di raggio r ruota in un piano orizzontale con velocita angolare costante w. sul
disco e praticata un scanalatura diametrale, in cui puo scorrere senza attrito una pallina
di massa m, legata al centro mediante una molla di lunghezza a riposo nulla e costante
elastica k. Supponendo che sia k > mcw? si determini il moto della pallina.

Inizialmente la pallina si trove ferma a distanza r /2 dal centro.

Soluzione

In un sistema inerziale il moto sara la composizione del movimento lungo la scanalatura
e dalla rotazione insieme al disco. Scrivendo la posizione della pallina in un sistema di
coordinate polari abbiamo

R =Ré,
dove R e una funzione del tempo (da determinare), mentre sappiamo che é, ruota con
velocita angolare w costante. Quindi abbiamo per la velocita

e per la accelerazione

i = (R — Rw?) é, +2Rwéy
dove sono state usate le solite relazioni é, = 0éy e &g = —6¢é,. Notare che non & necessario
porre alcuna restrizione su R, che potra assumere anche valori negativi.
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Le due forze in gioco saranno quella di richiamo della molla, che potremo scrivere
Fy = —kRé,

e la reazione vincolare N della guida, che sappiamo ortogonale alla stessa: é; - N =0.
Le equazioni del moto sono quindi

m [(R — Rw?) & + 2Rwéy| = —kRé, + N.
Proiettando nella direzione radiale abbiamo
m [(R — Rw?) é, - é +2Rwéy - &;] = —kRé, - &, + N - ¢,

cioe
m (R — sz) = —kR

ossia
mR + (k — mw?*)R = 0.

La soluzione generali di questa equazione ¢ una oscillazione armonica

R(t) = Acos Ot + Bsin Ot

Q- /k—mwz.
m

Imponendo le condizioni iniziali troviamo A = r/2 e B = 0, quindi

con

R(t) = T cos Ot é,

2
ossia, in coordinate Cartesiane,
x(t) = %COS Ot cos wt
y(t) = %cos Qt sin wt

dove abbiamo supposto che la scanalatura sia inizialmente allineata all’asse x.

PROBLEMA 5.12
( Oscillatore armonico forzato xx

Un oscillatore armonico si trova in quiete per t < 0. Dat = 0 at = T viene applicata
una forza costante F. Trovare la legge oraria e studiare il limite T — 0.
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Soluzione

Scriviamo 'equazione del moto dell’oscillatore nella forma

X 4 wix = a(t)

dove
0 t<0
a(t)y=< F/m 0<t<T
0 t>T.

Consideriamo la soluzione nellintervallo 0 < t < T. Sappiamo che dobbiamo aggiun-
gere alla soluzione generale dell’equazione omogenea

X+ wix =0
una soluzione particolare dell’equazione completa. La prima si puo scrivere nella forma
x(t) = A coswyt + Bsin wyt (5.12.1)

e si verifica facilmente che una soluzione particolare ¢ la costante x = # Quindi la
0

soluzione completa é della forma

F
x1(t) = Acoswot + Bsinwot + -
0

Le condizioni da imporre in t = 0 sono x(0) = 0 e x(0) = 0. Abbiamo da questo

1 (F) = —— (1 - coscwpt) . (512.2)

mw3
Costruiamo adesso la soluzione per t > T. Adesso 'equazione del moto & omogenea,
e dovremo imporre alla soluzione generale di raccordarsi con continuita, insieme alla
derivata, conla (5.12.2) in t = T. Per semplificare i calcoli possiamo scrivere la soluzione

dell’equazione omogenea nella forma

x2(t) = A'coswy (t — T) + B'sinwy (t — T) .

e quindi
o(T) = x(T) = A =L (1— coswyT)
2(T) = x1 = = 0
. : / F .
%(T) =x%(T) = woB'= ——sinwyT
mawy
da cui
F . .
x2(t) = —— [(1 — cos woT) coswy (t — T) + sinwoT sinwy (t — T)]
mwp
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L’ampiezza dell’oscillazione ¢ data da

2F 1—coswyT 2F
A= 2 = 2
mwj 2 mwyg

Se 'ampiezza della forza é fissata si ha chiaramente

(U()T

sin
2

limA=0.
T—0

Per ottenere un limite finito si deve far variare F con T in modo che
CUQT

lim F sin ——
T—0 2

sia finito. Questo significa che I = FT (il prodotto della forza per il tempo di applicazio-
ne) deve rimanere costante. In tal caso

() = lim I [1—coswyT
2 10 mw? T

i T
S’ sinwp (t—T)

coswy (t—T)

I .
= ——sinwyt.
mdawo

PROBLEMA 5.13
( Oscillazioni isocrone x x %

Un punto materiale e vincolato a muoversi in un piano verticale su una guida senza
attrito, descritta dall’equazione

y = f(x)

Determinare f(x) in modo tale che il moto del punto sia una oscillazione armonica di
periodo T attorno x = 0, indipendentemente dalla sua ampiezza. E possibile ottenere
questo per ampiezze comunque grandi? La soluzione e unica?

Soluzione

Supponiamo, senza perdere di generalita, che f(0) = 0 e consideriamo x > 0. Se pren-
diamo come coordinata lo spazio percorso lungo la curva possiamo scrivere 1’energia
totale del sistema nella forma

E= %ms’2 + mgy(s) .

Questa deve essere equivalente all’energia totale di un oscillatore armonico, quindi si
deve avere
y(s) = K32,
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5.13. OSCILLAZIONI ISOCRONE * x

Segue che

ossia, derivando,

1 [dy\ dy 2
2ﬂ<dx>_1< ()

Possiamo risolvere questa equazione scrivendo

L-4K%y (dy\* _
4K2y \dx)

4K2y(x) _
/ \/ 1=W 00 — akx.
0 w

Integrando otteniamo la traiettoria nella forma (valida per 4K?y < 1)

20(1 — 4K2y) + & _ arcsin + /1 — 4K2y — 4K2
\/4Ky(1 4Ky)+2 arcsin /1 — 4K?y = 4K"x.

ossia

Ponendo . , 0
= (1— = —_sin?~
y 8K2( cos6) e sin’ 5
otteniamo .
X=ox (]sinf| —0)

e dato che siamo interessati a x > 0 possiamo scrivere la traiettoria in forma parametrica
come

1

y = @(1 —cos6)
1 .

X = @(Slne—i—@)

per 6 > 0. Possiamo interpretare quindi la traiettoria come quella di un punto posto su
una circonferenza di raggio R = &Che ruota senza strisciare sotto il piano y = 2R. Pos-
siamo ripetere le stesse considerazioni per x < 0, ottenendo lo stesso risultato. Avremo
quindi una traiettoria complessiva descritta dalle equazioni parametriche precedenti
per — < 0 < 7.

Esiste una ampiezza massima per 1’oscillazione che si ottiene da

Y<ixz

Si puo interpretare fisicamente questo fatto tenendo presente che in una oscillazione
armonica si ha una forza di richiamo (tangente alla traiettoria) proporzionale a s. Ma la
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massima forza di richiamo disponibile nella situazione considerata & mg, corrispondente
ad una tangente verticale. Questo accade per 6 = 7.

Infine osserviamo che la soluzione non & unica. Possiamo ad esempio prendere per
x > 0 ex < 0 traiettorie corrispondenti a due diversi valori di K: il moto sara sia per
x > 0 che per x < 0 un moto armonico, ma con periodi diversi. Il periodo totale sara la
media dei due, e non dipendera dalla ampiezza dell’oscillazione.

PROBLEMA 5.14
( Catena che cade xx

Un filo perfettamente flessibile, di massa m e lunghezza ¢ & vincolato a muoversi sulla
superficie in Figura|5.6| e pende inizialmente verticalmente per un tratto xo. Determinare
il suo moto.

Z*IO

Zo

Figura 5.6.: 1l filo nella sua posizione iniziale.

Soluzione

Detta x la lunghezza del tratto verticale della catena possiamo scrivere 1'energia cinetica
del sistema nella forma

:Ex

e l'energia potenziale gravitazionale come

-~ ()5 3

dove il termine nella prima parentesi e la massa del tratto verticale, e quello nella se-
conda la posizione verticale del centro di massa rispetto al piano orizzontale. L'energia
totale sara ,

m. mg 2

E=—x*—-—Sx

2 2/

Derivando rispetto al tempo otteniamo
dE mg mg

E:mxx—Txx:x(mx—Tx) =0
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da cui I’equazione del moto

P %x —0 (5.14.1)

Questa e un’equazione differenziale lineare omogenea a coefficienti costanti, cerchiamo
quindi soluzioni della forma

x = e (5.14.2)
Sostituendo la (5.14.2) nella (5.14.1) troviamo I’equazione
2_ 8
T

da cui la soluzione generale
g /3
x = AeVTt + Be Vi

Imponiamo le condizioni al contorno
X(O) = A+ B=xp

0(0) = %(A—B):o

dacui A = B = x¢/2. Quindi
8

x = xgcosh/St.

14

PROBLEMA 5.15
( Carrucola xx

Una pedana di massa M e libera di muoversi su un piano orizzontale senza attrito, ed
e collegata ad una massa m da un filo inestensibile come in Figura Determinare
I’accelerazione del sistema e la tensione del filo.

Soluzione
Considerando le forze orizzontali che agiscono sulla pedana, possiamo scrivere
Mi=T

dove T e la tensione del filo. Analogamente abbiamo, per il moto verticale della massa,.

mij=T-—-mg.
Inoltre, dato che il filo € inestensibile, deve essere ¥ = —y e quindi ¥ = —jj. Quindi
Mi = T
m¥ = mg—T
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Figura 5.7.: Il sistema descritto nell’esercizio.

Sommando le due equazioni otteniamo
(M+m)x = mg
da cui
__mg
M+m
Alternativamente possiamo scrivere 1’energia totale del sistema nella forma

P

1 1 1 1
E=—- 2 Zm? = — 2 — 2 _
2Mx —|—2my + mgy 2Mx +2mx mgx
e derivando rispetto al tempo abbiamo
E=%[(M+m)i—mg]=0

da cui il risultato calcolato precedentemente.

PROBLEMA 5.16
( Carrucola IT xx

Calcolare 1'accelerazione del sistema in Figura 5.8 Il filo € inestensibile e privo di massa,
cosi come la carrucola. La massa mobile ¢ appoggiata alla parete verticale del carrello.
Non vi sono attriti.

Soluzione

Se T e la tensione del filo potremo scrivere per la accelerazione orizzontale del centro di
massa del sistema
(M4+m)i=T

@ 98 versione del 5 ottobre 2016
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Figura 5.8.: Il sistema descritto nell’esercizio.

mentre 1’accelerazione verticale della massa m sara data da

myj =—-mg—+T.
Il legame tra le coordinate x e y sara x = —y + C. La costante C si puo eliminare
scegliendo opportunamente ’origine del sistema). Segue che X = —y e ¥ = —jj. Quindi
otteniamo
L
M+2m~

Allo stesso risultato possiamo arrivare scrivendo 'energia totale del sistema

1 .2 1 .2 )

E=SMi +§m(x +y°) +mgy

e esprimendo E in funzione, ad esempio, della sola coordinata x e della sua derivata
vediamo che il sistema ¢ equivalente ad una massa M + 2m sottoposta a una forza mg.

PROBLEMA 5.17
( Carrucola IIT %

Nel sistema in Figura [5.9]il filo ¢ inestensibile e privo di massa, la massa m e appog-
giata alla parete verticale del carrello e non vi sono attriti. Calcolare 1’accelerazione del
sistema.

Soluzione

Detta T la tensione del filo avremo per il moto orizzontale del centro di massa del
sistema
(M+m)x =2T

e per il moto verticale della massa

myj =T —mg
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M

Figura 5.9.: Il sistema descritto nell’esercizio.

Abbiamo inoltre y = —2x + C. La costante C non e rilevante e puo essere eliminata
scegliendo opportunamente il sistema di coordinate. Otteniamo infine

(M+m)¥ = 2T
—2m¥ = T—mg

da cui
P 2mg
 M+5m
Possiamo anche scrivere I'energia del sistema
1 1
E= EMJ'CZ + Em()’cz + ) + mgy
ossia

1
E= E(M + 5m) %> — 2mgx

che equivale all’energia di una massa M + 5m su cui agisce una forza 2mg.

PROBLEMA 5.18
( Oscillatore e forza F = at xx

Su un oscillatore armonico (massa m e costante elastica k) agisce una forza esterna che
cresce nel tempo secondo la legge F = at. E possibile assegnare delle condizioni iniziali
at = 0in modo tale che la massa si muova di moto uniforme? Trovare la soluzione
generale dell’equazione del moto.

Soluzione

Se il moto della massa ¢ uniforme la forza totale su di essa deve essere nulla. Tale forza
e data dalla somma della forza di richiamo della molla e di quella esterna applicata:

F = —kx + at
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che si annulla se

ot
X =—.

k

Questo ¢ effettivamente un moto uniforme, corrispondente alle condizioni iniziali

=R ©

L’equazione del moto si scrive
mx + kx = «at.

Abbiamo gia una soluzione particolare dell’equazione completa, cioe il moto uniforme
determinato al punto precedente. Per avere la soluzione generale e sufficiente aggiun-
gere la soluzione generale dell’equazione omogenea, cioé una arbitraria oscillazione
libera:

X = Acoswt—f—Bsian—%t.

Si pud pensare a questa soluzione generale come ad una oscillazione attorno a un punto
che si sposta con moto uniforme.

PROBLEMA 5.19
( Oscillatore e forza F = af? x%

Su un oscillatore armonico (massa m e costante elastica k) agisce una forza esterna che
cresce nel tempo secondo la legge F = at?. E possibile assegnare delle condizioni iniziali
a t = 0in modo tale che la massa si muova di moto uniformemente accelerato? Trovare
la soluzione generale dell’equazione del moto.

Soluzione

Se il moto della massa & uniformemente accelerato la forza totale su di essa deve essere
costante, ed uguale al prodotto di massa per accelerazione. Scriviamo 1’equazione del
moto:

mi + kx = at?

e cerchiamo una soluzione del tipo

1,
x:xo—l—vot—i—iat.

Sostituendo otteniamo

1
ma + kxo + kvot + Ekaif2 = at?

@ 101 versione del 5 ottobre 2016



5.20. DOPPIO PIANO INCLINATO CON ATTRITO *

che e soddisfatta prendendo

00 =0
4 2
ok
2me
Xp = _7](2

La soluzione generale si ottiene aggiungendo alla soluzione particolare appena deter-
minata una arbitraria oscillazione libera (soluzione generale dell’equazione omogenea):

2me
=A t+ Bsinwt — —— + —t%.
X coswt + b sinw 2 + 2

PROBLEMA 5.20
( Doppio piano inclinato con attrito x

Una particella di massa m viene lasciata cadere su un doppio piano inclinato come in
Figura (5.10), partendo da fermo e da una altezza h. Se su tutto il piano e presente un at-
trito dinamico catatterizzato da un coefficiente 4 calcolare sulla base di considerazioni
energetiche 1’altezza massima raggiunta sul piano a destra. Si supponga che lo spigolo
sia regolarizzato e che su di esso non vi sia attrito.

Figura 5.10.: Il sistema descritto nell’esercizio.

Soluzione

All'inizio e alla fine la particella e ferma, quindi occorre considerare la sola energia
potenziale. La differenza tra energia potenziale iniziale e finale deve essere uguale al
lavoro fatto dalle forze di attrito. Quindi

mg(h — ”l/) =Fl + 5

dove F; = pgmgcos by e F, = pzmg cos 0, sono le forze di attrito sul piano a sinistra e
a destra rispettivamente, /1 = I/ sin6; ¢ il tratto percorso sul piano a sinistra e ¢, =
h'/ sin 6, quello percorso sul piano a destra. Abbiamo quindi

h 4
et )= o (s )

tanf; tan6;
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da cui

ed infine

( PROBLEMA 5.21

W1+ L) = (1 2
( + tan92> ( tan 6,

h/ _ I’ll - tai’ldel h
=hra <t
tan 6,

Carrucola e pedana mobile xx

Nel sistema rappresentato in Figura la pedana di massa M e solidale con la prima
carrucola, ed é libera di scorrere sul piano orizzontale. Anche la massa m; € libera di
scorrere sul piano inclinato. Non vi sono attriti, ed il filo & inestensibile. Disegnare i
diagrammi delle forze per le tre masse in gioco, e determinare le loro accelerazioni.

$ 000

Tya

Figura 5.11.: Il sistema considerato nell’esercizio.
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5.21. CARRUCOLA E PEDANA MOBILE %%

Soluzione

Consideriamo il diagramma delle forze per la massa m; (Figura[5.12). Considerando il
solo moto verticale abbiamo 1’equazione

mzyz =T — ng

dove T & la tensione del filo.

mag

Figura 5.12.: Le forze che agiscono sulla massa sospesa ;.

Per quanto riguarda il piano inclinato, di cui la carrucola fa parte, abbiamo il diagram-
ma delle forze rappresentato in Figura
che corrisponde alle equazioni del moto

Mi = T—-Tcosf— Nsinf
Mij = R—-Mg—Ncos@+Tsinf.

Notare che jj = 0. Consideriamo infine la massa m;. Il diagramma delle forze ¢ in

Figura

e le relative equazioni del moto sono

mi¥1 = Nsinf+ Tcosb

mijjy = Ncos0 —myg— Tsin6

Abbiamo le 5 relazioni precedenti e le incognite X, X1, i1, ij2, T, N, R. Servono quindi
altre due equazioni. La prima si puo scrivere imponendo che I’accelerazione della massa

@ 104 versione del 5 ottobre 2016



5.21. CARRUCOLA E PEDANA MOBILE %%

Figura 5.13.: Le forze che agiscono sul piano inclinato.

m relativa alla pedana sia inclinata rispetto all’orizzontale di un angolo 6:

Y1

tan9 i ve—
X1 —X

La seconda deriva dalla inestensibilita del filo. Possiamo scrivere la lunghezza di que-
st’ultimo come
X — X1
{ = —yy) — x + —— + costante
cos

e derivando due volte rispetto al tempo otteniamo

(2 + %) cos 6 = & — 1.

Abbiamo in conclusione un sistema lineare che permette di ricavare le accelerazioni
incognite, insieme a T e N.
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-

Figura 5.14.: Le forze che agiscono sul corpo appoggiato al piano inclinato.

PROBLEMA 5.22
( Catena chiusa di masse xx

Nell’apparato in Figura non ci sono attriti, il filo & senza massa, inestensibile e teso.
Calcolare le accelerazioni delle masse. E possibile determinare le tensioni dei fili?

Soluzione

Dal diagramma delle forze in Figura
seguono le equazioni del moto

ma = TZ — T3
mya = T3—1T1 —myg
mza = T —To+mzg

e sommando membro a membro troviamo 1’accelerazione

(m3 —ma)g
my +my +mz
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5.22. CATENA CHIUSA DI MASSE *

Figura 5.15.: Il sistema considerato nell’esercizio.
Le equazioni precedenti sono insufficienti a determinare le tensioni. Questo corrisponde
al fatto che la trasformazione

TN, — T{+AT
T, — T+ AT
T3 — T3+ AT

le lascia invariate.
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15

T3

‘77 12

T

T

Ty

/

AN

Figura 5.16.: Le forze applicate alle varie masse che compongono il sistema.

‘7 PROBLEMA 5.23

Caduta quasi libera x

Sul piano senza attrito in figura, inclinato rispetto all’orizzontale di un angolo «, &
appoggiato un cuneo di massa M. Su quest’ultimo é fissato un pendolo di massa m e
lunghezza /. Si osserva che, per opportune condizioni iniziali, il cuneo si muove con
accelerazione costante a e I'inclinazione del pendolo rispetto all’orizzontale ha un valore
costante 6. Determinare a e 6.

©0ce

Figura 5.17.: Il sistema considerato nell’esercizio.
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Soluzione

Se l'inclinazione del pendolo & costante 1’accelerazione del cuneo ¢ anche 1’accelerazione
del centro di massa del sistema complessivo. Questa inoltre sara diretta parallelamen-
te al piano inclinato: applicando la seconda legge della dinamica possiamo calcolarla
immediatamente:

(M+m)a = (M+m)gsina
a = gsina

Il calcolo e perfettamente analogo a quello che si esegue per un unico corpo su un piano
inclinato: 1'unica forza parallela al piano ¢ una componente della forza peso.

Adesso possiamo determinare I’angolo 6. Un semplice ragionamento permette di
arrivare al risultato senza eseguire alcun calcolo. Se consideriamo il cuneo (includendo
in esso il supporto verticale del pendolo), sappiamo gia che la sua accelerazione e a =
gsina. Ma anche al cuneo deve applicarsi la seconda legge della dinamica, e quindi

Ma = Mgsina + T

dove T & la componente della forza associata alla tensione del filo parallela al piano. Ne
segue che T = 0, cioe il filo & perpendicolare al piano inclinato. In altre parole 6 = .

PROBLEMA 5.24
( Pedana mobile xx

La pedana in Figura5.18/¢ inclinato di un angolo 6(t) rispetto alla orizzontale, ed ha un
punto fisso. La massa m ¢ libera di muoversi su di essa senza attrito. Determinare l'equa-
zione del moto. Risolverla nel caso 0(t) = Ot, e determinare se possibile le condizioni
iniziali a t = 0 in modo da avere una oscillazione armonica.

Soluzione

Introducendo un sistema di coordinate polari centrato sul punto fisso possiamo scrivere
la posizione della massa come
? = Xér

dove x ¢ la coordinata della massa sulla pedana. Derivando otteniamo la velocita
U= xé, + xéég

e l'accelerazione
d=(x—x6%)é + (x0+210)é.

Le forze che agiscono sulla massa si scrivono

F = —mg(é,sin 6 + 9 cosB) + Neg
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Figura 5.18.: Il sistema considerato nell’esercizio.

dove Néy ¢ la reazione vincolare della pedana, ad essa normale. Prendendo le compo-
nenti dirette lungo é, di F = mad otteniamo

m (% — x6%) = —mgsin@.
Nel caso § = ()t abbiamo
¥ — 0% = —gsin Q.

Questa e una equazione lineare a coefficienti costanti, non omogenea. Cerchiamo la
soluzione generale x,(t) dell’'omogenea associata

j(:g - szO - 0
nella forma x = ¢*. Troviamo come possibili soluzioni « = £Q) e quindi
X, = Ae + Be O,

Determiniamo adesso una soluzione particolare dell’equazione completa, che cerchere-
mo nella forma
x* = CsinQt.

Sostituendo troviamo
—20°C = —g
e quindi

« 8 .
X _ZT)ZSIth'

La soluzione generale ¢ quindi

x=x,+x* = Ae™™ + Be M + Zgﬁsinﬂt
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e per avere una oscillazione armonica dovra essere A = B = 0. Questo significa
x(0) = 0

0(0) = .

PROBLEMA 5.25
( Urto massa-pedana xx

La massa m in Figura si muove inizialmente sul piano orizzontale privo di attrito
con velocita vg. Successivamente sale sul piano inclinato di massa M, libero anche esso
di muoversi sul piano. Determinare per quali valori della velocita vy la massa supera il
piano inclinato.

m Vo [ M

Figura 5.19.: Il sistema considerato nell’esercizio.

Soluzione

Sia l'energia che la quantita di moto orizzontale del sistema si conservano. Uguagliamo
queste due quantita tra 'istante immediatamente precedente al contatto tra pedana e
massa e l'istante in cui la massa arriva nel punto piu alto della pedana:
1 1 1
Emvé = Em [(Vx + vx,,el)z + v;rd} + EMVX2 +mgh
moyg = m (Vx + Ux,rel) + MVy

dove V indica la velocita del piano inclinato (orizzontale) e vy s, vy e le due compo-
nenti della velocita della massa relative a quest'ultimo. Questa velocita relativa deve
inoltre essere inclinata rispetto all’orizzontale di un angolo ¢

Dy rel
Y — tan

Ox,rel
ma non useremo questa ultima condizione. Utilizzando le tre relazioni si puo calcolare
Ux,rels Uy,rel € Va, € porre ad esempio vy o > 0.
Piu semplicemente si pud determinare la velocita necessaria a far arrivare la massa
esattamente nel punto piu alto della pedana. In questo caso vy, ) = vy, = 0 € le leggi
di conservazione si scrivono

1 1
Emvélmin = E(m + M)V2 + mgh
Mo min = (m + M) Vx,min
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da cui segue immediatamente

m+ M
V0,min = \/ 28h M

Per velocita maggiori di quella determinata il piano inclinato verra superato. Notare che
per M — oo si ha il consueto risultato v i, — /2¢h, mentre per M — 0 v i, — 0.

PROBLEMA 5.26
( Filo che si avvolge xx

I disco in figura é fissato rigidamente ad un piano orizzontale, e ad esso & fissato un
filo inestensibile di lunghezza ¢. All’altro estremo e fissata una massa m che viene
lanciata con velocita iniziale di modulo vy in direzione perpendicolare al filo. Calcolare
la velocita della massa, la sua traiettoria e la tensione del filo in funzione del tempo.

o

—@ m

Figura 5.20.: Il sistema considerato nell’esercizio. A sinistra nella condizione iniziale, a
destra in un istante successivo.

Soluzione

La velocita della massa & sempre ortogonale al filo, quindi 1'unica forza ad essa applicata
(la tensione del filo) non fa lavoro. L'energia cinetica sara quindi conservata ed il modulo
della velocita sara sempre uguale a vg. Per quanto riguarda la tensione del filo, possiamo
considerare istante per istante il moto come moto circolare con velocita vy attorno a
un punto posto a distanza £ — x = ¢ — Rf. Avremo quindi uguaglianza tra T/m e

accelerazione centripeta:
vy T
{—RO

quindi la tensione aumenta all’accorciarsi del filo.

m
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Verifichiamo tutto questo in modo pit1 formale. Introducendo un sistema di coordina-
te polari possiamo scrivere la posizione della massa come

7= Ré, + (£ — RO)ég
e derivando rispetto al tempo troviamo velocita
T = Ré, + (¢ — RO)éy — ROy = —O(L — RO)&,

e accelerazione
d=[R6?>— (L —RO)| & —6*(L — RO)&.

D’altra parte la forza che agisce sulla massa si puo scrivere come F = —Téy e dal secondo
principio della dinamica segue
me*>({ —RO) = T

RO?>—6H(¢ —RO) = 0.

La seconda equazione si puo riscrivere come

d .
EG(K —RO)=0
ossia
G(K — R@) =170.
Sostituendo nella seconda abbiamo
2
_ muy
T= {—RO°

Per la traiettoria possiamo scrivere

> cos —sin®
r-R( sin 6 >+(€_R9)< cos 0 )

che da direttamente I'equazione in forma parametrica:

X = Rcosf— (¢ —R0)sinb
y = Rsinf+ ({ —R0O)cosb.

La distanza dal centro diminuisce con 6:

r? = x> +y*> = R* 4 (£ — RO)?.

PROBLEMA 5.27
( Molle in serie e in parallelo

Nei sistemi rappresentati in Figura tutte le molle sono di lunghezza a riposo nulla
e le masse sono identiche. Per quale valore di K il sistema al centro oscilla alla stessa
frequenza di quello a sinistra? E per quale alla stessa frequenza di quello a destra?
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5.28. OSCILLATORE CON MASSA APPOGGIATA +*

Figura 5.21.: Equivalenza tra diversi sistemi di molle. Al centro una massa attaccata
un’unica molla, che per un opportuno valore di K & equivalente al sistema
a sinistra (una massa attaccata a due molle poste in parallelo) o a quello a
destra (una massa attaccata a due molle in serie).

Soluzione

Consideriamo prima di tutto il sistema a sinistra. Possiamo scrivere

Fl = —le
Fz = —sz

perche la deformazione delle due molle & la stessa. Da questo segue che
F=FK+F= —(Kl +K2)x

e quindi K = Kj + Kj. Per il sistema a destra vale invece

F = —K1X1
F = —szz
da cui
5—1—5——(3( +x7) = —x
KK 1 2) =
cioe
1_1 1
K K K

PROBLEMA 5.28
( Oscillatore con massa appoggiata *x

Nel sistema in Figura la molla ha costante elastica K e tra le due masse si ha un
attrito caratterizzato da coefficienti statici e dinamici y; e ys. Non si ha attrito tra massa
my e piano orizzontale. Determinare la massima ampiezza di oscillazione per la quale
la massa m; non slitta sulla m,, e la frequenza di oscillazione in tale condizione.
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5.29. CARRUCOLA E MOTO RELATIVO #*x

Ms;,ud

Soluzione

Figura 5.22.: Il sistema considerato nell’esercizio.

Se le due masse non slittano possiamo scrivere

77115('1 = FA
miyjy = N-—-mg=>0

con |Fy| < usN = pgmyg. Per la massa m; vale

moXy = —Kxp — Fy

e per non slittare deve essere ¥; = ¥, ossia

Segue che

ossia

Fa K Fa
mq my nip '
Fa=— ™ b

my + mp
mq
Xo| < psmy
it m, 2 S Hsmg

che possiamo riscrivere come

( PROBLEMA 5.29

my +

m mqy+m
—yngZ <x < ysgg.

K

Carrucola e moto relativo xx

Facendo riferimento alla Figura trovare quale forza F & necessario applicare alla
massa my per impedire qualsiasi accelerazione relativa tra my, my e ms.

$ 000
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5.29. CARRUCOLA E MOTO RELATIVO #*x

s

my

Figura 5.23.: Il sistema considerato nell’esercizio.

Soluzione

Scriviamo le equazioni del moto delle tre masse:

mljc'l:F—R—T
7112552:T
M3553:R

1’713]23 =T-— msg .
Inoltre deve essere

Xp— X% = —13

¥ = X3
e sostituendo otteniamo

mx¥=F—R-T
Mok =T
m3z¥1 = R

mg(%) — %) =T — m3zg

da cui

(m1 + m3)5c'1 + mpiy = F
m3jc'1 — (M3 +m2)552 = —n13g.

Le due accelerazioni %, ¥, saranno uguali quando

m
F:(m1+m2+n13)m—zg.
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5.30. URTO TRA UNA MASSA E UN SISTEMA COMPOSTO *x

PROBLEMA 5.30
( Urto tra una massa e un sistema composto *x

Nel sistema in Figura la massa mj urta elasticamente il sistema composto dalle
masse 11y e m3. Queste ultime sono collegate da una molla di costante elastica k. Trovare
le velocita finali della massa m; e del centro di massa del sistema m; + ms3, nell’ipotesi
che 'urto avvenga in un tempo molto breve.

Figura 5.24.: Il sistema considerato nell’esercizio.

Soluzione

Se l'urto avviene in un tempo molto breve possiamo trascurare lo spostamento della
massa mj3, di conseguenza la molla non viene compressa e nessuna forza agisce sulla
massa my. Abbiamo quindi un normale urto elastico tra la massa m; e la massa ms3,
descritto dalla conservazione di energia e quantita di moto:
ms3
0g — 01 = —03
my
Vg + 01 =03

e infine
27111
U3 = ——0
my + ms
mi — Mg
U1 = ————0p
my + ms

Dopo l'urto la velocita del centro di massa del sistema m, + mj3 si conserva, e vale

U313 27’7117’113

Vem = = v
e my + ms (TH1 -+ m3) (1712 + TH3)

PROBLEMA 5.31
( Urto anelastico con sistema composito xx

Si faccia riferimento al sistema descritto nel problema Se le masse m; e m3 riman-
gono a contatto calcolare la velocita finale del centro di massa del sistema e 1’energia
dissipata durante 1'urto.
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5.32. MASSIMA COMPRESSIONE *%

Soluzione
Possiamo utilizzare la conservazione della quantita di moto per scrivere
myvg = (my + mz)v143
dato che la molla, come nel caso precedente, non interviene durante 1'urto. Abbiamo

quindi
my

0143 = —7 00
my + ms
e la variazione dell’energia sara
AE = lmo? 7
— Emlvo - E(ml + m3)’01+3
1 myms 5
= ——" 5.
2 (my +mj3) °

La velocita finale del centro di massa sara

(mq +m3)vi43 1m0
my + my +ms my + my + ms

cm —

cioé la quantita di moto iniziale diviso la massa totale.

PROBLEMA 5.32
( Massima compressione *x

Nel sistema in Figura la massa m; ¢ lanciata inizialmente con velocita vy. La molla
di lunghezza a riposo uguale alla lunghezza del piano inclinato & libera di contrarsi, e il
piano inclinato e libero di spostarsi sul piano orizzontale. Non vi sono attriti. Calcolare
la massima contrazione della molla, e la massima velocita del piano inclinato.

Figura 5.25.: Il sistema considerato nell’esercizio.

@ 118 versione del 5 ottobre 2016



5.33. SBARRA VINCOLATA *x%

Soluzione

Usiamo la conservazione dell’energia e della quantita di moto orizzontale. Detta ¢ la
contrazione della molla abbiamo

1 1 1
Emlv% = §<m1 +mp)V? 4+ mygdsinf + Ekéz

myvg = (my +my)V

dove e stato usato il fatto che nel momento di massima contrazione le masse m; e m»
hanno la stessa velocita. Da questo segue

my g sin 6 1 mymy

2
2 k km1+m2

e quindi (u = mymy/ (mq + my) & la massa ridotta del sistema)

_ mygsin® uk -
0= k (\/1+m%g2sin2900 1

dove ¢ stata scelta la soluzione § > 0. Per valori molto grandi della velocita 1'effetto
della molla & dominante:
o~ \/il)o

mentre per valori piccoli ¢ la gravita a limitare la contrazione:

~ H 02
" 2mygsinf °

Per ottenere le approssimazioni precedenti si & utilizzato v/1+x ~ /x perx > le
V1+x ~1+4x/2per x < 1. La massima velocita del piano inclinato si ha chiaramente
quando la massa m; € separata da esso. In questo caso valgono le normali formule
dell’urto elastico, che danno

21’}’[1

V1= ———0p
my + myp

PROBLEMA 5.33
( Sbarra vincolata xx

L’asta rappresentata in Figura di massa m e lunghezza ¢, ha un estremo vincolato
a muoversi su una guida verticale e I'altro su una guida orizzontale. Inizialmente 6 &
molto piccolo. Determinare il punto della sbarra che raggiunge la massima velocita v,y
nella caduta (da 8 = 0a 0 = 71/2), e calcolare vy4y.
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5.33. SBARRA VINCOLATA *x%

—

Figura 5.26.: La sbarra vincolata in una configurazione intermedia tra quella iniziale e
quella finale.

Soluzione

Dato l'angolo 6 possiamo scrivere la posizione di un tratto infinitesimo sulla sbarra
posto a una distanza r fissata dal giunto verticale come

7 = L cos0é, + ré,
dove 0 < r < /. La velocita sara data da
7 = —(0sin6é, + rfé,
ed il suo modulo quadro
v> =07 [r* + £ (¢ —2r)sin® 0]

Notare che la coordinata » non e stata derivata. Possiamo ora scrivere 1’energia cinetica
come

1 2 1"7(2'2 242 i 2 32 o2
T=z[0v(r)dm=5— [ (r’6>+(76”sin” 0 — 20r6 sin” ) dr

2 ~27 J
ossia ,
T = —ml?6?
M
Per I'energia potenziale abbiamo
14
u= mg cos 0
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5.34. URTO MULTIPLO *#*

che poteva ottenersi direttamente usando la posizione del centro di massa. Usando la
conservazione dell’energia troviamo

6% = 37g(1 —cos )

Per un fissato valore di 6 il punto pitt veloce dell’asta corrisponde al massimo di v?
rispettoarin0 <r < {,cioer = {sef < /4 ese > rt/4. La relativa velocita vale

v? = (?6% cos® 0 = 3¢¢(1 — cos 0) cos> 0 0 <m/4
v? = (*%sin® 0 = 3¢¢(1 — cos 0)*(1 + cos 6) 0>rm/4.

Il massimo assoluto di questa espressione si ha per 8 = /2, quindi

Tmax = 0

Upax = 380

cioe il giunto fissato sulla guida verticale si muove pit1 velocemente di ogni altro punto,
e questo avviene quando la sbarra e verticale.

PROBLEMA 5.34
( Urto multiplo *x

Determinare le velocita finali delle masse nel sistema in Figura supponendo tutti
gli urti istantanei e elastici, se
me = v*'m

con y > 0. Considerare in particolare il caso y = 1.

mq m ms meg

- (0

Figura 5.27.: Il sistema considerato nell’esercizio.

Soluzione

In un urto elastico tra una massa m e una m’ se la prima ¢ inizialmente in moto con
velocita vy e la seconda e ferma immediatamente dopo 1'urto si ha

m—m'

0 = 0o
m +m

, 2m

U= —70.
m-+m
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5.35. MOTO SU UNA GUIDA PARABOLICA *x%

Quindji, tenuto conto che nel nostro caso il rapporto tra una massa e quella precedente &
v si trova

1_
0 = ’yvo
149
v = 2 v

Supponiamo che ciascuna massa urti la successiva una sola volta. L'espressione generale
per la velocita e ad eccezione della massa pit a destra, per la quale

O = <1+’)/> 00 .

Le caso particolare v = 1 tutte le masse sono ferme, salvo l'ultima che si muove con
velocita vy.

PROBLEMA 5.35
( Moto su una guida parabolica x*

Una particella di massa m e vincolata a muoversi su una guida della forma descritta
dall’equazione

x2

yz—;

dove a > 0 & un parametro assegnato della dimensione di una lunghezza. Se la particella
si trova inizialmente in x = 0 con velocita positiva molto piccola, € possibile il distacco
dalla guida?

Soluzione

Se scriviamo la reazione vincolare nella forma R7i, dove 7i e il versore normale al vincolo
nel punto dato, la condizione di distacco &€ R < 0. L'equazione del moto nella direzione
normale 7 si scrive )
v
m— = —mgcosf + R
P

dove p ¢ il raggio di curvatura della parabola nel punto dato e 6 la sua inclinazione
rispetto alla verticale. Dall’equazione della guida segue che

2x
dy = ——d
Y 1 x
da cui
1
cosf =
1+4
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5.36. OSCILLATORE FORZATO CON ATTRITO »* %

Per il raggio di curvatura abbiamo la formula

da cui

e quindi
. mg 2m v

o 3/2°
Ji+a e {1+4aif}

Il modulo quadro della velocita si determina usando la conservazione dell’energia:

1
0 = ~mv* + mgy

2
da cui
2
2 — 28,2
a
e sostituendo troviamo
m
R= "8
1+ %4

che risulta essere sempre positivo.

PROBLEMA 5.36
( Oscillatore forzato con attrito x x

Un oscillatore forzato e descritto dall’equazione
mi +2A% + kx = F(t)

dove A parametrizza l'attrito viscoso presente e F(t) é un’onda quadra di ampiezza F,
e periodo T:

E(t) = Fo kT <t<(k+3)
"l -Rh  (k+)HT<t<

Trovare se possibile una soluzione x(t) periodica in —co < t < oo e discuterne l'unicita.
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5.36. OSCILLATORE FORZATO CON ATTRITO * x

Soluzione

Determiniamo la soluzione generale nel periodo dell’'onda quadra corrispondente a
k=0.Trat =0et = T/21'equazione si riduce a

mx+2Ax +kx = F
che ammette come soluzione generale

Fo
%

xo(t) = Age™ + Aje!

dove «, a* sono le soluzioni complesse coniugate di
ma? 4+ 2\ +k=0.

Analogamente trat = T/2 e t = T 'equazione diviene

mi +2Ax +kx = —F

con soluzione che scriviamo nella forma

Dobbiamo imporre la continuita della soluzione e della sua derivata in t = T /2. Abbia-
mo un sistema lineare

. F F
Age* T/ 1+ Aje" T/z—i—?o = Bo—I—BS—?O
DCAO@“T/Z + a*Agea*T/Z — IXB() + Dé*BE)k

che ha per soluzione
20" F
By = Age*™/? + 0.
o —uk
Se adesso scriviamo la soluzione trat = pT et = pT + T /2 nella forma

Fo

xp(t) = Apea(f*ﬂ) +A;ea*(t*pT) + b

e imponiamo la continuita di soluzione e derivata in t = T troviamo

20 Fo
Al = EDCTA[) + 70{* “ ? (eaT/z — 1)

e ripetendo il ragionamento per t = pT

20 F
_aT 0 aT/2 _
Ap=e A”*H—rx*—aik (e 1).
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5.37. CADUTA DA UN DIRUPO #*x

Possiamo risolvere questa relazione ricorsiva scrivendo

20 F 1 — T
A, =T A +~————47(wT”-—1)444447
4 O v —ak 1—exT
che risulta valida anche per p < 0. Se « ha una parte reale negativa, come accade in
presenza di attrito, abbiamo evidentemente che per p — —oo i coefficienti A, divergono.
Fa eccezione il caso in cui

20* F 1
An — 7(0&/2_1)
07w —ak ¢ 1—eT

per il quale
Ay = Ag

e che corrisponde chiaramente a una soluzione periodica.

PROBLEMA 5.37
( Caduta da un dirupo »*

Una particella di massa m si muove su una superficie descritta dall’equazione

z=F(y)

dove

0 y<0

Fly)=4 8y) O=sy=<L

—h y>1L
e g(y) & una funzione sufficientemente regolare e decrescente, con g(0) = ¢’(0) = 0,
¢(L) = —h, ¢'(L) = 0 che non & necessario specificare. Inizialmente la particella si trova
iny<0e

7 =1vpcos0 %+ vpsinby.

Determinare la velocita della particella quando questa si trovainy > L.

Soluzione

Le uniche forze esterne sono quella di gravita —mgé, e la reazione vincolare, perpendi-
colare ovunque a éy e al moto della particella. Si conserva quindi la quantita di moto
lungo x e I'energia totale. Possiamo scrivere di conseguenza

mugcosf = muy
1mvz = 1m <u2 + uz) —mgh
2 0o — 2 X Yy g

dove uy, 1, sono le componenti della velocita per y > L. Risolvendo otteniamo
Uy = 7vgcosb

u, = \/v%(l —cos?0) + 2gh.
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5.38. DIFFUSIONE DA UNA BUCA *x

Figura 5.28.: La superficie descritta nell’esercizio, e la particella al di sopra di essa.

PROBLEMA 5.38
( Diffusione da una buca *xx

Figura 5.29.: Il piano orizzontale e la cavita circolare viste dall’alto.

In un piano orizzontale e praticata una cavita circolare, di raggio R e profondita 5.
I bordi della cavita sono arrotondati, ed un punto materiale di massa m € vincolato a
muoversi sulla superficie risultante. Inizialmente il punto materiale si muove all’esterno
della cavita, con velocita di modulo vy e parametro d’urto b, come in Figura m

Determinare le quantita conservate, e I'angolo di diffusione ¥ all’uscita della buca, in
funzione dei parametri specificati.
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5.38. DIFFUSIONE DA UNA BUCA *x

Soluzione

Le quantita conservate sono l'energia totale (cinetica pit1 potenziale gravitazionale) e la
componente verticale del momento angolare rispetto al centro della buca. Quest’ultima
si conserva perché le forze che agiscono sulla particella sono normali al piano (forza di
gravita sempre, e reazione vincolare quando la particella non & sul bordo della buca)
oppure radiali (reazione vincolare quando la particella si trova sul bordo). Nel primo
caso il momento della forza non ha componente verticale, nel secondo caso ¢ nullo.

All'interno e all’esterno della buca la particella si muovera di moto rettilineo uniforme.
Resta da determinare come i diversi pezzi di traiettoria si raccordano tra di loro.

Figura 5.30.: Una possibile traiettoria della particella.

Facendo riferimento alla Figura ¢ anzitutto chiaro che & = . Questo perche,
come vedremo tra breve, le due leggi di conservazione precedentemente citate sono
sufficienti a determinare univocamente $ in funzione di «. Inoltre

1. Data una soluzione 7(t) che soddisfa alle equazioni del moto, anche la soluzione
invertita nel tempo 7(—t) le soddisfa (le forze dipendono solo dalla posizione)

2. Invertendo nel tempo una soluzione 1’entrata nella buca diventa una uscita da
essa. Quindi la legge che lega « e § ¢ la stessa che lega 7y a B.

Eguagliamo adesso la conservazione dell’energia e del momento angolare, tra un istante
nel quale la particella e fuori dalla buca e uno in cui si trova al suo interno. Abbiamo

1 1
Emv% = Emvz — mgh (5.38.1)
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5.39. MOLLA E ATTRITO %

e
— movgb = —movRsin 8 (5.38.2)
Dall’Equazione (5.38.2) segue
_ Uob
V= Rsin (5.38.3)

Ricavando v? dalla conservazione dell’energia e sostituendo abbiamo quindi quindi
(tenendo conto che b/R = sina)

i02
2gh
UL (5.38.4)
sin” vg
ossia )
Sinﬁ _ s
1+ %

Yo

Dato che ¥ = 2 (a — ) otteniamo

b

Ry j1+ %"
0

Da notare che si sarebbe potuto utilizzare anche la conservazione della componente
tangenziale al bordo della buca della quantita di moto, ottenendo la relazione

Y = 2 arcsin (12) — 2 arcsin

muvg sinaw = mov sin (5.38.5)

equivalente alla (5.38.2).

PROBLEMA 5.39
( Molla e attrito ~

ue masse 71 e My su un piano orizzontale sono collegate tra loro da una molla di
D mp e m tal llegate tra loro d lla d
lunghezza a riposo nulla e costante elastica k.

Determinare la massima distanza a cui le masse possono rimanere in equilibrio in
presenza di un attrito statico con coefficiente ;.
Soluzione
Le forze che agiscono sulla massa 117 e m; quando la molla e lunga ¢ sono

F = —kf—l—FA,l
FE = kg‘i_FA,z
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5.40. CARRUCOLA CON ATTRITO * * %

dove
|Fail < psmig.
Devono essere quindi soddisfatte le due condizioni
pstmg > kel
psmag >kl
e quindi
e %min (my, my) .

PROBLEMA 5.40
( Carrucola con attrito x x %

Tra un filo e la carrucola rappresentata in Figura (da considerare immobile) si ha
un attrito descritto da coefficienti ys, p4. Ai due estremi del filo sono appese delle masse
my e my. Per quali valori di my, m; il sistema e in equilibrio? In tale condizione, quanto
vale la tensione del filo in funzione dell’angolo 6?

my M2

Figura 5.31.: La carrucola considerata nel problema.

Soluzione

Consideriamo le forze che agiscono su un tratto infinitesimo del filo (Figura [5.32).
Abbiamo all’equilibrio

0= —T(0 +do)2(0 +do) + T(0)%(0) + AN (0)(0) + dFA(0)%(0) (5.40.1)
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5.40. CARRUCOLA CON ATTRITO * %

Figura 5.32.: Le forze che agiscono su un tratto del filo compreso tra 0 e 6 + df.

dove T(6) e la tensione del filo, dN () la reazione vincolare normale e dF4 () la forza
di attrito, con

|dFA(0)] < usdN(0). (5.40.2)
Sviluppando possiamo scrivere
d . _ dN(9) ., dFA(6)

Espandendo la derivata otteniamo

ar, At _ AN, dFa,
a0 0 T de o

Proiettando nelle direzioni tangenti e normali abbiamo le due equazioni

aT_ ks
e de
dN
I'=-n
dove si & tenuto conto del fatto che
a@ __;
ae ’
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5.41. OSCILLATORI ACCOPPIATI * x

Usando il valore massimo e minimo della forza di attrito possiamo scrivere

dT
— sl Tl < 5 < ws| ] (5.40.3)

Integrando abbiamo
T(0)e " < T(0) < T(0)e"?

ossia, dato che T(0) = mpg e T(7) = myg,

e*ﬂsn’ S @ S e?‘sn.
my

Per un valore arbitrario del rapporto delle masse che soddisfa la condizione preceden-

te la tensione T () non & univocamente determinata. Esistono molti modi infatti di
soddisfare la (5.40.3) con le corrette condizioni al contorno. Nei casi estremi

@ — e:l:]/lsff

nmy

la soluzione & invece unica:
T(6) = mpgetts? .

PROBLEMA 5.41
( Oscillatori accoppiati x x x

Scrivere e risolvere le equazioni del moto per il sistema in Figura mostrando che
e possibile scrivere il moto come somma di due modi di oscillazione indipendenti.
Descrivere ciascuno di essi. La lunghezza a riposo delle molle & nulla.

K

K1 [{2

Figura 5.33.: Il sistema considerato nell’esercizio.

Soluzione

Le equazioni del moto sono della forma

m¥; = —Kix1+ Kz(Xz - x1)
771552 = Kz(xl — xz) — K1XQ

Conviene introdurre la notazione
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5.41. OSCILLATORI ACCOPPIATI * x *

in modo da poter riscrivere le equazioni del moto nella forma

mii + Ku =0
dove
K — Ki+Ky, —-K
-K, Ki+Kp

In analogia con il metodo usato per trattare equazioni lineari omogenee a coefficienti
costanti cercheremo soluzioni della forma

u(t) = Ae*

dove A & un vettore costante. Sostituendo nelle equazioni del moto abbiamo
1
<(x21 + mK> A=0 (5.41.1)

Questo e un sistema lineare omogeneo che avra soluzioni non banali quando

1 W + w3 +a? —w?
214 “g) = | *1 2 2 —
dove abbiamo posto w? = K;/m. Questo significa
2
(wi+wj +0a?)" = wj

che accadra quando

2 _ 2
Xy = —wq

oppure quando

W = —w% —2w3

Nel primo caso il sistema (5.41.1) diviene

W2 —w?
( _ a2)2 wzz ) A1 =0
2 2
corrispondente alla soluzione
uy(t) = ( } ) (a1 cos wyt + by sinwst) .

In questo caso le due masse oscillano in sincrono, e la molla centrale non influenza il
moto. Questo spiega la frequenza di oscillazione. Nel secondo caso abbiamo

2 2

Y T2 ) A, =0

P R R (¥ )
2 2

uy(t) = ( _11 ) (azcosw/w%+2w§t+bzsin\/w%+2w§t> )

In questo caso le due masse oscillano in opposizione di fase. La soluzione generale sara
una sovrapposizione arbitraria di u; e u,.

da cui
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5.42. OSCILLATORE #*x

PROBLEMA 5.42
( Oscillatore xx

Nel sistema in Figura l'asta AC, AC = /, & libera di ruotare attorno al perno posto
in A, ed & di massa trascurabile. La molla ha costante elastica k e lunghezza a riposo
nulla. Inoltre AD = AB = 1/.

D

C

Figura 5.34.: L'oscillatore considerato nel problema.

Trovare la posizione di equilibrio e la frequenza della piccole oscillazioni attorno ad
essa.

Soluzione

Introducendo come coordinata I’angolo 6 dell’asta rispetto all’orizzontale possiamo

scrivere 1’energia cinetica

1 1 .
K = Emv2 = §m€292

e I'energia potenziale
K2
U =mglsinf + > [962 (1- sine)}
La posizione di equilibrio stabile corrisponde al minimo del potenziale, che e della

forma
K
U= (mgﬁ — 9£2> sin 6 + costante
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5.43. MOLLA CON MASSA NON TRASCURABILE. ANALISI APPROSSIMATA. * % x

avremo quindi un minimo per § = —7/2 se mgl > K¢*/9 oppure per 6 = 71/2 se
mgl < K¢?/9.Se mgl = K¢*/9 allora U = 0.
Nel primo caso scriviamo 8 = —71/2 + € da cui
_ L1 po Kp\ . T
E = Emﬁ &+ <mg£— 66 sin (_E +s) + costante

1 2.0 K\ € 4
= Emﬁe + mg£—§£ E+costante+O(e).

Questa & I’energia di un oscillatore armonico di frequenza

f= 1 fmgl—K2/9
Y me?

Nel secondo caso scriviamo 6 = 71/2 + ¢ e analogamente troviamo l’energia di un
oscillatore armonico di frequenza

_ 1 JKe2/9—mgl
f =5 m2
( PROBLEMA 5.43

Molla con massa non trascurabile. Analisi approssimata. * % %

Si vuole trattare approssimativamente l'effetto della massa non nulla y di una molla
sulla frequenza di oscillazione. Per fare questo si scrive l'energia del sistema supponen-
do che la molla si muova nello stesso modo in cui si muoverebbe se la sua massa fosse
nulla.

con do tale metodo si determini la frequenza di oscillazione del sistema in Figura
supponendo la molla di lunghezza a riposo nulla.

k.p

M

Figura 5.35.: Loscillatore considerato nel problema, con una molla di massa non nulla

u.

Soluzione

Scriviamo 'energia del sistema nella forma

1. . 1
E= EMEZ + Ekﬁz + Kinolla
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5.44. OSCILLAZIONE IN UNA GUIDA PARABOLICA *x

dove Kpol1a € 1'energia cinetica della molla, e ¢ la sua lunghezza. Parametrizziamo la
posizione di un elemento della molla come

x = Llu
con 0 < u < 1. Derivando rispetto al tempo otteniamo

% ={u

dx = fdu .

La parametrizzazione scelta e equivalente alla ipotesi che la molla si dilati in maniera
uniforme. Abbiamo allora

1 ] L. 1u,
Kinolla = z/dy P2 = g‘/o w2 = L.
In conclusione l'energia del sistema si scrive nella forma

E:%(M%—%)@hr%kfz

che corrisponde ad un oscillatore di frequenza

1 k
f =
2\ M+u/3
( PROBLEMA 5.44

Oscillazione in una guida parabolica xx

Si calcoli la frequenza di oscillazione di un punto materiale di massa m vincolato a
muoversi su una guida descritta dall’equazione

y = ax?

con a > 0, nella approssimazione di piccole oscillazioni attorno a x = 0.

Soluzione
Utilizzando come coordinata l’ascissa x del punto materiale scriviamo l'energia del
sistema

E= %m (2 + %) + mgy

nella forma ,
E=Zm (1+402x?) 3* + mgax?.
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5.45. OSCILLAZIONI DI UN MANUBRIO **

Sviluppando per piccoli valori di x, X otteniamo al secondo ordine

1
E= mez + mgax?

che corrisponde ad un oscillatore armonico di frequenza

1
f= EVZS’“

PROBLEMA 5.45
( Oscillazioni di un manubrio xx

Agli estremi di un’asta di lunghezza ¢ e massa trascurabile sono fissate due masse 1,
e my (vedere Figura [5.36). L'asta ¢ libera di ruotare in un piano verticale attorno ad
un perno posto su essa, a distanza |x| < ¢ dalla massa m;. Determinare la frequenza
delle piccole oscillazioni attorno alla posizione di equilibrio stabile in funzione di x. E
possibile interpretare le soluzioni ottenute per |x| > £?

Figura 5.36.: Il manubrio considerato nel problema, libero di ruotare attorno al perno
indicato dal piccolo cerchio scuro.
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5.46. MOTO LIBERO IN COORDINATE GENERALI *x

Soluzione

Usando come coordinata 1'inclinazione 6 del manubrio rispetto alla verticale possiamo
scrivere 1’energia del sistema come

E= % [myx® + my (€ — x)?] 6% + [m1gx — mag(¢ — x)] cos 6.

La posizione di equilibrio stabile corrisponde al minimo del potenziale, cioé

=0 se mx—my(f—x)<0
0=m se mx—my(f—x)>0

ossia a seconda se il perno sia sopra o sotto il centro di massa del sistema. Trattiamo
il primo caso, il secondo e completamente analogo. Per piccoli valori di 8 possiamo
approssimare

92

0~1— —
cos 5

da cui

E— % [mlxz +my (0 — x)Z} 0% 4+ % [mag(l — x) — m19x] 62 + costante .

Questa & I'energia di un oscillatore armonico di frequenza

T2\ myx? (€ —x)2

e 1 \/ng(ﬁ—x) — m9x

Per |x| > ¢ possiamo pensare ad una estensione della sbarra esterna alle due masse,

sulla quale e posto il perno. Per x = —L con L molto grande abbiamo ad esempio
1 /s
2ty L

PROBLEMA 5.46
( Moto libero in coordinate generali *x

Un punto materiale ¢ libero di muoversi nello spazio in assenza di forze. Si vuole
descrivere il suo moto utilizzando 3 coordinate arbitrarie u;, i = 1,2,3 funzioni delle
coordinate cartesiane x; e del tempo.

Scrivere le equazioni del moto per le coordinate u;.
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5.47. LANCIO DI UN PROIETTILE DA UNA PEDANA MOBILE %%

Soluzione

L’equazione del moto in coordinate cartesiane vale
771551' =0.
Immaginando queste come funzione delle coordinate generali u; possiamo scrivere

axi

Xi= Y, =i
21304
© 2
0x; 0°x;
Xi = St ) itk
2123 04 T3 k=103 OWjOUk
da cui le equazioni del moto cercate
2
Xi .. d X
m Z ii; + i | =0
] ]
<j=1,2,3 Iuj 2123 k=T 2,3 IUjOUL )

PROBLEMA 5.47
( Lancio di un proiettile da una pedana mobile xx

Nel sistema in figura il proiettile di massa m viene lanciato da una esplosione
istantanea con un angolo 6 rispetto alla orizzontale, nel sistema di riferimento solidale
con la piattaforma. Detta W l’energia liberata dall’esplosione determinare per quale
angolo la gittata € massima. La piattaforma di lancio ha massa M ed é libera di muoversi
orizzontalmente.

m
o

v g

Figura 5.37.: Il sistema considerato nell’esercizio.

Soluzione

Scriviamo la conservazione dell’energia e della quantita di moto orizzontale tra l'istante
immediatamente precedente e successivo al lancio:

1 1
W = S [(vo cos 0 + V)? + v} sin? 9} + EMV2
0 = MV+m(vgcost+V)
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5.48. GIRO DELLA MORTE SU GUIDA MOBILE *x

dove vy € il modulo della velocita del proiettile nel sistema solidale con la piattaforma.
Risolvendo abbiamo

muvg cos 6
V=-—"75-——
M +m
¢ 2
1 muvg cos 6 2 .9 1 m? P
W= M [(UOCOSG — M—I-TH> +vgsin“ 6| + EMWUOCOS 6
da cui
» 4(m+ M)W
UO - .
m(m + 2M + m cos 20)
Le componenti della velocita del proiettile nel sistema di laboratorio sono
Uy = M vg cos B
YT Mam
vy, = Upsin®

corrispondenti ad una gittata di

20,0y M v% ) 4MW sin 20
/= =2 — sinfcosf =
I's M+m g mg(m + 2M + m cos 26)
che ha un massimo quando
cos 20 = "
m-+2M "’

Questo corrisponde ad un angolo 0 > /4. Per M > m si ritrova il caso classico
0 =rm/4.

PROBLEMA 5.48
( Giro della morte su guida mobile xx

La guida circolare di raggio R e massa M evidenziata in Figura[5.38 pud muoversi libe-
ramente in direzione orizzontale. Determinare per quale velocita vy il punto materiale
di massa m riesce a percorrerla completamente. Di quanto si e spostata la guida dopo
che questo e avvenuto?

Soluzione

Due quantita conservate in questo problema sono la quantita di moto orizzontale di
tutto il sistema (non ci sono forze esterne orizzontali) e ’energia totale (non ci sono forze
non conservative). Utilizzando come coordinate 1’angolo 6 che descrive la posizione
della particella sulla guida e la coordinata X del centro di questa abbiamo

= X+ Rsinf
R(1—cos®)
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5.48. GIRO DELLA MORTE SU GUIDA MOBILE **

m,vy

oQO——

Figura 5.38.: . Il sistema considerato nell’esercizio. La guida mobile ¢ evidenziata in blu.

= X+ Rfcosh
— Résinf

da cui

mvy = MX+m(X+ Rfcosb)
%mv% = %MX2 + %m {(X + R cos 9)2 + (RO sinG)Z} +mgR(1— cos0)

Utilizzando la prima relazione possiamo eliminare X dalla seconda, ottenendo:

m

X =
M+m

(vo — R6 cos6)

1 1 . 1 .
Eyv% = 5;[1892 cos? 6 + EmRZe)z sin? @ + mgR(1 — cos ).

Siamo adesso in grado di conoscere 6, X in funzione di 6. Se il vincolo della guida
e bilatero per poter percorrere il giro della morte é sufficiente che 6 > 0 per 6 = .
Abbiamo in generale
g - uvg — 2mgR(1 — cos6)

R2(p cos? 0 + msin® 0)

K

Se il vincolo & monolatero e invece necessario che la reazione vincolare della guida sia
sempre rivolta verso il suo centro. Possiamo discutere il problema nel sistema solidale
alla guida: I'equazione del moto in direzione ortogonale alla guida si scrive

e quindi deve essere

—mR§? = N + mgcos§ — mXsinf
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5.49. SISTEMA OSCILLANTE »*

dove abbiamo tenuto conto della opportuna proiezione della forza apparente. Possiamo
scrivere N in funzione di 6 utilizzando le relazioni precedenti, notando che

2 —2mgR(1 — 0
m (UQ—RCOSQ\/HUO mgR( cos )> .

T M+m R2(p cos? 0 + msin? §)

Derivando ancora una volta, e sostituendo nuovamente 6 otteniamo infine tutto cid che
serve per porre N(6) < 0. Per quanto riguarda lo spostamento della guida, possiamo
integrare X:

M+m

/2” R2(pcos? 6 + msin? ) "
M+m uv3 — 2mgR(1 — cos6)

27
L:/th: m (UQ—RQCOSB)CZ)
0

ossia

PROBLEMA 5.49
( Sistema oscillante xx

La guida in Figura[5.39 ha la forma di una semicirconferenza di raggio R, ha massa M
ed & libera di muoversi orizzontalmente. Un punto materiale di massa m & vincolato
a muoversi al suo interno. Calcolare la frequenza delle piccole oscillazioni del sistema
attorno alla sua configurazione di equilibrio stabile.

Figura 5.39.: Il sistema considerato nell’esercizio.

Soluzione

Usiamo come coordinate I’angolo 6 che identifica la posizione della massa e la coordi-
nata orizzontale X della guida. L'energia totale ¢ conservata:

E= %MX2 + %m [(X + RO cos 9)2 + R?6? sin? 9} +mgR(1— cos0)

e nel sistema di riferimento solidale con la posizione orizzontale del centro di massa la
quantita di moto lungo x e nulla:

MX +m (X+Rbcosb) =0
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5.50. PENDOLO IN REGIME DI ALTA ENERGIA * »

Utilizziamo questa ultima relazione per eliminare X:

2

1 Mm 242
1 2 . .
5 <M+m> R?62 cos? 0 + R*¢*sin? @ | + mgR(1 — cos )

Per piccoli valori di 6, 6 abbiamo cos @ ~ 1 — 62 /2 e sin 6 ~ 6 quindi al secondo ordine

_ 1 g 6>
= E,uR 0 —|—ng5

Questa ¢ I’energia di un oscillatore armonico di frequenza

f_i (m+ M)g
27 MR

PROBLEMA 5.50
( Pendolo in regime di alta energia * x %

Un pendolo di lunghezza ¢ viene lanciato dalla sua posizione di equilibrio con velocita
iniziale vy. Stimare il periodo del pendolo quando vy € molto grande, precisando cosa
questo significhi. Mostrare che in prima approssimazione il periodo non dipende da g,
e calcolare la prima correzione a questo risultato.

Soluzione

L’energia del pendolo si puo scrivere nella forma
L g
E= Emé 6° + mgl(1 — cos @)

da cui

Possiamo scrivere anche

=1

% — 2Tg(l — cosf) dt

e integrando su un periodo membro a membro

[ “,
\/ — — cosb) t

ml?
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5.51. PENDOLO DOPPIO * * x

Introducendo come variabile di integrazione u = 6(t) abbiamo

21
/
2E 28 1

o cos i)

dove si e tenuto conto del fatto che un periodo corrisponde a un giro completo Ciserve
il limite per grandi velocita dell'integrale precedente. Dato che E = mv3/2 abbiamo

/27’[ |:
\/ Zg/ — COS M

dove abbiamo utilizzato lo sviluppo (1 + €)* =~ 1 + ag, valido per ¢ < 1. Integrando

otteniamo 2 y ¢
T~ <1 4+ 8 >
0o Z)O

PROBLEMA 5.51
( Pendolo doppio x x x

Scrivere le equazioni del moto del pendolo doppio rappresentato in Figura Studiare
le piccole oscillazioni del sistema attorno alla posizione di equilibrio stabile.
Soluzione

Introduciamo i due versori 71 e 71, allineati con la direzione dei due fili. La posizione
delle due masse si scrivera allora

= 0
7o = Uiy + bofip

dove, esplicitamente,

P sin 0 a = sin 0,
V7 —cos; )’ 27\ —cosb,

Derivando rispetto al tempo otteniamo le velocita

7 = L%
T = 0611+ 60,1

e le accelerazioni

i = 007 — 663
dy = 01011 — 519%771 + 00,1 — 629%1’/\12
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5.51. PENDOLO DOPPIO * * »

l

mo

Figura 5.40.: Il pendolo doppio considerato nell’esercizio.

P cos 61 . cos t
1=\ sing; )’ 2=\ sin6,

Possiamo scrivere adesso le equazioni del moto. Per la prima massa abbiamo

con

m1fq (9.1’2'1 — Q%ﬁl) = —Tin + Toniy — mlgy (5.51.1)
e per la seconda
niy [51 (élfl — Q%ﬁl) + 62 (ézfz — 0%17[2)] = —Tzﬁz — ngyA (5.51.2)

Le (5.51.3) e (5.51.4) sono 4 equazioni differenziali nelle incognite 61, 6, T1 e T>.
Per piccole oscillazioni sviluppiamo le equazioni al primo ordine nelle variabili 1, 65,
61, 02. Questo significa che possiamo porre

0
L~ ( _11 > = 0+ 6%, M~ < le ) = —7+6,%,

>
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5.51. PENDOLO DOPPIO * * x

f1:<611>:32+91]2, f2:<;2>:32+929.
e a meno di termini di ordine superiore le equazioni divengono
ml101% = =T (=19 + 618) + To(—1§ + 028) — m1 g7 (5.51.3)
my (0101 + €20,) £ = —To(—9 + 62%) — mag7) . (5.51.4)

In direzione verticale questo significa

Ty = (m +my)g
T, = myg

cioe le tensioni non dipendono dall’angolo. In direzione orizzontale si trova

myl16; = —T16, + Tr0,
my (€16, + £20,) = —T16,
che si potevano ottenere sin dall’inizio notando che per piccole oscillazioni
x1 = 0161
Xo = {161+ 426,

b = —T61+ Tt
By = —To,
Abbiamo quindi )
0101 = —(1+my/mq)gbh + ma/my186»
0107 + 0o0, = —g0>.

Sottraendo la prima equazione dalla seconda abbiamo infine

m
91+(1+7)2¢91—nf%92:0
'9'2—(1+Z )591+(1+> iez_o

Cerchiamo delle soluzioni del tipo

01\ _ (w1 icu
92 175

Sostituendo otteniamo (y = my/my, w: = g/¥;)

(e <1+§>7a(§f o) (m)=(%)

che avra soluzioni non banali solo quando il determinante della prima matrice & nullo,
cioe per particolari valori di () legati alle frequenze dei modi di oscillazione.
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5.52. URTO NON ISTANTANEO TRA UNA MASSA E UN SISTEMA COMPOSTO
* * K

PROBLEMA 5.52
Urto non istantaneo tra una massa e un sistema composto

* Kk

Nel sistema in Figura la velocita iniziale vy € tale da evitare il contatto tra le masse
my e m3. La molla esterna ha lunghezza a riposo /j ed é fissata alla sola massa m3. Inoltre
mlzm2:%TH3Zm.

m3
k. € k
Vo ma
I my = O

Figura 5.41.: Il sistema considerato nell’esercizio.

Calcolare la velocita del centro di massa del sistema m, + m3 dopo 1'urto, e confron-
tarla con il caso di urto elastico istantaneo.

Soluzione

Scriviamo le equazioni del moto delle tre masse valide durante il contatto tra la molla e
la massa my. Indicando con x1, x> e x3 le coordinate delle tre masse abbiamo

mp'c'l = k(X3 — X1 — go)

MoXp = k(X3 — X2)

Introducendo il vettore qT = (x1 + £y, x2, x3) queste possono essere scritte nella forma

Mg + Kﬂ =0
dove
m 0 O
M= 0 m O
0 0 3m
e
k 0 —k
K = 0 kK —k
-k —k 2k

Determiniamo i modi normali di vibrazione, trovando le soluzioni di

(K=O*M)q=0
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5.52. URTO NON ISTANTANEO TRA UNA MASSA E UN SISTEMA COMPOSTO
* * *

Il determinante della matrice vale zero per

0F = 05=0
k
0 = Qf=—
m
02 = 05:4k
m

Le corrispondenti soluzioni possono scriversi a meno di una costante moltiplicativa
nella forma

9, =(1 -1, 0)

= (-4 -3 1)

La soluzione generale delle equazioni del moto e quindi

q(t) = q, (ag + bot) +q, (a1 cos Ot + by sin O4t) +4, (a2 cos Ot + by sin Oot)

e le costanti arbitrarie si possono determinare tenendo conto che

q7(0)= (0, 0, 0)=gq,a0+q,a1+49,a

QT(O) = ( vg, 0, O ) :gobo —|—ﬂ101b1 +Q202b2

Usando I'ortogonalita dei vettori g, rispetto al prodotto scalare definito dalla matrice M
si trova facilmente
ag = dady = ay = 0

e
3 1 3
bg = = - —
0=g% b T ba 160y, %
da cui 3 . 3
_ 9o . Yo .
q(t) = ggovot - Eﬂlal sin (gt — ggzﬂ—l sin (ot

. 3 1 3
g(t) = éﬂovo - Eglvg cos Ot — Zﬂzvo cos Ot .

Determiniamo a quale tempo t* la massa m; si separa nuovamente. Questo corrispon-
de a x3 — x1 = £y ossia

1 1
X3 —x1 — g = _5%01 sin O — 1%01 sin 201 = 0
ossia
cost* = —1
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5.53. MOLLE MULTIPLE »*

La velocita del centro di massa del sistema m, + m3 sara data da

mzvz(t*) + m303(t*) 3
My + msa 5

Se I'urto e istantaneo possiamo trascurare m; per calcolare le velocita immediatamente
successive di m; e m3. In particolare per quest’ultima si avra

2ms
= — 521
% m1+m3vo (5.52.1)
e quindi
msv3 8
— CANN— 52.2
023 my + m3 25 vo (5-522)

PROBLEMA 5.53
( Molle multiple xx

Una massa m si muove nello spazio ed e collegata ad un estremo di N molle di lunghezza
a riposo nulla.

La costante elastica della molla j-sima & kj, e l’altro estremo e fissato ad un punto 7’},
fisso nello spazio.

Mostrare che il sistema & equivalente ad una massa m collegata ad un"unica molla di
costante elastica k e lunghezza a riposo nulla, fissata ad un punto 7. Calcolare k e 7.

Soluzione

L’energia potenziale totale del sistema & data dalla somma delle energie potenziali di

ciascuna molla L
U() = ¥ 27— 7P

i

e sviluppando i calcoli otteniamo

um = LSrrey brr -y borr,
lez 21:21 1 22 1

e introducendo
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5.54. ORBITE CIRCOLARI SU UN CONO *

possiamo scrivere
u(?):ﬁ FF_ 2 R+ R-R)+ 2 Y k% —R-R
2 2\ 5

Il secondo membro e una costante irrilevante, il primo I’energia potenziale di una molla
equivalente, di costante k e fissata in R

2
U®) = ‘

N =

7-R

PROBLEMA 5.54
( Orbite circolari su un cono *

Una particella di massa m  vincolata a muoversi su un cono con asse verticale, angolo
di apertura 26 e vertice disposto verso il basso. Determinare in funzione del raggio la
velocita delle possibili traiettorie circolari.

Figura 5.42.: La superficie conica sulla quale si muove la particella.

Soluzione

In un’orbita circolare l’accelerazione in direzione verticale & sicuramente nulla. Nel
piano che contiene 1’orbita non vi sono forze in direzione tangenziale (il vincolo ¢ liscio)
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5.55. CATENA DI OSCILLATORI * % »

per cui il modulo della velocita e costante. Infine, le forze in direzione radiale devono
essere uguali alla massa per 1’accelerazione centripeta.
In formule:

0= —-mg+ Nsin6
mRw =0

—mRw?* = —N cos 6
dove N Da queseazione vincolare. Da questo segue

- "

sin 6
_ [gcost
“ =\ Rsin®

Catena di oscillatori x x x

e quindi

( PROBLEMA 5.55

Si vuole modellare una molla di lunghezza ¢, massa m e costante elastica K con una
catena di N masse p unite da N — 1 molle di costante elastica x, come in Figura
Studiate le oscillazioni di questo sistema se le masse agli estremi sono bloccate.

Figura 5.43.: La catena di oscillatori considerata nell’esercizio.

Soluzione

Detta xy la coordinata della k-sima massa riferita alla sua posizione di equilibrio abbiamo
le equazioni del moto per le masse intermedie della forma

uxe = x(Xp—1 + X1 — 2x%)

dove imponendo che la massa totale sia m abbiamo chiaramente N = m, mentre per
la costante elastica deve valere K~! = (N — 1) x L. Per le masse agli estremi abbiamo le
equazioni modificate

X1 = XN = 0

Utilizziamo direttamente le equazioni del moto cercando soluzioni del tipo

xi(t) = Uy (t)e™*
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5.56. PENDOLO MOBILE *

e sostituendo nelle equazioni per le masse intermedie abbiamo
‘uei(xkﬁa +x (2 _ e—i(x _ eitx) eiakulx -0
ossia

4 1
Ty + =X sin® (a) U, =0
U 2

Questa e I'equazione di un oscillatore con

.
Wy :2\/§’sm2‘

e tutti i valori reali di # sono permessi. Dobbiamo pero tenere ancora conto delle
equazioni per le masse agli estremi. Queste danno le condizioni

U =0

ueN =0

che non possono pero essere soddisfatte qualunque sia il valore di a. Possiamo pero so-

vrapporre soluzioni corrispondenti a £, che oscillano nel tempo con la stessa frequenza.
La nostra soluzione sara quindi del tipo

xi(t) = (Aei"‘k + Be’i‘"k) Uy ()
e le condizioni per gli estremi diventano

Ae™ + Be ™ =0
AN+ Be N =0

Questo sistema lineare omogeneo ammette soluzioni non banali solo se
sina(N—1) =0

ossia quando

mrm
Xy =

(N-1)
con m intero. Si hanno N soluzioni indipendenti perm = 0, - - - , N — 1 che si scriveranno

x}({m)(t) — uam(t) (eioc,,,(kfl)k _ efiocm(kfl))

ossia
xlgm)(t) = Ay sin [ay, (k —1)] cos (W, t + @)
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Figura 5.44.:11 pendolo mobile considerato. La massa superiore pud scorrere
orizzontalmente e non vi ¢ attrito.

PROBLEMA 5.56
( Pendolo mobile xx

Nel pendolo in Figura la massa superiore ¢ libera di muoversi orizzontalmente.
Determinare la frequenza delle piccole oscillazioni attorno alla posizione di equilibrio.

Soluzione

Possiamo usare come coordinate ’ascissa x della massa superiore e ’angolo di inclina-
zione del pendolo 0. L’energia cinetica si scrive

1 1 . - 2 o .
K= Emlx2 + 52 [(x + 00 cos0)” + (26% sin? 9}

ossia

K= %(ml +mp) %% + %mz (6267 + 2026 cos 0]

L’energia potenziale vale invece
U= —myglcosb

Si conserva inoltre la quantita di moto orizzontale, e nel sistema del centro di massa
possiamo scrivere
my% + my (% + €6 cosb) = 0
da cui _
mol0 cos
my + my

Il minimo del potenziale si ha per § = 0, e per piccole oscillazioni attorno a questa
posizione di equilibrio stabile si ha

1 1 . .
K ~ E(ml + mp) 2 + 52 [£292 + 2036

1
u~ Emz g£62 + costante
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B mzfé
T omy+my
Eliminando x tramite 1'ultima relazione si trova
1 ml m2 2 A2 1 2
Ecx~ - | ————| 070"+ -maglf
2 [m1+m2] o
riconoscibile come energia di un oscillatore di frequenza
1 /mpg
f =o'

La frequenza risulta aumentata rispetto a un pendolo semplice da un fattore uguale alla
radice quadrata del rapporto tra m; e la massa ridotta del sistema:

My _ M
mq

PROBLEMA 5.57
( Pendolo sospeso x x x

Nel sistema in Figura la massa m; pud muoversi solo verticalmente, ed ¢ vincolata
al soffitto tramite una molla di costante elastica k e lunghezza a riposo nulla. Alla massa
m; € inoltre fissato un pendolo di lunghezza ¢ e massa m,, libero di oscillare.

mo
Figura 5.45.: Il pendolo sospeso considerato nell’esercizio.

Scrivere le equazioni del moto del sistema e studiare il suo comportamento per piccole
oscillazioni attorno alla posizione di equilibrio.
Soluzione

Studiamo il sistema in un riferimento non inerziale solidale con la massa m;. Ci riducia-
mo in questo modo ad un pendolo semplice sottoposto alla forza apparente

F = —majj
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dove abbiamo indicato con y la posizione del punto di sospensione superiore della
molla rispetto a m7. Abbiamo allora per 1’accelerazione tangenziale

mall = —my (g + i) sin 6

e per quella radiale
mal®? = T — my(g + 1) cos 6

La condizione di equilibrio per la massa m; &
0=—-—mijj—ky—Tcos0 —myg

Per piccole oscillazioni attorno 6 = 0 queste equazioni si riducono a

Mol = —mygf (5.57.1)
T = myg + majj
e
(my+mp)j+ky=—(m +my)g (5.57.2)

La (5.57.1) e 'equazione del moto di un pendolo di frequenza

_ 1 /g
f_27r l

la (5.57.2) quella di un oscillatore con posizione di equilibrio

_ (my+mp)g
W=

1 | &k
f_ﬁ my + my

Superare una pedana x

e frequenza

( PROBLEMA 5.58

La pedana in Figura[5.46, di massa M, ¢ libera di muoversi orizzontalmente ed ha spigoli
opportunamente arrotondati. La massa m ha inizialmente velocita vy ed e vincolata a
muoversi sulla superficie orizzontale o sulla pedana. Calcolare per quale velocita iniziale
la massa riesce a superare la pedana.
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Vo

\9

s

Figura 5.46.: La doppia pedana considerata nell’esercizio.

Soluzione

Possiamo utilizzare la conservazione della quantita di moto orizzontale del sistema e
dell’energia. Nel caso limite la particella arriva nel punto piti alto della pedana avendo
la stessa velocita orizzontale V di quest’ultima, e velocita verticale nulla. Quindi deve
essere

mvy = (m+ M)V

e
1
%mv% = E(m + M)V? 4+ mgh
Segue che
mM
p— %0 = 2mgh
ossia

oo > 2mgh _ [2(m+ M)gh
U M

PROBLEMA 5.59
( Urti e attrito x x %

La pedana in Figura di massa M ¢ poggiata su un piano orizzontale con attrito,
coefficienti y; e y;. La particella di massa m < M si muove al suo interno, in assenza
di attrito, con velocita iniziale vy rimbalzando elasticamente sulle pareti. Calcolare lo
spostamento totale della pedana per t — co. Si puo considerare la separazione tra le due
pareti grande a piacere. Cosa succede per m > M?

Soluzione

Studiamo il singolo urto. Dato che la separazione tra le due pareti ¢ grande possiamo
considerare la pedana ferma, dato che 1’energia acquistata nell'urto precedente e stata
dissipata. Allora immediatamente dopo 'urto avremo le velocita

m—M
m+ M

00
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O

Hss Ha

M

Figura 5.47.: Il sistema considerato nell’esercizio.

2m
V= v
m+M "
L’energia cinetica della pedana sara tutta dissipata in attrito, per cui questa percorrera

un tratto A determinato da

1
EMV2 = ug(m+ M)gA

cioe )
2Mm
N=—"T"—" 03
Hag(m + M)3™°
Tutto questo si ripetera ad ogni urto, ogni volta con la velocita della particella ridotta di

un fattore e lo spostamento cambiato di segno, cioé

Uy = m—M nv
" \mirm) O

2Mm® 5 (1) 2Mm2v? <m - M)Z"
nag(m+M)>" pag(m+ M)> \m+ M
Lo spostamento totale si trova sommando la serie geometrica

! (m — M>2] ! 2Mm2vé
- = 3 “ N2
| \m+M pag(m + M) 4 (mod)

Ap = (~1)"

- ZMmzv%
Hag(m+ M)3

S|

agk:

n

ossia

_ Mm m v3

 (m+M)m2+ M2 u,g
Se m > M la massa non inverte il proprio moto dopo 1'urto, e anche i successivi av-
verranno dalla stessa parte. Quindi tutta 1’energia viene dissipata da spostamenti della
pedana nello stesso verso, e quindi

1
Emv% = ug(M+m)gL

da cui
moj

 2ug(m + M)g
Questa espressione coincide con la precedente per m = M.
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PROBLEMA 5.60
( Campo di forze I

Un campo di forze nel piano e della forma

conm e A # 0 costanti. Per quali valori di m e A si tratta di un campo centrale? Si tratta
di un campo conservativo?

Soluzione

Il campo sara centrale se della forma

F=f(x,y)F

Dovra quindi essere
Axmfl — Aymfl

e quindi m = 1.
Se la forza & conservativa deve essere possibile scriverla a partire di una funzione
potenziale, deve cioe essere

ou
F,=Ay" = ——
y Y ay

Integrando la prima equazione in x e la seconda in y otteniamo

A

u= —mxm+l + f1(y)
e
= —mymH + fa(x)
che sono compatibili se
A
u= _m(ym+l +xm+1) +C

dove C é una costante arbitraria. Quindi la forza é conservativa Vm.
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PROBLEMA 5.61
( Campo di forze II x

Sotto quali condizioni il campo di forze nel piano

(5.61.1)
(5.61.2)

F, = ax+by

F, = cx+dy
e conservativo? Calcolare in tali casi il potenziale. Sotto quali condizioni & un campo
centrale?
Soluzione

Per essere conservativo deve valere

F, = ax—i—by:—aal;cl
ou
F, = cx+dy——@.

Integrando la prima equazione in x abbiamo
U= —%xz —bxy +g(y)

dove g € una funzione arbitraria. Derivando rispetto a y otteniamo

Fy=bx—g'(y)
che e consistente con la seconda equazione solo se
b = ¢
gy) = dy
e quindi il potenziale sara della forma
U= —%xz — ;yz — bxy

Il campo sara centrale se
F=f(x,y)7

e scrivendo

F, = x(a+b%)

F, = y<c +d>

a—l—bz:cf—kd
x Yy

<R

troviamo che deve essere

(5.61.3)

(5.61.4)

(5.61.5)

(5.61.6)

(5.61.7)
(5.61.8)

(5.61.9)

(5.61.10)

(5.61.11)

(5.61.12)

(5.61.13)

dacuib = c = 0ea = d. Notare che il campo e conservativo, e il potenziale vale

U=—2(*+y)

(5.61.14)
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PROBLEMA 5.62
( Campo di forze III xx

Mostrare che un campo centrale nel piano della forma
F=f(r,0)7

e conservativo se e solo se la funzione f non dipende da 6.

Soluzione
Supponiamo
F=f(r)7 (5.62.1)
e mostriamo che il campo e conservativo. Dovra essere
ou
Fo=f(r)x = ~ 3y (5.62.2)
ou
F,=f(r)y = oy (5.62.3)
Questo & possibile prendendo
r
U(r) = —/ uf(u)du (5.62.4)
0]
come si verifica direttamente:
ou _ dUor

— == rf(r)% (5.62.5)
e similmente per y.

Mostriamo adesso che se f dipende da 6 il campo non puo essere conservativo. Se per
assurdo lo fosse, il lavoro del campo di forze su un qualsiasi percorso chiuso dovrebbe
essere nullo. Ma considerando il percorso in Figura questo significherebbe che la

quantita

2
Ly 1, (0) = / f(r,0)rdr (5.62.6)
1
deve essere indipendente da 6, dato che
% ﬁ . df - Lr]‘)rZ (91) - Lrlﬁrz (92) . (5.62.7)
v
Questo significa che per rq e r, arbitrari deve essere
naf(r0)
/r1 50 rdr=20 (5.62.8)
cioe
of (r,0) 0
0
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..61

ST
T

Figura 5.48.: Un possibile percorso chiuso sul quale calcolare il lavoro del campo di
forze. Gli unici contributi non nulli sono sui tratti di percorso radiale, dato
che sugli altri la forza e perpendicolare allo spostamento.

PROBLEMA 5.63
( Moto in un campo centrale I xx

Una particella di massa m; viene fissata tramite un filo inestensibile di lunghezza ¢ ad
un’altra massa che puo muoversi solo verticalmente come in figura. Il filo attraversa il
piano tramite un piccolo foro senza attrito.

Classificare le possibili orbite del sistema.

Soluzione

Il sistema ha due quantita conservate, I'energia totale e il momento angolare della massa
m rispetto al foro. L'energia si conserva perche le forze vincolari non fanno lavoro. Il
momento angolare perche il momento della forza applicata alla particella 1 (la tensione
del filo) rispetto al polo scelto e nulla.

Usando coordinate polari per descrivere la posizione della massa m; possiamo scri-

vere
1 1 . 1
E = Emlr’Z + §m1r292 + Emzfz + mpgr (5.63.1)
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my
I

® n

Figura 5.49.: Il piano sul quale si muove la particella ;.

e per la componente z del momento angolare della particella m; abbiamo
L, = mr?0 (5.63.2)

Possiamo utilizzare quest'ultima legge di conservazione per eliminare 6 dall’energia

totale:
2

— 1 22 Lz
E= E(ml + mp) i + pT + mpgr (5.63.3)

e il problema diviene equivalente al moto unidimensionale di una particella in un
potenziale efficace.

A

20

10 El /

'm,Q r L‘
g 2mqr?

>
|

0.2 0.4 0.6 0.8 1.0

Figura 5.50.: I potenziale effettivo (in blu) e i due termini che lo compongono: il po-
tenziale gravitazionale originario (in rosso) e il potenziale centrifugo (in
verde).

Dal relativo grafico (Figura|5.50) si conclude che se L, # 0 non e possibile la caduta
sul centro, ed inoltre tutte le orbite sono limitate. In particolare si avranno orbite circolari

@ 161 versione del 5 ottobre 2016



5.64. MOTO IN UN CAMPO CENTRALE II #x

di raggio o quando E coincidera con il minimo del potenziale effettivo, cioe

L2
= 5.63.4
P mxg ( )

ossia .
mire? = myg (5.63.5)

che e ovviamente la usuale relazione tra forza radiale e accelerazione centripeta. In
Figura questo corrisponde all’energia Ey.

PROBLEMA 5.64
( Moto in un campo centrale IT xx

Determinare le orbite di una particella nel piano sottoposta a un potenziale armonico

u= ];rZ (5.64.1)

usando coordinate polari.

Soluzione

Si conservano il momento angolare e 1’energia totale. Queste quantita si scrivono nelle
coordinate scelte nella forma

L = mrf (5.64.2)
¢ 1 1 1
_ Lo 24 1y 0
E = zmr + 2mr 0° + 2kr (5.64.3)

ed utilizzando la prima relazione per eliminare la velocita angolare nell’energia ottenia-
mo

1 5, 1, 12
E== —k .64.4
2" +27+2mr2 (564.4)
Sempre dal momento angolare otteniamo la regola
dr . dr L dr
— =0 = —— 5.64.5
dt do  mr?do ( )
e possiamo riscrivere 1’energia nella forma
2 /dr\%? 1 12
=—— | — —kr? .64.
2mr4 <d9) T 2 (5.64.6)
Introduciamo adesso una nuova variabile della forma
1
s = 2 B (5.64.7)
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ottenendo

12 [ds 1 12

2

Possiamo scegliere f in modo da eliminare il termine del primo ordine in s:

B = i—’f (5.64.9)

da cui
(_Elm_k_ L2 (ds\P L2,
212 2 8m \df 2m

Questa puo essere vista come 'energia E’ di un oscillatore armonico per il quale

T=rn (5.64.10)

1 Em 2mE’
s = i \/7cos (20 + @) (5.64.11)

L’orbita e chiaramente chiusa. La scelta di ¢ equivale chiaramente ad una rotazione
dell’orbita, e ci limitiamo a considerare ¢ = 0. Possiamo allora scrivere

da cui otteniamo

12
r? = mE (5.64.12)
1+ ( - %) cos (26)

che e I’equazione di un’ellisse centrata sull’origine come segue da

L2k 12
2 1 1—- — 20)| = — 64.13
re |1+ E? cos (20) F (5.64.13)
ossia
L%k ’ L2k 5 12
_ _ - == = .64.14
1+ <1 mE2> x“+ |1 <1 mE2>] y =z (5.64.14)
Notare che
1 1 12 1 12 kL2
E = —mi?* + ~kr? > “kr? >4/ 64.1
2mr +2kr + o = 2kr + T - (5.64.15)
da cui
LLZ <1
mE2 —

L'uguaglianza corrisponde a un’orbita circolare.
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PROBLEMA 5.65
( Periodo del pendolo x x x

Determinare la prima correzione al periodo di un pendolo rispetto alla formula valida
per piccole oscillazioni.

Soluzione

Dall’espressione dell’energia totale del pendolo
E= %mﬁzgz +mgl(1 — cos6)
si trova '
6
\/m€2 [E —mgl(1—cos0)]

e integrando arriviamo alla formula per il periodo

==1

emav
T = 4/
2| _Msmze}

me?

dove 0,4, € il massimo angolo di oscillazione, corrispondente al valore che annulla il
denominatore dell’integrando. Introducendo la variabile

2mg€ Q
N E M3
abbiamo
_ mgé _ [mgt | _ E
du = °F cos d@ °F 1 nggu do
da cui

_4\/7/ \/1——1,12\/1—“2

Sviluppando al primo ordine in @ abbiamo

AE du E
T=4,/- 1+ u2>.
\/;/o \/1—142( amgt

Usando gli integrali
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/ L u2du o
0o V1i—u2 4

14 E
T= 27'5\/; <1 + 8mg£>

Possiamo esprimere questo risultato in funzione dell’ampiezza di oscillazione:
14 1
T = 271\@ (1 + Meﬁmx)

Oscillazioni forzate x x x

otteniamo infine

( PROBLEMA 5.66

m m
k‘l k2 kl
Figura 5.51.: Il sistema considerato nell’esercizio. Si ha attrito viscoso proporzionale alla
velocita relativa tra le due masse.

Nel sistema in Figura e presente un attrito viscoso vy proporzionale alla velocita
relativa tra le due masse. Alla massa pit1 a sinistra e inoltre applicata una forza

F = Fycos Ot
Calcolare la risposta in ampiezza del sistema. Supponendo che la forza sia presente solo
da t > 0 mostrare che in generale il transiente non sara mai trascurabile.
Soluzione
Possiamo scrivere le equazioni del moto nella forma
mxy 4 y(%1 — %) + k1xg + ko(x1 —x2) = Fycos Ot
miy 4+ y(%2 — %1) + ka(x2 —x1) + kixp = 0.
Cerchiamo soluzioni della forma
x; = ReZ;e'™ .

Estendendo le equazioni del moto al campo complesso e sostituendo otteniamo il
sistema algebrico

—mQZZ1 + iQ’)/(Z1 — Zz) + kiz1 + k2(21 — 22) = K
—mO%zy +iQy(zp — 21) + ka(zo — 21) + k122 0
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ossia

(—mQ? +iQy + ki + k) z1 — (ko +iQ7)z2 = K
— (iQy + k) z1 + (—mQ2 +iQy+ki +k)zo = 0.

Risolvendo otteniamo

Fo — (k2 + Q)
- ’ 0 (—mQ*+iQy+ki+k) ‘
’ (—mO? +iQy + k1 + ky) — (ko +iQ)y) ‘
— (iQy + ky) (—=mO2 +iQy + k1 + k)
‘ (—m02 +iQy + ki + kz) F
o — (i + k2) 0
(—mO? +iQy + k1 + ky) — (ko +1Qy)
’ — (iQy + k) (—mQ? +iQy + ki + ko) '

ossia
Fo (—mQ? +iQy + ki + ko)

(—mQ2 + iy + ky + k2)* — (iQy + ko)?
Fy (k2 +iQ)y)
(—mQ2 + iy + ky +ka)* — (i + kp)?

Il numeratore di queste espressioni puo essere fattorizzato ed abbiamo

Z1 =

Zy =

F() (T’I’IQZ — iQ’y — k1 — kz)

T T 02 — ky) (mQ2 — 2i9Q — ky — 2ky)

F() (kz + iQ’)/)
(mO2 — ky) (mQ? — 2iyQ) — kg — 2ky)

e calcolando il modulo di queste espressioni otteniamo la risposta in ampiezza

Zp =

|22| = K+ P2 Fo
(mO2 — ki — 2k)? + 49202 [mQ* — k|

Notare che il denominatore si annulla per il valore reale della frequenza

0=+ /8
m

Questo indica la presenza di un modo di oscillazione non smorzata nell’evoluzione
libera del sistema. L'interpretazione fisica e che le due masse possono oscillare in fase
con velocita relativa nulla, ed in questo caso non sono presenti effetti dissipativi. Per
questo motivo non sara possibile in generale trascurare la presenza di un transiente,
anche per tempi molto grandi.
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PROBLEMA 5.67
( Slitta verticale xx

Vo

Figura 5.52.: Slitta verticale.

Su una slitta di massa M e dimensioni trascurabili € montato un condotto liscio che per-
mette il passaggio di una pallina di massa m, lanciata verso la slitta con velocita iniziale
vg parallela all’orizzontale dalla stessa quota ad una distanza d (vedere Figura[5.52). La
slitta & libera di muoversi senza attrito su un binario verticale e viene lasciata andare al
momento del lancio.

1. In assenza di gravita, calcolare le velocita finali di slitta e pallina.
2. In presenza di gravita, sotto quali condizioni la pallina entra nel tubo?

3. In presenza di gravita, per quale valore di v la slitta si ferma subito dopo 'urto?
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Soluzione
Domanda 1

In assenza di gravita si conserva 1’energia cinetica totale e la quantita di moto verticale).
Abbiamo quindi

1 1 ., 1 .
Emvg = EmyZ - EMYZ (5.67.1)
e
0 = my + MY (5.67.2)
Ricaviamo y dalla seconda relazione
y= —%Y (5.67.3)
e sostituendo nella prima otteniamo
1 1M .
Emv% =5 (M+m) Y? (5.67.4)
e quindi
. m2
Y=+ ——Fi— 5.67.5
MM+ )% ( )
e
M
] = —_ 5.67.6
y=+ M+ m) 0o ( )

La soluzione con Y < 0, § > 0 non & chiaramente accettabile.

Domanda 2

In presenza di gravita la particella si muove con accelerazione costante g diretta verso
il basso e con velocita costante in orizzontale. La slitta si muove verso il basso con
accelerazione g. Le leggi orarie si scrivono quindi

x = d— oot (5.67.7)
y = —%gt2 (5.67.8)
X =0 (5.67.9)
Y = —%gtz (5.67.10)

e dato che il moto verticale di slitta e particella & identico, la pallina entra sempre nel
tubo.
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Domanda 3

Dato che le dimensioni della slitta sono trascurabili, 'interazione tra slitta e particella
avviene pure in un tempo trascurabile. Questo significa che la forza di gravita sara tra-
scurabile durante 1'urto rispetto alla forza impulsiva tra slitta e particella.e successivo
ale, tra l'istante immediatamente precedente e quello immediatamente successivo al
contatto tra particella e slitta varra la conservazione della quantita di moto verticale
totale (I'unica forza verticale non trascurabile e quella impulsiva interna) e la conser-
vazione dell’energia cinetica totale (lo spostamento verticale di slitta e particella sono
trascurabili).
L’interazione avviene all’istante

t=— 5.67.11
. (5.67.11)

e in tale istante (prima dell’urto) ’energia cinetica del sistema vale

1 iN* 1 |, d\*| 1 P 1,
e la quantita di moto verticale totale
d
p, — — (Mt mgd (5.67.13)
0o
Eguagliando alle stesse quantita dopo 1'urto abbiamo
1., 1 .,
e
Py = —MY —my (5.67.15)
Siamo interessati al caso Y = 0, quindi deve essere
1 gd> 1 5, 1
5 (M +m) 7z +5muy = Smy (5.67.16)
¢ M d
_MAmgd (5.67.17)
Y0
Ricavando y dalla seconda relazione e sostituendo nella prima abbiamo
272 2
(M + m) % +mod =m [WWZ] (5.67.18)
% mog
che risulta verificata quando
R = gd M(M :— m)
m
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PROBLEMA 5.68
( Pendolo sferico xx

Discutere le traiettorie di un pendolo sferico, cioé di una particella vincolate nello spazio
da un filo inestensibile di lunghezza /.

Soluzione

Conviene descrivere il sistema in coordinate sferiche. Possiamo scrivere I'energia cineti-
ca come

K= %mvz = %m (# +776* + 1r*sin® 09?) = %mﬁ (0% +sin® 0¢%)

e I'energia potenziale
U =mgz =mglcosf.

Osserviamo che sulla particella agiscono due forze: la forza peso e la reazione vincolare
della superficie. Possiamo scrivere

F = —mgé, — Né,

ma dato che
? - Ké\r

abbiamo
M =7AF = —mglé, Né; — Nlé, \é,

da cui segue che M - &, = 0. Quindi il momento delle forze non ha componenti verticali
e la componente z del momento angolare si conserva:

L, = ml? sin® O¢

Utilizziamo questa relazione per riscrivere 1’energia totale nella forma

1 .
E = ml?0% + Uy (6)

dove
L B
Uesr(0) = mglcos 6 + e mgl (cosf) + 1—(30529> .
Per comodita abbiamo introdotto la variabile adimensionale
ﬁZ — L%
2m23¢ "

Il grafico qualitativo é riportato in Figura per diversi valori di B.
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Figura 5.53.: Potenziale effettivo per il pendolo sferico.

PROBLEMA 5.69
( Pendolo sferico piccolo momento angolare *x

Studiare le orbite circolari del pendolo sferico nel limite di piccolo momento angolare,
cioe quando < 1 nella notazione dell’esercizio precedente.

Soluzione

Introducendo x = cos 6 abbiamo

ﬁZ
Ueff(e) = mg€ <X + -
Possiamo studiare il potenziale effettivo in —1 < x < 1. Avremo un minimo dove
(1-x*)2+28%x =0

e occorrerebbe determinare la radice di questa equazione tale che —1 < x < 1. La for-
mula essatta &€ complicata, ma se § < 1 (piccolo momento angolare) possiamo scrivere
approssimativamente

x = xo + Bx1

dove xy ¢ la soluzione a § = 0 e x; una prima correzione. Avremo

(1-— x%)2 — 4Bxpx1(1 — x%) + [32(29{0 — ZX% + 6x%x%) + O(,B3) =0
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e identificando i termini al primo e al secondo ordine abbiamo

Xg = +1

42 = 2
e quindi

x:—1+£.

V2

La posizione di minimo e quindi leggermente spostata rispetto alla verticale.

PROBLEMA 5.70
( Pendolo sferico grande momento angolare xx

Studiare le orbite circolari del pendolo sferico nel limite di grande momento angolare,
cioe quando B > 1 nella notazione dell’esercizio precedente.

Soluzione

Introducendo x = cos 6 abbiamo

Ueff(e) = ng,BZ <ﬁx2 + 1_1xz> .

Il minimo si avra per

512(1—352)2—1—23(:0.

Questa volta 7! < 1 e quindi dall’approssimazione x = xq + f~'x; otteniamo

1 > 4 1Y\
2x0+‘5(1—2x0+x0+2x1)+0<ﬁ2> =0

dacuixg =0ex; = —1/2. Segue che
1
= 9:——
X = cos 26
cioe
T 1
0=—+—.
2 28

L'orbita circolare sara quindi leggermente al di sotto del cerchio massimo orizzontale.

@ 172 versione del 5 ottobre 2016



5.71. CAMBIAMENTO PARAMETRI ORBITA %

PROBLEMA 5.71
( Cambiamento parametri orbita xx

Un pianeta di massa m € in orbita circolare (raggio Ro) attorno ad una stella di massa
M. Ad un certo istante la stella espelle verso 'esterno una parte AM della sua mas-
sa, concentrandola in un guscio sferico di raggio r(t) crescente. Supponendo di poter
trascurare 1'effetto dell'urto del materiale sul pianeta calcolare I’eccentricita dell’orbita
quando r(t) > Ry. Si assuma M — AM > m.

Soluzione

1.0

05 rpb=—— e ———————

Figura 5.54.: Il valore dell’energia totale in unita k/ Ry (retta orizzontale tratteggiata) e
del potenziale efficace (curva continua) dopo l'espulsione della massa in
funzione di r/Ry. Le differenti curve si riferiscono a AM/M = 0 (nessuna
espulsione, nero) AM/M = 1/4 (rosso) AM/M = 1/2 (verde) AM/M =1
(massa completamente espulsa,blu). Notare che una intersezione € sempre
ar = Ry.
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Per semplicita poniamo k = GMm e k' = k — Ak con Ak = GAMm. Possiamo scrivere
I'energia del pianeta nella forma

1, L2 k
E:Emr T Ty
Se la particella si trova in un’orbita circolare di raggio R allora
Uefs oy _ L2k _
or (RO) __miRg—i—Ri% =0
cioe
L? = kmRy

Al momento in cui il guscio sferico di massa supera l'orbita il momento angolare non
cambia, e la velocita radiale rimane nulla. Quindi I’energia vale

E' = i — k; = L — kil
- 2mRZ Ry 2Ry R
e il nuovo potenziale efficace

> K kRy K

/ _— . =
ff T omr2 7 2r2 T

Il raggio massimo e minimo saranno determinati dalle soluzioni di E' = U], s Cioe

k k' kRy K
2Rg Ry 2r2 r

Riordinando i termini abbiamo

KRy (1 1\ _ (1 1
2 \RZ R? Ry R

Eliminando la soluzione banale R = R troviamo infine

1 2k 1 Ak 1
R (k”)zzo— (“k)zao

Notiamo che ¢ la variazione relativa della massa della stella. Se Ak/k < 1/2 ottenia-
mo una nuova orbita ellittica, in caso contrario la nuova orbita e illimitata. Possiamo
calcolare direttamente 'eccentricita usando la formula

oo J1L 2ELE [ 2R (kKN [28k
o mk'2 k \2Ry Ry k

2AM
e= i (5.71.1)
La formula conferma che abbiamo un ellisse per AM/M < 1/2, una parabola per
AM/M = 1/2 ed un’iperbole per 1/2 < AM/M < 1.1l caso AM/M = 1 corrisponde
ad una traiettoria rettilinea, dato che tutta la massa & stata espulsa e non vi sono pitl

forze gravitazionali, che possiamo interpretare anche come iperbole degenere.

ossia
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PROBLEMA 5.72
( Precessione di un’orbita x x %

Studiare le orbite limitate di un punto materiale in un potenziale della forma

n €

roor
dove r & la distanza dall’origine di un sistema di coordinate e & > 0. Mostrare che il
punto di massimo e di minimo avvicinamento al centro precede per ¢ # 0 e calcolare
’angolo di precessione.

Soluzione

Dato che si conserva 'energia totale e il momento angolare rispetto all’origine del si-
stema di coordinate, sappiamo che il moto avviene in un piano e possiamo descriverlo
utilizzando coordinate polari. Abbiamo allora

L 2, 24 & €
Ezim(r +r9)—;+72
e
L = mrf
Possiamo anzitutto scrivere ’energia nella forma
1 dr\? o & €
E=_ - 2107 — =+
2" [(d@) tr T 7

ed eliminare 6 utilizzando la conservazione del momento angolare

g L2 (dr 2+ AN

-~ 2mrt \ d6 2m 2 or
ottenendo un’equazione che lega r a 0, e permette in linea di principio di ottenere la tra-
iettoria. Introduciamo adesso la nuova coordinata u = 1/7: sostituendo nell’equazione

precedente otteniamo
E= L (du 2+ L* +e)u*—au
- 2m \ df 2m
che formalmente e 1’energia di un oscillatore armonico soggetto ad una forza costante.

In effetti se deriviamo rispetto a § otteniamo

dE L2 du d*u (L2 ) du du

a0 - mdede T \wm %) a0 Yae
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che si deve annullare dato che E si conserva. Questo accade nei due casi

du

B - 0
Lj@+ L—2+2€ u = «
m do? m -

Il primo corrisponde ad una traiettoria circolare, r = 1/u = costante. Concentriamoci
sul secondo, che ha per soluzione generale

-1
u=Acos(B0+¢)+u (I;;—FZe)

dove A e ¢ sono costanti arbitrarie da determinare con le condizioni al contorno, e

2me
P=yitTz

Chiaramente un cambiamento di ¢ equivale ad una rotazione globale dell’orbita, pos-
siamo quindi fissare ¢ = 0 senza perdere di generalita. I punti di massimo e minimo
avvicinamento corrisponderanno ai minimi e ai massimi del coseno, e quindi a

B0 =k

e quindi ad ogni giro questi avanzeranno di un angolo

(59:27r<;—1>

che si annulla per € = 0.

PROBLEMA 5.73
( Uscire da una bottiglia xx

Un punto materiale e vincolato a muoversi su una superficie liscia descritta in coordinate
cilindriche dall’equazione
p=a-+bcoskz

cona > b > 0 (vedere Figura [5.55). Studiare le possibili orbite in assenza di gravita,
verificando in particolare l'esistenza di orbite limitate e circolari.

Soluzione

L’'unica forza in gioco e la reazione vincolare, normale alla superficie liscia. Dato che la
velocita della particella € sempre tangente alla superficie tale forza non puo fare lavoro,
si conserva quindi 'energia cinetica. Questo significa che il modulo della velocita della
particella rimane costante.
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Inoltre per motivi di simmetria la forza & contenuta nel piano definito dall’asse z
e dal vettore posizione del punto materiale, e quindi il suo momento non puo avere
componenti lungo z. Esplicitamente, la reazione vincolare sara del tipo

N = N,é, + N:é;
cioe priva di componenti nella direzione di ép. Dato che il vettore posizione &
R =zé, + pé,
si verifica subito che
M =RAN = (Npé, + Nz&:) A (zé: + pé,)

ossia

W= (2N — N,) (6 1)
(notare che &; A é, = é,). Di conseguenza si conserva la componente z del momento
angolare

L. = mp*¢
Quindi I'energia si scrive
1

1 ;
E - EMUZ - Em (pZ +p2¢2 +Zz)

Possiamo eliminare ¢ usando la conservazione di L,, e usare la condizione di apparte-
nenza al piano per eliminare p e

p = —bkzsinkz
ottenendo
E=1lm (1+b°k*sin® kz) 22 + U, (5.73.1)
— 2 eff . .
con )
L
Uets -

" om (a + bcoskz)?

Dato che il primo termine al membro destro della deve essere positivo abbiamo
che il moto puo avvenire solo nella regione in cui U,¢f(z) < E. Rappresentando grafica-
mente il potenziale effettivo (Figura (5.56)) che & una funzione periodica di z, troviamo
che esistono orbite a z costante, per un valore dell’energia

L

E=minU=— 2
I 2m (a + b)?

che corrisponde al minimo del potenziale effettivo. Dato che p & funzione di z, queste
saranno anche orbite circolari.
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Se
L
minU,sf < E < maxU,ff = ——=——
/I I om (a—b)?

avremo orbite limitate. Infine per
E > max U,ss

avremo orbite illimitate.

Consideriamo infine due casi particolari.

Se L; = O allora, e U,¢f = 0. La particella si muove quindi longitudinalmente lungo
la superficie.

Se E = max U,y la particella si avvicina alla z corrispondente al massimo del poten-
ziale effettivo. Per capire cosa accada in questo caso conviene approssimare l'energia in
un intorno di tale massimo. Poniamo ad esempio z = 7t/k + J, e sostituendo otteniamo

2 2 272
Lz 2:11,”5'2_’_ Lz 2_1 bkLz 3(52
2m (a —b) 2 2m(a—b)" 2m(a—b)

che possiamo integrare scrivendo

272
s_ . (1 beL 5
2m2 (a—b)

e quindi

5(t) 204 11\3
t:i/ E %ﬂégiw
s50) 0 bk>L2
Dato che l'integrale diverge se 6(t) — 0, la particella arrivera al massimo del potenziale
effettivo in un tempo infinito.
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Figura 5.55.: La superficie su cui avviene il moto del punto materiale.
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Figura 5.56.: Sulle ordinate, il potenziale effettivo in unita Tt Sulle ascisse, kz. In nero,
il potenziale effettivo per b/a = 1/4 (linea continua) e per b/a = 7/10
(linea tratteggiata). Per un fissato valore del momento angolare, la barriera
da superare cresce quando b si avvicina ad a (bottiglia molto “strozzata”).
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PROBLEMA 5.74
( Moto su un toro x x %

Una particella di massa m € vincolata a muoversi sulla superficie del toro in Figura
descritto dalle equazioni parametriche

= (R+rcosf)cos¢
= (R+rcosf)sing
z = rsinf

Verificare la conservazione del momento angolare in direzione z, e determinare le traiet-
torie.

Figura 5.57.: La superficie sulla quale avviene il moto della particella.

Soluzione

La conservazione del momento angolare in direzione z discende dal fatto che 'unica
forza in gioco (la reazione vincolare, normale alla superficie) ha sempre un momento
con componente z nulla. Utilizziamo le coordinate 0, ¢ per descrivere la posizione del
punto sulla superficie. Possiamo costruire due versori tangenti alla superficie derivando

@ 181 versione del 5 ottobre 2016



5.74. MOTO SU UN TORO * *

7 rispetto ad esse e normalizzando:

—rsinf cos ¢
—rsin@sin ¢
rcos@

ar _
o~

—Rsin¢

— = R cos
i¢ oof

da cui
—sinf cos ¢

ég = | —sinfsing
cos 6

—sin¢

» = cos ¢
0

Possiamo completare la base introducendo il versore

b4 7 z —cos ¢ cos 0
én =g Nép=| —sinfcos¢ —sinfsing cost | = | —sin¢gcost
—sin¢ cos ¢ 0 —sinf@

normale alla superficie. La terna di versori introdotta &, come si verifica facilmente,
ortonormale. Nel seguito ci serviranno le loro derivate rispetto al tempo, che valgono

% = —¢sin6y + 08,
déy PV R
= ¢ sinBég + ¢ cos 0,
Efii: = —0ég — cos 0¢,

Scriviamo adesso il vettore posizione come
7= —Rsinféy — (r + RcosB)é,
e derivando otteniamo la velocita
¥ =106y + (R +rcosb) ¢pé,
e I'accelerazione

[¢* (R +rcosf) sin® + rf] &
+ [(R+rcos6) P —2r6¢psinb] é,
+ [r6*>+¢?cos O (R +rcosh)] ¢,

SN
|
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Dato che non si hanno forze tangenti alla superficie le accelerazioni nelle direzioni &y
e &y e nulla, per cui

#* (R+rcosf)sind+rf = 0
(R+rcos®)p—2rfpsind = 0

La seconda puo essere integrata direttamente, dopo aver moltiplicato per m (R + r cos 6)

jt [m (R—H’COSG)Z([&} =0

ma questa e proprio la conservazione del momento angolare in direzione z, dato che
R+ rcos & la distanza da tale asse e ¢ la componente z della velocita angolare

2 .
L, =m(R+rcosb) ¢
Scriviamo adesso I'energia cinetica, che si conserva:

1 1 . :
E= 571102 = Sm [7292 + (R 4 rcosf)? (Pz}

Possiamo eliminare ¢ utilizzando la conservazione del momento angolare, ottenendo

1 5m L2
E = —mr<0-+ 5
2 2mR? (1+ % cos )

che permette lo studio qualitativo del moto in 6. Il potenziale effettivo & rappresentato
in Figura Abbiamo una soluzione con § = 0 (corrispondente al minimo del poten-
ziale effettivo) in cui la particella resta sul bordo esterno del toro, compiendo un moto
circolare uniforme con velocita angolare

L,

¢ m (R +r)?

Per valori dell’energia intermedi tra il massimo e il minimo 6 oscilla tra un valore
massimo e il suo opposto, la traiettoria & quindi una oscillazione centrata sul bordo
esterno del toro, accompagnata da un’avanzamento di ¢. Infine per valori dell’energia
maggiori del massimo 6 aumenta (o diminuisce) senza limite. La traiettoria e quindi
una spirale che si avvolge al toro.
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Figura 5.58.: Il potenziale effettivo in unita Zrﬁ% in funzione di 6 per r/R = 0.2 (in rosso)

e r/R=0.5 (in blu).

PROBLEMA 5.75
( Pendolo nello spazio delle fasi xx

Si condideri un pendolo di lunghezza ¢ e massa m. Detto 6 1’angolo che il pendolo forma
rispetto alla verticale e w la sua velocita angolare

1. Mostrare che le equazioni del moto si possono scrivere nella forma

dw
ar f(w,0)
do
E - g(w,@)

e determinare le funzioni f e g.
2. Determinare le possibili traiettorie del pendolo nel piano w, 6 nella forma
G(w,0) =0

dove G ¢ una opportuna funzione, rappresentarle graficamente e discuterne il
significato.

3. Trovare la G(w, 0) che corrisponde alle condizioni iniziali

0(0) = 0
w(0) = wp
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scegliendo per wy il minimo valore che permette al pendolo di raggiungere la
posizione 0 = 71. Mostrare che tale posizione viene raggiunta in un tempo infinito
(si supponga che la massa sia vincolata ad una sbarretta rigida).

Soluzione
Domanda 1

L’equazione del moto del pendolo si puo scrivere immediatamente in coordinate polari
scrivendo F = mi per la componente tangenziale alla traiettoria. Per un moto circolare
l'accelerazione tangenziale vale ¢ e la componente tangenziale della forza —mgsin®,
da cui

mlf = —mgsinf.

Dato che w = 6 sostituendo nella precedente relazione troviamo subito

w = —%sin@ = f(w,0)

0 = w=gw,0).
Domanda 2

Dividendo membro a menbro le equazioni scritte precedentemente si trova subito che

dw _ f(w,0)  gsin0

a6~ g(w,6) C w

Questa ¢ un’equazione differenziale a variabili separabili che si puo integrare diretta-

mente:
/wdw = —i/sin@d@

12 8 _ —
SW zcos@ C=G(w,0)=0

dove C @ una costante arbitraria. Possiamo scrivere allora

w = i\/z (C—i—%cosf)).

da cui

Osserviamo che il luogo dei punti che soddisfano questa relazione & simmetrico rispetto
agli assi w = 0 e 8 = 0. Inoltre si ripete periodicamente lungo 6 con periodo 27, sara
quindi sufficiente studiarlo tra § = —mre 6 = 7.

Occorre distinguere diversi casi:

1. Se C < —% la quantita sotto radice & sempre negativa, e non esiste nessuna
traiettoria.
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2. Se —% < C < £ solo alcuni valori di 8 sono possibili, piti precisamente quelli per i
14
cost) > ——C.
g

3. Per C > % tutti i valori di 6 sono possibili.

Figura 5.59.: Alcune possibili traiettorie, corrispondenti a C = —9/10 (rossa), C = 0
(gialla) C =1 (verde) C = 2 (blu) e (viola). L’asse orizzontale corrisponde
a 0, quello verticale a w e si e scelto g/¢ = 1.

Alcune possibili traiettorie sono rappresentate in Figura[5.59 Le curve chiuse (C < 1)
rappresentano moti oscillatori, le altre corrispondono ai casi nei quali il pendolo, avendo
energia sufficientemente elevata, ruota sempre nello stesso verso (senso orario per la
traiettoria con w < 0 e senso antiorario per quella con w > 0).

Problema 3

Date le condizioni iniziali la traiettoria deve passare dal punto (6, w) = (0, wy), deve
cioe essere

1
G(wo,0) :Ewé—%—C:O

che significa

1
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Per determinare wy si pud imporre che I'energia cinetica iniziale sia esattamente uguale
alla differenza tra energia potenziale in § = re 6 = 0, cioe

%mﬁzwé =2mgl

da cui
e quindi

In altre parole la traiettoria vale

w ==+ 27g(1—|—c059)

che corrisponde alla curva verde in figura. Per calcolare il tempo necessario a raggiun-
gere la posizione 6 = 7t si pud considerare 'equazione precedente come un’equazione
differenziale. Scegliendo il segno positivo abbiamo

dw  |2¢ _\/4g , 0
dt—\/g(l%—cose)— ~ 08”5

ma possiamo separare le variabili e integrare, ottenendo

4 ! o a6
0 0 COS3
Il membro destro & proporzionale al tempo impiegato per arrivare a 8%, ma e evidente

che il membro sinistro tende a 4-co quando 6* tende a 7. In questo caso particolare &
possibile integrare esplicitamente anche il secondo membro. Si ottiene

/48, o(t)
715 = 4 arctanh (tan 4>

o) . 1/

L’angolo in funzione del tempo & rappresentato in Figura[5.60]

oppure
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Figura 5.60.: La legge oraria 6(t) nel caso particolare considerato nella terza domanda.

PROBLEMA 5.76
( Moto su una guida ellittica xx

Un punto materiale di massa m & vincolato a muoversi nel piano su una guida ellittica
descritta dalle equazioni parametriche

X = acos0
=bsin6

con velocita iniziale vy.
Determinare la reazione vincolare della guida in funzione di 6, e il raggio di curvatura
della traiettoria. Discutere il caso particolare a = b = R.

Soluzione

Dato che in assenza di attrito la guida non puo esercitare forze nella direzione tangente
il modulo della velocita si conserva e quindi vale sempre vg. Possiamo quindi scrivere

X = —absinf
y = bfcosh

da cui ricaviamo il versore tangente alla traiettoria:

. 1 < —asinf >
t= b cos §
Va2 sin? 0 + b2 cos? § cos
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e inoltre
v§ = 2%+ y* = 6% (a®sin® 0 + b? cos? 0) (5.76.1)

Il vettore velocita si puo scrivere nella forma 7 = vyt. Possiamo allora calcolare I’accele-
razione:

dt voh [(—a cos 9> _ (#* —1?)sinfcos <—a sin@)]

at Va2 sin? 6 + b2 cos? 6 | \ ~bsind (a2sin? 6 + b2 cos?§) \ bcos®

HZUQ

Svolgendo i calcoli e utilizzando I'equazione (5.76.1) troviamo

N = i — mabv} bcos6
= ma == ) ) 2 1\ 2 asin @ )
(a%sin” 0 + b? cos? 0)

Notare che I'accelerazione ¢ normale alla traiettoria: N - T = 0, possiamo quindi estrarre
dall’espressione precedente il versore normale:

g 1 < bcos® )
Va2 sin?0 + b2 cos2 9 \ asinf
e scrivere mabv%
(a2sin? 6 + b2 cos?

Confrontando con 1'espressione dell’accelerazione normale in termini del raggio di
curvatura, v% / 0, troviamo

~

)3/2”

el

(a? sin? 0 + b2 cos? 9)3/2

P= ab

Utilizzando coordinate polari possiamo trovare la componente radiale della reazione

vincolare:
_ mabv} (bcos? 6 +a sin” 6)

(a? sin® @ + b2 cos? 0)2

e la componente diretta come éy:

B mabvg (b — a) sin 6 cos 6

(a? sin? 0 + b2 cos? 9)2 '

No =N ¢y =

Il caso particolare a = b = R corrisponde a una guida circolare di raggio R. Abbiamo
mog

N = -,

p=R.
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M

my

my

Figura 5.61.: Il sistema considerato nel problema.

PROBLEMA 5.77
( Macchina di Atwood: effetti della massa del filo x x %

Nella macchina di Atwood in Figura [5.61]il filo & inestensibile, ma di massa M non
trascurabile. Non vi sono attriti. Si vuole determinare il moto del sistema.

Soluzione

Data l'inestensibilita del filo, il modulo della accelerazione delle masse e di ciascun
elemento del filo sara lo stesso. Possiamo allora scrivere

ma =Ty —mg (5.77.1)

—moa = Ty —mpg (5.77.2)

dove e T, sono le tensioni del filo alle masse.
Consideriamo adesso un tratto infinitesimo del filo: avremo

pdla(l) = —pdlgy + T (£ +dl) £ (0 +db) — T(O)2(0) + N (0) a(0)de  (5.77.3)

dove y = M/L, e abbiamo parametrizzato con ¢ la posizione lungo il filo (/ = 0
corrisponde alla connessione con la massa mj, { = L alla connessione con la massa
my). Il versore T e tangente al filo nel punto considerato, quello # & normale. Inoltre
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N rappresenta la reazione normale della carrucola. Sviluppando al primo ordine in d/
otteniamo

[A(f)—va(ﬁ)]—— )+ N(0)n(e A royee 5.77.4
plat o )| = —mgh (On(e) + 5 [T(O)E0)] - (5.77.4)

Notare che abbiamo scomposto 1’accelerazione del filo in componenti tangenti e normali,
e che il raggio di curvatura del filo vale p = R sulla carrucola e p = oo nei tratti rettilinei.
Sviluppando la derivata e ricordando che

at 1,
otteniamo
2 dT (¢ 1
u [ui’(ﬁ) - Z;)ﬁ(K)] = —ugy+ N()nl) + d(f )i’(ﬁ) - ;T(ﬁ)ﬁ(f). (5.77.6)
Prendendo il prodotto scalare con ¥ di ambo i membri otteniamo
.. dT(¢
pa = —ugy-t+ d(£> (5.77.7)
che integrata tra gli estremi da
L
T, — Ty = pal + ptg/ y-tdl. (5.77.8)
0

Il tratto che si avvolge sulla carrucola non contribuisce all’ultimo integrale, che si riduce
quindi a
T, — Th = paL + ug (61 — £2) (5.77.9)
dove /1 e {5 sono le lunghezze dei tratti verticali del filo.
Questa e 1'ultima equazione che ci serviva. Dalle prime due che abbiamo scritto
otteniamo

(my+mp)a=Ty—To+ (my—mq)g (5.77.10)
e quindi
my + uly —my — uty
= 5.77.11
T T+ + M) ( )
Teniamo conto adesso del fatto che
L=401+ ¥+ R (5.77.12)
e che i
l=a. (5.77.13)
Abbiamo quindi
. 2]/18 mp — mq —]/l(L— T[R)
Uy — ) = 5.77.14
2T (m+my+ M) (my + my + M) ( )
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Questa equazione ammette come soluzione particolare

my —my + M (1— k)
2M

Uy = by = L (5.77.15)

che rappresenta una configurazione di equilibrio. La soluzione generale dell’equazione
omogenea

/ 28
by — 0, =0 5.77.16
2T (m+my+ M) 2 ( )
e invece
ly(t) = Ae" + Be ! (5.77.17)
con
2ug
- 5.77.18
Y my+my+ M ( )

La soluzione generale sara quindi

— M(1=nR
() = A’ coshyt + B sinh yt + T~ +2M ( T[L) (5.77.19)
In termini delle condizioni al contorno
ml—mQ—i—M(l—n'B)
0(0) = A L 77.2
2(0) + M (5.77.20)
0(0) = 4B (5.77.21)
e quindi
my —my + M (1— k) 2(0) |
t) = — =2
05(t) <€2(0) M coshyt + Y sinh ¢
+m1—m2+M(1—n%)
2M

PROBLEMA 5.78
( Pendolo invertito xx

II pendolo invertito in Figura e costituito da una massa m fissata su un’asta di
lunghezza ¢ e massa trascurabile. L’asta puo ruotare attorno all’altro estremo, ma e
soggetta ad un momento proporzionale alla sua deviazione dalla verticale,

M= —kf. (5.78.1)

Determinare le posizioni di equilibrio del sistema e discuterne la stabilita, in funzione
dei parametri dati.
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Figura 5.62.: Rappresentazione schematica di un pendolo invertito.

Soluzione

Scelta come coordinata 1’angolo 6, la seconda equazione cardinale

dL
=M (5.78.2)

per la componente del momento angolare ortogonale al piano della figura si puo scrivere

;tmﬁzé = —kf + mglsin 6 (5.78.3)

i 8 (sng_ Kk
O—E(sm0 mg€9>

Le posizioni di equilibrio corrispondono ai valori di 0 per i quali I’espressione tra pa-
rentesi si annulla. Possiamo determinarle graficamente studiando le intersezioni tra le
curve

ossia

y = sinf (5.78.4)
y = g0 (5.78.5)

al variare del parametro adimensionale

k

gl (5.78.6)

q =
con g > 0. Per qualsiasi valore di q abbiamo la soluzione 8 = 0. Per determinare la
stabilita di questa configurazione di equilibrio possiamo sviluppare 'equazione del

moto attorno al primo ordine intorno ad essa, sin ~ 6, ottenendo

b= % Y (5.78.7)
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AWiE

-10

<1.0

Figura 5.63.: Studio grafico delle posizioni di equilibrio e della loro stabilita. Le
curve (5.78.4) e (5.78.5) sono rappresentate in funzione di 6, per 4 = 1/9.

che corrisponde ad un oscillatore stabile solo quando g > 1.

Per g > 1 la posizione di equilibrio trovata & anche 1'unica. Al diminuire di 4 sono
possibili altre intersezioni, come evidente dalla Figura che corrisponde al caso
qg=1/9.

Possiamo determinare direttamente da un grafico di questo tipo la stabilita di una
posizione di equilibrio. Infatti il segno del momento applicato al sistema e dato dalla
differenza tra la sinusoide e la retta. In figura, l'intersezione per 6 = 0 corrisponde a
equilibrio instabile, le successive per 8 > 0 si alternano tra stabili e instabili.

Possiamo riassumere le conclusioni nel grafico Sulle ordinate abbiamo il valore
di 6 all’equilibrio, sulle ascisse 4.

Da notare che le 4 pit lontane corrispondono a una configurazione nella quale 6| >
27t.
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0.2 0.4 0.6 0.8 1.0 12 1.4

Figura 5.64.: Posizioni di equilibrio 6 e loro stabilita, in funzione di 4. La linea continua
corrisponde all’equilibrio stabile, quella tratteggiata all’equilibrio instabile.
Sono rappresentate solo le 7 posizioni di equilibrio pit vicine a § = 0.

PROBLEMA 5.79
( Urto con un piano inclinato xx

Figura 5.65.: Il piano inclinato mobile e la pallina che lo urta.

I1 piano inclinato in Figura di massa M, & vincolato a muoversi su un piano
orizzontale privo di attrito. Su di esso viene lanciata una pallina di massa m che si muove
inizialmente nel piano con velocita vy, e non € ad esso vincolata. Calcolare I’angolo 6
che la velocita della pallina forma con l'orizzontale dopo 1'urto, tenendo conto del fatto
che la giunzione tra piano inclinato e piano orizzontale non e arrotondata e che 1'urto
avviene in un tempo molto breve.
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Soluzione

L’energia e la quantita di moto orizzontale del sistema si conservano. Inoltre, dato che
'urto avviene in un tempo molto breve, I'unica forza non trascurabile applicata alla
pallina é la reazione normale alla superficie del piano inclinato. Durante 1'urto quindi
si conservera la componente della quantita di moto della pallina parallela al piano
inclinato.

Abbiamo quindi la conservazione dell’energia

1 1 1
Smog = Sm (v§ + vj) + 5 MV? (5.79.1)

dove si & tenuto conto che immediatamente dopo 1'urto la posizione della pallina non
e cambiata, e che quindi non e necessario includere 1’'energia potenziale gravitazionale.
Per la conservazione della quantita di moto orizzontale sara

mvg = moy + MV (5.79.2)

ed infine per la componente della quantita di moto della pallina parallela al piano
inclinato

mvg cos w = m (vy Cos & + vy sina) . (5.79.3)

Ricavando V dalla seconda relazione abbiamo (y = M/m)

1
U% = Ui + U; + ; (UO - vx)z (5.79.4)
Vo = Uytouytana (5.79.5)
ossia .
(vy + vy tana)® = 02 + vy + ;vﬁ tan® « . (5.79.6)

Risolvendo per tan 6 = v, /v, otteniamo le due soluzioni

tanf =0 (5.79.7)

2t
tan 6 = anx (5.79.8)

_(1_1 2
1 (1 7)’canoc

Solo quest’ultima e fisicamente accettabile. Nel caso particolare da considerare y — oo,
e quindi
2tana 2sinx cos &

X cos?a —sin?a

= tan 2« (5.79.9)

cioe I'angolo di incidenza con il piano inclinato € uguale a quello di riflessione, come ci
si aspetta se la pedana e ferma.
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my

)

Figura 5.66.: Il manubrio considerato nell’esercizio e il perno P contro il quale urta.

PROBLEMA 5.80
( Urto di un manubrio *xx

Il manubrio in Figura e costituito da due masse puntiformi 1, e m», unite da una
barra di lunghezza ¢ = ¢; + ¢, di massa trascurabile. Inizialmente si muove traslando
rigidamente con velocita vy, urta quindi un perno P posto a una distanza ¢; dalla massa
superiore, e vi rimane attaccato, libero pero di ruotare. Calcolare la velocita angolare
finale del manubrio e I’energia dissipata nell urto.

Soluzione

Vale la conservazione del momento angolare L rispetto al perno, dato che le uniche forze
esterne sono applicate in esso al manubrio, e quindi hanno braccio nullo. Consideria-
mo in particolare la componente di L normale al piano in cui si muove il manubrio.
Inizialmente questa vale

— mqvgly + myvply (5.80.1)

ed alla fine
mlwé% + mzw@ (5.80.2)

dove w é la velocita angolare finale. Equagliando queste due espressioni si ottiene

(THzgz — mlél)vo
= . 5.80.3
©“ mlﬁ% + ngg ( )
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Quindi il manubrio ruotera in senso antiorario se myf, > mif1, in senso orario se
mayly < mily e non ruotera affatto se m 41 = my¥,. Queste alternative corrispondono ad
un urto del perno sopra, sotto o in corrispondenza del centro di massa del manubrio.
L’energia dissipata si calcola come differenza tra energia cinetica iniziale e finale:

1 1 1
AE = 5 (my + my) v§ — Emlﬁ%aﬂ — imzﬁng (5.80.4)
ossia,
1 1 (7’}’1262 — m1€1)2 2
AE = = 2_ -
2 (M) O = S maf2) )
_ 1(7’}11 + mz) (mlﬁ + WIZE%) — (T’Hzfz - m1£1)202
2 (m1 2 + myl2) 0
ed infine

1mymy (61 + fz)Z 5
AE = - .
2 (Wl]g% + 7’7125%) “

(5.80.5)

PROBLEMA 5.81
( Il grande attrattore x x x

Supponiamo di avere a disposizione una massa di plastilina: possiamo modellarla nella
forma voluta, ma non possiamo cambiare la sua densita p. Vogliamo capire che forma
dobbiamo dargli per rendere massima 'attrazione gravitazionale esercitata su un punto
materiale di massa m.

Soluzione

Poniamo il punto materiale nell’origine di un sistema di coordinate. Qualunque sia la
soluzione del problema, con una rotazione del sistema potremo allineare la forza attrat-
tiva totale con l'asse z. Da questo segue che un elemento dM della massa di plastilina
posto nalle posizione 7 dara un contributo utile alla forza totale uguale a

mdM
73

= A

r-z

dFZ - _G

dato che la somma di tutte le componenti perpendicolari a Z si dovra annullare. Usando
coordinate sferiche questo significa

mdM

dF; = —G———cos?t
r

Possiamo spostare 1’elemento d M mantenendo dF, costante se ci muoviamo sulla super-
ficie
r> = —Kcosf

@ 198 versione del 5 ottobre 2016



5.81. IL GRANDE ATTRATTORE * % %

dove K ¢ una costante definita da

1 dE
GmdM

Chiaramente K~! & proporzionale all'importanza del contributo di dM. Al variare di K
avremo diverse superfici, invarianti per rotazioni attorno all’asse z. Alcune di queste
sono rappresentate in Figura[5.67}

Figura 5.67.: Le superfici r> = —K cos 0. Dalla pit1 piccola alla pit1 grande corrispondono
aK =1/10,1,2. Lorigine del sistema di riferimento & nel punto in comune.

Avendo a disposizione una massa M totale converra iniziare a riempire le superfici
a K pit piccolo (ma positivo). Per determinare il valore di K corrispondente alla super-
ficie pitt grande completamente riempita bastera imporre che la massa totale in essa
contenuta sia quella a disposizione, cioé

p/dV:M
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p///rzdrdcosed(,b =M

Integriamo su ¢ e scriviamo esplicitamente i limiti di integrazione di quanto resta

0 v —Kcos @
27rp/ dcosf)/ drr* = M
-1 0

ossia

da cui 4
G oK M

Otteniamo infine che K scala come la potenza 2/3 del volume della plastilina

(151\4)2/3 (15V>2/3
K=[— — (==
4rp 47

Possiamo infine calcolare la forza attrattiva ottenuta, scrivendo

FE, = —Gm/dr]glcose
= —Gmp/cc:zerzdrdcostcp
0 v —Kcosf
= —271Gmp/ cos@dcos@/ dr
-1 0
47
= ?Gmp\/f

_ 4nG (1577
5 "\ ax

Possiamo confrontare questo risultato con cio che si otterrebbe con una distribuzione
sferica di plastilina,

F /= I —
z R2 5 4771 9
1/3

_ GmM _ 411G < 14 125)1/3

che risulta minore di un fattore (25/27)'/° ~ 0.97. Per maggiore chiarezza riportiamo
in Figura le sezioni trasversali delle superfici.
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Figura 5.68.: Le sezioni trasverse delle superfici riportate in Figura per K =1/10
(blu), K = 1 (verde) e K = 10 (arancio). Le linee tratteggiate corrispondono
alle sfere di uguale volume.

PROBLEMA 5.82
( Razzo in un campo gravitazionale costante xx

Studiare il moto di un razzo in un campo gravitazionale costante. La massa iniziale del
missile & Mp. Il sistema di propulsione emette una massa costante di gas I' per unita
di tempo, ad una velocita —u relativa al razzo. Determinare in particolare sotto quali
condizioni il razzo riesce a sollevarsi da terra.

Soluzione

La quantita di moto del sistema al tempo ¢, escludendo il gas espulso fino a quell’istante,

N

e
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La quantita di moto al tempo t + dt vale invece, tenendo conto del gas espulso tra t e
t+dt,
P(t+dt) = [M(t) = T(t)dt] V(¢ +dt) + [—u+ V(#)] T(t)dt

dove abbiamo considerato una massa espulsa per unita di tempo I' = —M non necessa-
riamente costante. La variazione della quantita di moto e uguale all'impulso delle forze
esterne

P(t+dt) — P(t) = —M(t)gdt

da cui
[M(t) —T(t)dt] [V(t) + V(t)dt] + [—u+ V(£)]T(t)dt — M(t)V(t) = —M(t)gdt
Sviluppando e omettendo i termini del secondo ordine si ottiene
M(t)V(t) =T(t)u — M(t)g
Vediamo che il razzo si sollevera dal suolo se
I'(0)u > Mg

Passiamo adesso all'integrazione delle equazioni del moto. Abbiamo

av ul(t)
- = 7 — g
dt My — [y T(t)dt
ed integrando otteniamo
t /
V(1) :/ ”I;,(t) dt' — gt
0 My — [, T(¢")at

che posto di conoscere I'(t) e di saper calcolare gli integrali al membro destro da una
1soluzione completa del problema. Considerando I' costante in particolare abbiamo

Eoour ,
Vi) = /OMO_rt/dt gt

= —ulog <1_J\1;Ii)> — gt

Razzo vincolato xx

( PROBLEMA 5.83

Un razzo di massa iniziale M é fissato ad un estremo di un’asta di massa trascurabile
e lunghezza ¢, perpendicolarmente ad essa, come in Figura L’asta puo ruotare
liberamente attorno all’altro estremo in un piano orizzontale. All’accensione il razzo e
fermo, e da quel momento il gas viene espulso con una velocita relativa costante —u.
Determinare la velocita del razzo in funzione della massa di gas espulso.
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Figura 5.69.: Razzo vincolato.

Soluzione

Nella situazione considerata il momento angolare del sistema composto dall’asta, dal
razzo e dal gas espulso si conserva, dato che il vincolo non puo esercitare un momento
di forza. Calcoliamo il momento angolare del missile ad un dato istante, tenendo conto
del gas non ancora espulso:

L =MtV

Se ad un istante successivo calcoliamo il momento angolare del missile e del gas espulso
nel frattempo, dobbiamo trovare lo stesso valore. Indicando con dM la variazione della
massa del missile abbiamo

L=(M+dM){(V+dV)—dML(V —u)

ed uguagliando troviamo, trascurando variazioni del secondo ordine,

Mdvi+dMbu =0
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V(m) Mo—m
/ v = —u / M
Vv(0) Mo M

dove abbiamo indicato con m la massa di gas espulso. Integrando troviamo

ossia

V(m) = V(0) — ulog (1 - A’Z))

PROBLEMA 5.84
( Razzo a piu stadi x*

Un razzo non puo chiaramente utilizzare tutta la sua massa come propellente. Suppo-
niamo che il rapporto tra la massa totale e quella utilizzabile sia y < 1, e che la velocita
di espulsione relativa al missile sia —u. La strategia pit1 semplice per un razzo di massa
iniziale M & quella di espellere tutta la massa disponibile y M, raggiungendo una certa
velocita finale.

Un’altra possibilita & quella di dividere il missile in due stadi di massa My/2. Si
espelle quindi tutto la massa My /2 del primo stadio, raggiungendo una velocita V;. A
questo punto quanto rimane del primo stadio (massa (1 — ) My/2) viene abbandona-
to e si procede espellendo la rimanente massa disponibile (ancora yMy/2). Calcolare
la velocita finale raggiunta in questo caso, e dire se & maggiore o minore di quella
precedente.

Soluzione

Utilizzando la prima strategia si raggiunge una velocita finale data da

(1—7) Mo

My —ulog (1—17)

Vi = —ulog

Con la seconda strategia al momento dell’abbandono del primo stadio si ha

(1—7/2) My
= — 1 -_—
Vi ulog Mo
e al termine avremo
p (I—9/2)My (1—)Mo/2
V= —ulog ——yp ulog 172

= —ulog (1—%) —ulog (1—1)

che ¢ maggiore di quella ottenuta nel primo caso di

V}—Vf = —ulog (1—%)
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PROBLEMA 5.85
( Forze di marea »x

Un osservatore libero di muoversi sotto 1’azione di un campo gravitazionale esterno
indipendente dalla posizione non avverte nessun disagio, per quanto intenso il campo
possa essere. La ragione e che ogni elemento del suo corpo viene accelerato nello stesso
modo. In un campo gravitazionale dipendente dalla posizione questo non e vero: la
forza che agisce sui piedi puo essere diversa da quella che agisce sulla testa e il corpo
viene posto in tensione. L'effetto in condizioni normali e piccolo: stimate la tensione
subita dal vostro corpo in caduta libera sulla superficie terrestre (trascurate 1’attrito
dell’aria) e confrontatela con quella che, secondo voi, dovrebbe essere una tensione
dolorosa.

Soluzione

Figura 5.70.: Calcolo della tensione su un corpo in un campo gravitazionale.

Consideriamo il semplice modello in Figura La massa e distribuita sui due corpi
(testa e piedi), uniti da una sbarra che per semplicita immaginiamo priva di massa.
L’equazione del moto del primo corpo &

ma = Fz(l) -T
e per il secondo

moa = Fz(z) +T
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dove si @ tenuto conto che 'accelerazione ¢ la stessa, e T ¢ la tensione. A noi interessa la
tensione, che vale

my +my \ my my
mimniy
= h
o (8@ g (4 h)
dove
GMr
g(Z):— 22

e I'accelerazione di gravita ad una distanza z dal centro della terra (se z € maggiore del
raggio terrestre Rt) e Mt ¢ la massa della terra. In prima approssimazione quindi

nqmiyp aig _ nimip 3GMT
- my+mp oz _m1+m2 z3

_3 nymsyp GMT ﬁ
C Tmp4my 22 z
mq iy (GMT> < h )
~3 —
mq + mp R% Ry

e ponendo m; = my = 40kg, h = 1.8m otteniamo

h

1.8m

~ —4
X e oem = 17 107N

T ~ 3 x 20kg x 9.8ms 2
La tensione e depressa rispetto alla forza peso di un fattore molto piccolo, il rapporto
h/Rr tra l'altezza del corpo e il raggio della terra. Per avere un termine di confronto,
l'ordine di grandezza di una tensione dolorosa ¢ lo stesso del peso del corpo, ~ 10°N.

PROBLEMA 5.86
( Massima forza di marea * x x

Avendo a disposizione un volume V della stessa plastilina di densita p del problema
la si vuole disporre, questa volta, in modo da rendere massima la variazione

oF,

0z
in un punto dato, dove F, indica la componente z della forza attrattiva generata dal-
la plastilina. Una possibile applicazione & una versione scientificamente avanzata del
banco di stiramento in Figura

Determinare la forma da dare alla plastilina, e stimare la massa necessaria a rendere

'apparato utile al suo scopo, considerando p = 10°%kgm~3. Conviene utilizzare un
materiale piti o meno denso?
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Figura 5.71.: Il banco di stiramento, uno strumento di tortura usato nel medio evo, ma
di origini ben pit1 antiche.

Soluzione

Immaginiamo una massa m all’origine di un sistema di coordinate. La forza che una
massa dM posta in 7 esercita su di essa sara

r
e quindi
E = Gm;lM ,
r
oF, 1 22
Esprimiamo quest’ultima quantita in coordinate sferiche:
_ 2
oF,  _ CmdM 1—3cos” 0
0z r3

Analogamente a quanto visto nell’esercizio il contributo della massa dM a JF,/0z
sara lo stesso per tutti i punti appartenenti alla superficie

P = K(1 —3c0529)
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dove

-1
K = GmdM <aFZ>
0z

€ una costante tanto piu1 piccola quanto maggiore € il contributo. Per rendere massimo
oF, /0z dovremo determinare la superficie capace di contenere tutta la massa disponibile
corrispondente al minimo valore positivo di K.

-6

—
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Figura 5.72.: A sinistra, la distribuzione di massa che rende massimo e positivo dF,/0z

akK=-1.

nell’origine. A destra, la distribuzione che rende massimo in valore assolu-
to ma negativo dF, /0z. La prima superficie corrisponde a K = 1,1la seconda

z < (0 verso il basso).

Notiamo che il massimo valore di dF,/0z corrisponde ad una azione di trazione
esercitata sul corpo vicino all’origine (la testa a z > 0 viene spinta verso l'alto, i piedi a

Per ottenere una compressione dobbiamo chiederci invece quale sia la configurazione
corrispondente ad un dF, /dz massimo in valore assoluto ma negativo. In questo caso &

sufficiente trovare la superficie capace di contenere tutta la massa disponibile corrispon-
dente al valore di K pit piccolo in valore assoluto, ma negativo. Il grafico per le superfici

corrispondenti ad entrambi i casi (per K = 1 e K = —1) sono riportati in Figura
Analogamente a quanto visto nell’esercizio |5.81| sommiamo i contributi di tutta la

©0ce
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massa contenuta all’interno di una superficie data. Questo significa per K > 0

oF, 1—3cos?6
5z - ome / (1’3> av
[K(1-3cos20)]'"° _ 2
= 2nGmp/dcosG/ dr <13:OSG>
0

1/V3 [K(1-3cos26)]'°
= 27erp/ d cos 6 ( 1—3cos29)/ ar
1/V3 0 r

Una particolarita di questa espressione é che l'integrale sulla coordinata radiale e di-
vergente. Il significato di tutto questo e che il contributo della massa vicinaar = 0 &
dominante, e questo permette di ottenere un valore grande quanto vogliamo di 0F, /0z
con qualsiasi massa a disposizione. Sembra quindi che sia possibile costruire un ban-
co di stiramento estremamente efficace a poco prezzo. In realta & chiaro che in pratica
questo non funziona: per un utilizzo pratico abbiamo bisogno di una regione sufficiente-
mente ampia priva di massa in cui alloggiare il torturato. Quindi l'integrale precedente
deve essere modificato in

3

1/v3 [K(1-3cos26)]"
—ZnGmp/ dcos (1 — 3 cos? 9)/ ar
1/\/7 Tmin r

che non e pit divergente:

29z 3

1/V3 K (1—3cos?0
oF _ 27 m / dcosf (1 —3cos?0) log ( 3 os*9)
~1/V3 Vinin

=87 o [1oe 2K 5
9ﬁ b gr?nin 3

Per calcolare K valutiamo il volume complessivo

:/dqb/dCOSG/err

1/v3 [K(1-3cos?6)]"°
= 27‘(/ dcosf r2dr
71/\/5 Vimin
2 1/v3
= [K (1 —3cos*0) —r3;,] dcost
3 Jo1/v3
87 47r3

min

BN

da cui
K:%VJF r 9\[

87t 2 Tmin = 87r
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Per ottenere un banco efficace dovremo avere

oF,
g?’min > mg
e quindi
GO" min 93 V 5| 9v3
s |8\ 2r T 737
Dato che il fattore

_ Gprmin ~ -9 Y T'min
‘T g =710 <103kgm—3> <1m)

€ molto piccolo, e chiaro che per ottenere il risultato voluto dovremo avere un volume
totale enormemente piti grande di 3, , dato che il logaritmo dovra essere O (a 1), quin-
di il dispositivo e del tutto irrealizzabile. Aumentare la densita puo aiutare: all’interno
di una stella di neutroni p ~ 10'%kgm~3 e quindi a ~ 7 x 10°. In questo caso, suppo-
nendo di poter applicare 1'espressione per la forza gravitazionale di Newton, sarebbe
sufficiente avere

4 Z Zr?nin

Considerazioni analoghe si possono fare nel caso K < 1.

PROBLEMA 5.87
( Pendolo non ideale xx

Un punto materiale di massa m e sospeso ad un punto fisso da una molla con lunghezza
di riposo ¢ e costante elastica k. Per semplicita si puod supporre che il moto avvenga in
un piano verticale. Studiare le piccole oscillazioni del sistema attorno alla posizione di
equilibrio stabile.

Soluzione

Conviene utilizzare coordinate polari per specificare la posizione del punto materiale
rispetto all’origine. L'estremo opposto della molla & fissato in questultima (Figura [5.73).
Possiamo allora scrivere le equazioni del moto nella direzione radiale e tangenziale nella
forma

m (¥ —r0?) = mgcosf —k(r— {o) (5.87.1)
m (r +2#0) = —mgsinf (5.87.2)

La posizione di equilibrio si trova annullando nelle equazioni precedenti velocita e
accelerazioni. Deve quindi essere

sinf = 0 (5.87.3)
cosf = — (r—4¥p) (5.87.4)
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\/

k ¢

\/

Figura 5.73.: Coordinate polari utilizzate per descrivere il pendolo.

e troviamo le due soluzioni

_(p, g
(r,0) = (eo : ,n) (5.87.5)
e
_ mg
(r,0) = (60 + = ,0) (5.87.6)
Studiamo piccole oscillazioni attorno alla prima introducendo due nuove coordinate
0 = m+60 (5.87.7)
ro= fo—"S+or (5.87.8)

legate agli spostamenti rispetto alla posizione di equilibrio scelta. Sostituendo nelle
equazioni del moto abbiamo

m [(Si" - <£0 - % + (57’) (592} = mgcos (T +90) —k <£0 - % +or — E()) (5.87.9)

m [(éo _ % n 5r> 56 + 2&59} — —mgsin (77 + 60) (5.87.10)

Trascurando tutte le quantita di ordine maggiore del primo rispetto alle piccole va-
riazioni e utilizzando le approssimazioni sin (77 +6) ~ —d6 e cos (7t +60) ~ —1
otteniamo

méi = —kor (5.87.11)

m (£0 - %) 50 = mgoo (5.87.12)
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La seconda equazione non corrisponde a piccole oscillazioni se, come supporremo,
lp > mg/k. In effetti la sua soluzione generale & del tipo

60(t) = A + Be M (5.87.13)

g
k= | —S 5.87.14
bo— % A7

e questo permette di concludere che il punto di equilibrio studiato non & stabile.
Passiamo allora alla seconda soluzione di equilibrio. Questa volta le “piccole” coordi-
nate saranno definite da

con

6 = o0 (5.87.15)

ro= fo+ % +or (5.87.16)

e sostituendo come nel caso precedente nelle equazioni del moto troviamo
7 mg 2| — _ mg _
m [(5r (fo t0t 51’) 00 } mg cos (06) — k (Eo t0 T or 6095.87.17)

m [ (to+ % +or) o6 +26706] = —mgsin (60) (5.87.18)

Questa volta utilizzeremo le approssimazioni sindf) ~ 56 e cosdf ~ 1. Trascurando
nuovamente prodotti di quantita piccole avremo

mor¥ = —kér (5.87.19)
m (50 n %) 50 = —mgdsb (5.87.20)
Entrambe le equazioni descrivono oscillatori armonici, ed hanno per soluzioni generali
or(t) = Acosw,t+ Bsinw,t (5.87.21)
06(t) = Ccoswpyt + D sinwyt (5.87.22)
con
k
w, = (5.87.23)
m
W = & (5.87.24)
lo + %

Abbiamo quindi una oscillazione radiale, la cui frequenza dipende dalla costante di
richiamo della molla, e una oscillazione tangenziale. Per la seconda la frequenza é iden-
tica a quella di un pendolo di lunghezza ¢ = ¢y + 52, cio¢ alla lunghezza della molla
nella posizione di equilibrio.

Le due oscillazioni sono indipendenti, e nel limite k — oo, che ci aspettiamo corri-
sponda al caso di un filo inestensibile, la frequenza di oscillazione radiale tende pure

all’infinito, mentre quella tangenziale diviene la frequenza di un pendolo di lunghezza
Y.
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PROBLEMA 5.88
( Moto di una scodella xx

Una scodella di massa M e sezione S pud muoversi liberamente su un piano orizzontale
senza attrito. Su di essa cade della pioggia: ciascuna goccia all’arrivo sulla scodella ha
una velocita orizzontale Vy > 0 e una verticale V}, < 0. Inoltre la massa di acqua che
arriva su una superficie S fissa sul terreno e costante e vale I'.

Supponendo che la pioggia raccolta dalla scodella rimanga in quiete rispetto ad essa,
e che questa si inizialmente ferma, studiarne il moto. Trascurare l'effetto dell’urto della
pioggia sulle superfici laterali della scodella.

Figura 5.74.: La scodella ha una sezione orizzontale S, la pioggia cade su di essa con un
angolo determinato dalle componenti orizzontali e verticali della velocita.
Se la scodella e ferma, la massa di acqua raccolta in un’unita di tempo e
costante e vale I'.

Soluzione

Calcoliamo prima di tutto la massa di pioggia raccolta per unita di tempo da una sco-
della che si sta muovendo con velocita v. Questa & la massa contenuta nel cilindro
rappresentato dall’insieme dei vettori in Figura con base S e altezza uguale alla
componente verticale della velocita della pioggia. Dato che quest’ultima non cambia al
variare della velocita della scodella, otterremo ancora I'.

Scriviamo la quantita di moto della scodella al tempo t + dt. Esso sara dato da

P = (M+m(t+dt))o(t +dt)

dove m(t + dt) & la pioggia raccolta a quell’istante. Al tempo t questa dovra essere
uguale alla quantita di moto della scodella pit quella (orizzontale) della pioggia raccolta
nell’intervallo dt successivo:

P=(M+m(t))v(t) +TVidt
Eguagliando queste due espressioni troviamo

(M +m() v(t) + TVidt = (M + m(t +dt)) o(t + dt)
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Usando il fatto che m(t + dt) = m(t) + I'dt possiamo scrivere
(M +m(t))o(t) + TVydt = (M +m(t) +Tdt) (v(t) +o(t)dt)
ossia, trascurando i termini di ordine superiore al primo
(M+m)o=T(Vy—0)
A questo punto possiamo scrivere (I' = dm /dt)

d
(M+m)rd—:1:F(Vx—v)

che si puo integrare direttamente:

v(m) 1 o m 1 o
/0 Ve—o"" _/0 M+m™"

Vy —o(m) o M+m
v, &M

ottenendo

—log

e quindi

. m

- M+m
Questa soluzione fornisce la velocita della scodella in funzione della massa della pioggia
raccolta. Come si vede per grandi valori di m v — V,: questo si interpreta facilmente
tenendo condo che quando v = V; la pioggia cade verticalmente nel sistema di riferi-
mento solidale con la scodella, che diviene anche un sistema di riferimento inerziale.
Notanto che m = I't possiamo anche scrivere la velocita della scodella in funzione del
tempo:

v(m) Vi

Tt
o() = 3T

Vi

PROBLEMA 5.89
( Urto contro una sfera « « %

Dei proiettili, schematizzabili come punti materiali, si muovono con velocita 7 = —voZ
e sono distribuiti uniformemente, nel senso che il numero di proiettili che attraversano
una superficie qualsiasi ortogonale all’asse Z ¢ dato da

N = OSAt

dove S e I'area della superficie,  una costante e At I'intervallo di tempo considerato. I
proiettili rimbalzano elasticamente su una sfera di raggio r fissa nell’origine del sistema
di coordinate. Calcolare il numero di urti che avvengono in un secondo e mostrare che i
proiettili vengono deviati uniformemente in tutte le direzioni, nel senso che i proiettili
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deviati che attraversano una qualsiasi parte di una superficie sferica di raggio R > r e
data da

N' = ®'S'At
Nella formula precedente S’ & I'area della parte di superficie sferica considerata e @’ &
una costante. Calcolare inoltre ¢’

Soluzione

Un proiettile urtera la sfera se si trovera all’interno del cilindro di raggio r avente con
l’asse nella direzione Z. Tante particelle attraverseranno una sezione trasversa di questo
cilindro, tanti saranno gli urti. Quindi avremo

Ny = Prr?

urti al secondo. Notare che il numero di particelle che attraversano la sezione trasversa
& anche il numero di particelle contenute nel cilindro di base 772 e altezza voAt, quindi
Nyti = pvortr? e @ = pug dove p & la densita di volume dei proiettili.

Nell'urto elastico il proiettile viene deviato specularmente. Supponiamo infatti che 7
sia il versore normale alla superficie della sfera nel punto di impatto, abbiamo due leggi
di conservazione. L'energia, dato che 'urto ¢ elastico

L o, 1 .,

—Mvy = =Mmv

270 2
e la quantita di moto del proiettile parallela alla superficie, che possiamo ottenere sot-
traendo alla quantita di moto totale quella perpendicolare alla superficie, |, = mv, =
m(T-n)n

In questo caso si tratta in realta di due quantita conservate, dato che p ha due compo-
nenti indipendenti. Abbiamo quindi le equazioni

Po| = 7yl
2 = o
Se separiamo le velocita in componenti perpendicolari e parallele la conservazione

dell’energia da
2

(Bor +30y)* = (571 + 7))

e quindi, sviluppando e tenendo conto che componenti parallele e perpendicolari sono
ortogonali tra loro,
2 2 _ .2 2

Usando la seconda legge di conservazione troviamo quindi

2 _ .2
VoL = Uf1
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cioe
Ur1 = +0p1
In quest’ultimo passaggio abbiamo potuto derivare 1'uguaglianza (a meno di un segno)

dei vettori dall'uguaglianza dei moduli dato che la direzione di un vettore perpendico-
lare alla superficie ¢ fissato univocamente. In conclusione

Entrambe le velocita finali soddisfano le condizioni di conservazione che abbiamo posto,
ma quella con il segno positivo (corrispondente ad una velocita inalterata) non sono
rilevanti per il nostro problema. Abbiamo quindi esplicitamente

T = Ty — o1 = To —2(To- ) A

»

Figura 5.75.: La relazione tra particelle entranti e particelle uscenti. La particella si avvi-
cina alla sfera muovendosi parallelamente all’asse z, ad una distanza b da
€ss0.

Questa ¢ la legge di riflessione speculare: la traiettoria dopo l'urto giace nel piano
determinato dalla traiettoria prima dell’urto e dalla normale 7. Inoltre 1’angolo tra la
traiettoria e la normale € lo stesso prima e dopo 1'urto. Se utilizziamo coordinate sferiche
vediamo che la traiettoria della particella dopo l'urto e data da in funzione del parametro
s >0da

=/

7 =ri+ s
dove 7 ¢ il versore radiale nel punto di impatto,
sin  cos ¢
= sinfsing
cos 0
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mentre @ & nella direzione del moto dopo l'urto. Dalla costruzione in Figura
vediamo che possiamo scrivere @ nella forma

sin 260 cos ¢
sin 20 sin ¢
cos 20

IS
I

e che b = rsin6, detta b la distanza tra la traiettoria iniziale della particella e I'asse Z.
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Figura 5.76.: La relazione tra particelle entranti e particelle uscenti. Il fascio in ingresso

©0ce

con sezione a corona circolare (in azzurro, area AS = 7t[(b + Ab)* — b))
viene trasformato nell’area a forma di anello AS’ sulla sfera esterna di
raggio R. Nell’animazione 'area AS viene mantenuta costante, e si pud
verificare che anche AS’ si mantiene approssimativamente costante. Questo
non € esattamente vero perche la condizione R >> r non é particolarmente
rispettata nella figura (R/r = 3). Animazione disponibile all’indirizzo
http://www.df .unipi.it/"cella/videos/ueg/UrtoSfera.html
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Al variare del punto di impatto 6 varia nell’intervallo0 < 6 < /2e¢in0 < ¢ < 27.
Quindi 6’ = 26 variain 0 < 6’ < 7 ed il versore @ varia sull’intera sfera unitaria (vedere

Figura[5.76).

Considerando un elemento infinitesimo di una superficie ortogonale all’asse z, che
potremo scrivere come

dS = bdbdp =rsinfd (rsinb) dp
= 1?sinf cos 0dOd¢

il numero di particelle che la attraverseranno prima dell"urto nel tempo At sara (b < r e
d’ora in poi sottointeso)

AN = ®dSAt = DAt r*sin 0 cos 0d0d¢

Possiamo riscrivere questa quantita nella forma

. 1 7\ 2 2 .
AN = ZL(E) At R?2 sin 20d0dg

_ ! <1)2 DAt [R*d cos 0'dg]
4 \R
e notare che 'espressione tra parentesi quadre & I'elemento di superficie infinitesima
dS’ su una sfera di raggio R. Dato che per R > r le traiettorie delle particelle dopo
1'urto sono approssimativamente radiali, 7 ~ s, tutte le particelle che attraversano la

superficie attraversano successivamente dS’, e quindi potremo scrivere

AN = ®'dS'At

SHOE

Notare che integrando su tutta la sfera abbiamo

con

N = ®'4R?At = Ortr* At = Ny

cioe il numero di urti in un intervallo di tempo e uguale al numero di particelle che
attraversano la superficie sferica.

PROBLEMA 5.90
( Perturbazione di un oscillatore armonico x x x

Un oscillatore armonico e ottenuto collegando una massa m ad un punto fisso mediante
una molla di lunghezza a riposo trascurabile e costante di richiamo k. Il moto & unidi-
mensionale, e la massa si trova inizialmente nella posizione di equilibrio con velocita vg.
La legge oraria e ben nota:

0o .
t) = 2 t
x(t) sinw
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con w = vk/m.

Si aggiunge adesso una nuova molla, in parallelo a quella precedente, anch’essa di
lunghezza a riposo trascurabile e costante di richiamo ek < k, e si vuole calcolare la
nuova legge oraria, mantenendo le stesse condizioni iniziali.

Anche in questo caso la soluzione esatta e facilmente calcolabile. Si vuole perod proce-
dere in modo diverso. Supponendo che la soluzione possa essere approssimata da uno
sviluppo in potenze di €

x(t) = xo(t) + exq(t) + €2xp(t) + - - -

vogliamo provare a determinare x((f) e x1 () sostituendo lo sviluppo nell’equazione del
moto ed eguagliando i termini dello stesso ordine in €.

Confrontare il risultato approssimato con la soluzione esatta: si puo dire che I'appros-
simazione sia buona se € < 1? Dare una spiegazione di cio che succede.

Soluzione
L'equazione del moto del sistema si puo scrivere nella forma
mi+ (1+¢€)kx =0
che ha per soluzione esatta con le condizioni iniziali volute
x(t) = % sinw't
dove w' = /(1 + €)w.
Sostituiamo adesso la soluzione approssimata troncata al primo ordine in €
m (%o +ex1) + (1+€e)k(xo+ex;) =0
ed eguagliamo i termini formalmente dello stesso ordine in €. Otteniamo le due equa-
zioni
fo + w?xg =0
X1+ w2x1 = —w2x0
con w? = k/m. La soluzione generale della prima ¢ data da
xo(t) = A cos wt + Bsin wt
e sostituendo nella seconda otteniamo
¥1 4+ wlr = —w? (A cos wt + Bsin wt)

che rappresenta un oscillatore armonico forzato alla sua stessa frequenza naturale. La
soluzione generale dell’equazione omogenea associata e identica alla precedente, resta
da determinare una soluzione particolare. Verifichiamo che questa ¢ della forma

xp(t) = Ct cos wt 4 Dt sin wt
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Infatti derivando due volte otteniamo
X,(t) = —w [(Ctw — 2D) cos wt + (2C + Dtw) sin wt]

e sostituendo

— w [(Ctw — 2D) cos wt + (2C + Dtw) sin wt] + w?* (Ct cos wt + Dt sin wt)

= —w? (A coswt + Bsinwt)

da cui
2D coswt — 2C sin wt = —wA cos wt — wB sin wt
e quindi
1
D = ——wA
Zw
1
C = —-wB
2w

In conclusione la soluzione generale sara
€ € .
x(t) ~ xo(t) +exq(f) = (A + EBwt) cos wt + (B — EAwt) sin wt

Imponiamo le condizioni al contorno

x(0) = A=
1
x(0) = EB(2+e)w =
da cui
2
xo(t) +exi(t) = (2:)2)60 (sinwt + ewt cos wt)

0o 1 . 2

= 1-— 7€ | sinwt + ewt cos wt + 0 (€%)

Gia da questa espressione finale possiamo iniziare a capire quanto sia valida la so-
luzione approssimata ottenuta. Infatti ci attendiamo che il termine O(e) debba essere
una piccola correzione rispetto a quello O(1). Ma questo non & vero: infatti per quanto
piccolo possa essere € vediamo che per tempi abbastanza grandi (tali che wt > e~ 1) il
secondo termine tra parentesi quadre diviene dominante.

Una conferma viene dal confronto tra i grafici della soluzione esatta (in rosso) e di
quella approssimata in Figura a sinistra. Come si vede 1’approssimazione al primo
ordine in € xo(t) + ex;(t), riportata in verde, sembra addirittura peggiore di quella
all’ordine zero x((t) riportata in blu.
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Figura 5.77.: A sinistra, il confronto tra la soluzione esatta (in rosso), quella approssimata
all’ordine zero x((t) (in blu) e quella approssimata al primo ordine xo(t) +
ex1(t) (in verde). Sono stati scelti i valori e = 107!, w = 1rads ! e vy =
1ms—! A destra, la differenza tra espresso in secondi. A destra, la differenza
tra x(t) e la soluzione esatta (in verde) e tra x(t) + €x; () e la soluzione
esatta (in rosso) per 0 < t < 1 con la stessa scelta di parametri.

Cerchiamo di capire perché. Se espandiamo formalmente la soluzione esatta in ¢,
dovremmo ottenere quella approssimata. Ora, possiamo iniziare scrivendo

x(t) = \/11?3 sin <\/1+7€wt)

e dato che € < 1 sara sicuramente una buona approssimazione (1 + €)* ~ 1 + ae da cui

1 1
x(t) ~ % (1 - 2€> sin (wt + Zewt>

Se procediamo meccanicamente, dovremmo adesso espandere il seno nella forma

1 1
sin (wt + Zewt> ~ sin wt + Eewtcos wt (5.90.1)

ed in effetti otterremmo la soluzione approssimata x(t) + ex;(t) (dopo aver cancellato
un termine O(€?). Il problema é che affinche ’approssimazione (5.90.1)) sia accurata non
e sufficiente € < 1. Occorre infatti che la correzione alla fase del seno sia piccola,

1
Eewt K21

e questo smette di essere vero per tempi abbastanza grandi, comunque piccolo sia €.
Possiamo riassumere la discussione dicendo che in realta la variabile “piccola” nella
quale ha senso espandare la soluzione non & bensi ewt.

Ci si puo chiedere infine se la soluzione al primo ordine sia in qualche modo pitt accu-
rata di quella di ordine zero. Da quanto visto e facile rispondere che I’approssimazione
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X0 + €x1 sara migliore della x nel regime ewt < 1. Ad esempio prendendo € = 1072
e w = Irads~! ci attendiamo un errore piccolo per ¢t < 10s. Questo & confermato dal
grafico a destra in Figura dove sono riportate la differenza tra x((t) e la soluzione
esatta (in verde) e la differenza tra xo(t) + €x;(t) e la soluzione esatta (in rosso) per
0 <t < 1 con questa stessa scelta di parametri. Vediamo che in effetti 1’errore al primo
ordine & minore di quello all’ordine zero.

PROBLEMA 5.91
( Pendolo modificato x x x

Il pendolo in Figura[5.78} di lunghezza £ e massa 1, & sospeso nel punto in cui si congiun-
gono due semicirconferenze di raggio R. Calcolare la frequenza delle piccole oscillazioni
attorno alla posizione di equilibrio. Come cambia la risposta se invece di due semicir-
conferenze si considerano due curve qualsiasi, ma con tangente verticale al punto di
sospensione e raggio di curvatura R?

AN

‘m

Figura 5.78.: Il pendolo modificato descritto nel problema. Durante 1’oscillazione una
parte del filo si appoggia ad una delle due semicirconferenze.

Soluzione

Usiamo come coordinata I’angolo 6 di inclinazione del filo rispetto alla verticale. Ponen-
do l'origine nel punto di sospensione le coordinate della massa si scrivono

x =R (1—cosb)+ (£ —RO)sinf = (0 — %R92+O(93)

y = —Rsinf — (£ — RO) cos b = —€+%€92+O(93)
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v

Figura 5.79.: Ponendo 1’origine nel descritto nel problema. Durante 1’oscillazione una
parte del filo si appoggia ad una delle due semicirconferenze.

perf >0e

x=—R(1—cosf)+ ({+RO)sinf = %R92+€9+O (6°)
y=Rsinf — ({4 RO)cosh = — + %K@Z—FO (6°)

per 0 < 0.1 valori approssimati valgono per piccole oscillazioni attorno a & = 0. Sempre
per piccole oscillazioni le velocita varranno

% =0 — ROO + O (6°0)

y =100+ 0 (6%9)
perf >0e

% =RO0+ €0+ 0 (6%0)

=160 + O (6°6)

per 6 < 0. L'energia vale, per piccole oscillazioni,

1
E= S (3’(2 —I—y’2) + mgy

_ 1 g 1 2
= zmé 6 —mgl + 2mg€9

che e identica all’energia di un pendolo semplice. Dunque le semicirconferenze non
hanno alcun effetto sulle piccole oscillazioni.
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Se al posto delle circonferenze si avessero due curve con tangente verticale nell’origine
e raggio di curvatura (sempre nell’origine) p, sarebbe possibile riscrivere le coordinate
della massa nella forma

x = X(s)+ (£ —s)sinf(s)
y=Y(s) — (£ —s)cosb(s)

dove Y e Y sono le coordinate della curva e abbiamo usato come parametro la lunghezza
s del filo che si appoggia ad essa. Per piccoli valori si s (e quindi di ) avremo per 6 > 0

L 1ex
©2ds?

dy 142y, 1 /do\? , 3
y—%(O)sﬁ—EE(O)s —€+s+2€<ds> 5=+ 0O(s”)

()52 + (£—s) %(O)s +0(sY)

e per la velocita

o d2X a .. do, . . 2.
X = W(O)ss + <€ds(0)s - ZdS(O)ss) + O(s%s)
dY A2y A
y= %(O)S + @(O)SS +s5+4 <ds> s§ + O(s%3)
ma dato che la tangente & verticale 2 (0) = —1, inoltre 49 = p~1. Espressioni analoghe

varranno per < 0. Notiamo infine che vale

ay

s = —cost

e che quindi

a2y  de . 1 .
—— = —sinf = ~sinf
ds?  ds 0

si annulla per 6 = 0. L'energia per piccole oscillazioni sara quindi a meno di costanti
1 (eN 1 ¢,
E=-m(-¢) +-mg—
2m <p5> + 2mgpzs
che corrisponde ad un’equazione del moto del pendolo semplice
S+ %s =0

Quindi anche in questo caso le curve non hanno alcun effetto sul sistema per piccole
oscillazioni. Notare che questo risultato ¢ vero indipendentemente dal valore di p.
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PROBLEMA 5.92
( Accelerazione massima su disco rotante xx

Un disco di massa M e raggio R ¢ libero di ruotare attorno ad un asse verticale orto-
gonale ad esso e passante per il suo centro. Sul suo bordo si trova una macchinina di
dimensioni trascurabili e massa m. Le ruote della macchinina sono bloccate in modo da
vincolare quest’ultima ad un moto circolare di raggio R. Tra le ruote della macchinina e
il disco si ha attrito statico, con coefficiente .

Figura 5.80.: Sia la macchinina che il disco si muovono, rispettivamente con velocita
angolare wy(t) e wp(t).

Inizialmente disco e macchinina sono fermi, e 1’accelerazione di quest’ultima ha
in ogni istante il massimo valore che permette di mantenere ’aderenza con il disco.
Ad un certo momento 1’accelerazione tangenziale della macchinina si deve annullare:
determinare 1’angolo percorso dalla macchinina e dal disco.

Soluzione

L'unica forza orizzontale che agisce sulla macchinina & quella di attrito. La massima
forza di attrito statico deve uguagliare la massa della macchinina per il modulo della
sua accelerazione, che avra una componente tangenziale ar = Rw) e una componente
centripeta a. = R“J%\/I

psmg = m\/ (Rom)* + (Rwd,)?

Inizialmente wy = 0, quindi 1’accelerazione e solo tangenziale e vale ar = usg. Mano
mano che wr aumenta l’accelerazione tangenziale deve diminuire, fino ad annullarsi
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quando psg = a. = Rw%/p cioé quando

Otteniamo quindi I’equazione differenziale

Hs8>2

w§w+w‘;/1: ( R

Conviene usare come variabile indipendente non il tempo ma l’angolo 8. In termini di
questo 'equazione precedente si scrive

dwm 2 2 4 _ (Hs8)?
(d9M> h+ahi= ()
dato che 6 = wpr. Quindi

ossia

dw? s
R

Questa e un’equazione a variabili separabili, che possiamo integrare direttamente per
ottenere ’angolo totale percorso dalla macchinina, 0},

0% usg/R 2
/ " Aoy = :l:;/ dsz
: (T
Introducendo la variabile x = w%,;R/ (jsg) abbiamo

1 1 dx 7T
05, = +— — =4
M 2/0 1—x2 4

risultato che non dipende dalle masse o dal raggio del disco. I due segni dipendono dai
due possibili versi dell’accelerazione.

Per determinare 1’angolo di rotazione del disco usiamo la conservazione del momento
angolare del sistema, inizialmente nullo. Abbiamo allora

mRZwM + Iwp =0

e quindi, integrando e tenendo conto che inizialmente , otteniamo
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PROBLEMA 5.93
( Caduta in un fossato xx

Un punto materiale si muove in un piano orizzontale con velocita di modulo V. Ad
un certo punto arriva sul bordo di un fossato con sezione semicircolare di raggio R,
perpendicolarmente ad esso. Cade nel fossato (senza rimanere aderente alla superficie) e
rimbalza elasticamente in una certa posizione del fondo. Si osserva che dopo il rimbalzo
la particella si muove verticalmente verso 1'alto: calcolare la velocita V' e la massima
altezza h raggiunta.

Figura 5.81.: La particella arriva sul bordo del fossato perpendicolarmente ad esso, si
stacca e cade sotto I’azione della gravita.

Soluzione

L’altezza massima raggiunta rispetto al piano si trova facilmente con la conservazione
dell’energia,

%sz = mgh
da cui 5
h= 2
28

In un sistema di riferimento con origine nel centro della circonferenza determinata dalla
sezione del fossato la traiettoria del punto materiale & determinata dalle leggi orarie

1 5
y=—38t
x=—-R+Vt

nella forma ¢
_ 8 2
y= 72 (x+R)

Dato che l'intersezione della traiettoria con la semicirconferenza si ottiene quando x? +
y? = R?, quindi conviene usare la parametrizzazione x = Rcos, y = Rsin 6. Abbiamo
quindi una prima relazione

ing— _ SR 2
sinf = 2 (14 cos0) (5.93.1)
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Dobbiamo adesso imporre che dopo 'urto la particella si muova verticalmente. La
velocita ¥ prima dell’urto e

y=-8t=-v-2y

x=V
e dato che l'urto e elastico, la velocita 7 immediatamente dopo e data da
7 =07—-2(7-n)n

ma per ipotesi ¥ - £ = 0, cioe

IS1i
=
Il
N
—~
IS1i
>
N—
—~
>
=
N—

Dato che

esplicitamente questo significa

2c0s’0 —1 =2sinfcosb —@sin(?

V2
ossia, usando la (5.93.1))
2cos’0 —1= 2“5;—5 sin6 cos 6 (1 + cosf) (5.93.2)
Dividendo membro a membro la per la (5.93.1) otteniamo 'equazioneda cui
cosf =1— 1

V2

Sostituendo nella (5.93.1) otteniamo

1

3/4
V = /3R <\/§— 2) ~ 0.935./gR

Possiamo ora calcolare esplicitamente anche 1’altezza massima raggiunta

1 1\3/2
h= SR (fz— 2) ~ 0.437 R

Notare che dipende solo dal raggio del fossato.

PROBLEMA 5.94
( Piccole oscillazioni I xx

Sulla meta di un cilindro di raggio R e appoggiata una sbarra di lunghezza ¢ e massa
trascurabile. Agli estremi della sbarra sono fissate due massa uguali m. La sbarra e libera
di inclinarsi rotolando senza strisciare sul cilindro, e non sono presenti attriti. Dire se la
posizione di equilibrio in figura e stabile: in caso positivo calcolare la frequenza della
piccole oscillazioni.

@ 229 versione del 5 ottobre 2016



5.94. PICCOLE OSCILLAZIONI I #x

0/2 /2

Figura 5.82.: Il punto medio della sbarra ¢ appoggiato alla sommita del cilindro. La
sbarra rotola senza strisciare, in altre parole il punto della sbarra a contatto
con il cilindro e istante per istante fermo.

Soluzione

Usiamo come coordinata 1’angolo tra la direzione verticale e il segmento che congiunge
il centro del cilindro con il punto di contatto, come in Figura (5.83).

m

Figura 5.83.: Il punto medio della sbarra e appoggiato alla sommita del cilindro. La
sbarra rotola senza strisciare, in altre parole il punto della sbarra a contatto
con il cilindro ¢ istante per istante fermo.

Scegliendo un sistema di riferimento con origine nel centro del cilindro, possiamo
scrivere le coordinate delle due masse. Per quella a sinistra vale

X1 = Rsinf — <§ +R9> cosf

14
Y1 = Rcos @ + (2 +R9> sin 0
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e per quella a destra
. 14
Xy = Rsinf + <2 — RG) cos
14 .
Y2 = Rcos 0 — (2 — RQ) sin 6

L’energia potenziale si puo scrivere adesso come
U(0) = mgy, + mgy> = 2mgR (cos § + Osin )

Per piccole oscillazioni attorno a 6 = 0 abbiamo
U(0) = 2mgR 1+ *\.io (94)
2

che ha un minimo appunto in 6 = 0: quindi questa posizione e di equilibrio stabile.

Per determinare la frequenza delle piccole oscillazioni scriviamo 1’energia cinetica.
Possiamo derivare le coordinate e trovare le componenti della velocita. Piti semplice-
mente possiamo osservare che la sbarra ruota istante per istante attorno al punto di
contatto con velocita angolare 6, e quindi

i[5
|4

Per piccole oscillazioni possiamo trascurare i termini proporzionali al prodotto 060 e
quindi a meno di una costante

1 AN )
E= §2m (2) 0 + EngRG

che e I'energia di un oscillatore armonico di frequenza

J= 1 2mgR 1 [4gR
T 2my|, (\: 2V 2
2m<§>

Materia oscura *x

( PROBLEMA 5.95

In un semplice modello per una galassia ciascuna stella si muove in un’orbita circolare,
sotto 'azione di un potenziale centrale U(r) che tiene conto delle interazioni gravita-
zionali con le rimanenti. Le osservazioni mostrano che la velocita di una stella dipende
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dalla sua distanza dal centro della galassia come

V(r) = (5.95.1)

dove K e rg sono costanti positive.
1. Determinare il potenziale U(r) che potrebbe spiegare i dati sperimentali.

2. Studiare qualitativamente le orbite nel potenziale U(r), dicendo in particolare se
sono possibili orbite illimitate.

3. Supponendo che la galassia sia approssimabile con una distribuzione sferica di
massa, determinarne la massa totale.

SoluzioneE|

Per un’orbita circolare di raggio r la massa per 'accelerazione centripeta deve essere

uguale alla forza radiale

2
VD au
r or

Inserendo 'espressione della velocita otteniamo

au . Km
o)

e quindi a meno di una costante deve essere

U(r) = Kmlog < 2 )

r+r9

I potenziale efficace vale

12 2r
Uepf(r) = 2mr? + Kinlog (r+ro>

che diverge & =2 per piccoli r e tende alla costante Co, = Km log 2 per r — oo. Esistono
quindi orbite illimitate, corrispondenti a energie E > Cu. Il potenziale ha un unico
minimo determinato dall'unica soluzione positiva di

dueff(f’) B Km?r’rg — L?(r + 1)

— =0
dr mr3 (r+719)
cioe
. L2+ Ly /L2 +4Km?rg
== 2Km?rg

IProva scritta del 1/5/2009
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corrispondente all’orbita circolare di momento angolare L (e energia E = U,f¢(r")).
Se la distribuzione di massa della galassia & sferica deve essere

GmM(r
F(r)= ——5— (r)
r
dove M(r) ¢ la parte della massa totale contenuta in una sfera di raggio r. Se con-
frontiamo questa espressione della forza radiale con quella ottenuta precedentemente
abbiamo

Km — GmM(r)
- —
r (1 + %)
La massa totale della galassia sara dunque
2
lim M(r) = lim —_ — Kro
r—oo roo o <1 + %) G

PROBLEMA 5.96
( Urti istantanei e attrito xx

M

o

Figura 5.84.: La particella urta contro il piano inclinato: in quel momento ha una velocita
7= Uof .

Su un piano orizzontale ¢ appoggiato un cuneo di massa M. Contro la sua faccia
obliqua, inclinata di un angolo a rispetto all’orizzontale, viene lanciato un proiettile
di massa m. Al momento dell’urto la velocita del proiettile e orizzontale e vale vy in
modulo. Si sa che la forza tra il proiettile e il cuneo e conservativa e perpendicolare al
piano che viene urtato.

Tra il cuneo e il piano orizzontale & presente attrito dinamico, descritto da un coeffi-
ciente y. Non si tiene conto del possibile attrito statico: per esempio si pud immaginare
che la velocita iniziale del cuneo non sia esattamente nulla ma molto piccola.

Considerare il caso limite di urto istantaneo. Trovare, se ci sono, delle quantita conser-
vate durante 1'urto e calcolare le velocita finali di cuneo e proiettile.

Soluzione

Indichiamo con R(t) la forza di reazione che il lato obliquo del cuneo esercita sul pro-
iettile durante 1'urto. Possiamo allora scrivere le equazioni del moto, sempre durante
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I'urto, nella forma

may (t) —R(t)sina
may(t) = R(t)cosa —mg
MA(t) R(t)sina — uN(t)
0 = —R(t)cosa+ N(t) — Mg (5.96.1)

Abbiamo indicato con ay, ay le componenti dell’accelerazione del proiettile, con Ay
I'accelerazione del cuneo e con N la reazione normale del piano su cui il cuneo & appog-
giato. Se I'interazione tra proiettile e cuneo avviene per 0 < t < T possiamo integrare le
equazioni precedenti in tale intervallo , ottenendo

moy(t) = mog— I(t)sina

moy(t) = I(t)cosa —mgt

MV, (t) = I(t)sina — p[I(t)cosa + Mgt]

dove

e I'impulso ceduto dal cuneo al proiettile al tempo ¢t. In particolare immediatamente
dopo l'urto avremo

v (T) = vy — %I(’L’) sinw
vy (1) = %I(T) cosw —gT
Vi(t) = %I(T) (sinw — pcosa) — ugt (5.96.2)

Nel limite di urto istantaneo
limI(7) =TI"
T—0

resta finito, ma possiamo trascurare le forze peso. Questo si esprime dicendo che le forze
peso non sono forze impulsive, cioé restano finite nel limite di urto istantaneo. Invece
sia R(t) che N(t) sono forze impulsive, in particolare anche la forza di attrito uN(t) lo
sara e non potra essere trascurata.

Ad ogni modo abbiamo espresso le velocita finali in termini dell’'impulso totale I*.
Per quanto riguarda le leggi di conservazione, osserviamo che dall’ipotesi che R sia
normale alla superfice obliqua del cuneo segue immediatamente che si deve conservare
la componente della quantita di moto del proiettile parallela ad essa. Verifichiamolo
direttamente:

p| = mvxCcos&+ muysina

. I* .
= m|vg— —sina |cosax+m | —cosa | sinx
m m

= mMuvpCcos«
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Possiamo quindi calcolare la variazione dell’energia cinetica

AE —lm v —Eintxz%— :C ocz +1M I—*(sintx— “)2_1m02
¢ = 0= 8 7 cos i 1 cos M0

2 2
S OO R R ) ,
_51 {I [m—i—M(sma ycosa)] ZUosmuc}

e della quantita di moto orizzontale totale
APy = —ul*" coswa

Per quest’ultima concludiamo che non si ha conservazione, come ci si poteva aspettare
dato che la forza di attrito (impulsiva) € orizzontale. Per poter dire qualcosa di pit sul-
I’energia, e per finire di calcolare le velocita finali, dobbiamo calcolare I*. Non abbiamo
ancora sfruttato il fatto che la forza R & conservativa. Calcoliamo il lavoro fatto da essa
sul sistema durante 1'urto, che si puo scrivere come

T
L= / [(—Rsina) vy + (Rcosa) v, + (Rsina) V] dt
0

Ma adesso inseriamo le espressioni delle velocita durante 1'urto ricavate dalle (5.96.2)
ottenendo

L:/ R(t){—vosinzx—i—ll(t)—i—ll(t) (sinzzx—ycoszxsintx)}dt
0 m M

Notare che abbiamo nuovamente trascurato le forze peso, dato che siamo sempre inte-
ressati al limite di urto istantaneo. Dato che la forza e conservativa deve essere L = 0,
quindi

[1 + r (sinzoc — ycosocsinuc)] / R(t)I(t)dt = vg sinuc/ R(t)dt
m M 0 0

Sappiamo gia che l'integrale a destra vale I*. Per calcolare quello a sinistra osserviamo
che R = I, e quindi

/OTR(t)I(t)dt: /OTI'(t)I(t)dt: ;/O;t () dt = %I*Q

Otteniamo infine )
200 sin

I = :

1 1 . .
L+ 4 (sin® x — pcos wsin )

Se sostituiamo nell’espressione per la variazione dell’energia ricavata precedentemente
otteniamo

AE =

11 ( 2
4 4+ 4 (sinw — pcosw) i
I "4 M 5 K - — 1} vpsina
-+ 1 (sin® & — pcos wsin )

1
— _EVM*I*2 (sina — pcosa) cosa
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Notiamo che in assenza di attrito (4 = 0) I’energia si conserva. Lo stesso accade per
« = 71/2: questo risultato in apparenza sorprendente dipende dal fatto che quando il
lato obliquo del cuneo diviene verticale la reazione N(t) non & pitt impulsiva, e quindi
l'attrito si puo trascurare durante "urto.

PROBLEMA 5.97
( Attrito e paradossi * * %

I risultati del problema sembrano condurre a delle situazioni paradossali. In par-
ticolare, per certi valori del coefficiente di attrito dinamico y il sistema puo acquistare
energia nell'urto (AE > 0) e il cuneo puo iniziare a muoversi nella direzione da cui
proviene il proiettile. Mostrate (se possibile) che queste situazioni paradossali non si
verificano, se il modello usato per la forza di attrito e ragionevole.

Soluzione

Riprendiamo dall’esercizio precedente i due risultati “incriminati”. Il primo riguarda la
velocita del cuneo immediatamente dopo 1'urto, che riscriviamo nella forma

sina cosw (tana — p)

Ve(t) = 20 (5.97.1)

M .
or Tsinacosa (tana — p)

e il secondo la variazione dell’energia durante il medesimo

1
AE = —EyM’ll*Z (tana — 1) cos?

Se i < tan a non succede niente di particolare. Al contrario se y > tan a durante 1'urto
apparentemente si ha sempre AE > 0, inoltre se

M .
— < sinacosw (tana — u) <0

si trova anche V, < 0.
Per risolvere il paradosso osserviamo che nell’esercizio precedente le equazioni sono
state scritte utilizzando due assunzioni implicite:

1. lavelocita del cuneo V, & positiva: in caso contrario la forza di attrito cambia segno

2. la reazione normale del piano e positiva: in caso contrario il cuneo si stacca da
terra

Affinche la seconda assunzione sia consistente, & necessario che R(t) > 0, come segue
dalla quarta equazione delle (5.96.1)). In particolare deve essere I* > 0, ma dato che

I 2Muyg sinx

M .
o Tsinacosa (tana — )

@ 236 versione del 5 ottobre 2016



5.98. MOTO IN UN CAMPO CENTRALE III * % »

questo esclude i casi in cui

sinacosa (tana — p) < o

Tolta questa possibilita, avremo AE < 0se Vy > 0e AE > 0se V, < 0.

Possiamo chiederci cosa accade in realta se le nostre equazioni predicono V, < 0.
Dato che abbiamo supposto, per evitare di considerare 1’attrito statico, che la velocita
iniziale del cuneo fosse molto piccola ma positiva, abbiamo che se y > tan « il cuneo si
ferma per un istante durante 1'urto. In questo caso non possiamo piti trascurare l’attrito
statico, e dobbiamo capire se a causa di questo il cuneo rimane fermo. In effetti questo
avverra se

F, 4+ Rsina =0
cioe se
Rsina < psRcosa
ossia per
tana > g

Ma dato che ps > p possiamo concludere che quando tana > p il cuneo sara in realta
fermo dopo l'urto.

PROBLEMA 5.98
( Moto in un campo centrale ITI x x %

Studiare le traiettorie di un punto materiale sul quale e applicata una forza

- Qo
F:Zr
r

dove 7 ¢ il vettore posizione e x una costante.

Soluzione

La forza e attrattiva se & < 0 e repulsiva altrimenti. Dato che & anche centrale si conserva
il momento angolare. Inoltre la forza e conservativa: possiamo verificare che 1’energia
potenziale corretta e

1a
U =55
dato che
ou_ aor _ ax o
ox  rdox 4 7
e cosl via per le altre componenti. Quindi le quantita
E = %m (# +7r76%) + %%

L = mr?
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sono costanti. Ricaviamo 6

e sostituendo otteniamo

1 12 + ma
E=-mi*+ ———
Zmr + 2mr2

Per studiare le traiettorie possiamo riscrivere l'espressione precedente nella forma

Introduciamo adesso la nuova variabile u = 1/, da cui

2 2 2
po L7 (du)\" (LTtmay ,
2m \ df 2m
Derivando rispetto a 6 otteniamo

LLE B L2 du d?u (Lz—l—mzx) du

0 maeder T\ m ) "

e dato che E ¢ costante otteniamo una equazione per la traiettoria

Lfegl+(1+";")u:o

Le caratteristiche della soluzione generale dipendono dal valore di maL~2.
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10 ¢

10 -5 \@ 5 10-1.0 ~05 05 1o

-10 -1.0-

Figura 5.85.: Alcuni esempi di orbite. Le prime 8 traiettorie, da sinistra verso destra
e dall’alto verso il basso, corrispondono al caso 1. perk = 2/nen =
1,2,3,4,5,6,7,8. La traiettoria in basso a sinistra corrisponde al caso 2. (per
a = 1/5). La traiettoria in basso a destra corrisponde al caso 3., per rg = 1
e k = 1. In quest’ultimo caso non e possibile apprezzare dalla figura il
numero infinito di rivoluzioni attorno all’origine.

1. Se maL=2 > —1 la soluzione & oscillatoria:

u:%:Acos [1/1—%”;;)((94—4))]

e le costanti A, ¢ dipendono dalle condizioni iniziali. In particolare possiamo
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limitarci a studiare il caso ¢ = 0, dato che il caso generale si ottiene semplicemente
ruotando la traiettoria di ¢. Abbiamo quindi un’equazione della forma
r= 10
~ coskf

conk =+v1+maL2ery= A1 assume il significato di raggio di massimo avvi-
cinamento, che corrisponde a = 0. All’aumentare di 6 la particella si allontana, e
sfugge all’infinito quando 6 = ;. Alcune traiettorie possibili sono rappresentate
in Figura Un caso particolare interessante corrisponde a k = 1, cioe

rcosf =x =ry
che corrisponde a una traiettoria rettilinea
2. SemalL 2 = —1siha
u= % =a(0+¢)
e quindi a meno di una rotazione

1
af

La traiettoria si puo descrivere come una spirale che si avvicina all’origine ruotan-
do infinite volte attorno ad essa. Un caso particolare & rappresentato in Figura[5.85,
in basso a sinistra.

3. Se maL =2 < —1 la soluzione &

1 ma
u:r:Acosh[ —1—L2(0+<p)]

di conseguenza, sempre a meno di una rotazione,

r= o
~ cosh k6

con k = vV—1—maL~2. In questo caso ro rappresenta la distanza di massimo
allontanamento, che si ha per 6 = 0. Successivamente la particella si avvicina all’o-
rigine indefinitamente, ruotando infinite volte attorno ad essa. Un caso particolare
¢ rappresentato in Figura in basso a destra.

PROBLEMA 5.99
( Orbita nel sistema rotante xx

Scrivere I'equazione del moto di una particella che si muove in una forza centrale
qualsiasi in un sistema di riferimento con origine sul centro di forze, e con assi che
ruotano insieme alla particella.

2Questo risultato & evidente, dato che per k = 1 si ha « = 0, cioe assenza di forze.
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Soluzione
La forza centrale sara data in un sistema non rotante da
F=A(r,0)7

dove A(r,0) & una funzione arbitraria e 7 il vettore posizione della particella (r = |7]).
Scegliamo un sistema rotante con asse x nella direzione della particella. Potremo scrivere
I'equazione del moto lungo tale asse nella forma

mi = A (x,0(t)) x + mb?(t)x

dove si & tenuto conto della forza centrifuga e 6(t) & ’angolo di rotazione, che non
possiamo conoscere prima di avere risolto il problema.

Nel sistema scelto la particella non accelera in direzione y, quindi la relativa equazione
del moto diviene una condizione di equilibrio

mij = 0 = —mx0(t) — 2mx0(t)

Infatti moltiplicando per onservazione del momento angolare. Infatti moltiplicando per
x troviamo
mx?0(t) 4+ 2mxx6(t) = 0

ma questo si puo anche scrivere come

d .
T [mx?0(t)] =0

e la quantita tra parentesi & esattamente il momento angolare della particella in un
sistema non rotante

mx20(t) = L
In conclusione possiamo scrivere le equazioni del moto nella forma
2

mx3

.
|

© oma?
Se A non dipende dall’angolo 6 abbiamo un’ulteriore legge di conservazione. Infatti
2

mix = A (x) xx + Wx

i(;me) _ jt/ [A(x)x+nf;] xdt
- d/ [A(x)x—i—mL;] dx

dt
d L?
il [/A(x)xdx— 2mx2]
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Riconosciamo la legge di conservazione dell’energia

1

2
mxz—/A(x)xdx—l—

= _FE
2mx?

2

dove l'integrale da l'energia potenziale corrispondente alla forza, e L?/(2mx?) & il
potenziale centrifugo. Quindi il potenziale efficace

2

ueff =U+ Smr?

puo essere interpretato come potenziale che descrive le forze nel sistema che ruota
insieme alla particella.

PROBLEMA 5.100
( Il problema di Keplero xx

Discutere le traiettorie di due masse puntiformi m; e m; che si muovono nello spazio
sotto I'azione della sola forza di attrazione gravitazionale di Newton,

- mmy,
Fip = G% (71 —72)
|71 — 72

dove Fy; e la forza che il corpo 1 (che si trova nella posizione 7;) esercita sul corpo 2 (che
si trova nella posizione 75).
Soluzione

Iniziamo scrivendo le equazioni del moto per le due masse puntiformi. Dato che I'unica
forza & quella gravitazionale abbiamo

d*7 mimy
m—-— = —-G——(F—7
dt? 7 — 7o) ( )
d’7, mimy
Mmy—r = G——=_(H—7
dt? 71 — 72|3 ( )

Servono quindi 6 coordinate (ad esempio le 3 coordinate cartesiane delle due masse)
per descrivere una configurazione del sistema. Dato che le forze che si esercitano sulle
due masse sono uguali e opposte abbiamo la conservazione della quantita di moto
totale. Questo si verifica direttamente sommando membro a membro le due equazioni
precedenti, e ottenendo

d dary dr,

— |mi— - +my——| =0

dt [ Var T dt
che ci dice effettivamente che la quantita di moto totale
= dry darp
P=m—4+my—

Var Tt
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e costante. Alternativamente possiamo dire che 1’accelerazione del centro di massa e
zero,
d?> mi7 +moty  d*Fcum
dtz mq + my dt

Quindi il centro di massa si muove di moto rettilineo uniforme, e possiamo scegliere
un sistema di riferimento nel quale esso si trova in quiete nell’origine. Abbiamo quindi
determinato il moto di 3 dei 6 gradi di liberta del sistema.

Un’altra variabile conveniente per descrivere il sistema ¢ la posizione della massa 1,
relativa alla massa m»,

— —

FT=7—"

Osserviamo che conoscendo 7 e 7 possiamo ricavare 7 e 73 dalle formule

. . mp
rn = rcm —_—7
my + mp
_ o m
rh = tcmqy— ————F
my + mo

che si verificano imediatamente. Sara quindi sufficiente trovare 7: per farlo moltiplichia-
mo per m;: per farlo moltiplichiamo per oto precedenti e per 111 la seconda, e sottraiamo
membro a membro. Abbiamo

a2 mimy
m1m272 (1"1 — 7’2) = —(m] -+ mz)G_’li_)z?’ (1"1 — 7"2)
dt 71 — 7y
ossia )
a=r mimsy _,
- _G
Hap |7|3

dove yu = mymy/(mq + my) & la massa ridotta del sistema. Queste sono tre equazioni
del moto (non indipendenti tra loro) che permettono in linea di principio di calcolare
la posizione relativa in funzione del tempo, per date condizioni iniziali. Formalmente
sono equazioni per una massa puntiforme fittizia y che si muove sotto ’azione di una
forza centrale. Da questo segue che avremo una costante del moto, il momento angolare
> ar
L=urx—
AT
Inoltre la forza centrale e anche conservativa. Questo si verifica immediatamente notan-
do che la possiamo ottenere a partire dal potenziale

U= _Gmlmz

r

Verifichiamo questa affermazione: deve essere

o ou 9 mymy 01 1\ or
Fx——g — aGf —Gmlmzaxr—cm]m2< 1/'2> a
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o 9 [ 5 1 1 x

- =/ e — |

ox VY TYTE=, /X2 + %+ 22 =7
e quindi

X
Fx = —Gm1m2—3
r

che e effettivamente la componente x dell’attrazione gravitazionale. Calcoli assoluta-
mente analoghi permettono di verificare che il potenziale da anche la corretta compo-
nente y e z.

La conservazione del momento angolare ha come conseguenza che il moto della
particella fittizia avviene in un piano, pitt precisamente nel piano ortogonale a L. Per
verificarlo calcoliamo il prodotto scalare tra 7 e L, che & nullo

I SN T N
r-L—yr-<r><dt>—0

dato che il prodotto vettoriale tra 7 e ¢ e sicuramente perpendicolare a 7.
Scegliamo adesso coordinate polari nel piano in cui avviene 1’orbita. Potremo scrivere
la componente perpendicolare al piano del momento angolare come

L= yrzé

e I'energia come
My

_ Ll oo 1 o
E—Z;U’Jrzyr@ G .

Entrambe queste quantita si conservano, in particolare possiamo usare la prima per
determinare la velocita angolare in funzione della distanza dal centro,

0= o (5.100.1)

che sostituita nell’energia permette di ottenere

L? _ Gmymy
2ur? r

1
E=_ui*+
S HT
Espressa in questo modo, questa formalmente & 1’energia di una particella di massa u

che si muove in una dimensione sotto 1’azione di un potenziale “efficace”

L[> Gmymy
2ur? r

Uesr =

Notiamo che l'energia cinetica dovuta al moto radiale e

1 .
sz =E— Ueff(r)
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TN E>0
|
|
|
|
! r_ Te (. E=0 -
r
E’m,i'n, <E<O

E = Emin

Figura 5.86.: Caratteristiche qualitative delle orbite per il problema di Keplero. Il grafico
azzurro rappresenta il potenziale efficace, per un fissato valore di L. Le
rette verdi tratteggiate rappresentano possibili valori dell’energia E.

e dato che deve essere non negativa, per un fissato valore di E il moto sara possibile solo
per i valori di r tali che
u, ff(r) < E

Possiamo sfruttare questo fatto per una prima discussione qualitativa delle orbite.
Per piccoli valori di r il termine proporzionale a r~2 del potenziale efficace (il cosid-
detto potenziale centrifugo) ¢ dominante, e quindi

lim U, ¢(r) = +o0
r—0 off ( ) +
Invece a grandi valori di il termine gravitazionale domina,

lim Ueff(r) =0

r—+oo
Inoltre il potenziale efficace ha un minimo. Determiniamo la sua posizione: la derivata

dueff - _Liz n Gmymy
dr— urd r2
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si annulla in
LZ
Te =
uGmymy
e il potenziale efficace assume in . il valore

2,22
_VG mym;

Uﬂ’ff(rc) = 212

II tutto e rappresentato schematicamente in Figura Al variare di E abbiamo diversi
intervalli permessi per r, in particolare

o Se E < U,f(rc) non esistono r tali da avere una energia cinetica radiale positiva.
Quindi questi valori dell’energia non sono permessi.

o Se E = Ueff(rc), I'energia cinetica radiale e nulla per r = r.. Altri valori di r
non sono permessi, quindi durante il moto r si mantiene costante. Si tratta quindi
di un’orbita circolare (di raggio ). Dato che il raggio non varia, neppure 6 lo
fara a causa della relazione (5.100.1). Abbiamo quindi un moto circolare uniforme.
Questo caso particolare si poteva ricavare pitt semplicemente dall’equazione del
moto radiale

—yr@z = —Gmlm2

72

sostituendo 6 in termini del momento angolare e risolvendo per r.

o Se U,ff(rc) < E < 0 esiste un intervallo r - < r < r4 in cui il moto & permesso. Il
moto radiale sara quindi una oscillazione tra questi due estremi, mentre 6 crescera
o diminuira in accordo con la legge (5.100.T). Da notare che il segno della velocita
angolare & determinato dal segno di L, e non pud cambiare. Di conseguenza la
particella orbitera girando attorno all’origine senza cambiare mai segno.

o Se E = 0 l'intervallo permesso ¢ r > ry,, dove r, ¢ il valore a cui il potenziale
effettivo si annulla ,
L

Tr = 2uGmymy

Quindi la particella si avvicinera al centro fino ad una distanza r,, e sfuggira
quindi allinfinito. Da notare che la velocita radiale tendera a zero quando r — co.

o Infine se E > 0 avremo ancora una distanza minima ry determinata da
E= Ueff (T’N)

e ancora una volta la particella si avvicinera al centro fino ad una distanza rx per
poi sfuggire all'infinito. Questa volta pera la velocita radiale rimarra positiva per
7 — 0.

Passiamo adesso ad uno studio pit dettagliato della forma delle orbite.
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Calcolo delle orbite

Abbiamo gia potuto notare che il segno di § non pud cambiare. Di conseguenza 6 sa-
ra una funzione monotona (crescente o decrescente) del tempo, e potremo utilizzarla
al posto di quest’ultimo per parametrizzare I'orbita. Riprendiamo quindi l'energia e
scriviamola nella forma

a6°) Tour

2ur? r

1 (dr .)2 L2 Gmymy

Sostituendo nuovamente 6 otteniamo infine

1 (dr L\* [* Gmm
E=op( =) 42— 112

2" \dO ur 2ur r
Conviene a questo punto introdurre la nuova variabile # = 1/r. La sua derivata rispetto
all’angolo ¢ legata a quella di r dalla relazione

dr 1du

do —  u2do

e sostituendo nell’energia troviamo

—L—Z du 2+L—2u2—Gmmu
~ 2u \df 2 1

Dato che l'energia si conserva dovra essere dE/df = 0, e quindi

A0 — 1 dode? " u de 20

e quindi dovra essere, scartando du/df = 0,

d*u Gmym

da6? L?
Questa equazione determina la traiettoria, ed € formalmente identica a quella cheun
oscillatore armonico sottoposto a una forza costante (con 0 che gioca il ruolo del tempo).

La soluzione generale puo essere scritta nella forma

‘qulmz

u=Acos(0+¢)+ 2

dove le costanti A e ¢ dipendono dalle condizioni iniziali. In particolare sostituendo
nell’energia possiamo determinare A in funzione delle costanti del moto. Abbiamo

2uE du\? s 2uGmymy
L2:<d9> R A
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e quindi

2uE Gm 2
2 2p pGmyny
wo= e ()

Ricordando la definizione di u possiamo anche scrivere

_ p
" T Ttecos (0+¢) (51002)
dove
LZ
p= uGmymy

2 2
e = -+ L 2V2E + ‘qulmZ
uGmymy \| L L2

Variando ¢ otteniamo orbite della stessa forma, ma ruotate di tale angolo. Senza perdere
generalita possiamo quindi limitarci a ¢ = 0. Inoltre anche un cambiamento di segno di
e sara equivalente ad una rotazione di 7t dell’orbita, e potremo limitarci a considerare il
caso e > 0 corrisponde a minima energia accettabile, corrispondente all’orbita circolare,
corrisponde a e = 0: in tutti gli altri casi 1'espressione sotto radice e positiva).

Possiamo adesso discutere la forma delle orbite. Scrivendo I’'Equazione nella
forma

r=p—ercosf

ed elevando al quadrato otteniamo
(1—¢?) x* —2pex + y* = p?

che e I'equazione di una conica. Notiamo anzitutto che il parametro p determina le
dimensioni dell’orbita, e non la sua forma. Per quanto riguarda e abbiamo diversi casi
possibili

Se e = O il raggio e costante, r = p. Siamo nel caso dell’orbita circolare visto preceden-
temente.

1. Se al variare di 6 il denominatore della (5.100.2) non si annulla mai, e resta finito.
Abbiamo a che fare con un’orbita limitata, che in effetti @ un’ellisse. L'ellisse ha un
fuoco sul centro di forza. Inoltre possiamo scrivere

P P
— , Tr_ =
T 1—¢ 1+e

che permettono di ottenere il raggio di massimo e minimo avvicinamento al centro
in termini delle costanti del moto (o viceversa).

2. Se e = 1il denominatore della (5.100.2) si annulla per , e quindi r — oo per questi
valori. L'orbita non & dunque limitata, ed in effetti si tratta di una parabola. Anche
in questo caso il centro di forza & nel fuoco.
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Infine se e > 1 il denominatore si annulla per due angoli +6* minori in modulo di 7. di
un’iperbole (con il centro di forza su un fuoco)erifica che si tratta di un’iperbole (con il
centro di forza su un fuoco). In questo caso e nel precedente la posizione di massimo
avvicinamento si puo ottenere da

P
1+e

N =

tig:-KeplerOrbitsi orbite possibili sono rappresentati schematicamente in Figura (5.87).

10

-10

Figura 5.87.: Alcune possibili orbite. Abbiamo sempre p = 1, mentre rispettivamente
e = 0 (orbita rossa, circonferenza), e = 0.7 (orbita verde, ellisse), e = 1
(orbita blu, parabola) ed e = 1.3 (orbita arancio, iperbole). Il centro delle
forze & nell’origine.

Altri aspetti del problema saranno studiati in un esercizio successivo.
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PROBLEMA 5.101
( Oscillatore forzato e transiente xx

Un oscillatore armonico smorzato (massa m e costante elastica k) € inizialmente fermo.
A partire dall’istante ¢t = 0 subisce una forza

F(t) = Fycos wt (t>0)
e si vuole calcolare la sua risposta. Discutere il risultato in funzione dei parametri del
problema.
Soluzione

L’equazione del moto per t > 0 si puo scrivere nella forma

k

i Fo
X+ —x = — coswt
m m

e sappiamo che la sua soluzione generale e data dalla somma di una soluzione partico-
lare e della soluzione generale dell’equazione omogenea. La soluzione generale cercata
e un’oscillazione libera

Xom (f) = a cos wopt + bsinwpt

con w} = k/m. Determiniamo adesso una soluzione particolare: sappiamo che per
w # wo possiamo cercarla nella forma

xp(t) = Acoswt + Bsinwt

e sostituendo nell’equazione del moto troviamo

F
(—w?Acoswt — w?Bsinwt) + wj (Acoswt + Bsinwt) = EO cos wt

da cui
(w% — w2) A = %
(wW§—w?)B = 0
Risolvendo otteniamo (w(z) =k/m)
4=

Quindi la soluzione generale sara

) 1 K
x(t) = acos wot + bsinwot + ————— coswt
w§ — w? m
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Imponiamo adesso le condizioni al contorno a t = 0:

Fo
(cw§ — w?) m
X (0) = ba)o =0

x(0) = a+ =0

da cui
1 F

xX(t) = 55— — wt — wot
(1) (@B =) m (cos cos wot)

Cerchiamo adesso di ottenere la soluzione nel caso w = wy come limite della precedente.

Abbiamo
F <COS wt — cos wot )

x(t) = wh—>nclvo m Wi — w?

Applicando il teorema di de I'Hopital

Fy [ —tsinwt F
x(t) = lim -2 = % tsinwot
w—rwo M —2w 2mewg

PROBLEMA 5.102
‘7 Piccole perturbazioni di un’orbita circolare x x %

Un pianeta si muove in un campo di forze centrali descritto da un potenziale della
forma

Uu(r) = —]:e_r/ro

dove k e ry sono costanti positive. Determinate il periodo dell’orbita circolare di raggio
19, € studiare le orbite non circolari vicine ad essa.

Soluzione

Per un’orbita circolare deve essere

_mrwz — _8711 e (k + k) e_r/r(]

or 2 rro
da cui
T—on mer3
B 2k

L'energia del sistema si puod scrivere nella forma

1 k

E = —mi® + — Ze7"/10
2 2mr? oy

Per l’orbita circolare sappiamo che ed inoltre

E=Ey=0
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Intoduciamo una piccola perturbazione del sistema, ponendo

L = Li+Ap
E = Ag

Introducendo una nuova coordinata proporzionale alla deviazione radiale dalla traiet-
toria circolare,
r=rog+0

possiamo scrivere 'energia del sistema nella forma

2 -1
AE _ 177152—}— L0+AL2 N ke e_(;/ro

2 2m (ro+6)> To+0

Sviluppando al secondo ordine in § otteniamo

Ag 1m52+ Lo (1+A“)1_k16—5/ro
2mr} Li ) (1+46/r)* erol+d/r

)
1 . 12 A 5 52 k 5 62 5 1672
~omP = (1422 ) (122435 ) - = (1- 24+ ) (1= =+ 25
2 2mr(2) L% 1o ,,(2] erp 7o 7(2) ro 2 7(2) I

dove sono state utilizzate le approssimazioni, valide per x < 1,

1
(I4+x)* ~ 1—|—1xx—|—§zx(1x—1)x2
1
et~ 1+x+§x2

Sviluppando i prodotti otteniamo

L3 k
Ap =2 ——
2mry  erg
Ap L35 26
R b
2mry  mrgto  ergro
1 o Apd 3L 8% 5k &2
T 2 T a2 2 derg 2
570 mrg 1§ ero rg

I primi due termini sommano ad Ey = 0. Nella seconda riga, i termini lineari in J si
cancellano dato che I’orbita circolare & nel minimo del potenziale efficace corrispondente
a L = Ly. Alla fine rimane

VRN T <3L3_51<>52_AL25
2mr} 2 2mr3  2erg) 13 mr3ro
1 . 2
2 2ergry  mrirg
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La nuova energia corrisponde ad un oscillatore armonico: infatti derivando rispetto al
tempo otteniamo 1’equazione del moto
k A2

37’0 mro

Notare che se A;> = 0 1'oscillazione radiale avviene attorno all’orbita circolare prece-
dente. In caso contrario attorno a una nuova orbita circolare di raggio
eA I2
o=
mk

In ogni caso la frequenza delle oscillazioni radiali sara data da

1 k

f= 27T emry

Per studiare la traiettoria scriviamo l'energia nella forma
ds 4 2+1£ﬁ_ Ap o
de 2ergry mriro

(#0011 k® AR
2 \df2mr?

Ap2
2
Zmro

1

Ap — =
E 5

1

2ergry mriro

Notare che al secondo ordine nella deviazione & stato sufficiente sostituire 6 con il suo
valore imperturbato della traiettoria circolare originaria. Di conseguenza l’orbita si puo
chiudere solo se la frequenza delle oscillazioni radiali appena determinata € in rapporto
razionale con l'inverso del periodo di rotazione, determinato precedentemente. Ma nel
caso considerato questo non € vero, dato che

1 1 2k
—_ = — _— = 2
T 27 \/ mery f\f

Oscillatore bidimensionale forzato xx

( PROBLEMA 5.103

Una massa m ¢ collegata ad una molla di costante elastica k e lunghezza di riposo
trascurabile, ed e libera di muoversi in un piano. Su di essa agisce una forza di attrito

viscoso F = —v@. L'altro estremo della molla viene spostato secondo la legge
xo(t) = acoswt
yo(t) = bsinwt

cioe su una ellisse di semiassi a e allineati agli assi coordinati. Determinare la traiettoria
della massa a regime.
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Soluzione

Scriviamo le equazioni del moto nella forma
mxX +yx+kx = kacoswt
mij+yy+ky = kbsinwt

e introduciamo la variabile complessa

_r Y
z—a—i—zb

che dovra soddisfare 'equazione
mz + vz + kz = ke'!
A regime la soluzione é data da

k eiwt
—mw? + iwy + k

Quindi nel piano di coordinate a~'x, b~!y la traiettoria & una circonferenza di raggio

k k
—mw? +iwy +k|  \/(k— mw?)? + 12w?

R =

e nel piano di coordinate x, y troviamo un’ellisse di semiassi aR e bR.

PROBLEMA 5.104
( Caduta su una scodella xx

Figura 5.88.: La scodella semisferica del problema.

Una scodella semisferica di massa M & appoggiata su un piano orizzontale privo di
attrito. Un punto materiale di massa m viene lasciato cadere da una altezza h; > R, in
modo da arrivare sul bordo sinistro della scodella. Da questo momento esso rimane
vincolato ad essa, fino ad arrivare eventualmente al bordo opposto e lasciarla.

1. Calcolare lo spostamento orizzontale della scodella al momento del distacco, e
l'altezza finale a cui arriva il punto materiale.
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2. Calcolare la velocita del punto materiale al suo passaggio nel punto piti basso
della scodella.

3. Applicando una forza orizzontale alla scodella la si mantiene ferma. Quale e il
valore massimo della forza da applicare?

SoluzioneE|

Domanda 1 Indichiamo con X; la posizione orizzontale iniziale del centro di massa
della sola scodella. Per il centro di massa del sistema avremo

_ MX;+m(X;—R)

Xem,i M+ m (5.104.1)
Al momento del distacco avremo
M (X;+d)+m(X;+d+R)

Xem,f = M (5.104.2)
dove d ¢ lo spostamento cercato. Ma dato che la componente orizzontale della quantita
di moto del sistema si conserva ed ¢ inizialmente nulla sara X., ; = Xcp, ¢, quindi

X; X;i—R X; X; R
MXi+m(Xi—R)  M(Xi+d)+m(Xi+d+R) (5.104.3)
M+m M+m
e risolvendo troviamo iR
m
d=— 5.104.4
m—+ M ( )

Indichiamo con vy, v, le componenti della velocita della particella, con V la velocita
della scodella.

Al distacco la componente orizzontale della velocita della particella relativa alla sco-
della e nulla. Ma dato che la quantita di moto orizzontale si conserva ed é inizialmente
nulla abbiamo

O=moy+MV=m(vy—V)+(M+m)V=(m+M)V (5.104.5)

Quindi V = 0, ma anche v, = —%V = 0. In conclusioni al momento del distacco la
scodella e ferma e la particella si muove verticalmente. Dalla conservazione dell’energia

segue che l'altezza finale sara uguale a quella iniziale.
Domanda 2 Usando la conservazione dell’energia possiamo scrivere

1 1
mgh; = EmUZ + EMVZ (5.104.6)

3Scritto del 9 marzo 2011
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dove abbiamo indicato con v, V le velocita della particella e della scodella (entrambe
orizzontali quando la prima si trova nel punto pitt basso). Inoltre dalla conservazione
della quantita di moto orizzontale abbiamo

0= mo+ MV (5.104.7)

e quindi
v (5.104.8)

Sostituendo otteniamo

M
e quindi
v = \/Zghi (me) (5.104.9)
Domanda 3 Dato che la forza da applicare € 1'unica che agisce
F=(M+m) m”fM — may (5.104.10)

dove ay e I'accelerazione orizzontale della particella. D’altra parte
may = —Nsin6 (5.104.11)

dove N ¢ la reazione vincolare della scodella. Se scriviamo 1’equazione del moto per la
particella nella direzione radiale abbiamo invece
)
mi = —mgcosf+ N (5.104.12)

Inoltre dalla conservazione dell’energia
1
mgh; = mgR(1 — cosf) + Emvz (5.104.13)

Sostituendo nellala velocita in funzione della posizione. Sostituendo nella (5.104.11)
otteniamo

h:
N =2mg (Rl —1+cos 9> + mg cos 0 (5.104.14)
e quindi
h; .
F = —-mg|2 R 1) +3cosf|sinf (5.104.15)
Cerchiamo il minimo:
dF ]’li i 02
7= ™8 2 R 1) +3cosf| cost +3mgsin0 =0 (5.104.16)
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cioe .
cos? 0 + 2y cos ) — 5= 0 (5.104.17)

dove abbiamo posto per semplicita

1 [k
’w—6<R—J) (5.104.18)

cosf = —y+ /92 + % (5.104.19)

Scartando la soluzione negativa (non corrisponde ad una posizione sulla scodella) e
sostituendo abbiamo

1 1 1
F = +3mg (37 +1/7*+ 2) \/2 — 292427/ 2+ 5 (5.104.20)

( PROBLEMA 5.105

Risolvendo troviamo

Problema di Keplero: costanti del moto x x x

Nel problema di Keplero si conserva il momento angolare L e I'energia E. Dato che le
orbite limitate sono ellissi con il fuoco nel centro di forza, se consideriamo un versore 7
diretto dal centro di forza al punto di massimo avvicinamento vediamo che si tratta di
una costante del moto. Calcolare esplicitamente questa costante in funzione del vettore
posizione R e della quantita di moto P della particella orbitante. Quante “nuove” costan-
ti del moto abbiamo ottenuto oltre alle quattro (E, Ly, L, e L;) gia note precedentemente?
“Nuove” significa non esprimibili come funzioni delle altre.

Soluzione

Descriviamo la traiettoria usando coordinate polari nel piano passante per il centro di
forza e perpendicolare a L. Come abbiamo verificato in un esercizio precedente questa
si puo scrivere nella forma

— p
1+ecos (0 +¢)
dove per una traiettoria ellittica 0 < e < 1. La posizione del punto di massimo avvi-
cinamento corrispondono dunque a § = —¢, e quindi le componenti cartesiane di
sono
cos ¢
= | —sing
0
D’altra parte, dall’equazione della traiettoria segue che
_P—R

Rcos (6 +¢) =
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ossia

. A —R
nycos® +ny,sinf = -é = %
Derivando questa espressione rispetto al tempo otteniamo
PSP p
n- eB — _7R
edR?

da cui segue che il versore cercato e della forma

ao LI(P=RY P ops
=[5 o]

Cerchiamo di esprimere questa espressione in funzione dei vettori posizione e quantita
di moto. Possiamo scrivere

n = (e gt
_ 1:(12_1) ér—szg(Rég—Rééﬁ—RQér)]
_ i:_@r_R’Zé(Rég—Réé,)]
— 1:—é,—1fzéim7}
— %_ ér—l—%VAz}
_ %:%ﬁAZ—ér}

D’altra parte possiamo scrivere l'inverso del raggio di massimo e minimo avvicinamento
nella forma

Ri_ = 1"‘@

p

L T

R ¢
da cui

1,12

R, R_

Ora, 1/R4 e 1/R_ sono soluzioni di

L2k 21 1N/ TN
2mR2 R~ 2m\R R.J\R R_)

e troviamo
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Analogamente possiamo verificare che anche e si puo scrivere in funzione delle costanti
del moto,

p 2EL?
¢ R+ + kzm

In conclusione possiamo scrivere il versore cercato nella forma

>
Il

1 |- - R
—— |PAL—km—
kme[ mR]

- ﬁ [ﬁA(EAﬁ) —kmﬁ]

In questa espressione non abbiamo pitt quantita che dipendono da una particolare scelta
del piano orbitale, quindi il risultato sara vero in generale.

Per specificare un versore in tre dimensioni sono necessari due parametri (ad esempio
i due parametri angolari delle coordinate sferiche). Sappiamo perd che 7 giace nel
piano dell’orbita, che & completamente determinato dal momento angolare. Resta quindi
un’unica nuova quantita conservata.

Osserviamo infine che il vettore

=

Azkmeﬁzﬁ/\f—km%

diretto come 71 € noto come vettore di Lenz. Da quanto abbiamo visto segue che Aeuna
costante del moto per il problema di Keplero.

PROBLEMA 5.106
( Sistema solare su un cono xx

Una particella di massa m; si muove vincolata ad un cono senza attrito, con angolo di
apertura 2«, sotto I’azione della sola interazione gravitazionale con una massa m; fissata
sul vertice. In coordinate cilindriche 1’equazione del cono &

p=ztana (5.106.1)

1. Scrivere le costanti del moto del sistema in termini delle sole coordinate p e ¢.

2. Determinare il periodo di un’orbita circolare corrispondente ad un valore fissato
di p.

3. Determinare la forma delle traiettorie.
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Figura 5.89.: Il cono sul quale si muove la particella di massa ;. La massa m; é fissa nel
vertice.

Soluzione

Domanda 1 Le costanti del moto del problema sono I’energia totale e la proiezione del
momento angolare lungo l'asse z. L'energia si conserva perche la forza gravitazionale
e conservativa, e il lavoro da essa fatto sara incluso nell’energia totale come energia
potenziale. L'unica altra forza che agisce sulla massa m; € la reazione vincolare del cono,
ma dato che il vincolo e privo di attrito questa e perpendicolare alla superficie e quindi
allo spostamento, per cui non fa lavoro.

L’energia totale si scrive nelle coordinate desiderate come

1 6\, oo
E=am [(sinoc) e

dato che p € legato alla distanza tra le due masse da p = 12 sina. Per la proiezione del
momento angolare lungo 1’asse z abbiamo invece

Gmymy sina

(5.106.2)
%

Domanda 2 Data la forma del vincolo un’orbita circolare & una traiettoria a costante.
La seconda legge della dinamica si scrive quindi nella forma
9 . . = Gmimgy_,
my (—*pé, + pPéy) = R — —5Tx (5.106.3)
12

dove R & la reazione vincolare del cono e 75 il vettore che unisce il vertice del cono
alla particella di massa m;. Dato che R € normale alla superficie e quindi a 7, conviene
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proiettare lungo quest’ultimo 1’equazione precedente, ottenendo

GTH2

— §Ppey Fp = ——— (5.106.4)
12
dato che 715 - ép = 0. Inoltre é, - 712 = p e quindi
. G i
¢ = 208 (5.106.5)
[
da cui
.21 Gmy sinw
=" =, /=~ 5.106.6
b= - (5106.6)
ossia
372
T =27 (5.106.7)

v/ Gmy sina

Alternativamente si poteva eliminare ¢ dall’energia ottenendo il potenziale efficace

(5.106.8)

1 < 0 )2 L2 _ Gmympsina
2

E=-
"™ sina 2myp? o

che & minimo al valore di p corrispondente all’orbita circolare. Derivando rispetto a p~*

otteniamo )

£ — Gmymysina = 0 (5.106.9)
myp
ossia
L2
= 5.106.10
P Gm2m; sinw ( )
d’altra parte sostituendo L, otteniamo
. p3
= (5.106.11)

~ Gmysina
che coincide col risultato precedente.
Domanda 3 Le orbite si possono ottenere analiticamente con un metodo analogo a

quello usato per il problema di Keplero. Utilizzando come parametro la coordinata ¢ e
non il tempo possiamo scrivere ’energia nella forma

1 1 dp.\? L2 Gmymysina
E = 2™ (sinzxdq)cp) + 2mp? 0
2 2 .
I LZZ = - Gz sin (5.106.12)
2 sina d¢ mqp 2my 0 1Y
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Introducendo adesso la coordinata u = 1/p abbiamo

1 12 du\? 12
E=>-—"2_ (22} + 24?2 — Gmymousina 5.106.13
2 my sin® a <d<l>> 2my 1 ( )

e derivando rispetto a ¢ (I’energia e costante) otteniamo

dj_idiudzl_kl“—%d—uu—Gmm—usina—O
dp  mysinfadpdp? = myde ! zd(P a

cioé un’equazione per la traiettoria

2y 12 .
7z T 4 2y — Gmymosina 5.106.14
mysin® a dp?  my 1 ( :

che ha per soluzione generale

2 .

"= :) - Gml"gmn“ + Acos (¢sina -+ B) (5.106.15)

z
dove A, B dipendono dalle condizioni iniziali. Se « = 7/2 il cono si riduce ad un
piano e le traiettorie sono le familiari coniche del problema di Keplero. La soluzione
nel caso generale si puo interpretare facilmente immaginando di “tagliare” il cono e di
“incollarlo” su un piano come in Figura L’operazione e possibile senza deformare
la superficie, come si puo osservare notando che le coordinate

ro= P (5.106.16)
SN &
f = ¢sina (5.106.17)

si possono interpretare come coordinate polari nel piano in cui e stato “incollato” il cono
tagliato. In tali coordinate il problema e indistinguibile da quello di Keplero, come si
puo verificare riscrivendo le costanti del moto

1 . G
E = om (2 +r20%) - =2 (5.106.18)
L .
L, = = =mr’ (5.106.19)
SIn «

se si eccettua il fatto che non tutto il piano e ricoperto dal cono se x < 71/2 (oppure
ricoperto pitt volte se & > 71/2). Avremo quindi, ad esempio, orbite ellittiche che pero
andranno collegate sui due bordi del taglio, che dovranno essere identificati. Questo
equivarra ad un angolo di precessione delle orbite di A¢p = 2% . Vedere la Figura e
la discussione del problema
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Figura 5.90.: Un cono puo essere tagliato e “incollato” su un piano senza deformarlo.
Nel caso considerato 1’angolo « e tale che sin« = 3/4, quindi il cono ricopre
tre quarti del piano. Le orbite sono tratti di coniche, perche il problema e
indistinguibile da quello di Keplero. Si devono pero identificare i bordi
del taglio, per cui quando un’orbita (ellittica in figura) arriva nel taglio al
punto a, deve essere prolungata a partire dal punto corrispondente (a e b &
tale che essa distanza dal vertice). Inoltre ’angolo tra orbita e taglio deve
essere lo stesso sia in a che in b.

PROBLEMA 5.107
( Pendolo urtato da un proiettile xx

Vo
o—

Figura 5.91.: La massa sospesa e il proiettile. L'urto e istantaneo.

Una massa m € sospesa al soffitto mediante una molla di costante elastica k e lunghezza
a riposo nulla. Si trova inizialmente nella posizione di equilibro. Un proiettile di massa
m' = ym la urta orizzontalmente con velocita vy, rimanendo attaccato ad essa. L'urto &
istantaneo.

1. Calcolare la velocita delle due masse immediatamente dopo "urto.

2. Per quali valori di 7y e vg le masse urtano il soffitto?
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3. Calcolare il massimo allungamento della molla, nel caso y = 1

Soluzione

Domanda 1 Durante 1'urto le sole forze importanti sono quelle impulsive tra la massa
sospesa e quella in arrivo. Dato che si tratta di forze interne, la quantita di moto si
conserva e quindi

ymvok = (y + 1) mv (5.107.1)

quindi la velocita finale sara orizzontale e varra

N Y ~
0= voX 5.107.2
1% ( )

Domanda 2 Immediatamente dopo 1'urto le equazioni del moto per la massa risultante
saranno

(y+1)mi+kx = 0 (5.107.3)
(y+1)miji+ky = —(y+1)mg (5.107.4)
quindi il moto sara la composizione di un’oscillazione orizzontale attorno alla po-
sizione di equilibrio x = 0, e di una verticale attorno alla posizione di equilibrio
y = — (7 +1) %%, Entrambe le oscillazioni avranno la frequenza angolare
w = K (5.107.5)
\m(y+1) o

Consideriamo in particolare 'oscillazione verticale, che sara data da

y(t) = Acoswt + Bsinwt — (7 +1) % (5.107.6)
Poniamo le condizioni al contorno, tenendo presente che inizialmente la massa non si
muove verticalmente e si trova in y = —mg/k. Abbiamo
m m
y(0) = A—(y+1) Tg - —?g (5.107.7)
y(0) = Bw=0 (5.107.8)

di conseguenza A = ymg/k, B=0e

y(t) = % [ycoswt — (v +1)] (5.107.9)
In altri termini, l’ampiezza di oscillazione & la differenza tra la quota iniziale e quella
di equilibrio. Ma allora il massimo valore di y raggiungibile sara quello iniziale, y(0) =

—mg/k, e la massa non potra mai urtare il soffitto.
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O

mg

. mg

Figura 5.92.: Il massimo allungamento. Le masse si trovano inizialmente nel punto P,
che & il punto di equilibrio della massa sospesa prima dell"urto, ed e sotto
il punto di sospensione della molla O di OP = mg/k. Dopo 1'urto il punto
di equilibrio diviene E, con OE = (y + 1)mg/k.

Domanda 3 Abbiamo determinato in precedenza y(t). Per quanto riguarda x(t) la
soluzione generale &
x(t) = Ccos wt + D sin wt (5.107.10)

e imponendo le condizioni al contorno

x(0) = C=0 (5.107.11)
#(0) = Dw= %vo (5.107.12)

otteniamo .
x(t) = ﬁ sin wt (5.107.13)

Possiamo adesso scrivere I’allungamento della molla nel caso y = 1 come

2 2

200\ 2 2_ 99 |2 8 2
() =x(t) 4+ y(t)” = 107 |50 wt + R (coswt —2) (5.107.14)

e per semplificare la discussione conviene introdurre la scala adimensionale f = g/ (vow)|
Troviamo il massimo di[5.107.14]. La derivata vale

2 2
% = 27’0 287 + (1 — B?) cos wt] sinwt = 0

e si annulla per sin wt = 0, che corrisponde ai due allungamenti quadri

& 2 1*325
2(t) = ﬁ[ﬂz (F1-2)"=q5%" e (5.107.15)
1?
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delle quali il secondo e il maggiore, e corrisponde al punto pit1 basso raggiunto dalla
traiettoria. L'altra possibile soluzione e

2B2
cos wt = ’Bzﬁ_ 1 (5.107.16)
che & accettabile (perché minore di 1 in modulo) nell'intervallo 0 < B < 1/+/3. La
lunghezza corrispondente &
105 1+ 3p2
2y =10 113P
4w?1—p2
che e sempre I'allungamento massimo in questo intervallo.

Si puo interpretare graficamente questo risultato. La traiettoria & una delle ellissi in
Figura (5.92): il semiasse verticale vale sempre ymg/k, quello orizzontale & tanto pit
grande quanto maggiore ¢ la velocita iniziale. Se il semiasse orizzontale & piccolo (B
grande) la distanza massima tra O e un punto dell’ellisse € OA. Quando il semiasse
orizzontale diviene abbastanza grande il massimo diviene OB. Dalla figura € chiaro che
questo accade quando il raggio di curvatura della traiettoria in A diviene maggiore di,

cioe quando
R R

y(2y+1)pr<1

che per ¢ = 1 si riduce alla condizione trovata precedentemente 8 < 1/+/3.

02

aj

7

m
(27+1)7g <pa=
A

cioe per

PROBLEMA 5.108
‘7 Moto su superficie di rotazione xx

Un punto materiale & vincolato a muoversi sotto 1’azione della gravita su una superficie

liscia, la cui equazione in coordinate cilindriche & p = az2.

1. Determinare le quantita conservate.

2. Studiare l'esistenza di orbite circolari p = . e determinarne la velocita in funzione
dir..

3. Calcolare la frequenza delle piccole oscillazioni radiali attorno alle orbite circolari.

Soluzioneﬂ

Domanda 1

Si conserva la somma di energia cinetica e potenziale gravitazionale, e la componente
verticale del momento angolare rispetto ad un polo posto nell’origine (o pit1 in generale

4Primo problema scritto 11/9/2008
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sull’asse z). Infatti, la reazione vincolare € normale alla superficie e quindi alla velocita
del punto materiale, quindi non fa lavoro. Inoltre posta la particella in in punto arbitrario
sulla superficie, se consideriamo il piano determinato dal suo vettore posizione rispetto
al polo e dall’asse z vediamo che esso contiene anche tutte le forze presenti (reazione
vincolare e forza di gravita). Quindi il momento sara perpendicolare a tale piano, e non
potra avere una componente verticale.

Domanda 2

Supponiamo che la particella si muova in un’orbita circolare di raggio .. Dato che il
momento angolare e conservato la velocita angolare ¢ costante. Inoltre avremo, usando
coordinate cilindriche (p, ¢, z)

mz = Ncos® —mg =0 (5.108.1)

— mr.¢? = —Nsin 6 (5.108.2)
dove 6 & la pendenza della superficie nel punto considerato,

tan@zgz 1

do  Area®

27’ 1/4
U= er) =Ty rgtane = (g4ac) (5.108.4)
c

Scriviamo l'energia totale nella forma

(5.108.3)

Risolvendo otteniamo

Domanda 3

1 .
E=om (2 +7+7%) + mgz (5.108.5)
e il momento angolare lungo z:

L, = mr?¢

Possiamo adesso eliminare i e tenendo conto del vincolo (7 = 2azz) e ¢ usando il
momento angolare, ottenendo

E= %m (1 +4¢x222) 22 +

2
z

I +mgz (5.108.6)

che sviluppiamo per piccole variazioni attorno all’orbita circolare. Questa corrisponde
ad un’energia uguale al minimo del potenziale effettivo. Poniamo

Z=2z.+4¢, Z=2¢ (5.108.7)
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e sviluppando al secondo ordine abbiamo

LZ
Oz g2 (5.108.8)

1 .
E—Ey= M (1+4a%z2) & + a2z

che corrisponde all’energia di un oscillatore armonico con

2 10L2 B 5¢ «
T \/mzu@zg (14 4a222) \/(1 +4dare) \ e (5.108.9)

PROBLEMA 5.109
( Cambio di orbita xx

Un punto materiale di massa m si muove sotto I’azione di un potenziale

e percorre un’orbita ellittica con distanze di minimo e massimo avvicinamento al centro
delle forze data da iy = b e ryax = a. Mediante un sistema di propulsione e possi-
bile trasferire al punto materiale in un tempo molto breve un impulso Q. Il sistema di
propulsione viene azionato nella posizione di massimo avvicinamento.

Figura 5.93.: L'orbita ellittica considerata. Sono indicate le distanze di massimo e
minimo avvicinamento al centro di forza, posto nell’origine degli assi
coordinati.

1. Determinare modulo, direzione e verso dell'impulso Q necessario a porre la parti-
cella in orbita circolare rimanendo nello stesso piano dell’orbita precedente.

2. Determinare il minimo modulo dell'impulso Q necessario a far cadere la particella
sul centro delle forze.

3. Determinare il minimo modulo di Q necessario a porre la particella su un’orbita
illimitata.
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Soluzioneﬂ
Domanda 1

La velocita iniziale v si puo calcolare scrivendo l'energia totaleinr =aer = b:

2k
E = 2 %
2k
E = _:
2ma? a

dove si ¢ utilizzato il fatto che nei punti di massimo e minimo avvicinamente E = U, .

Segue che
L1 1y _ (1.1
2m \b?2 a2) “\b a
ossia
2 12 ab
(mob)” = L* = kaa 7
e quindi

o= 2Ka_1
 Vmba+b’

Dato che I'impulso e applicato in un tempo molto breve la posizione iniziale della
nuova orbita sara ancora quella di massimo avvicinamento, ma la velocita sara cambiata:

—

U, =vt+ —Q.
: —0

Se la nuova orbita deve essere circolare & chiaro che la nuova velocita deve essere ancora
puramente tangenziale, da cui Q = Q7. Inoltre la massa per 'accelerazione centripeta
dovranno essere uguali alla forza radiale,

LRk
b b
da cui
2
L = Uf = (v + Q)
mb m
e quindi

5Secondo problema scritto 30/3/2007
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Domanda 2

Un’orbita corrisponde alla caduta sul centro di forze quando il momento angolare e
nullo, I'impulso dovra quindi essere applicato in modo tale da annullarne il valore
iniziale. Scrivendo separatamente la componente radiale e tangenziale

Q = Qe+ Qurt

abbiamo la condizione
AL = —L = ba A (Q:t + Quh)

da cui
L = —mvb = bQ+

mentre Q,, resta arbitrario. Il modulo minimo di Q corrisponde ovviamente a Q,, = 0
ed abbiamo

A

km 2a
—_ T

Q= —mot=—\"3 5%

che corrisponde all'impulso necessario a fermare la particella nella posizione in cui si
trova.

Domanda 3

Per ottenere un’orbita illimitata e sufficiente avere E > 0. Dopo 1’applicazione dell’im-
pulso l'energia totale vale

2 2
E:;m<Qr> +M_E

m 2mb? b
da cui L
2
Q? + (mo+ Qc)* > %
Sviluppando i quadrati

2mk
Q% + Q% +2mvQq + m*v® > —TZ

vediamo che il modo pit efficiente di aumentare il membro destro & quello di applicare
I'impulso tangenzialmente (a causa del termine lineare in Q). Quindi avremo un Q

minimo dato da

Q2+2va+m2v2—2’Zk:0

2mk 2mk a
Q:_mU+Vb:Vb<1_\/a+b)
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PROBLEMA 5.110
( Formica su un giradischi xx

Una formica di massa m si trova sul bordo di un giradischi di raggio R, che ruota con
velocita angolare w. La formica vuole raggiungere il centro, ed e capace di spostarsi con
una velocita radiale di modulo costante vy > wR rispetto al giradischi.

1. Supponendo che la formica punti sempre il centro del giradischi, determinare
I'equazione della sua traiettoria, in un opportuno sistema di coordinate, e rappre-
sentarla graficamente.

2. Sempre nell’ipotesi precedente, determinare la forza risultante agente sulla formi-
ca in funzione della sua distanza dal centro.

3. Se invece la formica volesse percorrere una traiettoria rettilinea, quanto tempo
impiegherebbe a raggiungere il centro?

Soluzioneﬁ

Domanda 1

Conviene descrivere il moto in un sistema di coordinate polari. La formica avra una
velocita radiale uguale a —vyé, e una velocita tangenziale (dovuta al trascinamento del
disco) uguale a rwéy. D’altra parte 1’espressione generale della velocita in coordinate
polari e

7 =ié, +rhéy (5.110.1)

e quindi
P o= —up (5.110.2)
0 = w. (5.110.3)

Possiamo integrare direttamente queste equazioni, e imponendo le condizioni iniziali
abbiamo

r = R—opt (5.110.4)
0 = 6+ wt (5.110.5)

da cui o
r=R-— ;O (6 —6) . (5.110.6)

La traiettoria e la combinazione di un moto uniforme in direzione radiale e di una
rotazione uniforme, cioe una spirale di passo costante. In realta I’angolo percorso prima
di raggiungere il centro & dato da

R
(6 —6;) = ‘;— <1 (5.110.7)
0

6Secondo esercizio scritto 12/11/2008
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ed & quindi sempre inferiore ad un radiante. La traiettoria e rappresentata in Figura
per diversi valori di wR /vy.

Figura 5.94.: Alcune possibili traiettorie sul disco, corrispondenti a wR /vy = 1/2 (blu)
e wR/vy = 1 (verde). Per confronto & riportata anche una traiettoria
corrispondente a wR /vy = 10 (in rosso).

Domanda 2

L’espressione generale per ’accelerazione in coordinate polari ¢ data da

i=(F—r0%) e + (rf +2#0) & (5.110.8)
ma nel nostro caso # =0, 0 = w, 6 = 0 e ¥ = —vy. Otteniamo infine
F = mid = —rmw?é, — 2vqwéy (5.110.9)
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Domanda 3

Per muoversi radialmente la formica deve dirigere parte della sua velocita nella direzio-
ne tangenziale, in modo da annullare il trascinamento del disco. Detto a I’angolo tra la
direzione della formica e il raggio avremo

vpsine = —wr (5.110.10)
vpcosaw = —7. (5.110.11)
Dalla prima equazione segue
sing = — <~ (5.110.12)
00

(notare che « dipende da r e che wr /vy < 1, quindi & sempre possibile soddisfare questa
equazione. Sostituendo nella seconda otteniamo

2
wr dr
1— (Uo > = (5.110.13)
(abbiamo usato cosa« = /1 — sin’ a) da cui
ot (5.110.14)

/71_<UO>2dt

Integriamo adesso membro a membro rispetto al tempo,

T T
/ dt = — / vy (5.110.15)
0 0 wor\2 dt
UO 1 - <70>

e cambiando variabile nel secondo integrale otteniamo

/ dt = (5.110.16)
wr
\/ Uo
cioe
/ — arcsm <WR> . (5.110.17)
/ 00
(411’
Z)o

PROBLEMA 5.111
( Urto con una massa vincolata elasticamente *xx

Un proiettile urta come in Figura[5.95} () un bersaglio tenuto da una molla di lunghezza
nulla e costante elastica k. Il proiettile ha massa tripla del bersaglio, 'urto ha una durata
trascurabile ed e elastico.
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3m

OG— O
O—— @ %
(a) (b)

Figura 5.95.: I due urti considerati nell’esercizio.

1. Si calcoli la velocita di bersaglio e proiettile appena dopo 'urto.
2. Si calcoli la massima elongazione della molla.

3. Orail bersaglio & tenuto fermo a distanza ¢ dalla posizione di equilibrio al momen-
to dell'urto, in maniera che la molla sia perpendicolare alla velocita del proiettile
come in Figura[5.95(b). Si calcoli il momento angolare del bersaglio (sempre dopo
l'urto) e quindi la massima elongazione della molla.

Soluzioneﬂ

Domanda 1

Durante 1'urto, che avviene in un tempo molto breve, la molla rimane di lunghezza nulla.
Si puo considerare quindi il bersaglio come una massa libera, e varra la conservazione
dell’energia

3 3 1
Emv% = Emvf, + Emvg (5.111.1)
e della quantita di moto
3muvy = 3mv, + moy, (5.111.2)

dove abbiamo indicato con v, e v} le velocita finali di proiettile e bersaglio. Risolvendo
il sistema si ottiene la soluzione

vy = 0 (5.111.3)
v, = 0 (5.111.4)
che chiaramente & da scartare (le particelle non cambiano velocita) e

3m—m 1

v, = 3§ mvo = Evo (5.111.5)
6m 3
= = = J11.
Vp 30 = 2% (5.111.6)

7Primo problema scritto 19/12/2008.
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che & quella cercata.

Domanda 2

Dopo l'urto I'energia totale E;, della sistema costituito dal bersaglio e dalla molla si con-
serva. Eguagliando I'espressione di E;, immediatamente dopo 1"urto (solo energia cineti-
ca, dato che la molla non ¢ allungata) a quella nel momento di massimo allungamento
(solo energia potenziale della molla, dato che la massa ¢ ferma) si ottiene

1 /3 \* 1
e risolvendo
3 Im
(SMAX = EUO ? . (51118)

Notare che si conserva anche il momento angolare del sistema considerato, valutato
rispetto all’estremo fisso della molla. Questo perche la forza di richiamo della molla e
centrale. Ma questa legge di conservazione non da alcuna informazione utile (L, = 0
banalmente perché il moto e radiale).

Domanda 3

Anche in questo caso dopo 1'urto si conserva sia ’energia totale E, che il momento
angolare totale L, del sistema costituito dal bersaglio e dalla molla. A differenza del caso
precedente entrambe le leggi di conservazione danno informazioni utili. Osservando
che la velocita iniziale del bersaglio v, = 3v/2 ¢ la stessa dei casi precedenti abbiamo
per 'energia

L oo kp_m 5 o k o
e per il momento angolare
— mopl = mr*0 (5.111.10)

dove abbiamo espresso la posizione del bersaglio in coordinate polari. Ricavando dalla

relazione (5.111.10)

. Uhg

0 = 5 (5.111.11)

e sostituendo nella (5.111.9) otteniamo
0202
mor + k02 =m | i* + :T + kr? (5.111.12)

Tenendo conto che nellistante di massimo e minimo allungamento # = 0 possiamo
riscrivere questa relazione nella forma

2
(mr;’b _ ) (P —2) =0 (5.111.13)
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che ci fornisce le due possibili soluzioni

r=14¢

r = vy /%. (5.111.14)

Il massimo allungamento sara il maggiore tra questi due valori.

Si sarebbe potuto arrivare a questo risultato anche ricordando che il moto di una
massa vincolata nel piano e da una molla si riduce alla composizione di due oscillazioni
armoniche. Abbiamo quindi

x = Acoswt+ Bsinwt (5.111.15)
y = Ccoswt+ Dsinwt (5.111.16)

con w = vk/m. Imponendo le condizioni iniziali
- % sin wt (5.111.17)
y = {coswt (5.111.18)

che corrisponde a un’ellisse di semiassi ¢ e v,/w. Il semiasse maggiore corrisponde
all’allungamento massimo, e otteniamo nuovamente il risultato precedente.

PROBLEMA 5.112
( Urto tra una particella e un pendolo »x

Nel sistema in Figura il pendolo costituito dalla massa m, e da una bacchetta rigida
di massa trascurabile si trova, al momento dell’urto con la massa m;, in quiete nella
posizione indicata, parametrizzata dall’angolo 6.

1. Supponendo l'urto istantaneo e completamente anelastico, trovare se esistono
eventuali quantita conservate durante esso.

2. Trovare I'ampiezza dell’oscillazione del pendolo dopo 1'urto se la velocita iniziale
della massa m vale vg.

3. Per quali valori di 6 'energia dissipata nell’'urto € massima e minima?

Soluzionqﬂ

Domanda 1

Si conserva il momento angolare rispetto al punto di sospensione del pendolo, dato che
"unica forza esterna applicata al sistema ha braccio nullo rispetto ad esso. Scegliendo

8Secondo problema scritto 21/9/2009
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mi,v

Figura 5.96.: Il pendolo nella posizione iniziale e la massa che lo urta.

coordinate polari possiamo scrivere questa legge di conservazione come
myvgl cos By = (my + my)Pw (5.112.1)

dove w & la velocita angolare del pendolo immediatamente dopo 1'urto.

Si conserva anche la quantita di moto del sistema lungo la direzione perpendicolare
alla bacchetta, dato che non ci sono forze esterne cosi dirette. La legge di conservazione
si scrive

mvg cos 0y = (my + my)wl (5.112.2)

e quindi e equivalente alla precedente.

Domanda 2 Abbiamo appena calcolato la velocita angolare iniziale del pendolo. Avre-
mo per la conservazione dell’energia

1
> (mq + my) 2w — (my 4+ my) gl cos Oy = — (my + my) g€ cos Oypax (5.112.3)
e quindi
lw? v3 m \?
€08 0,0 = cos By — Z = cos by — @ (W> cos” 0 (5.112.4)

Se la quantita precedente € minore di —1 non si ha una oscillazione ma il pendolo
compie delle rotazioni complete.
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Domanda 3

L’energia dissipata nell’urto e data dalla differenza delle energie cinetiche,

1 1
AE = Emlv% — E (ml + mZ) EZCUZ (51125)
e quindi
1
AE = - 21— 2 . J112.
5% < ——— cos 90> (5 6)

I1 valore massimo si ha per 8y = £7/2, nel qual caso tutta I’energia cinetica iniziale &
dissipata. Il valore minimo si ha per 6y = 0 e 6y = 7. In questo caso

. 1 mimniy 2
AE =3 e (5.112.7)

che corrisponde all’energia disponibile nel centro di massa.

PROBLEMA 5.113
‘7 Caduta di una struttura xx

m m

Figura 5.97.: La struttura in caduta.

Tre masse identiche sono collegate da due aste di lunghezza ¢ e massa trascurabile
come in Figura Le masse agli estremi sono vincolate a scorrere su un piano oriz-
zontale, mentre 1’angolo tra le due aste puo variare liberamente, e vale inizialmente
6.

1. Se v1(0) = V e v3(0) = 0 determinare la velocita iniziale della massa intermedia
72(0).

2. Nel caso v1(0) = v3(0) = 0 determinare la velocita ¥, quando la massa intermedia
urta il piano.

3. Se v3(0) = 0, determinare il minimo valore di v1(0) che permette alle masse agli
estremi di toccarsi.
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Soluzioneﬂ

Domanda 1

Posto un sistema di coordinate cartesiane con origine nella posizione della terza massa
abbiamo

Xy = —Esing (5.113.1)
V2 = Ecosg (5.113.2)

per le coordinate della massa intermedia e
.0
x1 = —2¢sin 5 (5.113.3)

per quella della prima massa. Derivando rispetto al tempo quest’ultima relazione otte-
niamo, all’istante iniziale,

v1(0) = —/0 Cos% =V (5.113.4)
e quindi
. \%
0 =— ) (5.113.5)
{cos 3

Derivando x; e y, otteniamo le due componenti della velocita @:

X2 = Uy = —ﬁ@cosg (5.113.6)
Vo = vy = —ﬁésinz (5.113.7)

che valutate all’istante iniziale danno, utilizzando la (5.113.5),

Uy = (5.113.8)

U2y tan — . (5.113.9)

Domanda 2

Possiamo utilizzare due principi di conservazione, quello dell’energia totale e quello del-
la quantita di moto orizzontale. Dalla seconda segue che il centro di massa del sistema
non si muove orizzontalmente. Ma la posizione orizzontale del centro di massa coincide
con quella della massa intermedia, che quindi si muovera solo verticalmente. Ma allora

9Problema compitino 19/12/2008
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possiamo scrivere, scegliendo un sistema di coordinate con origine nella proiezione del
centro di massa sul piano orizzontale,

x1 = —4 sing (5.113.10)
x = 0 (5.113.11)
x3 = ( sing (5.113.12)
e anche ]
Y2 = {cos 5 (5.113.13)

Scriviamo adesso l'energia totale conservata. Abbiamo
m
E= (¥ +35+13) +mgy:. (5.113.14)

All’istante iniziale le masse sono tutte ferme, ed abbiamo
to
E = mgy, = mgl cos > - (56.113.15)

Quando la massa intermedia tocca terra 8 = 7r. Quindi

. ' T
X1 = —59 cos 5= 0 (5.113.16)
. l . T
X3 = 59 cos - = 0 (5.113.17)
ed otteniamo
m
E= Eyz. (5.113.18)

Eguagliando le due espressioni dell’energia otteniamo infine

Yo = —1/2g¢ COS% (5.113.19)

che ¢ la velocita cercata.

Domanda 3

Anche in questo caso possiamo usare la conservazione dell’energia e della quantita di

moto orizzontale. Notare che con le condizioni al contorno specificate il centro di massa

si muove anche in direzione orizzontale, ovviamente di moto rettilineo uniforme.
Inizialmente 1’energia totale vale

1
E=m (v%(o) +02.(0) + v%y(O)) + mgys (5.113.20)
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che si puo scrivere, utilizzando quanto visto rispondendo alla prima domanda,

1 1 1 o 6o
E= > (Vf + Z}Viz + EVZZ tan’ 2> + mgl cos > (5.113.21)
Gli estremi si toccheranno se 8 = 0. In questo caso avremo
1
E=Zm (3V}) + mgl (5.113.22)

dove si & usato il fatto che nel caso limite le tre masse si muoveranno solo orizzontal-
mente con la stessa velocita Vf.
La conservazione della quantita di moto orizzontale ci da

1
m <Vi + 2Vi> = 3mVy (5.113.23)
e quindi
Qsz‘ <4 + 1 tan 2) + mgl cos 5 = M (3Vf) +mgl  (5.113.24)

NI~ N -

m (ZVE) +mgl  (5.113.25)
da cui ricaviamo la velocita iniziale cercata

Vi = %8¢ <1 - %> . (5.113.26)
(2 + tan? %)

PROBLEMA 5.114
( Un pendolo su un blocco mobile x«

Un pendolo di lunghezza ¢ e massa m € montato su un blocco di massa M poggiato
su un piano orizzontale. Tra blocco e piano & presente solo attrito statico ys (ug = 0).
Il blocco e il pendolo sono inizialmente in moto con velocita vy, col pendolo nella sua
posizione di equilibrio, e urtano frontalmente un secondo blocco in modo elastico. In
seguito all"urto il primo blocco si arresta.

1. Determinare la massa del secondo blocco.

2. Supponendo ys abbastanza grande da impedire strisciamenti, determinare il valo-
re minimo di vy affinche il pendolo percorra un giro completo (il vincolo del filo
si intende monolatero).

3. Per vy = /5¢¢ determinare il minimo valore di y; affinche il blocco resti in quiete.
Volendo ¢ possibile considerare solo il caso M >> m, dando il risultato al primo
ordine in m/ M.
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Soluzionﬂ

Domanda 1

Durante 'urto le uniche forze impulsive sono quelle che agiscono orizzontalmente tra i
due blocchi. Possiamo quindi trascurare la presenza del pendolo, e la massa del secondo
blocco & quindi uguale a quella del primo, perche solo in questo caso quest’ultimo si
ferma.

Domanda 2
La velocita del pendolo sara inizialmente vy. Nel punto pit alto essa diverra
v? = v} — 4g/ (5.114.1)

e la tensione del filo sara determinata da

2

m% = T+mg (5.114.2)
da cui
Z)z Z)Z
T=m (; - 4g> —mg=m <£0 - Sg) >0 (5.114.3)
cioe
vy > \/5¢¢ (5.114.4)

Domanda 3

Per una inclinazione qualsiasi la tensione sara determinata da

v? =590 —2g/ (1 — cos ) (5.114.5)
e
2
Mg = T —mgcost (5.114.6)
e risolvendo si trova
T =3mg (14 cosb) . (5.114.7)

Imponendo I'equilibrio del carrello abbiamo

F,+Tsinf =0 (5.114.8)
N —Tcos0 —Mg=0 (5.114.9)

19Secondo problema scritto 11/9/2008
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da cui

F, = —3mg(1+cosf)sind (5.114.10)
N = 3mgcosf(1+ cosb)+ Mg (5.114.11)

ma dato che |F,| < pusN avremo

(14 cosB)sinf < (5.114.12)
(1+cos®)cosb + 3

(supponendo che sia sempre N > 0). Dobbiamo massimizzare rispetto a 0 il primo
membro. I punti stazionari corrispondono alle soluzioni di

1+% cos? 6 + 2+M cos 0 + - MYy (5.114.13)
3m 3m 3m

che ha per soluzioni

cosf = —1 (5.114.14)
e
_3m
cosf = A (5.114.15)
2+ 31

e quest'ultimo valore corrsponde al minimo. Per m/M < 1

1

cosf ~ 5 (5.114.16)
9

s > ﬁ 3 (5.114.17)

PROBLEMA 5.115
( Urto con un cuneo mobile xx

Nel sistema in Figurail piano inclinato é libero di scorrere sul piano orizzontale, ed e
inizialmente fermo. La particella ha velocita iniziale v, e all'istante t = 0 arriva al piano
inclinato. Particella e piano inclinato hanno la stessa massa m e 8 = 71/4. Si supponga
che la giunzione tra piano obliquo e piano inclinato sia stata resa sufficientemente
regolare, e che non vi sia alcun genere di attrito.

1. La particella, considerata un punto materiale, & vincolata a rimanere aderente al
piano obliquo. Per quale valore minimo della velocita vy ,,;,, essa riesce a superare
il blocco?

2. Se vy < Vg min calcolare le velocita finali del piano inclinato e della particella.

3. Calcolare la velocita del blocco immediatamente dopo l'istante t = 0.
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m ﬂ'/—l

Figura 5.98.: Il cuneo e la particella prima dell"urto.

Soluzionelﬂ

Domanda 1

Usiamo la conservazione dell’energia e della quantita di moto orizzontale. L'energia
totale del sistema si puo scrivere nella forma

1 1 1
E=omV24 Sm (0% +92) +mgy = S0 i (5.115.1)

e la quantita di moto orizzontale
Py = mV + mvy = mog piy - (5.115.2)

Nel caso limite la particella arriva nel punto pit alto del piano inclinato, con velocita
nulla rispetto ad esso (vy = V, v, = 0). Allora possiamo scrivere

v2

mV? + mg 5 = Emvamin
e
V= %vo,,m-n. (5.115.3)
da cui

Vomin = \/2V28L. (5.115.4)

Domanda 2

Dato che siamo interessati alle sole velocita finali, possiamo trattare il problema come un
urto completamente elastico. In dettaglio, le equazioni per la conservazione di energia
e quantita di moto orizzontale si possono scrivere

1 o 1 .5 1 5
vao = 2mV + MY (5.115.5)
movy =mv + mV (5.115.6)

1Primo esercizio scritto 31/1/2007
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Risolvendo il sistema si trova che particella e piano inclinato si scambiano le velocita,
cioe

v = 0 (5.115.7)
V = o (5.115.8)

Domanda 3

Abbiamo nuovamente conservazione di energia e di quantita di moto orizzontale. Inol-
tre 'energia potenziale non varia, quindi

1 2 1 2 1 2 2
Smod = SmVA 4+ (vx + vy> (5.115.9)
moug = mV 4 mo, (5.115.10)

Abbiamo infine un vincolo da imporre, cioe il fatto che per t > 0 la velocita relativa della
particella rispetto al piano e inclinata di 77/4 rispetto all’orizzontale. Questo significa

vy —V =0, (5.115.11)

Usando le ultime due relazioni per esprimere la conservazione dell’energia in funzione
di V abbiamo

0% = V24 (vg— V)2 + (vg — 2V)? (5.115.12)
che da
V= % (1 + ?) %0, (5.115.13)

La soluzione accettabile € quella con il segno negativo, la sola che corrisponda ad una
velocita verticale positiva della particella:

vy =199 —2V = 0o (5.115.14)

1
V3

PROBLEMA 5.116
( Doppia cerniera mobile xx

Nel sistema in Figura la massa my, libera di muoversi verticalmente, e la massa 5,
libera di muoversi orizzontalmente, sono collegate da un filo inestensibile di lunghezza
¢ privo di massa. Inizialmente il sistema e fermo nella configurazione in figura con il
filo inclinato di un angolo 6 = 6 rispetto alla verticale. Si consiglia di utilizzare questo
parametro per descrivere il sistema.

1. Supponendo la presenza di attrito tra la particella m; e il vincolo orizzontale,
determinare per quale valore minimo del coefficiente di attrito statico y; il sistema
¢ in equilibrio.
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./.

Figura 5.99.: Il sistema considerato nell’esercizio.

2. In assenza di attrito si lascia adesso il sistema libero di muoversi. Calcolare la
velocita della massa m; quando 8 = 0 (filo verticale).

3. Determinare la tensione del filo in funzione dell’angolo 6 durante 1’evoluzione da
8 = 6y a0 = 0, sempre in assenza di attrito.

Soluzionﬁ

Domanda 1

Facendo riferimento al diagramma delle forze in Figura|5.100} all’equilibrio deve essere

N; = mpg + T cos 0y (5.116.1)
F4 = Tsinfy, (5.116.2)
e d’altra parte |F4| < usN; da cui
Us (my +mp) g > mygtan 6y (5.116.3)
o s> "1 tang, (5.116.4)
Tomy 4 mp

Domanda 2

In assenza di attrito vale la conservazione dell’energia totale. Inoltre nella configurazio-
ne finale la massa m, e ferma. Possiamo quindi scrivere

—myglcosty = —m1gl + %mzv% (5.116.5)
da cui
mq
vy = —\/Zgﬁ (1 —cosby). (5.116.6)
ms

12Gecondo esercizio scritto 31/1/2007
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Figura 5.100.: Diagramma delle forze. Sono rappresentate le forze applicate alle due
masse.

Domanda 3

Scriviamo ancora una volta la conservazione dell’energia confrontando la configurazio-
ne iniziale con quella ad un generico angolo 6. Otteniamo

1 1
— myglcosy = —migl cos B + Emlv% + Emzv% . (5.116.7)

In funzione della coordinata scelta le velocita si scrivono

U1 :;tﬁ cosf = —¢0sinf (5.116.8)
(%) :;tf sinf = ¢ cos 6 (5.116.9)
(5.116.10)
da cui .
5 [ml sin? 6 + my cos? 9} 0?26% = m1g¢ (cos@ — cosbp) . (5.116.11)
D’altra parte deve essere
szZf — _Tsing (5.116.12)
dUl
mlﬁ = —myg + TcosO (5.116.13)
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cioe
my (06 cos 0 — (6% sin@) = —T'sinf (5.116.14)

my (—0Gsinf — £6* cos0) = —myg + T cos (5.116.15)

er semplificare i calcoli possiamo prendere una combinazione delle equazioni prece-
denti che cancella i termini in 6, cioe la somma di m sin 0 volte la prima e di m; cos 6
volte la seconda:

— mymal0* = —T (my sin® @ — my cos® 0) — mymyg cos O (5.116.16)
da cui
0
T = mlmz@z mmag cos b (5.116.17)
my sin” 0 — my cos? 0
e ricavando 62 dalla conservazione dell’energia otteniamo la risposta finale:
6—2 6 - 30

T = mymag M1 COS my cos 0y + (my — my) cos (5.116.18)

(my sin? @ — my cos? ) (my sin® 0 + my cos? §) -

PROBLEMA 5.117
( Massa su guida circolare e molla xx

Figura 5.101.: Il punto materiale vincolato alla guida circolare.

Un punto materiale di massa m € vincolato ad una guida liscia circolare di raggio r
disposta in un piano verticale. Tra il punto materiale e il punto pit alto della guida e
inoltre fissata una molla di lunghezza a riposo nulla e costante elastica k.

1. Discutere, in funzione di k, le posizioni di equilibrio per il sistema e la loro stabilita.
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2. Supponendo kr < mg e che inizialmente il punto materiale si trovi nel punto piti
basso della guida determinare per quale velocita iniziale esso puo percorrere un
giro completo.

3. Discutere il moto del punto materiale nel caso kr = mg.

Soluzionﬂ

Domanda 1

Scriviamo l'energia potenziale in funzione dell’angolo 0 in Figura[5.101} Abbiamo
U= mgh+ %kﬁz = mgr cos 0 + 2kr? sin? g
= mgrcos 0 + kr* (1 — cos6)

dove e stata indicata con h = rcosf l'altezza della particella relativa al centro della
guida e con ¢ = 2rsinf/2 la lunghezza della molla. Dall’ultima espressione segue
che gli estremi del potenziale sono in §; = 0 e 6, = 7. In particolare se mg < kr si
ha equilibrio stabile in 6; e instabile in 6, viceversa se mg > kr. Il caso mg = kr e
particolare: 1’'energia potenziale non dipende da 6 e qualsiasi posizione e di equilibrio
indifferente.

Domanda 2

Nel caso considerato la posizione iniziale e di equilibrio stabile. Imponendo la conser-
vazione dell’energia totale troviamo che I’energia cinetica iniziale deve essere almeno
uguale alla massima variazione di energia potenziale:

%mv% > 2(mgr — kr?)
/ kr?
vy > 24/ 8r — P

Nel caso considerato ’energia ¢, a meno di una costante, solo cinetica:

da cui

Domanda 3

1 .
E—=_- 292
Zmr

da cui seguono le equazioni del moto:
E=mr00=0—6=0.
Il moto quindi e circolare uniforme:

0 =6+ wt.

13Secondo esercizio 10/9/2007
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PROBLEMA 5.118
( Modello di urto non istantaneo *x

Le due masse in Figura[5.102|somo m; = my = m. Quella a sinistra si muove inizialmen-
te con velocita vy, l'altra e ferma. La molla ha lunghezza a riposo e costante elastica k,
ed e libera ad un estremo.

Kl
(
my 0 mo

Figura 5.102.: 11 modello di urto non istantaneo tra le due masse considerato
nell’esercizio.

1. Per quali valori vg le due masse non arrivano a toccarsi?
2. Calcolare la velocita delle masse quando queste sono di nuovo separate.

3. Se la velocita iniziale & sufficiente a far toccare le massa, e queste rimangono
attaccate, calcolare la velocita finale del sistema.

Soluzionﬂ

Domanda 1

Cerchiamo sotto quali condizioni le masse si toccano. Possiamo utilizzare la conser-
vazione dell’energia e della quantita di moto. Uguagliando il valore iniziale di queste
quantita a quello posseduto al momento del contatto abbiamo

myvg > (my + my)vy

—m10,
2 170 =

Si e utilizzato il fatto che al momento del contatto v, < v4, e la molla & completamente
contratta. Ricavando vy dalla prima relazione si trova

1
(mq +ma)v5 + EkEZ.

N[ =

m
) < ——1 1y
my + my

e sostituendo nella seconda

2
m
mlv% > Tlv% + ke?
mq no

14Prima parte compitino 22/12/2006
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0o > Ef
K

dove y = mymy/(my + my) = m/2 & la massa ridotta del sistema. Le masse non

arriveranno dunque a toccarsi per
k
o < —/.
K

Si tratta di un urto elastico, e dato che le masse sono uguali deve essere

da cui

Domanda 2

myvg = Mmq01 + Mmovy
1 2

2 1 2 1
Emlvo = Emlvl + Emzvz

ossiav; =0ewvy = vy sem =my =m.

Domanda 3

Anche in questo caso possiamo vedere il problema come un urto, questa volta comple-
tamente anelastico. Sara ovviamente

myvy = moy + movy = (my + my)vs
Avremo quindi (my = my = m)

1
Z)f = 5’00

PROBLEMA 5.119
( Carrucola su cuneo *x

Un cuneo di massa M a forma di prisma triangolare di apertura angolare 6 ¢ libero di
muoversi sul piano orizzontale su cui € appoggiato. Sul cuneo si trovano due masse
e my (my > my), collegate tra loro da un filo inestensibile di massa nulla come mostrato
in Figura 11 filo scorre senza attrito su un perno solidale al piano inclinato. Non vi
e attrito tra le masse e il piano inclinato.

1. Se il cuneo & mantenuto immobile, determinare il moto delle masse m; e m»
(lasciate andare da ferme).

2. Seil cuneo e libero di muoversi senza attrito sul piano orizzontale, determinare il
suo spostamento quando la massa m; raggiunge il bordo.

3. In presenza di attrito statico y; tra il cuneo e il piano orizzonale, determinare il
valore minimo affinche il cuneo resti immobile durante la discesa di m5.
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Figura 5.103.: La carrucola con le due massa appoggiate sul cuneo mobile.

SoluzionelE|

Domanda 1

Consideriamo le forze che agiscono sulle due masse lungo la direzione parallela al piano.
Per la prima abbiamo

myay = mpgsinf — T

e per la seconda
moay = mpgsing — T'.

Abbiamo preso come verso positivo per le accelerazioni di entrambe le masse quello
verso lo spigolo del cuneo. Sottraendo membro a membro abbiamo

myay — mody = (my — my)g sin 6

ma a, = —ap da cui
my — 1

ap = ——
my + mp

gsinf < 0.

Le due masse quindi si muovono di moto uniformemente accelerato. Partendo da fermi
e misurando lo spostamento a partire dalla posizione iniziale di ciascuna massa abbiamo

1my—my . 2
S1=-————= ot
! 2m1+m2gsm

1my—mq . 2
Sp= - ——— ot
2 2m1+m2gsm

15Seconda parte compitino 22/12/2006
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Domanda 2

La quantita di moto orizzontale del sistema si conserva. Questo significa che la posizione
orizzontale del centro di massa non cambia, dato che inizialmente & ferma. Possiamo
dunque scrivere

MXy + myix1 + moyxo _ M (XO + A) =+ mq (x1 + (51) + my (Xz + (52)

M+ mq 4+ my M+ mq 4+ my

dove Xy, x1 e x5 sono le coordinate orizzontali iniziali del centro di massa del cuneo e
delle due masse, e A, 61, 4, i relativi spostamenti finali, il tutto nel sistema di riferimento
del laboratorio. D’altra parte lo spostamento orizzontale finale della massa m; € noto

0 — A = Lcosb
e per l'inestensibilita del filo deve essere
Hh—A=—(6—A).
Ricavando 41, J; da queste ultime due relazioni otteniamo

0 = A+ Lcosf
00 = A—Lcosf

e sostituendo nella prima abbiamo
MA +my (A —Lcos®) +my (A+ Lcosf) =0
da cui

(my —my)L cos 6

A=
M+ mq 4+ my

Domanda 3

Facciamo riferimento ai diagrammi delle forze agenti sul cuneo e sulle due masse ri-
portati in Figura Indichiamo con T la tensione del filo, con N; e N, le reazioni
vincolari del piano obliquo, con R la reazione vincolare del piano orizzontale e con la
forza di attrito.

Scriviamo le equazioni del moto per le masse e per il cuneo, nell’ipotesi che quest'ul-
timo resti fermo. Tenendo conto del fatto che

h o= —ip
¥ = —i.
possiamo scrivere
mi¥1 = Njsinf — T cos6 (5.119.1)
mijjy = Njpcosf+ Tsin® —mg (5.119.2)
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Ny

myg

N
mag
Figura 5.104.: Diagrammi delle forze.
—mp¥1 = Npsinf — T cosf (5.119.3)
—mpijy = NycosO+ Tsinf —myg (5.119.4)
e
0 = —(N1+Ny)sinf +2Tcosb + Fy (5.119.5)
0 = R—Mg— (N;+ Np)cosf —2Tsinf. (5.119.6)
Dato che . .
%—l = & = —tanf
X1 X2

dividendo membro a membro le Equazioni (5.119.1)) (5.119.2) e (5.119.3), (5.119.4) otte-
niamo

N; = mygcoséb
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Ny = mpg cos 6

Dalle equazioni del moto per le masse abbiamo

<N1+Nz>sin(9—T<1+1>cos(9:O

my My mp My
N; N 1

<1 + 2) cost + T < + > sinf = 2g
mq mo mq 2

da cui (p = mymy/ (my + my))
T = 2gusing.

Sostituendo nella equazione troviamo
R = Mg + (mq +my)g cos? 0 + 4gu sin® 6
e tenendo conto che deve essere |F4| < usR abbiamo infine
[(m1 4 m2) — 4p] |cos 0sin | < ps [M + (my + my) cos? 0 + 4y sin” 0]

ossia
(m1 — my)? cosfsinf

M(my +my) + (my + my)2 cos? 6 + 4mymysin® 6

,USZ

PROBLEMA 5.120
( Massa su guida circolare e molla IT xx

Una particella di massa m ¢ vincolata alla guida circolare di raggio R posta in un piano
orizzontale. Inoltre é fissata ad una molla di costante k e lunghezza a riposo ¢y. L'altro
estremo della molla ¢ fissato a un punto posto a una distanza R/2 dal centro della guida.

1. Se {y = 0 determinare la minima velocita che deve avere la particella nel punto di
minimo allungamento della molla per poter percorrere completamente la guida.

2. In funzione di £y > 0 discutere le posizioni di equilibrio del sistema.

3. Scelta una opportuna coordinata scrivere le equazioni del moto per il sistema,
sempre per £y generico.

Soluzionelﬂ

Domanda 1

Possiamo scegliere come coordinata 1’angolo 0 tra il raggio corrispondente alla posizio-
ne della particella e quello corrispondente alla posizione di massimo avvicinamento.

16Gecondo esercizio scritto 11/1/2007
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m

D
N
NN
D
&

Figura 5.105.: Il sistema considerato nell’esercizio.
L’energia cinetica si scrivera quindi

K= ~mov? = %mRzéz

e quella potenziale

U= %k(E 42

5
= \/stinZG—l—(Rcos@—R/Z)2 = R“Z —cosf.

Nel nostro caso ¢y = 0 quindi

Con

B I ST, kR% /5
E—K+U—2mR9+ > \a cosf | .

Eguagliando I’energia nel punto di massimo e di minimo avvicinamento otteniamo

1 1 1
—mov3 + Ekéz > Ekéﬁm

2 min
da cui
N Cr—
m max min
ossia
e ERe (G- ,) =Ry 2
m m
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Domanda 2

Se sulla molla vi & tensione, una posizione sara di equilibrio solo quando questa &
ortogonale al vincolo. Cio & possibile soltantoin 8 =0e 6 = 7.

L’altra possibilita € che non vi sia tensione. Questo accade quando la molla ¢ alla sua
lunghezza di riposo, il che significa

5
(%3 = R? <4 = cos(9>

cosa possibile solo se

%R <Y < gR.

Il relativo angolo e dato da
cosf = >_ ﬁ
4 R?

Domanda 3

Possiamo ottenere le equazioni del moto derivando I’energia totale rispetto al tempo:

2
. d |1 ek /5
E = 7 2mR9 +2<R 1 cos E())
= mR%06 + k R\/§—c039—€0 MG
4 2 5

1 — cosf

da cui

. k
RO+ - R-—
m +2 -

PROBLEMA 5.121
( Orbita di un satellite xx

Un satellite di massa m si trova in orbita circolare attorno alla terra, la durata del periodo
¢ 24h. La massa del satellite @ molto minore della massa della terra, m < M = 6 X
1024kg.

1. Determinare il raggio dell’orbita, sapendo che la costante di gravitazione univer-
sale vale G = 6.7 x 10~ 'm3kg~1s72.

2. Mediante un opportuno impulso I applicato istantaneamente in direzione tangen-
ziale si vuole portare il satellite su un’orbita parabolica. Determinare I.
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3. Supponendo nuovamente il satellite in orbita circolare come al punto 1., lo si vuole
portare su un’orbita circolare di raggio doppio, applicando ad opportuni istanti
due impulsi Tl e b, passando attraverso un’orbita ellittica intermedia. Calcolare Tl
e I, supponendoli entrambi applicati in direzione tangenziale.

Soluzionﬂ

Domanda 1 L’equazione del moto in direzione radiale si scrive

v? mMr
"R =R
e d’altra parte per il periodo vale
S 27tR
T

da cui

o\ 1/3
R— GMrT
4772

1/3
_[67x1071 x 6 x 10%* x (24 x 60 X 60)°
~ 47‘[2 m

~ 42 % 10’m

Domanda 2 Prima di applicare I'impulso l'energia vale
L2k
- 2mR?2 R
dato che l'orbita e circolare. Inoltre sappiamo che il potenziale effettivo & minimo,
d 12 k 12 k
— 5= t+5 =0
dR \2mR2 R mR3 = R?
da cui
L? = kmR

Applicando I'impulso cambiamo il momento angolare di AL = IR. Dato che la velocita
radiale resta nulla la nuova energia vale

E = M — E
2mR? R
e per avere un’orbita parabolica deve essere E' = 0. Quindi (supponendo L > 0)

otteniamo

(\/MJr IR)2 — 2kmR

17Seconda domanda compitino 13 aprile 2011

@ 298 versione del 5 ottobre 2016



5.121. ORBITA DI UN SATELLITE #%

1:—(1ifz)\/T

Si puo quindi applicare I'impulso con lo stesso verso della velocita

da cui

I= (\/5—1) k]’f

I:—(\onLl)\/?

Domanda 3 Applicando il primo impulso si ottiene un’orbita ellittica che deve avere
il perigeo in R e I'apogeo in 2R. Per ottenere questo 1'equazione

oppure in verso opposto

(L+ LRk
Ef=— " =
2myr? r

deve essere verificatain» = R e r = 2R, ossia

(L+ LR Kk
Ei="ri—"rr— =
2mR2 R
e _ (L+hR)?® Kk
1 T 8mR2 2R
Sottraendo membro a membro troviamo
3(L+ LR &k 0

8 mRZ 2R

da cui
4 km
h=- (1i\[3> VR

Il secondo impulso deve essere applicato all’apogeo, in modo da ottenere un’orbita
circolare di raggio 2R e quindi un momento angolare

L' = +v2kmR

Se vogliamo L' > 0 abbiamo dunque le due possibilita determinate da

L+ RI; + 2RI, = V2kmR

1 1 km
L= |—=+—|1/>
? [ﬁ \@] R
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mentre se L' < 0 ('orbita circolare finale & percorsa nel verso opposto di quella iniziale)
deve essere

L+ RI; + 2RI, = —V/2kmR

e quindi
12:[_1:|:1} kﬂ
v2 V3]V R
Riassumendo abbiamo le quattro possibilita in tabella
I I
(3 VE| (v i) VR
(-3)V% | (5-) Vs
(1 3)VE | () Ve
(- 3)E | (-3

PROBLEMA 5.122
‘7 Nibiru xx S

Figura 5.106.: L’orbita di Nibiru.

Secondo una teoria accreditata da un grandissimo numero di pagine web ogni 3600
anni il pianeta Nibiru arriva con la sua orbita in prossimita della terra. Il prossimo
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avvicinamento e previsto da alcuni attorno al primo aprile del 2013. Nel seguito si
considereranno solo le interazioni gravitazionali tra la terra e il sole e tra Nibiru e il sole,
per semplicita si considerera la massa di Nibiru uguale a quella della terra, e 'orbita di
quest’ultima circolare e di raggio ar ~ 1.5 x 10! m. Inoltre si supporra che il perielio di
Nibiru e quello della terra coincidano, che le orbite siano nello stesso piano e percorse
nello stesso senso.

1. Sulla base dei dati precedenti calcolate il rapporto tra I’afelio di Nibiru e la distanza
terra-sole.

2. Modellando I'’eventuale scontro tra la terra e Nibiru come un’urto istantaneo com-
pletamente anelastico al perielio calcolare la frazione di energia cinetica dissipata
durante 1'urto.

3. Determinare ’afelio dell’unico pianeta risultante.

Soluzionelﬂ

Domanda 1

Conosciamo il periodo T dell’orbita e il perielio. Dalla terza legge di Keplero sappiamo
che

2 2
IN_Tr
3 — 3
ay  dr

dove a ¢ il semiasse maggiore. Quindi

T 2/3
ay = <N> ar ~2349ar
Tt

Indicati con 7_ e r,. il perielio e I’afelio dell’orbita abbiamo
ry+r_=2a
e quindi

ry =2an —ar >~ 4689ar

Domanda 2

Al momento dell’urto le velocita radiali sono entrambe nulle, e si conserva il momento
angolare totale (o anche la quantita di moto nella direzione tangente all’orbita, che e
proporzionale a quest'ultimo). Quindi

Lf:LT+LN

18Secondo esercizio compitino 18 aprile 2012
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L’energia cinetica immediatamente prima dell'urto e

g LIy
' 2mrak
e immediatamente dopo l'urto
(LT —+ LN)2
="
dmraz

quindi si e dissipata un’energia

212 4213 — (Lt + Ly)? _ (Lr— Ly)?

AE = 5 5
dmrat dmraz

e quindi
AE _ (Lr—Ly)* _1(Lr—Ly)*> 1(1-p)°

1
E. 2 [2+1% 2 [2+13 2 1+p2

dove abbiamo indicato con p il rapporto

_Lr
p_LN

Dato che (indicando con Mg la massa del sole)

E — L2 B GmTMS
2mrrt r_
E — LZ . GmTMS
2mrrl ry
abbiamo
L= \/ZGMSmZT ( i )
T4+ +7_
e quindi

GMsmTaT (ar+rs) _ [11+468 9
\/ 2 4689
2GM mTrTIZT

Sostituendo otteniamo

AE  1(1-07
= % ~0.03
E; 21+(0.7)
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Domanda 3

L’orbita dopo 1'urto e definita dal valore delle due costanti del moto, I'energia

(LT + LN>2 B 2GmTM5

4.7’71]"61%- ar

E—

e il momento angolare
L=Lr+Ly

Il perielio e I’afelio sono soluzioni dell’equazione

12 2GmrMs 2 /1 1\ /1 1
- _E=— (-2 )(2==)=0
dmrr? T dmp \r 1y roor_

e quindi, dato che una delle due soluzioni concide com ar, possiamo scrivere per l’altra

i1,
dmrrar
cioe
B o (Lt + Ly)?
r — = 2 ar
4mTaTE [SGM%MsaT — (LT + LN) }
_ (Lt + L) = (Lt + Ly)? ar
(82— (Lr+Ly)?] 7L —2LnLr — L
(1+p)°
= ~ 27
702 —2p 1T = =0T

PROBLEMA 5.123
( Un pendolo in un ascensore xx S

La cabina di un ascensore di massa M puo muoversi in direzione verticale, ed ¢ tratte-
nuta da un cavo sottoposto ad una tensione T. All'interno di essa ¢ fissato un pendolo
costituito da una massa m sospesa a un filo inestensibile e privo di massa di lunghezza
¢. Inizialmente la cabina e ferma ed il pendolo compie oscillazioni di ampiezza angolare
6o, come in Figura

1. Determinare la massima e la minima tensione del cavo che regge 1’ascensore.

2. Supponiamo adesso che le oscillazioni siano piccole, 8y < 1. Ad un certo istante il
pendolo si trova in posizione verticale, e l’ascensore viene trascinato dal cavo verso
I’alto, con accelerazione costante a. Calcolare la nuova ampiezza delle oscillazioni.

3. Appena il pendolo torna in posizione verticale ’ascensore smette di accelerare.
Calcolare il lavoro fatto sino a quel momento dal motore che trascinava il cavo.
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Figura 5.107.: L’ascensore in movimento del problema.

Soluzione H

Domanda 1 La tensione del filo deve equilibrare la somma della forza peso della ca-
bina e della componente verticale della tensione Tp del pendolo. Scrivendo 1’equazione
del moto di quest’ultimo nella direzione del filo abbiamo

mlf* = Tp — mg cos O
ossia
Tp = ml6* + mg cos 0

Dalla conservazione dell’energia abbiamo

%mézéz —mgl cos = —mgl cos by

6> = 2% (cos B — cos )

e quindi
Tp = mg (3cosf —2cosby)

In conclusione

T = Tpcosf + Mg
= mg (3cos6 —2cosby) cos O + Mg

19Geconda domanda scritto Fisica I del 10 settembre 2010
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da cui

Tmax = mg (3 —2cosby) + Mg
TMIN = mgcosz 90 + Mg

rispettivamente per 6 = 0 e 6 = 0.

Domanda 2 Lavoriamo nel sistema di riferimento dell’oscillatore. Prima dell’accelera-
zione, che supponiamo iniziare a t = 0, abbiamo

0 = 6y sin wot

CUO:\/%

Dopo l'accelerazione sara, tenendo conto della continuita,

con

= 01 sinwt
dove
g§+a
w1 =
' 0
Imponendo anche la continuita di § troviamo
w
01 = — 6
w1

Domanda 3 1l pendolo tornera in posizione verticale a

7T
w1

e da quel momento oscillera secondo la legge
6 = Acoswy (t —T)+ Bsinwy (t — T)

Imponendo la continuita di 6 e 0 troviamo A = 0 e B = 6. Quindi 'oscillatore si muove
nuovamente con 'ampiezza iniziale. L’energia del sistema sara aumentata di

AE = 1(M—l—m)vz—l—(M—l—m)gh

2
1 1
= E(M+m)az’t2+§(M—l—m)gmf2
1
= 57'(2 (M+m)al
dato che per ascensore e pendolo sono saliti di h = 3a7? ed hanno acquistato una

velocita verticale v = at. Questo corrisponde al lavoro fatto dal motore.
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PROBLEMA 5.124
( Urto contro un corpo composito xx S

Figura 5.108.:

Un contenitore di massa m della forma in Figura ospita al suo interno un corpo
puntiforme, pure di massa m. Il corpo pud muoversi senza attrito sul fondo, che ha una
lunghezza totale 24, ed e fissato ai due bordi da molle di lunghezza a riposo trascurabile
e costante elastica k. Inizialmente il contenitore e in quiete su un piano orizzontale privo
di attrito, e anche il corpo si trova all’interno in quiete nella posizione di equilibrio.

1. In un tempo molto breve si applica al contenitore un impulso orizzontale I. Deter-
minare nell’istante immediatamente successivo la velocita del contenitore e quella
del corpo all’interno.

2. Per quale valore minimo di I il corpo all’interno urta contro le pareti?

3. Se tra corpo e contenitore esistesse attrito, quale frazione dell’energia cinetica
iniziale del sistema verrebbe dissipata?

Soluzionelﬂ

Domanda 1

Dato che l'urto e istantaneo il corpo all'interno del contenitore non ne risente, e qindi la
sua velocita resta nulla. Per la velocita del contenitore abbiamo invece

mo. = 1

Domanda 2

Usando il teorema di Koenig 1’energia del sistema si puo scrivere nella forma

1 1 /m\ . k k
E=5@mof, +5 (5) 8 +5 @ —a?+5 (x+a)

dove v, & la velocita del centro di massa (costante) e x, la posizione del corpo relativa
al centro del contenitore. Usando la conservazione dell’energia abbiamo inizialmente

1, 1gmy o, 2k,
EZ—E(ZTI’I)UC,”‘FE(E)UC‘F?Q

208¢ritto 8 febbraio 2012
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e al momento dell’urto, nel caso limite in cui la velocita relativa si annulla,

1 2k 2k
Ef = E(Zm)vfm + ?az + Eaz

Usando la conservazione dell’energia otteniamo

m
20

[ 4ka?
I =mou. = m\ —
m

= ka?

e quindi

Domanda 3

L'energia dissipata sarebbe quella cinetica disponibile nel centro di massa. La frazione
rispetto alla cinetica totale sara
v? ? 1

2 (%) : _

2
V2 B
1@m)2, + 3 (%) v W, +v 244l 2

’)/:

PROBLEMA 5.125
( Un problema inverso in campo centrale xx &

Una particella di massa m si muove in un piano sottoposta ad una forza

F=A(r)7
dove 7 ¢ il vettore posizione della particella, r il suo modulo e A(r) una funzione incogni-
ta. Si sa che sono possibili orbite circolari di raggio qualsiasi, e che tutte corrispondono
allo stesso valore Ly del modulo del momento angolare.

1. Determinare A(r).

2. Determinare due costanti del moto e scriverle usando opportune coordinate (si
consigliano coordinate polari).

3. Discutere qualitativamente le caratteristiche delle possibili traiettorie della parti-

cella. Se, in particolare, esistono delle traiettorie che portano la particella a cadere
sul centro, dire se tale caduta avviene in un tempo finito.
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Soluzionﬂ

Problema 1

In un’orbita circolare

e d’altra parte

Sostituendo otteniamo

e quindi

Problema 2

v

m - A
m— (r)r
Lo = mor
L§

3 A(r)r

LZ
AN ==

L'energia e il momento angolare si conservano:

L = mr?
1 -, 1 54 L%
E = Emr +§mr 0c — 2

L’energia potenziale e stata determinata integrando la relazione

da cui

Problema 3

11 potenziale efficace vale

e dal suo studio vediamo che per L? > L3 tutte le orbite sono illimitate. Per L? < L3 le
orbite che corrispondono ad un’energia negativa sono limitate e terminano nel centro.
Se invece E > 0 l'orbita puo condurre la particella nel centro o farla sfuggire a r — oo
a seconda del segno della velocita radiale iniziale. Il caso L> = L3 & particolare. Il moto

radiale e del tipo

g au
mrd3  or
LZ
u(r) = _2m0r2
1212
Uegs = 2mr?

r(t) = ro + vot

21Prova scritta 8 febbraio 2012
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che corrisponde a una caduta nel centro per vy < 0, ad un’orbita illimitata per vg > 0 e
a un’orbita circolare per vy = 0.
Il tempo necessario per la caduta nel centro si pud determinare a partire dall’energia,

scritta come

1 L[> —12
E = —mi* + 0

2 2mr2

dr 2 L3 —L?
dt _\/m <E+ 2mr2 )

Possiamo integrare questa equazione differenziale ed ottenere il tempo di caduta da una
distanza iniziale rg

e quindi

2mr?

/rﬂ dr
T =
0 % (E—i— Lgsz)

L'integrale si calcola esplicitamente, ma e sufficiente notare che e finito, ricordando che
siamo interessati al caso L% > L2,

PROBLEMA 5.126
( Cilindro spinto in discesa % % %

Figura 5.109.: Il cilindro spinto verso il basso da un cubo.

Un cilindro di massa M e raggio R rotola senza strisciare su un piano obliquo inclinato
di un angolo 6 rispetto all’orizzontale. Un cubo di uguale massa ¢ appoggiato sul piano
inclinato a fianco del cilindro, dal lato corrispondente alla pendenza crescente come
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in Figura I1 cubo e libero di strisciare sul piano inclinato, senza alcun attrito.
Tra cubo e cilindro si ha invece attrito dinamico caratterizzato da un coefficiente yp
e all’occorrenza attrito statico. Discutere il moto del sistema, nelle ipotesi che cubo e
cilindro non si possano staccare tra di loro e dal piano. Si utilizzi un modello per l'attrito
dinamico descritto dall’equazione

=

Ep = —up ‘N’ (5.126.1)

dove Ep ¢ la forza di attrito che agisce su uno dei due corpi in contatto, N la reazione
normale alla superficie nel punto di contatto e ¢ la velocita del corpo considerato relativa
al secondo, sempre al punto di contatto.

S

Soluzione

Fp

Mgsin6 N N Mgsin 6
l Mg cosf Mg cos
R/

Fp T

Figura 5.110.: Le forze che agiscono sul cilindro (in blu) e quelle che agiscono sul cubo
(in rosso).

Scriviamo le equazioni del moto per il cilindro, facendo riferimento alla Figura[5.110
La prima equazine cardinale (nella direzione parallela al piano) e la seconda equazione
cardinale (scritta scegliendo il centro del cilindro come polo) si scrivono

Ma = N+T+ Mgsin6
Io. = —FpR+TR

Invece la prima equazione cardinale nella direzione parallela al piano per il cubo si
scrive
Ma = —N + Mgsin 6
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Dobbiamo adesso scrivere esplicitamente Fp. Tenendo conto che la velocita del cilindro
relativa al cubo nel punto di contatto vale —wR possiamo scrivere

w
FD:VD|N|W

Inoltre a causa del vincolo di rotolamento puro abbiamo a = —aR e v = —wR. Le tre
equazioni precedenti diventano

Ma = N+ T+ Mgsin6
a w
—I= = —up |N| —R+ TR
g = HpN| ] +
Ma = —N + Mgsin0
Ricaviamo N dalla terza equazione e sostituiamolo nelle precedenti:
Ma = M (gsinf —a) + T + Mgsin6
—I% = —ppM|gsind —al ‘Z’R +TR
N =M(gsinf —a)
infine ricaviamo T dalla prima equazione e sostituiamolo nella seconda
T =2M (a— gsinb)
a+2up |a— gsinb| |Z| +4(a—gsinf) =0
dove si & tenuto conto che I = MR?/2. Per discutere questa espressione conviene
esplicitare up
_ 4gsinf —ba v

‘uD_2|a—gsin9|m

a

e rappresentarlo graficamente in funzione di 5 come in Figura m

Le due curve corrispondono al caso v > 0 (linea continua rossa) e v < 0 (linea
tratteggiata verde). Se v > 0 abbiamo una soluzione per yp < 5/2. In particolare per
0 < up < 2il sistema si muove con accelerazione positiva costante, per yp = 2 si ha un
moto a velocita costante e per 2 < up < 5/2 l'accelerazione e negativa, di conseguenza
v diminuisce fino ad annullarsi. Quando questo accade il sistema resta in equilibrio:
questo e possibile dato che le equazioni divengono

0 = N+T+ Mgsinb
0 = —-FKER+TR
0 = —N+ Mgsind

da cui otteniamo la forza di attrito statico

F; = —2Mgsin@

@ 311 versione del 5 ottobre 2016



5.126. CILINDRO SPINTO IN DISCESA * x

— p a:%gsine
10
8
6
4
1D =5/2
| | | |
1 1 1 1 -
-4 -2 0 2 4 G5ne

Figura 5.111.: La relazione tra il coefficiente di attrito yp e 1’accelerazione espressa in
unita gsin 6. Il grafico rosso continuo si riferisce al caso v > 0, quello
verde tratteggiato al caso v < 0.

per la quale la relazione
2Mgsin 6 = |F| < pg [N| = Mgsin6

¢ verificata dato che
Ys > Up > 2

Infine non si hanno soluzioni con v > 0 per up > 5/2.

Per v < 0 si hanno soluzioni per qualsiasi valore di yp, corrispondenti a una ac-
celerazione positiva costante. Il modulo della velocita del sistema diminuisce fino ad
annullarsi. A questo punto se yp > 2 il sistema resta fermo, altrimenti continua ad
accelerare in accordo col caso v > 0 visto precedentemente.

La soluzione & unica pero solo per up < 5/2. Per up > 5/2 abbiamo due soluzioni
corrispondentia N > 0 (cioe a2 < gsinf)) e a (cioe a > gsin0).

La soluzione trovata appare ragionevole per (esiste ed € unica), ma problematica per
up > 5/2. 1l problema considerato puo essere visto come un semplice esempio che
mostra come il modello di attrito (legge di Coulomb) sia solo in apparenza
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semplice, e possa condurre a situazioni paradossali che generalmente appaiono quando
si considerano sistemi con corpi rigidi e grandi valori del coefficiente di attrito. Per
approfondimenti vedere ad esempio [1].
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PROBLEMA 5.127
( Masse e molla: identificare un errore xx

o M

— Vi

k, €y

Figura 5.112.: La massa M ¢ inizialmente in equilibrio, la massa m in quiete.

Una massa M e sospesa mediante una molla di costante elastica k e lunghezza a riposo
{y al di sopra di un piano, come in Figura (5.112), e si trova inizialmente in equilibrio.
Una seconda massa m viene lasciata cadere da ferma, partendo da un punto posto
ad una altezza h al di sopra della prima. Le due masse si urtano, e restano attaccate.
Successivamente la lunghezza della molla si riduce ulteriormente di

5= 2m2gh
\k(m+ M)

Dimostrate che il risultato precedente e errato. Fatelo senza calcolare il risultato cor-
retto, ma utilizzando un argomento basato su un opportuno caso limite. Infine trovate
esplicitamente la risposta giusta.

Soluzione

Si pud osservare che la molla si deve abbassare anche nel caso & = 0. Infatti anche
appoggiando semplicemente la massa m su quella M si aumenta la forza peso che deve
essere equilibrata dalla molla, quindi questa si dovra contrarre. Al contrario il risultato
proposto predice § = 0 in questo caso.

Per trovare il risultato corretto si puo usare la conservazione dell’energia, che e solo
potenziale sia nella configurazione iniziale (massa m appena lasciata libera) che in quella
finale (massima contrazione della molla).
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L’energia potenziale si puo scrivere in funzione della lunghezza ¢ della molla e della
posizione z della massa m come

k
2
Il primo termine corrisponde al potenziale della molla, il secondo al potenziale gravita-
zionale della massa M, in terzo al potenziale gravitazionale della massa m. Inizialmente
la molla e in equilibrio, quindi la lunghezza della molla & determinata dal minimo di U
rispetto ad /:

U(l,z) = = (£ — £p)* + Mgl + mgz

ou
5 =k(l—4ty) +Mg=0
e quindi da
Mg
f=b=
Sostituendo possiamo scrivere I’energia potenziale iniziale nella forma
2,2
U; = Mglo — Mz]f + mgh

Quella finale varra
k M 2 M
U =3 (ﬂo—]{g—a—eo> +(M+m)g(€o—kg— >

Ponendo U; = Uy e risolvendo per 4 otteniamo

_gm  |gm? k(0 Mg
0=5 i\/ 7 [1+2gm (h lo+—

La soluzione corretta corrisponde al segno positivo, che significa anche é > 0, dato che

h>£o—$

L’altra soluzione corrisponde invece all’altro valore di ¢ per il quale la molla si trova in
quiete durante 1’oscillazione.

PROBLEMA 5.128
( Proiettile con attrito viscoso: traiettoria xx

Un proiettile di massa m viene lanciato da terra con una velocita iniziale di modulo vy
che forma un angolo 6 rispetto all’orizzontale. Oltre a un campo di gravita costante e
presente una forza di attrito viscoso

F=—v7

Trovare 1'equazione esplicita della traiettoria, e discutere il limite nel quale si puo
considerare “piccolo” I'attrito, dicendo in modo preciso che cosa si intende con questo.
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Soluzione

Scegliamo un sistema di coordinate cartesiane con origine nella posizione iniziale del
P

proiettile. Scriviamo le equazioni del moto nella direzione orizzontale e verticale. Ab-

biamo

i = —Ly (5.128.1)
m

A _l._

jyo= — V-8 (5.128.2)

Risolviamo esplicitamente la (5.128.1)), cercando soluzioni del tipo
x=e
Sostituendo otteniamo la condizione
A2+ %/\ =0
e quindi i due possibili valori A = 0, A = —</m. Abbiamo quindi
x=A+Be !
ed imponendo le condizioni al contorno

x(0) = A+B=0
#(0) = —%B:vx,o

otteniamo

x(t) = m:’y"'o [1 - e—%f] (5.128.3)
Passiamo alla (5.128.2). La soluzione si ottiene aggiungendo alla soluzione generale
dell’equazione omogenea (identica alla (5.128.1))) una soluzione particolare. Sappiamo
che nel caso considerato questa puo corrispondere ad un moto a velocita costante, y =
uit, e sostituendo nella troviamo v; = —mg/+. Quindi la soluzione generale

sara

_x m
y=A+Be w8y
i
Imponiamo ancora una volta le condizioni iniziali:

y(0) = A+B=0

y(0) = - y = o
da cui
m mg _Xy mg
— 4] _|_ I 1 — e m —_ 7t 5.128.4
S [ " 7} | ) v ( )
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Veniamo adesso alla traiettoria. Possiamo ricavare dalla (5.128.3)

1—e nt= A
m'()x,()

Sostituendo nella (5.128.4)) otteniamo 'equazione desiderata,

e I [ wog (1t )]
= Py 0 +log (1 — 5.128.5
Y V0 Y> | Moy & Moy ( )
Per valori di x tali che X
T« (5.128.6)
mox,0

possiamo utilizzare ’approssimazione

log(1—x)=—x— %xZ +0(x%)

3
— o, Lgx? +0 (fyx )

V0 202 Moy o

e ottenere

cioe la stessa traiettoria valida in assenza di attrito. Per valori maggiori di x il termine
logaritmico diventa importante, ed in effetti la traiettoria ha un asintoto verticale per
X* _ mvx,()
i

L’interpretazione di questo fatto e che a causa dell’attrito il proiettile non supera oriz-
zontalmente il valore x = x*, come d’altra parte ¢ chiaro dalla (5.128.3).

Discutiamo il limite di piccolo attrito. Per x fissato se vale la condizione (5.128.6), che
possiamo riscrivere nella forma

mvx,g
TSR
potremo approssimare il logaritmo come in precedenza e ottenere la soluzione priva di
attrito. Notiamo pero che, per quanto piccolo possa essere <, per valori sufficientemente
grandi di x la traiettoria risultera comunque fortemente modificata.

PROBLEMA 5.129
( Carrello con massa scorrevole xx

Un carrello di massa M scorre su un piano inclinato (di un angolo 6 rispetto all’orizzon-
tale) in assenza di attrito. Sopra al carrello € montata un’asta verticale e su questa scorre,
sempre in assenza di attrito, una massa m. Massa e carrello sono collegati mediante
un sistema di carrucole ideali e un filo inestensibile come in Figura Calcolare
l'accelerazione del carrello in presenza di un campo gravitazionale costante .

@ 319 versione del 5 ottobre 2016
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Figura 5.113.: Il carrello di massa M scorre liberamente sul piano, la massa m & vincolata
a scorrere (senza attrito) lungo ’asta verticale.

Soluzione

Scriviamo prima di tutto 'equazione del moto per il sistema composto dal carrello e
dalla massa nella direzione parallela al piano inclinato. Lungo tale direzione massa e
carrello hanno la stessa accelerazione 4, quindi possiamo scrivere

M+m)ay=(M-+m)gsind —2T
I 8

Consideriamo adesso I'equazione del moto per la sola massa, nella direzione perpendi-
colare al piano inclinato. Dato che I’asta & priva di attrito possiamo scrivere

ma; =T —mgcos®

Infine teniamo conto della inestensibilita del filo. Da essa segue che la somma dei due
tratti orizzontali del filo e del tratto tra la carrucola e la massa deve rimanere costante,

2{y + ¢, = Costante

@ 320 versione del 5 ottobre 2016



5.130. CARRELLO TRIANGOLARE %%

e derivando due volte rispetto al tempo, e tenendo conto che 0, = a, bty = —ay
otteniamo
261” =4a,

Sostituendo nelle equazioni del moto otteniamo

(M+m)a; = (M+m)gsing—2T
2may = T —mgcos®

ed infine
(M +m) gsinf — 2mg cos 6

M+ 5m

4 =

PROBLEMA 5.130
( Carrello triangolare *x

Figura 5.114.: Il carrello triangolare considerato nel problema.

Un carrello di sezione triangolare come in Figura (angoli alla base a e ) e di
massa M & appoggiato su un piano orizzontale privo di attrito, sul quale & libero di
muoversi. Sui piani inclinati che corrispondono a due suoi lati sono appoggiate due
masse 117 e my. Queste sono collegate tra loro da un filo inestensibile e privo di massa, e
possono scorrere liberamente e senza attriti. Il sistema € immerso in un campo gravita-
zionale costante: determinare 1’accelerazione del carrello. Considerare in particolare il
caso a = P.

Soluzione
Scriviamo 'equazione per il moto orizzontale del carrello. Abbiamo

Ma = Nysina — Npsin — T cosa + T cos (5.130.1)

dove Nj, N> sono le forze di contatto che le due masse esercitano sul carrello, e T la
tensione del filo.
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Scriviamo adesso le equazioni del moto per le due masse, nella direzione della nor-
male al piano al quale sono appoggiate. Osserviamo che in tali direzioni le accelerazioni
delle masse rispetto al carrello sono nulle, e quindi quelle assolute coincidono con le
relative componenti dell’accelerazione del carrello. Quindi

my (—asina) = Ny — myg cos
my (asin ) = Ny — mpg cos (5.130.2)

Scriviamo le analoghe equazioni per il moto delle due masse nelle direzioni parallele al
piano al quale sono appoggiate. Otteniamo

T
(acosoc—i—agrﬂ)) = —gsina
1

r T .
<ucos,8—|—u§|‘)) =T +gsinf

D, 2

dove 4y €y’ sono le accelerazioni relative al carrello. A causa dell’inestensibilita del
filo aﬁ‘) = aéi), possiamo quindi sottrarre membro a membro ottenendo

1 1 . .

a(cosa —cosp) = +— ) T—g(sina+sinp)

mq mo

ossia S —
1 . .
= —|a(cosx —cosp) + g (sina + sin
el B)+8( )

Sostituiamo la tensione cosi ottenuta nella (5.130.1) insieme con le espressioni per Nj e
N> ricavati dalle (5.130.2)), ottenendo 1’accelerazione richiesta

(my cos « + my cos B)(my sina — my sin )
M(my + my) + mymy(cosa — cos B)2 + (my + my) (my sin® & + my sin® B)

Nel caso & = B abbiamo
_ (my —my)sinacosa

M+ (my + my) sin? 5

PROBLEMA 5.131
( Sistema a tre corpi: energia nel sistema del centro di massa *

Mostrare che I’energia cinetica per un sistema di tre punti materiali di massa m, m; e
ms3 e velocita 7y, U, e U3 pud essere scritta nella forma

1 1 . . 1 . . 1 R R
E. = E (m1 +my + M3) U%m -+ E,‘Mlz (Ul — 02)2 + §V23 (02 — 03)2 + 5}131 (03 — ?Jl>2

dove . . .
~ MU + MUy + m3U3

cmo—
mq + my + ms3
e la velocita del centro di massa e le costanti y12, p23 € 31 sono funzioni delle masse.
Determinare esplicitamente 12, pi23 € paq.
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Soluzione
Sostituendo 1’espressione della velocita del centro di massa troviamo

1 1

- - 5 \2
= (T + myT, + m3s
2m1+m2+m3( )

[9

2

— —

iz (1 = 52)” o Spias (B2 = 53)° o+ s (33 = 51)
e sviluppando i quadrati

£ 1 m3o? + m503 + m303 + 2mymyTy - Up + 2moms0s - U3 + 2mamyTs - U
R
2 my + my + ms

1 L
+ 5]/112 (U% + U% — 207 - 02)
1 oL
+ SH23 (v% + 0% — 27, - 73)
1 N
+ §ﬂ31 (U% + U% — 203 - 1)

Questa espressione si deve ridurre a

1 1 1
E. = imlv% + imzv% + Emg,v%

quindi i termini misti si devono annullare. Questo da le condizioni

miniy
T 12
my + my + ms #
Moz
- 23
mi + my + ms3 #
ni3mq
H31

my + my + m3

Quello che rimane &

2
(1 + p12 + ]/131> U%
mq + my + ms3

my + mp + ms

Y (R SN
2 \mq +mp+ mg3 H23 7T fa1 3

2
<2 + 12 + M23> U%

ma il primo termine tra parentesi si riduce a

m% m% + mymy + myms
——————— + Ui+ Uz = = m
my + myp + msa my + my + ms

e similmente gli altri si riducono rispettivamente a 1, e m3, per cui la relazione cercata
e verificata.
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PROBLEMA 5.132
( Nastro trasportatore xx

g

Q

Figura 5.115.: Il nastro trasportatore considerato nel problema. Si pu¢ immaginare che
la sabbia depositata abbia inizialmente una velocita nulla nella direzione
orizzontale.

Su un nastro trasportatore, mantenuto in movimento con velocita costante vc, viene
depositata continuamente della sabbia. La massa di sabbia depositata per unita di tempo

¢ costante e vale
dm

dt
Calcolare la potenza del motore necessaria a mantenere il nastro in movimento.

Soluzione

Consideriamo una quantita Am di sabbia che cade sul nastro. Il nastro trasportatore
esercitera su di essa una forza AF(t) che la fara accelerare fino a raggiungere la velocita
v.. Questo significa che I'impulso totale esercitato dal nastro sulla massa sara

Al = /AF(t)dt = Am v,

Per il terzo principio la sabbia avra esercitato una forza uguale e contraria sul nastro, e
quindi avra fatto su di esso un lavoro

AL = — /Ade =— /AFvcdt = —UC/AF(t)dt = —Amv?
Ma l'energia del nastro trasportatore non varia, quindi questo lavoro deve essere com-
pensato dal lavoro fatto dal motore, che vale quindi
ALy = Amv?

Dividendo per il tempo che e stato necessario ad immettere la massa otteniamo la

potenza del motore,

ALy
P=—3 =
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Possiamo chiederci anche quanta potenza Py;s, sia stata dissipata in attrito. Dato che
'energia cinetica della massa € aumentata di

1
A& = EAm 02

vediamo che esattamente meta della potenza del motore e dissipata in attrito, dato che

A&
P:Pdiss"i'Aitk

PROBLEMA 5.133
( Propulsione a reazione “istantanea” *x

L'equipaggio di un razzo inizialmente fermo vuole aumentare la propria velocita espel-
lendo una massa nm di gas. La velocita del gas al momento dell’emissione relativa al
razzo € sempre —vp. La massa iniziale di quest’ultimo & m e chiaramente 0 < 7 < 1.
Indicheremo con () la massa espulsa al tempo t. Calcolate () nei due casi seguenti:

1. Tutta la massa viene espulsa istantaneamente a t = 0

2. La massa espulsa per unita di tempo € costante, e viene espulsa tutta in un tempo
T

Dette vj([l) e v}({z) le velocita finale del razzo nel primo e nel secondo caso, stabilire se e

vero che o n
limog” = oy

Soluzione

Se la massa viene espulsa tutta a t = 0 sara

0 t<0
p(t) =<t o<t<t
nmo t>T

Calcoliamo la velocita finale del razzo.
Usando la conservazione della quantita di moto possiamo scrivere

[m — p(t)] o(t) = [m — p(t) — dp] [o(t) + do] — [vo — o(t)] dp
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ossia

vodp = [m — u(t)] do (5.133.1)

nm vf
/ % dy:/ dv
o M—H 0

of) = —oglog (1)

Integrando otteniamo

che da

Questa formula non e pero applicabile nel primo caso. Applicando nuovamente la
conservazione della quantita di moto abbiamo infatti
0= (m—nm) vj(}) — voym

da cui

(2)

Notare che v 5 non dipende da 7, di conseguenza

B~ awtogl1- ) #of

limv
7—0 f

PROBLEMA 5.134
( Perdita di energia di un oscillatore xx

Un oscillatore armonico e realizzato mediante una massa m collegata ad una molla
di costante elastica k. Inizialmente la massa si trova nella posizione di equilibrio, con
velocita vg. Determinare per quale valore del coefficiente di attrito viscoso A I'energia
totale dell’oscillatore si riduce piti rapidamente.

Soluzione
L’equazione del moto dell’oscillatore

mi +Ax +kx =0
ammette per soluzione generale

x = Ae*! 4 Be*?!
dove &1 e a; sono le due soluzioni di

me? +Aa+k=0
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che supponiamo per il momento distinte. Imponiamo le condizioni iniziali: abbiamo

x(0) = A+B=0
x(O) = mA+aB=1

Risolvendo otteniamo

A= 2
N1 — Ko
B = -2
X1 — &2
e quindi
(4] aqt aot
t = [ 1 2
x(t) ucl—az(e ")
5 00 aqt aot
x(t) = w1et — wne™?
(1) = 0 (e — ™)

Sostituendo nell’energia troviamo

1 1
E= mez + Eka

1 2

- % [m (aqe™f — ocze"‘zt)z +k (e — e"‘zt)ﬂ
2 (a1 — )

2

_ 1 mug . [(w%—i—k) g2t 4 <zx%+k> p2t _ o <“1a2+k) e(oc1+oc2)t:|

2 (a1 —ap) m m m

La parte reale di &1, @ sempre negativa (per A > 0), e corrispondera ad un termine
decrescente esponenzialmente. La riduzione pit1 rapida di energia si avra quindi per il

massimo valore di

77! = min (—Re a1, —Reay)

A ANk
R <2m> T

~ 0 <A < Vamk
AV (&) -k A > Vamk

D’altra parte

A VA
2m

e quindi

che ha un massimo per A = v/4mk, che corrisponde allo smorzamento critico. Si trat-
ta proprio del caso che non abbiamo considerato esplicitamente (¢; = «3), che pero
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possiamo considerare come limite delle espressioni precedenti. In particolare

A eVAt _p=VAE VAL | VAt ?
2m 2vA 2

A
e mt

—lmvz 1—£ 2—|—k—t2
2 2m m

La decrescita non & piti esponenziale, ma le conclusioni non cambiano.

PROBLEMA 5.135
( Energia di un oscillatore forzato a regime xx

Un oscillatore armonico & caratterizzato da una massa m, una costante di richiamo
elastica k e un coefficiente di attrito viscoso A. Supponendo che su di esso sia applicata
una forzante periodica

F(t) = Fycos wt

e che solo le oscillazioni forzate siano presenti (condizione di regime) calcolare 'energia
totale in funzione del tempo,

E(t) = ymi(1) + Ska2()

Soluzione
L’equazione del moto del sistema &
mx + Ax + kx = Fycos wt
La soluzione a regime sara della forma
x = Acoswt + Bsinwt

dove A e B sono costanti da determinare. Calcolando le derivate prime e seconde e
sostituendo troviamo

(k — mw?) (Acoswt + Bsinwt) + Aw (—Asinwt + Bcos wt) = Fy cos wt
Segue che deve essere

(k—mw®) A+ AwB = F
(k—ma)z)B—AwA =0
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Il sistema ha per soluzioni

Aw

Fo
(k — mw?)* + A\2w?
2

B =

k —mw
(k — mw?)* + A2w? °

Scriviamo adesso I’energia, ponendo w? = k/m. Abbiamo

mw3 [w? , 2 , 2
E(t) = — | — (—Asinwt + Bcos wt)” + (A cos wt + Bsin wt)
2 |w?
2 2
mwi [1, 5 2 w
— 9% )2 (42 4 B «
5 {2( + B?) <1+w%>
1 CL)Z 2 2 .
+5 (1 — w2> [(A*—B )COSZwt+2ABstwt]}
0

Notiamo un termine costante e un termine oscillante (assente se w = wy). Sostituendo
A e B abbiamo infine

w Tw (w} — w?) )
cos2wt + 2 5 sin 2wt
2 (w% _ wz) + 22

Fg/m2

(w? — mw?)® + 2w?

dovel = A/m.

PROBLEMA 5.136
( Risposta alla risonanza e fattore di qualita xx

Un oscillatore armonico caratterizzato da una massa m, una costante di richiamo elastica
k e un coefficiente di attrito viscoso A viene sottoposto ad una forzante periodica

F(t) = Fycos wt
Detta A(w) I'ampiezza di oscillazione a regime, mostrare che il rapporto

A(wy)
A(0)

dove w;, ¢ la frequenza di risonanza dell’oscillatore si puo scrivere come una funzione
del solo fattore di qualita Q.
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Soluzione

La soluzione a regime dell’equazione del moto
mi + Ax + kx = Fycos wt

si puo scrivere come

_ Foeiwt
%r(t) = Re [k — mw? + /\iw}

ed e dunque una oscillazione di ampiezza (w(z) =k/m)

1

_h
A(w)_% 2, 2\2 L A2 9
(w3 w)—l—mzw

La frequenza di risonanza si determina calcolando il massimo di questa espressione,
che corrisponde al valore di w? che rende minimo il termine al denominatore. Questo si
determina da

d 2 2\2 A? 2 2 2 A?
ossia )
A
2 2
Wr =0

Sostituendo troviamo

Alwy)  mwy  [km 0

A(0) A A2

PROBLEMA 5.137
( Forzante periodica per t > 0 xx

Un oscillatore armonico caratterizzato da una massa m e da una costante di richiamo
elastica k (non c’e attrito) e inizialmente fermo nella posizione di equilibrio. Per t > 0
viene sottoposto ad una forzante periodica

F(t) = Fycos wt
Calcolare 1’evoluzione temporale x(t)

Soluzione

L’equazione del moto &
mix + kx = Fycos wt
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che ammette come soluzione particolare

Fo
XP(t) = m cos wt

Per ottenere la soluzione generale dobbiamo aggiungere la soluzione generale dell’'omo-
genea. Quindi abbiamo
m~1 F

x(t) = ——

5 cos wt + A cos wyt + B sin wyt
w§ —w

dove abbiamo posto wi = k/m. Imponiamo adesso le condizioni iniziali. Abbiamo

m_lFo
x(0 — +A=0
© = Fat
%(0) = Bwy=0
da cui ricaviamo
B =0
A = _"217711:0
w§ — w?

e quindi
_ Fycoswt — cos wot
m Wi — w?

x(t)

Notare che possiamo prendere il limite w — wg. Applicando la regola di de L'Hopital
abbiamo
@ cos wt — coswpt

lim 5 = lim =
w—wy M w§ — w? wowy M —2wW 2mawy

Fy —tsin wt F .
— = t sin wyt

che possiamo interpretare come risposta del sistema forzato alla risonanza.

PROBLEMA 5.138
‘7 Fermare un oscillatorexx

Un oscillatore armonico caratterizzato da una massa m e da una costante di richiamo
elastica k (non c’e attrito) si trova inizialmente nella posizione x = xy con velocita
nulla. Detto T il suo periodo di oscillazione, determinare una forza F(t) che pud essere
applicata per ridurlo in quiete nella posizione di equilibrio per t > T.
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Soluzione

Dobbiamo trovare una F(t) tale che la soluzione di
mi + kx = F(t)

con le condizioni iniziali specificate si annulli per t > T. Una possibile strategia e otte-
nere x(T') = 0e x(T') = 0con T' < T, smettendo di applicare la forza successivamente.
Dato che dobbiamo imporre due condizioni scegliamo una forza semplice con due
parametri liberi, ad esempio (il fattore m e introdotto per convenienza)

0 t<0
F(t) = S amsinwt +bmcoswt 0<t<T
0 t>T

Dobbiamo quindi risolvere il problema
mx + kx = am sin wt + bm cos wt

Una soluzione particolare ¢ della forma

Xp = b (asinwt + bcos wt)
P Wl - w?

e quindi la soluzione generale sara

1
x=-—5—7 (asinwt + b cos wt) + A cos wot + B sin wyt
w}—w

con w3 = k/m. Imponiamo le condizioni iniziali.

b
x(0) = ———=+A=x
(0) w3 — w? 0
aw
x(0) = + Bwy =0
(0) w3 — w? 0
da cui
b
A = X—— 2
w§ — w
w a
B = - 2
wowo—w
e quindi
1 ) b w a .
x:ﬁ(asme—bcoswt)—l— X0 — —% 5 | Coswpt — ————— sinwopt
wo_w ws5 — W wowo—w

@ 332 versione del 5 ottobre 2016



5.139. MOLLA CON MASSA DISTRIBUITA I %«

Imponiamo adesso le condizioni a t = T'. Abbiamo

1
x(T') = e (a sinwT’ + beoswT)
w3
( 2) coswoT’ — 1% sinwoT' =0
w3 —w wo w3 — w
acoswT —bsinwT’
#(T wg — w? ( )

b i a
—wo X — 75— sinwoT' — w———> coswyT' =0
wj — w wy — w

Questo e un sistema nelle incognite a, b

: / w : /
sinwT’ — = sinwoT | cos wT' — coswyT’
a
wy — w wo —

coswT’ —coswoT'  PsinwpT' —sinwT’ — wp
a-+ b= (wo + w) xpsinwo T’
w

b= —xp (wp+w)coswyT’

wy — w wy — w
Sarebbe possibile risolvere il sistema in generale, ma per semplificare ulteriormente
'espressione prendiamo il limite w — wy, ottenendo
(—woT coswoT + sinwyT) a+ (woTsinwoT)b = —2x0w3 coswyT

(woTsinwgT)a+ (sinweT + woT coswoT) b = Zw(z,xo sinwgT
Inoltre scegliendo T' = T = 27t/ wy abbiamo

w%xo

T
b=0

e quindi

k
F(t):%sinwgt 0<t<T

PROBLEMA 5.139
( Molla con massa distribuita I xx

Una molla ha lunghezza a riposo Lo, una costante elastica K e una massa M, unifor-
memente distribuita. Per avere un modello concreto si puo pensare, ad esempio, ad un
numero N molto grande di molle, ciascuna di lunghezza Ly/N, costante elastica k e
massam = MN~L.

o Quanto vale k in funzione di K e N?
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AN AN

X1
o h(z1)
Lo = h(xs)
o h(ws)
o h(ws)
. h(ws)
- &
Z7

Figura 5.116.: La molla nella configurazione di riposo (a sinistra) e in quella di equilibrio
(a destra). Il valore di h(x) corrisponde alla posizione verticale del punto
rispetto alla sospensione.

Si appende un suo estremo e si permette all’altro di pendere verticalmente. Sulla molla
agisce la forza di gravita. Considerando il limite N — oo, indichiamo con x la coordinata
dell’elemento che si trova ad una distanza x dall’estremo appeso (0 < x < Lo, vedere
Figura in condizioni di riposo. Determinare nella configurazione di equilibrio

o il valore della tensione T(x) lungo la molla;
o la distanza y(x) del punto identificato da x dall’estremo appeso;

o l'allungamento totale della molla e la sua lunghezza.

Soluzione

Per quanto riguarda la costante elastica k di una delle molle componenti, dato che queste
sono in serie tra loro ed identiche avremo (vedere 1'Esercizio[5.27))

N
=L
i=1

e quindi k = NK. Per il seguito conviene scrivere la costante di un tratto di elastico
molto piccolo, che si ottiene facilmente ponendo N = Ly/Ax, cioe

1

~
==

Calcoliamo adesso la tensione all’equilibrio in funzione di x. Consideriamo il tratto
di elastico sottostante al punto identificato da x. Questo avra una massa
LO — X

Lo

m(x) =M
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e su di esso agiranno la tensione e la forza peso. All’equilibrio dovremo avere dunque

T(x) = Mg <1 - on>

Per quanto riguarda la lunghezza, consideriamo adesso il tratto di elastico tra il punto
x e il punto x + Ax. Il suo allungamento (la differenza tra la lunghezza a riposo e quella
all’equilibrio) sara dato da

Al(x) =y(x+ Ax) —y(x) — Ax
e dovra essere legato alla tensione dalla relazione

(x + Ax) —y(x) — Ax

T(x) = kAl(x) = KLy~ =

passando al limite Ax — 0 si trova

T(x) = kAl(x) = KLg <dz(xx) - 1>

Possiamo adesso ricavare esplicitamente y(x), riscrivendo 1'equazione precedente nella

forma p . M
au _ L _ Mgy X
I KLOT(x) +1 KLy (1 Lo> +1

ed integrando troviamo
_ Mg x
y(x) = Kl (x_ZLO) +x

La costante di intregrazione ¢ stata posta uguale a zero, dato che y(0) = 0. Vediamo che
la distanza di ogni elemento della molla dal punto di sospensione cresce, e che ponendo
¢ = 0 otteniamo y(x) = x, come deve essere. La lunghezza della molla sara data da

_ _ Mg
L=y(Lo) = >k T Lo
e il suo allungamento da
_ _ Mg
AL=L—-Ly= 7K

la meta di quello che si otterebbe se tutto la massa fosse concentrata all’estremo inferiore.

PROBLEMA 5.140
( Molla con massa distribuita IT xx

Considerare la molla con massa distribuita descritta nell’Esercizio [5.1391 Mostrare che
"’accelerazione di un suo elemento generico che si trova in x nella condizione di riposo
e descritto dall’equazione

Py(x, t) oT(x,t)
or MT T

(5.140.1)
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dove y = M/Ly. Usando l’espressione della tensione trovata nell’esercizio precedente
mostrare che deve valere
Py(x,t)  Py(xt)
2 X2 =M (5.140.2)

e calcolare il valore di x. Mostrate infine che

1
y(x,t) = F(x —0t) + G (x + 0t) + Egt2 (5.140.3)
dove F e G sono funzioni arbitrarie & soluzione della Equazione (5.140.2)) per un oppor-
tuno valore della costante v, e determinare quest’ultimo.
Soluzione

Consideriamo 1’equazione del moto di un tratto di filo posto tra x e x + Ax. Per la
seconda legge di Newton

M 1 [T Qy(x,t) M
<L0Ax> (Ax/x de =T(x+Ax,t) — T(x,t)+ (LOAX> g

In questa equazione abbiamo a destra la massa del tratto considerato, moltiplicato per
I'accelerazione del suo centro di massa. A destra abbiamo le tensioni agli estremi e la
forza peso. Dividendo membro a membro per Ax e passando al limite Ax — 0 otteniamo

Mo%y(x,t) _ 9T(x,t) N M

Ly o2 ox Lo
Derivando 'espressione per la tensione trovata nell’esercizio precedente abbiamo
ad B 9 [dy(x,t) B 0%y (x, t)
ET(X’ t) = KLO& < o 1) = KLoiax2
e sostituendo Py (1) Py (x, 1)
Py(x,t) o Pylxt) _
s KLg o2 M8 (5.140.4)

che e I'espressione cercata se x = KLg. Verifichiamo per sostituzione che la (5.140.3) e
una soluzione. Abbiamo (indichiamo con un apice la derivata di una funzione rispetto
al suo argomento)

%y(x, t
ya(;) = 0?F" (x —ot) + 0*G" (x +0t) + ¢ (5.140.5)
e
?y(x,t) ., "
a2 =F'(x —vt)+ G"(x +ot)

Sostituendo nella (5.140.4) otteniamo

o [F" (x —ot) + *G" (x + ot)] —|—g—;C [F'(x—ovt)+G" (x+ot)] =¢

che e verificata se v = /x/p.
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PROBLEMA 5.141
( Molla con massa distribuita III * % x%

La molla con massa distribuita considerata negli Esercizi e si trova inizial-
mente appesa in quiete nella configurazione di equilibrio considerata precedentemente.
All'improvviso I'estremo superiore si stacca, e la molla cade liberamente sotto 1’effetto
della accelerazione di gravita. Determinare, facendo uso dei risultati precedenti,

1. Lalegge oraria del centro di massa della molla.
2. Lalegge oraria dell’estremo superiore della molla.

3. Lalegge oraria dell’estremo inferiore della molla.

Soluzione

Si puo rispondere immediatamente alla prima domanda: il centro di massa si muovera
con moto uniformemente accelerato verso il basso, con accelerazione g, dato che deve
essere

Mijcm = —Mg

In seguito verificheremo direttamente questa affermazione.
Per quanto riguarda il moto degli estremi, proviamo a cercare una soluzione per la
caduta della molla nella forma vista nell’Esercizio [5.140, ossia

1
y(x,t) = F(x —ot) + G (x +vt) + Egt2 (5.141.1)
Per il seguito risulta conveniente scrivere

y(x,t) =x+u(x,t)

da cui
u(x,t) =F(x —ot) + G (x + vt) —x—i—%gtz
=A(x—ot)+B(x+ot) + %gtz (5.141.2)
con
A(x) = F(x) —’2;
B(x) = G(x) - 5

Dobbiamo imporre che a A(x— la soluzione coincida con la configurazione di equili-
brio determinata nell’Esercizio|5.139} ossia

M x2 L x2
e 0) = A) +8() = g (Lor =5 ) = 52 (x5
0

@ 337 versione del 5 ottobre 2016



5.141. MOLLA CON MASSA DISTRIBUITA III * % x*

per 0 < x < L. Inoltre nell’istante immediatamente successivo al distacco la molla sara
ferma, quindi sempre per 0 < x < L dovremo avere

i(x,0) =v[A'(x) = B'(x)] =0

e quindi le funzioni A e B potranno differire solo per una costante, B(x) = A(x) + C.
Sostituendo nell’equazione precedente avremo

_slo( ) _C
Alx) =55 (x 2L0) 2

L 2 C
B(x):‘(’;;(x—x>+

e confrontando con la vediamo che la costante ¢ irrilevante, per cui porremo
C=0.

Se consideriamo adesso la struttura della soluzione (5.141.2), vediamo che, a parte il
termine ¢t?/2, la funzione u(x, t) pud essere interpretata come la somma di una funzio-
ne A(x — vt) che si trasla rigidamente con velocita v che i una funzione B(x + vt) che fa
lo stesso con velocita —v. Con le considerazioni precedenti abbiamo determinato A(x)
e B(x) nell'intervallo 0 < x < Ly, ma non sappiamo ancora niente sulla loro forma per
x> Lopex <0.

Sappiamo pero che la tensione all’estremo x = Ly € nulla. Come abbiamo visto negli

esercizi precedenti
ou 1

ox  KLp

e quindi dovra essere

au(Lo, t)

e A'(Lo—vt)+ B (Lp+0t) =0

Dopo il distacco anche la tensione in x = 0 si dovra annullare, e quindi per t > 0

au;(;i' Y _ A/(—ot) + B (o) = 0
Segue che
Al(x) = —B'(2Lyp—x)
A'(x) = —B'(-x)

Integrando otteniamo

A(x) = B(2Lyp—x)
A(x) = B(—x)

a meno di costanti che dobbiamo considerare nulle se vogliamo che y(x, t) sia continua.
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Queste relazioni permettono di determinare la forma di A e B al di fuori dell'intervallo
0 < x < Ly. Infatti vediamo che riflettendo B(x) rispetto x = 0 si deve ottenere A(x).
Lo stesso deve accadere per una riflessione rispetto x = L.

La conclusione & che sia A(x) che B(x) sono funzioni periodiche con periodo 2Ly, e
che possiamo scrivere

A(x) = B(x) = i—iﬁ ('y(x) - 72(22> (5.141.3)

con

7(x) = 2Lo {ZLJ

e | x| eil pitt grande intero minore di x (vedere Figura (5.117)).

Figura 5.117.: Le funzioni A(x) (linea nera tratteggiata) e B(x) (linea rossa continua)
sono rappresentate in alto. La funzione u(x, t)Plain Layout meno del ter-
mine ¢t?/2 alla somma di A(x — vt) e di B(x + vt), cioe delle funzioni
traslate rigidamente verso destra e verso sinistra di vt (figura in basso).

Possiamo adesso determinare facilmente il moto di un punto generico della molla,
ottenendo
y(x—ot) +y(x+ot)2| 1

Zof?
2Lo 38

8Lo
202

y(x, t) =x+ v (x—ot) + 9 (x+0t) —

Notiamo che y(x, t) & continua, ma la sua derivata dy/dx ha una discontinuita. Questa
discontinuita si genera al momento del distacco, quando la tensione all’estremo superio-
re cambia bruscamente, AT = —Mg. Dalla Figura|5.117|¢ evidente che tale discontinuita
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si propaghera inizialmente dall’estremo inferiore a quello superiore con velocita

— tim (%Y, %
Up = hm (a_jcv+at‘>

Ad ogni arrivo ad un estremo verra riflessa e invertira il suo moto. Notare che mentre
dy/dx deve avere una discontinuita, il limite precedente deve esistere: quindi anche
dy/dt deve avere una discontinuita e deve ValereF_ZI

ay\ dy _ g .
a(5)=on () ar=m s s
2.0
2.5

2.0

1.0

0.5

-2 -1 0 1 2

Figura 5.118.: La funzione y(x, t) (in rosso) nell’intervallo 0 < t < 2Ly/v. Per confronto
sono riportate anche le funzioni A(x — vt) (in blu), B(x + vt) (in verde) e
y(x,0) (tratteggiata). Si & preso Ly = Im e v = 4ms~!, quindi 2Ly/v =
0.5s. L’animazione & disponibile all'indirizzo http://www.df .unipi.it/
“cella/videos/ueg/T2.html

Notiamo inoltre che la funzione y(x,t) — gt*/2 si puo interpretare come la configu-
razione della molla vista in un sistema di riferimento solidale al centro di massa (cioe,

22Verificatelo esplicitamente, usando i risultati che seguono.
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in moto uniformemente accelerato con accelerazione g), e che si ripete periodicamente
per t > 0 con periodo 2Ly/v. Studiamo quindi y(x, t) a partire da t,, = 2mLy/v con
m € {0,1,---}.Ponendo t = t,, + T possiamo distingure due fasi:

1. 0 < vT < Ly. La discontinuita nella derivata si muove da sinistra verso destra, e
si trova in xp = vT. Possiamo scrivere per 0 < x < xp

(x4 2Lo — v7)* + (x + v7)?
4L,

_ 8oy 28mLo (o, milo
_y(x,O)—kv2 (vt —x) + 5 <T+ -

L
y(x/f)=x+g070 x+ Lo —

2mL 2
+g<m°+0
2 v

eper xp < x < Ly

2omL L
y(x 1) = y(x,0) + 10 (r+”"v°)

Notare che tutti i punti della molla in x < xp si stanno muovendo con la stessa
velocita costante

dy  glo

e quelli con x > xp con
ay gl
= =°—(2m
ot v (2m)
2. Ly < vT < 2Lg. La discontinuita nella derivata si muove da destra verso sinistra,
e sitrovain xp = 2Lp — vT. Possiamo scrivere per 0 < x < xp

_ 8L () 4 28mLo (1 Lo
Ve, t) =, 0) + 52 (o =) 4 B0 (24

eperxp < x < Lo

2gL
y(x,t) = y(x,0) + 532 (T — Lo) +

2gmL mL
v v
Questa volta i punti con x < xp si muovono con la velocita costante

By gLO
L =20 (142
ot v (1+2m)
e quelli con x > xp con

dy  glo

Possiamo in conclusione descrivere il moto in questi termini: inizialmente la molla
e ferma. Come descritto in precedenza, la discontinuita in dy/dx inizia a muoversi
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dall’estremo che si e staccato, e si sposta continuamente da un capo all’altro. Possiamo
adesso calcolare esplicitamente la sua velocita.

Al passaggio della discontinuita un punto della molla incrementa istantaneamente la
sua velocita di

AV = 8Lo
v

L’evoluzione e rappresentata nella animazione trat = 0et = 2Ly/v, interval-
lo corrispondente ai primi due “passaggi” della discontinuita (m = 0 nelle formule
precedenti). Notare in particolare che 1’estremo inferiore della molla rimane immobile
fino al sopraggiungere di questa. In conclusione le estremita della molla si muoveranno
con velocita costante: solo al momento dell’arrivo della discontinuita la loro velocita
aumentera improvvisamente di AV.

12

10

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figura 5.119.: Le leggi orarie dell’estremo superiore (in rosso) e dell’estremo inferiore
(in blu) della molla. Sull’asse delle ascisse e riportato il tempo in secondi,
sull’asse delle ordinate y in metri. Si & preso Ly = Im e v = 4ms™ 1.
La discontinuita in dy/dx passa quindi dall’estremo superiore in t, =
2mLy/v = 0.0s,0.5s, - - - ed in quello inferiore in t,, = 2m+1)Ly/v =

0.25s,0.75s, - - - .

Calcoliamo infine esplicitamente il moto del centro di massa, limitandocia 0 < t <
Lo /v. Dato che

_ 1 M
Yem = M/ydm—MO ydx

otteniamo
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Yem = / [y L20 (Ut - x)] dx
O 0
1 Lo
L
0
1 [l L 8Lo x?
i), { (2 1))

ot

+% (vt — x)dx
0
29Ly 1 .,
1 =4z
( + 32> 5 +2gt

Questo conferma quanto detto inizialmente. Un calcolo analogo darebbe lo stesso risul-
tato per t > 0 qualsiasi. Molto piti semplicemente, sappiamo che le masse a sinistra e a
destra della discontinuita si muovono con velocita costante. Considerando ad esempio
la fase 1 vista precedentemente possiamo scrivere

t gL L
e = 1820 (14+-2m) + (1_L0>g002m

da cui
acm = &
ed analogamente nella fase 2.
Concludiamo osservando che il modello considerato ha delle limitazioni. Se calcolia-
mo infatti la quantita dy/dx troviamo, con la notazione usata in precedenza,

- & 0<x<x
Wi = {5 ?
1—1——"(1—%0) xp < x < Ly

Si vede facilmente che se

in qualche punto della molla si avra

0
ax<

Questo significa che y non € una funzione crescente di x: in altre parole durante 1’evolu-
zione una punto della molla pud superare quelli successivi. I parametri della animazio-
ne sono stati scelti in modo che questo non accada, ma con altre scelte il fenomeno
avviene (vedere I'animazione [5.120), ed & chiaramente non realistico.

Per risolvere il problema si deve complicare il modello, ad esempio modificando la
legge di Hooke imposta nell’Equazione in modo da impedire la compressione. Per un
possibile approccio vedere[1]. Un esempio “dal vivo” di un sistema di questo tipo si
trova all'indirizzo http://www.youtube. com/watch?v=uiyMuHuCFo4.
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&)

-2 -1

F\
i
—
[ ]

Figura 5.120.: La funzione y(x, t) (in rosso) nell'intervallo 0 < ¢t < 2Lg/v. Per confronto
sono riportate anche le funzioni A(x — vt) (in blu), B(x + vt) (in verde) e
y(x,0) (traggeggiata). Si & preso Lo = Ime v = 2ms ™!, quindi 2Ly /v = 1s.
Notare che in questo caso alcuni punti della molla superano i successivi
nel corso dell’evoluzione. L'animazione e disponibile all'indirizzohttp:
//www.df .unipi.it/"cella/videos/ueg/T3.html
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PROBLEMA 5.142
( Molecola triangolare x x x

Un semplice modello di molecola e costituito da tre masse identiche m collegate da tre
molle di costante elastica k e lunghezza a riposo {y, in modo da formare un triangolo
equilatero. Studiare le piccole oscillazioni attorno a questa posizione di equilibrio.

Soluzione

Il sistema ha sei gradi di liberta, dato che ciascuna massa pud muoversi nel piano in
due direzioni indipendenti. Scegliamo le coordinate delle tre masse nella forma

7 = (d + 5141) 1 + 6v10,
= (d + (51/[2) iy + 0020y
73 = (d + (51/[3) ﬁg + 503@3

dove du;, 6v; parametrizzano le piccole oscillazioni. Per la definizione dei versori #; e 9;
fare riferimento alla Figura|5.121

Possiamo adesso scrivere 'energia potenziale

k - S
u=3 ¥ [f-7-u)
(i,j)eL

con £ € {(1,2),(2,3),(3,1)}. Sostituendo le coordinate nel potenziale otteniamo 1’e-
spressione

2
u= Z {\/[(d + 51/[1') 1; + 6v;0; — (d + (5u]) ﬁ] — 50]77]]2 — fo}
(i,j)eL

N & N &

2
Z {\/[d (ﬁi — ﬁ]) + (Suiﬁi — 514]12] + 501'@' - 5U]ﬁ]]2 — 60}
(ij)el
Dato che nella posizione di equilibrio

=dV3 =4,

d|a; —;
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Figura 5.121.: La parametrizzazione utilizzata per studiare il sistema. Notare che i
versori #;, 9; non sono indipendenti tra loro.

per ottenere lo sviluppo del potenziale al secondo ordine nelle coordinate éu;, 6v; &
sufficiente espandere la radice quadrata al primo ordine. Abbiamo allora

2
U ~ 12( Z {\/f% +2d (ﬁi — ﬁ]) . (5uiﬁ,- — (5uj12]- -+ (5viz§i — (50]23]) — EO}

(ij)eL
1 2d ,. R R R N ’
~ Sk (‘;ﬂ boy /14 7 (4 — 1)) - (Suit; — Sujij + 6vi0; — 6v;9;) — Lo
ij)e
1k . L 12
=33 e [(6u; + 6uj) (1 — 4 - ) — bviddj - O; — 6oy - 0]
ij)e
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Tenendo conto che

1
-1y =1y - fl3 = 13 121:—5
A A A 1
U102 =02-03 = U3 012—5
U1 -0y = Uy 03 = U3 01:—7
s . \/3
U1 Uy = U2 U3 = U3 M1:7
otteniamo infine
1k 2
U= Y |VB (du+ o) — (0 —6vy)
24 -
(i,j)eL
1k

T 24

{ [\@((51/[1 + dup) — (6v1 — 502)}2
+ {\/g (Oup + duz) — (6vp — 57)3)} ’
+ [V3 (83 + 6u) — (305 501)}2}

Possiamo adesso scrivere le equazioni del moto. Ad esempio

} ou k
méiiy = Tou; 4 {(65u1 + 36uy + 36u3) + V'3 (6vs — (503)}
) ou k
mov, = _87’()1 = _Z {\/3 (5“3 — (5142) + (2(52)1 — 00y — 503)}

e similmente per le altre. Possiamo rappresentare 'insieme completo di equazioni nella

forma
6 3 3 0 V3 =3
3 6 3 =3 0 V3
. 1,1 3 3 6 V3 —V3 0 B
(5q+1w0 0 V3 3 ) 1 1 6q=0
V3 0 —v3 -1 2 -1
-3 V3 0 -1 -1 2
dove
6q" = (0uy Sup Suz Sv; vy dvs)
e wl =k/m.

Per trovare un numero sufficiente di soluzioni proveremo adesso ad ipotizzare la
forma dei modi di oscillazione a frequenza fissata del tipo

(5q — Qeiwt
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dove Q e un vettore costante. Sostituendo vediamo che Q deve soddisfare 1'equazione

6 3 3 0 V3 =3
3 6 3 -3 0 V3
1 ,] 3 3 6 V3 =3 0 o,
29 ¢ A 2 1 o |QFwe
V3

-3
0 —v3 -1 2 -1
-3 V3 0 S | 2

cioe deve essere un autovettore della matrice che rappresenta le forze di richiamo del-
le molle. Prima di tutto ci aspettiamo che una soluzione possa essere una semplice
rotazione della molecola attorno al centro. In questo caso avremo

Qlx(0 001 1 1)

e si verifica immediatamente che questo € un autovettore (con autovalore nullo), dato
che la somma degli elementi delle ultime tre colonne e nullo su ogni riga. Analogamente
avremo soluzioni che corrisponderanno ad una semplice traslazione. Per esempio per
una traslazione nella direzione x avremo

Qo(f o~ § 1y

ed anche in questo caso abbiamo un autovettore con autovalore nullo. Analogamente
per una traslazione nella direzione y abbiamo

Qfe(-3 1 -4 F o0 —p)

Vogliamo adesso andare oltre tenendo conto delle simmetrie del problema. Dato un
possibile modo di oscillazione, ci aspettiamo che applicando una trasformazione di
simmetria del problema possano succedere due cose:

1. il modo resta uguale a se stesso, cioe la molecola oscilla mantenendo completa-
mente la sua simmetria;

2. il modo cambia, ma si trasforma in una combinazione di altri modi della stessa
frequenza.

La prima possibilita si realizza in una eventuale oscillazione nella quale le tre masse
oscillano in sincrono in direzione radiale: istante per istante la forma della molecola e
sempre quella di un triangolo equilatero. Questo modo dovrebbe essere descritto da un
vettore del tipo

Qix(1 110 0 0)

che effettivamente & un autovettore corrispondente a w? = 3w3.
Restano ancora da trovare due modi di oscillazione per risolvere completamente il
problema. Non possiamo pitt mantenere completamente la simmetria, ma possiamo
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cercare un modo che ne conserva una parte, per esempio la simmetria di riflessione
attorno all’asse passante per 1'origine e orientato come . Il vettore Q dovrebbe essere
del tipo

Qi (B a p v 0 —7)

ed imponendo che il centro di massa del sistema non si sposti abbiamo

am +2m (—;ﬁ-l-\f’y) =0

a=p— 3y
e quindi, a meno di una costante moltiplicativa,
Qo(p p—v3 p 10 —1)

Il valore di 7y si puo determinare imponendo che Q sia in effetti un autovettore. Troviamo
che

6 3 3 0 V3 —\/3 B ~2(V3-6p)
3 6 3 —\%5 (\)f V3 | [B-V3 —8v3 + 128
3 3 6 3 —V3 0 Bl | —2(v3-
0 —v3 v3 2 -1 -1 1 B (\2 6ﬁ>
Vi 0 —v3 -1 2 -l 0 0
-3 V3 0 -1 -1 2 —1 —6
e quindi 8 = v/3/3,
ng<<% -2 L 10 —1)
ew2:3w§/2.
T —— gg /\ei

Figura 5.122.: I modi di oscillazione corrispondenti ai vettori Q4, Qs e Q. Il modo Q
si ottiene dal Q5 con una rotazione antioraria di 27t/3.
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L'ultimo modo di oscillazione si trova facilmente osservando che ruotando di 277/3
quello appena trovato se ne deve ottenere un’altro indipendente, della stessa frequenza.
La trasformazione & equivalente al cambiamento di variabili

ouy — dup
our, — dus
ous — ouq
ov; — Ovp
0y — 0U3
ovs — 0Uq

e quindi

T 2 1 1
e si puo verificare direttamente che questo € ancora una volta un autovettore, sempre con
w? = 3w3/2. In questo modo abbiamo trovato sei vettori linearmente indipendent

Se omettiano i modi corrispondenti alle due traslazioni e alla rotazione rigida della
molecola, possiamo scrivere la soluzione generale nella forma

oq(t) = Qy <A4 cos wyV/3t + By sin wo\@t>
+ Qs (Ascos wo/3/2t + Bs sinwyv/3/2t
+ Qg (Aé cos woV3/2t + Bg sin wg v 3/2t)

Le costanti Ay e By possono essere determinate imponendo le condizioni iniziali, che
devono essere compatibili con I’assenza di traslazioni e rotazioni.

PROBLEMA 5.143
( Pendolo inclinato xx

Su un piano inclinato di un angolo 6 = 71 /6 rispetto all’orizzontale & fissato un pendolo
di massa M e lunghezza L. Inizialmente il pendolo si trova nella posizione di equilibrio
e viene lanciato con una velocita iniziale vy. Tra il piano e la massa M si ha attrito
dinamico con coefficiente up = 2/+/3. Trovare il valore minimo di vy per il quale il
pendolo riesce ad effettuare un giro completo.

Soluzione

Usando il sistema di coordinate rappresentato in Figura|5.123|possiamo scrivere

y = —Lcos¢

23Che cosa si otttiene mediante un’altra rotazione di 277/3?
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o/

Figura 5.123.: Il pendolo adagiato sul piano inclinato.

e misurando l'altezza della massa rispetto ad un piano orizzontale passante per I'origine
abbiamo
h = —Lcos¢sin®

Scriviamo l’energia del pendolo, tenendo conto del potenziale gravitazionale. Abbiamo
1. 50 .
E= EML ¢° — MgLsin0 cos ¢

Il teorema delle forze vive ci dice che la variazione dell’energia totale & uguale al lavoro
della forza di attrito. Quest’ultima vale

Fa - I/lDN

dove
N = Mgcos0

e la reazione normale del piano. Applicando in teorema tra la posizione iniziale e una
posizione generica del pendolo abbiamo

1 , 1
EML%p2 — MgLsin 6 cos ¢ — EMvg + MgLsin@ = —L$upMg cos 6

dalla quale possiamo dedurre ¢* nella posizione generica

Affinche possa avvenire un giro completo, & necessario che la tensione del filo sia
sempre positiva o nulla. Scrivendo 1’equazione del moto per la massa nella direzione
radiale sul piano inclinato abbiamo

~ML$? = —T + Mgsin 6 cos ¢

da cui
T = ML$? + Mg sin 6 cos ¢
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Sostituendo il valore di ¢? trovato precedentemente abbiamo
. : Muj
T =3Mgsinfcos¢ —2Mgsin® — 2Mgpup cos + I >0
Questo da la condizione
. . Muv3
3Mgsinfcos ¢ —2Mgsin 0 — 2Mg¢up cos 6 + I >0
Sostituendo esplicitamente i valori di yp e 6 abbiamo
’ 3
vy > gL 1—§cosq>+2q>

Derivando il membro destro vediamo che si tratta di una funzione sempre crescente di
¢. Il valore massimo su un giro completo e quindi a ¢ = 27, e troviamo la condizione

UoZW/gL(ZlTL'—;)

Orbita circolare perturbata xx

( PROBLEMA 5.144

Una particella di massa m si muove in un campo di forza centrale descritto da un
potenziale U(r). Supponendo che esista un’orbita circolare per r = ry per un certo
valore dell’energia Eg = U(rp) e del momento angolare, determinare le caratteristiche
dell’orbita corrispondente ad una piccola perturbazione E = Ej + JE. In particolare,
sotto quali condizioni I’orbita si chiude dopo una rivoluzione?

Soluzione

L'energia e il momento angolare sono conservate. Possiamo quindi scrivere

2

1
E = Zmi?
2mr + 2mr?

L = mrf

+U(r)

Utilizziamo la seconda equazione per eliminare il parametro temporale dalla prima,
ottenendo

1 (dr L \? L2
E=— —_—— — 1441
2m <d9 mr2> * [2mr2 + U(r)} ® )
Introducendo la coordinata u = r—! abbiamo infine
mE 1 (du\> 1[, 2m _/
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Possiamo adesso sviluppare il potenziale attorno a ro. Ponendo u = ug + ¢ abbiamo al
secondo ordine

ﬂu(”(;l) +m75E =1 <d£)2+1 [u%+2u08+82+2mll(u01>

12 2~ 2\do 2 12
2mdU ;4 12md*U ; 1\ »
?E(”O )8 E?W( 0 )8

ma se U corrisponde ad un’orbita circolare il termine O(¢) si deve annullare

mdlU ( 1\
o+ 732 (uo ) —0 (5.144.3)

e quindi
méE 1 (de\* 1 mdU ;N\
e _z(de> +2[1+L2duz<u0 )]E

Derivando rispetto a 6 troviamo l'equazione della traiettoria

d?e mdU ;
(W+[1+L2duz<u0 )]8—0

che ha per soluzione generale
e = Acos (k6 + ¢)

e 1 U )

L’ampiezza dell’oscillazione si calcola dall’espressione dell’energia:

2mdéE
A=\ T

con

Dato che
d ,d 1d
_— = — = —— —
du dr u2 dr
du2 = dr ar2  uddr  utdr?
possiamo scrivere anche
k= \/1+m2 ( 23LI’+14LI”)
L2 \ uy ug
e la (5.144.3) diviene
m
- —Uu =0 5.144 .4
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da cui
m

2.4
Luy

k= [3+

In generale un’orbita si chiudera dopo una rivoluzione se k € un numero intero.

Possiamo chiederci se, per particolari potenziali, tutte le orbite perturbate si chiudono
in questo modo. Una condizione necessaria e che k sia indipendente da 1. Se stiamo
perturbando un’orbita circolare deve essere anzitutto

omo 1
L2u3 W

ed in particolare il potenziale deve essere una funzione crescente di r. Sostituendo

nell’espressione di k troviamo
/ 1u”
k=4/3+——
+ Up u’

Dato che k non deve dipendere da 1, troviamo

u//_d /_Cl
w T aosd =

ossia

logU’ = Cilogr + G
U/ = Alrcl

che corrisponde a

Abbiamo quindi

Ad esempio per k = 1 troviamo

LIo<—1
"

cioe un potenziale gravitazionale attrattivo. Per k = 2
U o r?

cioe un oscillatore bidimensionale. Come & noto in entrambi i casi tutte le orbite si
chiudono dopo una rivoluzione.

@ 355 versione del 5 ottobre 2016



5.145. PALLINA IN CADUTA SU GUIDA CIRCOLARE **

M,r 1

Figura 5.124.: La pallina vincolata a rimanere in contatto con la guida circolare nella posi-
zione iniziale (in nero) ed in una posizione intermedia qualsiasi (in rosso).
Il tratteggio sulla meta a destra indica il vincolo di puro rotolamento.

PROBLEMA 5.145
( Pallina in caduta su guida circolare xx

Una pallina di massa M, raggio r e momento di inerzia I rispetto ad un asse passante per
il centro di massa e vincolata a rimanere in contatto con una guida circolare di raggio R,
come in Figura Inizialmente si trova in quiete nel punto pitt in alto (6 = ). Sulla
meta di destra della guida la pallina € anche vincolata ad un moto di puro rotolamento.
Sulla meta di sinistra invece & assente qualunque attrito.

Si sposte leggermente la pallina, e questa inizia a cadere. Calcolare la massima altezza
alla quale il centro di massa riesce ad arrivare prima di fermarsi nuovamente, sul lato
sinistro della guida.

Successivamente il moto continua, e la pallina torna sul lato destro fino a fermarsi
nuovamente. Calcolare la nuova altezza raggiunta.
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Soluzione

Durante la discesa dal lato destro della guida 1’energia si conserva, e puo essere scritta
come

E:%(I+Mr2)w2—Mg(R—r)cosf9

di conseguenza confrontando l'energia iniziale (¢ = 71, w = 0) con quella al momento
di arrivo nel punto pitt basso (6 = 0, w = w;) troviamo

% (I+ Mr?) wjzf =2Mg (R —r)
da cui
or — 4Mg (R —)
1= I+ Mr?

Dato che la velocita del centro di massa ¢ legata a w dalla condizione di puro rotolamen-
to avremo
4Mgr? (R —r)

s Ter=s I+ Mr?

Nella risalita dal lato sinistro la velocita del centro di massa e quella angolare sono
indipendenti. L'energia si scrivera allora come

1 1
E= EMUZ + Elwz — Mg (R —r)cosb

Inoltre si conservera il momento angolare della pallina rispetto al suo centro di massa
L=lw

dato che il momento della forza di gravita e della reazione normale della guida & nullo ri-
spetto ad esso. Chiaramente anche la velocita angolare si conservera. Ponendo 'energia
iniziale uguale a quella nel punto piu alto raggiunto (v = 0) abbiamo quindi

1 1 1
EMU% + Elw% —Mg(R—r)= EIaff — Mg (R —r)cosb;

che permette di calcolare 1’angolo corrispondente alla posizione pit1 in alto

I

cost; = —1 +2L21

Mr2

Per [ < Mr? siha cosf; ~ —1, cioe la pallina ritorna alla stessa posizione di partenza.
Per I >> Mr? si ha cos 6 ~ 1, ossia la pallina rimane vicino al punto pit1 basso. Notare
che per I = Mr? si ottiene cos 6; = 0, cioe §; = —77/2.
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Tornando indietro la pallina arriva nel punto pit basso con

w = w1

v = wir

e quindi non si trova in condizioni di puro rotolamento (la velocita v ha il segno sba-
gliato). Al momento dell’entrata nel lato di destra la guida applichera un impulso nel
punto di contatto, che perd non cambiera il momento angolare rispetto ad esso. Quindi
avremo

Iwy — Mrawir = (I+ Mr?) w,

che permette di calcolare la velocita angolare iniziale sul lato destro,

I — Mr?

V2T T MR

La velocita angolare cambia segno per I < Mr% Se I > Mr? la pallina “rimbalza” e
risale nuovamente dal lato sinistro. Noratare pero che per una pallina non si puo avere
I > Mr? (sarebbe necessario distribuire a distanze maggiori di r dall’asse di rotazione
passante per il centro di massa). Usando adesso la conservazione dell’energia possiamo
nuovamente determinare 1’angolo corrispondente all’altezza massima raggiunta

%(I—l—Mrz) ws — Mg (R—71)=—Mg (R—7)cosb,

da cui ;
costh = —1+ 8%
(1+ 372)
Notare che cosf® = —1 solo se I = 0. In tutti gli altri casi 1’altezza massima finale e

maggiore di quella iniziale. Questo € dovuto al fatto che nel passaggio tra il lato sinistro
e il lato destro viene dissipata energia. Il valore massimo di cos 6, si ottiene per I = Mr?
(cos B, = 1). In quel caso la pallina rimane sul fondo, dissipando interamente la propria
energia.

PROBLEMA 5.146
( Moto circolare in un sistema rotante xx

Un punto materiale si muove in un piano orizzontale rimanendo vincolato ad un filo
inestensibile di massa trascurabile e lunghezza ¢ come in Figura Il moto e quindi
circolare, ed avviene a velocita angolare costante w. Scrivere le equazioni del moto per
il punto, in direzione radiale e tangenziale, in un sistema di riferimento che ruota con
velocita angolare costante w attorno ad un asse normale al piano e passante per il centro
dell’orbita. Utilizzare le equazioni per determinare la tensione del filo. La tensione del
filo dipende da w?
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Figura 5.125.: Il punto materiale in moto circolare uniforme. La velocita angolare del
moto @ w in un sistema di riferimento inerziale, e viene studiata in un
sistema di riferimento che ruota attorno all’asse z con velocita angolare
w.

Soluzione

Nel sistema rotante osserviamo un moto circolare che avviene con velocita angolare
(w — @) é,, quindi l'unica accelerazione & quella centripeta. Usando coordinate cilindri-
che, e tenendo conto che il moto e limitato al piano, possiamo scrivere quindi

i=—(w—w) e,
Le forze che agiscono sul punto materiale sono:
1. La forza peso fp = —mgé,
2. Lareazione normale del piano ﬁN = Ng¢,
3. La forza dovuta alla tensione del filo Fy = —Té,

4. La forza centrifuga
FCF = meEép

5. La forza di Coriolis
Fco = 2mw (a) — w) fép

In conclusione le equazioni del moto per il punto si scrivono
mid = Fp+FN+FT+FCF+FCO
ossia, esplicitamente,

—m (w — @) e, = —mgé, + Né; — Té, + mwlé, + 2mw (w — @) €&,
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Nella direzione é, questo significa
N =mg

e nella direzione radiale
—m (W —@) = —T + m@*l + 2me (w — @) ¢

Svolgendo i calcoli troviamo
T = mlw?

che non dipende dalla velocita di rotazione w del sistema di riferimento. Questo era da
attendersi, dato che la forza dovuta alla tensione non & apparente, e quindi non deve
dipendere dal sistema di riferimento scelto.

PROBLEMA 5.147
( Manubrio in orbita x x x

m

m

Figura 5.126.: Il manubrio in orbita. Le condizioni iniziali sono scelte in modo da far
rimanere entrambe le masse nel piano che contiene 1'orbita percorsa dal
centro di massa.

Un manubrio formato da due masse identiche m collegate da una sbarra di lunghezza
2a e massa trascurabile si muovono sotto I’azione di un campo gravitazionale descritto
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dal potenziale

u=--2-
r

dove k & una costante positiva e r la distanza dall’origine di un sistema di coordinate
scelto opportunamente. Per semplicita le condizioni iniziali sono scelte in modo che
entrambe le masse rimangano nel piano dell’orbita percorsa dal centro di massa del
sistema.

Scegliendo le coordinate r, 6 e ¢ come in Figura determinare se esistono possibili
orbite circolari per il centro di massa, con ¢ costante.

Soluzione

La forza totale che agisce sul manubrio vale

(

+d
+ 4|

=1

F=—km Z,+

<?—a>]
3

-7

=L

dove 7 ¢ il vettore che unisce il centro di massa del manubrio con uno dei sue estremi,

cos ) cos ¢ — sin 0 sin ¢
da = a|sinfcos¢ + cosBsing
0

= acos@é, + asin Péy
ed 7 il vettore posizione del centro di massa del manubrio
cost
7=r|sinf

0

Esplicitamente questo significa

Fe _km réy +acos pé, +asinéy  ré, — acos Pé, — asin Péy
(r? 4 a% + 2ar cos 4))3/2 (r? 4+ a% — 2ar cos 4))3/2
— m r+acos¢ n r—acos¢ ;
(r2+ a2+ 2arcos §)*'* (12 + a® — 2ar cos ¢)*'? '
asin¢ asin ¢ R
—km T e 5 | %
(12 + a2 + 2ar cos ¢) (12 + a2 — 2ar cos ¢)

dove abbiamo distinto la componente radiale e la componente tangenziale all’orbita
circolare.

Se r e ¢ restano costanti, allora sia la forza radiale che quella tangenziale sono costanti.
Segue che 'accelerazione centripeta e costante, e quindi il moto circolare deve essere
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uniforme. D’altra parte questo significa che non si puo avere accelerazione tangenziale,
e quindi deve essere

1 1
(r2 4 a2 4 2arcos )% (r2 + a2 — 2ar cos P)

373 | 4sing =0

L’equazione precedente ha soluzioni solo per sin ¢ = 0 e per cos ¢ = 0, che corrispondo-

no ad un manubrio orientato radialmente e tangenzialmente. Senza perdere generalita

data la simmetria del problema possiamo limitarci a studiareicasi¢ = 0e ¢ = 71/2.
Dobbiamo ancora verificare che i valori di ¢ considerati siano di equilibrio. Per farlo

scriviamo la seconda equazione cardinale per il manubrio, rispetto al suo centro di
massa. Calcoliamo prima di tutto il momento delle forze: abbiamo

M=2anA (—W) + (=d) A (—W)

|7 —dl

e quindi
x 7 Z
ANT = |acos(0+¢) asin(60+¢) 0 =ar[cos(6+ ¢)sind —sin (6 + ¢)cosb] 2
rcos 0 rsin@ 0
= —arsin¢z

In conclusione la seconda equazione cardinale si scrivera

dLem

a Mz

ossia (tenendo conto che in un moto circolare uniforme 6 = 0)

rk

. 1 1
¢= 2a

(r2 4 a2 — 2ar cos ¢)*/* - (r2 4 a? + 2ar cos ¢

)3/2] sin ¢ (5.147.1)

Possiamo quindi verificare che il membro destro si annulla sia per ¢ = 0 che per ¢ =
7t/2, quindi l'orbita circolare considerata e possibile. Resta da determinare la velocita
con la quale viene percorsa 1’orbita. Abbiamo

v? r+acos ¢ r —acos @
—2m7 = —hm 24 g2 72 T 24 g2 3/2
(r2 + a® 4 2ar cos ¢) (r? + a? — 2ar cos ¢)
cioe
kr 1 1 k a?
= s+ - 2(1—}—32)
2 | (r+a) (r—a) r r
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okt k(82
B (12 +a2)>% 1 272

per ¢ = 71/2. Le approssimazioni valgono per 4 < r, e mostrano che 'orbita & percorsa
pitt velocemente quando il manubrio & orientato in direzione radiale.

per¢g =0e

PROBLEMA 5.148
( Manubrio in orbita: piccole perturbazioni xx

Studiare le piccole oscillazioni del manubrio nella situazione determinate nell’Eserci-
Zio considerando il caso ¢ = 0. Per semplicita si puo considerare la lunghezza
del manubrio molto minore del raggio dell’orbita, e supporre che 1’orbita del centro di
massa rimanga imperturbata.

Soluzione

Riprendiamo la seconda equazione cardinale (5.147.1) e sviluppiamola al primo ordine
prendendo ¢ = é¢. Otteniamo\\

47——@ 11
22 [ (n—a)’ (ro+a)’

5¢ (5.148.1)

Abbiamo quindi piccole oscillazioni di frequenza angolare

k
V' 7o

2a B 3

rgk[ 1 1
(ro—a)® (ro+a)

L’approssimazione vale per a < ry.

PROBLEMA 5.149
( Moto su un cono in presenza di gravita x x x

Un punto materiale & vincolato a muoversi su un cono di ampiezza 2« posto con 1’asse
verticale e il vertice verso il basso. Discutere le possibili traiettorie.

Soluzione

Scegliamo un sistema di coordinate cilindriche con I'origine nel vertice del cono. L’ener-
gia del sistema sara in coordinate cilindriche

E= %m [(1+ tan?a) 22 + 2 tan® ad?| + mgz
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dove si e tenuto conto del fatto che p e z sono legati da
0=z tanw
La posizione del punto materiale e determinato da
7= z¢, + pé,
e le forze ad esso applicate valgono
F=—-mgé, + N (— coswé, + sinaé)

dove il primo termina & la forza peso e il secondo la reazione normale alla superficie.
Quindi il momento non ha componenti lungo é,

—

éz'M

&, - (7/\ f) =é.- [(z8; 4 péy) N (—mgeé. + Nsinaé, — N cosaé,)]

é;- [~Nzcoswé; Né,+p (—mg + Nsina)é, Né;] « &, - (é,Né;) =0
Quindi la componente z del momento angolare si conserva, e possiamo scrivere

- = mp’$
Eliminando g, ¢ nell’energia otteniamo
1 2
E=Zm (14 tan®a) 2% + m + mgz

I potenziale effettivo ha un minimo in

2 1/3
(L
gm? tan’ a

che corrisponde ad un’orbita circolare. Dato che lim,_,o U, fF= tooe lim, 10 U, fF =
+oo tutte le orbite sono limitate. Il caso L, = 0 e speciale, il potenziale efficace si riduce
a mgz e le orbite si riducono a cadute nel centro del tipo

¢ = o

. 8 2
z=z9+ 20t —=—S—+
020 21+ tan?a

PROBLEMA 5.150
( Manubrio in orbita: piccole perturbazioni IT x*

Studiare le piccole perturbazioni delle orbite determinate nell’Esercizio conside-
rando il caso ¢ = /2. Per semplicita si pud considerare la lunghezza del manubrio
molto minore del raggio dell’orbita, e supporre che I'orbita del centro di massa rimanga
imperturbata.
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Soluzione

In questo caso I’equazione cardinale (5.147.1) diviene, ponendo ¢ = 71/2 + 6¢

gb o T’Qk 1 . 1
2a (12 4 a2 4 2ar59)** (12 + a2 — 2ar5¢)*/?
_ rok 1 1
- 2, 2\3/2 /2 3/2
2 (5 ) | (14 2m00) " (1- 2200)
N 3kr3 p
- (1% +ﬂ2)5/2

Non abbiamo in questo caso oscillazioni, ma una instabilita esponenziale che si sviluppa
con un tempo caratteristico

52
(r0+a2 / 8

3kr0 \f 3wy

La posizione del manubrio considerata € dunque instabile.

PROBLEMA 5.151
( Monopolo I x x x

Un punto materiale si muove nello spazio sotto 1’azione di una forza della forma
F= 857 (5.151.1)

dove 7 & il vettore posizione e 7 il vettore velocita. Mostrare che 1'energia cinetica del
punto si conserva, ma non il momento angolare L. Trovare quindi un vettore | (7,7)
conservato. Calcolare infine la quantita

W =

=N

-]
e trarne delle conseguenze riguardo alle caratteristiche delle orbite.

Soluzione

L’energia cinetica si conserva perché la forza e perpendicolare alla velocita, e quindi non
e in grado di fare lavoro. Esplicitamente

dL =

F.dr (7
_ 8 (a7 o
3<d7’/\dt>1’—0

@ 365 versione del 5 ottobre 2016



5.151. MONOPOLOI x * %

Per il momento angolare abbiamo

— =FAF=SFA(TAT)

Se scomponiamo la velocita in una componente parallela a 7 (radiale) e una componente
perpendicolare

abbiamo .
ai _

dt

che non si annulla, a meno che 7, = 0. D’altra parte la derivata del versore radiale
7 =7/rvale

AFE =

=

U1 (5.151.2)

= |09

47

7 1y
dtr r r
1, .
== (7—7
L (@=7)
_ Uy
oy

e quindi possiamo scrivere la (5.151.2) nella forma

i i,
it~ Sdt

ossia

Di conseguenza il vettore
—L— g

—

si conserva. Da notare che J? = L? + ¢? e quindi anche il modulo del momento angolare
e conservato. Inoltre

W=¢-T=mp-(FAT)—g=—¢
e costante. Questo significa che I’angolo tra il vettore posizione e Tsi mantiene fissato,

in altre parole 1’orbita avviene su un cono con l'asse lungo | e semiapertura angolare «
data da

~>
—

cosu = = — 3

R

con vertice nell’origine. Notare che se L >> ¢ abbiamo a ~ 71/2 e il cono si riduce a un
piano.
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PROBLEMA 5.152
( Monopolo II xx

Nell’Esercizio |5.151] si & visto che la traiettoria di una particella sottoposta alla for-
za (5.151.1) giace su un cono. Scegliendo il sistema di riferimento in modo da avere

J=-Jz

con | > 0 ed utilizzando opportune coordinate (ad esempio, coordinate polari o car-
tesiane per la proiezione della posizione della particella nel piano perpendicolare a )
studiare in dettaglio il moto della particella.

Soluzione

T, = ié,

® .
Uy = rsinagéy

Figura 5.127.: Il sistema di riferimento utilizzato.

Abbiamo visto nell’esercizio precedente che il modulo del momento angolare L si
conserva. Inoltre L. & perpendicolare alla superficie del cono sul quale si svolge il moto, e
quindi anche la sua proiezione sull’asse z s conserva. Possiamo utilizzare come equazio-
ni del moto leggi di conservazione dell’energia cinetica e di L,, che possiamo scrivere
nella forma
%m?Z + %mr2 sinffag® = E

mr?sinap = L,

Ricavando ¢ dalla seconda equazione e sostituendolo nella prima abbiamo

1 12
E=-mi?+—2
2 2mr2 sin? &
=i
- mr2sin?a
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e vediamo che il problema e formalmente identico a quello del moto di una particella
vincolata al cono. Si tratta di un caso particolare del problema (oppure del
in assenza di gravita. Possiamo quindi ripetere analoghe considerazioni: in particolare
se tagliamo e incolliamo il cono su un piano, vedremo le orbite come linee rette.

Approfittiamone per verificare questo fatto con un altro procedimento, e otteniamo
esplicitamente le leggi orarie. Introduciamo le coordinate

X = rcos(¢sina)
Y = rsin(¢sina)

che possono essere interpretate come coordinate cartesiane sul cono tagliato e incollato
sul piano. Le relazioni inverse sono

ro= VX2+Y?

= 1 arctanz
¢ = sin « X

Derivando rispetto al tempo troviamo
XX +YY
VX2 +Y?
. 1 XY-YX
¢ = sine X2 +4Y?2
Sostituendo nell’energia e nel momento angolare troviamo
1 (XX+YY)" 1 (XY -YX)’
E=-om——~—5—+m——5—
27 X2+Y? 25 X2+4Y?
1 . .
= Em (XZ + Yz)
L,

=== m (XY - YX)

cioe le espressioni di una particella libera. Derivando rispetto al tempo otteniamo

(5 0E)-0)

che ha per soluzione

X 0
Y =0
e quindi
X C1+ Cot
Y = C3+Cyt
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dove le costanti C; devono essere determinate imponendo le condizioni iniziali. Occorre
ricordare che il cono non ricopre tutto il piano. Ad ogni modo possiamo ora scrivere
esplicitamente la soluzione

r(t) = \/(Cl + Cot)* + (C3 + Cyt)?
0 Cs + Cyt
sin « C1 + Cot

PROBLEMA 5.153
( Isocrona di Bernoulli xx

Q)

Figura 5.128.: Il punto materiale e il profilo considerato. Si € scelto il sistema di coordina-
te in modo che il punto di partenza sia nell’origine. La curva disegnata &
solo a titolo di esempio, ed anzi si puo capire sulla base di considerazioni
qualitative che non & sicuramente quella cercata.

Una particella di massa m scivola su un profilo privo di attrito come in Figura[5.128
sotto 1’azione della forza di gravita. La forma del profilo

y = F(x)
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5.153. ISOCRONA DI BERNOULLI #*

e tale che la componente verticale della velocita rimane costantemente identica la suo
valore iniziale.

o Per quale motivo il profilo di esempio in Figura[5.128/non puo essere quello giusto?

o Determinare la forma corretta del profilo.

Soluzione

Osserviamo prima di tutto che la curva in Figura [5.128 ha la concavita rivolta verso
il basso. Questo significa che, se la componente verticale della velocita deve rimanere
costante, quella orizzontale deve diminuire. Infatti

y=F(x)x
e quindi
.Y
TP

ma F’(x) & una funzione crescente. Il modulo della velocita di conseguenza diminuisce
nel tempo, ma questo e impossibile perché mano mano che la particella scende verso il
basso dovrebbe aumentare la propria energia cinetica. Per questo ci attendiamo che la
curva corretta abbia la concavita rivolta verso 1alto.

Per determinare quest’ultima conviene scrivere

x=G(y)
dove G ¢ la funzione inversa di F. Scriviamo adesso I'energia totale, che deve conservar-
si, nella forma

1
E=_m[1+G(y)?]y* +mgy

dove G’ indica la derivata di G rispetto al suo argomento. Dato che y = v, = costante
possiamo anche scrivere

1 1
5 [1+ G'(0)?] 05 =5 [1+G'(y)?] 05 + mgy

e in conclusione

Questa & un’equazione differenziale per la funzione x = G(y) che si integra diretta-
mente, tenendo conto del fatto che G(0) = 0 nel sistema di riferimento scelto. Otteniamo

quindi
y 2gu
= 4G’ 1— =" 4
$= G0 [ Vo ge
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L’integrale si puo calcolare per tutti i valori di y tali che

2637 (0)2
y < UyC;g(())
otteniamo quindi una serie di curve
X = L0 G0y - (c'op-2 "
=+3, < 02 y) (5.153.1)

che soddisfano le proprieta richieste. Se adesso riscriviamo la relazione precedente nella

forma
5 02 2 3/2 02 3/2
- VG023 )| = Zo Va2 —
S(mseor) = (3) (Geory)

vediamo che abbiamo a che fare in realta sempre con la stessa curva di base, ad esempio

quella ottenuta per G'(0) = 0
3 25\
g ( 8 ) 3/2
Sx=x|—2] (-
2 2
Yy Yy
alla quale & stata applicata la traslazione pit generale che continua a farla passare per
l'origine, come potevamo attenderci a priori.
La curva di base considerata si puo riscrivere pitt semplicemente come

y 1)
-2 <3 . ) (5.153.2)

dove A = vi /g, ed e rappresentata in Figura per A = Im. Si puo verificare che,
come ci aspettavamo, la concavita e adesso rivolta verso 1’alto. Dalla (5.153.1)

Possiamo infine svincolarci dalla particolare scelta fatta per il sistema di coordinate, ed
affermare che si potra ottenere il profilo piti generale con le proprieta volute applicando
alla curva in Figura una trasformazione di scala del fattore A desiderato e una
traslazione arbitraria.
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r=—1m z=1m

Figura 5.129.: La forma corretta del profilo (curva continua), data dall’Equazio-

ne (5.153.2) prendendo vi /& = 1m. La curva pit generale (5.153.1) si puo

ottenere applicando a questa una traslazione arbitraria che pero continui
a farla passare per I'origine. Un esempio ¢ la curva tratteggiata.

PROBLEMA 5.154
( Oscillazioni in un potenzialexx

Una particella di massa m si muove in una dimensione soggetta ad un potenziale

kx?

2+ Bx x>0
u<x>={k§z f

5 — Bx x<0

dove k e B sono costanti positive di opportune dimensioni e x € la coordinata cartesiana
della particella.

Calcolare il periodo dell’oscillazione risultante, in funzione dell’energia totale E. Con-
siderare in particolare il caso E — 0 e E — oo.
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Soluzione

Per x > 0 il potenziale ¢ equivalente a quello di una molla di costante elastica k e
lunghezza a riposo nulla, fissata nel punto

__B
Tk
e per x < 0 a quello di una molla identica, ma fissata nel punto
_h
Tk

Di conseguenza in ciascuna regione la particella compiera un tratto di una oscillazione

armonica. Se poniamo come condizioni iniziali x(0) = 0 e v(0) = /% data la simmetria

il periodo sara il doppio della durata del moto in x > 0.
La soluzione generale dell’equazione del moto per x > 0 sara

p

x(t) = Acoswt + Bsinwt — P

conw = vk/m.

Imponiamo le condizioni iniziali:

e quindi

1 /2E
x(t) = % (coswt —1) + 5” Esinwt

Determiniamo dopo quanto tempo la particella torna in x = 0. Scriviamo 1’equazione

x(t) = 0 nella forma
P @t 22 @) sin @i =0
K2 TV ) T T

Abbiamo ovviamente la soluzione t = 0. Ci interessa la seconda, che si ottiene quando
si annulla I'espressione tra parentesi. Otteniamo

ossia
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Ulx)

Figura 5.130.: Il grafico del potenziale U(x) considerato nel problema, tracciato con una
linea continua. Sono stati tracciati anche i due potenziali quadratici che
coincidono con esso per x > 0 e x < 0.

In conclusione avremo per il periodo

T(E) = %arctan ( k 2E>

wgV
Per piccoli valori dell’energia
mew? 132
2k2
possiamo utilizzare I’approssimazione arctan x ~ x e otteniamo

Ex

4k |2E

e quindi T(E) « +/E. Nel limite opposto di grande energia possiamo approssimare

arctan x ~ 7t/2 e otteniamo
27

T(E) =~
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5.155. SEZIONE D’URTO DI DIFFUSIONE DA UNA BUCA DI POTENZIALE
SFERICA %%

cioe il periodo di un oscillatore armonico di massa m e costante elastica k.

PROBLEMA 5.155
Sezione d'urto di diffusione da una buca di potenziale

sfericax*

Calcolare la sezione d'urto differenziale di diffusione di un campo di forza centrale
definito dal potenziale
0 |7|>R
um =10 10
U |1’| <R

in funzione dell’energia della particella incidente. Puo essere utile fare riferimento al
problema

Soluzione

— PROBLEMA 5.156

Lavatrice viaggiatrice xx
M
Y m
w -
o g
z x

Hs Hd

Figura 5.131.:

Il carico di una lavatrice ¢ mal distribuito nel cestello. Modelliamo la situazione con
un cubo di massa M che rappresenta la lavatrice stessa, e una massa m (il carico) che
si trova ad una distanza d dal centro di massa di questa (vedere Figura[5.131). La lava-
trice € appoggiata su un piano orizzontale, con attrito statico e dinamico descritto da
coefficienti y; e pg.

Quando viene azionata la centrifuga, il carico ruota attorno al centro di massa della
lavatrice con velocita angolare costante & = wZ. Supponendo che la lavatrice possa solo
traslare in direzione x, calcolare

o il minimo valore di ys necessario a mantenere ferma la lavatrice;
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o la velocita media con la quale la lavatrice trasla, se j; € minore del valore determi-
nato precedentemente.

Soluzione
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6.1. TENSORE DI INERZIA DI UN CUBO I *

PROBLEMA 6.1
( Tensore di inerzia di un cubo I %

Determinare il tensore di inerzia di un corpo rigido formato da masse puntiformi di
massa m poste ai vertici di un cubo di lato 4, collegate tra loro con barre di massa
trascurabile. Porre 1’origine nel centro di massa del cubo.

Soluzione

Il corpo e simmetrico rispetto a inversioni e permutazioni degli assi coordinati. Da
questo segue che gli elementi fuori diagonale sono nulli, e quelli diagonali tutti uguali.

Calcoliamo allora
=Y "m(y; +z)

Tutte le masse sono alla stessa distanza dall’asse z, data da

2
2, .2 _ 4
Vi Tz =5

da cui
2

W:W:W:m%:mﬁ

PROBLEMA 6.2
( Tensore di inerzia di un cubo II xx

Determinare il tensore di inerzia di un cubo omogeneo di lato 2 e massa M. Porre
'origine del sistema di coordinate nel centro di massa.

Soluzione

A causa della simmetria del corpo il tensore di inerzia e diagonale, con elementi diago-
nali uguali. Possiamo allora calcolare

P = [ (P
dove l'integrazione ¢ estesa a tutto il corpo. In coordinate cartesiane abbiamo
M
dm = pdV = gdxdydz

e quindi l'integrale diviene

M a/2 a/2 a/2
== dx/ dy/ dz (x> + 7).
a —a/2 —a/2 —a/2
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Integriamo su z
M a

xx v
I _a3a

/2 a/2
dx/ dy (x* +y?)
/2 —a/2

quindi su y

M [ S
I~ = aBa/_a/zdx (ax —|—2§§a )

ed infine su x, ottenendo
R Sy Y
6

PROBLEMA 6.3
( Tensore di inerzia e rotazioni * * x

Trovare la legge di trasformazione del tensore di inerzia di un corpo rigido per rotazioni
infinitesime del sistema di coordinate. Mostrare che se il corpo rigido ¢ invariante per
rotazioni il tensore di inerzia e diagonale.

Soluzione

Il tensore di inerzia si puo scrivere nella forma
" = /dm (r25% — 1ty .

Sappiamo che sotto rotazioni infinitesime possiamo scrivere la legge di trasformazione
di un vettore (ad esempio 7) come

T >7T+ENT=T+I7

dove
0 _SZ Sy
r — SZ 0 _sx
—&y & 0

Il tensore trasformera come il prodotto delle componenti di due vettori, e quindi come
I—- (1+DIA+0)=1+TI—1T.

Se il corpo rigido e invariante deve essere

I'N-I1Tr=0
ossia
0 —& g > Xy J*= I~ 1y J*= 0 —& g
£ 0 —&y ) LA L L = J LA L £, 0 —&
—&y & 0 = J&  J*= = J7 J* —&y € 0
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Calcolando la componente 1, 1 di ambo i membri abbiamo
—& I 4 g " = &, I — g, I™*

dacui IY* = I'Y = 0 e I'* = [** = 0. Dalla componente 2, 2 abbiamo analogamente
1Y — e IV = —e, IV 4+ e, 1Y#

da cui segue anche 1¥* = [?¥ = 0. Il tensore di inerzia & dunque diagonale. Considerando
la componente 1,2 abbiamo
_szlyy — _8zlxx
edallal,3
gy ¥ = g, ™

da cui segue [** = [ = %

PROBLEMA 6.4
( Tensore di inerzia e traslazioni x x %

Supponendo noto il tensore di inerzia di un corpo rispetto al suo centro di massa,
calcolare quello di un corpo identico traslato di 4.

Soluzione

Le componenti del tensore di inerzia riferito al centro di massa si scrivono nella forma
ab __ (,2sab a,b
Ity = Zm, (rid —riri) .
i
Con una traslazione definiamo un nuovo sistema di coordinate con origine in —4
i =7r+a
e sostituendo abbiamo

th = o [+ 5% (a0 ()]

ossia
I =Y m; [(”12 +a? = 2il; - @) 6" — <u?uf’ +a%b — ula® — a“uf’ﬂ .
i

Separando i diversi termini abbiamo

b 2 cab b
% = Zmi [uié‘z — ufui}
;

— [2(5’”’71’- Zmiﬁi — (ab Zmiu? +a° Zm,u?)]
i i i
+ {azé“b — a“ab} Y m;
i
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e tenendo conto che

abbiamo

Riassumendo abbiamo
Iﬂb — Icu’}; +M [az(sab o aaabi|

PROBLEMA 6.5
( Teorema di Steiner xx

Dimostrare, utilizzando i risultati dell’esercizio precedente, il risultato che segue. Sia
Iy, il momento di inerzia di un corpo rispetto ad un asse 7 passante per il suo centro di
massa.

I momento di inerzia dello stesso corpo rispetto ad un asse ad esso parallelo a
distanza a dal centro di massa e dato da

I, = Iy + Ma?.

Soluzione

Dal problema precedente abbiamo per una traslazione qualsiasi
Iij = é]m + M (achif — aiaf> .
Calcolando il momento di inerzia rispetto all’asse identificato dal versore 7 abbiamo
I;jninf = Ié%n"n]' + M (a25ij — aiaj) n'n/

ossia
. 2 = Ao oA
Li=1Imw+M(a>—d-nd-n)

ma scegliendo la traslazione ortogonale a 71 abbiamo 7 - 71, che ¢ il risultato cercato.
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PROBLEMA 6.6
( Cilindro su un piano inclinatox

Un cilindro ruota senza strisciare su un piano inclinato di un angolo «. Calcolare
'accelerazione del suo centro di massa.

Soluzione

Possiamo scrivere 1’energia totale nella forma
10,1 5 .
E= EMS + 519 — Mgs sina

dove s e una coordinata presa lungo il piano e I il momento di inerzia del cilindro

rispetto al suo asse. Dalla condizione di puro rotolamento R§ = —s abbiamo
1 I\ . .
E= 5 <M+RZ>S — Mgs sina

e derivando rispetto al tempo

. I
E = (M—I—RZ)S'S'—Mgs' sina =0

abbiamo le equazioni del moto
.  Mgsina
S= T

che forniscono direttamente 1’accelerazione.

PROBLEMA 6.7
( Carrucola xx

La carrucola in Figura|6.1|e un cilindro libero di ruotare attorno al suo asse. Attorno ad
essa € avvolto un filo inestensibile al cui estremo ¢ fissata una massa M. Determinare
I’accelerazione della massa e la tensione del filo.

Soluzione
Detto I il momento di inerzia del cilindro rispetto al suo asse abbiamo

dw
= = TR

dove T e la tensione del filo e w la velocita angolare del cilindro. Per quanto riguarda la
massa abbiamo

do

@ 382 versione del 5 ottobre 2016



6.8. JOJO **

e
v

D M

Figura 6.1.: La carrucola considerata nell’esercizio.

La velocita della massa e w sono legate da v = —Rw e otteniamo infine

I

ﬁﬂ =T

Ma=Mg—-T
da cui

4— MR2g

- MR2+1
e
I
= MRS

( PROBLEMA 6.8

Figura 6.2.: Un modello di JoJo, ottenuto avvolgendo un filo attorno a un cilindro.

Calcolate I’accelerazione del cilindro in Figura[6.2} attorno al quale e avvolto un filo

inestensibile e privo di massa che si srotola durante la caduta.
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Soluzione
Scriviamo le equazioni cardinali. Per il moto verticale del centro di massa abbiamo
Mij=-Mg+T

e per la rotazione
I6 = —TR

dove I e il momento di inerzia del cilindro rispetto al suo centro di massa, I = MR?/2.
La condizione di rotolamento puro sul filo da

RO =i

da cui

e sostituendo nella prima equazione si trova

Iy .

da cui
MR? 2

i =~ pRES = 39 (6.8.1)

PROBLEMA 6.9
( Campo di velocita di un corpo rigido xx

Un cilindro di raggio R appoggiato su un piano ruota attorno al suo asse e trasla. Detta
V = Vé, la velocita del centro di massa e @ = wé, la velocita angolare ad un dato istante,
determinare il campo di velocita del corpo, ossia la velocita 7 di un punto qualsiasi del
cilindro. In quali punti del cilindro la velocita € massima e minima in modulo?

Soluzione

Possiamo scrivere in forma vettoriale

-

Z_)’Za}/\(r_?cm)_}'ﬁcm

L’asse z e lungo 'asse del cilindro e quello x nella direzione del moto del centro di massa.
Scriviamo esplicitamente le componenti della velocita ad un dato istante:

éy ey é,
0 0 w + Vé,
X—Xem Y—Yem 2 — Zcem

ST
I
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da cui
vy =V —w(y — Yem)
vy = w(X — Xem)
Uz — 0

v .
—R<<0 0<Y<Rr

Y>R

Figura 6.3.: Il cerchietto corrisponde al punto di minima velocita in modulo, il quadrato
al punto di massima velocita in modulo. Quando il cerchietto € annerito il
punto e istantaneamente in quiete. Il caso V = —wR corrisponde a puro
rotolamento.

Calcoliamo il modulo quadro della velocita,
0* = V2 + W (Y — Yem)* + @ (x — xem)? — 20V (Y — Yem)

e determiniamone eventuali massimi e minimi rispetto a x, y:

0v?
. 2% (x — Xe) = 0
00>
W = 20 (Y — Yem) — 20V =0
Troviamo una unica soluzione che corrisponde a
X = Xem
%4
Y = Ym+ ©
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6.10. TENSORE DI INERZIA DI UN PARALLELEPIPEDO

e quindi a v> = 0. Se |V /w| < R il punto precedente & all'interno del cilindro, ed & chia-
ramente il minimo assoluto del modulo della velocita. Altri eventuali punti stazionari
potranno aversi sul bordo. Parametrizzando quest'ultimo:

X — Xem = RcosB

Y —Yem = Rsin®

abbiamo
v* = V? 4+ w?R?> — 2wVRsin 0
e quindi
002
=0 = —2wVR cos 6
cioe
T
0= —
2
v? = (V — wR)?
X—Xen =0
Y—Ym =R
e
3
0= —
2
v* = (V + wR)?
X — Xem = 0
Y—Yem = —R

Riassumiamo i possibili casi in Figura

PROBLEMA 6.10
‘7 Tensore di inerzia di un parallelepipedo xx

Calcolare il tensore di inerzia di un parallelepipedo di lati 4, b e c e massa totale M
distribuita omogeneamente, in un sistema di riferimento opportunamente scelto.

Soluzione

Scegliendo 'origine del sistema di riferimento nel centro di massa e gli assi £, j e 2
paralleli ai lati di lunghezza a, b e c rispettivamente, abbiamo che il tensore di inerzia e
diagonale. Infatti la distribuzione di massa € invariante rispetto alla riflessione x — —x,
mentre I, e I, cambiamo segno, per cui deve essere I, = 0 e I; = 0. Ragionando allo
stesso modo per la riflessione y — —y si conclude che deve essere anche I, = 0.
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6.11. TENSORE DI INERZIA DI UNA LAMINA RETTANGOLARE %

Calcoliamo adesso esplicitamente I,,:

L, = /dm (P + %)

ossia

L, = /pdV(x2+y2).

Utilizzando coordinate cartesiane e p = M/V = M/ (abc) abbiamo

b/2 /2 .
L, =— dx/ / dz(x* + .
fle —a/2 b/2 ay —e)2 ( y)

L’integrale in z &€ immediato:

b/2
IZZ: i dx/ y(x +y2)
b/2
e quelloiny da
1
2
L. ab/ b+ 5b°)
infine M1 M
Bb 4+ —ab? 2
I, = b(lz b+ b) 12(a +b%)

Il risultato per I, e I, si ottiene 1mmed1atarnente sostituendo a e b con le lunghezze
dei lati perpendicolari all’asse considerato:

M

M

PROBLEMA 6.11
( Tensore di inerzia di una lamina rettangolare xx

Utilizzando il risultato del problema precedente calcolare il tensore di inerzia di una
lamina rettangolare (spessore trascurabile) di lati a e b e massa M.

Soluzione

Consideriamo prima di tutto I.,. La sua espressione

M
IZZ — E(QZ + bZ)
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non dipende dallo spessore c, per cui resta invariata. Per I, abbiamo

_‘M2 2_M2
Lo = limy 35 (07 +¢%) = 350

e analogamente

NOtare Che Ixx —‘I— Iyy = Izz.

PROBLEMA 6.12
( Tensore di inerzia di una lamina xx

Mostrare che un asse principale di inerzia di una lamina e perpendicolare ad essa.
Scegliendo l'asse z lungo tale direzione mostrare che vale sempre

Lz = L + Iyy

Soluzione

Se scegliamo la direzione z perpendicolare alla lamina e 1’origine su di essa per tutti i
punti sara ovviamente z = 0. Da questo segue che il tensore di inerzia avra la struttura

Ly Ly 0
IXV Iyy 0
0 0 L.

Ma se scriviamo esplicitamente gli elementi diagonali

Ixx:/dmyz
Ly, = /dmx2

I, = /dm (x* +y7)

concludiamo immediatamente che I,; = Iy + Iyy.

PROBLEMA 6.13
( Disuguaglianze tra elementi del tensore di inerzia

Mostrare che per qualsiasi corpo si ha

Liclyy > I,
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Soluzione

Il tensore di inerzia e semidefinito positivo, perche i suoi autovalori (momenti principali
di inerzia) non possono essere negativi. Ma allora i determinanti di tutti i suoi minori
principali sono > 0, in particolare scegliendo la prima e la seconda riga abbiamo

che & quanto richiesto.

PROBLEMA 6.14
( Tensore di inerzia di una distribuzione lineare di massa *x

Mostrare che il determinante di un tensore di inerzia & zero se e solo se la massa e
distribuita su una retta passante per 1’origine.

Soluzione

Dimostriamo la sufficienza. Dato che il determinante e invariante per rotazioni del
sistema di coordinate, possiamo scegliere senza perdere di generalita una distribuzione
di massa lungo 1’asse z. Il tensore di inerzia e allora diagonale, perche per tutti i punto
x = 0 ey = 0 e quindi tutti i prodotti del tipo xy, xz e yz sono nulli. Inoltre

IZZ:/dm(xz—f—yz):O

da cui segue subito che il determinante e nullo.

Dimostriamo ora la necessita. Per quanto detto in precedenza possiamo sempre sce-
gliere un sistema di riferimento nel quale il tensore ¢ diagonale. Se il determinante e
nullo allora almeno uno di Iyy, Iy e I, deve esserlo. Supponiamo ad esempio che sia
I, = 0, allora per tutti i punti dovra essere x = 0 e y = 0 e la massa sara distribuita
sull’asse z. Analogamente negli altri due casi.

PROBLEMA 6.15
( Cilindro lanciato su un piano *x

Un cilindro viene lanciato su un piano con coefficienti di attrito ys e py. Il cilindro ha
raggio R, e la massa al suo interno e distribuita con una densita dipendente solo dalla
distanza dall’asse. Inizialmente il moto e di pura traslazione. Calcolare in funzione del
tempo la velocita del centro di massa e quella angolare. Per quale distribuzione di massa
la velocita finale € minima?
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Soluzione

Inizialmente si ha una forza di attrito y;Mg, e le equazioni del moto saranno

Mo = —pgMg
Iw = ugMgR

per cui la velocita diminuira linearmente in funzione del tempo e la velocita angolare
aumentera, sempre linearmente. Mettendo le opportune condizioni iniziali abbiamo

v =100 — Uggt
M¢R
w = Uy (Ig t.

Queste relazioni saranno valide fino a quando non si arrivera, a t = t*, ad una condizio-
ne di rotolamento puro, definita da v = wR, cioe

vy — _, MsR®
0 — HaSt = Ma i t

da cui si trova
t* (%] 1

 Hag 1y MR

Da questo momento in poi le velocita rimarranno costanti:

MR?
S
500
14 MR

v = wR =

Per minimizzare la velocita finale dovremo rendere minimo il rapporto MR? /1.1l valore
massimo di I si ottiene se tutta la massa & distribuita sulla superficie laterale, in questo
caso [ = MR?e

1
v=w 27)0

Per un cilindro omogeneo [ = MR?/2 e

2
v=w 300

Infine, se tutta la massa & concentrata sull’asse I = 0 e v = wR = ©vy. L'interpreta-
zione di questo caso limite & che in assenza di inerzia angolare il cilindro si mette
immediatamente a ruotare senza strisciare, come si puo verificare dalla formula per t*.
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PROBLEMA 6.16
( Sbarra su rulli rotanti xx

Una sbarra di lunghezza ¢ e massa m € appoggiata su due rulli di raggio p che ruotano
con velocita angolare costante —wy e wy attorno al loro asse, come in Figura La
distanza trairulli e 2a < / e tra essi e la sbarra c’e attrito, descritto da coefficienti y; e 4
(gli stessi per entrambi i rulli). Supponendo la velocita della sbarra piccola in modulo
rispetto a |pwy| Scrivere ’equazione del moto per il movimento orizzontale della sbarra
e studiare la possibilita di soluzioni oscillatorie.

O O

\_/ \/
Wo

—wp

Figura 6.4.: La sbarra appoggiata sui rulli rotanti considerata nel problema. Viene
indicata la direzione di rotazione.

Soluzione

Scriviamo anzitutto le equazioni del moto. L’accelerazione verticale della sbarra e nulla,
quindi

Ni+Np —mg=0
dove Nj e N; sono le reazioni normali dei cilindri. deve essere nullo non ruota, e quindi

il momento totale applicato ad essa deve essere nullo. Calcolando i momenti rispetto al
centro di massa della sbarra abbiamo

—Ni(a+x)+Na(a—x)=0

dove x & lo spostamento del centro di massa della sbarra rispetto al punto intermedio
tra i due contatti. Risolvendo otteniamo

Ny = 18 (1 %)

2 a
N2 (1),

Scriviamo adesso I'equazione per il moto orizzontale della sbarra. Tenendo conto che
la velocita della sbarra non supera mai in modulo quella del rullo al punto di contatto
possiamo scrivere per wy > 0

mix = pg (N1 — Np) = —@x
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che descrive una oscillazione armonica di periodo

a

T=2m,/—.
Ha&

Nel caso wgy < 0 abbiamo invece

m¥ = —py (N1 — Np) = lid;i”lgx

che descrive una soluzione del tipo
x = AeM + Be™ ¥

con
0=/t

PROBLEMA 6.17
( Tensore di inerzia di una sfera xx

Calcolare il tensore di inerzia di una sfera omogenea di massa M e raggio R, riferito al
suo centro di massa.

Soluzione

La disribuzione di massa e invariante per rotazioni, quindi il tensore di inerzia deve
essere diagonale e con tutti gli elementi diagonali uguali. Possiamo quindi calcolare il
momento di inerzia rispetto ad un asse qualsiasi, ad esempio quello z. Abbiamo quindi

Izz—/dmx—i—y /de—l—y

Conviene calcolare I'integrale in coordinate sferiche, per le quali

x = rsinfcos ¢
y =rsinfsin¢
dV = r*sin 0drdod¢

da cui

M/ dr/ sin 646 d(pr sin® 6
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ossia
M R 1
L, =4 327r/ dr/ dcos 672 (1—c0529)
7R 0 -1
R 4

= 43”R3 <2—> ; drr
M 8tR> 2

= — = = ZMR?
4np3 3 5 5

PROBLEMA 6.18
( Energia di un sistema di corpi rigidi **

Calcolare I'energia cinetica del sistema di corpi rigidi in Figura esprimendola in
funzione della coordinata 6 e assumendo condizioni di puro rotolamento tra tutti i corpi
in contatto. I due cilindri hanno massa m;, my, momento di inerzia rispetto al loro asse
I1, I eraggio Ry, R». Il cilindro piti esterno € immobile e ha raggio R > R; + R,. L'asta
ha massa m e momento di inerzia I rispetto all’asse passante per il suo centro di massa.
Tutte le distribuzioni di massa sono omogenee.

Iz, ma, Ry

Figura 6.5.: 1l sistema di corpi rigidi considerato nel problema.
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Soluzione

Date le condizioni di rotolamento puro, il sistema ha un unico grado di liberta. Utilizze-
remo come coordinata per descriverlo ’angolo 6 in figura. Per scrivere I’energia cinetica,
sommiamo i contributi dei diversi corpi rigidi presenti.

Per quanto riguarda l'asta, osserviamo che essa ruota attorno al punto posto al centro
del cilindro grande con velocita angolare 6. Possiamo scrivere quindi

1 .
Kasta = EIasta92 (6.18.1)

dove I e il momento di inerzia rispetto all’asse passante per il punto fisso

m

b 1 m m
b1+ 4 / rdr / (62 + £1> 3 (51 + 45 5152) (6.18.2)

-0 3£1+ 2

Iasta =

dove /1 = R — Ry e {2 = R — R sono le lunghezze dei due segmenti dell’asta con un
estremo nel centro di rotazione.

Possiamo considerare il moto dei due cilindri come una pura rotazione attorno al
punto di contatto. Quindi serve calcolare le velocita angolari. Osserviamo che il centro
del primo cilindro si muove con velocita

v, = {10 (6.18.3)
ma d’altra parte deve essere anche
U1 = —wi1R; (6.18.4)
ed eguagliando le due espressioni si ottiene

6. R-—Ry,
= lg=— 18.
wp = =0 z 0 (6.18.5)

Ragionando nello stesso modo per il secondo cilindro si trova

_ f,  R—Ry,
wp = — b= == 20 (6.18.6)

Mettendo insieme tutti i termini otteniamo infine

1. 5 1 1
K= Ezasmez +5 (h+ miRY) wi + 5 (b + myR3) ws (6.18.7)
dove
1
Lip= EmLZRiZ. (6.18.8)
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~

Figura 6.6.: 11 cilindro considerato nel problema, con velocita del centro di massa e
velocita angolare iniziali arbitrarie.

PROBLEMA 6.19
( Cilindro su piano inclinato xx

Il cilindro in figura viene lasciato cadere sul piano inclinato in Figura [6.6|con velocita
iniziale vg e velocita angolare iniziale wy. Tra piano e cilindro si ha attrito con coefficienti
statici e dinamici ys, y4. Determinare in quali condizioni dopo un tempo sufficiente il
cilindro mantiene un moto di puro rotolamento.

Soluzione

Scriviamo le equazioni del moto per il cilindro. Per I’accelerazione in direzione parallela
al piano abbiamo

Mo = F, + Mgsina

e in direzione perpendicolare
0=N— Mgcosua

La seconda equazione cardinale da invece
Iw = RF,

Per la forza di attrito si devono distinguere tre casi, a seconda che la velocita del cilindro
al punto di contatto sia positiva, negativa o nulla. Questa si scrive anzitutto

v = v+ Rw
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e quindi avremo

Mo = —uyN + Mgsina (6.19.1)
Iw = —pugNR (6.19.2)
per v. > 0,

Mv = F; + Mgsinwa (6.19.3)
Iw = KR (6.19.4)

per v, = 0 (con |Fs| < psN) e
Mo = pyN + Mgsina (6.19.5)
Iw = ugNR (6.19.6)
per v < 0. In ciascun caso N = Mgcosa. Combinando le equazioni precedenti

possiamo scrivere delle equazioni per v.:

U = —pga+gsina v >0

. F, .
vczﬁsa—i—gsma v.=0
Ue = pga+ gsinx v, <0
dove
a=N i—i—R—z =3 o (6.19.7)
= i )= g COS A9,

Abbiamo diversi possibili scenari, riassunti in Figura

Se uyg > % tan a la velocita del punto di contatto diminuisce (linearmente nel tempo) se
positiva, e aumenta (sempre linearmente) se negativa. Questo significa che in un tempo
finito avremo v, = 0, indipendentemente dalle condizioni iniziali. Per consistenza dovra
essere 0. = 0, cioe

N
|Fs| = — tana < usN

che e assicurato dato che ps > .

Se jy = 3 tana una velocita del punto di contatto inizialmente positiva rimane co-
stante, quindi non si arriva a rotolamento puro se vy + wpR > 0. Invece se la velocita del
punto di contatto e inizialmente negativa, cresce linearmente e si arriva a rotolamento
puro in un tempo finito.

Infine se y14 < 1 tana la velocita del punto di contatto cresce comunque linearmente
nel tempo. Quindi se vg + wpR > 0 non si arrivera mai a rotolamento puro. Se vy +
woR < 0 invece si arrivera in un tempo finito ad esso, e la condizione perche questo
continui si scrive ancora

1
s > gtanoc

ma non e automaticamente assicurata da ps > 4. Se s < % tan « la velocita del punto
di contatto continuera ad aumentare.
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Ha > %tanoz Uq = %tanoz

Ve Ve

YyvYyyy

Ve g < étanoz s > %tanoa Ve pa < étanoz s < %tan&

A

Figura 6.7.: Evoluzione della velocita del punto di contatto tra cilindro e piano, per
diversi possibili valori di 4, e delle condizioni iniziali.

PROBLEMA 6.20
( Sistema di carrucole e corpi rigidi »x

Nel sistema in Figura [6.8|il filo inestensibile e privo di massa e avvolto ai due cilindri
appesi e resta aderente alla carrucola. Scrivere le equazioni che determinano le accele-
razioni angolari e lineari dei tre corpi rigidi, e la tensione del filo. | momenti di inerzia
sono dati rispetto ad un asse passante per il centro di massa dei cilindri. Cosa succede
alla tensione se I — 07

Soluzione

Scriviamo l'equazione del moto per la carrucola, indicando con T; e T; le tensioni del
filo dal lato della massa M; e di quella M»

I0=R(TW—Tp) (6.20.1)
Analogamente per la massa a destra

L, = RyTy
Myijy = Th — Myg
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IR

O

L, Ry, My

L, Ry, My

Figura 6.8.: Il sistema di carrucole e corpi rigidi considerato nell’esercizio.

e per quella a sinistra

Izéz =—Ry)
Myijo = Tr — Mg

dove y; e y» sono le posizioni verticali dei loro centri di massa. Dato che il filo e
inestensibile, e resta aderente alla carrucola, deve essere

i1 = —RO — Ry6;
ija = RO + R0,
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ed abbiamo un numero sufficiente di equazioni per ricavare le quantita incognite. Po-
nendo [; = mlR%/Z el = mzR%/Z troviamo

_ 8R(My — M)
31+ (M; + M) R?
29 (31 + ZMZRZ)
3 [3[ + (Ml + Mz) Rz] Ry
29 (31 + 2M1R2)
3 [3[ + (Ml + Mz) Rz] R,
g [6[ + (3M; + M>) RZ]

3 [31 + (M; + Mz) Rz]
g [6I+ (M +3M;) R?]
P27 7331+ (M + My) R7]
Tl _ ng (31 + 2M2R2)

3 [3[ + (Ml + Mz) RZ]
gM> (31 + 2M1R2)
3 [3[ + (Ml + Mz) R2]

61 =

b= —

=

T, =

Nel caso I — 0 si trova
Zng M2

3 (M1 + Mz)
L'uguaglianza tra le due tensioni era evidente gia considerando 1’equazione (6.20.1).

=T, =

PROBLEMA 6.21
( Sistema di carrucole xx

Scrivere le equazioni che determinano accelerazioni e tensioni dei fili per il sistema in
Figura[6.9] sapendo che il filo inestensibile e privo di massa non slitta sui cilindri.
Soluzione

Usando le convenzioni in Figura scriviamo le equazioni del moto per il primo
cilindro

My = Th+T, — Mg
L6, = Ry (T2 — Tl)

per la carrucola
Lo, = Ry (T2 — 1)

e per la massa sospesa
Msijz = T3 — M3g
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I, Ry

mK

Ila M17 Rl

Figura 6.9.: Il sistema di carrucole considerato nell’esercizio.

Dato che il filo rimane aderente ai cilindri, ed & inestensibile, abbiamo inoltre le
condizioni che seguono:

1. Il punto A del cilindro rimane istantaneamente fermo,
y1— R0, =0
2. Il punto B del cilindro ha la stessa velocita del punto C della carrucola
1+ R161 = —Rabs
3. Il punto D della carrucola ha la stessa velocita della massa sospesa
Ry6> = 3
Derivando queste condizioni rispetto al tempo otteniamo dei vincoli tra le accelerazioni.

Abbiamo quindi un numero sufficiente di equazioni per determinare i, i3, 61,05, T1, To,
Ts.
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I, Ry

T3
)
T T:
1 i Mg
]] ) ]\/[1 ) Rl

Figura 6.10.: Forze applicate al sistema per il problema

PROBLEMA 6.22
( Contatto tra corpi rigidi *x

I tre cilindri identici (momento di inerzia I, raggio R) in Figura inizialmente ruo-
tano liberamente attorno al proprio asse con la stessa velocita angolare wy. A meno
di non tovarsi in una condizione di rotolamento puro in ciascun punto di contatto si
sviluppano delle forze di attrito. Calcolare le velocita angolari a regime, cioe dopo un
tempo arbitrariamente lungo.

Figura 6.11.: I tre cilindri in contatto. Sono indicate le velocita angolari iniziali.
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Soluzione

Possiamo scrivere le equazioni del moto dei tre cilindri nella forma

Iy = Rfy (6.22.1)
Iy = Rf; + Rf (6.22.2)
Iws = Rf (6.22.3)

dove f; e f, sono forze (incognite) che rappresentano ’attrito tra un cilindro e I’altro.
Da questo segue immediatamente

I(w+ws—wp) =0 (6.22.4)
cioe la quantita w; + w3 — wy si conserva. Nella situazione finale deve essere w; =

—wy e wy = —ws (velocita relativa nulla ai punti di contatto), mentre inizialmente
w1 + w3z — Wy = Wy, quindi

1
w1 = g(,U() (6225)
da cui le velocita finali:
1 1
w1 = §WQ, wy = —ng, w3 = %a}o (6226)

PROBLEMA 6.23
( Momento di inerzia e proiezioni I xx

Mostrare che il momento di inerzia di un corpo rispetto ad un asse v non cambia
spostando arbitrariamente ciascun elemento di massa parallelamente a <. Utilizzare
questo risultato per dimostrare che il momento di inerzia di un cilindro di massa M e
raggio R fissati rispetto al suo asse non dipendono dalla altezza h.

Soluzione

Senza perdita di generalita calcoliamo il momento di inerzia rispetto all’asse z. Abbiamo
1= Ym( +2)
1

dove m; & la massa dell’elemento i-esimo, posto in (x;, y;, z;). Una arbitraria traslazione
di questo lungo z non cambia le coordinate x; e y;, quindi I non cambia. Considerando
un cilindro, possiamo traslare ciascun elemento in modo da portarlo in z = 0, senza
cambiare il suo momento di inerzia. Quest'ultimo non potra quindi dipendere da 5.
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PROBLEMA 6.24
( Momento di inerzia e proiezioni II xx

Mostrare che il momento di inerzia di un corpo rispetto ad un asse vy si puo scrivere come
somma dei momenti di inerzia di due lamine ottenute proiettando tutti gli elementi di
massa su due piani passanti per -y e ortogonali tra di loro. Usare questo risultato e quello
del problemal6.24] per calcolare il momento di inerzia di un cilindro omogeneo di massa
M, raggio di base R e altezza h rispetto all’asse in Figura m

Figura 6.12.: L’asse rispetto al quale calcolare il momento di inerzia nel problema.

Soluzione

Scegliamo per 7y 'asse z. Abbiamo quindi
I = Zmixiz + Zmiyf
i i

dove il primo termine & il momento di inerzia del corpo proiettato sul pianoy = 0 e
il secondo quello del corpo proiettato sul piano x = 0. Nel caso del cilindro, la prima
proiezione (Py, vedere Figura|6.13) da un disco di massa M uniformemente distribuita

e raggio R, per cui
_ M 2 (o2 _ MR?
I = nRZ//r cos” Ordrdf = 1

Per calcolare il secondo termine proiettiamo prima nel piano z = 0 (P, vedere Figu-
ra[6.13): per quanto discusso nel problema 6.23]il momento di inerzia non cambia. Pro-
iettiamo adesso nel piano y = 0 (P, vedere figura): abbiamo una distribuzione lineare
uniforme di massa, e quindi

1
I, = — MHK?
2712 L
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Y

T
Y

PyoP.

Figura 6.13.: Proiezioni del cilindro.

Il risultato finale & quindi

1 1
I=L+DL=-> R% + ~K?
1+ I 4M( +3 )

PROBLEMA 6.25
( Tensore di inerzia corpo composto xx

All’'interno di una sfera di raggio R si trova una cavita pure sferica di raggio R /2 centrata
in un punto a distanza d < R/2 dal centro della prima. Calcolare il tensore di inerzia
del corpo rispetto al centro di massa, se la sua massa totale e M.

Soluzione

Calcoliamo prima di tutto il tensore di inerzia di una sfera piena di massa M e raggio
R rispetto al suo centro di massa. Data la simmetria, il tensore sara proporzionale alla
matrice identica, cioe Iy = Iy = L. Inoltre

Lox + Iy + Lz = /(yz+zz)dm+/(x2+22)dm+/(x2+y2)dm
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Figura 6.14.: La sfera cava considerata nell’esercizio

da cui
3l = 2/ (x2 + 12 —|—zz) dm
Abbiamo quindi
2
Ixx == Iyy - Izz - gp/erV
e dato che
M
= $7R3
e
dV = 4nr’dr
otteniamo

2 M (R 2
L, = =1,=— 4rtdr = ZMR2
xx vy zZ 3 %RB 0 5

Calcoliamo adesso la posizione del centro di massa del corpo. Se mancasse la ca-
vita, esso sarebbe al centro della sfera grande, dove fissiamo l'origine del sistema di
coordinate. Chiaramente dovra essere

1

IMd + MF

M

0=

oo [

dovedela posizione del centro della cavita rispetto all’origine, M /7 la massa della sfera
che la occuperebbe la cavita, 7 la posizione del centro di massa del corpo. Otteniamo

©0ce
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quindi

Costruiamo adesso il tensore di inerzia, sottraendo da quello di una sfera piena quello
di una sfera che occuperebbe la cavita. Scegliendo le coordinate in modo da avere

d= (0,0,d) otteniamo

100 d/7* 0 0
2 /8 5 8 5
I=Z (MR 010 |+oM 0 (d/7)* 0
001 0 0
100 (84/7* 0 0
2 /1 R\? 1
—5<7M> <2> 010 _iM 0 (8d/7)2 0
00 1 0 0 0

dove abbiamo applicato il teorema di Steiner (vedere l'esercizio |6.5) per riferire ogni
tensore al centro di massa del corpo. Il risultato finale &

“HE o o
I:%MRZ 0 1—%(%)2 0
0 0 1

PROBLEMA 6.26
( Trottola simmetrica x * %

Una trottola simmetrica & costituita da un corpo rigido con simmetria di rotazione
attorno ad un asse. Un suo estremo viene vincolato come in Figura per il resto
e lasciata libera di ruotare su se stessa e attorno al vincolo. Si vogliono discutere le
caratteristiche del suo moto, fissate le condizioni iniziali. In particolare si vuole studiare
cosa accade se inizialmente il centro di massa della trottola & fermo. In questo primo
esercizio verranno impostate le equazioni necessarie.

Soluzione

Utilizziamo coordinate sferiche per determinare la posizione del centro di massa del
corpo rigido rispetto all’origine del sistema delle coordinate. Abbiamo

fom = déy (6.26.1)

dove abbiamo indicato con d la distanza tra il vincolo e il centro di massa, costante.
Fissato il centro di massa, il corpo rigido puo ancora ruotare su se stesso. In linea di
principio avremmo bisogno di una terza coordinata, che perd come vedremo non gioca
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6.26. TROTTOLA SIMMETRICA * % x

Figura 6.15.: Le coordinate usate per lo studio della trottola simmetrica.

alcun ruolo nel caso considerato. Per il seguito scriviamo esplicitamente 1’espressione
dei versori é,, &y e é, di cui ci serviremo:

sin 6 cos ¢
» = | sinfsin¢
cos 0

>

cos 0 cos ¢
cos 0sin ¢
—sin6

N>
=)
I

sin ¢
p = | cos¢
0

>

Abbiamo due evidenti leggi di conservazione.
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1. L'energia totale, somma di energia cinetica e di energia potenziale gravitazionale.
Infatti I'unica altra forza esterna presente ¢ la reazione vincolare, che non compie
lavoro dato che il punto a cui & applicata non si muove.

2. La componente verticale del momento angolare, considerando come polo il punto
a cui la trottola e vincolata. Infatti l'unica forza con un momento é la forza di
gravita. Dato che essa e verticale il suo momento non avra mai una componente
lungo I'asse z.

L’energia cinetica si pu0 scrivere come e
U = Mgzcy = Mgd cos 0 (6.26.2)

L'energia cinetica si puo scrivere come energia di rotazione attorno al punto vincolato,
e quindi
1_r -
Ec = 5 1w (6.26.3)

dove I e il tensore di inerzia della trottola e @ la velocita angolare del corpo rigido.
Invece per il momento angolare si ha

L=1& (6.26.4)

Il tensore di inerzia si scrive facilmente in un sistema di riferimento con gli assi alli-
neati agli assi principali di inerzia della trottola. Ma questo sistema di riferimento e de-
terminato dai tre versori é,, éy e é, legati alle coordinate sferiche utilizzate. Osserviamo
che possiamo scrivere

I = 16,6 + Dégey + Lépey (6.26.5)

Nello scrivere I'espressione precedente abbiamo tenuto conto del fatto che é4é% & il
proiettore lungo la direzione é4. Inoltre il momento di inerzia rispetto all’asse & ¢
identico a quello rispetto all’asse ép, dato che la trottola ¢ simmetrica. Infine, dato che la
somma dei tre proiettori e la matrice identica 1 possiamo scrivere

I=06Lée +1 (1 — 8,67 ) = b1+ (L — b)8é! (6.26.6)
Analogamente la velocita angolare si potra scrivere nella forma
W = Wy + wely + wWely (6.26.7)
e il momento angolare usando 1’'Equazione sara

L = L&+ Loég+ Lgéy (6.26.8)
= Lweé, + hwebs + Lhwyéy (6.26.9)

L'energia si puo quindi scrivere nella forma

E= % [Ilwf +1 (wg + wﬁ,)} + Mgd cos 0 (6.26.10)
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e la componente verticale del momento angolare

L, = & L=1L& &6 +Lebs g+ Lys 8
= L,cos® — Lysinf (6.26.11)

Mostriamo adesso che anche L, si conserva. Abbiamo

dL,  d /- .\ _dL . - dé
i = gl el
= M-¢+L-(@NE) (6.26.12)

dove M & il momento delle forze esterne e si & tenuto conto che, dato che é, & solidale al
corpo rigidoﬂ vale

=N (6.26.13)

I due termini della (6.26.12) si annullano: il primo perche M = 7., A (—Mgé,) & ortogo-
nale a é,, il secondo percheé

L-(ong)=@-T-(TN&) (6.26.14)
ma dato che @ A é, & perpendicolare a é, sara I - (0 A é,) = I, (& A é) e quindi

@-1-(TAN&) =Dha-(TA&) =0 (6.26.15)

perche @ A é, e ortogonale anche a @.
Possiamo ora scrivere 1’energia nella forma

1[L7 | L§ >
E=3 |-+ +hwy| + Mgd cos 6 (6.26.16)
2L I

ed anche, utilizzando la (6.26.11)), come

2 1 (LicosO—L\> L ,
_ 3 2 26.17
20 212< S0 > + 2w¢—|—Mgdcos€ (6.26.17)

La componente Ly del momento angolare non ¢ costante, ma puo essere espressa in
funzione della coordinata. Per farlo scriviamo esplicitamente I’Equazione (6.26.13)). Ab-
biamo

sin 6 cos ¢ ér & éyp
— in O si =| w, wy w
T sin 0 sin ¢ M 0 ¢
cos 1 0 O

ossia
9@9 + (l) sin 9é¢ = W¢é9 — ané¢

INotare che ép e &9 non sono solidali al corpo rigido.
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che ci permette di scrivere due componenti della velocita angolare in funzione delle
coordinate
Sostituendo nell’energia otteniamo infine

L,cosf —

2
E=260"+ -1+ — ( LZ) + Mgd cos 6 (6.26.18)

sin 6
equivalente a quella di una particella descritta da una coordinata 6 in un potenziale

efficace

1 (Lycosf—L.\> 12
Ueff = 21, () + Mgd cost + i (6.26.19)

La discussione delle soluzioni possibili sara fatta nell’Esercizio [6.35]

sin 0

PROBLEMA 6.27
( Scontro tra cubetti di ghiaccio **

T Vo

a ‘

Figura 6.16.: Le condizioni iniziali per i due cubetti. Il primo e fermo, il secondo ha un
moto traslatorio con una velocita verticale 7 = vgJ. Le facce dei due cubeti
sono parallele, l'urto avviene su una regione molto piccola vicino ad uno
spigolo di ciascun cubetto.

Un cubetto di ghiaccio di lato a & fermo sopra ad una superficie orizzontale priva di
attrito. Un altro cubetto, identico, gli viene lanciato contro con velocita ¥ = vpj) come in
Figura La densita di massa all’interno del cubetto e distribuita in modo non noto,
ma si sa che il tensore di inerzia rispetto al centro di massa e proporzionale all’identita.
Si conoscono la massa totale m e il momento di inerzia I rispetto ad un asse qualsiasi
passante per il centro di massa.

L'urto & elastico ed istantaneo, e si vogliono calcolare le velocita lineari e angolari
(inizialmente nulle) dei due cubetti dopo 'urto. Inoltre si vuole sapere se i cubetti si
urtano nuovamente dopo il primo impatto. Discutere il risultato al variare dim e I.

Soluzione

Dato che non sono presenti forze esterne (orizzontali) si conserva la quantita di moto
totale del sistema. Conviene studiare 1'urto in un sistema di riferimento solidale al centro
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SCONTRO TRA CUBETTI DI GHIACCIO *x

U1,y
w1
N

V1,2

Figura 6.17.: Le posizioni e le velocita dei due cubi in un sistema solidale col cen-
tro di massa (posto nell’origine) immediatamente prima (a sinistra) e
immediatamente dopo (a destra) 'urto.

di massa. In esso la situazione prima dell’urto & quella in Figura a sinistra, e la
quantita di moto totale e nulla.
Per determinare le 2 componenti delle 2 velocita finali e le due velocita angolari ci

servono 6 leggi di conservazione, che sono le seguenti:

1. La quantita di moto totale totale lungo x (non ci sono forze esterne lungo x):

0 = moy x + Moy x

2. La quantita di moto totale lungo y (non ci sono forze esterne lungo v):

3. L'energia (1'urto e elastico):

0 = muy,, + muvy,

(6.27.1)

(6.27.2)

1 rv9\2 1 1 1 1

S (3) x2=m <vix - vh) +5m (v%/x + viy) + Elw% + EIw% (6.27.3)

. I momento angolare totale perpendicolare al piano xy rispetto all’origine del
sistema di coordinate:

a a a a

Mm—=X2=—m <U1,x§ + 01,y§> +m (vui + vz,y§> + Ilwy + Iwy  (6.27.4)

. La quantita di moto orizzontale di ogni cubetto (le forze impulsive durante l'urto

sono perpendicolari alla superficie di contatto e quindi verticali). Queste sono due

leggi di conservazione, ma non sono indipendenti dato che la loro somma da la

conservazione della quantita di moto totale lungo x considerata precedentemente:

$ 000

0 =muvy

0 = moyx

411

(6.27.5)
(6.27.6)
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6.27. SCONTRO TRA CUBETTI DI GHIACCIO *

6. Il momento angolare totale di ciascun cubetto non cambia (le forze impulsive
durante 'urto sono applicate nell’origine, che abbiamo preso come polo, ed hanno
quindi momento nullo). Anche in questo caso le due leggi di conservazione non
sono indipendenti, dato che la loro somma da la conservazione del momento
angolare totale:

voa a a

mEOE = —m (Ul’xi + vl’yi) + Iwq (6.27.7)
wa _ a8

m?i =m (vz,xz + Uz,y2> + Iw; (6.27.8)

Dalle (6.27.5) e (6.27.6) concludiamo immediatamente che i cubetti si muovono in di-
rezione verticale subito dopo 'urto. Inoltre dalla (6.27.2) segue che le velocita verticali
saranno uguali ed opposte. Riscriviamo adesso la (6.27.3), 1a (6.27.7) e la (6.27.8) nella
forma

(3) =2ty + 55 (wh+awd) (6.27.9)
v 21
Uy 21
E = Ully -+ ma wr (62711)

Sottraendo membro a membro le ultime due troviamo w7 = w» (i due cubetti ruotano
nello stesso verso). Sommandole abbiamo invece

21 1
U1y = %Wl - EUO

Sostituendo infine nell’energia abbiamo

vo\2 (2] 1.\ I ,
<E) - (mwl—zv()) + (6.27.12)

41 2
<1+2> w?— DL =0
ma a

La soluzione w; = 0 & compatibile con le leggi di conservazione, ma non con il fatto che
'urto sia realmente avvenuto (le velocita non cambiano). La seconda soluzione invece &

da cui

2 00
Wi = (6.27.13)
(1+5a) @
81
oy = —|1- w1y (6.27.14)
(1+52) ]2
Se
1 2
I> Jma (6.27.15)

@ 412 versione del 5 ottobre 2016
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le velocita dei cubetti cambiamo verso in seguito all'urto, e quindi non si urtano una
seconda volta. Se la massa vviene una nuova collisione. Se la massa ¢ distribuita
uniformemente nel cubetto abbiamo

(6.27.16)

e quindi si ha una seconda collisione.

PROBLEMA 6.28
( Moto su una sbarra rotante xx

N

\/

Figura 6.18.: Il sistema da studiare. La sbarra puo ruotare liberamente attorno al suo
punto medio, la massa scorre su di essa liberamente. La molla ha costante
elastica k e lunghezza a riposo trascurabile.

Una sbarra di lunghezza ¢ e momento di inerzia I puo ruotare liberamente attorno al
suo punto medio in un piano orizzontale. Su di essa puo scorrere una massa m, fissata al
centro di rotazione con una molla di costante elastica k e lunghezza a riposo trascurabile.
Discutere qualitativamente le possibili orbite della massa, al variare delle condizioni
iniziali.

Soluzione

L’energia totale del sistema si conserva. Introducendo coordinate polari per descrivere
la posizione della massa (e della sbarra) e fissando 1’origine nel punto medio della sbarra
possiamo scrivere

1 . 1._. k
E = Em (1’2 +7’202) + 5192 + 57’2
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L’'unica forza esterna che agisce sul sistema ¢ la reazione vincolare applicata al centro di
rotazione. Dato che rispetto ad esso ha momento nullo, si conservera anche il momento
angolare totale

L = mr?0 + 16

Possiamo ricavare § da quest'ultima relazione

B L
I+ mr?

e sostituendo otteniamo una energia efficace che dipende solo dalla coordinata radiale

1 1 12 k
E="=- 22 - = N2
2 T "

Possiamo adesso studiare qualitativamente le orbite a partire dal potenziale efficaceEI
Anzitutto U,s(0) = L?/21, e lim, ;0 Ueff(r) = +oc0. Derivando otteniamo

dueff
dr

L2m

(I +mr2)?

=r

che si annulla perr =0 e perE]

(6.28.1)

L> 1\/5 (6.28.2)
m

Possiamo adesso discutere le orbite al variare di L e di E. Distinguiamo due casi:

1. L > Iv/k/m. Questo corrisponde al grafico blu in Figura Abbiamo un minimo
del potenziale effettivo, associato ad un’orbita circolare di raggio r,,i, che si ottiene
quando l’energia vale

SQEI

E=E = ueff(rmin)

2Esprimendo questa relazione nella forma

mUyrr 1 <mL2 v mr2>
=l Ts—at
kI 2\ kI 1+ 2 I
otteniamo una relazione tra i parametri adimensionali u = mk~ I *1Uef o = mlT? e ? =
mk 11722

u*1 £ +p?
2\ 1+4p2 P

dalla quale risulta evidente che le caratteristiche qualitative dell’orbita possono solo dipendere da ¢,
come sara evidente nel seguito.

3In termini delle variabili adimensionali introdotte precedentemente, per p = v/ — 1.

4Cioe per £ > 1.

@ 414 versione del 5 ottobre 2016



6.28. MOTO SU UNA SBARRA ROTANTE #*

0.0

Figura 6.19.: Il potenziale effettivo U, . Sulle ascisse & riportato il valore di v/m /I e sul-
le ordinate di mk—11-1U, #f(r) al variare di LI ~1y/m/k. In particolare la cur-
va rossa & ottenuta per LI~1y/m/k = 1/2, quella verde per LI"1v/m/k = 1
e quella blu per LI~ '/m/k = 2.

Il periodo dell’orbita si determina direttamente dalla velocita angolare,

T 2T 2n1+mr5ﬁn
w L

Per valori dell’energia compresi tra E; ed E; la massa si muove tra un raggio mi-
nimo e un raggio massimo determinato delle soluzioni di U,f¢(r) = E. Quando
E = E, abbiamo una possibile soluzione nella quale la massa e ferma nell’origine,
mentre 1’asta ruota con la velocita angolare w = L/I. La massa ¢ in equilibrio
instabile: se perturbata percorre un’orbita fino ad una distanza massima determi-
nata dalla soluzione non nulla di E; = U,¢f(r) e torna nell’origine in un tempo
infinito E} Infine per E > E; la riesce ad attraversare 1’origine, e si allontana fino ad
una distanza massima determinata dall’unica soluzione di U,s¢(r) = E, per poi
tornare nuovamente verso l’origine e ripetere il ciclo.

2. L < Iv/k/m. Questo corrisponde al grafico rosso in figura. Per E = E; la particella
¢ ferma nell’origine, e questa volta la sua posizione di equilibrio & stabile. Per
E > E; si ottengono orbite qualitativamente simili a quella discussa nel caso
precedente per E > Ej. Il caso L = Iv/k/m & qualitativamente simile a questoﬁ

5Lo studio dettagliato di questo caso particolare sara fatto in un esercizio successivo.
®Una differenza tra i due sara I'argomento di un esercizio successivo.
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Concludiamo osservando che per una sbarra di lunghezza finita ¢ le orbite valide
saranno quello che non si allontaneranno dall’origine pit di /2.

PROBLEMA 6.29
( Piccole oscillazioni di meta cilindro x x %

La meta di un cilindro omogeneo di raggio R, massa m e altezza h & appoggiato su un
piano obliquo come in Figura ed e libero di ruotare senza strisciare. Potete indicare
con b la distanza del centro di massa dall’asse del cilindro.

e T

Figura 6.20.: Il semicilindro appoggiato sul piano obliquo: convenzioni per gli angoli.

1. Calcolare I'inclinazione « del cilindro nella posizione di equilibrio in funzione di
8, e I'angolo massimo 0* per il quale 1’equilibrio & possibile.

2. Se § = 0 partendo dalla posizione di equilibrio per quale velocita angolare iniziale
minima il corpo si capovolge?

3. Sempre per § = 0 calcolare la frequenza delle piccole oscillazioni del sistema
attorno alla posizione di equilibrio.

Soluzioneﬂ

Domanda 1 Consideriamo la costruzione rappresentata in Figura[6.21] Fissato il punto
di contatto P, conduciamo la perpendicolare al piano inclinato passante per esso. Su
essa prendiamo il punto a distanza R da P. La circonferenza di raggio b e centro O e il
luogo delle possibili posizioni del centro di massa.

Le forze che agiscono sul sistema sono l'attrito statico F, (applicata in P) la reazione
normale al vincolo N (applicata in P) e la forza di gravita mg (applicata nel centro di
massa). La prima condizione di equilibrio da

E+N+mg=0 (6.29.1)

7Scritto del 31/1/2007
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Figura 6.21.: La costruzione utilizzata per rispondere alla prima domanda.

e pud sempre essere soddisfatta scegliendo opportunamente F, e N. La seconda con-
dizione, scegliendo come polo il punto di contatto, dice che il momento rispetto a P
della forza di gravita deve essere nullo. Questo significa che si avra equilibrio solo con
il centro di massa sulla verticale di P (le posizioni M e M’ in Figura[6.21).
Considerando il triangolo MPO abbiamo dal teorema dei seni la relazione
b R R

_ _ 292
sinf sin(m—y—0) sina (6292

dato che v = & — 6. Quindi

Rsinf = bsina (6.29.3)

che determina 1’angolo « di equilibrio in funzione di 6. Si hanno soluzioni solo se
sinf < b/R, che determina il massimo valore possibile 8* = arcsin(b/R). Esplicitamen-
te ’angolo di equilibrio vale

K = arcsin (1; sin 6> (6.29.4)

Alternativamente dalla Figura si vede direttamente che il valore massimo di «
corrisponde a w 4 0 = 71/2 (la retta MM’ diviene tangente alla circonferenza di raggio
b). Questo corrisponde a sin 6* = b/R. Osserviamo che per piccoli spostamenti rispetto
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ad M del centro di massa la forza di gravita agisce come forza di richiamo. Quindi la
configurazione considerata e di equilibrio stabile. Al contrario la configurazione con
centro di massa in M’ sara di equilibrio instabile.

Figura 6.22.: La posizione estrema da raggiungere prima del capovolgimento.

Domanda 2 Per capovolgersi, il corpo dovra superare la posizione di altezza massima
per il suo centro di massa. Questo avviene nella situazione in Figura Rispetto al
terreno l'altezza del centro di massa ¢ allora

hf = /b4 R? (6.29.5)
e imponendo la conservazione dell’energia abbiamo
%Ipw% +mg (R —b) = mg\/b? + R2 (6.29.6)

dove Ip e il momento di inerzia del mezzo cilindro rispetto al punto di contatto, nella
configurazione iniziale. Otteniamo quindi

wo = \/ZI’Zg (\/RZ Y —R+ b) (6.29.7)

Per calcolare Ip osserviamo che il momento di inerzia di un cilindro intero rispetto al
suo asse vale

1
Ly = EMcilR2 (6.29.8)
e quello di meta cilindro, rispetto allo stesso asse,
1
Io = EmR2 (6.29.9)

(ovviamente m = M,;/2). Usando il teorema di Steiner troviamo il momento rispetto
ad un asse passante per il centro di massa

Iem = Iop — mb? (6.29.10)

ed infine, usando nuovamente il teorema, rispetto ad un asse passante per il punto di
contatto iniziale
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Domanda 3 Conviene scrivere 'energia cinetica come somma del contributo legato al
centro di massa e della rotazione attorno ad esso:

1 . . 1 .
K= m (22, + v2,) + EICMIXZ. (6.29.11)

Le coordinate del centro di massa si possono scrivere, fissato un sistema di riferimento
con origine nella posizione iniziale del punto O,

Xenw = Ra—bsina (6.29.12)
Yem = —bcosa (6.29.13)

da cui, aggiungendo l'energia potenziale gravitazionale mgy.,, otteniamo
1 : . 2 coo2] 1 ;2
E= M [(R(X —biccosw)” + (basina) ] + EICM(X —mgbcosu. (6.29.14)

Sviluppando per piccole oscillazioni otteniamo, al secondo ordine in a e &,

E= % [m (R—b)* + ICM} i + ngbaz —mgb. (6.29.15)

Notare che questo si puo anche scrivere, trascurando una costante irrilevante,

1 b
E = Slpic + %az (6.29.16)

cioe per piccole oscillazioni si pud trascurare il fatto che 1’asse di rotazione cambia.
L'energia appena scritta & formalmente quella di un oscillatore armonico, da cui

w =2nf = mlgb. (6.29.17)
P

PROBLEMA 6.30
( Piccole oscillazioni meta cilindro, niente attrito xx

La meta di un cilindro omogeneo di raggio R, massa M e altezza h & appoggiato su
un piano orizzontale privo di attrito. Calcolare la frequenza delle piccole oscillazioni
attorno alla posizione di equilibrio.

Soluzione

La componente orizzontale della quantita di moto del sistema si conserva, dato che
non esistono forze esterne orizzontali applicate al sistema. Possiamo allora scegliere
un sistema di riferimento inerziale nel quale il centro di massa si trova in ogni istante
sull’asse y, come in Figura [6.23|

@ 419 versione del 5 ottobre 2016



6.30. PICCOLE OSCILLAZIONI META CILINDRO, NIENTE ATTRITO *x

\/

Figura 6.23.: Il semicilindro durante 1’oscillazione, in un sistema di riferimento nel quale
la componente orizzontale della velocita del centro di massa e nulla. 11
sistema & stato scelto in modo che il centro di massa (indicato dal punto
scuro) si trovi sull’asse delle ordinate.

Scriviamo l'energia potenziale. Detto 6 'angolo tra la verticale e il segmento che
congiunge il centro della semicirconferenza al centro di massa possiamo scrivere la
posizione verticale di quest’ultimo

Yem = R —bcosO

Allora
U(e) = Mg (R—bcosb)

che ha un minimo per 6 = 0, che € quindi una posizione di equilibrio stabile.
Scriviamo l'energia cinetica nella forma
1

1
E. = EMUE’” + Elcmwz

dove v?,, = y?, & il quadrato della velocita del centro di massa (che si muove solo

verticalmente nel sistema scelto) e w? = 62 ¢ il quadrato della velocita angolare. 11
momento di inerzia I, € calcolato rispetto al centro di massa del sistema, e puo essere
calcolato usando il teorema di Steiner:

1
Elcyl = Icm + sz

dove .
Iy = 5 (2M) R?

e il momento di inerzia di un cilindro completo rispetto al suo asse. In conclusione

Iem = %M (R? —2p%)
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Derivando y., rispetto al tempo troviamo
Yem = b0 sin 6
e sostituendo otteniamo 1’energia finale
E::%(Aﬂ#sﬁ€94-gm)92+Jwg(R-bam9)

Per piccole oscillazioni attorno § = 0 possiamo approssimare questa espressione al
secondo ordine in 6, ottenendo

1o, 1
E = S ln® + 5 Mght”

che corrisponde ad un oscillatore armonico di frequenza
f= 1 /Mgb 1 | 2gb

Centro di massa meta cilindro xx

‘7 PROBLEMA 6.31

Calcolare la distanza b tra il centro di massa e I’asse del semicilindro che compare negli
esercizi e e usatelo per confrontare le frequenze delle piccole oscillazioni trovate
nei due casi.

y

Figura 6.24.: Il sistema di coordinate utilizzato per il calcolo del centro di massa.

Soluzione

Scegliamo un sistema di coordinate come in Figura A causa della simmetria
orizzontale x., = 0. Per calcolare y.,, = b calcoliamo

1
Yem = M/ydm
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che diviene, utilizzando coordinate polari,

1 dm
Yeom = M ygds

— ]]\-47_[122/2 //rsin@rdrd@

= nRz/ drr/ dfsin 6

2 RS
= —2= —R~0424R
7TR2 3 37

La frequenza delle piccole oscillazioni e, nel caso senza attrito considerato nell’Eserci-

zio[630]
8
3r 8 &
TR 0.162,/R

972

PR
S 2nVR2—0b2 21

e in quello con rotolamento puro considerato nell’Esercizio
/ g /&
= 1284/ = 31.1
27‘[ 3R2 4Rb 27‘[ 376 R ~ 0128 R (631.1)

Giro della morte per una sfera

( PROBLEMA 6.32

Una sfera di massa M e raggio r rotola senza strisciare all’interno di un tubo di raggio
R > r come in Figura Il tubo si comporta come un vincolo monolatero.
Scegliendo 1'angolo 6 come coordinata,

1. scrivere I’energia totale del sistema in funzione di 6 e 6;

2. supponendo che 6(t = 0) = 0, determinare il minimo valore di §(t = 0) che
permette alla sfera di percorrere un giro completo senza staccarsi dal tubo;

3. determinare la frequenza delle piccole oscillazioni attorno alla posizione di equili-
brio stabile.

Soluzioneﬂ

Domanda 1

La velocita del centro di massa del cilindro si scrive

Vem = (R — r)9

8Scritto del 2 marzo 2011
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Figura 6.25.: La sfera all’interno del cilindro e la coordinata usata per descriverla.

ma anche, usando la condizione di rotolamento puro,
Ve = —TW
dove w e la velocita angolare del cilindro. Da queste due relazioni segue che

R—rg

w = —
r

Possiamo adesso scrivere ’energia nella forma

1 1
E:EM&m+§mﬂ—MgR—wame

1 242 , 1 R\?
ziM(R—r)Q +§I 1—? 6 — Mg(R — r) cos 0

1

2,22 R\?|
5 (R—r) +er 1—? 6° — Mg(R —r)cos@

17 .
= §§M<R —7)%6*> — Mg(R —r) cos 8

dove si ¢ utilizzato il momento di inerzia della sfera, I = 2Mr? /5. Notare che il termine
cinetico si puo anche scrivere nella forma

—7)2 .
azlrMﬂ[mﬂﬂeﬂ:;MP
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dove I' = 7Mr?/5 & il momento di inerzia della sfera rispetto al punto di contatto.

Domanda 2

La componente radiale dell’equazione del moto del centro di massa della sfera si scrive
~M(R —r)6* = —N + Mg cos 8
da cui e possibile calcolare la reazione vincolare.
N = Mgcosf + M(R — r)6?
La sfera rimarra aderente al vincolo se N > 0, cioe
gcosf+ (R—71)>>0 (6.32.1)
Dalla conservazione dell’energia possiamo ora determinare (R — )62 in funzione di 6:

7 . .
%gM(R )P0 — Mg(R—r) = %gM(R )02 — Mg(R — r) cos

da cui 10
(R—7)6% = (R—r)0% — -8 (1 —cosb)

e sostituendo nella (6.32.1) troviamo

. 1 17
(R—1r)85>g <70 — 7cos(9>

Il caso peggiore & 6 = 71, quindi deve essere

; 27 g
‘GO‘ = 7(R—r)

Domanda 3

La posizione di equilibrio stabile € 8 = 0. Sviluppando 'energia al secondo ordine
troviamo a meno di una costante

_lz ALY,V 1 o 2 4
E = 5 5M(R— 1?0 + ZMg(R ~r)6 +o(9)

quindi la frequenza delle piccole oscillazioni &

_ 1/ 58
f =5 7(R—r)
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Figura 6.26.: Il moto della monetina sul piano. La velocita 7y specificata nel problema e
quella del punto geometrico P di contatto tra monetina e piano.

PROBLEMA 6.33
( Campo di velocita di una moneta x x x

Si vuole studiare il campo di velocita di una monetina molto sottile di raggio r che si
muove facendo rotolamento puro su un piano. Il punto di contatto P tra la monetina e il
piano si muove su una circonferenza di raggio d attorno ad un centro O (vedere Figura)
con velocita costante in modulo vy. La monetina rimane tangente alla circonferenza. Si
vuole determinare in particolare

o [’asse istantaneo di rotazione

o Il campo di velocita 7 (x, z) della monetina nel sistema di riferimento rappresenta-
to sulla sinistra in Figura (6.26))

o Il vettore velocita angolare

Soluzione

Il metodo pit1 veloce per determinare I’asse istantaneo di rotazione e quello di trovare
due punti istantaneamente fermi del corpo rigido considerato. Notiamo che tali punti
potranno essere esterni alla monetina, ma collegati “rigidamente” ad essa. Nel caso
considerato il punto F; della monetina (Figura[6.27]) che e ad un certo istante a contatto
col piano orizzontale e sicuramente fermo, data la condizione di rotolamento puro.

Consideriamo adesso, sempre in Figura il punto F, posto ad una altezza r sulla
verticale di O: la sua distanza da un punto qualsiasi della monetina si mantiene costante
durante il moto, e quindi possiamo pensarlo collegato ad essa rigidamente. Si tratta
quindi di un secondo punto fisso, e 1’asse di rotazione istantaneo & la retta passante tra
F; e F,. Notare che il punto O non rimane ad una distanza fissa dai punti della monetina:
ad esempio la distanza tra O ed un punto A posto sul bordo varia da un minimo di
OA = d (quando A = P) ad un massimo di OA = V/d2 + 412 (quando A si trova sulla
verticale del punto di contatto col piano).

Il vettore velocita angolare avra una direzione parallela all’asse istantaneo di rotazio-
ne. Per determinarne il modulo osserviamo che la velocita del centro della monetina
C e, allistante rappresentato in Figura 7 = —uvpX. Dato che il moto e di puro
rotolamento dovra anche essere

T=wA7 (6.33.1)
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I

- o0
:“/5:—:/ ””””””””””””””””””””” - C
§ 7
Lo .
\/ T

Figura 6.27.: Una costruzione che permette di determinare 1’asse istantaneo di rotazione
della monetina, vista in sezione trasversa ad un dato istante. Dato che sia
F; che F, sono istantaneamente fermi, I’asse istantaneo di rotazione passa
da essi.

dove 7 & un qualsiasi vettore che collega un punto istantaneamente fermo con C, ad
esempio il due vettori ﬁ e FT(% rappresentati in blu. Avremo quindi

2 9 zZ
—0pX = WA m =| wy wy Wy |=rwyk—rwg
0 0 r
da cui segue w, = —vp/r, wy = 0. Oppure
£ 9 Z
—vpX = WA Fz‘(% =|wy wy w;|=dwy—dw,.%
0 4 0
da cui otteniamo w, = ©vg/d. In conclusione scegliendo il riferimento come in
abbiamo
@=(0,-2,%)
“or’d
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6.34. TROTTOLA “BLOCCATA” NEL PIANO #*x

Determiniamo adesso il campo di velocita sulla monetina. Possiamo usare direttamente
'espressione (6.33.1). Nel sistema di riferimento a sinistra in Figura (6.26) abbiamo

0 X Oy
o=\ —vo/r |; 7= 0 ; 7= | vy
vo/d zZ+r Uz
da cui
X 1 2
~ y z4+7, X, X,
=0 —vy/r vo/d |=—1vp X+ 0=y + 00—z
d r
X 0 zZ+7r

Si verifica che il punto di contatto (0,0, —r) & istantaneamente fermo. Inoltre i punti che
non si trovano sull’asse z hanno una componente non nulla della velocita lungo 7, come
ci si poteva attendere dato che la monetina deve curvare per rimanere sulla propria
traiettoria circolare. Il limite d — oo corrisponde in effetti al caso di traiettoria rettilinea,
per il quale

- z+r X,
U= —10 X+ 09—z
r
e
- 00
w=——y

PROBLEMA 6.34
( Trottola “bloccata” nel piano xx

Una ruota di bicicletta puo ruotare liberamente attorno ad un’asta. L'asta a sua volta e
fissata come in Figura ad un suo estremo nel punto O e puo ruotare liberamente
attorno ad esso. Per fare in modo che l’asta rimanga in un piano fissato si aggiunge una
guida liscia circolare (in blu in Figura e si vincola l'asse a rimanere aderente ad
essa. Per gli scopi del problema si puo indicare con I; il momento di inerzia del corpo
rigido lungo l’asse delll’asta, con I, quello in una direzione perpendicolare ad essa, in
entrambi i casi rispetto al punto O, con m la massa totale e con d la distanza del centro
di massa da O.

Supponendo di porre in rotazione attorno all’asse la ruota con velocita angolare w,,
e di lasciare libero il sistema da un angolo iniziale 6 = 6, discutere il moto successivo
scrivendo le equazioni del moto. In particolare, come si muove il sistema se w, = 07?
Cambia qualcosa se w, # 0?

Soluzione

Utilizziamo coordinate cilindriche per descrivere la posizione del centro di massa del
sistema
Fem = dép
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Figura 6.28.: Il sistema considerato nel problema visto in sezione rispetto al piano nel
quale l’asse € vincolato. La ruota ¢ in grigio, la guida che vincola I’asse in
blu.

Il vettore velocita angolare ha componenti non nulle solo lungo le direzioni é, e é,
quindi
Notiamo che w, descrive la rotazione attorno all’asse, e w; la rotazione (oscillazione)
dell’asse attorno ad O. Per ragioni di simmetria gli assi principali del corpo rigido sono
chiaramente lungo l’asta e perpendicolari ad essa, quindi
L= Lwpéy + hw;é;

Per quanto riguarda i momenti, avremo quello della forza di gravita e il momento della
reazione vincolare della guida

M= —mgd sin 0é, + Mgéy

Scriviamo adesso l’equazione del moto dL/dt = M. Abbiamo

-

dL

=7 = o + Liwpép + Lw:é; + hw;é,

= [IWpey + w0y + Lw,é,
= Ildeép + Ilwpéée + I2ééz
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dove si e usato &, = 0 e w, = 0. L'equazione cardinale diventa

Lidpéy + w08y + L0, = —mgd sin 06, + Mgéy
da cui
L, =0
Ilcupé = MR

L# = —mgdsin 6

La prima equazione ci dice che w, & costante. In particolare se w, = 0 le altre due si
riducono a

Mg =0
L6 = —mgdsin6

quindi il sistema oscilla come un pendolo, e la guida non esercita nessuna reazione
vincolare. Nel caso generale vediamo che 1’equazione del moto per 6 non cambia, quindi
il moto sara ancora una volta quello di un pendolo. Ma questa volta la guida esercitera
sul sistema una reazione, equivalente al momento

MR = Ilwpf)

e questo significa che in assenza di essa il moto non resterebbe confinato nel piano. In
effetti avremmo una trottola con un punto fisso, problema analizzato negli Esercizi

el6.35

PROBLEMA 6.35
( Trottola simmetrica: discussione delle soluzioni * x x

Nell’Esercizio I'energia E e la componente verticale L, del momento angolare di
una trottola simmetrica fissata ad un estremo, entrambe quantita costanti, sono state
scritte nella forma

E = 200404
AT TA

L, = L,cosf+ L¢sin®0

2 _ 2
L., L 1 (cho§9 Lz) 4 Mgd cosf
sin 0

dove L, e la componente del monento angolare lungo 1’asse della trottola, anche esso
costante. In questo esercizio si studiera qualitativamente il moto della trottola al variare
delle condizioni iniziali.
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Soluzione

Conviene scrivere I'equazione che definisce 'energia nella forma

I . L2 1
26sin?0 = (E— =L | sin®6 — — (Lycosf — L;)* — Mgd cos 0sin” 6 (6.35.1)
2 21 2

da cui segue direttamente che il moto sara possibile solo nelle regioni in cui il secondo
membro & positivo. Avremo quindi la condizione

2LE L\ 2LMgd ) L.\?
- =)= — - —Z) > 35.
{( Iz ) 2 cosf| (1— cos”6) cosf L)z 0 (6.35.2)
ed inoltre
L¢(1 —cos?*8) = L, — L, cos (6.35.3)

In termini di x = cos 6 il membro destro dell’Equazione (6.35.2) & un polinomio di terzo
grado

P(x) = (a — px) (1 - x%) — (x — 7)?

L (2RE_ D
2

dove abbiamo posto

2L, Mgd
P=—"1

— LZ
UL

I valori agli estremi sono negativi o nulli,

P(+1) = — (yF1)°

Questo significa che la trottola potra raggiungere la posizione verticale solo nei due casi
L, = L, (sara possibile 8 = 0) o L, = —L, (sara possibile 8 = 7). Notiamo che

L(1—x*)¢ =L, —Lx
e quindi il segno di ¢ (la velocita di precessione) potra cambiare, e sara in ogni istante

lostessodi L, — L,x.
In termini delle condizioni iniziali abbiamo adesso

Ly, L2 1.
E = 26+ =F + L sin® 6 + Mgd cos b
270" T2

L, =L,cos6y+ 124)0 sin? 0o
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e quindi (notare che la velocita del centro di massa della trottola ¢ data da 02, =
d* (63 + ¢ sin”6y))

JE . 2Mgdl
Q= L—ZZ (05 + g sin® 6o) + ng 2 cos By
r T
g o,
= Fiyp) Uem o + B cos o
T
5 _ 212Mgd
L?

I .
v = cos by + L—quo sin® 6,
T

inoltre
L¢sin?6 = L, (cos fy — cos 0) + Ly sin” 6y

Studiamo alcuni casi particolari. (.......c.ccceueunee )

PROBLEMA 6.36
( Caduta di un manubrio *xx

Figura 6.29.: Il sistema descritto nel problema. I due estremi dell’asta sono sulla super-
ficie delle sfere, in altre parole la distanza tra i centri delle due sfere e
L+2R.

Due sfere di massa M e raggio R sono collegate da un’asta di uguale massa e lunghezza
L. Gli estremi dell’asta sono saldati perpendicolarmente alle superfici delle due sfere.
Inizialmente una sfera € appoggiata su un piano orizzontale, e I’asta forma un angolo
8 con l'orizzontale. Ad un certo punto si elimina in vincolo che mantiene il sistema in
equilibrio.

1. Supponendo che il piano sia privo di attrito determinare la velocita angolare del
corpo quando la seconda sfera tocca terra.
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2. Rispondere alla stessa domanda precedente, supponendo questa volta che la sfera
inizialmente in contatto con il piano rotoli senza strisciare su quest'ultimo.

3. Determinare la reazione normale del piano quando l'inclinazione dell’asta rispetto
all’orizzontale diviene 6 /2.

Soluzione

Domanda 1 Se il piano non ha attrito, non ci sono forze esterne orizzontali applicate
al sistema. Di conseguenza la quantita di moto orizzontale si conserva, e il centro di
massa si muove solo verticalente, dato che inizialmente e fermo. L'energia del sistema

si puo allora scrivere
1

2
dove w = 6 & la velocita angolare del corpo rigido e

1

E = -3My?2, + Elcme + 3MgYem (6.36.1)
LY .

Yem = (R + 2> sin 6 (6.36.2)

e I'altezza del centro di massa (al centro del manubrio) misurata rispetto all’altezza del
centro della sfera poggiata a terra. Sostituendo otteniamo

1 L\? : L
E=> !3M (R + 2> cos? 0 + I | 62 +3Mg <R + 2) sin 6 (6.36.3)
L’espressione tra parentesi quadre
I\ 2
Iy = 3M <R + 2> 08> 0 + L (6.36.4)

si puo interpretare come momento di inerzia del manubrio rispetto al punto istantanea-
mente fermo attorno al quale sta ruotando, come si vede dalla Figura
Uguagliando I'energia iniziale a quella finale abbiamo

2
. L
% [31\4 (R + g) + Iy | 6% = 3Mg (R + 2) sin 6y (6.36.5)
da cui .
. 6Mg (R + L
62 = 8 ( il ) gingy (6.36.6)
3M (R+5)" + Lm
Per quanto riguarda I, abbiamo
I —lML2+2 gMR2+M R+E i (6.36.7)
12 5 2 "

dove il primo termine € il momento di inerzia dell’asta attorno al suo centro, e il secondo
il momento di inerzia delle due sfere (il fattore 2) ottenuto aggiungendo al momento di
inerzia rispetto al centro il contributo prescritto dal teorema di Steiner.
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(R + %) sin

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figura 6.30.: Il manubrio ruota attorno al punto fisso P, che si puo determinare con la
costruzione in figura notando che il punto di contatto col terreno si muove
orizzontalmente e il centro di massa verticalmente. Quindi P deve trovarsi
alle intersezioni delle rette perpendicolari alle due velocita.

Domanda 2 In questo caso possiamo considerare istante per istante il moto del manu-
brio come puro rotolamento attorno al punto di contatto. Quindi per 'energia abbiamo

1,. L
E= 51692 +3Mg <R + 2) sin @ (6.36.8)

dove
L\? L 2
I} = Iy +3M { <R + 2) cos® 6 + [R + (R + 2) sin@] } (6.36.9)

Dalla conservazione dell’energia segue adesso

sin 6y (6.36.10)

minore della precedente. La ragione e che al momento dell’arrivo a terra il centro di
massa si sta muovendo anche orizzontalmente (con velocita vgy, » = —Rb) e parte del-
'energia potenziale iniziale si e trasformata nell’energia cinetica legata a questo moto,
quindi non ¢ disponibile come energia cinetica di rotazione.

Domanda 3 L’accelerazione verticale del centro di massa e determinata dall’equazione

3Mijen = N — 3Mg (6.36.11)
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dove N ¢ la reazione vincolare che dobbiamo determinare. D’altra parte
L\ ,. .
Viem = <R + 2) (6 cos 6 — 6%sin0) (6.36.12)

e quindi
N =3M |g+ R+E g @—9‘2 in@ (6.36.13)
= g 5 fcos - — tysin o .36.
dove Iz 0 ¢ sono l'accelerazione angolare e la velocita angolare al momento considerato.
Dalla conservazione dell’energia abbiamo

1 (60 4 L\ . 6 LY .
dove I(0) e data dalla (6.36.4) o dalla (6.30) a seconda che si consideri il caso senza

attrito o con rotolamento puro. In conclusione per un dato angolo
L
g2 — 6Mg (R + E)

)

(sinfy — sin0) (6.36.15)

e derivando

cos 6 (6.36.16)

Valutando le espressioni precedenti per § = /2 si ottengono 6, 6 che sostituiti nella
Equazione (6.36.13) danno la soluzione cercata.

PROBLEMA 6.37
( Scambio di momento angolare *x

Un satellite di massa m ruota in un’orbita circolare di raggio R attorno ad un pianeta di
massa M > m. Inizialmente sia il pianeta che il satellite ruotano su se stessi con velocita
angolari @y e @y, non necessariamente perpendicolari al piano dell’orbita. A causa di
forze non meglio specificate i due corpi interagiscono tra di loro, e parte dell’energia del
sistema viene dissipata. Supponendo che 'orbita del satellite rimanga circolare, deter-
minare le caratteristiche del sistema quando la massima quantita possibile di energia &
stata dissipata.

Soluzione

Indichiamo con €} la velocita angolare dell’orbita circolare del satellite. Dato che M >> m
possiamo identificare il centro di questa con il centro del pianeta. Possiamo scrivere
'energia cinetica totale nella forma

1

1 1
E.= EIMw%M + Elmwfn + EmRZQ2
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Figura 6.31.: A destra, una possibile configurazione iniziale (vista trasversalmente). Le
velocita di rotazione @, e @y non sono necessariamente perpendicolari
al piano dell’orbita, mentre per definizione lo & (). Nella configurazione
finale (a sinistra) Wy = &y = (_‘)._‘Di conseguenza tutte e tre sono parallele
al momento angolare conservato L che determina quindi il piano dell’orbita
finale.

dove il primo e il secondo termine sono le energie cinetiche dovute alla rotazione di
pianeta e satellite attorno al loro centro di massa, e il terzo e 'energia cinetica dovuta
al moto del centro di massa del satellite. Questa energia non si conserva, deve pero
conservarsi il momento angolare totale del sistema

L = Iy + Ly@m + mR2Q)

Possiamo usare questa legge di conservazione per scrivere 1’energia cinetica in funzione
delle velocita angolari Wy e @y,

N 2

dato che
L — Ipp — Ly

Q=
mR?

(6.37.1)

Adesso possiamo minimizzare ’energia cinetica rispetto a Wy e @;,. Otteniamo le
due condizioni

CLE — Tudu —1 E — IMC?)M - Imd}m —0
ac?)M a MM M mR2 -
O, . L — InGong — I

00y, = In@m = In < mR2 =0
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Dividendo la prima per Iy, la seconda per I, e sottraendo membro a membro otteniamo
Wy = ‘DM

e quindi nella configurazione finale pianeta e satellite hanno la stessa velocita angolare
di rotazione su se stessi. Sostituendo, ad esempio, nella prima equazione otteniamo

—

L

cioe entrambe le velocita angolari sono lungo la direzione del momento angolare ini-
ziale. Per quanto riguarda la velocita angolare orbitale abbiamo adesso, sostituendo
nella (6.37.1)

O = dym = @
In conclusione le velocita angolari orbitali sono adesso perpendicolari al piano dell’orbi-
ta, e la velocita angolare orbitale e identica a quella di rotazione. In altre parole il satellite
e il pianeta rivolgono 1'uno verso 1'altro sempre la stessa faccia: si muovono come un

unico corpo rigido (Figura (6.31)).

PROBLEMA 6.38
( Rotolamento puro di un cono *x

Figura 6.32.: Il cono appoggiato sul piano orizzontale considerato nell’esercizio.

Un cono di raggio R, massa M e altezza h rotola senza strisciare su un piano orizzon-
tale. Il suo tensore di inerzia, riferito agli assi principali passanti per il centro di massa,
vale

I 0 0
I=( 0 I, 0
0 0
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6.38. ROTOLAMENTO PURO DI UN CONO #*x

1. Scelto un opportuno sistema di coordinate determinare la posizione del centro di
massa in funzione del tempo, se il modulo della sua velocita iniziale vale vy.

2. Nelle stesse condizioni della domanda precedente determinare la velocita angola-
re @ del cono e il suo momento angolare L.

3. Se il piano viene adesso inclinato di un angolo 0 rispetto all’orizzontale deter-
minare la frequenza della piccole oscillazioni attorno alla posizione di equilibrio
stabile.

Soluzioneﬂ

Domanda 1

Il centro di massa sara lungo 'asse del cono. Per determinare la distanza dal vertice si
puo scrivere
R 1t
3

1 (" zZ _\2 Uswaivy
Com = V/o 2n (ER> dz = TaRh h

Dato che il cono rotola senza strisciare, tutti i suoi punti a contatto con il piano sono
fermi, e definiscono 1’asse istantaneo di rotazione. In particolare il vertice & sempre a
contatto, quindi € un punto fisso. L'altezza del centro di massa rispetto al piano resta
costante nel tempo e uguale a

Zem = gcm Sin n©

dove abbiamo indicato con « la meta dell’angolo al vertice,

tanoc—5
T h

La proiezione del centro di massa sul piano si muovera invece rimanendo a una distanza
dal vertice data da pcp = £ cos a. Avremo

Xem = Pcm COS P
Yem = Pem SING
dove ¢ (I’angolo che determina la posizione dell’asse istantaneo di rotazione) & determi-
nato dalla condizione
Oem = Pcm§b

e dato che, come discusso in seguito, il modulo v, della velocita del centro di massa e
_ Yo
costante avremo ¢ = ¢o + oo t.

9Primo esercizio dello scritto di Fisica 1 del 19/6/2007

@ 437 versione del 5 ottobre 2016



6.38. ROTOLAMENTO PURO DI UN CONO #*x

Domanda 2
La velocita angolare sara diretta come 1’asse istantaneo di rotazione. Inoltre dovra essere
Ocm = WZem

possiamo quindi scrivere

— vC?’l’l
w =

(£ cos¢p + Jsin¢)

cm
Per quanto riguarda il momento angolare, possiamo scriverlo rispetto a un polo preso
nel vertice del cono. Dato che questo € un punto fisso possiamo scrivere semplicemente

L=Ia

dove Iy e il tensore di inerzia relativo ad esso. Possiamo ottenere quest'ultimo in due pas-
si. Scriviamo anzitutto il tensore di inerzia relativo al vertice riferito agli assi principali
del cono.

Figura 6.33.: Gli assi principali di inerzia del cono (visto in sezione) e la loro relazione
rispetto al vettore velocita angolare, che e parallelo all’asse istantaneo di
rotazione. L’angolo « tra @ e la direzione principale corrispondente a I3 &
quindi la meta dell’angolo al vertice del cono.

Dal teorema di Steiner abbiamo

Iy + mé%m 0 0
Iy = 0 Ip+mé%, 0
0 0 L

Sempre nello stesso sistema possiamo scrivere la velocita angolare nella forma (vedere
Figura
0
W= | wsina
w cos i
da cui
0
L=Iy@d=| (Ip+mf,)wsina
Liw cos
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6.39. UN CARRELLO IN DISCESA **

Quindi L e contenuto nel piano determinato da & e dall’asse del cilindro. Infine & e L
sono costanti in modulo e I'angolo tra di essi & pure costante. Possiamo scrivere I'energia
cinetica del cilindro nella forma

1

E= Et.w = % [(Io +mf2,) sin® & + I cos® a] w?

e dalla sua conservazione segue che & € costante in modulo, quindi anche v, lo sara.

Domanda 3

Possiamo risolvere il problema aggiungendo all’energia cinetica un termine di energia
potenziale gravitazionale. Abbiamo

1
E = EIcu2 +mgdem

dove
Aoy = Zem O8O — x¢ppy SIN O
cioe
3 .
Ao = — Zh cos & sin 6 cos ¢ + costante
Dato che
w = ¢cota

abbiamo per piccole oscillazioni

1 o 3
E= Elcot2 ag?® + gmgh cos & sin f¢?

e quindi

1 \/3mgh sin® a sin @

fzﬂ 4] cosw

PROBLEMA 6.39
( Un carrello in discesa xx

Il carrello in Figura e ottenuto unendo due cilindri di massa m; e my e raggio R
mediante una sbarra di massa m 4 e lunghezza /. Sia i cilindri che 1’asta sono omogenei. I
cilindri sono liberi di ruotare attorno al proprio asse ed e presente attrito statico descritto
dal coefficiente ys.

1. Assumendo che i due cilindri ruotino senza strisciare calcolare le reazioni normali
Ni e N che il piano esercita su di essi.

2. Calcolare l'accelerazione del centro di massa del carrello.

3. Calcolare il minimo valore di j; necessario a permettere ai cilindri di ruotare senza
strisciare, per un fissato angolo «.
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6.39. UN CARRELLO IN DISCESA *%

my, R

Figura 6.34.: Il carrello descritto nell’esercizio.

Soluzionelﬂ

Domanda 1

Figura 6.35.: Le forze applicate al cilindro che contribuiscono nella direzione normale al
piano.

La somma delle forze applicate a ciascun cilindro in direzione perpendicolare al piano
devono annullarsi. Da questo segue
Ny +P; —mygcosa =0
N, + P, —mpgcosa =0
dove come indicato nella Figura P; e P; sono le componenti perpendicolari al piano

delle forze che l'asta applica al centro del cilindro. Se consideriamo adesso il momento
delle forze applicate all’asta rispetto al suo centro di massa abbiamo che deve essere

/ ¢
Pi= —Py= =
15~ =0

10Primo esercizio scritto 30/3/2007
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6.39. UN CARRELLO IN DISCESA **

mentre la somma delle forze applicate all’asta in direzione perpendicolare al piano deve
pure annullarsi:
P+ P, +mpgcosa =0.

Da queste due relazioni segue
1
b=bP= —EmAgcosa

e quindi

1
Ny = (m1 + zmA> gcosu

1
N> = (mz + 2mA> gcosu

Domanda 2

Possiamo scrivere 1'energia del sistema nella forma

1 1
E = E(ml+mz~|—mA)5c2+§(Il—|—Iz)w2— (my 4+ my +my) gxsina

dove x & una coordinata scelta parallelamente al piano. Dalla condizione di rotolamento
puro segue che w = X/R e poiche I} = %mle, I = %msz abbiamo

1/3 3 2 :
E:E §m1+§mz+m/a X% — (my +my +my) gxsina

Derivando rispetto al tempo otteniamo 1’equazione del moto

_ (m4+my4+my)gsina
(%ml + %mz +mA)

che ci da direttamente 1’accelerazione.

Domanda 3

Possiamo utilizzare la soluzione della domanda precedente e scrivere per ciascun cilin-

dro )
i
_Iiﬁ =FER

dove F; & la forza di attrito. Segue che

F— 1 (mp+my+my)gsine
i = —sm; (ém T 3
Sty + 5Mmp +1m4)

2
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6.40. OSCILLAZIONI FORZATE DI UN"ASTA *%

Figura 6.36.: Le reazioni vincolari del piano.

ma deve essere |F;| < usN; da cui

(my+my+my)gsinw 1
, < . —
m; (Biis + Bty + 2114 < Us m1+2mA gcosu

ossiaperi=1,2
(m1 + my + mA) m;

tana .
3mq + 3my + ZmA) (ml- + %mA)

s >
o= 1

La condizione piu restrittiva e quella relativa alla pit1 grande tra le due masse my, m,.

PROBLEMA 6.40
( Oscillazioni forzate di un’asta xx

Un’asta di lunghezza ¢ e massa m ¢ fissata a una parete verticale attraverso un giunto
elastico con momento di richiamo M = —k#6, dove 6 & 1’angolo con il quale si deforma
il giunto. Si suppone il giunto sufficientemente rigido per cui gli angoli sono piccoli. In
assenza di gravita l’asta e perpendicolare alla parete.

1. Calcolare la posizione di equilibrio sotto I'influenza della gravita e il periodo delle
piccole oscillazioni.

2. La parete si muove con moto sinusoidale di ampiezza yy con frequenza w. Si
calcoli 'ampiezza del moto a regime dellasta.

3. Il giunto ha una dissipazione viscosa che genera un momento M, = —96. Si
calcoli 'ampiezza e la fase del moto a regime dell’asta in funzione di w. Qual’e
I'energia dissipata per ciclo?
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6.40. OSCILLAZIONI FORZATE DI UN’ASTA *%

Figura 6.37.: L’asta fissata sulla parete mediante un giunto elastico.

Soluzionﬂ

Problema 1

Riferendosi alla Figura possiamo scrivere I'equazione del moto nella forma

dL 14

7 = M85 cos 6 — k6 (6.40.1)
dove L = I ¢ il momento angolare rispetto ad un polo posto nel giunto elastico. Il
momento di inerzia ¢ dato da

14 2
m me

I= | =pdr=—— 40.2
/0 il dr 3 (6.40.2)

Per piccoli angoli possiamo porre cos 6 ~~ 1, ottenendo per la posizione di equilibrio

mgl
Nella stessa approssimazione 1’equazione del moto si scrive

I6+ké=0 (6.40.4)

dove abbiamo posto 6 = 6, + 6. Il periodo delle piccole oscillazioni e dato quindi da

I [ me2
T = 27'[\/; =27 K73 (6.40.5)

1Secondo esercizio compitino 1/4,/2009.
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6.40. OSCILLAZIONI FORZATE DI UN"ASTA *%

Problema 2

Se la parete si muove secondo y = yo cos wt nel sistema solidale ad essa agisce una forza

apparente
F = myow? cos wt

e quindi
I6+ké = M

dove M é il momento della forza apparente,
4 2 iwt
M= méyow cos wt = Re (/\/loe )

ed abbiamo posto

My = méyowz.

Utilizzando il metodo dei fasori otteniamo la soluzione a regime della forma

6 =Re (Aei“’t)
con ™
B 0
A= (k — Iw?)

che rappresenta 'ampiezza del moto a regime.

Problema 3

L’equazione del moto diventa adesso
I6+ 96+ ks = M.
Con lo stesso metodo utilizzato in precedenza otteniamo adesso

Mo
(k +iwy — Iw?)

che corrisponde ad una ampiezza

My
\/’yzwz + (k— Iwz)2

Al =

e a una fase

¢ =arg A

(6.40.6)

(6.40.7)

(6.40.8)

(6.40.9)

(6.40.10)

(6.40.11)

(6.40.12)

(6.40.13)

(6.40.14)

(6.40.15)
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6.41. DISTACCO DI UNA BACCHETTA ROTANTE »*

con
2
oS P = k- lw (6.40.16)
\/'waZ + (k — [w?)?
sin ¢ = i . (6.40.17)

\/'yzw2 + (k — Iw?)?

L’energia dissipata in un ciclo si puo ottenere a regime calcolando il lavoro fatto dalla
forza esterna in un periodo. Tenendo conto che la forza e applicata al centro di massa
abbiamo

T T
Wiiss = / Fxovdt = / M x bdt (6.40.18)
0 0
e d’altra parte
T . .
Wies = / Re (Moelwt) x Re (iwAelwf) dt (6.40.19)
0
Usando l'identita
T
iwt iwt _ E *
/0 Re (ue ) Re (ve ) dt = wRe (u*v) (6.40.20)

valida per due numeri complessi u, v qualsiasi, troviamo

7T T iwM?3
Wyis = —Reli ="Re|———0 40.21
iss = — e [iwMyA| o e[k+iw’y—lw2] (6.40.21)
ossia

nwy M3

: (6.40.22)
(k — Iw?)” 4 w?v?

Wdiss =

PROBLEMA 6.41
( Distacco di una bacchetta rotante xx

La bacchetta rigida in Figura di lunghezza ¢, massa m e spessore trascurabile, ruota
attorno all’asse verticale con velocita angolare costante w. L’angolo 6 tra asse e bacchetta
e fisso.

1. Calcolare I’energia cinetica del sistema.
2. Calcolare il vettore momento angolare del sistema, L(t).

3. Supponendo che a un certo istante il vincolo venga a mancare discutere il moto
successivo tenendo conto dell’effetto della gravita.
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6.41. DISTACCO DI UNA BACCHETTA ROTANTE #*x

Figura 6.38.: La bacchetta forma un angolo costante rispetto all’asse attorno al quale
ruota.

Soluzioneﬁ

Domanda 1

L'energia cinetica si puo scrivere come energia di pura rotazione attorno al punto fisso,

1
E = ~Iw?

5 (6.41.1)

Il calcolo del momento di inerzia I si puo fare direttamente, integrando sulla lunghezza
della sbarra:

Y4
[= / % (rsin®)?dr = %ez sin2 . (6.41.2)
0

Domanda 2

Possiamo calcolare il momento angolare totale sommando i contributi di ogni elemento
della sbarra. Questo significa valutare

L= / Adm? A\ T. (6.41.3)
Introducendo un versore T nella direzione della bacchetta e identificando 1’asse di

rotazione con l’asse z possiamo scrivere

m

dm = 7 dr (6.41.4)

12Primo problema scritto 21,/1/2009
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6.41. DISTACCO DI UNA BACCHETTA ROTANTE »*

7=t (6.41.5)
T=0NF=wr(2A1) (6.41.6)
e quindi
¢
I= %f A(EAT) / drr? (6.41.7)
0

Sfruttando l'identita @ A (5 AE)=b(d@-¢)—¢ (Zi : ﬂ) si trova

FA(EANE)=2—%(2 1) =2+ cos Ot (6.41.8)

e quindi, ponendo I’asse x ad un dato istante nel piano contenente 1'asse di rotazione e
la bacchetta, abbiamo

L=—"0(2+cosbt) = m3—w€2 sin 6 [sin 02 + cos 0%] (6.41.9)

Notare che il momento angolare & sempre ortogonale alla bacchetta:

Domanda 3

Dal momento in cui il vincolo viene a mancare si conserva il momento angolare e I’ener-
gia. Quindi, supponendo che il distacco avvenga quando la bacchetta si trova nel piano
Z,X:

1. Il centro di massa della bacchetta si muovera di moto uniformemente accelerato
(accelerazione ), con la velocita iniziale che aveva al momento del distacco, cioe

14

2

Tp = ANT) = gw sin 07 (6.41.10)

2

N>

W N Tgist =

N —

2. Nel sistema del centro di massa, in caduta libera con la bacchetta, non vi sono
forze esterne. Il moto e quindi quello di una trottola simmetrica libera.

3. Ponendoci nel piano identificato dalla bacchetta e dalla velocita angolare ad un
istante dato come in Figura possiamo scomporre @ in una componente pa-
rallela alla bacchetta @p e in una trasversale 7. Dato che il momento di inerzia
rispetto all’asse della bacchetta e nullo, avremo

L =Irar (6.41.11)

dove It = ;m¢? & il momento di inerzia della bacchetta rispetto ad un asse tra-
sverso passante per il centro di massa. Quindi anche r si conserva, e la bacchetta
ruota attorno a L fisso nello spazio con velocita angolare w sin 6.
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6.42. UN ALTRO GIRO DELLA MORTE #*x

b‘l\\\\x\\

Figura 6.39.: La bacchetta al momento del distacco: il momento angolare ¢ in verde, la
velocita angolare in rosso.

PROBLEMA 6.42
( Un altro giro della morte x*

La guida in Figura[6.40]e formata da settori di circonferenza, di raggio Ry e R3 > Ry, che
sono collegati nella sequenza A — B, B— C,C — Be B — D. Un disco di raggio R; < R
e massa m rotola senza strisciare sulla guida, partendo dal punto A con velocita del
centro di massa v¢;,; = vp.

1. Calcolare in modulo, direzione e verso la reazione vincolare della guida immedia-
tamente prima e immediatamente dopo il primo passaggio per il punto B e dire

se essa € impulsiva al momento del passaggio.

2. Ponendo vy = 0 determinare il massimo valore di R per il quale la guida viene
percorsa completamente, considerando il vincolo monolatero.

3. Calcolare la frequenza delle piccole oscillazioni attorno al punto B.
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6.42. UN ALTRO GIRO DELLA MORTE *x

D
A
B
Figura 6.40.: La guida considerata nell’esercizio.
Soluzionﬂ
Domanda 1
Dato che l'energia totale si conserva
1o 1 2
E = -mog, + < Iepw” + mgz (6.42.1)

2 2

e che velocita del centro di massa e velocita angolare del disco sono legate da v, =
—Rjw segue che

E= % (m + ;’Z) 02, +mgz = va?m +mgz (6.42.2)
1
Questo significa che la velocita del centro di massa dipende solo dalla sua posizione
z. Quindi immediatamente prima e immediatamente dopo B v, non sara cambiata
(nemmeno in direzione, dato che sara sempre orizzontale) e quindi non & presente
nessuna forza impulsiva.
Il centro di massa percorre una traiettoria circolare, per cui immediatamente prima di

B sara
2

Ucm
m—>'r = N-—m 6.42.3
R3 Rl g ( )

e immediatamente dopo
2

Ucm
mn__ _ N—m 6.42.4
mRz — Ry 8 ( )

13Primo problema scritto 11/9/2008
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6.42. UN ALTRO GIRO DELLA MORTE #*x

da cui si deduce che la reazione normale della guida ¢ diversa.
Si puo osservare che in B l'accelerazione tangenziale del centro di massa e nulla:
questo si ricava direttamente scrivendo I'energia nella forma

E— Zm (Rs — R1)262 + mg (Rs — Ry) (1 — cos6) (6.42.5)

valida prima di B e derivando rispetto al tempo

£ = Dm(Ry — Ry 60 + mg (Ry — Ry) fsin6 = 0 (6.426)

si ottengono le equazioni del moto

%m (R3 — Ry)* 6 + mg (R3 — Ry) sinf = 0 (6.42.7)

che permettono di concludere @ = 01in # = 0. Analogamente si pud derivare 'equazione
del moto valida dopo B

%m (Ry — Ry)* 6 + mg (Ry — Ry)sinf = 0 (6.42.8)

in entrambi i casi si e utilizzata come coordinata 1’angolo tra la direzione verticale e la
normale alla guida.

Dato che non c’¢ accelerazione tangenziale, non si avranno forze orizzontali, e la
reazione ha la sola componente normale discontinua calcolata precedentemente.

Domanda 2

La velocita nel punto C si calcola dalla conservazione dell’energia:

3
mgR3 = 1mzzfm +mg (2Ry — Ry) (6.42.9)

da cui 4
Uon = 38 (R1+ Rs —2Ry) (6.42.10)
ma per poter passare deve essere

02

mﬁ > mg (6.42.11)
da cui A
3 (Ri +R3 —2R) > (Ry — Ry) (6.42.12)
e quindi
R, < Rit4Rs (6.42.13)

11
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6.43. SBARRA IN GUIDA CIRCOLARE, VINCOLO BILATERO #*x

Domanda 3

Il periodo ¢ la somma di un semiperiodo a sinistra di B pitt un semiperiodo a destra.
Il primo & determinato dalla equazione del moto scritta in precedenza, sviluppata per
piccole oscillazioni:

gm (Rs — Ry)* 8+ mg (R3 — Ry) 8 = 0 (6.42.14)
da cui
Ty =27 3(Rs —Ri) (6.42.15)
28
e analogamente la seconda
Ty =2m, )2 (R — Ry) (6.42.16)
28

quindi

- T+ 1 o 3
T=172 =, /g (\/R3 —“Ri+ Ry — R1> (6.42.17)

PROBLEMA 6.43
( Sbarra in guida circolare, vincolo bilatero xx

Una sbarra omogenea di lunghezza ¢ e massa m ha i due estremi vincolati (vincolo
bilatero) ad una guida circolare di raggio r > ¢/2 come in Figura La guida e
montata verticalmente, in presenza di gravita. Non esiste nessun tipo di attrito.

Figura 6.41.: La sbarra con gli estremi vincolati alla guida circolare.

1. Se inizialmente § = 0 determinare il minimo valore di 8(0) che permette alla
sbarra di percorrere un giro completo sulla guida.
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6.43. SBARRA IN GUIDA CIRCOLARE, VINCOLO BILATERO #*x

2. Scrivere le equazioni del moto del sistema. Esistono quantita conservate?

3. Calcolare il periodo delle piccole oscillazioni del sistema attorno alla posizione di
equilibrio stabile.

Soluzionﬂ

Domanda 1

Possiamo scrivere l'energia del sistema nella forma

E= %Iéz — Mgd cos 0

In questa espressione d & la distanza tra il punto medio della sbarra (il suo centro di
massa) e il centro della guida, che vale

£

d=\/r 1

I ¢ il momento di inerzia della sbarra rispetto all’asse di rotazione, che passa per il
centro della guida. I si calcola applicando il teorema di Steiner:

_ 1 2 2
I'= M+ Md

Per percorrere un giro completo dovra essere cioe
: 4Mgd
0(0) > 1/ %

Si conserva l'energia totale, dato che le reazioni vincolari non fanno lavoro sul sistema.
Le equazioni del moto si possono ottenere rapidamente derivando E rispetto al tempo

Domanda 2

E = 160 + Mgdfsin® = 0
da cui
160 + Mgdsin = 0
Domanda 3

Possiamo utilizzare 1’equazione del moto determinata precedentemente. La posizione
di equilibrio stabile & chiaramente § = 0, che & un minimo dell’energia potenziale
gravitazionale. Considerando piccole oscillazioni possiamo porre sinf ~ 6 e quindi

160 + Mgdf = 0

14Primo esercizio scritto 11/1/2007

@ 452 versione del 5 ottobre 2016



6.44. URTO CON UN’ASTA SUL FONDO DI UNA SCODELLA *x

Questa e I'equazione del moto di un oscillatore armonico di periodo

I

PROBLEMA 6.44
( Urto con un’asta sul fondo di una scodella xx

Figura 6.42.: L’asta con gli estremi vincolati alla guida semicircolare.

Un’asta di massa m e lunghezza r si muove con gli estremi vincolati ad una guida
semicircolare priva di attrito. Il raggio della guida e uguale alla lunghezza dell’asta,
e quest’ultima si trova inizialmente in equilibrio nella posizione in Figura Una
particella di massa uguale a quella dell’asta viene lasciata cadere sulla verticale di un’e-
stremo dell’asta, da un’altezza iniziale uguale a quella del centro della guida. L'urto con
'estremo dell’asta e istantaneo e la particella rimane attaccata ad essa.

1. Determinare 1’angolo che l'asta forma con 1'orizzontale nella posizione di equili-
brio del sistema.

2. Calcolare 'energia dissipata durante 1'urto.

3. Calcolare I'altezza massima raggiunta dal centro di massa del sistema dopo l'urto.

Soluzione{ﬂ

Domanda 1

Il centro di massa del sistema si trova nel punto P posto a una distanza r /4 dal punto A,
e la posizione di equilibrio si avra quando I'energia potenziale gravitazionale ¢ minima,

15Primo esercizio compitino 23 marzo 2010
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O

Figura 6.43.: La posizione del centro di massa e I'angolo di rotazione all’equilibrio.

cioe quando P si trovera sotto O. Questo significa che 1’asta avra ruotato di un angolo 6
dato da

i
S
—_

tan6 = = —

I\i&
N
>

Domanda 2

Immediatamente prima dell’urto la velocita della particella vale (h = rv/3/2 & laltezza

da cui cade)
vy = \/29h = \/gr\/g

Durante 'urto si conserva il momento angolare rispetto al punto O, perche le uni-
che forze impulsive esterne (le reazioni vincolari) hanno momento nullo. Questo vale
immediatamente prima

r r
Lo=mugz =m< gr\[3
2 2
e immediatamente dopo
Lo = lw
dove I ¢ il momento di inerzia del sistema rispetto ad O:

1 11
I= <12m1’2 + Zmr2> +mr? = Zmrz

Nell’espressione precedente il termine tra parentesi e il momento di inerzia della sbarra,
calcolato tramite il teorema di Steiner, e l'altro il contributo della particella. Abbiamo
quindi
2 mr ) 2
we = |-+ grv3
(57) srv3
L'energia cinetica del sistema dopo l'urto vale quindi

1 33

Ef= Elwz = mgr
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mentre prima valeva

'energia dissipata € quindi

19
AE=E;—Ef = ﬁ\@mgr

Domanda 3

Il centro di massa raggiungera la sua altezza massima rispetto alla quota iniziale quando
tutta ’energia cinetica si sara convertita in energia potenziale. Quindi

%mgr = 2mgAh

44

ossia

33

Ah—@r

PROBLEMA 6.45
( Oscillatore con carrucole e corpi rigidi *x

D M
Figura 6.44.: Loscillatore descritto nell’esercizio.

I due dischi in Figura di massa M;, M, e raggio Ry, R, sono vincolati a ruotare
intorno ai loro centri e lo fanno senza strisciare uno sull’altro. Una massa M & appesa a
un filo inestensibile avvolto al disco di destra, il sinistro e collegato mediante una molla
di costante elastica e lunghezza a riposo nulla ad un punto fisso.

1. Il sistema ¢ inizialmente in quiete, e ’allungamento della molla & nullo. Viene
lasciato libero di muoversi: calcolare di quanto si abbassa al massimo la massa M.

2. Mostrare che il sistema € equivalente ad un oscillatore armonico, e determinarne
la frequenza.
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3. Se sulla massa M agisce una forza di attrito viscoso F = —Av, dove A & una
costante positiva dalle opportune dimensioni, valutare il fattore di qualita dell’o-
scillatore.

Soluzionﬁ

Domanda 1 L’energia del sistema si conserva, e vale

B O S S S s Ko
E= 211w1+212w2+2My + Mgy + 25

dove wi, wy sono le velocita angolari dei due cilindri ed y 1’altezza della massa misurata
rispetto alla posizione iniziale. La deformazione della molla ¢ e data da é = y a causa
della condizione di rotolamento puro. Uguagliando l’energia iniziale a quella nella
posizione di massimo allungamento abbiamo

K
Mgy + 5y* =0

da cui otteniamo il massimo abbassamento
2Mg
K

Domanda 2 Le condizioni di rotolamento puro sono

wiRy = —wiR;

wRy =y
da cui segue che I’energia puo essere scritta nella forma (usando I} = M; R% /2el, =
M3R3/2)
_1
2

Derivando rispetto al tempo

1 1 K

. 1 1
E= (M+ 2M1+2M2> yij + Mgy + Kyy = 0
troviamo le equazioni del moto
1 1 ,
M + §M1+§M2 j+ Ky =—-Mg

che sono quelle di un oscillatore armonico sottoposto ad una forza costante. La frequen-
za sara dunque

P 2K
~ 27\ 2M + M + My

16Primo esercizio compitino 13 aprile 2011
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Non volendo utilizzare I'energia, possiamo scrivere direttamente le equazioni del
moto. Per la massa sospesa abbiamo

Mij=-Mg+T

dove T e la tensione del filo. La seconda equazione cardinale per il primo cilindro si
scrive
I,#; = —KR30; + FR,

dove F e la forza applicata al punto di contatto e 6; & lo spostamento angolare dalla
posizione iniziale. Per il secondo abbiamo

1,6, = FRy, — TR,

dove 6, e lo spostamento angolare dalla posizione iniziale. La condizione di puro
rotolamento si scrive

Rlél = —RZGQ
ossia
R191 = —R292
Inoltre
y = Ry0,

Esprimendo tutte le equazioni in funzione di y abbiamo

Mij=-Mg+T
Lij = —KR?y — FR?
Lij = FR3 — TR}

da cui
I 12>..
M+ —+— |j=—Mg—Ky
G

ossia

1 1
(M+ §M1 + 2M2> j+ Ky =—-Mg

Domanda 3 In presenza di attrito viscoso 'equazione del moto diventa

1 1
<M+2M1+2M2)y+Ay'+Ky:—Mg

Il fattore di qualita e dato dal prodotto

Q=wt
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dove T ¢ il tempo di smorzamento,

2 (M—l— %Ml + %Mz)
e A

Quindi

2(M+ iM; + 3M
_2(MA45M;+5 2)\/ K :%\/ZK(2M+M1+M2)

Q= A M+ My + 3 My

PROBLEMA 6.46
( Ancora sulla caduta di un manubrio xx

Facendo riferimento all’esercizio determinare come varia durante la caduta (cioe in
funzione di 0) la reazione tangente al piano di appoggio se

1. il piano e privo di attrito
2. Il manubrio ruota senza strisciare sul piano di appoggio

Soluzione

Se il piano € privo di attrito la reazione tangente ¢ per definizione nulla.
Nel caso di rotolamento puro invece possiamo scrivere

Rx - 3M.X:Cm (6.46.1)

dove x.y, € la posizione orizzontale del centro di massa del sistema rispetto a un sistema
di riferimento inerziale. Fissando un’origine sul piano possiamo scrivere

L
Xem = X + (R + 2> cos 6 (6.46.2)

dove X ¢ la posizione del punto di appoggio del manubrio rispetto all’origine scelta.
Derivando rispetto al tempo abbiamo

. . L
Xem = X —0 <R + 2) sinf (6.46.3)

Ma X & anche la velocita del centro della sfera appoggiata a terra, che vale —R a causa
della condizione di rotolamento. Quindi

R . L
Xem = —RO — 0 (R + 2> sin 6 (6.46.4)
Derivando ancora abbiamo

Xem = —RO — (R + g) (6% cos 0 + Hsino) (6.46.5)
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e quindi

R, = —3M [RG + <R + 2) (6% cos 0 + fsin 9)] (6.46.6)

Dalla legge di conservazione dell’energia scritta nell’esercizio :6.36 possiamo scrivere 62
in funzione dell’angolo, ottenendo (Equazioni (6.36.8) e (6.36.9))

6Mg (R + &)
o +3M { (R+ §)*cos20+ [R + (R + §) sin6] "}

6% = = F(0)

e derivando rispetto al tempo otteniamo (omettiamo i calcoli per semplicita)

j— Ldb
2d6
che sostituite nella danno la soluzione del problema. Notare che omettendo il
termine X nella si sarebbe ottenuto un risultato scorretto, infatti (R + L/2) cos 6
e la posizione orizzontale del centro di massa rispetto al punto di contatto tra corpo
rigido e piano orizzontale, che si muove orizzontalmente ed in particolare accelera.

(6.46.7)

PROBLEMA 6.47
( Caduta di due aste incernierate xx

Due aste di lunghezza ¢; ed e di massa e m; sono collegate ad un estremo da una
cerniera che permette una rotazione libera. L'altro estremo dell’asta di lunghezza /;
e fissato ad un punto fisso, come in Figura con un altra cerniera identica alla
precedente. Inizialmente le due aste sono in quiete, ed entrambe inclinate di un angolo
6o rispetto all’orizzontale. Vengono quindi lasciate libere di cadere sotto ’azione di un
campo di gravita costante.

Per opportuni valori di, ¢5, m; e m; & possibile che durante la caduta le aste rimangano
allineate?

Soluzione

Supponiamo che le due aste rimangano allineate, e verifichiamo che le equazioni car-
dinali siano consistenti. La seconda equazione cardinale per il sistema complessivo,
scegliendo come polo la cerniera che si trova ad una estremita, si scrive

1, 1 5 1\ 4 1 1
*mlfl + fﬂ’lzgz +my | 41+ Efg 0=— Eml& +my | 41+ Egz gC089

3 12
(6.47.1)
che permette subito di calcolare I'accelerazione angolare 6. La seconda equazione cardi-
nale per la sbarra di lunghezza /5, rispetto al suo centro di massa, si scrive invece

—mpl5 = F = (6.47.2)
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€27 mo

Figura 6.45.: Le due aste (blu e rossa) e gli snodi (in verde). Nella configurazione iniziale
le sbarre sono allineate, come in figura.

dove F, ela componente della forza che agisce sulla sbarra alla giuntura perpendicolare
alla sbarra stessa. Da questo segue

1 .
FL = 81’]12629 (6.47.3)

Chiaramente le equazioni (6.47.T) e (6.47.2) ammettono una soluzione per qualsiasi valo-
re dei parametri, quindi non ci danno informazioni sul mantenimento dell’allineamento
tra le due sezioni. Pero in linea di principio permettono di calcolare in modo univoco
0 (t) eF 1.

Date queste informazioni, verifichiamo la compatibilita con le prime equazioni cardi-
nali. Consideriamo adesso 'accelerazione tangenziale del centro di massa della sbarra
di lunghezza ¢. Deve essere

¢ .
1) <£1 + 22> 6 = —mpgcos® — F| (6.47.4)
ossia, sostituendo 1’espressione di F; determinata precedentemente,
2 .
<€1 + 3€2> 6 = —gcos@ (6.47.5)

Sostituiamo infine 6 usando la (6.47.1)

2 1 1 1, 1 1\?
1+ gfz Emlfl +my | £ + §€2 = gmlﬁl + Emzéz +my | U1+ Eﬁz (6.47.6)

Questa é la relazione cercata tra i parametri.
Studiamo in particolare il caso in cui la densita lineare di massa delle due aste ¢ la
stessa. In questo caso abbiamo

202 (o2 2 te s Loao (6o 10) 6477
1 52 51 2 1 52 —51 ﬁz 2 1 52 ( )
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che si pud semplificare come
61 [Elml + Ez (2m1 + le)] =0 (6478)

Quindi, a parte il caso banale ¢; = 0, non & possibile mantenere le sbarre allineate
durante la caduta.

PROBLEMA 6.48
( Pendolo fisico con contrappeso xx

Figura 6.46.: Il sistema considerato nell’esercizio.

Un’asta omogenea di lunghezza L, massa m e spessore trascurabile e rigidamente
connessa ad un disco di raggio r e massa m, come in Figura Il disco e vincolato a
ruotare attorno ad un perno fisso passante per il suo centro. Uno degli estremi dell’asta
coincide con il centro del disco. Attorno al disco € avvolto un filo inestensibile di massa
trascurabile, che scorre sul bordo senza strisciare. All’estremita inferiore del filo e sospe-
so un corpo puntiforme di massa m. Tutti e tre i corpi hanno la stessa massa. Il tutto e
immerso in un campo gravitazionale uniforme di intensita g diretto verso il basso.

1. Assumendo che la sbarra sia inizialmente ferma formando un angolo 6p noto
con la verticale, determinare quali condizioni devono soddisfare i parametri del
sistema (m, L e r) affinché la massa sospesa al filo acceleri verso il basso.

2. Trovare eventuali posizioni di equilibrio stabile del sistema, determinando che
condizioni devono essere soddisfatte dai parametri affinché esistano.

3. Nell'ipotesi che una posizione di equilibrio stabile esista, determinare la frequenza
delle piccole oscillazioni attorno a questa.
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Soluzionﬂ

Domanda 1

11 disco ruota soggetto ai momenti di due forze, calcolati rispetto al centro del disco: la
forza peso dell’asta e la tensione della fune:

Iw = —%mg sinf +rT (6.48.1)

dove I ¢ il momento di inerzia del sistema calcolato rispetto al perno del disco. Per
ora non serve calcolarlo. Abbiamo preso come verso positivo per w quello che deter-
mina una rotazione in senso anti-orario. Il moto del corpo appeso al filo & determinato
dall’equazione

mi=—-mg+T (6.48.2)

dove z & crescente verso l’alto. Il fatto che la fune non strisci sul disco da il vincolo:
= —rd (6.48.3)

Sostituendo nell’Equazione (6.48.1) e ricavando T dalla (6.48.2) si ottiene

L -

5sinf —r
Z=m 6.48.4
S (6.48.4)

I1 corpo accelera verso il basso se Z < 0, ovvero se
2
il (6.48.5)
sin 6

Domanda 2

Per trovare le posizioni di equilibrio si scrive I’energia potenziale del sistema e si cercano
i minimi. L'energia potenziale ha solamente contributi gravitazionali:

L L L
U=mgz— mgo cost) = —mgro — mg- cost = —mg <r9 + 5 cos 9> (6.48.6)

dove si & usata la relazione di rotolamento della corda (1§ = —z) e si & omessa una
costante irrilevante. Otteniamo la derivata
au L

che si annulla quando
sinf = % (6.48.8)

17Primo problema compitino 18 aprile 2011
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Esiste soluzione solamente se 2r/L < 1 ovvero L > 2r. In questo caso esistono due
angoli che danno lo stesso seno, uno compreso tra 0 e 71/2 e 1’altro compreso tra 77/2 e
7. Per vedere quali posizioni sono di equilibrio stabile, serve la derivata seconda

2
ilGLZ[ = mg% cos 0 (6.48.9)

che ¢ positiva (equilibrio stabile) per 0 < 6,; < 71/2 e negativa (equilibrio instabile) per
/2 < 0y < TT.

Domanda 3

La frequenza delle piccole oscillazioni si trova ponendo 6 = 0., + J nell’espressione
dell’energia

E= %7;2 i %192 — mg [re - %Cos 9} (6.48.10)

Sviluppando al secondo ordine si trova

E= % (mr* + 1) 6* — mg [r (Beq +0) — %cos (Beq + (5)]
1 . L L 1L
=3 (mr2 +1) 6% —mg [r (g +6) — 5 cos Oeq + 55511196,, — 55(52 cos 934 +0(6%)
1 . 1 L
=5 (mr* +1) 6% + Emgiéz cos 0, + costante + O(6?) (6.48.11)

Il momento d’inerzia rispetto al perno ¢ dato dalla somma dei contributi del disco e
dell’asta (che si ottiene usando il teorema di Koenig):

1 L\? r2 L2
ML m (2> ] = m <2 + 5 (6.48.12)

La pulsazione delle piccole oscillazioni ¢ data infine da

02 — Scosfy mgL /1 —sin? 0,

CItmrr o m (324 112)

1
== 2
—zmr—l—

L 492 L? 2
8V T 8y T

= = 6.48.13
3243 G2 41

PROBLEMA 6.49
( Un carretto in discesa *xx

Un carretto & costruito come in Figura da tre cilindri uniti tra loro da tre barre rigide
e prive di massa. I cilindri possono ruotare liberamente attorno al proprio asse. Si ha
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[

Figura 6.47.: Lo schema del carrello. I tre cilindri hanno massa M, M, M3 e raggi Ry,
Ry, R».

rotolamento puro sia nei punti di contatto tra i cilindri, sia nel contatto tra cilindri e
piano.

Il carretto & appoggiato su un piano inclinato di un angolo 0 rispetto all’orizzontale,
ed € immerso in un campo gravitazionale costante.

1. Il carretto puod scendere lungo il piano per qualsiasi valore di Ry, Ry e R3?

2. Calcolare l'accelerazione del carretto.

Soluzione

Se indichiamo con wy, wy e w3 le velocita angolari dei tre cilindri le condizioni di
rotolamento puro sul piano inclinato danno

Om = _lel (6.49.1)
Om = —R3a)3 (6.49.2)

dove v, € la velocita del centro di massa del carretto, parallela al piano. Imponendo
rotolamento puro anche nei punti di contatto tra i cilindri abbiamo inoltre

w1R1 = —CUZRZ (6493)
aJ3R3 = —(U2R2 (6494)

Abbiamo quattro condizioni per le quattro variabili vy, w1, e w3 che perd non sono tutte
indipendenti tra loro: ad esempio sottraendo membro a membro le Equazioni (6.49.1)
e (6.49.2) oppure le Equazioni (6.49.3) e (6.49.4) otteniamo infatti lo stesso risultato. In
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conclusione e possibile esprimere tutte le velocita angolari in funzione della velocita vy,

w1 = Ucm
L = -
Ry
wy = Ocm
Ry
w vcm
3 = —
R3

ma quest’ultima puo avere un valore arbitrario e quindi la discesa e possibile.
Un metodo veloce per calcolare 1’accelerazione ¢ scrivere 1'energia del carretto. Ab-
biamo

1 1 1 1
E= Eh“’% + Elzwg + 513w§ +5 (M + Mo + Ms) 02, + (M1 + M + M3) gh (6.49.5)

dove I; = M R%/ 2,1, = M2R§ /2el3 = M3R§/ 2 sono i momenti di inerzia dei cilindri
rispetto ad un asse passante per il centro di massa. Possiamo anche scrivere

h=hy— scusinf

dove 5., € lo spostamento del centro di massa rispetto alla posizione iniziale, che si
trova ad una quota hg. Chiaramente v.;, = $¢,. Sostituendo abbiamo

13 .
E= 33 (My + My + M3) 82, + (My + My + M3) g (hg — Sem sin 0) (6.49.6)

e derivando rispetto al tempo

3 . :

da cui

2
Sem = gg sin 6 (6.49.8)

PROBLEMA 6.50
( Caduta di una torre x x %

Su un piano inclinato rispetto all’orizzontale di un angolo « si costruisce una torre come

in Figura sovrapponendo un numero infinito di strati. Ciascun strato & formato da

una coppia di cilindri di raggio R e massa M, sui quali appoggia un parallelepipedo di

massa M. I cilindri rotolano senza strisciare su tutti i piani con i quali sono a contatto.
Determinare le accelerazioni angolari dei cilindri.
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Figura 6.48.: La torre sul piano inclinato. Con g si indica la componente della forza di
contatto esercitata dallo strato k-simo di cilindri sul piano inferiore paral-
lela a quest’ultimo. Similmente con fj si indica la componente della forza
di contatto esercitata dallo strato k-simo di cilindri sul piano superiore,
sempre parallela a quest'ultimo.

Soluzione

Se scriviamo le equazioni del moto per i cilindri e per i parallelepipedi, notiamo che
queste consistono in relazioni lineari tra le costanti in gioco. Inoltre 1'unica componente
rilevante dell’accelerazione di gravita e quella parallela al piano. Di conseguenza per
motivi dimensionali I’accelerazione angolare dei cilindri del primo strato dovra essere
della formadove 8 € una costante adimensionale da determinare. Per la condizione di
rotolamento puro l’accelerazione del primo parallelepipedo & parallela al piano inclinato
e vale

a1 = —2Rwy = —2Bgsin 6 (6.50.1)

Consideriamo adesso il sistema appoggiato su questo parallelepipedo. Dato che la torre
e costituita da un numero infinito di strati, esso & indistinguibile dalla torre completa.
L'unica differenza & che nel sistema solidale con la base dovremo tenere conto della
forza apparente dovuta all’accelerazione, che si tradurra in una accelerazione di gravita
efficace lungo il piano uguale a

¢'sinf = ¢gsin® —a; = gsin6 (1+ 2p8) (6.50.2)
e di conseguenza
'sin6 in 60
W, = B8 s;“ — g8 511{“ (1+2p) (6.50.3)

Scriviamo adesso le equazioni del moto per i cilindri del primo strato. Abbiamo per il
centro di massa di ciascuno di essi

— MRwy = —MpBgsinf = Mgsinf — % (fi+81) (6.50.4)
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Mgsinf |
J2
v Mgsh}@ v Mgsh}@
-~ v
92 Mgsinf) ~ a
]
1
v gsin 6 v Mgsin 0
/w/ 9 /w/
Figura 6.49.:
e per 'accelerazione angolare
.1 ,,¢sinf 1 _
lwy = EMR B R = §R<f1 Q1) (6.50.5)
Per il centro di massa del parallelepipedo abbiamo invece
May = —2MBgsinf = fi + g (6.50.6)

Abbiamo tre relazioni e quattro incognite (3¢, f1, 1, §2)- Aggiungiamo quindi le equa-
zioni per il secondo strato. Nel sistema di riferimento solidale con il parallelepipedo
abbiamo per il centro di massa di ciascuno dei cilindri

gsinf

— MR, = ~MRB—

(1+2B) = Mgsin6 (1 +28) — % (htg)  (6507)

e per le loro accelerazioni angolari

1. 5, gsin®
Iwz—EMR/S R

1
(1+2p) = 5R(f2 ) (6.50.8)
Abbiamo adesso un numero sufficiente di equazioni. Le riscriviamo per chiarezza:

2M (14 p)gsin® = fi+ g1
MBgsind = f; — g1

—2MpBgsint = f1 + ¢

2Mgsinf (1+B) (1+2B) = o+ &
Mgsinfp (1+2B) = o —
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Ricaviamo f; sommando membro a membro le prime due equazioni e g, sottraendo le
ultime due

fi = Mgsin6 <1+;ﬁ>

g = Mgsin6 (1+2p) <1+;B)

ed infine sostituiamo nella terza, ottenendo
3 1

Abbiamo le due soluzioni = —3 + /7. Abbiamo gia determinato le accelerazioni
angolari dei primi due strati di cilindri in funzione di B. Per determinare quelle dei
successivi possiamo osservare che l’accelerazione del parallelepipedo k-simo sara

k
ar = —2R ) dy (6.50.9)
i=1
e risolvendo per i cilindri posati sopra di esso avremo

wk-ﬁ-l = g (gsin9 — llk)
che confrontata con la relazione valida per lo strato precedente

Wy = g (gsin@ —{/'lk,l)

permette di ottenere (sottraendo membro a membro) la relazione ricorsiva
W1 = (1+2B) wy

ossia -
- _1 gsin
a = (1+28) " o = p(1 +2p) 850
che non diverge se |1 + 28| < 1. Di conseguenza 1'unica soluzione accettabile corrispon-
de a B = —3 + +/7: numericamente questo significa

k—1 gsin®
R
cioe la accelerazioni angolari tendono a zero esponenzialmente con k. Anche le accelera-

zioni dei parallelepipedi si calcolano facilmente: sommando la serie geometrica (6.50.9)
abbiamo

Wy ~ —0.35 x (0.29) (6.50.10)

a; = gsinf [1 —(1+ 2/3)"*1} (6.50.11)

cioe limy_,, ax = g sin6: I’accelerazione dei parallelepipedi degli strati pit1 alti & sempre
piu vicina a quella di un corpo che scivola liberamente sul piano inclinato. Quelle dei
parallelepipedi sottostanti sono inferiori.
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6.51. CILINDRO VINCOLATO AD UNA MOLLA »*x

PROBLEMA 6.51
( Cilindro vincolato ad una molla xx S

Figura 6.50.: Il cilindro vincolato da una molla, indicata dalla linea trattaggiata.

Il cilindro in Figura di raggio R e massa M, rotola senza strisciare su un piano
orizzontale. Il suo centro A ¢ fissato ad un punto O del piano da una molla di costante
elastica k e lunghezza a riposo nulla. Inizialmente A si trova sulla verticale di O.

1. Per quale valore minimo della velocita angolare iniziale il cilindro riesce a compie-
re un giro completo.

2. Scelta un’opportuna coordinata scrivere I’equazione del moto del cilindro.

3. Determinare la frequenza delle piccole oscillazioni attorno alla posizione di equi-
librio.

Soluzionﬂ

Domanda 1 L’energia del sistema si conserva e vale
k
2
dove I = 3MR? ¢ il momento di inerzia del cilindro rispetto al punto di appoggio, w la
velocita angolare e / la lunghezza della molla. Inizialmente

k
2
e dopo un giro completo, supponendo che il cilindro sia fermo,

1
E= EI(UZ—I— 02

1
E; = §1w3+ R?

k
Ef = - (R*+41°R?
f =5 (R +47°R%)
Ponendo E; = E; troviamo

4712k R?
I

wy =

18primo esercizio scritto Fisica 1 del 10 settembre 2010
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6.52. URTO TRA UN TRIANGOLO E UN QUADRATO #*x

abbiamo2 Scrivendo I’energia in funzione dell’angolo di rotazione 6 abbiamo

E= %192 - g (R? + R*¢?)
ed eguagliando a zero la derivata dell’energia
E =166 +kR*06 = 0
otteniamo 1’equazione del moto

16 +kR?*0 =0

che corrisponde ad un oscillatore armonico.
Domanda 3 Dall’equazione del moto precedente troviamo direttamente

PN
27 I 27V 3M

Notare che I'approssimazione di piccole oscillazioni non e necessaria, dato che il sistema
¢ un oscillatore armonico.

PROBLEMA 6.52
( Urto tra un triangolo e un quadrato xx

C' C D

Vo

mr mq

B A B A
Figura 6.51.: Il triangolo e il quadrato prima dell’urto.

Un quadrato di lato a e massa mg € appoggiato su un piano orizzontale privo di attrito.
Un triangolo isoscele e rettangolo di massa m, con cateti della stessa lunghezza del lato
del quadrato, disposto come in Figura si muove liberamente verso il quadrato con
velocita iniziale vy. L'urto avviene istantaneamente e il vertice A’ del triangolo rimane
vincolato al vertice B del quadrato. Il triangolo puo pero ruotare liberamente attorno ad
A’ = B. Dire anzitutto se durante 1'urto si conserva il momento angolare del sistema
rispetto al polo B. Determinare quindi per quale minima velocita vy 'ipotenusa del
triangolo arriva a contatto con un lato del quadrato.
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Soluzione

Durante 1'urto 'unica forza impulsiva che agisce sul triangolo € la reazione vincolare in
A" = B. Di conseguenza durante 1'urto si conserva il momento angolare del triangolo
rispetto a tale punto. Prima dell’urto questo vale

-

Li = mTEA Vg

dove b & il vettore che unisce il punto A" = B con il centro di massa del triangolo. Il
valore di b verra determinato nell’Esercizio

Dopo l'urto il quadrato si muovera con velocita V, e il triangolo ruotera attorno al
punto A’ = B con velocita angolare w.

Y
c' C D
v
cm
- w
AN
124 T=D A z

Figura 6.52.: Il triangolo e il quadrato immediatamente dopo 1'urto.

Il suo momento angolare sara dato dal contributo del centro di massa e dal momento
angolare di rotazione attorno ad esso. La velocita del centro di massa del triangolo sara

VCM,TZVJE—FCT)/\E

e quindi

if = mTE A VCM,T + I7@

dove abbiamo indicato con It il momento di inerzia del triangolo rispetto ad un asse
parallelo all’asse z passante per il suo centro di massa, che calcoleremo nell’Esercizio[6.54}
Dalla conservazione segue che

me/\V() = mTE/\(Vf—F(I)/\E)—FIT(IJ
= mTVEA:?+mTEA(J;AE)+ITJJ

Inoltre si conserva la quantita di moto orizzontale del sistema, cioé

mrVog =mrV +mr (C?)/\E) X +mgV
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6.53. CILINDRO VINCOLATO AD UNA MOLLA SUL BORDO #*x

Queste due equazioni permettono di calcolare le velocita V e @. Calcoliamo esplicita-
mente i prodotti vettoriali,Utilizzando queste identita possiamo riscrivere la conserva-
zione del momento angolare come

—mrVob, = —mrVby+mrw (b +8}) + Irw
mrVo = mrV —mrwb, +mgV
e risolvendo troviamo
w - bymgmr Vo

mr [b%(ﬂle +mr) + b;mg} + IT(mQ + my)
b2 4 I
vV — mr (mT Pl T) Vo
mr {b%(mQ +mr) + bﬁl’l’lQ} + IT(WIQ + m7)

Dato che V' # 0 dopo l'urto il quadrato si muove, e quindi ha un momento angolare non
nullo. Di conseguenza il momento angolare del quadrato non si e conservato (prima
dell’urto e nullo) e neppure lo ha fatto quello totale del sistema. Questo significa che
durante 1'urto il piano orizzontale ha applicato un momento impulsivo diverso da zero
al quadrato.

Dopo 'urto si conserva l'energia totale del sistema e la sua quantita di moto orizzon-
tale. La minima velocita necessaria per avere il contatto si puo determinare scrivendo
I'energia iniziale nella forma

1

1
Ei = EmTVéM,T -+

1
EITwz + meVZ +mrgby,

2
dove

= (V& + wbyf — why?)?
= (V—wby)’ + w?b?

e w, V sono le velocita appena determinate. L'energia al momento del contatto sara
invece la somma dell’energia cinetica del centro di massa e di quella gravitazionale

mrt Vo

2 V2
ﬂ’lT—FWlQ> + ngT (by + bx)

1
Efzz(mT+mQ)<

Dall’eguaglianza E; = Ey si determina Vj.

PROBLEMA 6.53
( Cilindro vincolato ad una molla sul bordo xx

Il cilindro in Figura di raggio R e massa M, rotola senza strisciare su un piano
orizzontale. Un punto P sul bordo é fissato ad un punto O del piano da una molla di
costante elastica k e lunghezza a riposo nulla. Inizialmente P coincide con O.
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6.53. CILINDRO VINCOLATO AD UNA MOLLA SUL BORDO #*x

Figura 6.53.: 11 cilindro vincolato & vincolato ad un moto di puro rotolamento, ed e
collegato ad una molla indicata dalla linea tratteggiata.

1. Discutere le posizioni di equilibrio e la loro stabilita.
2. Per quale velocita angolare iniziale il cilindro riesce a fare un giro completo?.

3. Determinare le equazioni del moto del sistema. Cosa succede alla frequenza di
oscillazione attorno alla posizione di equilibrio stabile nel limite di piccole oscilla-
zioni?

Soluzioneiﬂ

Domanda 1 Utilizzando come coordinata I’angolo di rotazione del cilindro scriviamo
'energia potenziale

_Lp
U= Eké
dove ¢ e I'allungamento della molla. Si ha

? = (RO —Rsinf)*+ (R — Rcos)?
2R? + R?6%? — 2R?#sinf — 2R? cos f

e quindi, a meno di una costante
1
u= EkR2 (6* —20sin 6 — 2 cos 0)
Troviamo i punti stazionari. Derivando otteniamo
U’ = kR?0 (1 — cos8)

e quindi si ha equilibrio per
0 =2mn

dove m & un intero. Studiamo la stabilita, derivando ancora una volta:

U” = kR? (1 — cos§ + 0sinh)

Primo esercizio scritto Fisica 1 del 10 settembre 2010
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che si annulla nei punti di equilibrio. Derivando ulteriormente abbiamo
U" = kR?* (0 cos 0 +2sin6)
che calcolata nei punti di equilibrio da
u" = 4kR*mm

Abbiamo dei flessi orizzontali (equilibrio instabile) per 6 = 2mm conm # 0. Per 6 = 0
(m = 0) serve ancora una derivata. Abbiamo

U"" = kR? (3cos6 — tsinf)

e quindi un minimo (equilibrio stabile) per 6 = 0.
Domanda 2 L’energia si conserva, e vale
1.0 1,00 .
E= 519 + EkR (6> —20sinf — 2 cos 6)

Inoltre il potenziale & una funzione non decrescente di  per 6 > 0. Eguagliando energia
iniziale e finale abbiamo quindi

1
Elwz — kR* = kR* (27 — 1)
e quindi
4712kR?
w =
I
_ [k
B 3 m

dove si & tenuto conto del fatto che I = %mR2 ¢ il momento d’inerzia del cilindro rispetto
al suo asse di rotazione istantaneo.

Domanda 3 L’equazione del moto si pud ottenere rapidamente derivando 'energia.
Si trova
16 + kR0 (1 — cosf) =0

Per piccole oscillazioni possiamo approssimare 1 — cos 6 ~ 62/2 e I'equazione diventa

.. R?

Non si tratta di un’oscillazione armonica. Per studiare il periodo di oscillazione consi-
deriamo nuovamente 'energia.

E= %192 + %kR2 (92 —20sin6 — 2 cos6)
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Per piccoli valori di § possiamo approssimare

sinf o~ 9-%9%0(95)
~ 1oty L 6
cosf ~ 1 29 +249 + 0 (6°)

Si deve andare oltre 'approssimazione al secondo ordine dato che i termini del secondo
ordine, come si verifichera tra un momento, si cancellano. Sostituendo abbiamo, a meno
di una costante irrilevante,

1. ., 1
E ~ ~16% + ~kR?0*
20ty

e le piccole oscillazioni si hanno per E — 0. Possiamo scrivere

che si integra per separazione delle variabili

fa=1
kR2 kRZ g4

Scegliendo come angolo iniziale 8(0) = 0 e come angolo finale 1’estremo dell’oscil-
lazione l'integrale al primo membro da un quarto del periodo. Quanto all’estremo
dell’oscillazione, si tratta dell’angolo che annulla il termine sotto radice, cioe

8E \ /4
Gmux = <kRz>

Gmax
/ kR2 kR? g4

Usando la nuova variabile u = 0/6,,,, 'integrale diventa

T 22\ Y du

4 (kR2E> /0 1—ut
L’integrale € una costante indipendente da E che non ¢ importante calcolare, e vediamo
che

e quindi

IimT = o0
E—0

quindi per piccole oscillazioni la frequenza tende a zero.
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PROBLEMA 6.54
( Centro di massa e momento di inerzia di un triangolo **

Determinare la posizione del centro di massa di un triangolo di lati a, b e c qualsiasi. Se
il triangolo ha una massa totale m distribuita in modo omogeneo trovare il momento di
inerzia rispetto ad un asse passante per il centro di massa e ortogonale al piano a cui il
triangolo appartiene. Specializzare il risultato ottenuto per determinare il vettore b e il
momento di inerzia It definiti nell’Esercizio[6.52

Soluzione

Indichiamo con 74, 7 e 7¢ i vettori corrispondenti alle posizioni dei tre vertici del
triangolo. Per comodita conviene introdurre anche i due vettori

AB = 73—Ta
C = Fo—7a

L’area totale del triangolo e data da
1) - -
— 5 |AB A AC|
2
e un qualsiasi punto del triangolo sara parametrizzabile nella forma
7(s,t) = Fa +sAB + tAC

con s +t < 1. Calcoliamo anzitutto il centro di massa. Applicando direttamente la
definizione abbiamo

oM = /prstdS

1—t
= rA+ dt/ ds)ffB/\KC‘?(s,t)
0

dove si e tenuto conto del fatto che 1’elemento di superficie e

ds = ‘A”B AXC) dsdt

@ 476 versione del 5 ottobre 2016
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e si ¢ indicato con p la densita superficiale di massa. Scriviamo esplicitamente 1'integrale:
1 1t . .
Fom = 7a +2/ dt/ ds [SAB + tAC}
0 0

1 1—t
:?A+2/ dt/ ds tA*B+tA*C]

=74+ E /dttl—t
1

—rA+§[ B+AC}

1.,

:g(T’A‘f”’B‘f’rC)

Per semplificare i calcoli si e tenuto conto del fatto che I'integrale non non varia scam-
biando tra loro s e t nell’integrando. Si tratta del baricentro del triangolo.
Calcoliamo adesso il momento di inerzia. Abbiamo

0 0

I due integrali rilevanti (sfruttando ancora la possibilita di scambiare s e t nell’integran-

/tdt/lt s(-2) = [wa-n(-1) =%
[ ds<s_><_>:_/dt1_t (t_3> 1

e quindi
Iy = % O/YB‘Z n ‘/TC‘Z _AB. AE)

Possiamo anche scrivere
m |1 - |2
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6.55. URTO CON UNA SBARRA INCASTRATA *x

ed usando il teorema di Carnot otteniamo infine
m
Iey = o (> + 1% +¢2
M = 3¢ (a* +b” + %)

Applicando questi risultati all’Esercizio otteniamo

- 1 . .
b: CM—}’A/ZE(B/—FTC/—ZVA/)
1 1
= g (?B/ —?A/) + g (TC/ _?A’)
—a —a 2
1
S NI ) v e
0 0 0

12
It = ICM—I—mT‘b‘

=m a2+m Sa

T g
2

I*WLTHZ

3

dove a e mt sono i parametri definiti nell’esercizio.

PROBLEMA 6.55
( Urto con una sbarra incastrata xx

Una sbarra di lunghezza ¢ e massa m € appoggiata su un piano orizzontale privo di
attrito. I suoi due estremi sono appoggiati a due pareti perpendicolari tra di loro come in
Figura non si possono staccare da queste ma possono scorrervi sopra liberamente.

La sbarra ¢ inizialmente ferma ed inclinata di 8y = 7/4 rispetto all’orizzontale.

Un punto materiale di massa m’ si muove parallelamente ad una delle due pareti ad
una distanza b da essa, come in Figura, con velocita vy in modulo. Ad un certo istante
colpisce la sbarra e rimane attaccata ad essa. Calcolate la velocita angolare del sistema
asta+massa

o immediatamente dopo l'urto

o negli istanti successivi, in funzione dell’angolo 6 di inclinazione rispetto all’oriz-
zontale

Soluzione

Le forze esterne che agiscono sul sistema sono le reazioni normali delle pareti. Se pren-
diamo come polo l'intersezione tra le rette perpendicolari alle pareti nei punti di contatto
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Figura 6.54.: La sbarra appoggiata ad un angolo tra due pareti.

con la sbarra vediamo che entrambe le reazioni hanno momento nullo, di conseguenza
si conserva il momento angolare. Ponendo ’origine nell’intersezione tra le due pareti il
polo si trova nel punto di coordinate

(x,y,2z) = (£cos By, £sinby,0) = (5?/5?,0)

abbiamo prima dell’urto

Li=—m'(b—{cosby)vez = —m' (b — f?) VoZ

ed immediatamente dopo
I: f= I()(Uoﬁ
dove Iy e il momento di inerzia del sistema rispetto al polo prescelto. Tenendo conto che

la massa rimane attaccata alla sbarra ad una distanza d = b/(cos6y) dal suo estremo
abbiamo

4 a / 2 2 2
Iy = m—=+m—+m [(EcosGo—b) + b tan 90}

12 4
2
(ﬁ‘zﬁ — b) +b?

/2 /2
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6.56. URTO ANELASTICO CONTRO UN PENDOLO FISICO #*x

Di conseguenza la velocita angolare immediatamente dopo 1'urto sara

m’ (b — Z?)
Ip

woy = — 00

In seguito si conserva l'energia cinetica del sistema, che scriveremo nella forma

1 1
E = -1(0)w? = SIwp
51(0) 5 Tocp
Adesso I(8) & il momento di inerzia del sistema rispetto al suo asse di rotazione istan-
taneo. Ma quest’ultimo coincide con l'intersezione tra le rette perpendicolari alle pareti
nei punti di contatto (e quindi inizialmente I = Iy). In altre parole

2 02 p cos 6 \? sinf \?
1(9)—mﬁ—|—mz+m <€cos€—bcos€0) +(bc0590>
e quindi
w = wyy | L
Ve

PROBLEMA 6.56
‘7 Urto anelastico contro un pendolo fisico

oM

Figura 6.55.: Il pendolo fisico considerato nel problema, prima dell’urto (a sinistra) im-
mediatamente dopo (al centro) e alla massima inclinazione raggiunta (a
destra).
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Un’asta di lunghezza L e massa M puo ruotare liberamente attorno ad un punto posto
ad una distanza d < L/2 dal suo centro di massa. Inizialmente si trova in equilibrio in
posizione verticale. Una massa m colpisce 1’asta al di sotto del punto di sospensione, ad
una distanza ¢ da esso, con velocita vy diretta orizzontalmente, e rimane attaccata. Per
quale valore minimo di vy I'asta inizia a ruotare? (vedere Figura [6.55).

Soluzione

Dato che durante l'urto l'unica forza impulsiva che agisce sul sistema & la reazione
vincolare al punto di sospensione O, il momento angolare del sistema rispetto ad esso si
conserva. Il momento angolare immediatamente prima dell'urto ¢ quello della massa,

Li = m[—£9] A (vof) = mlvg2

Dopo l'urto abbiamo un unico corpo rigido che ruota attorno al punto di sospensione
con velocita angolare
W = wi

quindi il momento angolare finale sara
Lf = Iwz
dove IZ e passante per O, I = Lyssa + Lusta €

Inassa = me>
1
lasta = 75 ML? + Md®
Dalla conservazione L. F= L; otteniamo la velocita angolare
w = ?ﬁvo (6.56.1)

Dopo l'urto la conservazione del momento angolare non e piti valida a causa del momen-
to della forza di gravita. Si conserva pero l'energia, che inizialmente (immediatamente
dopo l'urto) varra

Ei = %Icu2 — Mgd — mgl
Quando 6 raggiunge il suo valore massimo (¢ = 7r) avremo w = 0, quindi
Ef = Mgd + mgl

edaE, =E ¢ otteniamo
d {4
W — a8 ;ng
cioe, sostituendo la (6.56.1)
o 4IgMd+ml
OoOn —m —/——F—
07 2 02

4 M M1
vy = \/g <£+md> [z%m <12L2+d2>}
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6.57. TRE CILINDRI IN EQUILIBRIO %

PROBLEMA 6.57
( Tre cilindri in equilibrio xx

. . M. R

Figura 6.56.: I tre cilindri in contatto considerati nel problema.

Tre cilindri identici di massa M e raggio R sono disposti come in Figura su un
piano orizzontale privo di attrito. Al centro di massa del cilindro in basso a sinistra
e applicata una forza costante F. Determinare per quali valori di F il sistema accelera
come un tutto unico mantenendo invariate le posizioni relative dei cilindri.

Soluzione

Sappiamo che i tre cilindri devono avere la stessa accelerazione. Consideriamoli separa-
tamente. Per quello in basso a sinistra avremo lungo la direzione orizzontale

1
Ma=F— Ny — >N

e per quello in basso a destra

1
Ma = N1—|—§N2

Per il cilindro in alto varranno le due equazioni

1 1
Ma= _-N3— =N
a 5 3 5 2
0= £Nz—i—if\fg—Mg

Con Nj, N; e N3 abbiamo indicato le forze di contatto che i cilindri esercitano reciproca-
mente, scelte come in Figura

L’accelerazione si calcola facilmente sommando membro a membro le prime tre
equazioni. Il risultato e
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Figura 6.57.: La convenzione scelta per le forze di contatto. In rosso sono indicate le
forze applicate al cilindro in basso a sinistra, in verde quelle applicate al
cilindro in basso a destra, in blu quelle applicate al cilindro in alto.

come era facile anticipare considerando il moto del centro di massa del sistema. Sot-
traendo membro a membro otteniamo dalle prime tre equazioni e dall’ultima il sistema

1 1
2 - “Ns =
N1+2Nz+2N3
1
N1—|-N2—§N3:0
V3 \@
——N. =M
5 2+ & 2 g
che ha per soluzione
1 1
Ni=-F-—M
1 7 \[ 8
Ny = —M ——F
V3s
1 1

N3 =-F+—M
= 3F+ aMs

I segno delle forze di contatto e riassunto nel diagramma al variare di F.
Dato che queste possono essere nella situazione considerata solo positive vediamo
che le posizioni relative possono rimanere invariate solo per

Mg
V3

che corrisponde all’intervallo di possibili accelerazioni

< F < MgV3

£ <4 <—

3v3 Ve
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L F=—MgV3 CFP=1 L F=MgV3
Figura 6.58.: Il segno delle reazioni normali al variare di F. Le posizioni relative rimango-
no invariate solo nell’intervallo Mg/+v/3 < F < Mg+/3. In tutti gli altri casi
almeno una delle reazioni N; diviene negativa, segnalando che i cilindri
perdono contatto nel modo indicato.

PROBLEMA 6.58
( Sistema di punti materiali equivalenti ad una sfera x x x

Si vuole sostituire una sfera omogenea di massa M e raggio R con un insieme di punti
materiali identici di collegati rigidamente tra loro, in modo che i due sistemi abbiano le
stesse proprieta dinamiche. Qual’e il minimo numero di punti materiali necessari? Che
massa devono avere? Come devono essere disposti?

Soluzione

Per avere le stesse proprieta dinamiche della sfera il sistema costruito deve avere la
stessa massa totale e lo stesso tensore di inerzia. Ponendo il polo nel centro di massa
questo sara della forma
1
2
I=ZMR*| 0

0
1
5 00

0
0
1

Mostriamo anzitutto che sono necessari almeno quattro punti materiali. Un unico punto
ha un tensore di inerzia nullo. Con due punti abbiamo una asse (quello passante per
essi) con momento di inerzia nullo, ma una sfera ha un momento di inerzia %MR2
lungo un asse qualsiasi. Infine, tre punti appartengono necessariamente ad un piano.
Si e verificato in un esercizio precedente (Esercizio che il momento di inerzia
perpendicolare a tale piano e uguale alla somma dei momenti di inerzia relativi a due
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assi appartenenti allo stesso, mentre nel caso che ci interessa dovrebbero essere tutti
uguali.

Consideriamo adesso le coordinate di quattro punti materiali. Introduciamo le quan-
tita

u = (xl, X2, X3, X4)
v = (yl,yz,yg,, y4)
w = (21,22,23124)

dove x;, y; e z; sono le coordinate del punto materiale i-simo. Dato che il centro di massa
e nell’origine deve essere
Lt=Lw= =0
i i i

quindi #, v e w appartengono tutti al sottospazio di R* dei vettori con somma delle
componenti nulle. Ciascun punto avra massa totale M /4. Per ottenere i corretti elementi
sulla diagonale del tensore di inerzia dovra essere

M2y o M2y 2
I, = 412(3514—%) = 4 (\u| +”U‘>—5MR
M M 2
Iyy = ZZ(X% +zf) = T (\u|2+ ’w|2> = gMRZ
1
M M
Lo =7 L@+ = 7 (lwl’+of) = ZMR?
1

da cui segue

uf? = [off = ol = SR
Inoltre gli elementi fuori diagonale sono nulli, quindi
Ly = —Zf;xiyi:—]z[u-vzo
I, = —Zf;xizi:—]fu-w:o
I, = —]fzi:yizi:—]fv-wzo

cioe i tre vettori sono ortogonali tra loro. Una base nel sottospazio desiderato si pud
scegliere ad esempio nella forma

1
ee = —(1,0,0,—1
1 ¢ﬂ )
1
e = —(0,-1,1,0
2 Vﬂ )
1
e = 5(1,-1,-11)
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e quindi potremo scrivere

+ 2
:\/;Relz\/;R(l, 0, 0, —1)
4 2
:\/;R@:\/;R(O, -1, 1, 0)
4 2,01 1 11
”’:\[512"3:\@1{(@ RV L ﬁ)

Questa & solo una delle soluzioni possibili. Tutte le altre si possono ottenere ruotan-
do la base scelta, rimanendo pero nel sottospazio scelto. Questo € equivalente ad una
rotazione rigida arbitraria del sistema attorno all’origine, come ci si puo0 aspettare. In
conclusione le masse devono essere poste nei punti

SIS
\[R<0’ ’ 2>
\[ (0’1’ 12)
(s

Tutti gli 7; hanno la stessa lunghezza,

S
I
arl N

S

I
N

71

o1l

N
I
I N

cosf = H ‘:— (i #7)

Le masse si trovano quindi ai vertici di un tetraedro, che per quanto visto puo essere
ruotato arbitrariamente attorno all’origine.

PROBLEMA 6.59
( Tiro al piattello xx

Un disco di massa M e raggio R si muove liberamente su un piano orizzontale z = 0.
La velocita del centro di massa & 7 = vy£, la velocita angolare & = Avg/RZ. Con una
apposita pistola si vuole trapassare il disco con un chiodo. Dopo che questo ¢ avvenuto
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ISy

Vo X

Figura 6.59.: 1l disco del problema, in un sistema di riferimento con origine nel suo
centro.

il disco rimane vincolato e puo solo ruotare attorno al chiodo, che rimane infisso nel
piano.

Determinare (se possibile) quale punto del disco € necessario trapassare per un dato
valore del parametro A se si vuole che

1. Su disco perda tutta I’energia cinetica posseduta;

2. il disco conservi tutta 1’energia cinetica posseduta.

Soluzione

Una quantita che si conserva durante l'impatto con il chiodo ¢ il momento angolare
rispetto al punto in cui questo viene infisso. Fissiamo un sistema di riferimento con ori-
gine nella posizione del centro del disco al momento dell’impatto. Il momento angolare
rispetto a un punto generico posto in

7=xX+yj

e dato prima dell’urto da

L=m(—7)A (D) +
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1. Se tutta I'energia cinetica viene persa, allora dopo I'urto L. = 0. Ma allora anche il
momento angolare iniziale sara nullo, e questo accade se

A
=—-R
YT
mentre x puo essere scelto arbitrariamente. Potremo dunque fermare completa-

mente il disco con il chiodo per —2 < A < 2.

2. Affinche tutta I'energia cinetica si conservi dovremo evitare che la reazione del
chiodo nel momento in cui viene infisso faccia lavoro. Colpiremo quindi il disco
nel punto fermo in quell’istante. La velocita di un punto generico sara

+ @ AT = 0ok + (A%Z) A (x% + 1)

<i
I
Q

(7)

I
S,

EPYA W R
o (1-Ag) A5y
e quindi dovremo scegliere
X =

y:

>l= <

Questo sara possibile per —1 < A < 1.2

PROBLEMA 6.60
( Cilindro in caduta su un piano inclinato xx

Figura 6.60.: Il cilindro nella posizione iniziale. Le velocita v e wg sono arbitrarie (anche
in segno).
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Un cilindro di massa M e raggio R viene lanciato lungo un piano inclinato con velocita
iniziale vy e velocita angolare wy. Il piano e inclinato rispetto alla direzione orizzontale
di un angolo 6, ed e presente attrito dinamico, caratterizzato dal coefficiente . Discu-
tere sotto quali condizioni il cilindro dopo un tempo sufficientemente lungo inizia a
compiere un moto di puro rotolamento.

Soluzione

Scriviamo la prima e la seconda equazione cardinale per il cilindro. Abbiamo

1
do =gsinf + —F,
m

dt
dw F

dove abbiamo indicato con F, la forza di attrito, che scriveremo nella forma

P umgcos®  vp <0
’ —pmgcost vp >0

dove
vp = v+ wR

e la velocita del punto del cilindro a contatto con il piano. La condizione di rotolamento
puro corrisponde a vp = 0. Combinando le due equazioni del moto possiamo costruire
una equazione per vp

dop d . mR%\ F,
ossia
dop {gsin@—fiygcos@ vp >0

dt gsin® +3ugcost vp <0

Vediamo che nel caso vp < 0 1’accelerazione 0p € costante e positiva. Di conseguenza vp
crescera linearmente e avremo rotolamento puro dopo un intervallo di tempo

vy + woR
g (sin® + 3y cos )

t=—
Nel caso vp > 0 dobbiamo distinguere due casi. Se

> %tanf)

avremo 0p > 0, e arriveremo al rotolamento puro dopo un tempo

vy + woR
< (3pcosb —sinb)

b=
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wR

] ~_( -
Q,

/ Rotolamento puro

Figura 6.61.: L'evoluzione del sistema nel piano (wR, v).

In caso contrario vp < 0 e la condizione di rotolamento puro non sara mai raggiunta. La
situazione & riassunta in Figura [6.61]

In essa un punto nel piano corrisponde ad una possibile combinazione di velocita
e velocita angolare. Gli assi e la bisettrice del secondo e quarto quadrante dividono il
piano in sei zone: per ciascuna e indicato il verso della velocita angolare, della velocita
del punto di contatto con il piano e del centro di massa. La linea rossa corrisponde ai
moti di puro rotolamento.

Indipendentemente da u e 6 un punto al di sotto della della linea rossa evolve sempre
verso di essa. Infatti dalle Equazioni segue che in questa regione w > 0,0 > 0,
dato che F, > 0. Quindi il sistema si spostera come indicato dale frecce viola.

Un punto al di sopra della linea rossa ha w < 0, ma v puo essere sia positivo che
negativo (F, < 0, Equazioni (6.60.1)). Quindi pud evolvere verso rotolamento puro
(linee viola) oppure no (linee verdi), in accordo con l'analisi precedente.

PROBLEMA 6.61
( Distacco da una calotta sferica xx

Dalla sommita di una calotta sferica di raggio R viene lasciato cadere, con velocita
iniziale trascurabile, un corpo rigido e di forma sferica (raggio r). La massa totale m e
distribuita simmetricamente attorno al centro del corpo in modo tale che questo ha un
momento di inerzia I rispetto ad un asse passante per il centro.
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Figura 6.62.: 11 corpo sferico in caduta dalla calotta.

Se il cilindro rotola senza strisciare sulla calotta determinare I’angolo a cui avviene
il distacco. Considerare in particolare il caso di massa distribuita uniformemente, e
quello corrispondente al massimo e minimo valore possibile per I. Come deve essere
distribuita la massa negli ultimi due casi?

Soluzione

Scriviamo 'energia totale del sistema, utilizzando I'angolo 0 in figura come coordinata.
Abbiamo

1
E= El’wz +mg (R +r)cosf

dove
I' =1+ mr?

e il momento di inerzia del corpo rispetto al punto di contatto e w la sua velocita an-
golare. Per determinare quest'ultima notiamo che il centro del corpo compie un moto
circolare con velocita

v=(R+7)0

che deve pero anche essere, data la condizione di puro rotolamento,

da cui

Sostituendo nell’energia troviamo

1, R\? .,
EZEI 1+7 6+ mg (R+r)cosf
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Uguagliando all’energia iniziale (8 = 0, § = 0) otteniamo
0 _ 2mg 12
I' (R+r)

(1 —cosb)

che ci permette di conoscere 62 in funzione dell’angolo.
Dato che il centro di massa del corpo compie un moto circolare, I'equazione del moto
nella direzione radiale sara

—m (R+r)6* =N — mgcosf

dove N e la reazione normale della superficie della calotta. Il distacco si avra per N = 0,

ossia per

2mr?
I/

N =mg [cos@— (1—Cos(9)] =0

Questo significa

I I

Se la massa & distribuita uniformemente

2 A

2 7
I'= gmrz +mr? = gmr2

e quindi
10
cosf = — ~ 0.588
17
Il minimo valore di I si ottiene concentrando tutta la massa nel centro. In questo caso
I[=0e!l = mr? quindi
2
cost = 3~ 0.667
lo stesso valore che si ottiene per la caduta di un punto materiale. Il massimo valore

di I si ottiene concentrando tutta la massa sulla superficie esterna del corpo (si deve
mantenere la distribuzione simmetrica). In questo caso

om0
I = 2 | 7 sin 0d cos 0d¢
2 1
:% 9 (1—u?)du
2
- gmrz

Segue che I’ = 5mr? /3 e quindi

6
cosf = 11 = 0.545

Da notare che questo & il caso in cui il distacco avviene pit1 in basso.
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PROBLEMA 6.62
( Piccole oscillazioni di un cilindro parabolico * * %

s/

F
o=V

Figura 6.63.: I cilindro parabolico nella posizione di equilibrio. L’asse rispetto al quale
si vuole calcolare il momento di inerzia passa per il vertice della parabola
V ed e diretto lungo l'asse z.

Un cilindro parabolico pieno e costruito con un materiale omogeneo ed e tagliato
parallelamente alla direttrice della parabola che lo genera ad una altezza tale che il suo
centro di massa coincide con il suo fuoco (Figura [6.63). La distanza tra il vertice e il
fuoco della parabola e p/2, la massa totale m.

1. Discutere in maniera generale la posizione del centro di massa in funzione dell’al-
tezza di taglio, considerando sempre tagli paralleli alla direttrice della parabola.
Determinare 1’altezza alla quale ¢ stato tagliato il cilindro.

2. Supponendo che il cilindro rotoli senza strisciare su di un piano, descrivere la
traiettoria percorsa dal suo fuoco nel sistema di riferimento solidale con il piano.

3. Calcolare il momento di inerzia del cilindro rispetto ad un asse passante per il
vertice della parabola e perpendicolare alle basi.

4. Determinare la velocita angolare w del cilindro in funzione dell’angolo di rotazio-
ne.

5. Discutere le piccole oscillazioni del cilindro attorno alla posizione di equilibrio.
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Soluzione

1. Consideriamo il cilindro nella posizione in Figura La parabola generatrice
avra equazione
2
T
Dato che la massa ¢ distribuita uniformemente, le coordinate del centro di massa
saranno date da xc); = 0 (per ragioni di simmetria) e da

[ Jyds
YeM = 1T s

Scriviamo l'espressione precedente nella forma

fo f\ﬁ dxy
fo fﬁ dx

dove abbiamo indicato con & l'altezza del taglio. La prima integrazione & imme-
diata ed abbiamo infine

_ 2V fydyy? 8,
Yem = 7 2 5
24/2p [y dyy

Notare che il denominatore ¢ la superfice totale della base

che ci servira in seguito. Se il centro di massa deve coincidere con il fuoco avremo

3, _p

5" =3
da cui s

h gp

L’equazione della parabola sara dunque

e
Y= 1n

2. Possiamo indicare con s la lunghezza dell’arco tra il vertice V della parabola e
il punto di contatto P con il piano ad un istante generico. Una coppia di versori
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normali e tangenti alla parabola in P = ( X, 5 p) sono dati da

=
Il

1 1\ 1 P\ _ cos 0
VI+y2? y /P2 \x )\ —sind

S
Il

1 -y \ 1 —x \ _ [ sin6
«/1+y/2 1 _‘/pz_i_xz p - cosf
dove 6 & I’angolo di rotazione del cilindro. Dato che la parabola ruota senza stri-

sciare & anche la distanza O’P rispetto al punto di appoggio iniziale. Quindi le
coordinate del fuoco della parabola saranno

Xp = S+ﬁ'ﬁ

Yr = ﬁﬁ

()

. X P
Xp =S —|—x2<2

p*
1
F:

X
2

(z+%)

VP2 2
Per quanto riguarda s, avremo
s = /\/xz—k]ﬁdt
X
= / \/ 1+ y2dx
0

x/p
:p/ V' 1+ u2du
0

ossia, dato che

<

)

y

2
GG )
2 |\p p p
e quindi
_ P 1+ sinf
= 210g< cosf )
_ pr_1
YE = 5 cos0

Questa ¢ la traiettoria del fuoco espressa parametricamente in funzione dell’angolo
di rotazione. Si puo anche eliminare . Abbiamo infatti

P 2XF
Yr = 2cosh<p)
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3. Il momento di inerzia si puo determinare direttamente dall’integrale

s/ / x (x* 4 %)
=1 th/Z/ dy[ (2py)*"* +2+/2pyy?
3 [8

53
—m | —ph h2 = —“mp?
i ST ] ga""?
dove S ¢ la superfice della base determinata precedentemente. Per il seguito sara
utile il momento di inerzia rispetto al centro di massa,
2
Iem = Iy —mE- =
cu = v = mp = gy’
4. La velocita angolare cercata & semplicemente . Usiamo la conservazione dell’e-
nergia per valutarla ad un angolo di rotazione generico. Possiamo scrivere questa
nella forma

E= %I (8) w? + mgyr

Dove I(0) ¢ il momento di inerzia del cilindro rispetto a P, che possiamo ottenere
applicando il teorema di Steiner,

1(9) = ICM—l—mﬁz

p 2\
2 e
o (2 2P> ]

= Icm + mp? [’can2 0+ % (1 — tan? 9)1

=Icpq+m

e yr ha il valore determinato precedentemente. Abbiamo quindi

“= \/T(g@])g <1 - cols(9)

5. Per piccole oscillazioni possiamo considerare 6 < 1 e sviluppare I'energia al
secondo ordine. Otteniamo, a meno di una costante irrilevante

_ 1 2 P 2
E = 21(0)9 + mg29

con . 5
1(0) = Icm + mP = mp?

da cui possiamo calcolare la frequenza delle piccole oscillazioni

428
f= 53p
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PROBLEMA 6.63
( Caduta di una ruota esagonale lungo un pendio x x x

Figura 6.64.: La struttura considerata nel problema. La forma & quella di un esagono
regolare.

La struttura rigida esagonale rappresentata in Figura [6.64] & costituita da sei aste
identiche di lunghezza ¢ e massa m, e da una massa M fissata nel centro. Viene lanciata
con velocita angolare iniziale wy su un piano inclinato dalla posizione in Figura
Nel momento in cui una delle aste tocca il suolo rimane vincolata ad esso, ma libera di
ruotare, mentre la gamba vincolata precedentemente si libera.

Studiare, al variare di wy e degli altri parametri del problema, la caduta della struttura.
Dire in particolare se esistono condizioni nelle quali la caduta ha termine, condizioni
nelle quali la velocita angolare cresce senza limite, e condizioni nelle quali si stabilizza.

Soluzione
Nel seguito indicheremo con y = M + 6m la massa totale della struttura, e con
2

¢
I = 6m§ = 2m/(?

il suo momento di inerzia rispetto al suo centro di massa.
Consideriamo la caduta come successione di rotazioni di 7/3 della struttura. Osser-
viamo che ad ogni passo 'energia potenziale gravitazionale varia di

AU = —uglsinf
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Fino al momento del nuovo contatto della struttura con il piano inclinato si conserva
I'energia totale. Invece al momento del contatto, che considereremo istantaneo, si con-
serva il momento angolare rispetto ad un polo posto nel nuovo punto di appoggio, se
supponiamo che non vi siano forze impulsive che agiscono su P.

Figura 6.65.: La costruzione utilizzata per raccordare la velocita angolare della struttura
tra I'istante immediatamente precedente e quello immediatamente seguen-
te il momento del contatto con il punto P. I vettori azzurri indicano le
velocita del centro di massa, prima e dopo il contatto.

Possiamo utilizzare questo fatto per calcolare la variazione della velocita angolare.
Facendo riferimento alla Figural6.65vediamo che immediatamente prima del contatto la
struttura sta ruotando attorno al punto di appoggio precedente P. Il momento angolare
rispetto a P’ immediatamente prima del contatto vale quindi

1
L = Ilw; + ;Mzwi sing = <I + 2;162) w;
Subito dopo, la struttura ruota attorno a P/, con un momento angolare
Lf = ICUf + Mzwf = (I + ]/l£2> an
Uguagliando queste due espressioni troviamo
I+ ul?
= 1.” zwf

1

In conclusione detta w, la velocita angolare immediatamente dopo il contatto n-simo
avremo

2
1 o (IHBE N 2 ] 2) @2 —
2(1—1—;46)(1_’_%}%2 wn+1—2(1—|—y€)wn AU
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e quindi
2
. I+ 3ul? L2 AU
i I+ pul? "It
w? = A(w?+B) (6.63.1)
con
I+ 1\’
PR <1
I+ pt?
B — 2uglsin 6
I+

Cerchiamo adesso un eventuale soluzione della (6.63.1) del tipo w, = @. Queste saranno
determinate da

W = A (@ +B)

ossia

Poniamo adesso
w? =W+,

e sostituiamo nella (6.63.1) ottenendo

511—&-1 = Ady

da cui
On = A"
In conclusione possiamo scrivere la soluzione generale nella forma

wp =wh — @+ @ =6 +w =" (wj — @) + @

Vediamo quindi che, indipendentemente dal valore di wy, le velocita angolari immedia-
tamente dopo 'appoggio si stabilizzano al valore

B /4gs1n9 (I+3u®)
EyJ@r+pe) 1+ pe)

In realta & necessario imporre un’ulteriore condizione: w, deve essere abbastanza gran-
de da permettere alla struttura una rotazione completa di 7r/3. Questo accade certamen-
te se

0+ - >

@[3

T
2
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in caso contrario 'energia cinetica deve essere sufficiente a portare il centro di massa
sulla verticale della posizione di appoggio, cioe

% (I+pl?) wi > gt [1 —sin (G—l— g)}

/4gs1n9 | tu?  [1—sin (04 %)
wWn > " I+ pt? sm@

Se w,; < w* la velocita angolare cambia segno. La nuova velocita angolare immediata-
mente dopo il contatto sara data da

ossia

2 12,2
wn-i—l_/\wn

e quindi tendera a zero.

Wnl

Wiy = Aw?+8)

AT

Figura 6.66.: Studio grafico della relazione ricorsiva (6.63.1). Per valori iniziali della
velocita angolare maggiori di w* si ha convergenza verso w, che ¢ quindi
un punto fisso “attrattivo”. Per w < w™* (la fascia gialla) la velocita angolare
tende invece verso 0, un altro punto fisso attrattivo. w* € un punto fisso
“repulsivo”.

La situazione @ riassunta nel diagramma in Figura
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PROBLEMA 6.64
( Urto tra una massa e un sistema con cilindro rotante xx

Vo
vo

myp R mo ms
k.l

00,

Figura 6.67.: 1l sistema descritto nell’esercizio. Le masse my, e mj3 scorrono sul piano
senza attrito, il cilindro rotola senza strisciare.

Un cilindro di massa m; e raggio R e collegato ad una massa m; da una molla di
costante elastica k e lunghezza a riposo £y. La massa m, pud muoversi sul piano senza
attrito, mentre il cilindro e vincolato a ruotare senza strisciare. Inizialmente entrambi
i corpi si muovono come in Figura con la stessa velocita vy e con la molla alla
lunghezza di riposo. Avviene quindi un urto istantaneo completamente anelastico tra
la massa m; e una massa mj3: anche quest’ultima pud muoversi senza attrito sul piano
orizzontale. Calcolare la massima compressione raggiunta successivamente dalla molla.

Soluzione

Durante 1'urto la molla rimane alla sua lunghezza di riposo, dato che questo avviene
istantaneamente. Quindi non ci sono forze esterne orizzontali applicate al sistema 1, +
m3 e la sua quantita di moto si conserva. Detta 2)6 la velocita di my + m3 dopo 1'urto
abbiamo
myvg = (my + m3) v

e quindi

ma
2
my + ms
Per la stessa ragione (molla a riposo) non ci sono forze esterne orizzontali che agiscono
su my, quindi la sua quantita di moto non cambia e la sua velocita immediatamente
dopo l'urto rimane vy.

Abbiamo adesso il sistema rappresentato in Figura L’energia si conserva, e la
possiamo scrivere nella forma

1

1 1 k
E= EICMwZ + Emlv% + 5 (my +m3) 03,5+ EAZ

dove abbiamo indicato con

vy =
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V] V243

mo +m3
m; R
k, £y l

PN '

Figura 6.68.: Il sistema dopo 1'urto. In rosso sono rappresentate le forze esterne che
agiscono sul cilindro, in blu quelle che agiscono sul corpo m; + m3, in verde
quelle interne.

o w la velocita angolare del cilindro;
o vy la velocita del centro di massa del cilindro;

o Icp il momento di inerzia del cilindro rispetto al suo asse, che passa dal centro di
massa;

o v243 la velocita del corpo my + m3;

o Ala compressione della molla.

Nel momento di massima compressione abbiamo v; = v;13 = vy. Inoltre dalla condizio-
ne di puro rotolamento segue che w = —v;/R. Di conseguenza eguagliando I'energia
immediatamente dopo l'urto a quella nel momento di massima compressione otteniamo
(usando Icy = m1R?/2)

L i 2= (3mtmytm 02+kA2

2 27 Tyt my ) 0 T 2\ 27 TR TR )T pmMAX
Per calcolare vy ci serva un’altra legge di conservazione. La quantita di moto orizzontale
del sistema non si conserva: infatti a si scrive vincolo di puro rotolamento al cilindro

applicata una reazione orizzontale. La seconda equazione cardinale applicata al cilindro,
rispetto ad un polo posto nel punto di contatto, si scrive

;t (ICMC(J — mlle) = kAR

mentre la prima equazione per il corpo my + mj3 si scrive

d
it [(m2 4 m3) v243] = kA

Moltiplicando quest'ultima membro a membro per R e sottraendo alla prima abbiamo

7 [Icpw — mqo1R — (mq + my) Rupys] =0
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Di conseguenza la quantita
3
A= _Emlle — (my 4+ m3) Ruag3

si conserva. Da notare che questo non ¢ in generale il momento angolare totale rispetto
al punto di appoggio del cilindro, che si scriverebbe (indicando con hcy I'altezza del
centro di massa del corpo m53)

3
L= —ZmviR = (my + ms3) hearoa

e non sarebbe conservato. La non conservazione ¢ dovuta al momento delle reazioni
normali distribuite che il piano esercita sul corpo m; + ms3.
Eguagliando il valore iniziale e finale di A troviamo

%ml + my

Ur = 0
f %m1+m2+m3

e sostituendo nella conservazione dell’energia troviamo

2
2m3 2 (3my +my)

kA2 — 2 o 2 2

MAX = Ot s By 2my o+ 2m3 |

PROBLEMA 6.65
( Urto di un settore cilindrico *x

v 9

a7 Y
Figura 6.69.: 11 settore cilindrico in moto prima dell’urto con ’ostacolo.

In un sistema di riferimento scelto come in Figura [6.69 un settore cilindrico di massa
M si muove con velocita costante 7 = v su un piano orizzontale privo di attrito, in
presenza di un campo di gravita uniforme § = —gZ (vedere Figura [6.69). L'ampiezza
angolare del settore € 8 = /2 e il raggio R. Ad un certo momento esso urta contro
un ostacolo posto sull’asse x. Il settore pud adesso ruotare liberamente attorno al suo
asse, che rimane vincolato all’ostacolo. Nel seguito si puo indicare con d la distanza del
centro di massa del settore dal suo asse, che vale

d:%l{
37
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1. Trovare una quantita conservata durante 1'urto, motivando la risposta, e calcolarne
il valore iniziale in funzione dei parametri del problema.

2. Calcolare le componenti dell’'impulso esercitato dall’ostacolo durante 1urto.

3. Per quali valori di v il settore si capovolge?

Soluzione
Domanda 1

Scegliendo un polo sull’asse x vediamo che si conserva la componente parallela ad
esso del momento angolare. Infatti durante 1'urto 1'unica forza rilevante € la reazione
impulsiva dell’ostacolo, che non ha momento. Inoltre dato che il corpo puo ruotare
liberamente attorno all’asse x il vincolo non puo applicare momenti paralleli ad esso.

Dato che inizialmente il parallelepipedo ha solo un moto di traslazione il valore
iniziale di questa quantita sara

2
L= Mopd Y2

2
Domanda 2

Dalla conservazione di L, segue che dopo 1'urto il settore ruota attorno all’asse x con
velocita angolare data da
V2

—M00d7 = Jw

dove I = 1 MR? & il suo momento di inerzia rispetto all’asse specificato. Segue che

U()d
w = —ﬁ\@

e il centro di massa del settore avra una velocita

_’CM:CTJ/\?:(U ( \/> +d\/>>

La variazione della quantita di moto durante 1'urto € uguale all'impulso cercato, e quindi

. d2 d2
I= M_’CM — MU()]? = MUO@Z\_}' MU() <RZ — 1) y
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Domanda 3

Dopo 'urto si conserva l'energia, e per ottenere il capovolgimento il centro di massa
del settore dovra arrivare sulla verticale dell’origine, ad una altezza d. Confrontan-
do l'energia in questa situazione con quella immediatamente dopo 1'urto abbiamo la
condizione

V2
2
Inserendo il valore di w determinato precedentemente troviamo

28 28 (2 va)

1
Mgd < Elwz + Mgd

e quindi

00 > R %(2—\@)

PROBLEMA 6.66
( Energia persa e rotolamento puro xx

<y

&l

&V

Figura 6.70.: La sfera lanciata su un piano orizzontale.

Una sfera di raggio R e massa M viene lanciata su un piano orizzontale con velocita
angolare ¢ e velocita del centro di massa @, scelte come in Figurab6.70| Tra sfera e piano
si ha attrito dinamico.

1. Mostrare che il momento angolare del cilindro rispetto a un polo scelto opportu-
namente si conserva.

2. Scrivere I’energia della sfera in funzione del momento angolare conservato e della
velocita istantanea del punto del cilindro a contatto con il piano.
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3. Utilizzare 'espressione dell’energia cinetica ottenuta per calcolare il valore del-
I'energia che viene dissipata per attrito prima che la sfera inizi a rotolare senza
strisciare.

Soluzione

Consideriamo la retta sulla quale si muove il punto di contatto tra sfera e piano. Se
scegliamo il polo in un punto qualsiasi di questa, vediamo che il momento angolare si
conserva. Infatti le uniche forze che agiscono sulla sfera sono

o la reazione normale del piano N7
o la forza di gravita — Mgy
o La forza di attrito F;%

Dato che il centro di massa della sfera non accelera nella direzione §j deve essere N = Mg.
Ma entrambe le forze hanno lo stesso braccio rispetto al polo scelto, quindi i rispettivi
momenti si cancellano. Inoltre la forza di attrito ha braccio nullo: la conclusione e che
il momento di forza totale applicato alla sfera e nullo, e il suo momento angolare si
conserva, e vale

L =7AMZ+ ey

Dato che & = w2, ¥ = v e ¥ = x% + Rij abbiamo
L = (Icyw — MRo) 2 = L2
La velocita del punto di contatto ¢ invece
Uo=7—ROANJ = (v+Rw) X =0,%
Esprimendo w e v in funzione di L, e vy otteniamo

. ICMU() — RLZ _ ICMU() — RLZ

Icpm + mR? N Io
w— L+ MRvy L+ MRo
a Icp + mR2 a I

dove Ip ¢ il momento di inerzia rispetto al punto di contatto.
L'energia vale

1 1
E = -Mv* + = Icpw?
5 T lem
e sostituendo le espressioni precedenti troviamo

102 1lcm,,
=z My
2T, "2 1, Y
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Quando la sfera inizia a rotolare senza strisciare si ha v, = 0. Inoltre L, si & conservato.
Segue che l'energia dissipata ¢ il secondo termine dell’equazione precedente, ossia

1Icm
2 I
In particolare se tutta la massa e concentrata al centro della sfera Icpr = 0 e non viene
dissipata energia.

2
Ediss = MUO

PROBLEMA 6.67
( Urto tra un cilindro e un parallelepipedo *xx

My

Figura 6.71.: Il sistema considerato. Inizialmente w = wy, v = —Rwy (per la condizione
di puro rotolamento) e V = 0.

Un cilindro di massa M; e raggio R ruota senza strisciare su un piano orizzontale.
Sullo stesso piano si trova un parallelepipedo di massa M e altezza h. Il parallelepipedo
puo scorrere liberamente sul piano orizzontale, ma non puo staccarsi da esso, ed inizial-
mente e fermo. Il cilindro invece ha inizialmente una velocita angolare wy < 0 e muo-
vendosi urta elasticamente il parallelepipedo. L'urto si puo considerare praticamente
istantaneo. Calcolare

o le velocita di cilindro e parallelepipedo dopo 1'urto;
o lI'impulso totale e il momento totale ceduto dal piano orizzontale al parallelepipe-
do durante 1"urto.
Soluzione

Dato che l'urto ¢ elastico si conserva l'energia. Di conseguenza possiamo scrivere
1

1 1
Elow% = EIsz + EMv2
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dove abbiamo scritto ’energia cinetica del cilindro come energia di puro rotolamento
rispetto al punto di contatto con la superficie orizzontale, istantaneamente ferma. Per

questo motivo

3
Io = -MR?
O 2 1

Notiamo che nell’urto non si conserva la quantita di moto orizzontale, dato che sul
cilindro agisce una forza esterna orizzontale, I'attrito statico necessario a mantenere la
condizione di rotolamento puro. Non € nemmeno possibile trovare a priori un polo
rispetto al quale il momento delle forze esterne sia nullo. Infatti il piano orizzontale
esercitera durante 1'urto sul parallelepipedo un momento di forza impulsivo non noto.

Sappiamo pero che il cilindro durante l'urto applica un impulso orizzontale | al
blocco, e quindi possiamo scrivere

MyAV =]

I1 blocco applichera un impulso uguale e contrario al cilindro, e quindi un impulso
angolare JR rispetto ad un polo preso nel punto di contatto col terreno. Allora potremo
scrivere la variazione del momento angolare del cilindro nella forma

AL. = JR
Combinando le due equazioni precedenti troviamo
A(L.—MRV) =0

quindi la quantita
L. — MRV = Iw — MaRV

e conservata. Uguagliando i valori di questa prima e dopo 1'urto troviamo
Iowo = Iow — MORV
In conclusione abbiamo le due equazioni

Ip (wh — w?) = MpV?
IO (a)o — w) = _MZRV

e risolvendo il sistema otteniamo

y___2RL
To + MoR2™
Y 10—M2R2w
" Io+ MpR2™?
0= —wR — LMZRZUO
Iy + MR?

Notare che questi risultati non dipendono da h.
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Per quanto riguarda I'impulso verticale che il piano esercita sul parallelepipedo, que-
sto deve essere nullo. Se questo non fosse vero dopo 1'urto la quantita di moto verticale
del parallelepipedo dovrebbe essere diversa da zero, ma questo & impossibile per ipotesi.

L'impulso angolare K esercitato dal piano sul parallelepipedo in generale non sara
nullo, perché sappiamo che il parallelepipedo non deve ruotare. Prendendo il polo nel
centro di massa del parallelepipedo dovra essere

<1 (r-1) =0
ot -8) (o)

Se invece prendiamo il polo sul piano orizzontale avremo

e quindi

K—JR = —szg

che da (ovviamente?) lo stesso risultato.

PROBLEMA 6.68
( Matita che scivola lungo un piano inclinato *x

Q

Figura 6.72.: La matita (in rosso) in caduta lungo il piano inclinato. L’angolo B resta
fisso.

Una matita (un’asta sottile e omogenea) ha una lunghezza ¢ e una massa totale m.
Un suo estremo C viene appoggiato ad un piano inclinato rispetto all’orizzontale di
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un angolo «. L'asta e la normale per C al piano inclinato giacciono sullo stesso piano
verticale 7.

L’angolo B, misurato sul piano 7, tra l’asta e il piano inclinato e scelto in modo tale
che I'asta possa scendere lungo il piano inclinato senza ruotare (vedere Figura con
accelerazione costante a. Il piano esercita una forza di attrito dinamico caratterizzato da
un coefficiente y.

Calcolare, se esiste, I’angolo 3 e I’accelerazione a.

Soluzione

Scriviamo le due componenti della prima equazione cardinale nel piano 77, lungo la
direzione perpendicolare e parallela al piano. Abbiamo

0=N—mgcoswa
ma = —uN + mgsina

Abbiamo usato il fatto che 1’asta non ruota, e quindi tutta ’accelerazione a del suo centro
di massa e parallela al piano. Inoltre stiamo supponendo v > 0. Risolvendo otteniamo

N = mgcosa
a = g(sina—pcosa)

Utilizziamo adesso la seconda equazione cardinale rispetto ad un polo posto nel centro
di massa dell’asta. Dato che rispetto al polo scelto il momento angolare ¢ nullo possiamo
scrivere, per la componente L del momento angolare e M del momento perpendicolare
arm

14 4
0=Nzcosp+uNzsinp

2 2

e sostituendo il valore di N troviamo la condizione
(cos B+ psinB)cosa =0

A parte il caso nel quale il piano e verticale (cos « = 0) per il quale la relazione ¢ sempre
verificata, vediamo che deve essere

1
tanp = ——
P H

quindi l'asta deve essere inclinata di un angolo p > 71/2, tendente a 7t/2 per u — 0.
Notare che per  — +o0 apparentemente § — 71. Questo e un risultato corretto, ma si
deve tenere conto del fatto che per

u > tanu

I'accelerazione dell’asta diviene negativa. Quindi questa se lanciata inizialmente con
velocita positiva arriva a fermarsi e ’analisi fatta non e pitt applicabile.
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PROBLEMA 6.69
( Piccole oscillazioni di anelli x x %

Q

Figura 6.73.: I due anelli, e due possibili coordinate che si possono introdurre per de-
scriverne il moto. Si ha rotolamento puro sia tra 1’anello grande e il piano
orizzontale, sia tra i due anelli.

Due anelli di massa M;, M» e raggio Ry, R, < Rj possono muoversi in un piano
verticale. L’anello di massa M; € appoggiato su un piano orizzontale sul quale puo
compuere un moto di puro rotolamento. L'anello di massa M; si trova all’interno del
primo. I due anelli sono vincolati da una condizione di rotolamento puro.

Dopo avere introdotto delle coordinate opportune, scrivere le equazioni del moto del
sistema e risolverle nel regime di piccole oscillazioni rispetto alla posizione di equilibrio.

Soluzione

<y

Figura 6.74.: Le coordinate utilizzate per descrivere il sistema. L'angolo ¢ definisce la
posizione del disco piccolo, 'angolo 6 la rotazione del disco grande.

Il sistema ha due gradi di liberta. Per descriverlo utilizzeremo due angoli 0 e ¢, definiti
come in Figura Per quanto riguarda le posizioni di equilibrio, notiamo che tutti
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i valori di 6 sono equivalenti. Al contrario, avremo equilibrio stabile solo per ¢ = 0, e
quindi potremo considerare ¢ (e ¢) piccolo nel regime di piccole oscillazioni.

Cerchiamo di determinare due equazioni del moto che lo descrivano completamente.
Poniamoci in un sistema non inerziale che trasla insieme al centro del disco grande, e
cerchiamo equazioni del moto indipendenti dalle reazioni vincolari.

La prima e la seconda equazione cardinale di tutto il sistema, scelta prendendo come
polo il punto P; in Figura posto nel punto di contatto tra disco grande e piano
orizzontale. Rispetto ad esso la componente z del momento angolare del disco grande

Ly, = 2m1R30
e quella del disco piccolo, in approssimazione di piccole oscillazioni ¢ < 1
Lzz = MQR%CUZ — msz (Rl — Rz) (P

Per calcolare la velocita angolare del disco piccolo w; scriviamo la velocita del suo centro
di massa come

v=(Ry—Ra)¢

dato che questo compie un moto circolare attorno al centro del disco grande. Possiamo
scrivere la stessa velocita, data la condizione di rotolamento puro, come velocita del
punto P, pit1 velocita relativa ad esso:

0 = Rlé — szz

Confrontando le due espressioni troviamo
Ry Ry .
TR <R2 > ’

LZZ = mleRzé — 2m2R2 (Rl — Rz) (P

e quindi

Possiamo adesso scrivere I'equazione del moto nella forma

d . ,
E [Rl (21’]11R1 + m2R2) 0 —2moRo (R1 — RQ) (P] = —myg (R1 — RQ) ¢
+ msza + mlRla

Nella seconda riga abbiamo il momento delle forze apparenti: 1’accelerazione del siste-
ma di riferimento, data la condizione di rotolamento puro, e

a = —Rlé

e quindi

2R1 <2m1R1 + m2R2> 60— 2m2R2 (R1 — Rz) (P = —Ti’lzg (R1 — Rz) (P
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Per ottenere la seconda equazione, consideriamo adesso la seconda equazione cardinale
per il disco piccolo, scritta rispetto al polo P,. Si tratta di un polo mobile, ma la sua
velocita nel sistema che abbiamo scelto e parallela a quella del centro di massa del disco,
e quindi non & necessario aggiungere alcun termine alle equazioni del moto.

Sempre nel regime di piccole oscillazioni possiamo calcolare il momento angolare del
disco piccolo (del primo ordine nelle velocita) trascurando lo spostamento di P, rispetto
a Py, e quindi

L/ZZ = Lo,

L’equazione del moto sara allora

d . .
E [T’I’lleRzg — szRz (R1 — Rz) (])] = ngchp — Rzﬂlzﬂl

ossia
2m2R2 (Rl — Rz) (l) = —WQng(P

e sostituendo nella prima equazione otteniamo

3 .o
2Ry <2m1R1 + m2R2> 0 = —2myg (R1 — Ra) ¢

La seconda equazione e quella di un oscillatore armonico

¢= 2(Ry —Rz)('b

_ /8
h = 2 (R, — Ry)

¢ = Acost+ Bsin(t

di frequenza angolare
Otteniamo la soluzione generale

1 .
= ¢pcos ()t + w—cpo sin (4t
1

Sostituendo nella prima equazione otteniamo

mag (R1 — Ry)

- —
R] (%mlRl + msz)

1 .
<<po cos (1t + —¢p sin Qlt>
w1

Integrando due volte abbiamo infine
mag (R — Ry)
w%Rl (%mlRl + msz)

_ 21’112 (R1 — Rz)z
Ry (3m1Ry + maRy)

6 = <4>0 cos Ot + %4&0 sin Qﬁ) +Ct+D
1

1 .
<¢0 cos (Ot + wfgbo sin Qlt> +Ct+ D
1
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Imponiamo le condizioni iniziali:

ZM2 (R] — Rz)z
Ry (3miRy 4+ maRy)
. 2my (Ry — Ry)*
b = —2mRizRe) 40 ¢
R1 (§m1R1 + msz)

o

$¢o+ D

e quindi

9 — 2m2 (R1 — Rz)z
Ry (3m1R1 + maR,

; 1 .
) ¢o (cos 1t — 1) + ¢ (wlsin()lt—tﬂ + 6ot + 6o

Una soluzione particolare si ottiene per ¢p = 0 e ¢p = 0. In questo caso

¢(t) =0
0(t) = 6ot + 6o

Nel sistema di riferimento scelto il disco piccolo rimane sempre in basso, e quello gran-
de ruota con velocita angolare costante. Notare che, a causa della condizione di puro
rotolamento, il disco piccolo ruota con velocita angolare

In un sistema di riferimento solidale al suolo le soluzioni per (t) e ¢(t) trovate restano
valide. Il centro di massa del disco grande sara pero in moto in direzione orizzontale
con

Xem,1 (t) = _Rle(t)
e per il centro di massa del disco piccolo avremo (sempre per piccole oscillazioni)

xcm,Z(t) = _ng(t) + (Rl - RZ) QD

Yema(t) = —(R1—Ry)
La soluzione puo essere interpretata in termini di modi normali a frequenza fissata: nel
primo modo (di frequenza angolare ()1, corrispondente a C = D = 0) sia il disco piccolo

che quello grande hanno un moto oscillatorio. Nel secondo (di frequenza angolare nulla)
i due dischi ruotano con velocita angolare costante.
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7.1. VENTOSA *x

PROBLEMA 7.1
( Ventosa xx

Un tronco cono di altezza h, raggio di base inferiore Ry, raggio di base superiore R; e
densita p aderisce perfettamente al fondo di un recipiente. Il recipiente é riempito fino
al livello L > h di un liquido di densita p; > p.

Determinare sotto quali condizioni il cono rimane sul fondo.

Ry

Ry

Figura 7.1.: 11 tronco di cono considerato nell’esercizio. Notare che si pud considerare
sia il caso Ry > R» (in figura) che il caso R, > R;.

Soluzione

Se il cono non aderisse sul fondo le forze agenti su di esso sarebbero la forza peso e la
spinta di Archimede. Nella situazione considerata e necessario sottrarre la spinta dovuta
alla pressione sulla base e aggiungere la reazione vincolare N del fondo. Abbiamo
quindi all’equilibrio

(oL —p) Vg —prgLmRI + N =0

e per non avere distacco é necessario che N > 0. Questo significa

pLgLRT > (oL —p) Vg

ossia

h
PL8LART > (o1 —p) 837 (RT + RiRy + R))
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da cui

R, Rg) 3L pr
1+ =+ =) <=
(+R1+R% hpL—p

Questo significa che il rapporto R,/ R; non deve essere troppo grande, pit1 esattamente

R, 1 3L pr 3
RS 2" 4

Notare che per p; < p il corpo rimane sempre sul fondo.

PROBLEMA 7.2
( Secchio rotante xx

Un recipiente cilindrico di raggio a ruota attorno al suo asse con velocita angolare w,
e contiene un volume V di un liquido. Il fluido viene trascinato dal recipiente, e in
condizioni stazionarie si muove rigidamente e solidalmente con esso. Dire se la quantita

H=P+ %pv2 + pgz (7.2.1)

assume un valore costante in tutto il liquido e calcolare la forma della superficie libera
di esso.

Soluzione

Il teorema di Bernoulli dice che in condizioni stazionarie la quantita H e costante su
ogni linea di flusso del fluido. Per concludere che questa costante e la stessa su ogni
linea e perod necessario che il campo di velocita sia irrotazionale, ipotesi non verificata
in questo caso.

Per averne conferma, possiamo cercare di rispondere alla seconda domanda sup-
ponendo che H sia veramente costante. Allora sulla superficie libera del fluido deve
essere

1
Epw272 +pgz =K (7.2.2)
cioe -
r=k Y (7.2.3)
28

Ma questo ci dice che la superficie ¢ un paraboloide di rotazione con concavita rivolta
verso il basso, il che & assurdo.

Possiamo invece porci in un sistema che ruota solidale al recipiente. In questo caso
il fluido appare in quiete, quindi il suo campo di velocita ¢ ovviamente irrotazionale.
Siamo nelle condizioni per poter dedurre dal teorema di Bernoulli che la quantita

H=P+pp (7.2.4)

@ 517 versione del 5 ottobre 2016



7.3. TUBO PIEGATO **

e effettivamente costante in tutto il fluido, indicando con ¢ I'energia potenziale per unita
di massa, che tiene conto della forza centrifuga apparente:

1
¢ =g9z— szrZ (7.2.5)
Da questo segue immediatamente che

(,UZTZ

2g

z=K+ (7.2.6)

cioe un paraboloide di rotazione con concavita rivolta verso l'alto, risultato sensato. Per
determinare la costante K calcoliamo il volume del liquido:

a W22 2 wlgt
V= / (K + > 2rrdr = 27 <K + ) (7.2.7)
0 28 2 8
cioe )
K:Lz—w “ (7.2.8)
mta 4q

PROBLEMA 7.3
( Tubo piegato xx

Un tubo ha una estremita di sezione S 4 e un’altra di sezione Sg. Le due estremita del
tubo si trovano alla stessa quota, e il tubo e piegato come in Figura[7.2di un angolo «.
Dall’estremita di sezione S4 entra un liquido di densita p con velocita V.

Calcolare la forza che il liquido esercita sul tubo. Considerare in particolare il caso
x=0.

Soluzione

La forza che il liquido esercita sul tubo e uguale e opposta a quella che il tubo esercita
sul liquido. Quest'ultima & uguale alla variazione della quantita di moto del liquido,
che possiamo scrivere come

dP = —dAMV, + dMVp (7.3.1)
D’altra parte
dM = pSA|VA|dt = pSB|VB|dt (732)
quindi possiamo scrivere
- . . . Sp.
dP = pSA’VA|dt (|VA|7’1A + |VB‘I’IB) = pSAVﬁdt <TZA + S?Tlg) (7.3.3)
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Scwva Sb)%

K /

- —/
\VANe
N

Figura 7.2.: Il tubo piegato considerato nell’esercizio.

dovefiy = (—sinj,cos ), 14 = (sin 5, cos 5 ). Abbiamo infine

- s Sa
o _os,v2 [ T2 ( ! +SSB> (7.3.4)
dt cos 5 (1 + §>
In particolare se & = 0
- 0 S .
F=—pSaVj < <1 n siA) > = —PS*A (Sa+SB)|ValVa. (7.3.5)
S B

PROBLEMA 7.4
( Equilibrio di un cilindro immerso in un liquido x x x

Un cilindro di densita costante p, raggio di base R e altezza h galleggia in un liquido di
densita p;, > p, con l'asse in direzione verticale. Studiare la stabilita della posizione di
equilibrio.

Soluzione

Poniamo inizialmente un sistema di riferimento con 1’origine O sull’asse del cilindro a
una distanza OP = d dalla base inferiore, come mostrato in Figura In tale sistema
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di riferimento il centro di massa sarainx =y = 0 e z = h/2 — d. Immaginiamo adesso
di tagliare il cilindro con un piano passante per O e inclinato di un angolo 6 rispetto
all’orizzontale. Sempre facendo riferimento alla Figura (7.3} il centro di massa della parte
del cilindro al di sotto del piano, che rappresentera la parte immersa nel fluido, si trovera

inxg(0), yc =0, z(0).

M

oG

Figura 7.3.: 1l cilindro del problema. L'origine del sistema di coordinate (asse verticale z,
asse orizzontale x) e scelto in modo da avere OP = d.

Notiamo che il volume totale di tale parte non dipende da 6 e vale
V) = nR*d

All’equilibrio, con il cilindro in posizione verticale, la spinta di Archimede deve egua-
gliare la forza peso, quindi go; Vi = gpV, cioe

pLtR?dg = ptR*hg
e quindi

d="Pp
oL

Si verifica facilmente che il sistema e stabile verticalmente. Se 'altezza della parte
immersa vale d — x infatti si ha una forza di richiamo verticale

F(x) = —p tR?gx

Vediamo sotto quale condizione il sistema e stabile sotto rotazioni. Ruotando di un ango-
lo 8 il cilindro attorno ad un asse orizzontale passante per O abbiamo per le coordinate
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di un punto generico

x' = xcos@ — zsinf

7z = xsin6 + z cos 6

ossia, usando i risultati precedenti,

h
Xy = (2 —d) sin@

xg = xg(—0) cos — zg(—0) sin 6

Figura 7.4.: Due possibili posizioni del centro di massa M del cilindro e del centro di
galleggiamento G. La situazione a sinistra corrisponde alla instabilita, quella
a destra alla stabilita.
Quindi sul cilindro agisce il momento
M = pgV (xc—xu)

Utilizzando le espressioni esplicite per x¢ e zg, calcolate alla fine dell’esercizio, ottenia-
mo per piccoli angoli,

e il momento delle forze vale esplicitamente

1 R?
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Per avere stabilita il momento deve tendere a riportare il cilindro nella posizione di

equilibrio, quindi
RZ

cioe

P P _R
anf (1) < 2=
oL ( PL) h?

Si avra stabilita quindi quando il rapporto R/h e sufficientemente grande.

Calcolo del centro di massa della parte immersa del cilindro.

Considerando il cilindro in Figura troviamo il centro di massa G della parte del
cilindro al di sotto di un piano passante dal punto O e inclinato di un angolo 0 (passante
per C e D in figura). Abbiamo

1
XG - m/xdv

1
ZG — m /ZdV

che possiamo scrivere esplicitamente in coordinate cilindriche. Per x¢ si ottiene, tenendo
conto che x = r cos ¢ e che la faccia superiore ha equazione z = x tan 0

1 27 R 7 cos ¢ tan 6
xXc = 7'[R2d/0 dcp/o rdr/_d dzrcos ¢

1 27 R )
= 7tR2d/O d(l)/o r=drcos ¢ (rcosptan 6 +d)

1 Rq
= 7'[R2d/ 57’3(11”(&1‘19
0
_1 R
- 8 7mR2d
2
= ——tan6

8mtd

tan @
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Per quanto riguarda zg

1 27 R rcos ¢ tan 0
ZG:nRZd/O d(p/o rdr/d dzz

1 o Ko1ia o 2 2
:7'(RZd/O d4>/0 rdri(r cos” ¢ tan® 0 — d*)
_ 1 Ro1(1, 5 2
_7'(R2d/0 dri <2r tan 9—27rdr>

1 (R,
- R (87rd2 fan”6 — 1)

quindi

R? d( R
I . 2 .
Xg = %sm9—|—§ <8nd2tan 0—1> sin 0

PROBLEMA 7.5
( Campo di velocita I xx

Il campo di velocita di un fluido e descritto da @ = (ax, —ay,0). La regione x> + y2 +
z? < 1 viene marcata con un colorante a t = 0. Determinare la forma della regione
colorata agli istanti successivi, e il suo volume.

Soluzione

Dall’espressione del campo di velocita si determinano le traiettorie degli elementi di
fluido risolvendo

dx _
ar
dy _
ar - Y
dz
E_O

oax

che si integrano direttamente ottenendo

x(t) = x(0)e*

y(t) = y(0)e™™
z(t) = z(0)
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Dato che x(0)2 +1(0)%2 4+ z(0)? < 1 otteniamo
y

quindi agli istanti successivi la macchia di colore ha la forma di un ellissoide con
semiassi a, = e, ay = e~ g, = 1.1l volume e dato da

4 4
V(t) = gnaxayaz = 57'[

e si conserva.

PROBLEMA 7.6
( Recipiente conico forato xx

Il recipiente in Figura [7.5| ha la forma di un tronco di cono rovesciato, con un foro
circolare sul fondo di sezione Sy. Inizialmente e riempito fino ad una altezza hy con un
liquido non viscoso. Detto 7 il tempo necessario affinche 1’altezza del liquido si riduca

a hy < hy, scrivere T come integrale definito e calcolarlo supponendo h; > 4/ %

S

Figura 7.5.: Il recipiente conico considerato nell’esercizio.

Soluzione

Poniamo l'origine di un sistema di coordinate nel vertice del cono. La superficie trasver-
sa dipendera da z come
S(z) = mz® cot® 0 (7.6.1)
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ed in particolare il foro si trovera a una quota zy determinata da

S(z9) = mz§cot? @ = S (7.6.2)
mentre la superficie del liquido sara in
z=h+2z
I1 volume contenuto nel recipiente sara quindi
1
V= 3 [S(zo +h) (zo+h) — Sozo] = gcot2 6 [(h +20)° — 28] (7.6.3)

La variazione del volume V del liquido contenuto nel recipiente & dato da

av 5 > dh
2Y h add
o = Teot 6 (h+ zo) i
dove ¢ la velocita di fuoriuscita, da cui

h\? dh

Se applichiamo il teorema di Bernoulli ad una linea di flusso che collega la superficie
al foro di uscita abbiamo

= —Spv_ (7.6.4)

1 (dh 1
5P <dt> +pgh = Epv% (7.6.6)

e sostituendo il valore di v_ determinato precedentemente troviamo

dh _ _ 2gh (7.6.7)

@ (1+2) ]

L’equazione differenziale ¢ a variabili separabili e il tempo di svuotamento vale

(7.6.8)

Introducendo la variabile x = h/zg abbiamo infine

ho/zo _
‘/ZO/ yass =1 HX L (7.6.9)
hy/zo

Dobbiamo calcolare questo integrale nel caso /11 > z(. Possiamo supporre allora x > 1
e approssimare

4
(1+x> -1 2){3/2

x (7.6.10)

Otteniamo quindi
ho/zo 5/2 5/2
. ZO/ B2y~ 2[R (hO> - <hl> (7.6.11)
28 /2 5V 2g | \zo %0
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PROBLEMA 7.7
( Svuotamento di un serbatoio *xx

Un recipiente cilindrico di sezione S e riempito fino ad una altezza h; di acqua, per
la parte rimanente di vapore saturo. Sul fondo e praticato un foro di sezione 51 <
S, collegato ad una conduttura che nel tratto finale riduce la sua sezione a S, < Sj.
Fornendo calore al sistema si mantiene la pressione del vapore ad un valore P. Nella
conduttura si innesta un cilindro verticale aperto M, come in Figura I diametri della
conduttura sono tutti di dimensioni trascurabili rispetto ad /;.

M
Pum

hy

S
1 v

Sy

i hy (

Figura 7.6.: Il sistema descritto nel problema.

1. Che altezza hy raggiunge 1’acqua nel cilindro M se 'apertura di sezione S, e
mantenuta chiusa?

2. Si apre adesso la conduttura, e in breve tempo si raggiunge lo stato stazionario.
Calcolare la nuova altezza hy del liquido in M e la velocita con la quale I'acqua
esce dalla conduttura.

Detta V la velocita calcolata al punto precedente, dire quanto calore & necessario fornire
al sistema per unita di tempo per mantenere le condizioni stazionarie. Indicare con A il
calore latente di evaporazione e con py la densita del vapore.

Soluzion{|

Domanda 1

Dato che la pressione sul fondo ¢ la stessa ovunque deve essere

P+ pght = Papm + pgh2 (7.7.1)

1Secondo problema compitino 28 maggio 2008
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e quindi

hy = hy 4 L Lo (7.7.2)
g

Domanda 2

Detta V; la velocita nel tratto di sezione S; dal teorema di Bernoulli segue che

1 1
1LuWu:mm+%m+§m%=am+§mﬂ (7.7.3)

e dalla conservazione della massa

SV =SV, (7.7.4)
Risolvendo abbiamo
V= \/2 (P— P”’:)” +pgh) (7.7.5)

P — Py h 2_ g2

08S3

Domanda 3

Dato che la sezione S € molto grande possiamo considerare 1 costante. Man mano che
il liquido defluisce & necessario rimpiazzarlo con nuovo vapore saturo, per mantenere
costante la pressione P. La massa di vapore da creare per unita di tempo &

va52 (777)

che corrisponde alla massa di liquido da far evaporare. Quindi

M rpvvs,. (7.7.8)

PROBLEMA 7.8
( Traslocare un acquario xx

Una vasca rettangolare e riempita parzialmente di liquido, e viene fatta scendere da un
piano inclinato di un angolo 6 rispetto all’orizzontale, come in Figura Le condizioni
iniziali sono scelte in modo tale che il liquido rimane in quiete rispetto alla vasca. Cal-
colare I'accelerazione di quest’ultima e descrivere le caratteristiche della superficie del
liquido. Calcolare inoltre la pressione sul fondo della vasca, supponendo che il livello
del liquido quando la vasca e orizzontale e in quiete sia /1 e la sua densita p.
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Figura 7.7.: La vasca scivola lungo un piano inclinato privo di attrito, e per le particolari
condizioni iniziali scelte il liquido & in quiete rispetto alla vasca.

Soluzione

Se il liquido & in quiete rispetto alla vasca, tutto il sistema e equivalente ad una unica
massa che scende lungo un piano inclinato senza attrito. Di conseguenza 1’accelerazione
e parallela al piano e vale 2 = g sin 6. Se adesso ci poniamo in un sistema di riferimento
solidale alla vasca, avremo che ogni elemento del fluido sara sottoposto alla forza di
gravita e ad una forza apparente costante, in totale

dF = —dmgz — dm (gsin0) © (7.8.1)

dove T ¢ il versore parallelo al piano. D’altra parte £ = 71 cos 0 + T sin 6 (7 € normale alla
superficie) per cui
dF = —dmg cos 071 (7.8.2)

Nel sistema di riferimento scelto quindi le forze sono equivalenti a quelle di un campo
gravitazionale uniforme di intensita g cos 6 perpendicolare al piano inclinato. La su-
perficie del liquido sara quindi un piano parallelo al piano inclinato, e la pressione sul
fondo si otterra applicando la legge di Stevino. Dato che anche il fondo é parallelo alla
superficie avremo ovunque

P = pgcosbh

Puo essere utile confrontare questo esercizio con il

PROBLEMA 7.9
( Diavoletto di Cartesio xx

Il recipiente cilindrico in Figura[7.§|(sezione S) non permette passaggio di calore. La sua
base superiore puo scorrere liberamente. All'interno del cilindro si trova una mole di

@ 528 versione del 5 ottobre 2016



7.9. DIAVOLETTO DI CARTESIO »*

esafloruro di zolfo (SFs, massa molecolare y = 146.6 g¢/mol), e una piccola sfera di un
materiale di densita media p e capacita termica trascurabile.

Figura 7.8.: La sfera immersa nell’esafloruro di zolfo contenuto nel recipiente.

Inizialmente si osserva che la sfera é appoggiata sul fondo, e 'esafluoruro di zolfo,
che si assume si comporti come un gas perfetto, si trovaa valoridati T = To e P = Py di
pressione e temperatura.

1. Cosa si pu6 dire di p? Di quanto si deve abbassare il pistone per fare in modo che
la sfera si sollevi dal fondo?

2. Se tale abbassamento avviene aumentando molto lentamente la forza esterna
F, quanto vale la variazione totale AF di quest’ultima? Quanto vale AF se la
variazione e invece improvvisa?

3. Nei due casi precedenti, calcolare la variazione di entropia del sistema.

Soluzioneﬂ

Osserviamo preliminarmente che la temperatura del gas sara ovunque la stessa, dato
che le diverse parti del sistema sono libere di scambiarsi calore. Al contrario, la pressione
dipendera dalla coordinata verticale, che chiameremo z. Possiamo scrivere per la legge
dei gas perfetti

ed inoltre
dP = —pgdz
da cui
aP g,
dz  RT

che si puo integrare ottenendo

2Primo esercizio compitino 30 maggio 2007
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Analogamente per la densita avremo

p6(z) = pg(0)e k=

che possiamo esprimere alternativamente in funzione del volume e della massa totale.
Da

g _1, _Kgh
m:y:SpG(O)/O e RT dz:SpG(O)—g (1—6 R )

otteniamo

2 -1
ro(e) = f (1) b

In prima approssimazione potremo trascurare ovunque la variazione di pressione e
densita con 'altezza, salvo tenerne implicitamente conto per il calcolo della spinta di
Archimede.

1.1

Alla sfera sono applicate due forze: quella di gravita e la spinta di Archimede, risultante
dall’azione complessiva della pressione del gas. Per calcolare quest'ultima basta valutare
la forza peso del gas che occuperebbe il volume della sfera, cioe

FA = FAﬁ = ngpcf
Se la sfera resta sul fondo avremo chiaramente

_ D
p>pG—RTO.

Per sollevare la sfera si deve comprimere il gas fino ad avere

Vo
e = pcym =P

da cui segue

_ Loy Y ) _Rlo (pc
A=< (V Vo)—s<p 1>_SPo<p 1><0.

1.2

Aumentando molto lentamente la forza esterna abbiamo una trasformazione adiabatica
reversibile. In questo caso pressione e volume sono legati da

PV7T = P0V07
dove v = ¢, /cye quindi la pressione finale vale

%
P="F Yo :<P> Py.
Vo+ Vo (%G—l)
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Y
AF,p = PyS [<p> —1] .
oG

Se la variazione & improvvisa, sul gas viene fatto un lavoro W = — (F 4+ AF) Ah e quindi
la sua energia interna aumentera della stessa quantita. Da questo segue che

Da questo segue che

coAT = — (F 4 AF) Ah

cioe AV
PV] =~ (F+AF) — 0
e quindi
Cy pG
(F+ AF)Vy [R < ﬂ = Sc, Ty
ossia
P
7(1 7)
AFy, = BpS———F—~

()

Da notare che AF,., > AF;,,, e che se le densita iniziali sono molto vicine
2
o
2
o
La disuguaglianza si comprende tenendo conto che a parita di variazione di volume il
lavoro fatto sul sistema & sempre maggiore nel caso irreversibile, e quindi la pressione
finale sara pure maggiore (il volume ¢ lo stesso). I valori di AF sono uguali al primo

ordine nella differenza tra densita perche quando pg =~ p le trasformazioni sono piccole,
e possono essere considerate al limite entrambe reversibili.

AFey = PoSy <1 . p;) i)

AF,, = PySy <1 _ p{f) 40

PROBLEMA 7.10
( Estrazione di una provetta xx

Una provetta di massa m, lunghezza ¢ e sezione S & immersa completamente in un
fluido di densita p, che la riempie completamente. La pressione all’esterno del fluido &
quella atmosferica P4. Si puo trascurare il volume occupato dalla massa della provetta.
La si inizia ad estrarre mantenendola capovolta come in Figura Vale pgl > Py esi
puo considerare la sezione del recipiente che contiene il fluido arbitrariamente grande.

Si chiede di determinare, sommando esplicitamente le forze in gioco, la forza E che e
necessario applicare per mantenere la provetta in equilibrio in funzione della lunghezza
h della parte emersa.
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Figura 7.9.: La provetta completamente immersa nel liquido (cioe nel caso i < 0).

Soluzione

Facendo riferimento alla Figura[7.10]possiamo distinguere quattro diverse fasi dell’estra-
zione. Per ciascuna consideriamo il valore delle tre forze che agiscono verticalmente: la
forza peso (sempre —mg), la forza associata alla pressione P("*) applicata alla parte ter-

minale della provetta dal suo interno, la forza F,gm) = —SP(*) agsociata alla pressione

P(e**) applicata alla parte terminale della provetta dal suo esterno. Per avere equilibrio
dovremo quindi applicare una forza verticale

F = mg — Sp(int) + SP(ext)

1. La provetta &€ completamente immersa nel fluido. Dato che possiamo trascurare
lo spessore della provetta, le pressioni P(**) e P(¢*) saranno uguali (perche alla
stessa altezza), e quindi

F=mg

2. Adesso una parte della provetta di lunghezza ¢ al di fuori del fluido. Se pgh < Pa
l'interno della provetta resta completamente riempito di fluido. Avremo quindi
plnt) = py — pgh e P*) = P4, da cui

F =mg + Spgh

3. Appenapgh > P, 1'altezza della colonna di fluido all’interno della provetta smette
di salire, lasciando una frazione vuota. Di conseguenza plint) = ge plext) = p, da
cui

F=mg+ SPxy
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(3) (4)

Figura 7.10.: Le quattro fasi di estrazione della provetta.

4. Adesso la provetta contiene aria, quindi P(") = P(¢*) = P, e
F=mg

Notare che la forza F dipende da / in modo continuo, salvo che al passaggio dalla
fase 3 alla fase 4 quando si svuota bruscamente di fluido.

PROBLEMA 7.11
( Estrazione di una provetta, considerazioni energetiche. xx

Vogliamo risolvere il Problema [7.1T|basandoci su considerazioni energetiche. Per fare
questo scriviamo I’energia potenziale del sistema in funzione della posizione verticale
della provetta. Il ragionamento che segue € errato, e conduce a un risultato diverso da
quello corretto ottenuto nel problema precedente. Si chiede di scoprire e correggere
l'errore.

Sempre facendo riferimento alle quattro fasi rappresentate in Figura[7.10|scriviamo I'energia
potenziale del sistema in funzione della posizione verticale della parte piit alta della provetta
rispetto alla superficie del fluido, indicandola con h.

1. Abbiamo h < 0, e l'unica forza esterna che fa lavoro e la forza di gravita applicata alla
provetta. Di conseguenza a meno di una costante avremo

U = mgh
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2. Adesso le forze che fanno lavoro sono la forza di gravita applicata alla provetta, la forza
di gravita applicata al fluido, la pressione esterna. Dato che la superficie del contenitore
e arbitrariamente grande possiamo trascurare la variazione del suo livello e scrivere i tre
contributi descritti, nell ordine, come

U =mgh+ (pSh) g (;h) + PASh

Per scrivere il secondo termine abbiamo moltiplicato la massa totale della colonna di fluido
sollevata pSh per g e per 'altezza a cui é salito il relativo centro di massa h/2. L'ultimo
termine infine e la pressione esterna per la variazione di volume.

3. Dato che la colonna di fluido smette di salire quando pgh = Pa, da quel momento la forza
di gravita applicata alla colonna di fluido smettera di fare lavoro, e quindi

1 Py
U =mgh+ PoSh+ =pS (>
8 A 2P 8 0g

dove 'ultimo termine costante e stato scelto in modo da raccordarsi con continuiti con
I'espressione valida nella fase precedente.

Appena h > { la provetta si svuota e rimane il solo contributo della forza peso, e quindi

U = mgh

Se adesso deriviamo le espressioni precedenti rispetto ad h otteniamo la forza mecessaria ad
equilibrare la provetta, ossia

mg h <0
o U mg+PaS+pgSh  0<h< A
= — = P
oh mg + PsS o5 <h<t
mg h>1¢

Soluzione

L’espressione dell’energia potenziale nella fase 2 e scorretta, come si puo notare con-
frontando l'espressione della forza con quella determinata nel Problema perche il
termine legato al lavoro della pressione atmosferica P4 Sh deve essere omesso. Questo si
puo comprendere tenendo conto che 'energia potenziale che vogliamo scrivere e quella
del sistema costituito dalla provetta e dal fluido. La pressione atmosferica fa lavoro
quindi non solo agendo sulla superfice della provetta, ma anche sulla superficie libera
del fluido. Il totale sara dato quindi da

dL = PadV
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dove dV ¢ la variazione totale del volume del sistema, che in questa fase coincide con il
volume del fluido (la provetta € completamente piena). Ma il fluido & incomprimibile,
percuidV = 0.

Si puo rimanere confusi dal fatto che nel limite di recipiente molto grande la variazio-
ne di altezza del livello del fluido tende a zero. Questo & vero, ma non tende invece a
zero il prodotto tra la variazione di altezza e la superficie libera.

PROBLEMA 7.12
( Tempo di svuotamento di un contenitore x

Un contenitore cilindrico di sezione S e riempito di un liquido di densita p. Ad una
profondita h viene praticato un foro nella parete laterale di sezione s < S. Calcolare
dopo quanto tempo il livello del liquido scende di tratto A < h.

Soluzione

Consideriamo una linea di flusso che collega la superficie del liquido con il foro. Dal
teorema di Bernoulli segue che la quantita H = 1p0v? + pgz + P deve avere lo stesso
valore sulla superficie, dove abbiamo

1
H = Py+ pgh + E,ov% (7.12.1)
e al foro, dove invece
1

H=P+ Epv% (7.12.2)

da cui )
h= 2 (v5 — 1) (7.12.3)
Abbiamo indicato con vy = —dh/dt la velocita con cui la superficie del liquido si

abbassa, e con v, la velocita di uscita dal foro. D’altra parte dato che il liquido e
incompressibile (la densita p e fissata) deve essere

Sv1 = svp (7.12.4)

1 (82 , 1 (82 dh\
=k (B L (S ) () 7129

Separando le variabili otteniamo

MO dn b 2¢s?
— == —>——dt 7.12.6
/ho vh /0 57— <2 7126
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TERRESTRE* * *

da cui, scegliendo il segno opportunamente,

2
Jh() = Vi — 4] S§S (7.12.7)

Il tempo cercato si ottiene ponendo in questa espressione h(t) = hy — A

= (f—ﬁ?)ﬁ

i\/g (\/;T — Vhy — A) (7.12.8)

12

Nella soluzione non si e tenuto conto di diverse correzioni possibili, che verranno
discusse in altri esercizi. In particolare

1. non si & tenuto conto del fatto che la velocita di uscita del fluido non e perpendi-
colare alla superficie del foro, quindi non e del tutto corretto stimare il flusso in
uscita come sv;

2. & stato trascurato qualsiasi attrito

3. non si e tenuto conto del fatto che il fluido non e realmente in uno stato sta-
zionario, dato che le velocita in ogni punto cambiano mel tempo. L'approssima-
zione dovrebbe essere buona per s < S, almeno lontano dalle fasi finali dello
svuotamento.

PROBLEMA 7.13
La misura di Compton della velocita di rotazione

terrestrex x x

Un metodo proposto da A. H. Compton per misurare la velocita di rotazione terrestre
consiste nel riempire di acqua un tubo cavo circolare di raggio R come in Figura
Trascurando gli attriti, si suppone che I’acqua possa scorrere liberamente all’interno del
tubo.

Inizialmente questo si trova parallelo ad un piano orizzontale, ed il fluido & in quie-
te. Successivamente viene ruotato di 180° attorno ad un suo diametro fino a tornare
nuovamente orizzontale, e si osserva che il fluido sta scorrendo con una certa velocita
angolare w lungo il tubo.

Calcolate la velocita angolare del fluido in funzione di R (si puo supporre la sezione
del tubo molto piccola), della latitudine A alla quale si trova il laboratorio e della velocita
angolare di rotazione () della terra, supponendo che il diametro attorno al quale avviene
la rotazione sia disposto da ovest verso est. Se A = 71/4 e R = 1m quanto vale w? Cosa
succede se il diametro attorno al quale avviene la rotazione ¢ disposto da sud a nord?
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TERRESTREx x %

Figura 7.11.: Rappresentazione schematica del dispositivo di Compton. Il fluido scorre
liberamente all’interno del tubo circolare, che viene ruotato attorno ad un
asse passante per un suo diametro come rappresentato.

Soluzione
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8.1. SFERA RADIANTE %

PROBLEMA 8.1
( Sfera radiante x*

All'interno di una sfera di raggio R e conducibilita termica 7 viene prodotto calore in
modo omogeneo. Il calore prodotto per unita di volume e unita di tempo vale w.

La sfera € immersa in uno spazio vuoto allo zero assoluto nel quale irraggia come un
corpo nero. Calcolare la temperatura all’interno del corpo all’equilibrio.

Soluzione

Per motivi di simmetria il calore si propaghera radialmente, e potremo scrivere la
relativa componente della sua densita di corrente come
dT(r)
r)=—
] q ( ) 17 ar
dove, per simmetria, anche la temperatura dipendera solo dal raggio.
Il calore che attraversa una superficie sferica di raggio r sara dato da

d oT
d—?(r) =472, (r) = —4myr2air) (8.1.1)

e dovra essere uguale al calore prodotto per unita di tempo in tutto il volume in esso
contenuto:

4 5 _ 20T(r)
3w = 4ntyr 5

Otteniamo un’equazione differenziale per la temperatura della forma
aT rw

or 3y

che possiamo integrare direttamente:

Per determinare la costante di integrazione imponiamo che il flusso di calore irradiato
sia uguale a quello determinato dalla (8.1.1)

47tR*J;(R) = 4nR*cT(R)*
cioe

4
471;7;’71{3 = 47R% (T(O) - 6”:7R2>

wR\*  w

da cui

Da tutto cio segue
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8.2. SBARRA CONDUCIBILITA VARIABILE »x

PROBLEMA 8.2
( Sbarra conducibilita variabile xx

Calcolare la resistenza termica di una sbarra di lunghezza ¢ e sezione S, se la conducibi-
lita termica del materiale varia secondo la legge

(8.2.1)

N

k(z) = Ko+ (x; — %o)
lungo essa.

Soluzione

In condizioni stazionarie la corrente che attraversa una sezione della sbarra deve essere
indipendente da z. Inoltre

r dT(z)
5= J = —x«(z) 7 (8.2.2)
da cui . ,
2 I dz
dT = —/ —— = —RI 823
. s )y %) (823

La resistenza termica vale quindi

14
Rzl/ dz (8.2.4)
S 0 KO"‘(K[—KO)z

oppure, introducendo la nuova variabile

K = ko + (K7 — ko) % (8.2.5)
1 ¢ kede 1 ¢ ky

PROBLEMA 8.3
( Tre corpi in contatto termico *x

Due corpi di uguale capacita termica sono collegati tra di loro e ad un bagno termico di
temperatura Tp tramite delle resistenze termiche Ry e R, come in Figura Calcolare
la temperatura all’equilibrio e 1’evoluzione delle temperature T;(t) e T»(t) a partire da
una data condizione iniziale. Trascurare la capacita termica delle resistenze.
Soluzione

La temperatura di equilibrio € ovviamente quella del bagno termico. Per verificarlo
possiamo immaginare che il bagno termico abbia in realta una capacita termica Cyp
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Rl R2

Ty Ty(t) Ty(t)

Figura 8.1.: I tre corpi (quello pit1 a sinistra € un bagno termico) in contatto tra loro.

molto grande. In accordo con la formula generale all’equilibrio termico avremo

o CoToy+CT1 +CT,
B Co+2C
e passando al limite Cyp — oo otteniamo Ty = Tp.

Scriviamo adesso le equazioni che determinano la evoluzione delle temperature. Per
le correnti di calore abbiamo

Ty (8.3.1)

RiLi(t) = Ty — Ty (t) (8.3.2)
Rolr(t) = Ta(t) — To(t) (8.3.3)
e d’altra parte
cd%f” — (H) - b() (83.4)
dTy(t) _
C=—2= = h(t) (8.3.5)
cioe it T .
a 1 Tt+r2 =72 1) _ [ mlo
aln) (0 ) (m)=(7")  wao

dove abbiamo posto 7 L= RiCe Yy 1 — R,C. Questo & un sistema di equazioni diffe-
renziali lineari a coefficienti costanti, non omogeneo. Cercheremo prima una soluzione
particolare, quindi la soluzione generale del sistema omogeneo associato.

Se all’istante iniziale le temperature dei due corpi sono uguali a quelle di equilibrio, ci
aspettiamo che rimangano tali anche successivamente. In altre parole T; (t) = T»(t) = T
€ una soluzione particolare, come si verifica facilmente per sostituzione.
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Veniamo alla soluzione generale dell’'omogenea, che cercheremo nella forma

v _ [ A\ e
(T)=(4)e 537
Sostituendo troviamo
A1\ gt (’Yl+’Yz _')’2><A1>ﬁt (0)
= 8.3.8
ﬁ<A2)e+ o A )¢ 0 (8.3.8)

( " +_122+[5 72_12ﬁ > < ﬁl > B ( 8 > ' 539

Questo sistema lineare omogeneo avra soluzioni non banali solo quando il determinante
della matrice sara nullo. Da

ossia

nm+r+p -1 2
=B+ (n+21)B+m72=0. 8.3.10
‘ g | T A2) B (8.3.10)

troviamo che questo accade per due valori (entrambi reali e negativi) di B:

— (M +272) £\ /¥ +473 —

Le corrispondenti soluzioni per A; e A, saranno
Ay Y2+ B+ )
=B = 8.3.12
ﬁ ,B+ < Ay > €1 < Y2 ( )
Ay Y2+ B- )
=p_: = 8.3.13
IB IB < A2 ) 2 < ¥ ( )

con ¢ e cp costanti arbitrarie. Otteniamo quindi la soluzione generale sommando la
soluzione generale dell’'omogenea alla soluzione particolare.

T\ _ Yo+ B+ | put T2+ B- )\ ot To
( T ) =0 < - el 4+ ¢ - eP=" 4 T, ) (8.3.14)

Imponiamo le condizioni iniziali a t = 0:

(d=n ) =a (730 ) () = (70 ™) (3

(8.3.15)
che ci permettono di calcolare ¢; e cy:
' Tg—To Y2+ B- '
T) — T TV —Tp) — (T9 — T, + B-
gl 2= m _ (B —T) — (T~ To) (12+B-) (8.3.16)
‘ T2+ Bt 12t pe ’ Y2 (B+ —B-)
12 2
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8.3. TRE CORPI IN CONTATTO TERMICO »*x*

’ Y2+ B+ T?—TO

D T-T | (T -T) + (T - T) (12 + B+) 8.3.17
2= Y2+ B+ 72+,B_‘_ Y2 (B+ — B-) ' (8317
72 2

Consideriamo adesso due casi particolari, cominciando da 2 > 71. In questo caso
Ry < R;. Abbiamo

2 2
71 1 71 T
=27 <l + > —/1+ =] =27 [ +0 <>] ~ —y;  (8.3.18)
P+ 27, 473 272 7
11 ’72 g6!
B— =27 (1 + 2’Y2> +4/1+ Q =27 [2—1— @) (72)] ~ —27, (8.3.19)
< 72 ;Lf* > ~ ( zi > (8.3.20)
< 7 ;5 ) ~ ( _WZZ > (8.3.21)
) + T9 — 2T)
€~ o (8.3.22)
T9 — 19
Cp ~ 2272 1 (8.3.23)
e quindi

T D+T 2T (1 0y, BT ( =1\ 5 To
<T2>_2 et (7 e () @32y

possiamo interpretare la soluzione nel seguente modo: la differenza di temperatura tra
i due corpi tende a zero molto velocemente, con un tempo caratteristico dato da 37, .
Invece la temperatura media dei due corpi tende alla temperature di equilibrio, ma con
un tempo caratteristico molto piit grande ;. Questo & facilmente comprensibile, dato
che a causa della bassa resistenza termica tra i due corpi questi tenderanno a stabilire
un equilibrio locale tra di loro molto velocemente. Un esempio e riportato in Figura

Vediamo invece cosa accade se y; > 2. In questo caso

po— Lo | (1+z”> s heat] o, (8.3.25)
POV I 72 6N P 3.
2| M 7 |
B_ = 171 _— (1+272> — 1+4ﬁ_ -1 (8.3.26)
21| m 7 |

< T2t By ) ~ ( 0 > (8.3.27)
72 Y2
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8.3. TRE CORPI IN CONTATTO TERMICO »*
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Figura 8.2.: Evoluzione delle temperature per y; =1 s,y =10s71, Ty = 10K, T{) =
20K, T20 =30K.

Te+B-\ o[
(7)) 5329
CFM (8.3.29)
T2
(70 _
0= M. (8.3.30)
T

e quindi

()=o) () (3). o

Anche in questo caso l'interpretazione ¢ chiara: il primo corpo tende molto rapidamente
alla temperatura del bagno termico, con un tempo caratterstico dato da -y *. Il secondo
termalizza pitt lentamente, con un tempo caretteristico dato da 7, ' > ; !. Un esempio

¢ in Figura
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Figura 8.3.: Evoluzione delle temperature per y; = 10 s,y =1s"1, Ty = 10K, T{) =
20K, Tg = 30K.

PROBLEMA 8.4
( Sbarra conduttrice xx

La temperatura di una sbarra di lunghezza ¢ e sezione S ¢ inizialmente

T(x,0) =T, (1 — Bcos %x) (8.4.1)

con § < 1. La sbarra ¢ isolata termicamente, ed e costituita di un materiale di conducibi-
lita termica «, calore specifico c e densita p. Calcolare la temperatura finale,

T = tlgglo T(x,t) (8.4.2)
e I’evoluzione temporale T'(x, t).

Soluzione

La temperatura finale si pu0 calcolare immediatamente come media delle temperature
iniziali dei diversi elementi della sbarra, pesati con le capacita termiche. Dato che la
capacita termica di un tratto infinitesimo della sbarra e pScdx abbiamo

[ T(x,0) pScdx
[ pScdx

1 [t T
Ty =5 /0 T (1 — Bcos ?x) dx =T,. (8.4.3)
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8.5. EQUAZIONE DEL CALORE UNIDIMENSIONALE »*x%

Per calcolare I'evoluzione temporale ricordiamo che la densita di corrente di calore &
proporzionale al gradiente di temperatura:

oT
Jg= K5 (8.4.4)

e che la variazione temporale della temperatura e data da

oT dJ;
5T T ox (8.4.5)
da cui
JoT x 02T
g —_ @W . (8.4.6)

Se calcoliamo la derivata seconda della temperatura iniziale rispetto ad x otteniamo

2T (x,0 2 T
a(x2) = ﬁTlﬁ COSs ?x . (847)

Questo suggerisce di cercare una soluzione della forma

T(x,t) =Ti + A(t) cos %x. (8.4.8)

Sostituendo nell’equazione troviamo

2

. T K 7T T
A Tx=—""T_A = 4.
(t) cos 7x 0 2 cos X (8.4.9)
e quindi
A(t) = Cre™ (8.4.10)
con y = fpizz. Imponendo la condizione iniziale troviamo C; = —B7T; e quindi
T(x,t) =T (1 — Be cos %x) . (8.4.11)

PROBLEMA 8.5
( Equazione del calore unidimensionale %«

Ricavare I’equazione del calore in una dimensione, nel caso generale in cui densita,
calore specifico e conducibilita termica sono funzione della posizione.
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Soluzione

La prima equazione da cui partire ¢ quella che da la densita di corrente di calore,

Jo(x,t) = —K(X)aTéi’t) (8.5.1)

la seconda quella che lega ’aumento della temperatura in un tratto della sbarra al calore
entrante:

dJy(x,
p(x)e(n) Tt hlxrt), 852

Questa si ottiene applicando cmAT = AQ a un tratto della sbarra compresa tra x — dx /2
ex+dx/2.

9y (x,t
c(x)p(x)deaTéi' H_ Jo(x —dx/2,t)S — Jo(x +dx/2,t)S = — ]qéi ) Sdx + O(dx?).
(8.5.3)
Derivando la prima equazione rispetto a x e eliminando la corrente di calore usando
la seconda otteniamo 3 /3 5
T T
E <kax) = pcg . (8.5.4)
PROBLEMA 8.6
( Fluttuazione di temperatura su una sbarra xx
Determinate se possibile A(t) e o(t) in modo che la funzione
T(r,t) = To+ A (F)exp [ — 25 (86.1)
2} =10 PA724a(® >
sia soluzione dell’equazione del calore
or_ T (8.6.2)
o~ Mo >

con (vedere I'Esercizio e date una interpretazione del risultato.

Soluzione

Calcoliamo le derivate della (8.6.1). Abbiamo
oT 1 A, 1 x?

*T x\2 1 1 x?
Vaxz—VA[(A) _A] exp <_2A>
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1.0m\
o’fl“s
0.4

0.2

-10 -5 5 10

Figura 8.4.: L'evoluzione temporale della fluttuazione di temperatura considerata nel
problema. La curva piu alta corrisponde alla fluttuazione iniziale, le succes-
sive via via pitt basse a ut = 1,2, 3,4, 5. Sulle ascisse la posizione in unita op,
sulle ordinate la fluttuazione in unita Ag.

ed uguagliando queste due espressioni vediamo che devono valere le due condizioni

\ o KA

A= A
1, A JZ7AN
AL = 2
27 A? A?

La seconda equazione si integra immediatamente dopo una semplice semplificazione
ottenendo
A(t) = of + 2ut

e sostituendo nella prima abbiamo

é = ilo = — K
At 8 03 + 2ut
da cui
%
A(t) = 5
oy +2ut

Sostituendo otteniamo

T(x,t) =To+A iex _lxiz (8.6.3)
SEEEE 03 + 2ut P 205 +2ut o
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8.7. UNA SOLUZIONE PARTICOLARE DELL'EQUAZIONE DEL CALORE
UNIDIMENSIONALE *  *

Possiamo interpretare il risultato come 1’evoluzione temporale di una fluttuazione di
temperatura Gaussiana su un sistema unidimensionale omogeneo (per esempio una
sbarra). La larghezza della fluttuazione cresce con legge o(t) = y/0f + 2ut. La sua

ampiezza al tempo stesso si riduce: questo ¢ una conseguenza della conservazione
dell’energia: infatti I'energia totale della fluttuazione & data dall’integrale

/ 2
Er = d 8.64
f= pc/ (70+ 2(70+2;4t> X ( )

2 £
Introducendo la nuova variabile y = x/c(t) vediamo che 'integrale si scrive nella
forma - .
Ef= pcAoao/ exp <—2y2> dy (8.6.5)

che & evidentemente indipendente dal tempo.

PROBLEMA 8.7
Una soluzione particolare dell’equazione del calore

unidimensionale x x %

Data l’equazione del calore unidimensionale

oT 0°T

ot Moz

studiare, se esistono, soluzioni particolari del tipo

T(x,t) = N(t)d (}%)

dove N(t) e f(t) sono funzioni incognite da determinare. Assumere che 1’energia della
sbarra si finita e si conservi.

Soluzione

L'energia totale della sbarra si puo scrivere nella forma

U(t) = pc /oo T(x,t)dx

—o0

ciog, per la soluzione proposta,

ue) = pc/oo N(£)® <x)> dx
= pcN(t) / D (u
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8.7. UNA SOLUZIONE PARTICOLARE DELL'EQUAZIONE DEL CALORE
UNIDIMENSIONALE * » *

dove abbiamo introdotto la variabile # = x/c¢. Dato che l'integrale & ovviamente
indipendente dal tempo, dovra essere

1
N=-=-
f
Calcolando le derivate abbiamo
or f X ;o
azi — lqp”
ox2 73

e sostituendo otteniamo

jf‘ch” (1) + ;MCD' (1) ;cp (1) =0

Ma questo si puo anche scrivere nella forma
" ﬁ i —
D" + o du (ud) =
Integrando rispetto ad u otteniamo
@' (u) + f]/{ucb(u) =C

otteniamomembro a membro rispetto al tempo vediamo che deve essere

d ..
Sff =0
cioe P
2 _
ap! =0
e integrando otteniamo
fP=fotat

dove « e fy sono costanti arbitrarie. L'equazione differenziale per ® si puo riscrivere
allora nella forma N
@' (u) + —ud(u) =C
(1) + 5, u(w) = C
Si tratta di un’equazione differenziale lineare del primo ordine. Il metodo standard per
la risoluzione consiste nel moltiplicare membro a membro per un opportuno fattore
integrante. In questo caso ad esempio otteniamo

@' (u) + Zﬂ;ucb(u) edi = Creti™
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che si puo riscrivere come
2 2
di {Cbe‘%‘” ] = Cyeh"
u
Integrando abbiamo

_a 2 (M oaye _ag2
b =Cie # e dw+ Cre #
0

Infine

)
C{/ ezdw+ C)
0

1 x2
T(x,t) = @exp <_2(7(t)2)

dove abbiamo definito
2ufs 2p
2ut =4/ —
\ . TEt= S0

Notiamo adesso che termine proporzionale a C; non & accettabile fisicamente. Infatti
essendo una funzione dispari di x, assume valori negativi (temperature negative non
sono accettabili) o per x positivi o per x negativi, e domina per |x| sufficientemente
grandi su quello proporzionale a C}. Di conseguenza le uniche soluzioni accettabili
sono

o(t)

A x?
o(t) = /03 +2ut

cioe quelle studiate nell’Esercizio

PROBLEMA 8.8
( Temperatura a regime di una sbarra radioattiva *x

Una sbarra di lunghezza /¢, sezione S e conducibilita termica o, sezione a tra due corpi
molto grandi mantenuti a temperatura costante T; e T, > T; (Figura . La sbarra e
radioattiva, e al suo interno viene continuamente prodotta energia: il calore generato
per unita di volume e di tempo ¢ 7.

o Determinare la temperatura della sbarra a regime.
o Per quali valori di # il punto pit1 caldo della sbarra non si trova ad un estremo?

o In quali condizioni non si ha trasmissione di calore tra la sbarra e il corpo a
temperatura T,?

@ 554 versione del 5 ottobre 2016



8.8. TEMPERATURA A REGIME DI UNA SBARRA RADIOATTIVA »x

Figura 8.5.: La sbarra radioattiva considerata nel problema

Soluzione

A regime il calore uscente da un tratto di sbarra compreso tra e x = x, deve essere
uguale a quello prodotto all’interno. Detta J(x) la densita di corrente di calore abbiamo
dunque

SJ(x2) = S](x1) = (x2 — x1) Sy

ed in particolare prendendo x; = 0e x; = x

J(x) = J(0) + xy
Dato che il calore viene trasmesso per conduzione abbiamo dalla legge di Fourier

oT

R Y PN
=) =20 - L

ed integrando troviamo

T(x) =T — gj(o) . %xZ

Imponendo le condizioni al contorno T(¢) = T,
_ne

14
T

troviamo la corrente all’estremo sinistro della sbarra,

e quindi

_ Y, — Ty —
T(x) =T+ 7 (Tz Tl) + ng (é X)
1 punto pit caldo non si trova ad un estremo se il massimo della funzione T(x) &
all’interno dell’intervallo 0 < x < £. Dato che
oT 1 n
S = (L-T)+ = (t—2
ox / (-T)+ 20 (6= 2)
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8.9. RESISTENZA TERMICA DI UNA SCALA (SEMI)INFINITA %«

deve essere

12 o 4
—§< W(Tz_Tl) < E
dato che ’
o
Xmax = %(TZ_Tl)‘FE
cioe per

20
n> ﬁ(TZ—Tl)

Infine, dalla legge di Fourier troviamo che | si annulla nel massimo di T(x). Questo si

trovera in x = ¢ quando
20

U:p(Tz—Tl)

e in tali condizioni J(¢) = 0. Notare che non & mai possibile ottenere J(0) = 0, in altre
parole del calore viene sempre scambiato con il corpo pit freddo.

PROBLEMA 8.9
( Resistenza termica di una scala (semi)infinita xx

A

(8,0

B

Figura 8.6.: La scala semi infinita: tutti i tratti sono sbarre di identiche caratteristiche.

Una scala di lunghezza infinita e costruita come in Figura [8.6/saldando tra loro del-
le sbarre sottili identiche (lunghezza ¢, sezione S e conducibilita ¢). Determinare la
resistenza termica tra 1’estremo e quello B.

Soluzione

Dato che la scala & semiinfinita, se rimuoviamo le prime tre sbarre a sinistra ne ottenia-
mo un’altra con la stessa resistenza termica Re. Di conseguenza possiamo scrivere la

relazione
RR«

R + Roo
basata sul Diagramma In alte parole, la resistenza termica totale della scala si puo
ottenere considerando in serie una sbarra, il parallelo tra una sbarra e il resto della scala,
e una terza sbarra. Questa relazione da una equazione di secondo grado per Re,

R =R+ +R

R% —2RR, —2R?=0
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8.10. TEMPERATURA DI UN CONDUTTURA

R

©9) — R © ]

R

Figura 8.7.: La scala semi infinita: tutti i tratti sono sbarre di identiche caratteristiche.

che ha come unica soluzione accettabile (perche positiva)

Rm:R(1+\f3) :fs<1+x/§)

PROBLEMA 8.10
( Temperatura di un conduttura

Una conduttura cilindrica di lunghezza infinita ha raggio interno r; e raggio esterno
rp = r1, e conducibilita termica 7. Se la sua superficie interna r = r; & mantenuta alla
temperatura T; e quella esterna r = r; alla temperatura T, < T3, calcolare in condizioni
stazionarie la temperatura T(r) e la potenza W per unita di lunghezza che deve essere
generata per rimanere a regime.

Soluzione
Data la simmetria del problema il calore si propaga radialmente. Possiamo quindi
scrivere la densita di corrente di calore come
aT
J=-n4

Inoltre in condizioni stazionarie il calore che attraversa in una unita di tempo una su-
perficie cilindrica con asse coincidente con quello della conduttura non deve dipendere
da r. Quindi considerando un tratto di lunghezza ¢ dovra essere

2rtrJl = K
Mettendo insieme le due equazioni precedenti troviamo

K T
2t r

ed integrando

K
T(r) = T logr+C
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8.10. TEMPERATURA DI UN CONDUTTURA

Fissiamo le costanti K imponendo le condizioni al contorno:T_

K
T1 = _271'776 logr1 —|—C
K
T, = _27117€ logr, +C
da cui X
"
Th—T = ——1 —
2 2l 8 (r2>
e quindi
27'[176 (Tl — Tz)
K=—"—~— =
p
o3
¢ I
C=T+ o871 (Tl - TZ)

Otteniamo infine

Il calore che attraversa trasversalmente la conduttura per unita di lunghezza ¢ K//,
ed e anche la potenza che deve essere generata, sempre per unita di lunghezza, per
mantenere le condizioni stazionarie. Quindi

_ 2my (i — To)

log (%)

4%
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Trasformazioni termodinamiche
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9.1. CONTATTO TERMICO TRA DUE CORPI

PROBLEMA 9.1
( Contatto termico tra due corpi

Due corpi identici hanno una capacita termica dipendente linearmente dalla temperatu-
ra della forma

C(T) =BT
dove B € una costante opportunamente dimensionata. Inizialmente si trovano alle tem-
perature T; e T>. I due corpi vengono posti in contatto termico. Calcolare la temperatura
finale del sistema complessivo all’equilibrio.

Soluzione

Sia Q il calore trasferito dal corpo 1 al corpo 2. Dato che

dQ =C(T)dT
avremo
Ty Ty
Q= [ priar= _/ BTAT
T T
da cui 5 5
2 2 P(r2 2\ _
E(Tf T2>+2(Tf Tl)—O
Segue che

| T? +T;
Ty = 5

Sciogliere del ghiaccio

( PROBLEMA 9.2

Una massa m = 103g di ghiaccio si trova inizialmente ad una temperatura T; < Ty, dove
T e la temperatura di fusione. Quanta acqua a temperatura T4 > Ty & necessario aggiun-
gere al sistema per sciogliere completamente il ghiaccio? Si supponga che i calori speci-
fici per unita di massa di acqua e ghiaccio, c4 = 4186J kg ' K1 e cc = 2090 kg1 K1,
siano costanti e si indichi con A = 333.5 x 103 kg ! il calore latente di fusione.

Soluzione

La temperatura finale del sistema & T, e il ghiaccio si deve essere sciolto totalmente. A
quest’ultimo deve quindi essere stato ceduto un calore

Q= Am+ mcg (Tf — Tl‘)
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9.3. ADIABATICITA E VELOCITA DI UNA TRASFORMAZIONE * * %

Questo calore deve essere stato estratto dall’acqua, e quindi
—Q = Mcy (Tf — Ta)
Sommando membro a membro otteniamo
Am +mcg (Tf — T;) + Mca (T —Ta) =0

e quindi
A+cg (Tf — Ti)

M=m Ta— T}

PROBLEMA 9.3
( Adiabaticita e velocita di una trasformazione x x %

SIS S S SS S SS S SSSSSSSSSSSSSSSSSSSSSSSSSS
SIS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

PV T R Ik
Fy

I

3=

VO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIY

VO IDIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIY
r = Asinwt

Figura 9.1.: Il sistema considerato nel problema. Le pareti scure sono impermeabili al
calore.

Il recipiente schematizzato in Figura[0.1]ha le pareti e il pistone impermeabili al calore,
mentre la base ha una resistenza termica R. Viene riempito con n moli di gas perfetto,
e si trova inizialmente in equilibrio con ’ambiente esterno, P = Py e T = Ty (il pistone
viene lasciato libero di muoversi).

Dal tempo t = 0 si obbliga il pistone a muoversi secondo la legge x = A sinwt, dove
x € lo spostamento dalla posizione iniziale di equilibrio. Si attende quindi un tempo
sufficientemente lungo, in modo da far perdere al sistema memoria della condizione
iniziale.

Supponendo di poter considerare la temperatura e la pressione del gas uniforme si cal-
coli T(t), e si verifichi che per w abbastanza grandi la trasformazione si puo considerare
adiabatica.

Considerare piccola la variazione relativa di volume.
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9.3. ADIABATICITA E VELOCITA DI UNA TRASFORMAZIONE x * *

Soluzione

Dal primo principio e dall’equazione di stato abbiamo

dQ = nc,dT + nRTdVV (9.3.1)
d’altra parte possiamo anche scrivere
dQ
R—==Ty-T 3.2
7 = Do 93.2)
e quindi
aT dlogV 1
ney +nRT TR (To—T) . (9.3.3)
I1 volume e una funzione nota del tempo,
V =W+ SAsinwt (9.3.4)

e possiamo riscrivere ’equazione nella forma

dT+1< TRlegV)T:TO 935)
dt 7T c, dt T
dove abbiamo introdotto T = nc,RT, che possiamo considerare la scala temporale ca-
ratteristica degli scambi di calore tra gas e ambiente esterno. In effetti tenendo fissato il
volume vediamo che T e proprio il tempo nel quale una differenza di temperatura tra
esterno e interno si riduce di un fattore e~

L’equazione differenziale ottenuta ¢ lineare e del primo ordine, e la sua soluzione si de-
termina con un metodo standard. Moltiplicando membro a membro per un opportuno

fattore integrante

dr 1 RdlogV T
I:dt + = (1 + L 38 ) T] et/T-i—R/cvlogV(t) _ iet/'r-i-R/cvlogV(t) (936)
T Cy t T
abbiamo J T
a |:Tet/T+R/CvlogV} _ ?OEt/TJrR/cU logV (937)
e integrando otteniamo
To t/c—R/cologV(t) [ ¢/mR/ecIosV(¥) gy o comt/e—R/colog V()
T = ?e v ; e (9.3.8)

ossia (indicando con ¢ = AS/V la massima variazione relativa di volume, ¢ < 1)

e—t/T To e—t/T

T=C S
(1+esinwt)™ ™ T (1+esinwt

t
EE /0 (1+esinwt )V e/7at . (9.3.9)
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9.4. RENDIMENTO DI UN CICLO DI CARNOT *

Sviluppando al primo ordine in ¢, e osservando che a causa delle condizioni iniziali
C = Ty, otteniamo

R T R ! R /
T =Toe /" <1 —e— sincut) 4+ Let/T (1 —e— sinwt) / <1 +e— sinwt’) et/ Tdt
Cy T Cy 0 Co
(9.3.10)
e calcolando l'integrale otteniamo

R —t/T
T=T, {1 - egﬁ [—wr + e/ Twtcoswt — (1 + w?T?) sinwt (9.3.11)

+et/Tw?T? sin wt} } (9.3.12)

Per tempi grandi rispetto a T possiamo eliminare i termini che tendono a zero esponen-
zialmente, e troviamo

R wt .
T =T, [1 — eam (coswt + wTsin wt)] . (9.3.13)
Per w > 7! abbiamo R
T ~Tp [1 — 8C— sin wt] . (9.3.14)
%

e confrontando con I’andamento del volume
V =V (1+esinwt) (9.3.15)
troviamo che la combinazione VR/¢ T & approssimativamente costante
VRIeT = Yoy + 0 ()

cioe la trasformazione del gas ¢ adiabatica.

PROBLEMA 9.4
( Rendimento di un ciclo di Carnot %

Calcolare esplicitamente il rendimento di un ciclo di Carnot di un gas perfetto, espri-
mendolo in funzione delle sole temperature della sorgente calda e della sorgente fredda
utilizzate.

Soluzione

Il rendimento ¢ definito dal rapporto tra lavoro e calore assorbito. Calcoliamo il lavoro
fatto in una trasformazione isoterma

oy v dv 1%
Ly_y = / PdV = nRT / - = nRTlogV—Y (9.4.1)
Vx Vx X
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9.4. RENDIMENTO DI UN CICLO DI CARNOT *

\Y%

Figura 9.2.: Il ciclo di Carnot rappresentato nel piano P — V per un gas perfetto. Le adia-
batiche sono tratteggiate, le isoterme continue. T; e T, sono le temperature
rispettivamente della sorgente calda e fredda.

e in una trasformazione adiabatica, per la quale il prodotto PV7 & costante:

Vv Y gy 1 1 1
Lxoy = / PdV:PXVV/ — = PxVy | —= — —=
— Ve X Vy V7 1— v X V{/yfl V}"(yfl

1 [PxV] PV 1
T a1 ( nyff - Vyyfl ) i (PxVx — PyVy) (9.4.2)
X Y

Abbiamo utilizzato il fatto che PxVy} = PyV} ., e quindi amente potevamo osservare che
per una trasformazione adiabatica dU = —dL, e quindi

LXﬁy = NcCy (TX - Ty) (943)

che coincide con 'espressione precedente.

Per quanto riguarda il calore scambiato, sappiamo che & nullo in una trasformazione
adiabatica. In una trasformazione isoterma dal primo principio, e dal fatto che per un
gas perfetto I'energia interna dipende dalla sola temperatura segue, facendo riferimento

alla Figura 0.2
dQ = dU + dL = c,dT + dL = dL (9.4.4)
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9.5. CICLO DI CARNOT CON GAS DI FOTONI %

cioe il calore assorbito € uguale al lavoro fatto dal gas. Abbiamo in conclusione

n= L _ LA—>B + LB—>C + LC—>D + LD—>A (9‘4‘5)
QA—>B LA—>B
nRT; log % +ncy, (Ty — T2) + nRT; log “;—’g +nc, (T, —Th) 9.46)
nRT; log% a
Tz log VD/VC Tz 10g VD/VC
— 2 =140 2L 94.7
T1 IOg VB/VA + Tl log VB/VA ( )
ma utilizzando le relazioni
V —VTiX V—VTloé (9.4.8)
D = ATQ" cC= VB TS o
otteniamo semplicemente
Trlog V4 /V, T:
2l0gVa/Vp 4 T2 (9.4.9)

T " TlogVs/Va T

PROBLEMA 9.5
( Ciclo di Carnot con gas di fotoni xx

La radiazione elettromagnetica puo essere descritta dal punto di vista termodinamico
come un gas con energia interna

u=uvr (9.5.1)
e pressione
1
P= ng‘* (9.5.2)

dove b e una costante. Rappresentare un ciclo di Carnot di questo sistema nel piano
P — V e calcolarne esplicitamente il rendimento in termini delle sole temperature della
sorgente calda e fredda.

Soluzione

Dall’equazione P = 1bT* segue che una trasformazione isoterma & anche isobara. Per
una trasformazione adiabatica si ha invece

dQ = dU+ PdV =4bVT3dT + bT*dV + %bT‘*dV (9.5.3)
= %bT”‘dV +4bVT3dT =0 (9.5.4)

ossia
;dg + dTT =0 (9.5.5)
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ed integrando
V13T = costante (9.5.6)

che si puo riscrivere come una relatione tra Pe V:

PV*/3 = costante . (9.5.7)
Un ciclo di Carnot si rappresenta dunque nel piano P — V come in Figura

P

Figura 9.3.: Il ciclo di Carnot per il gas di fotoni, rappresentato nel piano P — V.
Calcoliamo adesso il rendimento. Come conseguenza del primo principio, il lavo-

ro fatto nelle trasformazioni adiabatiche & uguale alla variazione dell’energia interna
cambiata di segno:

Lp.c=b (VBTg _ VCTé) —b (VBT;L — VCTQ*) (9.5.8)

Lpsa="b (VDTQL - VAT{*) (9.5.9)

mentre per le trasformazioni isoterme si ha semplicemente

1
Layg="Pa(Vg—Vy4) = ng{* (Vg — Vya) (9.5.10)

1
Lesp = Pe (Vb = Ve) = 3bT; (Vo = Vo) - (9.5.11)
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Calcoliamo infine il calore assorbito dalla sorgente calda. Diversamente dal caso del
gas perfetto, questo non e uguale al lavoro fatto, poiche 1’energia interna dipende dal
volume. Per una isoterma abbiamo

dQ::%bT%ﬂ/ (9.5.12)
e quindi
4
Qap = 30T (Vs = Va) - (9.5.13)

Calcoliamo infine il rendimento:
:%Mﬂw—MU+u%ﬁ—wwwgwﬁw—w»mo@ﬁ—mﬁ)
30T (Vs — Va)
_ Til (VB — VA) + Tg (VD — Vc)

T} (Vg — Va)
T3 (Vp — V
_1+ D (Vb —Vc)
T} (VB —Va)
ed utilizzando
VpT3 = VuTS, VT3 = VgTo (9.5.14)
conseguenza dell’Equazione (9.5.6) otteniamo
Ty (VAT? — VBT T
q:H—Mfl (L (9.5.15)
T} (Vg — Va) T

PROBLEMA 9.6
( Ciclo Brayton x

Un ciclo Brayton e costituito da due adiabatiche e due isobare. In Figura ¢ rappre-
sentato nel piano P — V per un gas perfetto. Calcolarne il rendimento.

Soluzione

Il lavoro fatto in una adiabatica & I'opposto della variazione dell’energia interna. Per
I'isobara il lavoro e chiaramente PAV, ed il calore scambiato & dato da
Q = nc,AT (9.6.1)
Calcoliamo adesso l'efficienza:
_ Pa (Vg —Va) +ncy, (Tg — Tc

~—

+ Pp (Vp — V) +ncy (Tp — Ta)

n

YZCp (TB — TA)
nR (Tg — Ta) +ncy (T — Tc) +nR (Tp — Tc) +ncy, (Tp — Ta)
- 1’le (TB — TA)
_1_ (Tc—Tp)
(Ts = Ta)
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Figura 9.4.: 1l ciclo Brayton nel piano P — V.

PROBLEMA 9.7
( Ciclo Diesel x

O- L L L 1 L L L 1 L L L 1 L L L 1 L L L J
0 2 4 6 8 10

Figura 9.5.: 1l ciclo Diesel rappresentato nel piano P — V.

II ciclo Diesel & costituito da una serie di trasformazioni in successione, rappresentate
in Figura 0.5 per un gas perfetto:

1. una compressione adiabatica (A-B);

2. raffreddamento a pressione costante (B-C);
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3. una espansione adiabatica (C-D);
4. un raffreddamento a volume costante (D-A).

Calcolarne esplicitamente 'efficienza, esprimendola in termini dei rapporti

r = VD/VB, N = Vc/VB (971)

Soluzione

Il calore viene scambiato durante il riscaldamento a pressione costante e durante il
raffreddamento a volume costante. Nel primo caso dQ = cpdT > 0, quindi il calore
viene assorbito. Nel secondo caso viene ceduto, come si verifica da dQ = cydT. Il calore
assorbito e quindi

Quass = ncp (TC - TB) (9'7-2)

Calcoliamo adesso il lavoro fatto dal gas in tutto il ciclo:
L=Lgc+ Lcp+ Las
= PB (VC — VB> — ncy (TD — Tc> — ncy (TB — TA)
Abbiamo quindi

g — P (Ve = V) + cv/R (PsVe = PoV) + cv/R (PaVp — PyVi)
cp/RPg (Ve — V)
Py (Ve — Vi) +cv/R (PsVe — PeVI /VE™) +ev /R (PeVi / V3™ — PV
cp/RPg (Ve — Vp)
R (Ve = V) +ev (Ve =VE/VE™) +ev (Vi/vy™ = Vi)

cp (Ve — Vp)
ep (Ve = Va) +ev (Vi /vy =va/vy)
B cp (Ve —Vp)

_q__ 1 aT-1
T iy(a-1)7

PROBLEMA 9.8
( Ciclo Ericsson x

I1 ciclo Ericsson ideale, rappresentato in Figura[9.6nel piano P — V per un gas perfetto,
e costituito da due trasformazioni isoterme e due trasformazioni isobare. In linea di
principio se una certa quantita di calore viene assorbita da una sorgente ad una data
temperatura e in seguito restituita alla stessa non se ne deve essere considerato nel
calcolo dell’efficienza (viene “riciclato”). Verificare se questo € possibile in questo caso e
calcolare I'efficienza.
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Ir B A

0-....|....|....|....|....|
0 10 20 30 40 50

Figura 9.6.: 1l ciclo Ericsson rappresentato nel piano P — V.

Soluzione

Calcoliamo calore assorbito, variazione di energia interna e lavoro compiuto dal sistema
nelle diverse trasformazioni. Abbiamo la seguente tabella (notare che in conseguenza
del primo principio Q = L 4 AU:

Q L AU
A— B mncp (TB — TA) Pg (VB — VA) =nR (TB — TA) ncy (TB — TA)
B— C nRITp log“% nRTp log% 0 (9.8.1)
C—D ncp (TA — TB) PC (VD — Vc) =nR (TA — TB) ncy (TD — Tc)
D— A nRTy log% nRT, log% 0

Il calore assorbito in C — D pud essere completamente riciclato in A — B, per cui
non ne terremo conto nel calcolo dell’efficienza che diviene

nRTglog Y + nRT4 log Y4 T, log 22 T
g = "X 8 v 14 8v _ 1, Ts glljczl_i. (9.8.2)
nRT, log /- Talog 12 Ta

PROBLEMA 9.9
( Ciclo Otto *

Un ciclo Otto ideale, rappresentato in Figura[9.7nel piano P — V per un gas perfetto, &
costituito da due adiabatiche e da due isocore. Calcolarne il rendimento ed esprimerlo
in termini del rapporto di compressione « = Vp/ V.
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Figura 9.7.: Il ciclo Otto rappresentato nel piano P — V.

Soluzione

Il sistema compie lavoro solo sulle adiabatiche, e si ottiene
Lcsp = Uc — Up = ney (Tc — Tp)

Layp=Uy—Up =ncy (Ta — Tp)

9.9.1)

(9.9.2)

Il sistema assorbe calore nell’isocora B — C, e dato che il lavoro & nullo si ottiene

Qp—c = Uc — Up = ncy (Tc — Tp)
In conclusione
Tp — Ty

_ Lesp+Lass —1—
Tc —Tg

QB—>C

(9.9.3)

(9.9.4)

Utilizzando la relazione VT7~! = costante valida per una adiabatica abbiamo

Tc Vb
¢ 1
Tg Va4
abbiamo .
v _
y = 1 14 (TC TB) -1 17
TC — TB a1

©O80 571

(9.9.5)

(9.9.6)

9.9.7)
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9.10. CICLO STIRLING %

PROBLEMA 9.10
( Ciclo Stirling %

O- P N S S RS S
0 2 4 6 8 10

Figura 9.8.: Il ciclo di Stirling rappresentato nel piano P — V.

Un ciclo Stirling ideale, rappresentato in Figura0.8nel piano P — V per un gas perfetto,
e formato da due trasformazioni isoterme e da due isocore. Calcolarne il rendimento e
esprimerlo in funzione delle temperature massime e minime accessibili, assumendo che

il calore ceduto nell’isocora D — A venga riutilizzato per riscaldare il sistema nell’isocora
B —C.

Soluzione

Il sistema compie lavoro solo sulle isoterme, e vale

D
v
Lep = / PdV = nRTclog —2 (9.10.1)
c Ve
B Vg Ve
Lap = / PAV = nRT,log —2 = nRT4log — . (9.10.2)
A VA VD

Il sistema assorbe calore nella trasformazione B — C e C — D, e lo cede nella trasfor-
mazione D — A, quindi

Qpc = Uc — Up = ncy (Tc — Ta) (9.10.3)

Qcp = Lep (9.10.4)
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QDA = ncy (TA — Tc) = _QBC . (9105)

Notare che il calore assorbito e ceduto nelle due isocore si compensano, e quindi ha senso
tenere conto del solo calore assorbito Qcp nella valutazione dell’efficienza. Abbiamo
quindi

= =1 . 9.10.6
Qcp nRTc log 2 Tc ( )

ﬂ:LAB‘f’LCD nR(TC—TA)log% T

PROBLEMA 9.11
( Differenziale esatto x x %

Date n moli di gas perfetto, verificare esplicitamente che dQ non e un differenziale esatto.
Trovare se possibile una funzione A(T, V) tale che A(T, V)dQ sia un differenziale esatto.
E possibile trovare una soluzione indipendente dalla natura del gas (monoatomico,
biatomico etc.)?

Soluzione

Scegliendo come variabili indipendenti V e T possiamo scrivere il primo principio nella
forma

dQ = a(V,T)dT + B(V, T)dV = nc,dT + gdv (9.11.1)

e se esistesse una funzione Q(V, T) di cui dQ ¢ il differenziale sarebbe

- (2) - (2). o112
e quindi
@),- ),
ma questo non e vero come si mostra direttamente:

Supponiamo adesso che per una opportuna funzione sia il differenziale di una funzione

X. Allora

dX = Anc,dT + A%dv (9.11.6)
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e ripetendo il ragionamento precedente le due derivate

0 nRT nR nRT (0A
A =A+— (5= A1,
(aT v >V VAT Y <8T>V ©-117)
d 0A
<avnch)T = 1ncy <8V> ; (9.11.8)
dovranno essere uguali. Dobbiamo quindi trovare la soluzione di
Co 0A\ d0A
EV (W)T—A+T<8T>V (9.11.9)
che si puo anche scrivere, ponendo x = R/cylogV ey = log T
(M) - <8A) =A (9.11.10)
ax /, ay /.,
Cambiamo ancora variabili. Se poniamo
u = x-+y (9.11.11)
v o= x—y (9.11.12)
otteniamo
0 Jd 0
> 9o (9.11.13)
d J 0
a0 (9.11.14)
e quindi
2 <8A> =A (9.11.15)
Jav /),

che si integra direttamente,
v/2 1/R R/c R__1
A=k(u)e"* = f(u)expi C—logV—logT =f (V ”T> VT 2 (9.11.16)
(%

dove f & una funzione arbitraria. Notare che VR/% T rimane costante in una trasforma-
zione adiabatica. La funzione A dipende dalla natura del gas tramite il calore specifico
¢y Scegliendo f(x) = k/+/x abbiamo A = kT~!, cioe

dQ

dX = k= (9.11.17)

¢ un differenziale esatto per qualsiasi gas perfetto.

@ 574 versione del 5 ottobre 2016



9.12. CALORE SPECIFICO GAS PERFETTO #*

PROBLEMA 9.12
( Calore specifico gas perfetto xx

Calcolare il calore specifico molare ¢, di un gas perfetto in funzione di cy. Esso e definito

come 1 dQ
Cy — E (d’T)PVa (9121)

cioe come rapporto tra calore fornito e aumento di temperatura, a PV* costante, per
mole. Discutereicasia =0,« =1ea = cp/cy. E necessario che sia sempre c, > 0?

Soluzione
Dal primo principio abbiamo per una mole di gas

dQ = cydT + PdV (9.12.2)

Inoltre, se PV* & costante lo & anche TV*~! da cui

VAT + (« —1)TdV =0 (9.12.3)
e quindi
dQ = |cv + I;T(l_V(X)T aTr (9.12.4)
da cui
Cyx =cy+ e (9.12.5)

Per « = 0 la pressione & costante, e infatti ¢, = cy + R = cp. Per &« = 1 abbiamo una
trasformazione isoterma, e ¢, diverge (la temperatura non puo¢ aumentare qualunque
sia il calore fornito). Per & = cp/cy abbiamo una trasformazione adiabatica, e si verifica
che c, = 0. In questo caso infatti non 'aumento di temperatura non viene causato dal
calore fornito, che & nullo, ma dal lavoro fatto sul sistema.

Il calore specifico ¢, pud anche essere negativo, e sufficiente che 1 < o < cp/cy.

PROBLEMA 9.13
( Trasformazione ciclica irreversibile xx

Su n moli di gas perfetto si esegue una trasformazione ciclica tra tre stati termodinamici
A, B e C come segue:

o Partendo da A, si cede reversibilmente calore mantenendo il gas a volume costante,
fino ad arrivare a B.

o Il gas subisce adesso una espansione isoterma, anche essa reversibile, che lo porta
nello stato C.
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o A questo punto il gas viene messo in contatto con un bagno termico ad una tempe-
ratura T4 non nota. La trasformazione irreversibile che segue avviene abbastanza
lentamente da poter considerare istante per istante ben definito lo stato termodi-
namico del gas, che viene mantenuto a pressione costante. Quando si raggiunge
nuovamente 1’equilibrio termico il gas si trova nuovamente in A.

Figura 9.9.:11 ciclo considerato nel problema. La linea tratteggiata identifica la
trasformazione irreversibile.

Si conosce la temperatura T3, e il calore Qpc assorbito dal gas durante la trasformazione
isoterma. Si vuole calcolare:

1. La variazione di entropia del gas AS}~ tra Be C.
2. La temperatura T4.
3. Illavoro Lca + Lap fatto dal gas tra C e B.

4. La variazione di entropia dell’'universo dopo una trasformazione ciclica completa.
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Soluzione

1. La trasformazione isoterma e reversibile, e conosciamo il calore assorbito dal gas,

quindi
C C
dQ 1 QBC
g = ===
AS3- = /B T~ Ty /B aQ Ty (9.13.1)

2. Dato che la trasformazione é ciclica, e che 1’entropia € una funzione di stato,
sappiamo che 'entropia del gas non pud cambiare in un ciclo. Possiamo quindi

scrivere
ASS = NS, + AS3 -+ ASE, =0 (9.13.2)
ma
8§  _ Ts
ASSp = ncylog T, (9.13.3)
Qe
ASy. = T (9.13.4)
g Ta
ASi, = ncylog Ty (9.13.5)

Notare che non e necessario calcolare alcun integrale di Clausius, ma solo utilizza-
re ancora una volta il fatto che l’entropia ¢ una funzione di stato. Allora

Qsc
—cp)log=—+=—=0 13.
n(c, —cy) og T, A4 T, (9.13.6)
da cui segue
_Ssc
Ty = Tpe ™ (9.13.7)

3. Dal primo principio abbiamo
Qca+Qap = AlUcp+ Lea+Las (9.13.8)

e inoltre AlUcp = 0 dato che I'energia interna di un gas perfetto dipende solo dalla
temperatura e Tc = Tp. Possiamo scrivere

Qap = ncy (T —Ta) (9.13.9)
Qca = necp(Ta—Tc) (9.13.10)

Nel secondo caso osserviamo che, nonostante la trasformazione C — A sia irrever-
sibile, lo stato termodinamico del gas € per ipotesi ben definito istante per istante e
quindi e lecito applicare a quest'ultimo la legge dei gas perfetti e il primo principio.
Otteniamo quindi

Lea+ Lag = nR(TA — Tc) (9.13.11)

Alternativamente si poteva osservare che L,p = 0 e calcolare direttamente
A
Loa = / PdV = PpV4 — PcVe = nR (Ta — T¢) (9.13.12)
C

ottenendo lo stesso risultato.
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4. Osserviamo che durante le trasformazione A — B e I'entropia dell’universo non
cambia, dato che le trasformazioni sono reversibili. Resta da calcolare la variazione
di entropia nella trasformazione C — A. Abbiamo

AS = ASca = NS, + ASE, (9.13.13)

dove AS{., & la variazione di entropia del gas e AS., quella del bagno termi-
co. Dato che, come abbiamo detto, lo stato termodinamico del gas e ben definito
possiamo scrivere

A A
aQ ne,dT T4
g — g log -2 13.14
ASE 4, /C /c ncp log x (9.13.14)

Per quanto riguarda la sorgente, da essa e estratto il calore ceduto al gas

QCA = Nncy (TA - TB) (91315)
e quindi
Tg—T
ASE, = nep—2—4 (9.13.16)
Ta
Abbiamo in conclusione
T Tg — T
AS = ncplog =2 + nep—2 -4 (9.13.17)
T Ta

Mostriamo che AS > 0. Consideriamo AS una funzione di T4 a fissato Tg. Per
Ta = Tg sitrova AS = 0. Inoltre

d 1 Tg ncp Tg
2 AS =ncy— —nepE =P (1B 9.13.18
Ty ", TR T T, ( TA) ( )

e quindi la funzione e crescente per T4 > Tp e decrescente per T4 < Tg. Il valore
AS =0in T4 = Tg € quindi un minimo.

PROBLEMA 9.14
( Sistema termodinamico a tre corpi x x x

Si considerino tre corpi di capacita termica C indipendente dalla temperatura, che si
trovano all’inizio alle temperature Ty;, T; e T3;. Calcolare la massima temperatura a cui
e possibile portare uno dei tre corpi senza fare lavoro sul sistema dall’esterno.

Soluzione

Se consideriamo una generica trasformazione termodinamica agente sul sistema, in essa
verranno cedute delle quantita di calore Q;, Q> e Q3 a ciascuno dei tre corpi.
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Per la conservazione dell’energia dovra essere

Q1 +Q+0Q3=0 (9.14.1)

da cui, dette Tyf, Tor e T3y le temperature finali avremo
Tlf + TZf + T3f =T+ T + T5i (9.14.2)

Se nel corso della trasformazione si ha una variazione di entropia totale AS avremo
inoltre
AS = Clog Ty + Clog Ly + Clog Ly (9.14.3)
Thi Ti T
ossia i
TlfTZfTSf = ThiT»iTziec (9.14.4)

Osserviamo adesso che nella configurazione finale i due corpi pitu freddi dovranno
avere la stessa temperatura T_. Se cosi non fosse sarebbe possibile ottenere lavoro da
essi, e usarlo per innalzare ulteriormente la temperatura del corpo pit1 caldo. Porremo
quindi

T, = Ty (9.14.5)
T = Ty =Ty (9.14.6)

Notare che abbiamo stabilito che alla fine il corpo piti caldo sara il primo. Siamo liberi
di farlo, perche le Equazioni (9.14.2) e (9.14.4) sono simmetriche rispetto ai tre corpi.
Questo dipende dal fatto che le tre capacita termiche sono uguali. Riscriviamo quindi le
Equazioni (9.14.2) e (9.14.4) nella forma

Ty +2T_ =Ty + Ty + Tz (9.14.7)
T T? = Ty Ty Tae'C (9.14.8)

Studiamo graficamente le soluzioni di questo sistema nel piano T — T_.

I grafici delle due relazioni sono rappresentate in Figura All’aumentare dell’en-
tropia AS prodotta la retta rimane fissa, mentre il secondo grafico (del tipo y = k/x?) si
sposta verso 'alto.

Le uniche intersezioni fisicamente accettabili sono nel primo quadrante, perche T_ >
0. Delle due, quella indicata con A nel grafico corrisponde alla massima temperatura
raggiungibileTM4X. Vediamo che TMAX diminuisce all’aumentare di AS. Il caso migliore
corrisponde quindi a AS = 0.

1l calcolo esplicito di TMAX si puod ottenere ricavando T- dalla (9.14.7) e sostituendo
nella (9.14.8). Si ottiene un’equazione di terzo grado

2 as
T, (Ty — Ty +Toi + T31)" = 4Ty;TpiTzec (9.14.9)

Concludiamo con alcune osservazioni:

@ 579 versione del 5 ottobre 2016



9.14. SISTEMA TERMODINAMICO A TRE CORPI % % »

Figura 9.10.: Soluzione grafica del sistema (9.14.7)-(9.14.8). La retta corrisponde al-

la (9.14.7), la curva continua alla (9.14.8) per AS = 0. Infine la curva
tratteggiata corrisponde alla (9.14.8) per un valore AS > 0.

o Una procedura possibile per portare il sistema nello stato A & la seguente:

1. supponiamo che il corpo 2 e il corpo 3 siano inizialmente i pit1 freddi. Utiliz-
zando una macchina termica reversibile si ricava lavoro L dalla loro differen-
za di temperatura.

2. adesso il corpo 2 e il corpo 3 hanno la stessa temperatura. Possiamo quindi
metterli in contatto in modo reversibile e considerarli da quel momento come
un corpo unico di capacita termica 2C

3. utilizzando nuovamente una macchina termica reversibile si sfrutta tutto il
lavoro L ottenuto in precedenza per pompare calore dal corpo 2+3 al corpo 1

o Per AS abbastanza grande non si hanno pit intersezioni. Questo corrisponde a
produzioni di entropia non realizzabili.
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o L'intersezione B corrisponde alla situazione in cui la temperatura T_ comune a
due corpi raggiunge il massimo valore possibile.

o La massima produzione di entropia corrisponde al caso in cui le intersezioni A e
coincidono.

PROBLEMA 9.15
( Lavoro da un termos di caffe xx

Un termos, che possiamo schematizzare come un contenitore completamente imper-
meabile al calore, contiene del caffe caldo a una temperatura Tp. Il termos non € comple-
tamente pieno: schematizzeremo il contenuto come una miscela di liquido e di n moli
di gas perfetto. Inoltre indicheremo con C la capacita termica a volume costante della
lattina, che considereremo indipendente dalla temperatura, e trascureremo la variazione
del volume del liquido con la temperatura. La pressione del gas ¢ inizialmente P,.

Consideriamo I"'ambiente esterno come un sistema termodinamico molto grande, con
temperatura T4 < Tj e pressione P4 < P fissata. Vogliamo calcolare il lavoro massimo
che possiamo ricavare dal sistema.

Soluzione

17, P,V

Figura 9.11.: La lattina nell’ambiente esterno. La temperatura e la pressione ambientali,
T4 e Py, si possono considerare fissate.

Indichiamo con il suffisso L le quantita che si riferiscono alla lattina, e con il suffisso
A quelle che si riferiscono all’ambiente. Dato che il volume del liquido non cambia,
indicheremo con V7, il volume del solo gas perfetto. Applicando il primo principio alla
lattina abbiamo

dQp = dUy + Prdvy,
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Qui dQy é il calore fornito alla lattina e dU, la variazione della sua energia interna.
Analogamente per I'ambiente abbiamo

dQA = dUA — PAdVL

dove si e usato il fatto che dV4 = —dVy. Scriviamo la variazione dell’entropia totale
come somma delle variazioni di entropia della lattina e dell’ambiente, cioe
d d
d S = & + &
T Ta

Infine per la conservazione dell’energia il lavoro utile che possiamo estrarre dal sistema
deve essere dato da
AW = —dU, —dUy,

Eliminando le variazioni di calore dalle equazioni precedenti rimaniamo con

. dUp + PrdVvy " dUy — PydVy

ds
Ty Ta
Ricaviamo dU 4 ed abbiamo infine
T T
AW = (22 —1)du, + ( 22P. — Py ) dVy — TdS
Ty Ty

Notiamo anzitutto l'ultimo termine: dato che I'entropia di tutto il sistema (lattina e
ambiente) non puo diminure, dS > 0. Verifichiamo subito che per ottenere la massima
quantita di lavoro utile si deve procedere in maniera reversibile, 45 = 0. Per 1'ener-
gia della lattina possiamo scrivere inoltre considerando una trasformazione a volume
costante

dQr = dU, = CdTy

e quindi, usando anche la legge dei gas perfetti,

T
AW =C (24 —1)dT, + nRT4 — P, ) dV; — TadS
T, Vi

Possiamo integrare direttamente questa ultima espressione su una data trasformazione
reversibile, ottenendo

T \%
Wiuax = C (TA log ?10’ — Tf + To) + (nRTA log VJ; — PAVf + PAVO>

dove abbiamo indicato con V e Ty il volume e la temperatura finale della lattina. Il
massimo di W,y corrispondera a

OWinax _
ar,

OWinax o
vy 0
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ma dall’espressione di W;,sx vediamo subito che deve essere

anax _ C(TA—1>:

aT; T,
= —_ = — — P -
Vs v, AT ta

Quindi lo stato finale della lattina sara Tr = Ta e Pf = P4. Come ¢ intuitivo, temperatu-
ra e pressione devono coincidere con quella dell’ambiente. Inserendo nell’espressione
precedente otteniamo il risultato finale

T P
Wiax = (C +nR) Ty 1ogﬁ‘ — C (T4 — Tp) + nRT, log i —Pa (Vs — Vo)

con Vy = nRT4/P4. Notiamo che possiamo interpretare
—CTalog Ty, — CTy — nRTalog VL + PAVE = —TaS, — UL + PAVL

come lavoro utile che e possibile estrarre dalla lattina.

PROBLEMA 9.16
( Lavoro da un termos di caffe IT xx

Calcolare nuovamente il lavoro massimo estraibile dal sistema descritto
nel problema precedente, questa volta pero utilizzando una trasformazione
concreta del sistema. Le operazioni possibili sono due: muovere il pistone
che chiude il termos in maniera controllata e mettere il contenuto in contatto
termico con I’ambiente.

Soluzione

Dato che sappiamo di dover operare in modo reversibile per massimizzare il lavoro
utile estratto, non possiamo porre immediatamente in contatto il contenuto del termos
con I"ambiente: si avrebbe un passaggio spontaneo di calore e quindi un aumento di
entropia del sistema.

Per prima cosa quindi eseguiamo un’espansione adiabatica reversibile, durante la
quale il gas all'interno del termos compie un lavoro positivo e 'ambiente negativo. Il
lavoro utile estratto sara

AW = (P, — P4)dVy = —dUp — PadVy,
dove si e approfittato del fatto che I'espansione e adiabatica per esprimere il risultato

nella seconda forma. Notare che fino a quando P; > P4 (cioe fino a quando la pressione
all’interno del termos ¢ maggiore di quella dell’ambiente) il bilancio totale ¢ positivo.
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- >
Vi

Figura 9.12.: La trasformazione utilizzata nel piano P;, V. L'espansione adiabatica
iniziale e rappresentata dalla curva blu, l'isoterma in verde.

Noi procederemo pero fino a quando T;, = T,. Dato che I'espansione e adiabatica
avremo
duy, + Prdvp =0
cioe
I’lRTL
Vi

CdT;, + avp =0

da cui, integrando,
Clog Tt + nRlog Vi, = costante

oppure
c
VLT = costante

e quindi il volume finale dell’espansione sara dato da

C
Ty \ 7R
Vi = Vo <TZ>

Il lavoro utile estratto durante questa fase di espansione sara quindi
Wi =C(To—Ta) — Pa (Vi — W)

Adesso che la temperatura del contenuto del termos e identica a quella esterna possiamo
mettere in contatto termico i due sottosistemi, e ricavare ulteriore lavoro con una trasfor-
mazione isoterma. Ancora una volta otteremo lavoro utile fino a quando la pressione
del gas all’interno del termos diverra uguale a quella dell’ambiente, quindi

V2
W, = / (P — P,)dV,
Vi
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Calcoliamo il volume corrispondente alla pressione interna P,4. Dato che abbiamo a che
fare con una trasformazione isoterma sara

PAV2 = P1V1 = i’lRTA

e quindi
nRTA
Py
W, = (PL_PA)dVL
W
"5 nRT RT
4 NR1Ag niki g
= dv; — P -V
/Vl i g 4 < Py 1>
RT RT
= nRTylog A — p, <” A—V1>
aV1 Py

Sommando otteniamo

nRT nRT
W:W1+W2IC(TO—TA)_PA(Vl_V0)+nRTAIOgP VA_PA( 5 A_V1>
AV1 A

T P
= C(Ty—Ta) + Pa (Vo — V3) 4+ (C + nR) TAlogTA —|—nRTA10gP—O
0 A

che ¢ lo stesso risultato ottenuto nell’esercizio precedente.

La trasformazione seguita rappresentata in Figura Notare che il lavoro utile &
I’area compresa tra la curva e la retta P, = P4, dato che e necessario sottrarre il lavoro
negativo dell’ambiente. In particolare nell’espansione adiabatica iniziale si ottiene lavo-
ro utile fino a quando P;, > P4 (area azzurra) e si perde successivamente (area gialla).
L’espansione adiabatica termina quanto T;, = T4. A questo punto si procede su un’i-
soterma fino a raggiungere la pressione ambientale. Nel caso in figura in cui P; < Py
si tratta di una compressione (un esercizio consigliato e disegnare il grafico nel caso
Py > P,). Si guadagna lavoro utile, pitt di quello che serve a compensare quello giallo
perso precedentemente. Il lavoro utile totale e la somma dell’area azzurra e di quella

grigia.

PROBLEMA 9.17
( Lavoro da un termos di caffe ITI xx

Il sistema € ancora quello precedente, ma cambiamo ancora le regole del gioco. Possiamo
solo trasferire calore dal termos all’ambiente mediante una macchina termica ciclica, o
lasciare il pistone libero di muoversi.

Soluzione

Dobbiamo portare la pressione e la temperatura del termos agli stessi valori dell’am-
biente. Utilizzeremo una macchina termica reversibile per trasferire calore dal termos
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P, |

Q1 Q2 AN

Ta, Pa,V,
Iy, P, VL it

Figura 9.13.: La trasformazione rappresentata nel piano P;,V;. Si tratta di una isocora

(pistone bloccato) seguita da un’isobara (pistone libero). I colori rosso e
verde si riferiscono a due diverse condizioni iniziali.

all’ambiente esterno. La macchina lavora come schematizzato in Figura Dato che
dobbiamo lavorare in maniera reversibile per prima cosa lasceremo il pistone fissato, ed
estrarremo calore fino a quando la pressione del gas sara uguale a quella ambientale.
Avremo quindi una trasformazione reversibile a volume costante nella quale

_ _ PAVO_M

ASzClogT—F%:O
A

dato che I'entropia non deve cambiare. Il lavoro ottenuto in questa prima fase sara

Wi =01 —Q2=

R (PO —Py)+CTgx log T

Adesso possiamo liberare il pistone e far raggiungere al gas la temperatura finale. A
seconda delle condizioni iniziali per fare questo dovremo estrarre ancora calore (caso

rappresentato in rosso nella figura) o aggiungerlo (caso rappresentato in verde). Avremo
comunque

Q1=—(C+nR)(Ta—T1)

AS = (C—i—nR)log——i—% =0
Ta
che danno una seconda frazione di lavoro utile uguale a

T
W, =Q1— Q= — (C+nR) (TA—T1)+(C—|—nR)TAlogf
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Il totale
TA PO
W=W+W, :C(TO—TA)—I—(C—i—nR)TAlOg?—i—PA (Vo—Vz)—i—nRTAlOgF
0 A

coincide ancora una volta coi risultati ottenuti precedentemente.

PROBLEMA 9.18
( Lavoro estraibile da un sistema chiuso *x

T n 15 n

Figura 9.14.: Il sistema descritto nel testo. Il setto intermedio & scorrevole, le pareti
impermeabili al calore.

Il recipiente in Figura impermeabile al calore, & diviso in due scomparti da un
setto scorrevole. Anche il setto &€ impermeabile al calore. Inizialmente nei due scomparti
si trovano n moli di un gas perfetto monoatomico alle temperature e T, > Tj. Si conosce
il volume totale del recipiente V.

1. Determinare i volumi iniziali occupati dai due gas.

2. Se si permette al calore di passare spontaneamente attraverso il setto, quanto vale
la temperatura finale di equilibrio del sistema? Di quanto & cambiata I'entropia?

3. Considerando nuovamente la situazione iniziale, e un setto impermeabile, deter-
minare il massimo lavoro che ¢ possibile estrarre dal sistema.
Soluzione

Domanda 1 Dato che il pistone e scorrevole, i due setti sono in equilibrio meccanico e
quindi alla stessa pressione. Abbiamo quindi le tre equazioni

Vi+Wh=V
PV1 = nRTl
PV2 = ﬂRTz
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che permettodo di determinare P, V; e V5. Sostituendo i volumi nella prima otteniamo
la pressione

T+ T
P = nRg
e quindi
T
Vi =
! T+ T,
Tz
Vo = v
T T+ T

Domanda 2 Dato che il contenitore ¢ isolato I'energia interna non cambia. Di conse-
guenza, detta Ty la temperatura finale dovra essere

TlCVTl + TlCVTz = 21’1CVTf

da cui
. T+ T,

Ty >

In questo stato il volume di ciascun setto e la meta del totale, come segue dalle espres-
sioni ottenute alla domanda precedente. Quindi la variazione di entropia sara

Ty 14 Ty 14
AS = AS; + AS; = ncy log = + nRlog 2~ log -~ 4+ nRlog 2
1+ A5 ncvogT1+n ogV1 +ncvogT2+n ogV2
T? 2
f %
= log —— 4+ nR1
ncy log T1T2+n Og4V1V2
Ty + T)? T + 1)
= ncy log(ZTszz) + anog(iT—tTj)
T+ T
= 2ncplog st

PAVERY D
Questo risultato si poteva derivare piti rapidamente osservando che se il calore viene
scambiato molto lentamente possiamo considerare i gas nei due scomparti istante per

istante all’equilibrio, ad una pressione costante. Quindi possiano utilizzare per ciascuno
di essi

cioe

Tr dT Tr dT
AS:ncP/ —l—ncP/ —
r, T , T

@ 588 versione del 5 ottobre 2016



9.18. LAVORO ESTRAIBILE DA UN SISTEMA CHIUSO %

Domanda 3 Il massimo lavoro estraibile si ottiene operando in modo reversibile sul
sistema. Supponendo di estrarre una quantita di calore Q, dal setto piu caldo e di
fornirne Q; a quello freddo avremo infine ottenuto un lavoro utile

W=Q-0Q
D’altra parte dal primo principio abbiamo

Qz = —ncy (Tf — Tz) - Pde
Q1 = ncy (Tf - Tl) + PdV,

e quindi sottraendo membro a membro
Q2 — Q1 =W =ncy (T1 + T, — 2Tf) — P (dV1 +dV5)
Dato che il volume totale non cambia dV; +dV, = dV = 0, e quindi
W = ney (T + T, — 2Ty)

Resta da determinare la temperatura finale. Dato che lavoriamo in modo reversibile la
variazione di entropia € nulla. Quindi

Tf \%4 Tf 1%
AS = ncvlog?1 +anogm +ncvlog?2 +anogm
T2 V2
f
= log —— R1
ncy log T + nKlog AR
T2 2
f (Th + T2)
= log —— Rlog ~—F+~* =
ncy log T, + nRk log AT T,

da cui

R/CV
2yTiT
Tf = [ : 2} VTiT

T+ 1>

Sostituendo otteniamo il risultato finale che possiamo scrivere nella forma

W = ncy (Tl—l—Tz) T+ T,

- (358

dalla quale si vede immediatamente che , dato che & sempre

T+ T,

> IhT
5 = 112
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PROBLEMA 9.19
( Massima potenza di un ciclo di Carnot x x x

Si vuole ricavare lavoro da una trasformazione ciclica che usa come sorgenti due bagni
termici di temperatura Ty e Ty > Tr. La trasformazione consiste in un ciclo di Carnot
in cui le temperature T; e T, delle isoterme sono intermedie a quelle delle sorgenti:

T, <Ty <Th < Ty (9.19.1)

Quando il sistema ¢ alla temperatura T; € in contatto con la sorgente alla temperatura
T; mediante una resistenza termica Ry. Analogamente quando ¢ alla temperatura T
e in contatto con la sorgente alla temperatura Ty, sempre tramite la stessa resistenza
termica.

Si vogliono determinare le temperature di lavoro T; e T in modo da massimizza-
re la potenza utile, considerando trascurabile il tempo necessario ad eseguire le tra-
sformazioni adiabatiche. Calcolare per le temperature T; e T, ottimali 1'efficienza del
ciclo.

Soluzione

Consideriamo le varie fasi del ciclo di Carnot:

1. Compressione isoterma alla temperatura Tj, a contatto con la sorgente a tempe-

ratura Tr. Il sistema riceve un calore Q; = T;AS; (negativo) dalla sorgente a
temperatura T;. Affinche questo avvenga e necessario un tempo 7; determinato
dalla .
Q1= R (i —TL)m (9.19.2)
T

2. Compressione adiabatica dalla temperatura T; alla temperatura T,. Non si hanno
scambi di calore e, come detto in precedenza, il tempo necessario e trascurabile.

3. Espansione isoterma alla temperatura T, a contatto con la sorgente a temperatura
Ty. 1l sistema riceve un calore Q, = T>AS, dalla sorgente a temperatura Ty. Il
tempo T, necessario alla trasformazione sara determinato da

1
Q= R*(TH—TZ) (%)
T

4. Espansione adiabatica dalla temperatura T; alla temperatura T;. Non si hanno
scambi di calore ed anche questa volta il tempo necessario e trascurabile.

Il lavoro complessivo fatto dal sistema vale per il primo principio

L= Q1+ Qs = T1AS; + ToAS> (9.19.3)
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e quindi la potenza sara

— L _ 01+0>
fw = T+1n  RQ oy RrQy (9.19.4)
TL_Tl TH—T2

Dato che dopo un ciclo il sistema torna nello stato iniziale, e che durante le adiabatiche
non varia la propria entropia, dovra essere AS; + AS; = 0. Di conseguenza

1 T-T 1 (Ty = T) (T, — Ty) (Ty — Ty)
Py=——2—"1_ — — (9.19.5)
Rt %%—% Rt Ty — 2Ty
che si puo riscrivere nella forma
1 (1- 1-— Trx =T
py = L (=% (1 =y) (TLx — Thy) 9.19.6)

Rt xX—y
introducendo le variabili x = T1 /T, e y = T»/Ty. Derivando abbiamo

Py (1—y) [Tu(1—y)+ T (2xy —y — x?)]

ox (x—y)*
Py _ (1—x) [Ty (1—x) + Ty (2xy — x — )]
9y (x )

I valori x = 1 ey = 1 che annullano le espressioni precedenti non sono accettabili,
perché corrispondono a Py = 0 (minimi). Il massimo sara quindi determinato dalle
soluzioni contemporanee di

Le soluzioni chiaramente dipendono solo dal rapporto T,/ Tx. Risolvendo il sistema si
trovano le soluzioni

(x,y) = (0,0)

(x,y) = (1,1)

ry) = (L1 /Tl 1 /T

YW=\ 2\ 12 " 2\ T,
_ (1, 1Ty 1 1T

(x’y)_<2+2 T,'2 2 TH>
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Solo I'ultima soddisfa le condizioni Ty < T} < T, < Ty. Abbiamo quindi

T, = % (TL + \/TLTH>
T = % (TH + \/ﬁ)

che corrispondono ad una potenza

T T; —2+/TyT
Py = (AL L (9.19.7)
4Rt
e ad una efficienza
T _ I
p=1-y/7F = 7”; (9.19.8)
H 14+ TTLf

Notare che l'efficienza non dipende da Rr.

PROBLEMA 9.20
(Trasferimento di calore tra un corpo e un bagno termico xx S

Figura 9.15.: Il corpo (a sinistra) e il bagno termico (a destra) considerati nell’esercizio.

Un contenitore riempito con una miscela al 50% in massa di ghiaccio ed acqua viene
posto in contatto con un bagno termico di temperatura T, = 300 K mediante una barra
di rame (conducibilita termica ¢ = 391 W/(mK)), lunghezza ¢ = 107! m e sezione
S = 10~*m?. 1l calore latente di fusione del ghiaccio & A = 335 x 10° ] /kg, il calore
specifico dell’acqua ¢ = 4.18 x 10% ] / (kg K) e la massa totale della miscela M = 1kg. Si
trascuri la capacita termica della barra e si considerino isolanti le pareti del contenitore
e della barra.

1. Calcolare la temperatura e la variazione di entropia del contenitore in funzione
del tempo.
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2. Calcolare la variazione finale di entropia dell"universo.

3. Se al posto del contatto termico si utilizza una macchina termica reversibile quale
¢ il massimo lavoro utile estraibile dal sistema?

Soluzioneﬂ
Domanda 1

Il passaggio di calore avviene per conduzione, e possiamo scrivere per il calore ceduto
alla miscela per unita di tempo

. oS

Q= VA (Tz - T)
In una prima fase questo calore serve a sciogliere il ghiaccio, la temperatura della miscela
rimane quindi quella di fusione del ghiaccio T e possiamo scrivere per la massa di

ghiaccio sciolto m(t)
)

Am:Q—T(Tz—TO)
da cui S
Am(t) = Q(t) = ‘77 (Tr — To) t

La temperatura resta quindi costante e I’entropia aumenta linearmente
Q(t) oS T
ASR(t) === — | =—1|t
r(t) To ¢\ T,
Quando m(t) = M/2 tutto il ghiaccio si & sciolto. Questo avviene per

MM

P=h= 20’S(T2—To)

Da questo momento vale

cMT:Q:"Tf(TZ—T)
L’equazione
oS
T=——(—-T
CEM( 2 )
si integra immediatamente:
T(t) AT’ t oS
[ oy
To (T, —T") f cfM
da cui () - T 5
t) — 2 _ (o B
log TO — Tz a cfM (t tl)

1Secondo esercizio scritto 31 gennaio 2007
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e quindi
T() = To + (To— To) exp | =L (£ 1)
= 12 0 2) eXp /M 1
Per I’entropia avremo

. 1. T d
SR = fQ = CM? —CM%logT

da cui T
t
ASR(t) = ASr(f) + cMlog T(,)
0
Domanda 2
La variazione di entropia finale del contenitore vale
. . oS T2 T2
tan?oASR(t) = 7 <TO 1) ty —l—chogTO
AM Ty
- = log =2
T, +cMlog T

Invece 'entropia del bagno termico ¢ variata di

Q

ASp = —=
B T2

dove Q e il calore totale ceduto al recipiente (e estratto dal bagno). Abbiamo quindi

1 [AM
ASp = —— | — T, — T
Sy 5 { 5 +cM (T, o)}
In conclusione

1 1 T T,
AS:ASR+ASB:% <T—T> +cM [logz— <1—°>}
0 2

Domanda 3

Detto Q; il calore ceduto al recipiente e Q; quello estratto dal bagno termico abbiamo
dal primo principio che il lavoro estratto W vale

W=Q -0
Dato che la temperatura finale del recipiente deve essere T, avremo
MA

Q1= T‘FCM(TZ_TO)
Per estrarre la massima quantita di lavoro possibile si deve operare in modo reversibile,

quindi
AS = ASg+ASg =0
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ma

AS = %%— Mlg%—%z
da cui

Q= Yle))Lé\A+cMTzlog%

Otteniamo infine

T A
W = <T2—1> MM oM [Tzlog— (T, — Tp)
0

PROBLEMA 9.21
( Tre modi per sciogliere una massa di ghiaccio xx &

Figura 9.16.: I due recipienti con ghiaccio all’interno.

Si considerino due recipienti cilindrici identici di sezione S. In entrambi si trova una
massa m di ghiaccio alla temperatura di fusione. Nel primo recipiente il ghiaccio e
distribuito sul fondo in uno strato di spessore 4, nel secondo ha la forma di un cilindro
di altezza h > d disposto verticalmente.

1. Si calcoli in entrambi i casi il calore che e necessario fornire al ghiaccio per scio-
glierlo completamente.

2. Con una piccola spinta si fa cadere il cilindro del secondo recipiente, e si osserva
che il ghiaccio si scioglie completamente senza apporto di calore. Calcolare la
minima altezza h per la quale questo pué accadere, e la variazione di entropia del
sistema.

3. Calcolare il massimo lavoro ottenibile utilizzando il secondo recipiente come
sorgente fredda, avendo a disposizione un bagno termico a 300K.
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Soluzion%
Domanda 1
Dalla conservazione dell’energia segue che
Q= Am+ AU,

dove Q e il calore fornito e AU, la variazione di energia potenziale gravitazionale, A il
calore latente di fusione. Trascurando la variazione di volume nella transizione di fase
possiamo scrivere

le)\m
1 1
sz)\m—l—img(d—h):/\m—imgh

dato che nel primo caso l'altezza del centro di massa del sistema ¢ invariata, mentre nel
secondo passadah/2ad/2.

Domanda 2

Dalla formula trovata in precedenza abbiamo che Q, = 0 quando

2
8

h

Per calcolare la variazione di entropia consideriamo una trasformazione reversibile
nella quale il ghiaccio viene prima coricato sul fondo del recipiente, e quindi sciolto
fornendo una opportuna quantita di caloreStandard una sorgente di temperatura di
poco superiore alla temperatura di fusione. Nella prima fase 1’entropia non cambia,

nella seconda si ha p N
AS — / 4Q _ Am
Ty Ty

Domanda 3

Possiamo prima adagiare la sbarra sul fondo del recipiente, ottenendo un lavoro utile
Wi = mgh/2. A questo punto utilizziamo una macchina reversibile tra la sorgente calda
e quella fredda. La variazione di entropia complessiva deve essere nulla, da cui

Am TBOO Qass
— + Clog — =
T, 8T T T

e d’altra parte
Am 4+ C (Tz00 — Tf) = Qced -

2Secondo esercizio compitino 30 maggio 2007
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Otteniamo infine

T T
W = Quss — Qued = Am <300 — l> + CTgoolog%jjO —-C (T300 — Tf)

Ty
e quindi
mgh T T
W:W1+W2:Tg+)\m (;_?—1) +CT30010g;$—C(T300—Tf) .

PROBLEMA 9.22
( Trasformazione termodinamica con attrito xx S

Una macchina termica e costituita da un cilindro di sezione S munito di pistone, con-
tenente n moli di un gas perfetto. Tra cilindro e pistone si ha attrito statico e dinamico,
con | Ftar| < |Fayn| = Fo, dove Fy & una costante assegnata. L'energia dissipata per attrito
passa interamente all’interno del contenitore.

1. In assenza di attrito determinare il lavoro necessario, in una lenta compressione
adiabatica, per dimezzare il volume del gas partendoda V = Vpe T = Tp.

2. Stessa domanda in presenza di attrito. Determinare anche la variazione di entropia
del gas.

3. Discutere 'efficienza che & possibile ottenere utilizzando la macchina termica de-
scritta per ottenere lavoro avendo a disposizione due bagni termici di temperature
Ty e T, > T;, mediante cicli di Carnot.

Puo essere utile il seguente risultato. L'integrale generale di una equazione del tipo

, a
‘=0
]/"’x]/
con a e b costanti e dato da A
y:ﬁ a-l-lx

dove A ¢ una costante di integrazione.

Soluzioneﬂ

Esercizio 1

In assenza di attrito abbiamo a che fare con una compressione adiabatica, per la quale

PVY = PyVJ = nRTyVy "

3Secondo esercizio scritto 19 giugno 2007
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Abbiamo quindi
il Vo gy
W:—/zﬂwz—wnm*/z
Vo v, V7
da cui
_ 1 1 1
W = nRTyV) ! — =nc,Tp (2771 =1
0 v — 1 (Vo/z)fy—l V()"/—l 4 < )
Esercizio 2

In presenza di attrito il lavoro fatto sul sistema e dato da
AW = —PoytdV
dove la pressione esterna ¢ legata a quella del gas dalla relazione
P,; = P+ P*
dove abbiamo posto per semplicita P* = Fy/S. Abbiamo inoltre
0 =dU + PoyydV

e quindi

ne,dT = — <nl‘§T 4 P*> av

Otteniamo una equazione differenziale del tipo descritto nel testo,cony =T, x =V,
a=R/c,=v—1eb= —F/(nc,S). Otteniamo infine

A P*

T=-—" - =
V=1 ncyy

In termini delle condizioni iniziali

* -1 *

= () () e (%)
neyy 1% neyy \ Vo
Possiamo adesso calcolare il lavoro:
Vo /uRT
wz/‘<”+Pﬁdv
DCVQ V

1
= VO/ (?/Z{T(u) + P*) du

dove u = V/Vj e a & il rapporto tra volume finale e iniziale (x = 1/2 nel caso con-
siderato). Sostituendo l'espressione ottenute precedentemente per la temperatura si

ottiene .
R 1 1
W = Vo/ [(Po + P*) — + P*u] du
a CoY uv Y

@ 598 versione del 5 ottobre 2016




9.22. TRASFORMAZIONE TERMODINAMICA CON ATTRITO %%

e quindi

1 R 1 1
W=Vy|—— (Pp+ —P*) [ — —1 — P*(1—a?
0[7—2(0+Cv7 ><0ﬂ‘2 >+27 (1=a%)

Per calcolare la variazione dell’entropia possiamo semplicemente usare la formula
S =ncylog T +nRlogV + C
valida per qualsiasi gas perfetto. Dato che 'entropia ¢ una funzione di stato abbiamo

Pry—-1 1 P*y—1
Py v Jart B

AS = ncylog [<1 + oc} +nRlogua

che si puo anche scrivere

P*y—-1 Pry—1
AS = ncylo 1—|—> —oﬂ]
’ g[( Py v Py v

Notare che AS — 0 se il rapporto tra la pressione iniziale del gas e P* tende a zero.

Esercizio 3

L'efficienza & minore di quella di una macchina reversibile ideale. Questo si pud mostra-
re scrivendo

Q- =W

dove Q; ¢ il calore assorbito dalla macchina in un ciclo, Q; quello ceduto e W il lavoro
prodotto. Per quanto riguarda I’entropia prodotta in un ciclo abbiamo

Q1 Q2
As = L I
e segue che
W _ Q-G _, T TAS

17_@ Q2 =1 T Q2

L'efficienza e vicina a quella ideale quando la trasformazione ¢ reversibile.

Calcoliamo il lavoro utile estratto in un ciclo. Per la compressione adiabatica possia-
mo utilizzare la formula ricavata all’esercizio precedente. Per 1’espansione adiabatica
dobbiamo tenere conto del fatto che la forza di attrito cambia segno, essendo sempre
opposta al movimento del pistone. Quindi

2
Vv
1 VA>“ y—1 -2 1- vT,) (P)
Wp_ya = VpPo | (2] —1/{1+ — P
D—A ) DD (VD v 2,), 1 <ﬁ)7_2 PD
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2
E 7—2_1 . ,.)/_1_,)/_2 1— W) i*
VB 04 2y ve\772 | \ Pp

1= (%)

il lavoro sulle isoterme si calcola direttamente:

1
Wp_c = ——=VgPp
v¥—=2

Vs
WA—>B:/ (P—P*)dV:nRTzlogﬁ—P*(VB—VA)
Va Va

Vb V;
W(HD:/ (P+ P*)dV = nRTy log -2 + P*(Vp — Vc)
Ve Ve

Per quanto riguarda il calore assorbito dalla sorgente calda, dato che esso viene estratto
durante una trasformazione isoterma avremo Q> = W,_,p. Lefficienza sara dunque

n= ﬂ _ Wa g+ Wpc+Wep+Wpoa
Q2 Wa—p
Le formule precedenti si discostano da quelle in presenza di attrito per correzioni che

saranno trascurabili quando P > P*. Segue che sara possibile ottenere una efficienza
arbitrariamente vicina al caso irreversibile lavorando a pressioni del gas elevate.

PROBLEMA 9.23
( Effetto della capacita termica di un recipiente x S

Sul fondo di un cilindro di sezione S munito di un pistone mobile e impermeabile al
calore si trova uno strato di materiale di capacita termica C;. Nella parte superiore si
trovano n moli di un gas perfetto monoatomico. Inizialmente il sistema & all’equilibrio
termodinamico, con pressione e temperatura Py e Ty note.

1. Siraddoppia molto lentamente la pressione. Calcolare la nuova temperatura.

2. Partendo dalla stessa condizione iniziale si raddoppia istantaneamente la forza
applicata al pistone. Calcolare anche in questo caso la temperatura nello stato
finale di equilibrio.

3. Calcolare la variazione di entropia del sistema e dell"universo nei due casi prece-
denti.

Soluzioneﬁ

Problema 1

Dal primo principio abbiamo, considerando che non si hanno scambi di calore con
'esterno,
0=dU+ pdV (9.23.1)

4Secondo problema scritto 21 gennaio 2009
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\
2

Figura 9.17.: Il cilindro contente del materiale di capacita termica non nulla.

ma l’energia interna del sistema si puo scrivere come la somma di quella del gas e del
materiale, quindi

au = ganT +CdT (9.23.2)
e quindi
<§nR + Cl) aT + @dV =0 (9.23.3)
2 %4
che puo essere integrata direttamente:
(gnR + C1> logT +nRlogV =K (9.23.4)
ossia ,
TGrR+C YR — costante (9.23.5)

oppure, usando la legge dei gas perfetti,

TP~ = costante (9.23.6)
con R
N= (9.23.7)
an + Cl
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Da questo segue subito che

Pr\"
Tr=To (3 = Ty2" (9.23.8)

Problema 2

In questo caso non abbiamo a che fare con una trasformazione reversibile, quello che
possiamo dire & che 'aumento dell’energia interna sara dato dal lavoro fatto sul sistema:

— 2Py (Vf— Vo) = AU = (inR + C1> (Tf — To) (9.23.9)

ma d’altra parte negli stati iniziale e finale di equilibrio

PyVy = nRTy (9.23.10)
2PyVy = nRTy (9.23.11)
e sostituendo 3
—nR (Tf — 2T0) = (ZnR + C1> (Tf — To) (9.23.12)
ossia ;
InR+C
T, =2y (9.23.13)
jl’lR + Cl

Problema 3

Nel primo caso la trasformazione & reversibile, quindi l’entropia dell'universo non cam-
bia. Ma neppure si hanno scambi di calore con il sistema, quindi anche "entropia di
quest’ultimo non varia.

Nel secondo caso la trasformazione e irreversibile. La variazione di entropia del siste-
ma si trova calcolando la differenza tra 1’entropia dello stato di equilibrio finale e quella
dello stato di equilibrio iniziale. Dato che

_4Q _
- ==

<3nR + cl) ar | %dv (9.23.14)

as > T

possiamo scrivere

AS = §11R+C 1 B%—an E— §11R+C 1 E—I—an b (9.23.15)
2 '), 2 1) 98T, Ong o

e quindi
5 nR 4 C4
AS=(ZnR+Cy)log2——— —nRlog?2. 9.23.16
(2 1> 0og %TIR +C1 0g ( )

Questa sara anche la variazione di entropia dell’universo.
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PROBLEMA 9.24
Acqua e ghiaccio a pressione costante xx &

777 /77
/77 /77
/77 /77
/77 /77
/77 /77
s/77 /77
777 /77
777 777
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s777 s77
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/77 /77
/77 /77
/77 /77
’777 /77
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Figura 9.18.: Il recipiente impermeabile al calore considerato nell’esercizio.

Il recipiente in Figura e chiuso da un setto scorrevole S. Recipiente e setto sono
impermeabili al calore, ed il setto ha massa trascurabile. Il volume interno é ulterior-
mente diviso in due parti da una parete rigida, che permette invece il contatto termico
tra le due parti. Nella parte inferiore si trova una massa M di ghiaccio a 0°C, in quel-
la superiore n moli di un gas perfetto. L'esterno del recipiente si trova a pressione
atmosferica.

1. Determinare il volume V' del gas nella condizione iniziale.

2. Si comprime adesso il setto superiore fino a portare la temperatura del gasa20°C
in modo reversibile. Determinare la dipendenza della pressione del gas dal suo
volume per questa trasformazione, e rappresentarla su un grafico. Di quanto e
variata l'entropia del sistema?

3. Supponendo di utilizzare il sistema come sorgente fredda, e che I'ambiente esterno
possa essere considerato un bagno termico a temperatura T = 20 °C, trasferendo
calore mediante una macchina termica, determinare il massimo lavoro estraibile.
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9.24. ACQUA E GHIACCIO A PRESSIONE COSTANTE #x

Soluzionqﬂ

Domanda 1

Dato che il gas e in equilibrio termico con il ghiaccio deve essere

Patm Vo = nRT, (9.24.1)
dove Ty = 0°C, da cui
RT,
V=V = o0 (9.24.2)
Patm

Domanda 2

Finche del ghiaccio & presente, la temperatura del sistema e fissata a Tp. Quindi

nRTo
P = 24.
- 9:24.3)
Dal primo principio segue che
0Q = 0= Adm + PdV (9.24.4)

dove dm e la massa di ghiaccio che si scioglie e A il calore latente di fusione. Segue che

nRTOd7V + Adm (9.24.5)

e quindi quando tutto il ghiaccio si e sciolto il volume e diventato

Vi = Voexp (— nARMT()) (9.24.6)

Da questo momento in poi vale
Q=0= (C + ncv) dT + PdV (9.24.7)

dove C é la capacita termica dell’acqua. Abbiamo quindi

T %4
(C +ncy) / a1 —I—/ an—V =0 (9.24.8)
To T W 14

ossia T v
(C +ncy)log — 4+ nRlog — =0 (9.24.9)
To Vi
che si puo esprimere nella forma

YRTCHey — ost (9.24.10)

5Secondo problema scritto 11 novembre 2008
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oppure
PVP = cost (9.24.11)
dove ey
cp n
=2 24.12
B ¢y 1 C/n © )

Quindi la trasformazione si rappresenta come una isoterma per V; < V < Vj, e come
una adiabatica con un esponente modificato per Vy < V < Vj. Il volume finale si ottiene

dalla (9.24.10):

CHncy

TO nR
Vi=Vi | = 9.24.1
=W < T ) ( 3)
con Ty =20°C.
Dato che il sistema non scambia calore con l'esterno la sua variazione di entropia e
nulla.

Domanda 3

Sia 6Q) il calore assorbito dall’ambiente e Q> quello ceduto al sistema. Chiaramente
W = Q1 — Q». Fino a quando & presente del ghiaccio le temperature sono fissate, e dato
che I’entropia totale non varia deve essere

L _ A

T, T, (9.24.14)
e d’altra parte Q; = AM, quindi
Ty
W=|_-+-1)AM (9.24.15)
To
sara il lavoro prodotto in questa prima fase.
Appena tutto il ghiaccio si e sciolto deve essere
0Qy = (C+ncy)dT + PdV (9.24.16)
B dT P 0Q1
Integrando la seconda relazione otteniamo, tenendo conto che la pressione € costante
Ty
Q1 = T (C+ncy +nR)log T (9.24.18)
0
e dalla prima
Q2 = (C+ney +nR) (Ty — To) (9.24.19)
da cui otteniamo il risultato finale
Ty Ty
W = T() — /\M + (C + nCp) Tf IOgTO — (Tf — To) (92420)

@ 605 versione del 5 ottobre 2016



9.25. CILINDRO CON GAS E MOLLA NON LINEARE #*

PROBLEMA 9.25
( Cilindro con gas e molla non lineare xx &

4

— N0~

Figura 9.19.: 11 cilindro contenente il gas. Il setto mobile e collegato al fondo con una
molla non lineare.

Nel cilindro di sezione S in figura sono contenute # moli di un gas perfetto monoa-
tomico, e la molla che collega il setto mobile al fondo ha lunghezza a riposo nulla ed
esercita una forza di richiamo di modulo

F = ke® (9.25.1)

dove ¢ e I'allungamento. Inizialmente il sistema & all’equilibrio, ad una temperatura Ty,
e all’esterno del cilindro c’e il vuoto.
Determinare la legge che lega la pressione del gas al suo volume.

1. Si fornisce al sistema una quantita di calore dQ. Determinare la capacita termica.

2. Calcolare il massimo lavoro che & possibile estrarre dal sistema avendo a disposi-
zione un bagno termico di temperatura Tp < T.

Soluzioneﬁ

Domanda 1

La pressione del gas deve equilibrare la forza che la molla applica al pistone, quindi

F  ke® k
P — g = ? = Sl+o¢ ‘/0é . (9252)
Domanda 2
Abbiamo
dQ = dU = ncydT + kt*dl (9.25.3)
k
= TlCVdT + Sl+“ Vedv (9254)

®Primo problema compitino 28 maggio 2008
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d’altra parte

P= v Slkﬂ e (9.25.5)
c1oe
(”RT> v (9.25.6)
€ /(1
dv = k(ﬁsa) (nlzT)a o dT (9.25.7)

Sostituendo otteniamo

_ _ k . nRT Dé/(l"rﬂ() HRS TZRT —0(/(1"!'06)
dQ = CdT = |ncy + Sl+“S (k) KA +a) ( . ) dT  (9.25.8)
quindi
R
= 25.
C ncv+n(1+“) (9.25.9)
Domanda 3
Ponendo uguale a zero la variazione di entropia del sistema abbiamo
Q> Ts )/
AS = Ts + ncy log T + nRlog T, 0 (9.25.10)
da cui R T
— =0
Q> = nTp (cv + T zx) log Ty (9.25.11)
D’altra parte
Tp p R
Ql—— I C T—n<Cv—|—(l+ ))(T()—TB) (9.25.12)
e quindi
W=0:1—-0Q —n<c + R >[(T—T)—Tlo TO] (9.25.13)
=L 2 = 1% (1 Ta ) 0 B Blog Ts .20,

PROBLEMA 9.26
( Congelamento di una provetta xx

Una lunga provetta e riempita di un certo liquido di densita p;, e calore latente di fusione
A noti. Si osserva che ad una certa temperatura Ty tutto il liquido al di sotto di una certa
altezza si e solidificato. Si abbassa adesso la temperatura, portandola a T; = Tp — AT,
e si osserva che la superficie di separazione tra solido e liquido e salita di un tratto
¢. Ignorando 'espansione termica dei materiali calcolare la densita ps del solido in
funzione di pr, A, To, £ e AT.
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Soluzione

h2 PL

- 2 R .

Ps Ps

Figura 9.20.: La provetta prima (a sinistra) e dopo (a destra) I’abbassamento della
temperatura. La parte solida e rappresentata in grigio, quella liquida in
rosa.

La situazione prima e dopo 1’abbassamento di temperatura e rappresentata in Figu-
ra Scendendo lungo la provetta la pressione aumenta in accordo con la legge di
Stevino. La separazione tra fase liquida e fase solida sara quindi ad una altezza corri-
spondente alla pressione Py del punto di fusione ad una data temperatura. Indicando
con h(T) l'altezza della colonna di liquido per una generica temperatura T avremo

P¢(T) = prgh(T)

Prendendo la derivata rispetto alla temperatura ed utilizzando I'equazione di Clapeyron

abbiamo
dﬂ B A dh

dT _T(pzl_pgl):mgﬂ

che si puo integrare direttamente ottenendo

(9.26.1)

prg [h(Th) —h(To)] =

7}\ log <T1>
-1 -1 T
Per la conservazione della massa deve essere

prh (To) = pLh (Th) + pst

e sostituendo pr, Ah nell’equazione precedente otteniamo

o 1= ee (B
PS—pL gg Og TO

A AT
=g (15
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9.27. CALORI SPECIFICI DI UN GAS DI VAN DER WAALS * »

PROBLEMA 9.27
( Calori specifici di un gas di Van der Waals * * %

Un gas di Van der Waals e descritto dall’equazione di stato
n%a
<P+ V2> (V —nb) = nRT

Calcolare la differenza cp — cy tra il calore specifico molare a pressione costante e quello
a volume costante.

Soluzione

L'equazione di stato per il gas di Van der Waals € una relazione tra P, V e T che permette
di calcolare la derivata parziale di una rispetto all’altra, calcolata mantenendo la terza
costante. Dal primo principio della termodinamica abbiamo

dQ =dU + PdV

che dovremo valutare rispettivamente a volume e pressione costante. Il termine pdV non
pone particolari problemi, ma dobbiamo avere informazioni sull’energia interna. Per
ottenerle possiamo scegliere come variabili indipendenti T e V, e scrivere il differenziale
dell’entropia nella forma

~dQ 1 /au 1 [ou P
is=F =1 (3r), 47+ [ (), + 1)

Imponendo che 4S5 sia un differenziale esatto troviamo la relazione

v | (5 ),) =3 [7 (), +

e sviluppando otteniamo

Riscriviamo adesso 1’equazione di stato nella forma

nRT nia
V—-nb V?
che permette di calcolare facilmente i termini da inserire al membro destro della (9.27.1):

ou _ 7 nR _ nRT N nia
oV ), - V —nb V—nb V2
n2a

V2

P= (9.27.2)
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Integrando in V troviamo che deve essere

n’a
U(T,v) = ~-v + f(T)

dove f(T) & una funzione arbitraria della sola temperatura. Troviamo subito che a

volume costante

ou

dQ = <8T)VdT = ncydT

mentre a pressione costante

ou ou
dQ = <3T>VdT+ [<W>T—1—P} av
an? nRT an?

= nevdl+ [W+‘/—M7_‘/2

nRT (doV
= nCVdT+ m (aT)PdT

|av

e quindi

Cp—¢C _7RT al
PV = v—wp \aT ),

Resta da calcolare la derivata parziale. Differenziando la (9.27.2) a pressione costante

troviamo
R 2n? RT
0=_" dT+<””— . )2>dV

V —nb Vi (V—nb

che permette di ottenere

v\ uR nRT  2n%a)

<8T)p Vb \(v_mp)2 V3

1 1 V —nb2n?a\

T <V—nb_ nRT V3 )
RV3(V —nb)

RTV3 — 2an(V — nb)?

da cui il risultato finale

Cp —Cy = R an (9273)

1— s (V —nb)?
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9.28. RAFFREDDARE UN CORPO, SCALDARNE UN ALTRO %%

PROBLEMA 9.28
( Raffreddare un corpo, scaldarne un altro xx &

Standardi di capacita termica costante C sono inizialmente ad una temperatura T;, e
sono collegati mediante una macchina termica ciclica. Si vuole raffreddare il primo dei
due corpi ad una temperatura finale T; < T;, e si trova che per farlo e necessario fare un
lavoro W.

1. Supponendo di conoscere W calcolare la temperatura T, del secondo corpo.
2. Supponendo che la macchina termica sia reversibile, calcolare W = Wg.

3. Se in realta il lavoro necessario @ W = kWg, dove k € una costante data, calcolare
la variazione di entropia del sistema. Puod accadere che k < 1?

Soluzioneﬂ

Domanda 1 Se Q; e il calore estratto dal primo corpo, e Q> quello fornito al secondo,
dal primo principio abbiamo

Q-1 =W

ma d’altra parte

Q = C(Ih-T)

Qi = —C(Th—T))
e quindi
W=C(T1 +T,—-2T;)
da cui
4%
T, = el +2T;— T (9.28.1)

Domanda 2 Se la macchina e reversibile 1’entropia del sistema non € cambiata. Que-
st’ultima si scrive come
dQy 4

T T

hcdr’ T cdT’
AS = / ? +/ ?
T; T;
T

i

as =

ed integrando

7Secondo esercizio scritto Fisica I del 10 settembre 2010.
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Quindi
2=
e
Wr = CT; <% + ;:; — 2> =CT; (x + % — 2> (9.28.3)
conx =T,/T;.

Domanda 3 Mettendo insieme 1"Equazione (9.28.1) e 'Equazione (9.28.2) otteniamo

kWR _ ,AS/C
x(CTi +2 x) =e

ossia
(k—1) (x —1)> =e25/C —1

Dato che AS > 0, segue che k > 1. Infine

AS = Clog [1+(k—1) (x—l)Z}

PROBLEMA 9.29
( Recipiente a due scomparti xx S

n2, Cy2

lg m,

ny, Cy1

Figura 9.21.: Il recipiente con due scomparti considerato nell’esercizio.

Il recipiente in Figura di sezione S e diviso in due parti da due setti scorrevoli di
massa m. I due volumi sono occupati ciascuno da una mole di un gas perfetto monoa-
tomico. Il setto superiore & impermeabile al calore, ed il sistema si trova inizialmente
all’equilibrio (la pressione esterna & trascurabile) con entrambi i gas ad una temperatura
To.

1. Determinare pressioni e volumi dei due gas nello stato iniziale.
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9.29. RECIPIENTE A DUE SCOMPARTTI **

2. Adesso anche il setto intermedio diviene impermeabile al calore, e si agisce re-
versibilmente su quello superiore fino a raddoppiare la pressione del gas nello
scomparto superiore. Calcolare le nuove temperature dei due gas e dire di quanto
e variata l'entropia del sistema.

3. Si permette adesso il passaggio di calore attraverso il setto intermedio, mante-
nendo bloccato quello superiore. Determinare la temperatura finale, e dire se &
maggiore o minore di Ty. C’e stata variazione di entropia?

Soluzioneﬂ

Problema 1

Imponendo I’equilibrio meccanico abbiamo

2m
Py = 758
m
Pu="g
e dalla legge dei gas perfetti otteniamo
RTy RIS
Vl = —_—=
P10 ng
vy = RTy _ RToS
P20 mg

Problema 2

La trasformazione dei due gas e adiabatica, quindi 1’entropia non cambia. Per quanto
riguarda le temperature abbiamo (¢, = 3/2R,, v = ¢, /cy = 5/3)

11—y 1—y

T\P,” = ToP,

11—y 1—v

T,P," = ToPy

Sappiamo che P, = 2mg/S e Py = 3mg/S? quindi

1-q

2\ 7 3\ 2/5
T = Tl = =T | = ~ 1.18 T
1 0 <3> 0 <2> 0

1-q

e
T, = T, <2> T2~ 132T,

8Secondo esercizio scritto Fisica 1 dell’8 febbrario 2012
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Problema 3
L'energia del sistema

V:
E=c, (Th + T2) —l—mg?l

si conserva perché durante I’evoluzione del sistema non ci sono forze esterne che fanno
lavoro su di esso. Inoltre il volume totale Vi, = V; + V2 non cambia. Abbiamo quindi

1-y 1—y 1—y
Vi PANEE 1\ R 2\ 7
ZCUTf + mg?f = CZJTO <3> + CUT() (2) + §T0 <3> = kRTO
dove per brevita abbiamo posto
2\ 7 1\7 R (27
v v v
= e(3) e (a) 5 0)
1—y
1

GERIGIEETON

413R

12

Dall’equilibrio meccanico tra i due scomparti otteniamo

RT; RT; mg
= —|— —=
Vir Vit —Viy) S

da cui mg
RS f (Vior — Viy)

Sostituendo il volume ricavato dalla prima equazione

(Vier —2Vi) Ty =

SR
Vig = mig (kTO — 3Tf)

otteniamo un’equazione di secondo grado in T
R (Vtot — EkRTO + 4SCUTf> Tf = (kRTQ — ZCUTf) (Vtot — ikRTQ + ZSCUTf>
mg mg mg mg

Ricordando che

3 RTpS
Viot = E s
mg
possiamo riscrivere quest’ultima come
Tr\2 Ty
30 =) —4(4k—3)=+k(2k—3)=0
To To
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che ha le due soluzioni
Tr = 0.6 Ty, Tr, =1.20T

Solo la seconda e pero accettabile, dato che la prima corrisponde ad un volume

SR RS
= — (kTp — 3Tf) ~2.3—T,
Vit = g (To = 3Tp) =230 To

maggiore di quello totale a disposizione. Dato che la trasformazione del sistema e
irreversibile, ci aspettiamo un aumento di entropia.

PROBLEMA 9.30
‘7 Massimo riscaldamento e raffreddamento xx

Due corpi di identica capacita termica C, indipendente dalla temperatura, si trovano
inizialmente alle temperature T; e T, differenti da quella T dell’ambiente circostante,
che puo essere considerato un bagno termico. Calcolare

o il massimo aumento di entropia possibile per 1'universo
o la massima temperatura a cui & possibile portare uno dei due corpi a scelta

o la minima temperatura a cui & possibile portare uno dei due corpi a scelta

Soluzione

Indichiamo con Q) il calore assorbito dall’ambiente e con Q; e Q> quelli assorbiti dai
due corpi in una trasformazione arbitraria. Dal primo principio segue che dovra essere

Qo+ Q1+Q,=0 (9.30.1)

La massima produzione di entropia si avra con una trasformazione spontanea che por-
ta l'universo in uno stato di equilibrio complessivo, con tutti e tre i corpi alla stessa
temperatura T dell’ambiente. Per essa avremo

dQq n Qo

_ _ Qo
dS = dSo+dS1 +dS; = T + T T (9.30.2)
e quindi
1 dQ | dQs
s = T (—dQ1 —dQy) + T + T (9.30.3)
Dato che per ciascun corpo dQ = CdT questo si puo anche scrivere nella forma
T T
ds = - (T, +dTy) + cih | i (9.30.4)
To T Tz
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ed integrando

TZ
AS = Clog Tlci)Fz — ;:0 2Ty — T — T») (9.30.5)

Per determinare la massima e la minima temperatura a cui e possibile portare uno dei
due corpi consideriamo nuovamente la (9.30.4). Nella situazione finale uno dei due
corpi (supponiamo si tratti di quello ad una temperatura iniziale T;) sara in equilibrio
con I'ambiente. Allora

C T To
AS=—_(T{ =Ty + Ty — Tp) + Clog -+ + Clog — 9.30.6
T0(1 1+ Tp z)+ Ong+ OgT2 ( )
e quindi
T! T! AS To T, +Th
log-l—1=""_—log—+(1- 9.30.7
T, T, C 0gT2+< T, ) (.30.7)
che possiamo scrivere nella forma piti simmetrica
T T AS T? T+T
og T T, + C og o T (9.30.8)
log x—x
-1
-2
-3
-4
X
1 2 3 4 5

Figura 9.22.: La funzione f(x) = logx — x

La funzione f(x) = logx — x (vedere Figura (9.22)) ha un unico massimo in con
f(x) = —1.Inoltre

ngmf(x) = xli)rg1+f(x) = —o (9.30.9)

Segue che sia il massimo che il minimo rapporto T; /T si ha per AS = 0, cioe nel caso

di una trasformazione reversibile. Le relative temperature massime e minime saranno
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9.31. LAVORO ESTRAIBILE DA DUE CORPI: STUDIO GRAFICO #*

quindi le due soluzioni dell’equazione

n_Tn
log T, T og

T2 D+ T

9.30.10
Nt Ty ( )

Notare che la massima produzione di entropia determinata precedentemente corrispon-
deaT| = Tp.

PROBLEMA 9.31
( Lavoro estraibile da due corpi: studio grafico xx

Due corpi di capacita termica costante C si trovano inizialmente alle temperature T; e
T>. Mediante una certa trasformazione termodinamica che non coinvolge altri sistemi
termodinamici le temperature vengono portate ai valori finali rispettivamente Ty e Toy.
Nel corso della trasformazione il sistema complessivo varia la sua entropia di AS e viene
estratto un lavoro utile W.

Rappresentare nel piano Ty, il luogo dei punti accessibili per un fissato valore di AS.
Sempre sullo stesso diagramma rappresentare il luogo dei punti che corrispondono ad
un fissato valore di W. Discutere i casi particolari che corrispondono al massimo lavoro
estraibileed a W = 0.

Soluzione
La variazione di entropia dei due corpi durante la trasformazione ¢ data da

T
AS; = c1ogTif
1

T.
AS, = ClogTif
2

di conseguenza

TifT,
AS = Clog %szf
112

da cui troviamo l'equazione che determina il luogo dei punti accessibili nel piano Ty,
Tz fﬁ

TlfTZf = T1 Tz@AS/C
Si tratta di un’iperbole equilatera che passa per il punto corrispondente alla temperatura
iniziale nel caso AS = 0. Alcune iperboli sono rappresentate in Figura

Per quanto riguarda i punti che corrispondono a un dato lavoro estratto W, detti Q;
e Q2 i calori ceduti ai due corpi durante la trasformazione, abbiamo

Q1 = C(Tyy—T)
Q = C(Tyy—T)
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e per la conservazione dell’energia deve essere W + Q1 + Q> = 0 da cui troviamo
W =C(Ti+ T — Tiy — Tyy)

Si tratta quindi di una retta parallela alla bisettrice del secondo e quarto quadrante, che
intercetta I’asse Ty F= 0in Tzf =T+ -W/C,

Ty = —T1f+T1+T2—¥
Alcune di queste rette sono pure indicate in Figura Gli stati finali possibili devono
in ogni caso corrispondere a AS > 0, che corrisponde alla regione gialla in figura.
Ad esempio quando W = 0 sono accessibili tutti i punti della retta blu tratteggiata
nella regione gialla. Se anche AS = 0 le temperature finali saranno quelle iniziali, oppure
scambiate tra di loro, invece la massima produzione di entropia corrisponde a

T+ T
2

Ty =Ty =
che ¢ indicato in Figura da un quadrato. Questo & cio che si ottiene mettendo
direttamente i corpi in contatto tra di loro e attendendo 1’equilibrio.

All’aumentare di W la retta si sposta verso il basso: il massimo valore W = Wjy4x
corrisponde alla retta tangente all’iperbole, cioe a

hy=Ty=VvhT

Witax = C <T1 + T — 2@)
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Figura 9.23.: Il piano corrispondente alle temperature finali Ty, T dei due corpi. Si &

scelto T1 = 400 e T, = 100. L"iperbole rossa unita corrisponde alle tem-
perature finali accessibili in una trasformazione reversibile (AS = 0). Per
una trasformazione qualsiasi AS > 0 e le temperature finali accessibili si

trovano nella regione in giallo. Le rette blu corrispondono alle temperature
finali accessibili per un dato lavoro estratto W.
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PROBLEMA 9.32
( Adiabatica di un elastico xx

Un elastico puo essere descritto a livello macroscopico dalla sua energia interna U,
dalla lunghezza ¢, dalla temperatura T e dalla tensione 7. Supporremo che sia possibile
scrivere I'energia interna nella forma

U = kiT (9.32.1)

e che valga
T =T (z - Z) (9.32.2)

dove k, ¢ e y sono costanti positive opportunamente dimensionate. Determinare la
forma di una trasformazione adiabatica reversibile (per ¢ > () e rappresentarla nei
pianit—¢, T—{leT—S.

Soluzione
Dalla primo principio della termodinamica abbiamo che
dQ =dU+dL
Nel caso in questione il lavoro fatto dall’elastico si scrive
dL = —tdl

dato che la forza applicata dall’elastico ad un suo estremo vale T in modulo (per £ > /)
ed e diretta in verso opposto allo spostamento. Quindi

dQ = kdT — 4T (E - Z) de
da cui troviamo il differenziale dell’entropia

dS:dTQ:kédTT—fy(E—E)dﬁ

Questa espressione si pud immediatamente integrare, ottenendo
—_ 07 2
§=KllogT 2 (£—17) +cC

dove C ¢ una costante di integrazione. Ma in un’adiabatica reversibile I'entropia resta co-
stante, per cui la trasformazione nel piano T — S si rappresenta come una retta verticale.
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Figura 9.24.: La dipendenza della temperatura dalla lunghezza dell’elastico, per una tra-
sformazione adiabatica reversibile (Eq. (9.32.3)). La temperatura & misurata
in unita T, e la lunghezza dell’elastico in unita della lunghezza a riposo
£. Si & scelto y¢/(2k) = 1 per la curva continua e y//(2k) = 2 per quella
tratteggiata.

dove T & una costante arbitraria che si pud interpretare come temperatura dell’elastico
alla lunghezza di riposo. Questa & la legge che lega T a ¢ rappresentata in Figura (9.24).
Scegliendo di misurare la temperatura in unita T e la lunghezza in unita £ la curva
& completamente caratterizzata dal parametro adimensionale IT = ¢/ (2k). Come si
vede I'elastico allungato si riscalda, tanto piti rapidamente quanto pit1 I'l & grande.
Veniamo alla dipendenza della tensione dall’allungamento. Usando 1'Equazione (9.32.2)

si puo anche scrivere
— (e (e ’
T 2kT2k (g 1) exp [2k <€ 1

che & rappresentata nel piano 7 — /¢ in Figura

Anche in questo caso se misuriamo la tensione in unita 2kT e la lunghezza in unita ¢ la
curva ¢ completamente caratterizzata dal parametro I1. L’area sotto la curva cambiata di
segno rappresenta il lavoro fatto dall’elastico durante la trasformazione, in unita 2kT¢.
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Figura 9.25.: La dipendenza della tensione dalla lunghezza dell’elastico, per una tra-
sformazione adiabatica reversibile (Eq. (9.32.3)). La tensione & misurata in
unita 2kT, e la lunghezza dell’elastico in unita della lunghezza a riposo /.
Si & scelto ¢/ (2k) = 1 per la curva continua e y//(2k) = 2 per quella
tratteggiata.

PROBLEMA 9.33
( Stati accessibili x*

Due corpi hanno la stessa capacita termica C dipendente linearmente dalla temperatura,
C = bT, e si trovano inizialmente alla stessa temperatura Tp,. Si dispone inoltre di
un bagno termico di temperatura Tp. Si possono eseguire sul sistema trasformazioni
termodinamiche arbitrarie, reversibili o irreversibili, facendo anche uso di macchine
termiche. Gli scambi di calore devono pero avvenire solo tra le tre parti (i due corpieil
bagno termico). Inoltre non si dispone inizialmente di lavoro utile da impiegare, anche
se & possibile volendo estrarlo dal sistema, conservarlo e/o impiegarlo nuovamente.

Determinare nel piano T1-T> la regione accessibile per il sistema partendo dallo stato
iniziale. Localizzare in tale regione

o lo stato iniziale

o lo stato di massima entropia
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o lo stato di massima e minima temperatura per uno dei due corpi, scelto arbitraria-
mente.

Soluzione

T

By = (T, Thrax)

A= (T, Tv)

" R=\AIT5 - Ty

Th=Tg
By = (Tarax, T)

1 C1 = (T, Tuiw)

Ty =Ty 15

Figura 9.26.: L'insieme degli stati accessibili nel piano T;-T>. Si tratta di una circonferen-
za con centro nello stato accessibile di massima entropia T1 = T, = Tz e
raggio R = /2 |Tp — To|.

Indichiamo con Q1, Q2 e Qp il calore ceduto rispettivamente ai due corpi e al bagno
termico durante le trasformazioni. Dal primo principio abbiamo

QL+ +Q+W=0

dove W & il lavoro utile prodotto. Inoltre

" 1
T TZ TZ
— — 2 _ 70
Q, = . deT_b<2 2>

@ 623 versione del 5 ottobre 2016



9.34. RISCALDAMENTO MASSIMO DI UN CORPO »*x%

L’entropia prodotta sara

_ Q5 [dQ [dQ
AS = TB+/ Ty +/ 1>

hpTdT L pTdT
ST
T T

Tp , T T
O
= 7—|—b(T1—|—T2—2T0)
Ts
e quindi
1
AS =~ W+ Q1+ Q) +b(Th + T2 — 2To)
B
ossia b W
_ L R Y. o A w
b (T, + Tp — 2Tp) o, (T{ + T; — 2Ty) AS+TB

Affinche lo stato sia accessibile dovra essere AS > 0 (per non violare il secondo principio
della termodinamica) e W > 0 (non abbiamo a disposizione lavoro utile da fare sul
sistema). La regione accessibile sara dunque

2T (T + T — 2To) — (Tf + T3 — 2T3) >0
che possiamo riscrivere nella forma
(T1 — Tp)* + (To — Tp)* < 2(Tp — Tp)?

Si tratta quindi della circonferenza con centro in (T1, Tz) = (T, Tp) e raggio v/2 | Tz — To
rappresentata in Figura[9.26]

Nello stato iniziale abbiamo T} = T, = Ty, si tratta quindi del punto indicato con A.

Nello stato di massima entropia Ty = Tp = Tj: si tratta quindi del centro O della
circonferenza.

Lo stato di massima temperatura per uno dei due corpi corrisponde a By (T1 = Tpax
e T, = Tg) oppure a B, (T1 = Tg e T, = Ty1ax) a seconda del corpo scelto. In entrambi i
casi

Tamax = Tp + V2 |Tp — To|

Analogamente lo stato di minima temperatura per uno dei due corpi corrisponde a C;
(T1 = TMIN e T2 = TB) oppure a B2 (T1 = TB e Tz = TMIN)/ con

Tvin = Ts — V2 |Ts — Tp

PROBLEMA 9.34
( Riscaldamento massimo di un corpo »x

Un corpo ha una capacita termica C e si trova inizialmente ad una temperatura Tp,. Si
dispone inoltre di un bagno termico di temperatura Tg. Si possono eseguire sul sistema
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trasformazioni termodinamiche arbitrarie, reversibili o irreversibili, facendo anche uso
di macchine termiche. Gli scambi di calore devono perd avvenire solo tra le due parti
(i due corpi e il bagno termico). Inoltre non si dispone inizialmente di lavoro utile da
impiegare, anche se € possibile volendo estrarlo dal sistema, conservarlo e/o impiegarlo
nuovamente.

Determinare la massima temperatura raggiungibile dal corpo, discutendo i casi Ty <
Tye Ty > Ty

Soluzione

Prima di eseguire calcoli dettagliati consideriamo qualitativamente la situazione. Sup-
poniamo che inizialmente Tp > Tj,. Chiaramente non sara possibile riscaldare ulterior-
mente il corpo, dato che se questo fosse possibile allora esisterebbe una trasformazione
termodinamica capace unicamente di trasferire calore da un corpo pit freddo ad uno
piu caldo. Se Ty < Tj, potremmo anzitutto pensare di mettere in contatto bagno termico
e corpo, portando quest’ultimo alla temperatura Tj,. In realta & possibile fare meglio:
inizialmente si puo trasferire reversibilmente del calore dal bagno al corpo, ottenendo
dellavoro utile. Avremo a questo punto portato nuovamente il corpo a Tj, e potremo uti-
lizzare il lavoro ottenuto per spostare ulteriormente calore dal bagno al corpo ottenendo
una temperatura finale T¢ > T. Veniamo adesso ad una analisi dettagliata.

Durante le trasformazioni verra ceduto complessivamente un calore Q. al corpo, e Q,
al bagno termico. Al termine disporremo eventualmente di un lavoro estratto W. Dal
primo principio abbiamo

Qc+Q+W=0 (9.34.1)

Inoltre possiamo scrivere

Ty
Qe = /T CdT = C (T; — To) (9.34.2)

0

L’aumento di entropia del sistema sara dato da

dQc de
AS = =
/ T " / Ty
dove il primo termine rappresenta la variazione di entropia del corpo e il secondo quella
del bagno termico. Da dQ, = CdT otteniamo

Tr Qp

AS = / AT + =
T, T Ty

_ Tr | Qo

e di conseguenza

T
Qp = TyAS — CTy log Tf (9.34.3)
0
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Sostituendo la (9.34.2) e la (9.34.3) nella (9.34.1) otteniamo

che possiamo riscrivere nella forma

Ty To W AS
F\l=)=F|l=)— 55— 9.34.4
(7)-F(%)-cn - M.
con F(x) = x —log x. Ci interessano i valori di T che verificano l'espressione precedente.
F(x) ha un unico minimo in x = 1, cio¢ per Ty = T, (vedere Figura 9.27). Al variare
della costante al secondo membro avremo quindi due soluzioni oppure nessuna. Se le
soluzioni esistono, la maggiore tra le due crescera al crescere del valore del membro

destro. Quindi la temperatura maggiore si otterra per W = 0 e AS = 0. In questo caso
I'equazione diviene

ed una soluzione e chiaramente Ty = Tj.

Tf = Tmin Tf = T() Tf = Tmar Tf / Tb

Figura 9.27.: La funzione F(T;/T,) (in blu) confrontata con un possibile valore della
costante F(Ty/T,) — W/(CT,) — AS/C a secondo membro nell’Equazio-
ne (in rosso). Come discusso nel testo, la funzione ha un minimo
per Ty = Tj. Se la costante ¢ abbastanza grande si hanno due intersezioni,
che corrispondono alle possibili temperature massime e minime finali del
corpo.

Possiamo concludere che se Ty < T}, la seconda soluzione corrispondera ad un valore
Tr > Ty, e quindi in questo caso & possibile portare la temperatura del corpo ad un
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valore maggiore di quello del bagno termico. Se invece Ty > T, la seconda soluzione
dara Ty < T, < Tp. In questo caso non sara possibile aumentare la temperatura del
corpo. Entrambe le possibilita confermano la discussione qualitativa iniziale.
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PROBLEMA 9.35
( Dummy
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