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1.1. PERIODO DI UN PENDOLO ?

PROBLEMA 1.1

Periodo di un pendolo ?

Mediante considerazioni dimensionali determinare la dipendenza della frequenza di
oscillazione f di un pendolo inizialmente in posizione verticale dai parametri rilevanti
per il problema, ossia

◦ la lunghezza ` del pendolo

◦ la sua massa m

◦ l’accelerazione di gravità g

◦ la velocità iniziale v0

Soluzione

I parametri in gioco sono la massa del pendolo m, la sua lunghezza `, l’accelerazione
di gravità g e la velocità iniziale v0. Vogliamo con essi costruire una grandezza delle
dimensioni di un tempo, cioè

[mα`βgγvδ
0] = MαLβ+γ+δT−2γ−δ = T (1.1.1)

Otteniamo il sistema

α = 0
β + γ + δ = 0
−2γ− δ = 1

che può essere risolto nella forma

α = 0

β =
1− δ

2

γ = −1 + δ

2

con δ arbitrario. Quindi qualsiasi combinazione del tipo

`
1−δ

2 g−
1+δ

2 vδ
0 =

(
v2

0
`g

) δ
2
√

`

g

ha le dimensioni di un tempo. La soluzione per il periodo sarà quindi della forma

T = f
(

v2
0

`g

)√
`

g
(1.1.2)
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dove f è una funzione arbitraria del parametro adimensionale

Π1 =
v2

0
`g

Questa funzione esprime una possibile dipendenza (che in effetti esiste) del periodo di
oscillazione di un pendolo dalla sua ampiezza. Il principio di isocronia delle oscillazioni,
valido approssimativamente per piccole ampiezze, ci dice che

lim
x→0

f (x) = C (1.1.3)

dove C è una costante strettamente maggiore di zero. Risolvendo le equazioni del moto
si troverebbe che la formula è corretta, e che C = 2π.

PROBLEMA 1.2

Studio sperimentale del periodo del pendolo ?

Per studiare sperimentalmente la dipendenza del periodo del pendolo dai suoi parame-
tri si fanno 50 diversi misure, variando le caratteristiche del pendolo e la sua velocità
iniziale. Il pendolo viene sempre lanciato dalla posizione verticale.

Le misure sono riportate nella tabella posta di seguito (che per convenienza è pos-
sibile scaricare in formato ASCII all’indirizzo http://www.df.unipi.it/~cella/ueg/
PENDOLO.dat).

Si chiede di

◦ Rappresentare in un grafico il periodo T in funzione di
√
`/g

◦ Trovare due combinazioni adimensionali indipendenti di T, g, v0, ` e m e rappre-
sentare la prima in funzione della seconda su un grafico.

◦ Commentare il risultato dei due grafici precedenti. Dire in particolare se quanto
ottenuto ha qualche relazione con la funzione f (x) definita nell’Esercizio 1.1.

◦ In alcuni dei casi considerati il pendolo stava compiendo “piccole” oscillazioni?
Come sarebbe possibile dare una risposta quantitativa?

# misura v0 (ms−1) ` (m) m (kg) T (s)
1 0.10 6.72 2.28 5.22
2 0.21 1.42 8.84 2.41
3 0.95 9.37 8.69 6.23
4 1.10 6.10 6.81 5.05
5 1.72 9.06 8.68 6.19
6 2.09 9.03 0.48 6.22
7 1.29 2.33 8.07 3.18
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8 1.67 3.61 5.79 3.96
9 2.11 3.52 6.92 3.96

10 3.57 9.5 2.09 6.51
11 2.86 4.54 4.33 4.54
12 4.30 9.44 4.79 6.57
13 5.11 9.98 9.62 6.83
14 4.82 8.67 5.36 6.37
15 4.91 6.87 1.41 5.74
16 5.30 7.14 6.05 5.89
17 3.77 3.17 4.79 3.96
Pl 6.84 9.52 9.89 6.89
19 6.43 7.76 3.26 6.26
20 4.04 2.69 9.66 3.72
21 7.54 8.71 0.55 6.73
22 3.02 1.23 1.15 2.56
23 8.00 7.84 7.04 6.51
24 5.46 3.52 6.44 4.68
25 9.39 9.12 2.27 7.15
26 7.49 5.63 6.15 5.64
27 7.15 4.72 6.76 5.21
28 9.10 6.78 9.49 6.35
29 9.35 7.08 8.76 6.50
30 8.95 5.84 7.95 6.00
31 8.17 4.58 8.60 5.37
32 9.83 6.12 3.74 6.29
33 5.48 1.82 9.53 3.46
34 6.97 2.29 1.17 4.30
35 9.49 4.86 2.52 5.80
36 9.30 5.05 7.35 5.99
37 4.98 1.19 1.14 2.96
38 2.60 0.31 9.42 1.53
39 8.16 2.82 7.47 4.74
40 6.11 1.51 1.71 3.53
41 8.99 3.10 6.35 5.17
42 9.80 3.62 7.35 5.63
43 5.94 1.25 5.67 3.41
44 6.70 1.49 1.80 3.87
45 8.73 2.50 0.29 5.06
46 4.59 0.65 2.54 2.71
47 7.94 1.85 2.13 4.81
48 8.47 2.05 3.09 5.24
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49 7.47 1.49 6.25 5.14
50 6.28 1.04 9.55 4.50

Soluzione

Il periodo T misurato è rappresentato in funzione del valore di
√
`/g in Figura 1.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(L/g)
1/2

 (s)

0

2

4

6

8

T
 (

s)

Dati

T =  2 π  (L/g)
1/2

Figura 1.1.: I periodi Ti in funzione di
√
`i/g per i dati in tabella (cerchi). Per confronto,

è riportata la retta T = 2π
√
`/g.

Per il secondo grafico richiesto una possibile scelta di parametri adimensionali indi-
pendenti è

Π = T
√

g
`

Π1 =
v0√
`g

e il valore di Π ricavato dai dati è rappresentato in funzione di Π1 in Figura 1.2.
La combinazione Π1 è il periodo misurato in unità

√
`/g, invece Π1 è la velocità

misurata in unità
√

g`.
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0 1 2

 Π
1

0

2

4

6

8

10

12

14
 Π

Dati

 Π = 2 π

Figura 1.2.: Il valori Πi ricavati dai dati in tabella in funzione dei valori Π1i. Per
confronto è riportata in rosso la costante 2π.

Osservando i due grafici si nota che nel primo (Figura 1.1) i dati non si dispongono
su un’unica curva, cosa che accade per il secondo (Figura 1.2).

La ragione di questo è che, come è possibile vedere studiando il moto del pendolo (o
come possiamo dedurre dall’analisi dimensionale condotta nell’Esercizio 1.1), il periodo
è proporzionale a

√
`/g solo per piccole oscillazioni. In quel particolare regime si può

dimostrare che vale la legge

T = 2π

√
`

g
(1.2.1)

rappresentata in Figura 1.1 dalla retta rossa. Come si vede alcuni dati corrispondono
alla (1.2.1), negli altri casi il periodo è sistematicamente maggiore.

Nel secondo grafico vediamo che i dati si allineano apparentemente su una curva ben
definita. In effetti l’analisi dimensionale ci dice che per i parametri adimensionali che
abbiamo scelto deve valere (vedere l’Equazione (1.1.2))

Π = f
(
Π2

1
)
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e quindi abbiamo rappresentato nel grafico la funzione y = f (x2). Nel limite Π1 → 0
che corrisponde alle piccole oscillazioni vediamo che

lim
Π1→0

f
(
Π2

1
)
= 2π

in accordo con le considerazioni precedenti. Per quantificare tutto questo basta osservare
dal grafico in Figura 1.2 che il valore di Π si allontana da 2π all’aumentare di Π1.

PROBLEMA 1.3

Pendolo sulla luna ?

Un pendolo di massa m = 10−1kg e lunghezza ` = 1m viene lanciato sulla terra
(g = 9.822ms−2) dalla posizione di equilibrio con una velocità iniziale v0 = 5 ms−1.
In queste condizioni il periodo di oscillazione è T = 2.1s. Sulla superficie della luna
l’accelerazione gravitazionale vale 1.625ms−2. Determinare sulla base di argomenti di-
mensionali come potrebbe essere costruito un nuovo pendolo e come dovrebbe essere
lanciato (cioè quali valori dovrebbero avere `, m, v0) per ottenere lo stesso periodo di
oscillazione.

Soluzione

Riprendendo l’analisi svolta nell’esercizio 1.1 sappiamo che vale

T = f
(

v2
0

`g

)√
`

g

Sulla luna vale g′ = λg, dove

λ =
1.625
9.822

' 0.165

Dato che il periodo deve essere lo stesso, dovremo scegliere dei nuovi parametri `′, m′ e
v′0 in modo da avere

f
(

v2
0

`g

)√
`

g
= f

(
v′20
`′g′

)√
`′

g′

Dato che non conosciamo la forma di f (x), dobbiamo imporre separatamente le due
condizioni

`

g
=

`′

g′

v2
0

`g
=

v′20
`′g′

Come si vede la massa non gioca alcun ruolo. Invece dalla prima relazione segue che

`′ =
g′

g
` = λ`
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1.4. CADUTA DA UNA CALOTTA SEMISFERICA ?

e sostituendo nella seconda abbiamo

v′20 =
`′g′

`g
v2

0 = λ2v2
0

Di conseguenza possiamo scegliere la massa arbitrariamente, ma dobbiamo ridurre la
lunghezza del pendolo e la velocità iniziale di un fattore λ (circa 1/6). Notare che

v2
0

g`
' 2.54

e quindi non ci aspettiamo di essere nel regime di piccole oscillazioni, nel quale potrem-
mo trascurare la dipendenza del periodo dalla velocità iniziale.

PROBLEMA 1.4

Caduta da una calotta semisferica ?

Una particella di massa m è appoggiata sul punto più in alto di una calotta semisferica
di massa M e raggio R, libera di scorrere su un piano orizzontale. La particella viene
spostata leggermente e, sotto l’effetto della accelerazione di gravità g, inizia a cadere. Si
osserva che ad una altezza h da terra la particella si stacca dalla calotta. Sulla base di
considerazioni dimensionali determinare la dipendenza da h dai parametri m, M, R e g
che caratterizzano il problema.

Soluzione

Dobbiamo costruire con i parametri in gioco quantità con le dimensioni di una lunghez-
za. Osserviamo che possiamo ottenere una combinazione adimensionale

Π1 =
m
M

e, tolta m, l’unica combinazione possibile è semplicemente R. Di conseguenza dovrà
essere

h = RΦ
( m

M

)

dove Φ(x) è una funzione arbitraria. Osserviamo che per l’angolo θ al quale avviene il
distacco vale

sin θ =
h
R

= Φ
( m

M

)

e quindi θ dipende solo dal rapporto delle masse (e non da g, ad esempio).
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2.1. TRIPLO PRODOTTO VETTORIALE ?

PROBLEMA 2.1

Triplo prodotto vettoriale ?

Dimostrare l’identità
~a ∧

(
~b ∧~c

)
= (~a ·~c)~b−

(
~a ·~b

)
~c (2.1.1)

Soluzione

Supponiamo che i vettori~b e~c siano paralleli. Potremo allora porre~b = λ~c. Sostituendo
otteniamo

λ~a ∧ (~c ∧~c) = λ (~a ·~c)~c− λ (~a ·~c)~c (2.1.2)

che è banalmente verificata. Se invece ~b e ~c sono linearmente indipendenti potremo
scrivere

~a ∧
(
~b ∧~c

)
= A

(
~b ∧~c

)
+ B~b + C~c (2.1.3)

dove A deve essere uno scalare dipendente linearmente dal solo ~a, B uno scalare di-
pendente linearmente da~b e ~c e C uno scalare dipendente linearmente da ~a e~b. Non
è possibile costruire uno scalare dipendente linearmente dal solo ~a. Invece possiamo
prendere B proporzionale a~a ·~c e C proporzionale a~a ·~b. Quindi

~a ∧
(
~b ∧~c

)
= k1 (~a ·~c)~b + k2

(
~a ·~b

)
~c (2.1.4)

dove k1 e k2 sono costanti numeriche. Prendendo~b = ~c troviamo

0 = k1

(
~a ·~b

)
~b + k2

(
~a ·~b

)
~b (2.1.5)

e quindi k1 + k2 = 0. Infine prendendo~a = ẑ,~b = ŷ e~c = ẑ otteniamo

ẑ ∧ (ŷ ∧ ẑ) = k1 (ẑ · ẑ)~y− k1 (ẑ · ŷ) ẑ (2.1.6)

cioè
ẑ ∧ x̂ = k1~y (2.1.7)

da cui k1 = 1.

PROBLEMA 2.2

Matrice di rotazione ? ? ?

Scrivere esplicitamente la matrice R che rappresenta una rotazione di un’angolo θ at-
torno ad un asse determinato dal versore n̂. Questo significa che dato un vettore ~v
qualsiasi

~v′ = R~v

rappresenta il vettore ruotato. Considerare in particolare i casi n̂ = x̂, n̂ = ŷ e n̂ = ẑ.
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2.2. MATRICE DI ROTAZIONE ? ? ?

Soluzione

Cerchiamo di determinare il più generale vettore legato linearmente a ~v, tenendo pre-
sente che abbiamo a disposizione solo n̂ e θ per costruirlo. Esso dovrà perciò essere della
forma

~v′ = A (n̂, θ,~v) n̂ + B (n̂, θ)~v + C (n̂, θ) n̂ ∧~v
dove A, B e C dovranno essere degli scalari. Infatti ~v e n̂ ∧~v sono gli unici due vettori li-
nearmente indipendenti che è possibile costruire, dato che oggetti più generali come n̂∧
(n̂ ∧ v̂) e simili si riducono ad essi utilizzando l’identità dimostrata nell’Esercizio (2.1).

Veniamo adesso ai tre scalari. A dovrà essere lineare in ~v, e quindi della forma

A (n̂, θ,~v) = a (θ) n̂ ·~v

mentre dovrà essere B(n̂, θ) = b (θ) e C (n̂, θ) = c(θ). Di conseguenza

~v′ = a (θ) (n̂ ·~v) n̂ + b (θ)~v + c (θ) n̂ ∧~v

Possiamo adesso determinare le funzioni a, b e c considerando alcuni casi particolari.
Anzitutto, se ~v = n̂ dovrà essere anche ~v′ = n̂, dato che la rotazione lascia invariato

un vettore allineato con l’asse di rotazione. Sostituendo otteniamo

n̂ = a (θ) n̂ + b (θ) n̂

e quindi a + b = 1.
Consideriamo adesso n̂ = ẑ e n̂ = x̂. Abbiamo

~v′ = b(θ)x̂ + c(θ)ẑ ∧ x̂ = b(θ)x̂ + c(θ)ŷ

ma sappiamo che se applichiamo una rotazione di un angolo θ attorno all’asse ẑ il
versore x̂ diviene

x̂ → cos θx̂ + sin θŷ

di conseguenza
cos θx̂ + sin θŷ = b (θ) x̂ + c (θ) ŷ

e quindi

b(θ) = cos θ

c(θ) = sin θ

Il risultato finale è

~v′ = [1− cos θ] (n̂ ·~v) n̂ + cos θ~v + sin θn̂ ∧~v

Determiniamo adesso la matrice R che corrisponde a questa trasformazione. Rendendo
espliciti gli indici abbiamo

v′i = [cos θδik + (1− cos θ) nink] vk + sin θεijknjvk
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2.3. IL PRODOTTO VETTORIALE COME OPERATORE ?

dove si sottoindende la somma sulle coppie di indici ripetuti. Di conseguenza

Rik = [cos θδik + (1− cos θ) nink] + sin θεijknj

ed esplicitamente

R =




cos θ + (1− cos θ) n2
x − sin θ nz + (1− cos θ) nxny sin θ ny + (1− cos θ) nxnz

sin θ nz + (1− cos θ) nzny cos θ + (1− cos θ) n2
y − sin θ nx + (1− cos θ) nynz

− sin θ ny + (1− cos θ) nxnz sin θ nx + (1− cos θ) nynz cos θ + (1− cos θ) n2
z




Consideriamo adesso i casi particolari richiesti. Per n̂ = x̂ vale nx = 1, ny = nz = 0 e
quindi

R =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ




Analogamente per n̂ = ŷ abbiamo ny = 1 e nx = nz = 0, quindi

R =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




Infine per n̂ = ẑ, da nz = 1 e nx = ny = 0 segue

R =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1




PROBLEMA 2.3

Il prodotto vettoriale come operatore ?

Dato un vettore fissato ~ω, possiamo definire una funzione che agisce su un vettore
qualsiasi ~v e lo trasforma in un altro

~f~ω (~v) ≡ ~ω ∧~v

Si tratta di una funzione lineare (dimostratelo), che quindi può essere rappresentata
dall’azione di una matrice che chiameremo Ω~ω su ~v

~f~ω (~v) = Ω~ω ~v

Determinate esplicitamente gli elementi di Ω~ω.

26 versione del 5 ottobre 2016
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Soluzione

La linearità si verifica immediatamente:

~f~ω
(

α~a + β~b
)

= ~ω ∧
(

α~a + β~b
)

= α~ω ∧~a + β~ω ∧~b
= α~f~ω (~a) + β~f~ω

(
~b
)

Scriviamo l’equazione che definisce Ω~ω, cioè

Ω~ω~v = ~ω ∧~v

rendendo esplicite le componenti abbiamo



Ωxx Ωxy Ωxz
Ωyx Ωyy Ωyz
Ωzx Ωzy Ωzz






vx
vy
vz


 =




ωyvz −ωzvy
ωzvx −ωxvz
ωxvy −ωyvx




e confrontando le due espressioni vediamo che deve essere

Ω~ω =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



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3.1. PROFONDITÀ DI UN POZZO ??

PROBLEMA 3.1

Profondità di un pozzo ??

Per determinare la profondità di un pozzo si lancia un sasso al suo interno, e si misura
dopo quanto tempo si sente il suono dell’urto sul fondo. Detta vs = 340m/s la velo-
cità del suono e τ = 2s il tempo misurato determinare tale profondità. Che errore si
commette trascurando l’effetto della velocità finita del suono?

Soluzione

Il tempo τ è dato dalla somma del tempo di caduta τc per il sasso e del tempo impiegato
dal suono τs per tornare all’osservatore. La caduta avviene, trascurando gli attriti, con
moto uniformemente accelerato quindi

h =
1
2

gτ2
c

cioè

τc =

√
2h
g

Il suono si muove con velocità costante, quindi

τs =
h
vs

Il tempo misurato sarà dunque

τ = τc + τs =

√
2h
g

+
h
vs

Questa è un’equazione di secondo grado nell’incognita
√

h

h +

√
2v2

s
g

√
h− vsτ = 0

che ammette come unica soluzione accettabile (perché positiva)

√
h = −

√
v2

s
2g

+

√
v2

s
2g

+ vsτ =
τ
√

g/2
1
2 +

1
2

√
1 + 2gτ

vs

(3.1.1)

Sostituendo i valori numerici abbiamo

τ
√

g/2 ' 4.43 m1/2

1
2
+

1
2

√
1 +

2gτ

vs
' 1.03

e quindi h = 18.5 m. Trascurare la velocità finita del suono equivale a porre uguale a 1 il
denominatore della Eq. (3.1.1), e quindi ad una correzione del 6%.
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3.2. LUNGHEZZA DI UNA TRAIETTORIA ??

PROBLEMA 3.2

Lunghezza di una traiettoria ??

Una particella si muove nel piano in un’orbita descritta da

~R(t) = aêx cos ωt + bêy sin ωt .

Mostrare che si tratta di un’orbita ellittica, calcolare il tempo necessario a percorrere
un’orbita completa ed esprimere la lunghezza di quest’ultima come integrale definito
(senza calcolarlo).

Soluzione

Possiamo riscrivere la legge oraria nella forma

x(t) = a cos ωt
y(t) = b sin ωt

da cui segue
x2

a2 +
y2

b2 = 1

che rappresenta una ellisse avente gli assi coincidenti con quelli coordinati, di lunghezza
2a e 2b. Il tempo necessario a percorrere una intera orbita è chiaramente il periodo di
~R(t), ossia

T =
2π

ω
.

Per quanto riguarda la lunghezza, possiamo calcolare la velocità:

~V(t) = −aω sin ωt êx + bω cos ωt êy

e integrare il suo modulo nel tempo per un periodo:

` =

ˆ T

0
|~V(t)|dt =

ˆ T

0

√
a2ω2 sin2 ωt + b2ω2 cos2 ωtdt

=

ˆ 2π

0

√
a2 sin2 u + b2 cos2 udu

Questo integrale non si esprime in termini di funzioni elementari, a parte il caso banale
a = b (traiettoria circolare) nel quale si trova ` = 2πa.

PROBLEMA 3.3

Raggiungere un oggetto che accelera ??

Un’automobile parte da ferma con moto uniformemente accelerato e accelerazione a.
Dopo un tempo τ si lancia un proiettile che si può supporre in moto con velocità costante
v0. Determinare la minima velocità v0 necessaria a colpire l’automobile, in funzione di a
e τ. Si può considerare il moto puramente unidimensionale.
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3.3. RAGGIUNGERE UN OGGETTO CHE ACCELERA ??

Soluzione

Le leggi orarie di automobile e proiettile si possono scrivere nella forma

sA(t) =
1
2

at2

sP(t) = v0(t− τ) .

Proiettile e automobile si incontrano al tempo determinato da sA(t) = sP(t), con t > τ.
Il tutto è rappresentato graficamente in Figura 3.1.

2 4 6 8 10

10

20

30

40

50 s

t

τ

sA(t)

sP (t)

Figura 3.1.: Figura per il problema.

Abbiamo quindi
1
2

at2 − v0(t− τ) = 0 .

La velocità minima corrisponde alla condizione di tangenza tra retta e parabola,

∆ = v2
0 − 2av0τ = 0

cioè v0 = 0 oppure v0 = 2aτ. La prima possibilità corrisponde a un tempo t = 0, e
quindi deve essere esclusa. La seconda corrisponde a

t2 − 4τ(t− τ) = 0

cioè
t = 2τ .
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3.4. MOTO PERIODICO IN UN PIANO A VELOCITÀ NOTA ??

PROBLEMA 3.4

Moto periodico in un piano a velocità nota ??

Una particella si muove in un piano orizzontale e al tempo t = 0 si trova nell’origine. Le
velocità agli istanti successivi sono rappresentate nei grafici in Figura 3.2, che si ripetono
periodicamente. Trovare la traiettoria.

t = Tt = 0 t = 0 t = T t

vx vy

t

Figura 3.2.: Figura per il problema. Le velocità sono rappresentate solo tra t = 0 e t = T,
in seguito si ripetono periodicamente. La velocità massima è vmax.

Soluzione

Il moto è identico nella direzione x e in quella y. Inoltre la velocità è sempre non negativa.
Di conseguenza la traiettoria sarà la semiretta

x = y, x > 0 .

Più in dettaglio, tra t = 0 e t = T/2 avremo

x =
1
2

at2

y =
1
2

at2

con
a =

∆v
∆t

=
2vmax

T
.

Tra t = T/2 e t = T avremo

x =
T
4

vmax + vmax

(
t− T

2

)
− 1

2
a
(

t− T
2

)2

y =
T
4

vmax + vmax

(
t− T

2

)
− 1

2
a
(

t− T
2

)2
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3.5. VERTICI DI UN POLIGONO ? ? ?

e analogamente negli intervalli successivi.

PROBLEMA 3.5

Vertici di un poligono ? ? ?

N punti materiali sono inizialmente posti nei vertici di un poligono regolare con N lati,
a una distanza R del centro. Istante per istante ciascun punto di muove con velocità
costante v nella direzione del successivo preso in senso orario. Trovare le traiettorie di
ciascun punto.

Figura 3.3.: Figura per il problema, nel caso N = 6.

Soluzione

Ad ogni istante possiamo scrivere la velocità di un punto nella forma

~v = ṙêr + rθ̇êθ

ma per ragioni di simmetria i punti saranno sempre ai vertici di un poligono regolare,
ruotato e contratto rispetto al precedente. Allora dovrà essere

ṙ = −v cos α

rθ̇ = v sin α

dove α è l’angolo tra la velocità e il vettore che unisce il centro del poligono con il vertice
considerato,

α = π

(
1
2
− 1

N

)
.
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3.6. FARFALLE KAMIKAZE ? ? ?

Dalle due equazioni otteniamo subito

ṙ
cos α

+
rθ̇

sin α
= 0

ossia
tan α

ṙ
r
= −θ̇

da cui

tan α
d
dt

log r = − d
dt

θ

e integrando

log r = − 1
tan α

θ + C .

Imponendo le condizioni iniziali abbiamo infine

r = r0 exp
[
− 1

tan α
(θ − θ0)

]

che descrive una spirale. Notare che questa si restringe verso il centro tanto più lenta-
mente quanto più N è grande. Nel limite il poligono diviene una circonferenza, e ciascun
punto si muove su una traiettoria circolare.

PROBLEMA 3.6

Farfalle kamikaze ? ? ?

Per spiegare il motivo che porta una farfalla notturna a cadere a spirale sulla fiamma
di una candela, si può fare l’ipotesi che normalmente esse facciano riferimento alla luce
della luna per guidarsi, mantenendo costante l’angolo tra la direzione di provenienza
di questa e la propria direzione di volo. Mostrare che questa è una strategia suicida se
la luce di riferimento è quella di una fiamma vicina. Perchè invece funziona se la luce è
molto lontana?

Soluzione

Possiamo scrivere la velocità nella forma

~v = Ṙêr + Rθ̇êθ = −v cos αêr + v sin αêθ

dove v è il modulo della velocità (non necessariamente costante) e α l’angolo fissato tra
la direzione del moto e la direzione della sorgente. Da questo segue

Ṙ = v cos α

Rθ̇ = −v sin α
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3.7. RAGGIUNGERE UNA BOA ? ? ?

e quindi

θ̇ = − Ṙ
R

tan α .

Integrando abbiamo

R = R0e−
θ

tan α

che per tan α > 0 rappresenta una spirale logaritmica attorno all’origine. Se R0 è molto
grande la traiettoria diviene essenzialmente rettilinea.

PROBLEMA 3.7

Raggiungere una boa ? ? ?

Un nuotatore vuole raggiungere una boa posta ad una distanza d dalla riva. Si mette a
nuotare verso di essa riuscendo a mantenere una velocità costante in modulo vN rispetto
all’acqua. É però presente una corrente diretta parallelamente alla riva di modulo vC.
Discutere la traiettoria del nuotatore nei tre casi vC > vN , vC = vN e vC < vN .

vC

d

Figura 3.4.: Sistema di coordinate per il problema.

Soluzione

Fissiamo un sistema di riferimento cartesiano con origine nella boa, come in Figura.
Supponendo che il nuotatore parta dalla riva in un punto di coordinate (0, d) possiamo
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3.7. RAGGIUNGERE UNA BOA ? ? ?

scrivere la sua velocità nella forma

d~R
dt

= −vN
~R
|~R|
− vC êx

ossia, componente per componente,

dx
dt

= −vN
x√

x2 + y2
− vc

dy
dt

= −vN
y√

x2 + y2

da cui otteniamo immediatamente una equazione per la traiettoria (β = vC/vN)

dx
dy

=
x
y
+ β

√
1 +

x2

y2 .

Introduciamo la nuova variabile u(x) = x(y)/y e usando l’identità

dx
dy

=
d

dy
(yu) = y

du
dy

+ u

possiamo riscrivere l’equazione nella forma

y
du
dy

= β
√

1 + u2

che si integra immediatamente per separazione delle variabili:
ˆ

du√
1 + u2

= β

ˆ
dy
y

da cui, ponendo u = sinh s
s = β log y + β log C

dove C è una costante di intregrazione. Quindi

x
y
= u = sinh s = sinh

[
log (Cy)β

]

ossia
x =

1
2

[
Cβy1+β − C−βy1−β

]

La costante di integrazione si determina imponendo le condizioni iniziali x = 0, y = d,
e otteniamo

x =
d
2

[(y
d

)β+1
−
(

d
y

)β−1
]

.
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Studiamo adesso i tre diversi casi.
Per vC < vN possiamo porre β = 1− ε con 0 < ε < 1. Abbiamo allora

x =
d
2

[(y
d

)2−ε
−
(y

d

)ε
]

e quindi x tende a zero per y→ 0. Questo significa che il nuotatore raggiunge la boa.
Nel caso vc = vN abbiamo β = 1 e quindi

x =
d
2

[(y
d

)2
− 1
]

.

La traiettoria è quindi parabolica e il nuotatore non riesce a raggiungere la boa, ma
arriva nel punto (−d/2, 0) continuando a nuotare contro corrente senza muoversi.

Nel caso vc > vN abbiamo β = 1 + ε con ε > 0 e quindi

x =
d
2

[(y
d

)2+ε
−
(

d
y

)ε]
.

Segue che per y→ 0 la coordinata x assume valori arbitrariamente grandi in modulo e
negativi. Questo significa che il nuotatore è trascinato dalla corrente.

0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

β = 3/2
β = 11/10

β = 1

β = 1/2

β = 1/4

Figura 3.5.: Traiettorie per particolari valori di β. L’asse x del problema è verticale, d = 1.
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3.8. PREDA E PREDATORE ??

PROBLEMA 3.8

Preda e predatore ??

Un coniglio si muove arbitrariamente nel piano mantenendo il modulo della sua velo-
cità vc costante. Una volpe lo insegue muovendosi anche essa con velocità costante in
modulo vv, dirigendosi istante per istante nella direzione del coniglio.

Dimostrare che indipendentemente dalla traiettoria scelta dal coniglio esso verrà
raggiunto in un tempo finito se vv > vc.

Soluzione

Sia ~Rc la posizione del coniglio e ~Rv quella della volpe. Il quadrato della loro distanza si
può scrivere come

`2 =
∣∣∣~Rc − ~Rv

∣∣∣
2

e la sua derivata temporale come

d`2

dt
= 2

(
~Rc − ~Rv

)
·
(

d~Rc

dt
− d ~Rv

dt

)
.

Ma sappiamo che la velocità della volpe si scrive

d~Rv

dt
= vv

~Rc − ~Rv∣∣∣~Rc − ~Rv

∣∣∣
e sostituendo otteniamo

d`2

dt
= 2

(
~Rc − ~Rv

)
· d~Rc

dt
− 2vv

∣∣∣~Rc − ~Rv

∣∣∣ .

Possiamo scrivere inoltre
d`2

dt
= 2vc

∣∣∣~Rc − ~Rv

∣∣∣ cos φ− 2vv

∣∣∣~Rc − ~Rv

∣∣∣

dove φ è l’angolo tra la velocità del coniglio e il vettore
(
~Rc − ~Rv

)
. In conclusione

otteniamo
d`2

dt
= 2

∣∣∣~Rc − ~Rv

∣∣∣ (vc cos φ− vv) ≤ 2` (vc − vv)

che si può anche scrivere nella forma

d`
dt
≤ (vc − vv)

ossia
` ≤ `0 + (vc − vv)t .

Da questo segue che il coniglio verrà raggiunto ad un tempo

t ≤ `0

vv − vc
.
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PROBLEMA 3.9

Otto volante ??

Un punto materiale si muove nel piano su una guida descritta dall’equazione

y = A sin kx

mantendo costante la propria velocità lungo x, vx = v0.
Calcolare il valore massimo e minimo del modulo della velocità, e il valore massimo e

minimo del modulo della accelerazione. Riportare sulla traiettoria i punti corrispondenti
a questi valori.

Soluzione

vmin, amax

vmax, amin

y

x

Figura 3.6.: La guida descritta nel problema. I punti nei quali, in modulo, la velocità è
minima e l’accelerazione è massima sono indicati da una croce. I punti nei
quali la velocità è massima e l’accelerazione è minima sono indicati con un
disco.

Il quadrato del modulo della velocità vale

v2 = ẋ2 + ẏ2

ma
ẏ = Akẋ cos kx
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da cui
v2 = v2

0
(
1 + A2k2 cos2 kx

)
.

I valore minimo è quindi vmin = v0, che si ottiene quando

x =
1
k

(π

2
+ mπ

)

mentre il massimo vale vmax = v0
√

1 + A2k2 e si ottiene per

x =
mπ

k

L’accelerazione è solo lungo y e vale

ÿ = −Ak2 ẋ2 sin kx = −Ak2v2
0 sin kx

e i valori massimi e minimi del suo modulo sono

amin = 0, x =
mπ

k

amax = Ak2v2
0, x =

1
k

(π

2
+ mπ

)
.

Le posizioni di questi punti sono indicate in Figura 3.6.

PROBLEMA 3.10

Moto nel piano: accerazione e velocità noti in modulo. ?? S

Un punto materiale si muove in un piano con un’accelerazione e una velocità il cui
modulo è dato da |~a| = a e |~v| = v.

1. Se a(t) = a0 e v(t) = v0, con a0 e v0 costanti, quanto vale l’angolo tra velocità e
accelerazione?

2. Per le stesse accelerazioni e velocità della domanda precedente determinare la
traiettoria.

3. Supponendo che per t > 0 il modulo della velocità valga v(t) = βt, con β costante
positiva, come si deve scegliere a(t) affinchè la traiettoria sia identica a quella
precedentemente determinata?

Soluzione1

1. Se il modulo della velocità è costante, allora l’accelerazione tangenziale alla traiet-
toria deve essere nulla. Quindi l’accelerazione è perpendicolare alla velocità.

1Scritto del 20/1/2012
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2. Per quanto visto al punto precedente l’accelerazione tangenziale è nulla. Quindi il
modulo dell’accelerazione è uguale al modulo dell’accelerazione normale, da cui

a0 =
v2

0
ρ

dove ρ è il raggio di curvatura della traiettoria, che è quindi costante. Il moto è
quindi circolare uniforme, e la traiettoria una circonferenza di raggio R = v2

0/a0.

3. Per avere ancora un moto circolare dovrà essere

a2(t) = v̇(t)2 +
v4(t)

R2 = β2 +
a2

0

v4
0

β4t4

PROBLEMA 3.11

Una traiettoria in coordinate polari ? S

La traiettoria di una particella nel piano è descritta in coordinate polari dall’equazione

r =
d

cos θ

dove d > 0 è una costante assegnata.

1. Rappresentare graficamente la traiettoria in un piano cartesiano.

2. Determinare il vettore accelerazione in coordinate polari, in funzione di θ, θ̇ e θ̈.

3. Determinare r(t), sapendo che il vettore velocità è costante ed ha modulo V, e che
r(0) = d.

Può essere utile ricordare l’integrale indefinito

ˆ
dx

cos2 x
= tan x + C

Soluzione2

Domanda 1 L’equazione si può porre nella forma

d = r cos θ = x

segue che la traiettoria è una retta verticale a una distanza d dall’origine.

2Primo esercizio scritto Fisica I del 10 settembre 2010
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Domanda 2 Dato che la traiettoria è rettilinea, l’accelerazione vale

~a = ÿêy

Dato che
y = r sin θ = d tan θ

troviamo
ẏ =

d
cos2 θ

θ̇

e
ÿ =

d
cos2 θ

θ̈ +
2d sin θ

cos3 θ
θ̇2

e dato che
êy = êr sin θ + êθ cos θ

troviamo
~a =

d
cos2 θ

(
θ̈ + 2θ̇2 tan θ

)
(êr sin θ + êθ cos θ)

Domanda 3 Per il vettore velocità abbiamo

~v = ẏêy = ±Vêy

Segue immediatamente che

x = d
y = y(0)±Vt

e quindi

r(t) =
√

x2 + y2 =

√
d2 + (y(0)±Vt)2

che imponendo r(0) = d si riduce a

r(t) =
√

d2 + V2t2

Alternativamente si può scrivere
d

cos2 θ
θ̇ = V

ed integrando

d
ˆ θ(t)

θ(0)

dθ

cos2 θ
= Vt

Dato che r(0) = d deve essere θ(0) = 0, e quindi

d tan θ(t) = Vt

ma
r =

d
cos θ

= d
√

1 + tan2 θ =
√

d2 + V2t2
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PROBLEMA 3.12

Caduta di una moneta ?? S

ω

v(t)

O
P

Figura 3.7.: La moneta considerata nel problema. La velocità angolare è indicata con ω,
quella del centro di massa (diretta verso il basso e variabile) con v(t).

Il centro di una moneta di raggio R, inizialmente fermo, cade con accelerazione co-
stante~a = −gŷ verso il basso come in figura. La moneta inoltre ruota con una velocità
angolare costante ω.

1. Scrivere il modulo della velocità del punto P posto sul bordo della moneta in
funzione del tempo, sapendo che all’istante iniziale questo si trova sulla verticale
del centro O, al di sopra di esso.

2. Ad un istante t > 0 qualsiasi determinare la posizione di un punto della moneta
con velocità nulla, se esiste.

3. Ad un istante t > 0 qualsiasi determinare la posizione di un punto della moneta
con accelerazione nulla, se esiste.

Soluzione3

Domanda 1

Il moto del punto P sarà dato dalla composizione del moto circolare uniforme attorno ad
O e di quello uniformemente accelerato di quest’ultimo. Quindi, ponendo la posizione
iniziale di O nell’origine di un sistema di coordinate,

x = −R sin ωt

y = R cos ωt− 1
2

gt2

e derivando

ẋ = −Rω cos ωt
ẏ = −Rω sin ωt− gt

da cui otteniamo il modulo della velocità

v =
√

R2ω2 + g2t2 + 2Rωgt sin ωt
3Prova scritta 8 febbraio 2012
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Domanda 2

Dato che il centro di massa si muove ad un dato istante con una velocità ~v = −gtŷ un
punto della moneta potrà essere fermo solo se questa velocità verticale è compensata
da quella del suo moto circolare. Questo può accadere solo sul diametro orizzontale
della moneta, dove la velocità del moto circolare non ha componenti orizzontali. Inoltre
indicando con d la posizione sul diametro relativa ad O di P dovrà essere

ωd− gt = 0

e quindi d = gt/ω. Il punto cercato esisterà solo per d ≤ R, e quindi per t < ωR/g.

Domanda 3

In questo caso è l’accelerazione del moto circolare che deve compensare quella uniforme
del centro di massa. Quindi il punto si troverà sul diametro verticale della moneta (dove
l’accelerazione centripeta non ha componenti orizzontali) e dovrà essere

−ω2d− g = 0

dove d è ancora la posizione sul diametro di P relativa ad O. In conclusione

d = − g
ω2

ed il punto cercato esisterà sempre, a condizione che sia ω2 > g/R.

PROBLEMA 3.13

Lancette dell’orologio ?

Alle tre del pomeriggio l’angolo tra la lancetta delle ore e quella dei minuti di un orologio
formano un angolo di π/2. Calcolare dopo quanto tempo le lancette si sovrappongono.

Soluzione

La velocità angolare della lancetta dei minuti è

ωm =
2π

60× 60
rad s−1

e quella della lancetta delle ore

ωo =
2π

12× 60× 60
rad s−1

L’angolo che ciascuna lancetta forma con la verticale è data da

θm = ωmt

θo =
π

2
+ ωot
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dove t è il tempo trascosro dalle tre del pomeriggio. Le due lancette si sovrappongono
quando θm = θo, cioè quando

ωmt =
π

2
+ ωot

e risolvendo troviamo

t =
π/2

ωm −ωo
=

10800
11

s ' 16min 22s

PROBLEMA 3.14

Il problema dello spazzaneve ??

Questo problema o una sua variante è molto noto. Ad una certa ora del mattino inizia
a nevicare, e a mezzogiorno uno spalaneve parte per pulire le strade. La neve continua
a cadere con intensità costante. Si sa che la velocità con cui procede lo spazzaneve è
inversamente proporzionale all’altezza della neve.

Nelle prime due ore di lavoro lo spazzaneve riesce a pulire 4km di strada. Nelle due
ore successive invece se ne liberano solo 2km. Si vuole sapere a che ora ha iniziato a
nevicare.

Soluzione

Poniamo t = 0 a mezzogiorno. Detto t0 < 0 l’instante nel quale inizia a nevicare, avremo
che l’altezza della neve aumenterà secondo la legge

h ∝ (t− t0)

La velocità dello spazzaneve sarà data di conseguenza da

v =
L

t− t0

dove L è una costante non nota con le dimensioni di una lunghezza. Lo spazio percorso
nelle prime due ore di lavoro sarà dunque

s1 =

ˆ τ

0

L
t− t0

dt = L log
t0 − τ

t0

dove τ = 2h. Nelle due ore successive avremo invece

s2 =

ˆ 2τ

τ

L
t− t0

dt = L log
t0 − 2τ

t0 − τ

A noi interessa determinare t0. Dividendo membro a membro le due relazioni precedenti
troviamo

log t0−τ
t0

log t0−2τ
t0−τ

=
s1

s2
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e dato che s1/s2 = 2 troviamo

log
t0 − τ

t0
= 2 log

t0 − 2τ

t0 − τ

ossia

t0 − τ

t0
=

(
t0 − 2τ

t0 − τ

)2

Riordinando i termini abbiamo

(t0 − τ)3 = t0 (t0 − 2τ)2

ossia, espandendo e semplificando,

t2
0τ − t0τ2 − τ3 = 0

Le soluzioni di questa equazione sono

t0 =
1±
√

5
2

τ

e solo quella negativa è accettabile. Di conseguenza

t0 =
1−
√

5
2

τ ' −1h 14min10s

quindi ha iniziato a nevicare alle 10h : 45min : 50s.

PROBLEMA 3.15

Rotolamento puro e traiettorie ??

Un cilindro di raggio rotola senza strisciare all’interno di una cavità, anche essa cilin-
drica, di raggio 2R. Inizialmente il cilindro si trova nella posizione in Figura 3.8. Deter-
minare la traiettoria del punto P appartenente al cilindro inizialmente al centro della
cavità.
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R

P

Figura 3.8.: Il cilindro (in giallo) di raggio e la cavità cilindrica (di raggio 2R) che lo
contiene.

Soluzione

P

α
β

Figura 3.9.: Le coordinate α e β utilizzate per descrivere il moto del cilindro. Entrambi gli
angoli sono considerati crescenti in senso antiorario (nel caso rappresentato,
α > 0 e β < 0.

Il centro del cilindro si muove su una circonferenza di raggio R centrata sulla cavità.
Scegliamo le coordinate α e β come in Figura 3.9. Rispetto ad un sistema di coordinate
con origine al centro della cavità le coordinate del punto P saranno:

xP = R sin α− R sin β

yP = −R cos α + R cos β
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La condizione di puro rotolamento mette in relazione gli angoli α e β. Per trovare questa
relazione possiamo osservare che la velocità del punto di contatto tra cilindro e cavità
vale

v = Rα̇ + Rβ̇

ma questa velocità deve essere nulla, per cui α̇ = −β̇. Integrando troviamo

α = −β + C

e dato che inizialmente α = β = 0 abbiamo C = 0. Di conseguenza

xP = 2R sin α

yP = 0

e il punto P si muove sul diametro orizzontale della cavità, yP = 0 e −2R ≤ xP ≤ 2R.

PROBLEMA 3.16

Salto in lungo ??

Un saltatore in lungo arriva alla fine della rincorsa con una velocità orizzontale vL. A
questo punto salta in una direzione che, nel suo sistema di riferimento, forma un angolo
α rispetto all’orizzontale. Sempre nel suo sistema di riferimento il modulo della velocità
immediatamente successiva al salto è v0.

Determinare l’angolo α che corrisponde alla massima lunghezza del salto e calcolare
l’angolo α′ corrispondente nel sistema solidale al suolo.

Soluzione

Mettendosi nel sistema di riferimento solidale al suolo avremo le due componenti della
velocità iniziale della forma

vx0 = vL + v0 cos α

vy0 = v0 sin α

che sostituite nell’espressione della gittata

` =
2vx0vy0

g
=

2v2
0

g
sin α

(
vL

v0
+ cos α

)
(3.16.1)

ci fornisce la quantità da rendere massima variando α. Derivando otteniamo l’equazione

2 cos2 α +
vL

v0
cos α− 1 = 0

che ha per soluzione

cos α = − vL

4v0
±
√

1
2
+

(
vL

4v0

)2
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Se consideriamo l’Equazione (3.16.1) vediamo che la soluzione accettabile deve essere
positiva. Infatti, se per assurdo la gittata massima si avesse per un valore di α > π/2,
potremmo considerare β = π/2 − α: ma dato che sin β = sin α e cos β = − cos α
troveremmo un valore della gittata più grande. Quindi

cos α = − vL

4v0
+

√
1
2
+

(
vL

4v0

)2

Notare che per vL � v0 abbiamo

cos α =

√
2

2
− vL

4v0
+ o

(
vL

v0

)2

e quindi un angolo leggermente minore a π/4, tendente a tale valore (che corrisponde
all’angolo ottimale da fermo). Per vL � v0 abbiamo invece

cos α = − vL

4v0
+

(
vL

4v0

)√
1 +

1
2

(
4v0

vL

)2

= − vL

4v0
+

(
vL

4v0

)[
1 +

1
4

(
4v0

vL

)2

+ o
(

v0

vL

)4
]

=

(
v0

vL

)
+ o

(
v0

vL

)3

e quindi un angolo che diventa molto piccolo.
La tangente dell’angolo nel sistema di riferimento solidale al suolo, infine, è data da

tan α′ =
vy

vx
=

sin α
vL
v0
+ cos α

Per vL � v0 abbiamo α′ → α. Per vL � v0 abbiamo invece α′ → 0.

PROBLEMA 3.17

Moto accelerato nel piano s-v ?

Studiare la relazione tra spostamento e velocità per un moto uniformemente accelerato,
e rappresentarla in un piano cartesiano con la posizione per ascissa e la velocità per
ordinata. Dedurne che esiste una funzione della velocità e della posizione, indipendente
dal tempo, che rimane costante.

Soluzione

Le leggi orarie sono

s = s0 + v0t +
1
2

at2

v = v0 + at
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Ricavando il tempo dalla seconda equazione e sostituendono nella prima abbiamo

s = s0 +
1
2a
(
v2 − v2

0
)

Di conseguenza si ottengono delle parabole con asse sulla retta v = 0, come in Figu-
ra (3.10). Chiaramente la parabola passa dal punto s = s0, v = v0. Inoltre in vertice
corrisponde alla posizione per la quale la particella è ferma,

sV = s0 −
v2

0
2a

v

s

Figura 3.10.: Alcune possibili curve nel piano s− v corrispondenti ad un moto accele-
rato. Gli esempi corrispondono alla stessa accelerazione positiva e diver-
se condizioni iniziali. La concavità cambierebbe verso per accelerazioni
negative.

L’espressione precedente si può riscrivere nella forma

1
2

v2 − sa =
1
2

v2
0 − s0a

e quindi la combinazione di velocità e posizione v2/2− sa si mantiene costante durante
il moto.

PROBLEMA 3.18

Moto circolare uniforme in coordinate polari “fuori centro” ?

Si vuole studiare un moto circolare uniforme, che avviene su una circonferenza di raggio
R con velocità v, utilizzando un sistema di coordinate polari con origine posto sulla
circonferenza stessa, come in Figura 3.11.
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~r

θ

R

φ

P

êθ
êr

Figura 3.11.: Il sistema di coordinate scelto per studiare il moto circolare uniforme.

◦ Determinare l’equazione della circonferenza nella forma r = r(θ), in un opportuno
intervallo per θ.

◦ Scrivere la componente radiale (diretta come êr) della velocità, e quella diretta
lungo êθ .

◦ Determinare la relazione tra θ̇ e la velocità angolare del moto circolare.

◦ Scrivere le componenti dirette lungo êr e lungo êθ dell’accelerazione.

Soluzione

Per trovare l’equazione della circonferenza, basta considerare che il triangolo isocele
AOP (Figura 3.12) Deve essere

r = 2R cos θ

e la circonferenza completa viene descritta ad esempio per θ nell’intervallo−π/2 < θ ≤
π/2. Il vettore posizione si scrive adesso nella forma usuale

~r = rêr

e derivando rispetto al tempo troviamo

~v = ṙêr + rθ̇êθ

= −2Rθ̇ sin θêr + 2Rθ̇ cos θêθ
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~r

θ

R

φ

P

êθ
êr

A
O

n̂

τ̂

Figura 3.12.: Costruzioni geometriche usata per risolvere l’esercizio. L’angolo alla
circonferenzaθ e l’angolo al centroφ insistono sullo stesso arco, e quindi
sono uno la metà dell’altro. Notare che i versori normali e tangenti n̂ e τ̂ si
ottengono ruotando i versori êr e êθ di un angolo θ.

Per quanto riguarda la velocità angolare del moto circolare, abbiamo ω = φ̇ e dato
che φ = 2θ sarà ω = 2θ̇, quindi

~v = −Rω sin θêr + Rω cos θêθ

Notare che si può anche scrivere

~v = −Rω

[
sin θ

(
cos θ
sin θ

)
− cos θ

(− sin θ
cos θ

)]

= −Rω

(
2 sin θ cos θ

sin2 θ − cos2 θ

)

= Rω

(− sin 2θ
cos 2θ

)
= Rω

(− sin φ
cos φ

)

Il versore che compare è chiaramente quello tangente alla circonferenza,

τ̂ =

(− sin φ
cos φ

)
=

(−2 sin θ cos θ

cos2 θ − sin2 θ

)
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Derivando ancora una volta troviamo l’accelerazione. Possiamo scrivere direttamente

~a =
d
dt

Rω

(− sin φ
cos φ

)

= −Rωφ̇

(
cos φ
sin φ

)

= −Rω2n̂

dove

n̂ =

(
cos φ
sin φ

)
=

(
cos2 θ − sin2 θ

2 sin θ cos θ

)

è il versore normale alla traiettoria. Alternativamente

d
dt

(−Rω sin θêr + Rω cos θêθ) = −Rωθ̇ cos θêr − Rωθ̇ sin θêθ

− Rωθ̇ sin θêθ − Rωθ̇ cos θêr

= −Rω2 (cos θêr + sin θêθ)

da cui segue anche che
n̂ = cos θêr + sin θêθ

Da notare che i versori n̂ e τ̂ si possono ottenere rispettivamente con una rotazione θ di
êr e êθ .
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4.1. PILA DI MATTONI

PROBLEMA 4.1

Pila di mattoni

2d

Figura 4.1.: La pila di mattoni, nel caso N = 4.

Si vogliono sovrapporre N mattoni di lunghezza 2d in modo da ottenere una pila in
equilibrio come in Figura 4.1. Quale è la massima separazione orizzontale ottenibile tra
il centro di massa del mattone più in basso e quello del mattone più in alto?

Soluzione

Indichiamo con xk la posizione del centro di massa del blocco k-simo (k = 0, · · ·N − 1
partendo dal basso) rispetto a una origine fissata. Definiamo inoltre qk la posizione del
centro di massa dell’insieme di tutti i blocchi a partire dal k-simo compreso. Avremo

qk =
1

N − k

N−1

∑
i=k

xk .

Per avere equilibrio tutti i qk dovranno essere compresi tra gli estremi del blocco k −
1-simo, cioè

xk−1 − d ≤ qk ≤ xk−1 + d ∀k ∈ {2, · · ·N} .

Possiamo inoltre porre senza perdere di generalità x0 = 0. Dobbiamo quindi massi-
mizzare xN−1 variando x1, · · · xN−1 e tenendo conto dei vincoli precedenti. Dato che
xN−1 è una funzione lineare dei parametri il suo valore massimo dovrà saturare tutte le
disuguaglianze precedenti, e quindi dovrà essere

qk = xk−1 + d (4.1.1)
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o più esplicitamente (ponendo senza perdere di generalità x0 = 0)

1
N − 1

(x1 + · · ·+ xN−1) = d

1
N − 2

(x2 + · · ·+ xN−1) = x1 + d

· · ·
1

N − k
(xk + · · ·+ xN−1) = xk−1 + d

· · ·
xN−1 = xN−2 + d

ossia

(x1 + · · ·+ xN−1) = (N − 1) d
(x2 + · · ·+ xN−1) = (N − 2) (x1 + d)

· · ·
(xk + · · ·+ xN−1) = (N − k) (xk−1 + d)

· · ·
xN−1 = xN−2 + d

Sottraendo membro a membro da ciascuna equazione quella successiva abbiamo

x1 =
d

N − 1

x2 =
d

N − 2
+ x1

· · ·

xk =
d

N − k
+ xk−1

· · ·
xN−1 = xN−2 + d

Otteniamo in conclusione

xN−1 = d
N−1

∑
k=1

1
k

(4.1.2)

Notare che questa serie diverge per N → ∞, quindi con un numero sufficiente di blocchi
è possibile avanzare in orizzontale quanto si vuole. Il numero di blocchi richiesti cresce
però esponenzialmente con la distanza desiderata, infatti

N

∑
k=1

1
k
= log N + γ + εN (4.1.3)

dove γ è la costante di Eulero-Mascheroni (γ = 0.57721 · · · ) e εN un termine che tende
a zero con N.
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PROBLEMA 4.2

Equilibrio ed energia potenziale ??

dA B

g
`,M

k1

k2

Figura 4.2.: La sbarra sospesa.

Una sbarra di lunghezza ` e massa M è sospesa al soffitto tramite due molle di lun-
ghezza a riposo nulla e costanti elastiche k1, k2. Ciascuna molla è collegata ad un estremo
della sbarra, e la distanza tra i punti A, B a cui sono fissate al soffitto vale d (vedere Fi-
gura 4.2). Determinare l’angolo che la sbarra forma con la direzione orizzontale nella
posizione di equilibrio e la posizione del centro di massa

◦ minimizzando l’energia potenziale

◦ risolvendo le equazioni di equilibrio

Soluzione

Utilizziamo come coordinate l’ascissa e l’ordinata x, y del centro di massa della sbarra
e l’angolo che la sbarra forma con la direzione orizzontale. Ponendo un sistema di
riferimento con origine nel punto medio tra A e B scriviamo l’energia potenziale come

U = Mgy +
k1

2

[(
x− `

2
cos θ +

d
2

)2

+

(
y− `

2
sin θ

)2
]

+
k2

2

[(
x +

`

2
cos θ − d

2

)2

+

(
y +

`

2
sin θ

)2
]

Determiniamo il minimo:
∂U
∂y

= Mg + k1

(
y− `

2
sin θ

)
+ k2

(
y +

`

2
sin θ

)
= 0

∂U
∂x

= k1

(
x− `

2
cos θ +

d
2

)
+ k2

(
x +

`

2
cos θ − d

2

)
= 0

∂U
∂θ

= k1
`

2

[(
x− `

2
cos θ +

d
2

)
sin θ −

(
y− `

2
sin θ

)
cos θ

]

+ k2
`

2

[
−
(

x +
`

2
cos θ − d

2

)
sin θ +

(
y +

`

2
sin θ

)
cos θ

]
= 0
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Dalle prime due equazioni otteniamo

y =
k1 − k2

k1 + k2

`

2
sin θ − Mg

k1 + k2

x =
k1 − k2

k1 + k2

`

2
cos θ − k1 − k2

k1 + k2

d
2

Notare che se k1 = k2 si ha y = −Mg
2k1

e x = 0. Sostituendo nella terza equazione
troviamo l’angolo

tan θ =
Mg
4d

k2 − k1

k1k2

che possiamo utilizzare per calcolare x e y. Possiamo ad esempio riscrivere le relazioni
precedenti nella forma

y =
k1 − k2

k1 + k2

`

2
tan θ√

1 + tan2 θ
− Mg

k1 + k2

x =
k1 − k2

k1 + k2

`

2
tan θ√

1 + tan2 θ
− k1 − k2

k1 + k2

d
2

e sostituire.
Proviamo a scrivere invece le condizioni di equilibrio. Il diagramma delle forze che

agiscono sulla sbarra è in Figura 4.3

dA B

g
`,M

k1

k2

Mg
k2`2

k1`1
θ1

θ2
θ

P Q

R

S

Figura 4.3.: Diagramma delle forze applicate alla sbarra. Tutti gli angoli sono presi
positivi nel verso antiorario.

Scriviamo la somma di tutte le forze orizzontali.

Fx = k2 (xB − xS) + k1 (xA − xR)

Ma se teniamo conto che

xB − xS =
d
2
− x− `

2
cos θ

xA − xR = −d
2
− x +

`

2
cos θ
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vediamo che
Fx = −∂U

∂x
Analogamente per la somma di tutte le forze orizzontali abbiamo

Fy = k2 (yB − yS) + k1 (yA − yR)−Mg

e dato che

yB − yS = y +
`

2
sin θ

yA − yR = y− `

2
sin θ

vediamo che
Fy = −∂U

∂x
Infine scriviamo la somma dei momenti scegliendo come polo il centro di massa. Abbia-
mo

M = −k2 (xB − xS)
`

2
sin θ + k1 (xA − xR)

`

2
sin θ

+ k2 (yB − yS)
`

2
cos θ − k1 (yA − yR)

`

2
cos θ

e vediamo che
M = −∂U

∂θ

Le condizioni di equilibrio si riducono quindi alle condizioni per il minimo del poten-
ziale determinate precedentemente.

PROBLEMA 4.3

Asta vincolata ad una circonferenza ??

Un’asta di lunghezza 2a e massa m ha i suoi due estremi appoggiati ad una circonfe-
renza di raggio r > a, come in Figura 4.4. Indicando con θ l’angolo tra il segmento che
congiunge il punto medio della sbarra al centro della circonferenza, discutere i possibili
valori di θ corrispondenti all’equilibrio, tenendo conto della presenza della gravità e di
attrito statico tra sbarra e circonferenza descritto da un coefficiente µ.

Soluzione

Scriviamo le condizioni di equilibrio per l’asta, basandoci sullo schema in Figura 4.5. Le
forze ~Ni sono le reazioni vincolari, perpendicolari alla supeficie della circonferenza,

~Ni = Nin̂
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~g

θ

β
r

2a

Figura 4.4.: L’asta ha gli estremi appoggiati sulla circonferenza.

e ~Fi le forze di atttrito, ad essa tangenti

~Fi = Fiτ̂

Abbiamo indicato con n̂ il versore normale alla circonferenza, rivolto verso l’interno,
e con τ̂ quello tangente, rivolto in verso antiorario. Per la somma delle forze nella
direzione parallela all’asta abbiamo

(N1 − N2) cos β + (F1 + F2) sin β−mg sin θ = 0 (4.3.1)

e nella direzione perpendicolare

(N1 + N2) sin β− (F1 − F2) cos β−mg cos θ = 0 (4.3.2)

Infine per il momento totale rispetto al centro della circonferenza

(F1 + F2) r−mgr sin β sin θ = 0 (4.3.3)

L’angolo β, indicato nelle figure, è dato da

cos β =
a
r
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~g

θ

β
r

2a

~F1

~F2

~N1

~N2

m~g

Figura 4.5.: Le forze applicate all’asta.

Deve anzitutto essere

N1 > 0 (4.3.4)
N2 > 0 (4.3.5)

in caso contrario l’asta si stacca dalla circonferenza. sappiamo inoltre che

|F1| ≤ µN1 (4.3.6)
|F2| ≤ µN2 (4.3.7)

Da notare che queste due condizioni sono più restrittive delle (4.3.4) e (4.3.5).
Usando le tre equazioni (4.3.1), (4.3.2) e (4.3.3) possiamo esprimere F1 in funzione di

N1 e F2 in funzione di N2, per un dato valore di θ. Otteniamo

F1 = N1 tan β− 1
2

mg cos θ sec β

F2 = N2 tan β− 1
2

mg cos θ sec β

Abbiamo inoltre una relazione tra N1 ed N2 che scriviamo nella forma

2N1 cos β

mg
− 2N2 cos β

mg
= 2 cos2 β sin θ
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per futura convenienza. Sostituendo nella (4.3.6) e nella (4.3.7) abbiamo
∣∣∣∣N1 tan β− 1

2
mg cos θ sec β

∣∣∣∣ ≤ µN1 (4.3.8)
∣∣∣∣N2 tan β− 1

2
mg cos θ sec β

∣∣∣∣ ≤ µN2 (4.3.9)

che sono equivalenti a

(tan β− µ)
2Ni cos β

mg
≤ cos θ ≤ (tan β + µ)

2Ni cos β

mg
(4.3.10)

Ni ≥ 0 (4.3.11)

per Ni = 1, 2. Se le disequazioni precedenti hanno soluzioni (tenendo conto del legame
tra N1 ed N2) allora avremo equilibrio. Conviene discutere graficamente nel piano X1-X2,
con

Xi =
2Ni cos β

mg
La relazione tra N1 ed N2 diviene

X1 − X2 = 2 cos2 β sin θ (4.3.12)

e le due disequazioni

(tan β− µ) Xi ≤ cos θ ≤ (tan β + µ) Xi (4.3.13)
Xi ≥ 0 (4.3.14)

Dobbiamo distinguere due casi. Se µ < tan β possiamo scrivere le condizioni precedenti
nella forma

cos θ

tan β + µ
≤ Xi ≤

cos θ

tan β− µ

Xi ≥ 0

che possono avere soluzioni solo se cos θ ≥ 0. Rappresentando in Figura 4.6 la re-
gione permessa, vediamo che questa viene intersecata dalla retta corrispondente alla
Equazione (4.3.12) per −θ∗ < θ < θ∗ dove θ∗ vale

θ∗ = arctan

[
µ

2 cos2 β
(
tan2 β− µ2

)
]

Notare che in assenza di attrito l’unico valore possibile è θ∗ = 0, e che nel limite µ →
tan β si ha θ∗ → π/2 (sbarra verticale).

Se inveceµ > tan β le disequazioni si riducono a

cos θ ≥ 0

Xi ≥
cos θ

tan β + µ

e ci troviamo nella situazione rappresentata in Figura 4.7, è sempre possibile cioè
trovare una posizione di equilibrio per −π/2 < θ < π/2.
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X1

X2

X1 =
cos θ

2(tan β+µ)

X2 =
cos θ

2(tan β+µ)

X2 =
cos θ

2(tan β−µ)

X1 =
cos θ

2(tan β−µ)

X2 = X1 − 2 cos2 β sin θ

Figura 4.6.: Il caso µ < tan β. I valori estremi di sin θ (opposti tra loro) corrispondono
alla retta blu e viola.

X1

X2

X2 =
cos θ

2(tan β+µ)

X2 = X1 − 2 cos2 β sin θ

X1 =
cos θ

2(tan β+µ)

Figura 4.7.: Il caso µ > tan β. Esistono sempre posizioni di equilibrio per −π/2 < θ <
π/2.
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PROBLEMA 4.4

Catenaria ??

Un filo inestensibile, perfettamente flessibile, di lunghezza ` e densità lineare di massa
λ è appeso ai suoi estremi a due punti separati orizzontalmente da una distanza 2a < `.
Se è presente un campo gravitazionale costante, determinare la forma che assume il filo
in condizioni di equilibrio.

Soluzione

Consideriamo un tratto di filo di lunghezza d`. All’equilibrio la somma delle forze che
agisce su di esso deve essere nullo, cioè

T(`+ d`)τ̂ (`+ d`)− T (`) τ̂ (`)− λgd`ŷ = 0

dove T è la tensione e τ̂ il versore tangente. Passando al limite d` → 0 possiamo
riscrivere questa equazione nella forma

d
d`

(Tτ̂) = λgŷ

Cercheremo la soluzione nella forma y(x). Per prima cosa vediamo che possiamo scri-
vere

d
d`

=
dx
d`

d
dx

=
1√

1 +
(

dy
dx

)2

d
dx

e

τ̂ =
1√

1 +
(

dy
dx

)2

(
1
dy
dx

)

Sostituendo nell’equazione determinata precedente otteniamo

d
dx

[
T√

1 + w2

(
1
w

)]
= λg

√
1 + w2

(
0
1

)

dove abbiamo posto w = dy
dx . La prima componente di questa equazione da

d
dx

[
T√

1 + w2

]
= 0

che si può integrare direttamente in termini di una costante arbitraria k

T = k
√

1 + w2

Espandendo la derivata otteniamo invece

d
dx

[
T√

1 + w2

] (
1
w

)
+

T√
1 + w2

(
0

dw
dx

)
= λg

√
1 + w2

(
0
1

)
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ma il primo termine è nullo, come si è appena visto, e sostituendo l’espressione per la
tensione troviamo infine

k
(

0
dw
dx

)
= λg

√
1 + w2

(
0
1

)

Possiamo integrare la seconda componente per separazione delle variabili. L’integrale
necessario ˆ w(x)

w(0)

dw√
1 + w2

=
λg
k

x

si calcola introducendo la variabilew = sinh ξ. Dato che 1 + sinh2 ξ = cosh2 ξ e dw =
cosh ξ dξ otteniamo ˆ sinh−1 w(x)

sinh−1 w(0)
dξ =

λg
k

x

e quindi

w(x) =
dy
dx

= sinh
[

A +
λg
k

x
]

dove A = sinh−1 w(0). Resta da integrare ancora una volta l’espressione precedente,

y =
k

λg
cosh

[
A +

λg
k

x
]
+ B

Calcoliamo adesso le costanti arbitrarie imponendole condizioni al contorno. Scegliamo
un sistema di riferimento nel quale i punti di sospensione si trovano in

S1 =

(−a
h

)
, S2 =

(
a
h

)

Deve quindi essere

h =
k

λg
cosh

[
A +

λga
k

]
+ B

h =
k

λg
cosh

[
A− λga

k

]
+ B

Sottraendo membro a membro troviamo che deve essere

cosh
[

A− λga
k

]
= cosh

[
A +

λga
k

]

che implica A = 0. Inoltre

B = h− k
λg

cosh
[

λga
k

]
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La costante k è ancora indeterminata. Per trovarla imponiamo che la lunghezza del filo
sia `. Ma questa è data da

` =

ˆ a

−a

√
1 + w2dx

=

ˆ a

−a
cosh

[
λg
k

x
]

dx

= 2β sinh
(

a
β

)

dove si è posto per semplicità β = k/(λg). L’equazione

sinh
(

a
β

)
=

`

2a
a
β

(4.4.1)

ammette soluzioni per β se e solo se ` > 2a. Questo si può capire ad esempio dallo
studio grafico riportato in Figura .

a
β

y y = sinh

a
β




y = `
2a


a
β




y

x

β = 1.0

β = 0.5

β = 0.4

Figura 4.8.: A sinistra, la soluzione grafica dell’Equazione (4.4.1). La retta (in rosso) ha
un coefficiente angolare dato dal rapporto `/(2a). Si hanno soluzioni non
nulle (per a/β) solo se `/(2a) > 1. Le due rette disegnate corrispondono
a `/(2a) = 1 e `/(2a) = 3/2. A destra, esempi di profili per diversi valori
di β, prendendo h = a = 1. Risolvendo numericamente l’Equazione (4.4.1)
si trova che i valori scelti corrispondono a ` ' 2.3504 (rosso, β = 1.0),
` ' 3.62686 (verde, β = 0.5) e ` ' 4.84016 (blu, β = 0.4).

In conclusione la forma del filo sarà

y
h
= 1 +

β

h

[
cosh

(
x
β

)
− cosh

(
a
β

)]

una curva detta catenaria. Al variare di β cambia la lunghezza del filo, come abbiamo
visto. Dato che la dipendenza da λ e g è stata riassorbita in β, la forma del filo non
dipenderà dalla sua massa e dall’accelerazione di gravità.
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Notiamo infine che la tensione del filo è legata alla sua lunghezza. Anzitutto abbiamo

T(x) = βλg
√

1 + w2

= βλg cosh
(

x
β

)

In particolare la tensione agli estremi vale

T(a) = T(−a) = βλg cosh
(

a
β

)

=

√
β2λ2g2 +

(
`λg

2

)2

(4.4.2)

Questa formula si può interpretare facilmente, osservando che il seno dell’angolo che il
filo forma con la direzione orizzontale è dato da

sin θ(x) =
tan θ(x)√

1 + tan2 θ(x)

=
w√

1 + w2

= tanh
(

x
β

)

=

`
2β√

1 +
(

`
2β

)2

ma all’equilibrio la componente verticale delle due tensioni agli estremi deve essere
uguale alla forza peso totale del filo, quindi

2T(a) sin θ(a) = λ`g

che coincide con la (4.4.2).
Possiamo considerare due limiti. Se `� 2a ci aspettiamo che la pendenza del filo agli

estremi sia praticamente verticale, e quindi dovremmo avere

T(a) ' 1
2

λ`g

cioè le due tensioni agli estremi devono compensare la forza peso totale del filo. In effetti
le `� 2a l’equazione (4.4.1) ammette soluzione per valori β� a, e in tale situazione si
può sostituire il seno iperbolico con un esponenziale1, quindi approssimativamente

ea/β ' `

a
a
β

1Se x � 1 vale cosh x = 1
2 ex + 1

2 e−x ' 1
2 ex e sinh x = 1

2 ex − 1
2 e−x ' 1

2 ex.
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Approssimando anche il coseno iperbolico con un esponenziale otteniamo

T(a) = T(−a) ' 1
2

ea/ββλg =
1
2

λ`g

Nel limite opposto, `
2a = 1 + ε con ε � 1 ci aspettiamo invece che la pendenza del

filo ai punti di sospensione sia praticamente orizzontale. In questa situazione solo una
componente molto piccola della forza legata alla tensione è diretta verticalmente, e può
compensare la forza peso. Ci aspettiamo quindi che quando ε → 0 valga T → ∞. In
effetti in questo limite possiamo usare l’approssimazione sinh x ' x + x3

6 e riscrivere
l’Equazione (4.4.1) nella forma

a
β
+

1
6

(
a
β

)3

=
`

2a
a
β

(4.4.3)

da cui
a
β
=

√
6
(

`

2a
− 1
)

(4.4.4)

L’angolo del filo rispetto all’orizzontale diviene quindi

sin θ(a) ' θ(a) ' `

2a

√
6
(

`

2a
− 1
)

e la tensione
T(a) ' βλg ' λga√

6
(

`
2a − 1

)
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Dinamica punto materiale
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5.1. DOPPIO PIANO INCLINATO ?

PROBLEMA 5.1

Doppio piano inclinato ?

Un punto materiale è vincolato a muoversi sulla superficie in Figura 5.1, composta da
due piani inclinati (con diverso angolo di inclinazione) separati da un piano orizzontale.
Senza fare uso di principi di conservazione mostrare che in assenza di attrito se il punto
materiale viene lasciato andare sul primo piano ad una altezza h1, si ferma sul secondo
ad una altezza h2 = h1.

h
h

1
2

θ θ1 2

Figura 5.1.: Figura esercizio

Soluzione

Il moto sui piani inclinati sarà uniformemente accelerato. Dato che il moto è rettilineo
l’accelerazione è parallela al piano, e possiamo determinarla considerando la proiezione
della forza di gravità e della reazione vincolare in tale direzione. In assenza di attrito la
reazione vincolare è normale al piano, quindi non contribuisce, e possiamo scrivere in
modulo

ma = mg sin θi

Lo spazio percorso sul primo piano inclinato e la velocità saranno quindi date da

`1(t) =
1
2

g sin θ1 t2

v1(t) = g sin θ1t

da cui possiamo determinare il tempo di arrivo sul piano orizzontale

`1(t1, f ) =
1
2

g sin θ1t2
1, f =

h1

sin θ1

cioè

t1, f =
1

sin θ1

√
2h1

g

e la velocità
v1, f = v1(t1, f ) =

√
2gh1 .
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Notare che questo risultato non dipende dalla inclinazione del piano. Passando sul
piano orizzontale il modulo della velocità non cambierà (giustificheremo al termine
dell’esercizio questa affermazione) e la massa si muoverà con velocità costante fino al
secondo piano inclinato, a cui arriverà a t = t2,i. Passando su quest’ultimo il modulo
della velocità rimarrà ancora una volta invariato, e avremo adesso un modo decelerato
che potrà essere descritto come

`2(t) = v1, f (t− t2,i)−
1
2

g sin θ2 (t− t2,i)
2

v2(t) = v1, f − g sin θ2(t− t2,i)

L’altezza massima si raggiungerà ad un tempo t2, f determinato da v2(t2, f ) = 0 cioè

(t2, f − t2,i) =
v1, f

g sin θ2

e lo spazio percorso sarà

`2(t2, f ) =
1
2

v2
1, f

g sin θ2
=

h1

sin θ2

corrispondente ad una altezza finale

h2 = `2
(
t f ,2
)

sin θ2 = h1

Resta da giustificare la conservazione del modulo della velocità nella transizione pia-
no inclinato-piano orizzontale e viceversa. Osserviamo che a un dato istante il punto
materiale è sottoposto alla forza di gravità e a una reazione vincolare che sappiamo esse-
re normale al vincolo (assenza di attrito). Nel punto di raccordo la normale al piano non
è ben definita, e il problema diviene ambiguo. Discuteremo il significato di questa ambi-
guità in un prossimo problema. Per adesso la elimineremo modificando la superficie in
un intorno piccolo quanto vogliamo dello spigolo, in modo da renderlo sufficientemente
liscio (Figura 5.2).

v(   )

v(   )0

ε

Figura 5.2.: Il raccordo regolarizzato tra piano inclinato e orizzontale.

Allora la reazione vincolare sarà ben definita ad ogni istante, e non potrà contribuire
in nessun caso alla accelerazione nella direzione tangenziale al piano. Quindi avremo
(usando il fatto che la derivata del versore tangente τ̂ è ad esso perpendicolare)

d
dt

(~v · τ̂) = d~v
dt
· τ̂ +~v · dτ̂

dt
=

d~v
dt
· τ̂ = ~g · τ̂
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da cui segue che

~v · τ̂(ε) = ~v · τ̂(0) +
ˆ ε

0
~g · τ̂ dt

dove ε è il tempo che la particella passa sulla parte “lisciata” del raccordo. Poichè
possiamo prendere piccolo quanto vogliamo segue che

~v · τ̂(ε) = ~v · τ̂(0).

PROBLEMA 5.2

Moto su una spirale ??

Una particella materiale di massa m è libera di muoversi in presenza di una forza di
gravità ~Fg = −mgêz su un vincolo privo di attrito dalla forma a spirale, descritto dalle
equazioni parametriche

x(ϕ) = ρ cos ϕ (5.2.1a)
y(ϕ) = ρ sin ϕ (5.2.1b)

z(ϕ) =
h

2π
ϕ (5.2.1c)

dove ρ, h sono costanti positive fissate. Al tempo t = 0 vale ϕ = 0 e la particella è
ferma. Determinare la legge oraria del moto e la reazione vincolare ~N.

Soluzione

Il punto materiale è sottoposto alla forza di gravità e alla reazione vincolare ~N. L’equa-
zione del moto sarà dunque

m~a = −mgêz + ~N (5.2.2)

In assenza di attrito la reazione vincolare è perpendicolare alla spirale, condizione che
possiamo scrivere come ~N · τ̂ = 0 dove τ̂ è il versore tangente alla traiettoria. Questo
significa che se consideriamo l’accelerazione nella direzione τ̂ avremo

m~a · τ̂ = −mgêz · τ̂ + ~N · τ̂ = −mgêz · τ̂

d’altra parte l’angolo tra la verticale e la tangente alla traiettoria è costante, quindi
l’accelerazione tangenziale è costante, uguale a quella di un punto materiale su un
piano inclinato nello stesso modo. Per verificare questo scriviamo il vettore posizione

~R = ρêρ +
h

2π
ϕêz

e la velocità

~V =
d~R
dt

= ρ
dêρ

dt
+

h
2π

ϕ̇êz = ρϕ̇êϕ +
h

2π
ϕ̇êz
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Figura 5.3.: Una parte della spirale descritta dalle Equazioni (5.2.1a)-(5.2.1c). Si è scelto
ρ = 2 e h = 1.

dove abbiamo utilizzato le relazioni ˙̂eρ = ϕ̇êϕ e ˙̂ez = 0. Segue che

τ̂ =
2πρêϕ + hêz√
(2πρ)2 + h2

e quindi

τ̂ · êz =
h√

(2πρ)2 + h2
= sin θ

dove θ è l’angolo tra l’orizzontale e la tangente alla traiettoria (notare che il denominato-
re è lo spazio percorso ad ogni giro della spirale e il numeratore la variazione in altezza).
Valutiamo adesso l’accelerazione

~a =
d~V
dt

= ρϕ̈êϕ + ρϕ̇
dêϕ

dt
+

h
2π

ϕ̈êz = ρϕ̈êϕ − ρϕ̇2êρ +
h

2π
ϕ̈êz

ricordando che ˙̂eϕ = ϕ̇êρ. Le equazioni (5.2.2) si scrivono quindi

m
(

ρϕ̈êϕ − ρϕ̇2êρ +
h

2π
ϕ̈êz

)
= −mgêz + ~N . (5.2.3)
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Proiettando nella direzione τ̂
(

ρϕ̈êϕ − ρϕ̇2êρ +
h

2π
ϕ̈êz

)
· τ̂ = −gêz · τ̂

cioè (
ρϕ̈êϕ − ρϕ̇2êρ +

h
2π

ϕ̈êz

)
·
(
2πρêϕ + hêz

)
= −gêz ·

(
2πρêϕ + hêz

)

e

ϕ̈ = −g
h

2π

ρ2 +
(

h
2π

)2 .

Da questo segue immediatamente

ϕ̇ = −g
h

2π

ρ2 +
(

h
2π

)2 t

e

ϕ = −1
2

g
h

2π

ρ2 +
(

h
2π

)2 t2 .

Sostituendo nelle equazioni parametriche otteniamo le leggi orarie. Dalla Equazio-
ne (5.2.3) abbiamo

~N = m
[

ρϕ̈êϕ − ρϕ̇2êρ +

(
h

2π
ϕ̈ + g

)
êz

]

e sostituendo le espressioni ϕ̈, ϕ̇ ottenute precedentemente otteniamo la reazione vinco-
lare in funzione del tempo.

PROBLEMA 5.3

Moto viscoso ??

In presenza di una forza di attrito viscoso ~F = −λ~v una particella di massa m viene
lanciata verso l’alto con velocità iniziale di modulo v0. Determinare la massima altezza
raggiunta rispetto al punto di partenza. Determinare inoltre la velocità alla quale la
particella passa nuovamente dal punto di partenza, in particolare nel caso in cui v0 è
molto grande. Cosa significa “molto grande” in questo caso?

Soluzione

L’equazione del moto per il moto nella direzione verticale si scrive

m
dv
dt

= −λv−mg .
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Questa è una equazione differenziale lineare a coefficienti costanti, del primo ordine,
che si può risolvere con diversi metodi.

Possiamo procedere per separazione delle variabili, riscrivendola nella forma

1
v + mg

λ

dv
dt

= − λ

m

e integrando membro a membro nel tempo:

ˆ t

0

1
v + mg

λ

dv
dt

dt = −
ˆ t

0

λ

m
dt .

L’integrale al membro sinistro è immediato, quello a destra lo diviene col cambio di
variabile u = v(t): ˆ v(t)

v(0)

1
u + mg

λ

du = − λ

m
t

ossia

log
v(t) + mg

λ

v0 +
mg
λ

= − λ

m
t .

Esplicitando la velocità abbiamo infine

v(t) =
(

v0 +
mg
λ

)
e−

λ
m t − mg

λ
(5.3.1)

che può essere usata per determinare il tempo tmax nel quale viene raggiunto l’altezza
massima, risolvendo v(tmax) = 0. Si ottiene

e−
λ
m tmax =

1
1 + λv0

mg

, tmax =
m
λ

log
(

1 +
λv0

mg

)
.

Per avere lo spazio percorso integriamo direttamente la velocità:

s(t) =
ˆ t

0
v(t) dt =

m
λ

(
v0 +

mg
λ

) (
1− e−

λ
m t
)
− mg

λ
t (5.3.2)

e sostituendo tmax

hmax = s(tmax) =
mv0

λ
− m2g

λ2 log
(

1 +
λv0

mg

)
.

Troviamo adesso la velocità quando la particella passa nuovamente a s = 0. Possiamo
riadattare la soluzione (5.3.2) ponendo v0 = 0, e ricavare il tempo di caduta

s(t0) =
m2g
λ2

(
1− e−

λ
m t0
)
− mg

λ
t0 = hmax
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che non è possibile risolvere esplicitamente in t0. È chiaro però che al crescere di v0
anche hmax cresce, e di conseguenza t0. Quindi dalla (5.3.1), sempre ponendo v0 = 0,
otteniamo

v(t0) =
mg
λ

e−
λ
m t0 − mg

λ
' −mg

λ
.

Questa approssimazione sarà buona quando

λv0

mg
� log

(
1 +

λv0

mg

)

cioè quando v0 � mg/λ.
Un metodo alternativo per risolvere l’equazione differenziale è quello di cercare prima

tutte le soluzioni dell’equazione omogenea

dv
dt

+
λ

m
v = 0

nella forma v = Ae−kt dove k è una costante da determinare. Sostituendo troviamo la
condizione

k +
λ

m
= 0

e quindi un insieme di soluzioni dipendenti da un parametro arbitrario che rappresen-
tano la soluzione generale (l’equazione è del primo ordine).

È necessario adesso aggiungere una soluzione particolare dell’equazione completa

dv
dt

+
λ

m
v = −g .

In questo caso possiamo farci guidare dall’intuizione fisica e cercare una soluzione a
velocità costante, che rappresenta la situazione in cui forze di attrito e di gravità si
bilanciano. Abbiamo v = −gm/λ e quindi otteniamo la soluzione generale nella forma

v(t) = Ae−
λ
m t − gm

λ
.

Ponendo v(t) = v0 troviamo A = v0 + gm/λ e quindi la (5.3.1).

PROBLEMA 5.4

Un problema inverso ?

Una particella di massa m si muove nel piano sotto l’azione di una forza della forma

~F = F(r)êr

dove r è la distanza dall’origine del sistema di coordinate e êr il versore radiale. La sua
legge oraria si può scrivere per t < tc nella forma

r(t) = β(tc − t)

θ(t) =
L

mβ2(t− tc)
.

Disegnare qualitativamente la traiettoria e determinare F(r).
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Soluzione

Mentre t → tc la distanza dal centro diminuisce linearmente, mentre l’angolo cresce
senza limite in valore assoluto. La traiettoria è quindi una spirale che viene percorsa in
senso orario mentre la particella “cade” sull’origine.

Sappiamo che il moto deve obbedire al secondo principio della dinamica

~F = m~a

e siamo in grado di calcolare l’accelerazione. Scriviamo anzitutto il vettore posizione
nella forma

~R = rêr

e derivando otteniamo velocità e accelerazione

~V = ṙêr + rθ̇êθ

~a = r̈êr + 2ṙθ̇êθ + rθ̈êθ − rθ̇2êr

e quindi
1
m

F(r)êr =
(
r̈− rθ̇2) êr +

(
2ṙθ̇ + rθ̈

)
êθ . (5.4.1)

D’altra parte esplicitamente

ṙ = −β

r̈ = 0

e

θ̇ = − L
mβ2(t− tc)2 = − L

mr2

θ̈ =
2L

mβ2(t− tc)3 = −2Lβ

mr3 .

Eguagliando la parte radiale nella (5.4.1) si ottiene

F(r) = − L2

mr3

mentre la parte angolare si annulla automaticamente.

PROBLEMA 5.5

Moto periodico ??

Una particella di massa m è vincolata a muoversi su un piano inclinato di lunghezza `,
come rappresentato in Figura 5.4. Ai due estremi del piano è posta una barriera su cui la
particella rimbalza, senza modificare il modulo della propria velocità. Se v0 è la velocità
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nel punto più basso determinare il periodo del moto periodico. Studiare in particolare
cosa accade per grandi valori della velocità v0.

�
�
�
�

θ

Figura 5.4.: Figura per il problema.

Soluzione

Il moto sul piano inclinato è uniformemente accelerato, con accelerazione a = g sin θ. Il
periodo sarà il doppio del tempo necessario per spostarsi dal punto più basso al punto
più alto. Possiamo allora scrivere

s(t) = v0t− 1
2

gt2 sin θ

v(t) = v0 − gt sin θ .

La velocità si annulla al tempo

t′ =
v0

g sin θ

e lo spazio percorso a tale istante vale

s′ = s(t′) =
v2

0
2g sin θ

.

Occorre distinguere due casi. Se s′ < ` la particella non arriva mai alla barriera superiore,
e quindi il periodo è semplicemente

T = 2t′ =
2v0

g sin θ
.

Questo accade se per il modulo della velocità iniziale vale

v0 <
√

2g` sin θ .
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Invece se s′ > ` l’urto con la barriera superiore avviene quando s(tu) = `, cioè

v0tu −
1
2

gt2
u sin θ = `

che significa

gt2
u sin θ − 2v0tu + 2` = 0

tu =
v0 ±

√
v2

0 − 2`g sin θ

g sin θ
.

Entrambe le soluzioni sono positive, ma solo la minore è accettabile. L’altra corrisponde
al tempo in cui la particella, avendo superato la barriera, è tornata su di essa dopo
aver invertito il moto. Chiaramente T = 2tu. Notare che quando v0 � `g sin θ le due
soluzioni si comportano in modo molto diverso. Quella non accettabile diviene molto
grande (il moto si inverte a un tempo sempre maggiore)

v0 +
√

v2
0 − 2`g sin θ

g sin θ
' 2v0

g sin θ

l’altra tende al tempo necessario a percorrere il tratto ` con velocità costante

v0 −
√

v2
0 − 2`g sin θ

g sin θ
' `

v0

il che significa che se la velocità iniziale è molto grande gli effetti dell’accelerazione sono
trascurabili.

PROBLEMA 5.6

Attraversamento di una buca ??

In un piano orizzontale (in presenza di gravità) è praticata una scanalatura triango-
lare come in figura, di altezza h e apertura angolare 2θ. Un punto materiale si muo-
ve sulla superficie risultante, che può essere considerata un vincolo liscio, con spigoli
sufficientemente smussati.
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θ1

θ2

2θh

Figura 5.5.: Figura per il problema.

Dimostrare, senza utilizzare principi di conservazione, che l’angolo di uscita θ1 e quello
di entrata θ2 nella scanalatura sono uguali. Dire inoltre se la traiettoria all’uscita della
scanalatura è il prolungamento di quella in entrata.

Soluzione

Il moto sui due piani inclinati è un moto accelerato nella direzione perpendicolare alla
scanalatura, con accelerazione nella fase discendente e −a in quella ascendente. Nella
direzione parallela avremo un moto uniforme. La legge oraria sul piano discendente
sarà

x = v0 cos θ1 t +
1
2

at2

y = v0 sin θ1 t
vx = v0 cos θ1 + at
vy = v0 sin θ1

e su quello ascendente

x = (v0 cos θ1 + ∆vx) t− 1
2

at2

y = v0 sin θ1 t
vx = (v0 cos θ1 + ∆vx)− at
vy = v0 sin θ1

Nel primo caso abbiamo usato un sistema di coordinate con origine nel punto di in-
gresso del punto materiale nel primo piano inclinato, asse x nella direzione di massima
pendenza del piano e asse y parallelo alla scanalatura. Nel secondo caso l’origine è anco-
ra nel punto di ingresso del punto materiale (questa volta nel secondo piano inclinato)¸
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asse x nella direzione di massima pendenza e asse y parallelo alla scanalatura. ∆vx è
l’incremento di velocità dovuto alla accelerazione sul primo piano inclinato.

Si vede facilmente che il tempo di discesa td è uguale a quello di salita ts. Detta
` = h/ cos θ la lunghezza di un piano inclinato abbiamo che td soddisfa

` = v0 cos θ1 td +
1
2

at2
d

mentre per ts vale

` = (∆vx + v0 cos θ1) ts −
1
2

at2
s

ma ∆vx = atd per cui quest’ultima equazione diviene

` = v0 cos θ1 ts −
1
2

at2
s + atdts

che è chiaramente verificata da ts = td. Allora all’uscita della scanalatura avremo

vx = v0 cos θ1 + ats − ats

vy = v0 sin θ1

il che significa θ1 = θ2.
Per rispondere alla seconda domanda notiamo che il moto in direzione trasversa è un

moto uniforme con velocità v0 sin θ1, nel primo sarebbe in assenza della fenditura. Ma
nel secondo caso il tempo di attraversamento è 2td, nel primo sarebbe

ta =
2h

v0 cos θ1
tan θ .

I due tempi coincidono se

h
v0 cos θ1

tan θ = td =
−v0 cos θ1 +

√
v2

0 cos2 θ1 + 2gh

g cos θ

ossia (supponendo h > 0)

q sin θ =
2q

1 +
√

1 + 2q
, q =

gh
v2

0 cos2 θ1

Solo se questa ultima condizione è soddisfatta, o nel caso banale θ1 = 0, le due traiettorie
risultano allineate.

PROBLEMA 5.7

Moto su una guida con attrito ?

Una particella di massa m è vincolata a muoversi su una guida descritta dall’equazione
y = f (x), in presenza di gravità e di un attrito dinamico descritto da un coefficiente
µd. La funzione f (x) è identicamente nulla per x < 0, e la particella viene lanciata
da x = −L (con L > 0) con velocità iniziale v0 >

√
2gµdL. Determinare f (x) per

x > 0 in modo tale che in tale regione per la particella valga ÿ = −g. Cosa succede se
v0 <

√
2gµdL?
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Soluzione

Se ÿ = −g la particella sta accelerando liberamente verso il basso. Questo significa che
l’unica forza in direzione verticale è quella di gravità, e l’attrito non contribuisce. Perchè
questo accada è necessario che il modulo della reazione normale del vincolo sia nulla,
cioè il vincolo deve coincidere con la traiettoria della particella in caduta libera.

Per determinare quest’ultima si deve conoscere le condizioni iniziali a x = 0. La
velocità in quel punto sarà orizzontale, e dovrà essere

L = v0t− 1
2

gµdt2

v = v0 − gµdt

Dalla prima equazione troviamo

t =
v0 ±

√
v2

0 − 2gLµd

gµs
(5.7.1)

e sostituendo nella seconda

v = ±
√

v2
0 − 2gLµd .

La soluzione pertinente è quella col segno positivo. La forma della guida sarà dunque
descritta parametricamente da

x = t
√

v2
0 − 2gLµd

y = −1
2

gt2

ossia

y = −1
2

gx2

v2
0 − 2gLµd

.

Se v0 <
√

2gµdL la soluzione (5.7.1) non è reale. Questo significa che l’attrito ferma la
particella prima che questa possa arrivare in x = 0.

PROBLEMA 5.8

Moto su un anello con attrito ??

Una particella materiale di massa m è vincolata a muoversi su una guida circolare di
raggio R, in presenza di un attrito descritto da un coefficiente µd. Scrivere le equazioni
del moto per la particella (senza risolverle) in assenza di gravità.
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Soluzione

In coordinate polari la posizione della particella si può scrivere

~R = Rêr

e derivando due volte otteniamo l’accelerazione

~a = Rθ̈êθ − Rθ̇2êr .

Le forze in gioco sono la reazione vincolare normale alla guida,e l’attrito

~Fa = −µd|N|êθ
θ̇

|θ̇| .

Dal secondo principio della dinamica abbiamo allora

mR
(
θ̈êθ − θ̇2êr

)
= Nêr − µd|N|êθ

θ̇

|θ̇| .

Proiettando lungo la normale otteniamo una prima equazione

−mRθ̇2 = N

mentre la proiezione lungo êθ da

mRθ̈ = −µd|N|
θ̇

|θ̇| = −mRµd θ̇2 θ̇

|θ̇| .

Supponendo per esempio θ̇ > 0 abbiamo

θ̈ = −µd θ̇2

che potrebbe essere integrata facilmente.

PROBLEMA 5.9

Oscillatore con attrito ??

Studiare il moto di una massa m che si muove su un piano orizzontale vincolata ad una
molla di costante elastica k e lunghezza a riposo nulla, in presenza di attrito statico e
dinamico descritto da coefficienti µs e µd.
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Soluzione

Possiamo distinguere tre casi, a seconda della velocità della massa. Quando questa è
nulla possiamo scrivere l’equazione del moto nella forma

ma = −kx + Fs

dove Fs è l’attrito statico. Esso compenserà la forza di richiamo della molla quando

k|x| < µsmg

e quindi la massa rimarrà in equilibrio nell’intervallo

− µsmg
k
≤ x ≤ µsmg

k
(5.9.1)

in caso contrario verrà accelerato, e si dovranno considerare i casi che seguono.
Quando la velocità della massa è diversa da zero possiamo scrivere le equazioni del

moto nella forma
ma + kx = ∓µdmg

dove il segno negativo si riferisce al caso v > 0 e quello positivo al caso v < 0. In ciascun
caso l’equazione del moto è quella di un oscillatore armonico sottoposto ad una forza
costante:

ẍ + ω2x = ∓µdg

dove abbiamo posto ω2 = k/m. La soluzione generale sarà la somma della soluzione
generale dell’equazione omogenea ẍ + ω2x = 0, cioè

x = A± cos ωt + B± sin ωt

e di una soluzione particolare dell’equazione completa. In questo caso possiamo vedere
che la funzione costante

x = ∓µdg
ω2

soddisfa il problema, la soluzione completa sarà quindi

x = A± cos ωt + B± sin ωt∓ µdg
ω2 .

Dobbiamo adesso raccordare la soluzione valida per v > 0 e quella valida per v < 0.
Chiaramente il raccordo avverrà in un punto di inversione del moto. Immaginiamo
che inizialmente la massa sia in quiete in un punto x = −L < −µsmg/k. Dobbiamo
considerare il caso v > 0, e imponendo le condizioni iniziali avremo

x(0)(t) =
(µdg

ω2 − L
)

cos ωt− µdg
ω2 .

La velocità resterà positiva per mezzo periodo, T = 2π/ω. Per t = T/2 la particella
sarà nuovamente in quiete nel punto

x(0)(T/2) = L− 2
µdg
ω2 .
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Se
x(0)(T/2) = L− 2

µdg
ω2 <

µdg
ω2

la particella si fermerà definitivamente, altrimenti da questo momento dovremo conside-
rare il caso v < 0. Imponendo le condizioni x(T/2) = x(0)(T/2)e v(T/2) = 0 troviamo
la nuova soluzione,

x(1)(t) =
(

L− 3
µdg
ω2

)
cos ω

(
t− T

2

)
+

µdg
ω2

che sarà valida per il successivo mezzo periodo. Avremo infine

x(1)(T) = −L + 4
µdg
ω2 .

Ripetendo il ragionamento vediamo che dopo ogni mezza oscillazione la distanza del
punto di inversione dall’origine si ridurrà di 2µdg/ω2, sino a quando non verrà a
trovarsi all’interno dell’intervallo (5.9.1), dove il moto terminerà.

PROBLEMA 5.10

Asta incernierata ??

Un’asta rettilinea è incernierata nel suo estremo inferiore ad un asse verticale, rispetto al
quale forma un angolo fisso α < π/2. L’asta ruota attorno all’asse con velocità angolare
costante ω. Sull’asta è infilato un anello di massa m che può scorrere lungo essa. Il
coefficiente di attrito statico è µs. Determinare le posizioni di equilibrio dell’anello.

Soluzione

La posizione dell’anello si può scrivere

~R = `τ̂(t)

dove τ̂ è un versore parallelo alla guida

τ̂(t) = cos αêz + sin αêρ(t)

e ` è la distanza dell’anello dalla cerniera (costante all’equilibrio). Sappiamo che êρ ruota
con velocità angolare costante attorno all’asse. Calcoliamo velocità

~v = `ω sin αêϕ

e accelerazione
~a = −`ω2 sin αêρ .

Le forze sono quella di gravità, Fg = −mgêz, la reazione vincolare ~N, perpendicolare
all’asta:

~N = Nn̂, n̂ = sin αêz − cos αêρ
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5.10. ASTA INCERNIERATA ??

e l’attrito statico ~FA, parallelo ad essa

~FA = FAτ̂

Avremo quindi
−m`ω2 sin αêρ = −mgêz + ~N + ~FA

e proiettando nella direzione dell’asta otteniamo

−m`ω2 sin αêρ · τ̂ = −mgêz · τ̂ + FA

cioè
−m`ω2 sin2 α = −mg cos α + FA

Proiettando perpendicolarmente all’asta abbiamo invece

−m`ω2 sin αêρ · n̂ = −mgêz · n̂ + N

cioè
m`ω2 sin α cos α = −mg sin α + N

Sappiamo inoltre che

|FA| ≤ µs

∣∣∣~N
∣∣∣

da cui ∣∣∣∣cos α− `ω2

g
sin2 α

∣∣∣∣ ≤ µs

∣∣∣∣sin α +
`ω2

g
sin α cos α

∣∣∣∣

L’argomento del valore assoluto a destra è sempre positivo nell’intervallo considerato.
Distinguiamo i due casi. Nel primo

`ω2

g
≤ cos α

sin2 α

`ω2

g
≥ cos α− µs sin α

µs sin α cos α + sin2 α

che ha per soluzione (notare che il limite inferiore diviene negativo se µs > cot α)

cos α− µs sin α

µs sin α cos α + sin2 α
≤ `ω2

g
≤ cos α

sin2 α
(5.10.1)

Nel secondo

`ω2

g
≥ cos α

sin2 α

`ω2

g
(
sin2 α− µs sin α cos α

)
≤ cos α + µs sin α
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5.11. DISCO ROTANTE ??

che ha per soluzione, nel caso µs < tan α,

cos α

sin2 α
≤ `ω2

g
≤ cos α + µs sin α

sin2 α− µs sin α cos α
(5.10.2)

e
cos α

sin2 α
≤ `ω2

g
(5.10.3)

per µs ≥ tan α.
Riassumendo, in assenza di attrito abbiamo un’unica posizione di equilibrio

` =
g cos α

ω2 sin2 α

per 0 < µs < tan α abbiamo l’intervallo

g
ω2

cos α− µs sin α

µs sin α cos α + sin2 α
≤ ` ≤ g

ω2
cos α + µs sin α

sin2 α− µs sin α cos α
(5.10.4)

e per µs ≥ tan α tutte le posizioni di equilibrio sono possibili.

PROBLEMA 5.11

Disco rotante ??

Un disco di raggio r ruota in un piano orizzontale con velocità angolare costante ω. sul
disco è praticata un scanalatura diametrale, in cui può scorrere senza attrito una pallina
di massa m, legata al centro mediante una molla di lunghezza a riposo nulla e costante
elastica k. Supponendo che sia k > mω2 si determini il moto della pallina.

Inizialmente la pallina si trove ferma a distanza r/2 dal centro.

Soluzione

In un sistema inerziale il moto sarà la composizione del movimento lungo la scanalatura
e dalla rotazione insieme al disco. Scrivendo la posizione della pallina in un sistema di
coordinate polari abbiamo

~R = Rêr

dove R è una funzione del tempo (da determinare), mentre sappiamo che êr ruota con
velocità angolare ω costante. Quindi abbiamo per la velocità

~v = Ṙêr + Rωêθ

e per la accelerazione
~a =

(
R̈− Rω2) êr + 2Ṙωêθ

dove sono state usate le solite relazioni ˙̂er = θ̇êθ e ˙̂eθ = −θ̇êr. Notare che non è necessario
porre alcuna restrizione su R, che potrà assumere anche valori negativi.
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5.12. OSCILLATORE ARMONICO FORZATO ??

Le due forze in gioco saranno quella di richiamo della molla, che potremo scrivere

~Fm = −kRêr

e la reazione vincolare N̂ della guida, che sappiamo ortogonale alla stessa: êr · ~N = 0.
Le equazioni del moto sono quindi

m
[(

R̈− Rω2) êr + 2Ṙωêθ

]
= −kRêr + N̂ .

Proiettando nella direzione radiale abbiamo

m
[(

R̈− Rω2) êr · êr + 2Ṙωêθ · êr
]
= −kRêr · êr + N̂ · êr

cioè
m
(

R̈− Rω2) = −kR

ossia
mR̈ + (k−mω2)R = 0 .

La soluzione generali di questa equazione è una oscillazione armonica

R(t) = A cos Ωt + B sin Ωt

con

Ω =

√
k−mω2

m
.

Imponendo le condizioni iniziali troviamo A = r/2 e B = 0, quindi

~R(t) =
r
2

cos Ωt êr

ossia, in coordinate Cartesiane,

x(t) =
r
2

cos Ωt cos ωt

y(t) =
r
2

cos Ωt sin ωt

dove abbiamo supposto che la scanalatura sia inizialmente allineata all’asse x.

PROBLEMA 5.12

Oscillatore armonico forzato ??

Un oscillatore armonico si trova in quiete per t < 0. Da t = 0 a t = T viene applicata
una forza costante F. Trovare la legge oraria e studiare il limite T → 0.
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5.12. OSCILLATORE ARMONICO FORZATO ??

Soluzione

Scriviamo l’equazione del moto dell’oscillatore nella forma

ẍ + ω2
0x = a(t)

dove

a(t) =





0 t < 0
F/m 0 ≤ t < T

0 t ≥ T .

Consideriamo la soluzione nell’intervallo 0 ≤ t < T. Sappiamo che dobbiamo aggiun-
gere alla soluzione generale dell’equazione omogenea

ẍ + ω2
0x = 0

una soluzione particolare dell’equazione completa. La prima si può scrivere nella forma

x(t) = A cos ω0t + B sin ω0t (5.12.1)

e si verifica facilmente che una soluzione particolare è la costante x = F
mω2

0
. Quindi la

soluzione completa è della forma

x1(t) = A cos ω0t + B sin ω0t +
F

mω2
0

.

Le condizioni da imporre in t = 0 sono x(0) = 0 e ẋ(0) = 0. Abbiamo da questo

x1(t) =
F

mω2
0
(1− cos ω0t) . (5.12.2)

Costruiamo adesso la soluzione per t > T. Adesso l’equazione del moto è omogenea,
e dovremo imporre alla soluzione generale di raccordarsi con continuità, insieme alla
derivata, con la (5.12.2) in t = T. Per semplificare i calcoli possiamo scrivere la soluzione
dell’equazione omogenea nella forma

x2(t) = A′ cos ω0 (t− T) + B′ sin ω0 (t− T) .

e quindi

x2(T) = x1(T) = A′ =
F

mω2
0
(1− cos ω0T)

ẋ2(T) = ẋ1(T) = ω0B′ =
F

mω0
sin ω0T

da cui

x2(t) =
F

mω2
0
[(1− cos ω0T) cos ω0 (t− T) + sin ω0T sin ω0 (t− T)]
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5.13. OSCILLAZIONI ISOCRONE ? ? ?

L’ampiezza dell’oscillazione è data da

A =
2F

mω2
0

√
1− cos ω0T

2
=

2F
mω2

0

∣∣∣∣sin
ω0T

2

∣∣∣∣ .

Se l’ampiezza della forza é fissata si ha chiaramente

lim
T→0
A = 0 .

Per ottenere un limite finito si deve far variare F con T in modo che

lim
T→0

F sin
ω0T

2

sia finito. Questo significa che I = FT (il prodotto della forza per il tempo di applicazio-
ne) deve rimanere costante. In tal caso

x2(t) = lim
T→0

I
mω2

0

[
1− cos ω0T

T
cos ω0 (t− T) +

sin ω0T
T

sin ω0 (t− T)
]

=
I

mω0
sin ω0t .

PROBLEMA 5.13

Oscillazioni isocrone ? ? ?

Un punto materiale è vincolato a muoversi in un piano verticale su una guida senza
attrito, descritta dall’equazione

y = f (x)

Determinare f (x) in modo tale che il moto del punto sia una oscillazione armonica di
periodo T attorno x = 0, indipendentemente dalla sua ampiezza. È possibile ottenere
questo per ampiezze comunque grandi? La soluzione è unica?

Soluzione

Supponiamo, senza perdere di generalità, che f (0) = 0 e consideriamo x > 0. Se pren-
diamo come coordinata lo spazio percorso lungo la curva possiamo scrivere l’energia
totale del sistema nella forma

E =
1
2

mṡ2 + mgy(s) .

Questa deve essere equivalente all’energia totale di un oscillatore armonico, quindi si
deve avere

y(s) = K2s2 .

94 versione del 5 ottobre 2016



5.13. OSCILLAZIONI ISOCRONE ? ? ?

Segue che
√

y(u) = K
ˆ u

0

√
1 +

(
dy
dx

)2

dx

ossia, derivando,

1
2
√

y

(
dy
dx

)
= K

√
1 +

(
dy
dx

)2

.

Possiamo risolvere questa equazione scrivendo

1− 4K2y
4K2y

(
dy
dx

)2

= 1

ossia ˆ 4K2y(x)

0

√
1− w

w
dw = 4K2x .

Integrando otteniamo la traiettoria nella forma (valida per 4K2y < 1)
√

4K2y(1− 4K2y) +
π

2
− arcsin

√
1− 4K2y = 4K2x .

Ponendo
y =

1
8K2 (1− cos θ) =

1
4K2 sin2 θ

2
otteniamo

x =
1

8K2 (| sin θ| − θ)

e dato che siamo interessati a x > 0 possiamo scrivere la traiettoria in forma parametrica
come

y =
1

8K2 (1− cos θ)

x =
1

8K2 (sin θ + θ)

per θ > 0. Possiamo interpretare quindi la traiettoria come quella di un punto posto su
una circonferenza di raggio R = 1

8K2 che ruota senza strisciare sotto il piano y = 2R. Pos-
siamo ripetere le stesse considerazioni per x < 0, ottenendo lo stesso risultato. Avremo
quindi una traiettoria complessiva descritta dalle equazioni parametriche precedenti
per −π < θ < π.

Esiste una ampiezza massima per l’oscillazione che si ottiene da

y <
1

4K2 .

Si può interpretare fisicamente questo fatto tenendo presente che in una oscillazione
armonica si ha una forza di richiamo (tangente alla traiettoria) proporzionale a s. Ma la
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5.14. CATENA CHE CADE ??

massima forza di richiamo disponibile nella situazione considerata è mg, corrispondente
ad una tangente verticale. Questo accade per θ = π.

Infine osserviamo che la soluzione non è unica. Possiamo ad esempio prendere per
x > 0 e x < 0 traiettorie corrispondenti a due diversi valori di K: il moto sarà sia per
x > 0 che per x < 0 un moto armonico, ma con periodi diversi. Il periodo totale sarà la
media dei due, e non dipenderà dalla ampiezza dell’oscillazione.

PROBLEMA 5.14

Catena che cade ??

Un filo perfettamente flessibile, di massa m e lunghezza ` è vincolato a muoversi sulla
superficie in Figura 5.6, e pende inizialmente verticalmente per un tratto x0. Determinare
il suo moto.

ℓ− x0

x0

g

Figura 5.6.: Il filo nella sua posizione iniziale.

Soluzione

Detta x la lunghezza del tratto verticale della catena possiamo scrivere l’energia cinetica
del sistema nella forma

T =
m
2

ẋ2

e l’energia potenziale gravitazionale come

U = −
(

m
x
`

)
g
( x

2

)

dove il termine nella prima parentesi è la massa del tratto verticale, e quello nella se-
conda la posizione verticale del centro di massa rispetto al piano orizzontale. L’energia
totale sarà

E =
m
2

ẋ2 − 1
2

mg
`

x2

Derivando rispetto al tempo otteniamo

dE
dt

= mẋẍ− mg
`

xẋ = ẋ
(

mẍ− mg
`

x
)
= 0
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5.15. CARRUCOLA ??

da cui l’equazione del moto

ẍ− g
`

x = 0 (5.14.1)

Questa è un’equazione differenziale lineare omogenea a coefficienti costanti, cerchiamo
quindi soluzioni della forma

x = eαt (5.14.2)

Sostituendo la (5.14.2) nella (5.14.1) troviamo l’equazione

α2 =
g
`

da cui la soluzione generale

x = Ae
√ g

` t + Be−
√ g

` t

Imponiamo le condizioni al contorno

x(0) = A + B = x0

v(0) =

√
g
`
(A− B) = 0

da cui A = B = x0/2. Quindi

x = x0 cosh
√

g
`

t .

PROBLEMA 5.15

Carrucola ??

Una pedana di massa M è libera di muoversi su un piano orizzontale senza attrito, ed
è collegata ad una massa m da un filo inestensibile come in Figura 5.7. Determinare
l’accelerazione del sistema e la tensione del filo.

Soluzione

Considerando le forze orizzontali che agiscono sulla pedana, possiamo scrivere

Mẍ = T

dove T è la tensione del filo. Analogamente abbiamo, per il moto verticale della massa,.

mÿ = T −mg .

Inoltre, dato che il filo è inestensibile, deve essere ẋ = −ẏ e quindi ẍ = −ÿ. Quindi

Mẍ = T
mẍ = mg− T
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5.16. CARRUCOLA II ??

M

m

Figura 5.7.: Il sistema descritto nell’esercizio.

Sommando le due equazioni otteniamo

(M + m)ẍ = mg

da cui
ẍ =

mg
M + m

Alternativamente possiamo scrivere l’energia totale del sistema nella forma

E =
1
2

Mẋ2 +
1
2

mẏ2 + mgy =
1
2

Mẋ2 +
1
2

mẋ2 −mgx

e derivando rispetto al tempo abbiamo

Ė = ẋ [(M + m) ẍ−mg] = 0

da cui il risultato calcolato precedentemente.

PROBLEMA 5.16

Carrucola II ??

Calcolare l’accelerazione del sistema in Figura 5.8. Il filo è inestensibile e privo di massa,
così come la carrucola. La massa mobile è appoggiata alla parete verticale del carrello.
Non vi sono attriti.

Soluzione

Se T è la tensione del filo potremo scrivere per la accelerazione orizzontale del centro di
massa del sistema

(M + m)ẍ = T
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5.17. CARRUCOLA III ??

M

m

Figura 5.8.: Il sistema descritto nell’esercizio.

mentre l’accelerazione verticale della massa m sarà data da

mÿ = −mg + T .

Il legame tra le coordinate x e y sarà x = −y + C. La costante C si può eliminare
scegliendo opportunamente l’origine del sistema). Segue che ẋ = −ẏ e ẍ = −ÿ. Quindi
otteniamo

ẍ =
mg

M + 2m
.

Allo stesso risultato possiamo arrivare scrivendo l’energia totale del sistema

E =
1
2

Mẋ2 +
1
2

m(ẋ2 + ẏ2) + mgy

e esprimendo E in funzione, ad esempio, della sola coordinata x e della sua derivata
vediamo che il sistema è equivalente ad una massa M + 2m sottoposta a una forza mg.

PROBLEMA 5.17

Carrucola III ??

Nel sistema in Figura 5.9 il filo è inestensibile e privo di massa, la massa m è appog-
giata alla parete verticale del carrello e non vi sono attriti. Calcolare l’accelerazione del
sistema.

Soluzione

Detta T la tensione del filo avremo per il moto orizzontale del centro di massa del
sistema

(M + m)ẍ = 2T

e per il moto verticale della massa

mÿ = T −mg
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5.18. OSCILLATORE E FORZA F = αT ??

M

m

Figura 5.9.: Il sistema descritto nell’esercizio.

Abbiamo inoltre y = −2x + C. La costante C non è rilevante e può essere eliminata
scegliendo opportunamente il sistema di coordinate. Otteniamo infine

(M + m)ẍ = 2T
−2mẍ = T −mg

da cui
ẍ =

2mg
M + 5m

Possiamo anche scrivere l’energia del sistema

E =
1
2

Mẋ2 +
1
2

m(ẋ2 + ẏ2) + mgy

ossia
E =

1
2
(M + 5m)ẋ2 − 2mgx

che equivale all’energia di una massa M + 5m su cui agisce una forza 2mg.

PROBLEMA 5.18

Oscillatore e forza F = αt ??

Su un oscillatore armonico (massa m e costante elastica k) agisce una forza esterna che
cresce nel tempo secondo la legge F = αt. È possibile assegnare delle condizioni iniziali
a t = 0 in modo tale che la massa si muova di moto uniforme? Trovare la soluzione
generale dell’equazione del moto.

Soluzione

Se il moto della massa è uniforme la forza totale su di essa deve essere nulla. Tale forza
è data dalla somma della forza di richiamo della molla e di quella esterna applicata:

F = −kx + αt
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5.19. OSCILLATORE E FORZA F = αT2 ??

che si annulla se

x =
αt
k

.

Questo è effettivamente un moto uniforme, corrispondente alle condizioni iniziali

x(0) = 0

v(0) =
α

k
.

L’equazione del moto si scrive
mẍ + kx = αt .

Abbiamo già una soluzione particolare dell’equazione completa, cioè il moto uniforme
determinato al punto precedente. Per avere la soluzione generale è sufficiente aggiun-
gere la soluzione generale dell’equazione omogenea, cioè una arbitraria oscillazione
libera:

x = A cos ωt + B sin ωt +
αt
k

.

Si può pensare a questa soluzione generale come ad una oscillazione attorno a un punto
che si sposta con moto uniforme.

PROBLEMA 5.19

Oscillatore e forza F = αt2 ??

Su un oscillatore armonico (massa m e costante elastica k) agisce una forza esterna che
cresce nel tempo secondo la legge F = αt2. È possibile assegnare delle condizioni iniziali
a t = 0 in modo tale che la massa si muova di moto uniformemente accelerato? Trovare
la soluzione generale dell’equazione del moto.

Soluzione

Se il moto della massa è uniformemente accelerato la forza totale su di essa deve essere
costante, ed uguale al prodotto di massa per accelerazione. Scriviamo l’equazione del
moto:

mẍ + kx = αt2

e cerchiamo una soluzione del tipo

x = x0 + v0t +
1
2

at2.

Sostituendo otteniamo

ma + kx0 + kv0t +
1
2

kat2 = αt2
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5.20. DOPPIO PIANO INCLINATO CON ATTRITO ?

che è soddisfatta prendendo

v0 = 0

a =
2α

k

x0 = −2mα

k2 .

La soluzione generale si ottiene aggiungendo alla soluzione particolare appena deter-
minata una arbitraria oscillazione libera (soluzione generale dell’equazione omogenea):

x = A cos ωt + B sin ωt− 2mα

k2 +
α

k
t2 .

PROBLEMA 5.20

Doppio piano inclinato con attrito ?

Una particella di massa m viene lasciata cadere su un doppio piano inclinato come in
Figura (5.10), partendo da fermo e da una altezza h. Se su tutto il piano è presente un at-
trito dinamico catatterizzato da un coefficiente µd calcolare sulla base di considerazioni
energetiche l’altezza massima raggiunta sul piano a destra. Si supponga che lo spigolo
sia regolarizzato e che su di esso non vi sia attrito.

h

θ1 θ2

Figura 5.10.: Il sistema descritto nell’esercizio.

Soluzione

All’inizio e alla fine la particella è ferma, quindi occorre considerare la sola energia
potenziale. La differenza tra energia potenziale iniziale e finale deve essere uguale al
lavoro fatto dalle forze di attrito. Quindi

mg(h− h′) = F1`1 + F2`2

dove F1 = µdmg cos θ1 e F2 = µdmg cos θ2 sono le forze di attrito sul piano a sinistra e
a destra rispettivamente, `1 = h/ sin θ1 è il tratto percorso sul piano a sinistra e `2 =
h′/ sin θ2 quello percorso sul piano a destra. Abbiamo quindi

mg(h− h′) = µdmg
(

h
tan θ1

+
h′

tan θ2

)
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5.21. CARRUCOLA E PEDANA MOBILE ??

da cui

h′
(

1 +
µd

tan θ2

)
= h

(
1− µd

tan θ1

)

ed infine

h′ = h
1− µd

tan θ1

1 + µd
tan θ2

< h .

PROBLEMA 5.21

Carrucola e pedana mobile ??

Nel sistema rappresentato in Figura 5.11 la pedana di massa M è solidale con la prima
carrucola, ed è libera di scorrere sul piano orizzontale. Anche la massa m1 è libera di
scorrere sul piano inclinato. Non vi sono attriti, ed il filo è inestensibile. Disegnare i
diagrammi delle forze per le tre masse in gioco, e determinare le loro accelerazioni.

m2

M

m1

ẋ1

ẏ1

ẏ2

Ẋ θ

Figura 5.11.: Il sistema considerato nell’esercizio.
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5.21. CARRUCOLA E PEDANA MOBILE ??

Soluzione

Consideriamo il diagramma delle forze per la massa m2 (Figura 5.12). Considerando il
solo moto verticale abbiamo l’equazione

m2ÿ2 = T −m2g

dove T è la tensione del filo.

m2g

T

Figura 5.12.: Le forze che agiscono sulla massa sospesa m2.

Per quanto riguarda il piano inclinato, di cui la carrucola fa parte, abbiamo il diagram-
ma delle forze rappresentato in Figura 5.13

che corrisponde alle equazioni del moto

Mẍ = T − T cos θ − N sin θ

Mÿ = R−Mg− N cos θ + T sin θ .

Notare che ÿ = 0. Consideriamo infine la massa m1. Il diagramma delle forze è in
Figura 5.14

e le relative equazioni del moto sono

m1 ẍ1 = N sin θ + T cos θ

m1ÿ1 = N cos θ −m1g− T sin θ

Abbiamo le 5 relazioni precedenti e le incognite ẍ, ẍ1, ÿ1, ÿ2, T, N, R. Servono quindi
altre due equazioni. La prima si può scrivere imponendo che l’accelerazione della massa
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5.21. CARRUCOLA E PEDANA MOBILE ??

T

T

N

R

Mg

Figura 5.13.: Le forze che agiscono sul piano inclinato.

m1 relativa alla pedana sia inclinata rispetto all’orizzontale di un angolo θ:

tan θ = − ÿ1

ẍ1 − ẍ

La seconda deriva dalla inestensibilità del filo. Possiamo scrivere la lunghezza di que-
st’ultimo come

` = −y2 − x +
x− x1

cos θ
+ costante

e derivando due volte rispetto al tempo otteniamo

(ÿ2 + ẍ) cos θ = ẍ− ẍ1.

Abbiamo in conclusione un sistema lineare che permette di ricavare le accelerazioni
incognite, insieme a T e N.
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5.22. CATENA CHIUSA DI MASSE ??

N

T

m1g

Figura 5.14.: Le forze che agiscono sul corpo appoggiato al piano inclinato.

PROBLEMA 5.22

Catena chiusa di masse ??

Nell’apparato in Figura 5.15 non ci sono attriti, il filo è senza massa, inestensibile e teso.
Calcolare le accelerazioni delle masse. È possibile determinare le tensioni dei fili?

Soluzione

Dal diagramma delle forze in Figura 5.16
seguono le equazioni del moto

m1a = T2 − T3

m2a = T3 − T1 −m2g
m3a = T1 − T2 + m3g

e sommando membro a membro troviamo l’accelerazione

a =
(m3 −m2)g

m1 + m2 + m3
.
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m1

m2 m3

Figura 5.15.: Il sistema considerato nell’esercizio.

Le equazioni precedenti sono insufficienti a determinare le tensioni. Questo corrisponde
al fatto che la trasformazione

T1 → T1 + ∆T
T2 → T2 + ∆T
T3 → T3 + ∆T

le lascia invariate.
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5.23. CADUTA QUASI LIBERA ?

T1

T2

T3

T3

T1

T2

m2g m1g

Figura 5.16.: Le forze applicate alle varie masse che compongono il sistema.

PROBLEMA 5.23

Caduta quasi libera ?

Sul piano senza attrito in figura, inclinato rispetto all’orizzontale di un angolo α, è
appoggiato un cuneo di massa M. Su quest’ultimo è fissato un pendolo di massa m e
lunghezza `. Si osserva che, per opportune condizioni iniziali, il cuneo si muove con
accelerazione costante a e l’inclinazione del pendolo rispetto all’orizzontale ha un valore
costante θ. Determinare a e θ.

a

θ

α

Figura 5.17.: Il sistema considerato nell’esercizio.
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5.24. PEDANA MOBILE ??

Soluzione

Se l’inclinazione del pendolo è costante l’accelerazione del cuneo è anche l’accelerazione
del centro di massa del sistema complessivo. Questa inoltre sarà diretta parallelamen-
te al piano inclinato: applicando la seconda legge della dinamica possiamo calcolarla
immediatamente:

(M + m)a = (M + m)g sin α

a = g sin α

Il calcolo è perfettamente analogo a quello che si esegue per un unico corpo su un piano
inclinato: l’unica forza parallela al piano è una componente della forza peso.

Adesso possiamo determinare l’angolo θ. Un semplice ragionamento permette di
arrivare al risultato senza eseguire alcun calcolo. Se consideriamo il cuneo (includendo
in esso il supporto verticale del pendolo), sappiamo già che la sua accelerazione è a =
g sin α. Ma anche al cuneo deve applicarsi la seconda legge della dinamica, e quindi

Ma = Mg sin α + T‖

dove T‖ è la componente della forza associata alla tensione del filo parallela al piano. Ne
segue che T‖ = 0, cioè il filo è perpendicolare al piano inclinato. In altre parole θ = α.

PROBLEMA 5.24

Pedana mobile ??

La pedana in Figura 5.18 è inclinato di un angolo θ(t) rispetto alla orizzontale, ed ha un
punto fisso. La massa m è libera di muoversi su di essa senza attrito. Determinare l’equa-
zione del moto. Risolverla nel caso θ(t) = Ωt, e determinare se possibile le condizioni
iniziali a t = 0 in modo da avere una oscillazione armonica.

Soluzione

Introducendo un sistema di coordinate polari centrato sul punto fisso possiamo scrivere
la posizione della massa come

~r = xêr

dove x è la coordinata della massa sulla pedana. Derivando otteniamo la velocità

~v = ẋêr + xθ̇êθ

e l’accelerazione
~a =

(
ẍ− xθ̇2) êr +

(
xθ̈ + 2ẋθ̇

)
êθ .

Le forze che agiscono sulla massa si scrivono

~F = −mg(êr sin θ + êθ cos θ) + Nêθ
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5.24. PEDANA MOBILE ??

θ(t)

m

Figura 5.18.: Il sistema considerato nell’esercizio.

dove Nêθ è la reazione vincolare della pedana, ad essa normale. Prendendo le compo-
nenti dirette lungo êr di ~F = m~a otteniamo

m
(
ẍ− xθ̇2) = −mg sin θ .

Nel caso θ = Ωt abbiamo
ẍ−Ω2x = −g sin Ωt .

Questa è una equazione lineare a coefficienti costanti, non omogenea. Cerchiamo la
soluzione generale xo(t) dell’omogenea associata

ẍo −Ω2xo = 0

nella forma x = eαt. Troviamo come possibili soluzioni α = ±Ω e quindi

xo = AeΩt + Be−Ωt .

Determiniamo adesso una soluzione particolare dell’equazione completa, che cerchere-
mo nella forma

x∗ = C sin Ωt .

Sostituendo troviamo
−2Ω2C = −g

e quindi

x∗ =
g

2Ω2 sin Ωt .

La soluzione generale è quindi

x = xo + x∗ = AeΩt + Be−Ωt +
g

2Ω2 sin Ωt

110 versione del 5 ottobre 2016



5.25. URTO MASSA-PEDANA ??

e per avere una oscillazione armonica dovrà essere A = B = 0. Questo significa

x(0) = 0

v(0) =
g

2Ω
.

PROBLEMA 5.25

Urto massa-pedana ??

La massa m in Figura 5.19 si muove inizialmente sul piano orizzontale privo di attrito
con velocità v0. Successivamente sale sul piano inclinato di massa M, libero anche esso
di muoversi sul piano. Determinare per quali valori della velocità v0 la massa supera il
piano inclinato.

m v0 θ M

h

Figura 5.19.: Il sistema considerato nell’esercizio.

Soluzione

Sia l’energia che la quantità di moto orizzontale del sistema si conservano. Uguagliamo
queste due quantità tra l’istante immediatamente precedente al contatto tra pedana e
massa e l’istante in cui la massa arriva nel punto più alto della pedana:

1
2

mv2
0 =

1
2

m
[
(Vx + vx,rel)

2 + v2
y,rel

]
+

1
2

MV2
x + mgh

mv0 = m (Vx + vx,rel) + MVx

dove Vx indica la velocità del piano inclinato (orizzontale) e vx,rel , vy,rel le due compo-
nenti della velocità della massa relative a quest’ultimo. Questa velocità relativa deve
inoltre essere inclinata rispetto all’orizzontale di un angolo θ

vy,rel

vx,rel
= tan θ

ma non useremo questa ultima condizione. Utilizzando le tre relazioni si può calcolare
vx,rel , vy,rel e Vx, e porre ad esempio vx,rel > 0.

Più semplicemente si può determinare la velocità necessaria a far arrivare la massa
esattamente nel punto più alto della pedana. In questo caso vx,rel = vy,rel = 0 e le leggi
di conservazione si scrivono

1
2

mv2
0,min =

1
2
(m + M)V2

x + mgh

mv0,min = (m + M)Vx,min
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da cui segue immediatamente

v0,min =

√
2gh

m + M
M

.

Per velocità maggiori di quella determinata il piano inclinato verrà superato. Notare che
per M→ ∞ si ha il consueto risultato v0,min →

√
2gh, mentre per M→ 0 v0,min → ∞.

PROBLEMA 5.26

Filo che si avvolge ??

Il disco in figura è fissato rigidamente ad un piano orizzontale, e ad esso è fissato un
filo inestensibile di lunghezza `. All’altro estremo è fissata una massa m che viene
lanciata con velocità iniziale di modulo v0 in direzione perpendicolare al filo. Calcolare
la velocità della massa, la sua traiettoria e la tensione del filo in funzione del tempo.

m

R
θ

x

ℓ− x

m
v0

ℓ

Figura 5.20.: Il sistema considerato nell’esercizio. A sinistra nella condizione iniziale, a
destra in un istante successivo.

Soluzione

La velocità della massa è sempre ortogonale al filo, quindi l’unica forza ad essa applicata
(la tensione del filo) non fa lavoro. L’energia cinetica sarà quindi conservata ed il modulo
della velocità sarà sempre uguale a v0. Per quanto riguarda la tensione del filo, possiamo
considerare istante per istante il moto come moto circolare con velocità v0 attorno a
un punto posto a distanza ` − x = ` − Rθ. Avremo quindi uguaglianza tra T/m e
accelerazione centripeta:

m
v2

0
`− Rθ

= T

quindi la tensione aumenta all’accorciarsi del filo.
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5.27. MOLLE IN SERIE E IN PARALLELO ?

Verifichiamo tutto questo in modo più formale. Introducendo un sistema di coordina-
te polari possiamo scrivere la posizione della massa come

~r = Rêr + (`− Rθ)êθ

e derivando rispetto al tempo troviamo velocità

~v = R ˙̂er + (`− Rθ) ˙̂eθ − Rθ̇êθ = −θ̇(`− Rθ)êr

e accelerazione
~a =

[
Rθ̇2 − θ̈(`− Rθ)

]
êr − θ̇2(`− Rθ)êθ .

D’altra parte la forza che agisce sulla massa si può scrivere come ~F = −Têθ e dal secondo
principio della dinamica segue

mθ̇2(`− Rθ) = T
Rθ̇2 − θ̈(`− Rθ) = 0 .

La seconda equazione si può riscrivere come

d
dt

θ̇(`− Rθ) = 0

ossia
θ̇(`− Rθ) = v0 .

Sostituendo nella seconda abbiamo

T =
mv2

0
`− Rθ

.

Per la traiettoria possiamo scrivere

~r = R
(

cos θ
sin θ

)
+ (`− Rθ)

( − sin θ
cos θ

)

che da direttamente l’equazione in forma parametrica:

x = R cos θ − (`− Rθ) sin θ

y = R sin θ + (`− Rθ) cos θ .

La distanza dal centro diminuisce con θ:

r2 = x2 + y2 = R2 + (`− Rθ)2 .

PROBLEMA 5.27

Molle in serie e in parallelo ?

Nei sistemi rappresentati in Figura 5.21 tutte le molle sono di lunghezza a riposo nulla
e le masse sono identiche. Per quale valore di K il sistema al centro oscilla alla stessa
frequenza di quello a sinistra? E per quale alla stessa frequenza di quello a destra?

113 versione del 5 ottobre 2016



5.28. OSCILLATORE CON MASSA APPOGGIATA ??

K1 K2 K K1

K2

Figura 5.21.: Equivalenza tra diversi sistemi di molle. Al centro una massa attaccata
un’unica molla, che per un opportuno valore di K è equivalente al sistema
a sinistra (una massa attaccata a due molle poste in parallelo) o a quello a
destra (una massa attaccata a due molle in serie).

Soluzione

Consideriamo prima di tutto il sistema a sinistra. Possiamo scrivere

F1 = −K1x
F2 = −K2x

perchè la deformazione delle due molle è la stessa. Da questo segue che

F = F1 + F2 = −(K1 + K2)x

e quindi K = K1 + K2. Per il sistema a destra vale invece

F = −K1x1

F = −K2x2

da cui
F

K1
+

F
K2

= −(x1 + x2) = −x

cioè
1
K

=
1

K1
+

1
K2

.

PROBLEMA 5.28

Oscillatore con massa appoggiata ??

Nel sistema in Figura 5.22 la molla ha costante elastica K e tra le due masse si ha un
attrito caratterizzato da coefficienti statici e dinamici µd e µs. Non si ha attrito tra massa
m2 e piano orizzontale. Determinare la massima ampiezza di oscillazione per la quale
la massa m1 non slitta sulla m2, e la frequenza di oscillazione in tale condizione.
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5.29. CARRUCOLA E MOTO RELATIVO ??

K

m1

m2

µs,µd

Figura 5.22.: Il sistema considerato nell’esercizio.

Soluzione

Se le due masse non slittano possiamo scrivere

m1 ẍ1 = FA

m1ÿ1 = N −m1g = 0

con |FA| ≤ µsN = µsm1g. Per la massa m2 vale

m2 ẍ2 = −Kx2 − FA

e per non slittare deve essere ẍ1 = ẍ2 ossia

FA

m1
= − K

m2
− FA

m2
.

Segue che

FA = − m1

m1 + m2
Kx2

ossia
Km1

m1 + m2
|x2| ≤ µsm1g

che possiamo riscrivere come

−µsg
m1 + m2

K
≤ x2 ≤ µsg

m1 + m2

K
.

PROBLEMA 5.29

Carrucola e moto relativo ??

Facendo riferimento alla Figura 5.23, trovare quale forza F è necessario applicare alla
massa m1 per impedire qualsiasi accelerazione relativa tra m1, m2 e m3.
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5.29. CARRUCOLA E MOTO RELATIVO ??

F
m1

m2

m3

Figura 5.23.: Il sistema considerato nell’esercizio.

Soluzione

Scriviamo le equazioni del moto delle tre masse:

m1 ẍ1 = F− R− T
m2 ẍ2 = T
m3 ẍ3 = R
m3ÿ3 = T −m3g .

Inoltre deve essere

ẍ2 − ẍ1 = −ÿ3

ẍ1 = ẍ3

e sostituendo otteniamo

m1 ẍ1 = F− R− T
m2 ẍ2 = T
m3 ẍ1 = R

m3(ẍ1 − ẍ2) = T −m3g

da cui

(m1 + m3)ẍ1 + m2 ẍ2 = F
m3 ẍ1 − (m3 + m2)ẍ2 = −m3g .

Le due accelerazioni ẍ1, ẍ2 saranno uguali quando

F = (m1 + m2 + m3)
m3

m2
g .
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5.30. URTO TRA UNA MASSA E UN SISTEMA COMPOSTO ??

PROBLEMA 5.30

Urto tra una massa e un sistema composto ??

Nel sistema in Figura 5.24 la massa m1 urta elasticamente il sistema composto dalle
masse m2 e m3. Queste ultime sono collegate da una molla di costante elastica k. Trovare
le velocità finali della massa m1 e del centro di massa del sistema m2 + m3, nell’ipotesi
che l’urto avvenga in un tempo molto breve.

m1

m3

k
m2

v0

Figura 5.24.: Il sistema considerato nell’esercizio.

Soluzione

Se l’urto avviene in un tempo molto breve possiamo trascurare lo spostamento della
massa m3, di conseguenza la molla non viene compressa e nessuna forza agisce sulla
massa m2. Abbiamo quindi un normale urto elastico tra la massa m1 e la massa m3,
descritto dalla conservazione di energia e quantità di moto:

v0 − v1 =
m3

m1
v3

v0 + v1 = v3

e infine

v3 =
2m1

m1 + m3
v0

v1 =
m1 −m3

m1 + m3
v0

Dopo l’urto la velocità del centro di massa del sistema m2 + m3 si conserva, e vale

vcm =
v3m3

m2 + m3
=

2m1m3

(m1 + m3) (m2 + m3)
v0

PROBLEMA 5.31

Urto anelastico con sistema composito ??

Si faccia riferimento al sistema descritto nel problema 5.30. Se le masse m1 e m3 riman-
gono a contatto calcolare la velocità finale del centro di massa del sistema e l’energia
dissipata durante l’urto.
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5.32. MASSIMA COMPRESSIONE ??

Soluzione

Possiamo utilizzare la conservazione della quantità di moto per scrivere

m1v0 = (m1 + m3)v1+3

dato che la molla, come nel caso precedente, non interviene durante l’urto. Abbiamo
quindi

v1+3 =
m1

m1 + m3
v0

e la variazione dell’energia sarà

∆E =
1
2

m1v2
0 −

1
2
(m1 + m3)v2

1+3

=
1
2

m1m3

(m1 + m3)
v2

0 .

La velocità finale del centro di massa sarà

vcm =
(m1 + m3)v1+3

m1 + m2 + m3
=

m1v0

m1 + m2 + m3

cioè la quantità di moto iniziale diviso la massa totale.

PROBLEMA 5.32

Massima compressione ??

Nel sistema in Figura 5.25 la massa m1 è lanciata inizialmente con velocità v0. La molla
di lunghezza a riposo uguale alla lunghezza del piano inclinato è libera di contrarsi, e il
piano inclinato è libero di spostarsi sul piano orizzontale. Non vi sono attriti. Calcolare
la massima contrazione della molla, e la massima velocità del piano inclinato.

m1 m2

k

θ
v0

Figura 5.25.: Il sistema considerato nell’esercizio.
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5.33. SBARRA VINCOLATA ??

Soluzione

Usiamo la conservazione dell’energia e della quantità di moto orizzontale. Detta δ la
contrazione della molla abbiamo

1
2

m1v2
0 =

1
2
(m1 + m2)V2 + m1gδ sin θ +

1
2

kδ2

e
m1v0 = (m1 + m2)V

dove è stato usato il fatto che nel momento di massima contrazione le masse m1 e m2
hanno la stessa velocità. Da questo segue

δ2 + 2
m1g sin θ

k
δ− 1

k
m1m2

m1 + m2
v2

0 = 0

e quindi (µ = m1m2/(m1 + m2) è la massa ridotta del sistema)

δ =
m1g sin θ

k

(√
1 +

µk
m2

1g2 sin2 θ
v2

0 − 1

)

dove è stata scelta la soluzione δ > 0. Per valori molto grandi della velocità l’effetto
della molla è dominante:

δ '
√

µ

k
v0

mentre per valori piccoli è la gravità a limitare la contrazione:

δ ' µ

2m1g sin θ
v2

0

Per ottenere le approssimazioni precedenti si è utilizzato
√

1 + x ' √x per x � 1 e√
1 + x ' 1 + x/2 per x � 1. La massima velocità del piano inclinato si ha chiaramente

quando la massa m1 è separata da esso. In questo caso valgono le normali formule
dell’urto elastico, che danno

v1 =
2m1

m1 + m2
v0

PROBLEMA 5.33

Sbarra vincolata ??

L’asta rappresentata in Figura 5.26, di massa m e lunghezza `, ha un estremo vincolato
a muoversi su una guida verticale e l’altro su una guida orizzontale. Inizialmente θ è
molto piccolo. Determinare il punto della sbarra che raggiunge la massima velocità vmax
nella caduta (da θ = 0 a θ = π/2), e calcolare vmax.
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5.33. SBARRA VINCOLATA ??

θ

ℓ,m

Figura 5.26.: La sbarra vincolata in una configurazione intermedia tra quella iniziale e
quella finale.

Soluzione

Dato l’angolo θ possiamo scrivere la posizione di un tratto infinitesimo sulla sbarra
posto a una distanza r fissata dal giunto verticale come

~r = ` cos θêy + rêr

dove 0 ≤ r ≤ `. La velocità sarà data da

~v = −`θ̇ sin θêy + rθ̇êθ

ed il suo modulo quadro

v2 = θ̇2 [r2 + ` (`− 2r) sin2 θ
]

Notare che la coordinata r non è stata derivata. Possiamo ora scrivere l’energia cinetica
come

T =
1
2

ˆ
v2(r) dm =

1
2

m
`

ˆ `

0

(
r2θ̇2 + `2θ̇2 sin2 θ − 2`rθ̇2 sin2 θ

)
dr

ossia
T =

1
6

m`2θ̇2

Per l’energia potenziale abbiamo

U = mg
`

2
cos θ
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5.34. URTO MULTIPLO ??

che poteva ottenersi direttamente usando la posizione del centro di massa. Usando la
conservazione dell’energia troviamo

θ̇2 =
3g
`
(1− cos θ)

Per un fissato valore di θ il punto più veloce dell’asta corrisponde al massimo di v2

rispetto a r in 0 ≤ r ≤ `, cioè r = ` se θ < π/4 e se θ > π/4. La relativa velocità vale

v2 = `2θ̇2 cos2 θ = 3g`(1− cos θ) cos2 θ θ < π/4

v2 = `2θ̇2 sin2 θ = 3g`(1− cos θ)2(1 + cos θ) θ > π/4 .

Il massimo assoluto di questa espressione si ha per θ = π/2, quindi

rmax = 0
v2

max = 3g`

cioè il giunto fissato sulla guida verticale si muove più velocemente di ogni altro punto,
e questo avviene quando la sbarra è verticale.

PROBLEMA 5.34

Urto multiplo ??

Determinare le velocità finali delle masse nel sistema in Figura 5.27, supponendo tutti
gli urti istantanei e elastici, se

mk = γkm

con γ > 0. Considerare in particolare il caso γ = 1.

v0

m1 m2 m5m3 m4 m6

Figura 5.27.: Il sistema considerato nell’esercizio.

Soluzione

In un urto elastico tra una massa m e una m′ se la prima è inizialmente in moto con
velocità v0 e la seconda è ferma immediatamente dopo l’urto si ha

v =
m−m′

m′ + m
v0

v′ =
2m

m + m′
v0 .
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5.35. MOTO SU UNA GUIDA PARABOLICA ??

Quindi, tenuto conto che nel nostro caso il rapporto tra una massa e quella precedente è
γ si trova

v =
1− γ

1 + γ
v0

v′ =
2

1 + γ
v0 .

Supponiamo che ciascuna massa urti la successiva una sola volta. L’espressione generale
per la velocità è ad eccezione della massa più a destra, per la quale

vk =

(
2

1 + γ

)k−1

v0 .

Le caso particolare γ = 1 tutte le masse sono ferme, salvo l’ultima che si muove con
velocità v0.

PROBLEMA 5.35

Moto su una guida parabolica ??

Una particella di massa m è vincolata a muoversi su una guida della forma descritta
dall’equazione

y = − x2

a
dove a > 0 è un parametro assegnato della dimensione di una lunghezza. Se la particella
si trova inizialmente in x = 0 con velocità positiva molto piccola, è possibile il distacco
dalla guida?

Soluzione

Se scriviamo la reazione vincolare nella forma Rn̂, dove n̂ è il versore normale al vincolo
nel punto dato, la condizione di distacco è R < 0. L’equazione del moto nella direzione
normale n̂ si scrive

m
v2

ρ
= −mg cos θ + R

dove ρ è il raggio di curvatura della parabola nel punto dato e θ la sua inclinazione
rispetto alla verticale. Dall’equazione della guida segue che

dy = −2x
a

dx

da cui
cos θ =

1√
1 + 4x2

a2

.
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5.36. OSCILLATORE FORZATO CON ATTRITO ? ? ?

Per il raggio di curvatura abbiamo la formula

1
ρ
=

y′′
[
1 + (y′)2

]3/2

da cui
1
ρ
= −2

a
1

[
1 + 4x2

a2

]3/2

e quindi

R =
mg√

1 + 4x2

a2

− 2m
a

v2

[
1 + 4x2

a2

]3/2 .

Il modulo quadro della velocità si determina usando la conservazione dell’energia:

0 =
1
2

mv2 + mgy

da cui

v2 =
2g
a

x2

e sostituendo troviamo
R =

mg√
1 + 4x2

a2

che risulta essere sempre positivo.

PROBLEMA 5.36

Oscillatore forzato con attrito ? ? ?

Un oscillatore forzato è descritto dall’equazione

mẍ + 2λẋ + kx = F(t)

dove λ parametrizza l’attrito viscoso presente e F(t) é un’onda quadra di ampiezza F0
e periodo T:

F(t) =
{

F0 kT < t ≤
(
k + 1

2

)
T

−F0
(
k + 1

2

)
T < t ≤ (k + 1)T

, k ∈N .

Trovare se possibile una soluzione x(t) periodica in −∞ < t < ∞ e discuterne l’unicità.
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5.36. OSCILLATORE FORZATO CON ATTRITO ? ? ?

Soluzione

Determiniamo la soluzione generale nel periodo dell’onda quadra corrispondente a
k = 0. Tra t = 0 e t = T/2 l’equazione si riduce a

mẍ + 2λẋ + kx = F0

che ammette come soluzione generale

x0(t) = A0eαt + A∗0eα∗t +
F0

k

dove α, α∗ sono le soluzioni complesse coniugate di

mα2 + 2λα + k = 0 .

Analogamente tra t = T/2 e t = T l’equazione diviene

mẍ + 2λẋ + kx = −F0

con soluzione che scriviamo nella forma

x′0(t) = B0eα(t−T/2) + B∗0 eα∗(t−T/2) − F0

k
.

Dobbiamo imporre la continuità della soluzione e della sua derivata in t = T/2. Abbia-
mo un sistema lineare

A0eαT/2 + A∗0eα∗T/2 +
F0

k
= B0 + B∗0 −

F0

k
αA0eαT/2 + α∗A∗0eα∗T/2 = αB0 + α∗B∗0

che ha per soluzione

B0 = A0eαT/2 +
2α∗

α∗ − α

F0

k
.

Se adesso scriviamo la soluzione tra t = pT e t = pT + T/2 nella forma

xp(t) = Apeα(t−pT) + A∗peα∗(t−pT) +
F0

k

e imponiamo la continuità di soluzione e derivata in t = T troviamo

A1 = eαT A0 +
2α∗

α∗ − α

F0

k

(
eαT/2 − 1

)

e ripetendo il ragionamento per t = pT

Ap = eαT Ap−1 +
2α∗

α∗ − α

F0

k

(
eαT/2 − 1

)
.
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5.37. CADUTA DA UN DIRUPO ??

Possiamo risolvere questa relazione ricorsiva scrivendo

Ap = eαpT A0 +
2α∗

α∗ − α

F0

k

(
eαT/2 − 1

) 1− eαpT

1− eαT

che risulta valida anche per p < 0. Se α ha una parte reale negativa, come accade in
presenza di attrito, abbiamo evidentemente che per p→ −∞ i coefficienti Ap divergono.
Fa eccezione il caso in cui

A0 =
2α∗

α∗ − α

F0

k

(
eαT/2 − 1

) 1
1− eαT

per il quale
Ap = A0

e che corrisponde chiaramente a una soluzione periodica.

PROBLEMA 5.37

Caduta da un dirupo ??

Una particella di massa m si muove su una superficie descritta dall’equazione

z = F(y)

dove

F(y) =





0 y < 0
g(y) 0 ≤ y ≤ L
−h y > L

e g(y) è una funzione sufficientemente regolare e decrescente, con g(0) = g′(0) = 0,
g(L) = −h, g′(L) = 0 che non è necessario specificare. Inizialmente la particella si trova
in y < 0 e

~v = v0 cos θ x̂ + v0 sin θ ŷ .

Determinare la velocità della particella quando questa si trova in y > L.

Soluzione

Le uniche forze esterne sono quella di gravità −mgêz e la reazione vincolare, perpendi-
colare ovunque a êx e al moto della particella. Si conserva quindi la quantità di moto
lungo x e l’energia totale. Possiamo scrivere di conseguenza

mv0 cos θ = mux
1
2

mv2
0 =

1
2

m
(

u2
x + u2

y

)
−mgh

dove ux, uy sono le componenti della velocità per y > L. Risolvendo otteniamo

ux = v0 cos θ

uy =
√

v2
0(1− cos2 θ) + 2gh .
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5.38. DIFFUSIONE DA UNA BUCA ??

x

y

z

~v0

g(y)

Figura 5.28.: La superficie descritta nell’esercizio, e la particella al di sopra di essa.

PROBLEMA 5.38

Diffusione da una buca ??

b

Ψ

Figura 5.29.: Il piano orizzontale e la cavità circolare viste dall’alto.

In un piano orizzontale è praticata una cavità circolare, di raggio R e profondità h.
I bordi della cavità sono arrotondati, ed un punto materiale di massa m è vincolato a
muoversi sulla superficie risultante. Inizialmente il punto materiale si muove all’esterno
della cavità, con velocità di modulo v0 e parametro d’urto b, come in Figura 5.29.

Determinare le quantità conservate, e l’angolo di diffusione Ψ all’uscita della buca, in
funzione dei parametri specificati.
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5.38. DIFFUSIONE DA UNA BUCA ??

Soluzione

Le quantità conservate sono l’energia totale (cinetica più potenziale gravitazionale) e la
componente verticale del momento angolare rispetto al centro della buca. Quest’ultima
si conserva perché le forze che agiscono sulla particella sono normali al piano (forza di
gravità sempre, e reazione vincolare quando la particella non è sul bordo della buca)
oppure radiali (reazione vincolare quando la particella si trova sul bordo). Nel primo
caso il momento della forza non ha componente verticale, nel secondo caso è nullo.

All’interno e all’esterno della buca la particella si muoverà di moto rettilineo uniforme.
Resta da determinare come i diversi pezzi di traiettoria si raccordano tra di loro.

α

γ

β

β

Ψ

b

Figura 5.30.: Una possibile traiettoria della particella.

Facendo riferimento alla Figura 5.30, è anzitutto chiaro che α = γ. Questo perchè,
come vedremo tra breve, le due leggi di conservazione precedentemente citate sono
sufficienti a determinare univocamente β in funzione di α. Inoltre

1. Data una soluzione~r(t) che soddisfa alle equazioni del moto, anche la soluzione
invertita nel tempo~r(−t) le soddisfa (le forze dipendono solo dalla posizione)

2. Invertendo nel tempo una soluzione l’entrata nella buca diventa una uscita da
essa. Quindi la legge che lega α e β è la stessa che lega γ a β.

Eguagliamo adesso la conservazione dell’energia e del momento angolare, tra un istante
nel quale la particella è fuori dalla buca e uno in cui si trova al suo interno. Abbiamo

1
2

mv2
0 =

1
2

mv2 −mgh (5.38.1)
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5.39. MOLLA E ATTRITO ?

e
−mv0b = −mvR sin β (5.38.2)

Dall’Equazione (5.38.2) segue

v =
v0b

R sin β
(5.38.3)

Ricavando v2 dalla conservazione dell’energia e sostituendo abbiamo quindi quindi
(tenendo conto che b/R = sin α)

sin2 α

sin2 β
= 1 +

2gh
v2

0
(5.38.4)

ossia
sin β =

sin α√
1 + 2gh

v2
0

Dato che Ψ = 2 (α− β) otteniamo

Ψ = 2 arcsin
(

b
R

)
− 2 arcsin




b

R
√

1 + 2gh
v2

0




Da notare che si sarebbe potuto utilizzare anche la conservazione della componente
tangenziale al bordo della buca della quantità di moto, ottenendo la relazione

mv0 sin α = mv sin β (5.38.5)

equivalente alla (5.38.2).

PROBLEMA 5.39

Molla e attrito ?

Due masse m1 e m2 su un piano orizzontale sono collegate tra loro da una molla di
lunghezza a riposo nulla e costante elastica k.

Determinare la massima distanza a cui le masse possono rimanere in equilibrio in
presenza di un attrito statico con coefficiente µs.

Soluzione

Le forze che agiscono sulla massa m1 e m2 quando la molla è lunga ` sono

F1 = −k`+ FA,1

F2 = k`+ FA,2
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5.40. CARRUCOLA CON ATTRITO ? ? ?

dove
|FA,i| ≤ µsmig .

Devono essere quindi soddisfatte le due condizioni

µsm1g ≥ k`
µsm2g ≥ k`

e quindi

`max =
µsg

k
min (m1, m2) .

PROBLEMA 5.40

Carrucola con attrito ? ? ?

Tra un filo e la carrucola rappresentata in Figura 5.31 (da considerare immobile) si ha
un attrito descritto da coefficienti µs, µd. Ai due estremi del filo sono appese delle masse
m1 e m2. Per quali valori di m1, m2 il sistema è in equilibrio? In tale condizione, quanto
vale la tensione del filo in funzione dell’angolo θ?

θ

m1 m2

Figura 5.31.: La carrucola considerata nel problema.

Soluzione

Consideriamo le forze che agiscono su un tratto infinitesimo del filo (Figura 5.32).
Abbiamo all’equilibrio

0 = −T(θ + dθ)τ̂(θ + dθ) + T(θ)τ̂(θ) + dN(θ)n̂(θ) + dFA(θ)τ̂(θ) (5.40.1)
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5.40. CARRUCOLA CON ATTRITO ? ? ?

d ~N (θ)

~T (θ + dθ)

~T (θ)

d~FA(θ)

Figura 5.32.: Le forze che agiscono su un tratto del filo compreso tra θ e θ + dθ.

dove T(θ) è la tensione del filo, dN(θ) la reazione vincolare normale e dFA(θ) la forza
di attrito, con

|dFA(θ)| ≤ µsdN(θ) . (5.40.2)

Sviluppando possiamo scrivere

d
dθ

(T(θ)τ̂(θ)) =
dN(θ)

dθ
n̂(θ) +

dFA(θ)

dθ
τ̂(θ) .

Espandendo la derivata otteniamo

dT
dθ

τ̂ + T
dτ̂

dθ
=

dN
dθ

n̂ +
dFA

dθ
τ̂ .

Proiettando nelle direzioni tangenti e normali abbiamo le due equazioni

dT
dθ

=
dFA

dθ

T = −dN
dθ

dove si è tenuto conto del fatto che

dτ̂

dθ
= −n̂ .
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5.41. OSCILLATORI ACCOPPIATI ? ? ?

Usando il valore massimo e minimo della forza di attrito possiamo scrivere

− µs|T| ≤
dT
dθ
≤ µs|T| . (5.40.3)

Integrando abbiamo
T(0)e−µsθ ≤ T(θ) ≤ T(0)eµsθ

ossia, dato che T(0) = m2g e T(π) = m1g,

e−µsπ ≤ m1

m2
≤ eµsπ .

Per un valore arbitrario del rapporto delle masse che soddisfa la condizione preceden-
te la tensione T(θ) non è univocamente determinata. Esistono molti modi infatti di
soddisfare la (5.40.3) con le corrette condizioni al contorno. Nei casi estremi

m1

m2
= e±µsπ

la soluzione è invece unica:
T(θ) = m2ge±µsθ .

PROBLEMA 5.41

Oscillatori accoppiati ? ? ?

Scrivere e risolvere le equazioni del moto per il sistema in Figura 5.33, mostrando che
è possibile scrivere il moto come somma di due modi di oscillazione indipendenti.
Descrivere ciascuno di essi. La lunghezza a riposo delle molle è nulla.

K1 K2 K1

m m

Figura 5.33.: Il sistema considerato nell’esercizio.

Soluzione

Le equazioni del moto sono della forma

mẍ1 = −K1x1 + K2(x2 − x1)

mẍ2 = K2(x1 − x2)− K1x2

Conviene introdurre la notazione

u =

(
x1
x2

)
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5.41. OSCILLATORI ACCOPPIATI ? ? ?

in modo da poter riscrivere le equazioni del moto nella forma

mü + Ku = 0

dove

K =

(
K1 + K2 −K2
−K2 K1 + K2

)

In analogia con il metodo usato per trattare equazioni lineari omogenee a coefficienti
costanti cercheremo soluzioni della forma

u(t) = Aeαt

dove A è un vettore costante. Sostituendo nelle equazioni del moto abbiamo
(

α2 I +
1
m

K
)

A = 0 (5.41.1)

Questo è un sistema lineare omogeneo che avrà soluzioni non banali quando

det
(

α2 I +
1
m

K
)
=

∣∣∣∣
ω2

1 + ω2
2 + α2 −ω2

2
−ω2

2 ω2
1 + ω2

2 + α2

∣∣∣∣ = 0

dove abbiamo posto ω2
i = Ki/m. Questo significa

(
ω2

1 + ω2
2 + α2)2

= ω4
2

che accadrà quando
α2

1 = −ω2
1

oppure quando
α2

2 = −ω2
1 − 2ω2

2

Nel primo caso il sistema (5.41.1) diviene
(

ω2
2 −ω2

2
−ω2

2 ω2
2

)
A1 = 0

corrispondente alla soluzione

u1(t) =
(

1
1

)
(a1 cos ω1t + b1 sin ω1t) .

In questo caso le due masse oscillano in sincrono, e la molla centrale non influenza il
moto. Questo spiega la frequenza di oscillazione. Nel secondo caso abbiamo

( −ω2
2 −ω2

2
−ω2

2 −ω2
2

)
A2 = 0

da cui

u2(t) =
(

1
−1

)(
a2 cos

√
ω2

1 + 2ω2
2t + b2 sin

√
ω2

1 + 2ω2
2t
)

.

In questo caso le due masse oscillano in opposizione di fase. La soluzione generale sarà
una sovrapposizione arbitraria di u1 e u2.
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5.42. OSCILLATORE ??

PROBLEMA 5.42

Oscillatore ??

Nel sistema in Figura 5.34 l’asta AC, AC = `, è libera di ruotare attorno al perno posto
in A, ed è di massa trascurabile. La molla ha costante elastica k e lunghezza a riposo
nulla. Inoltre AD = AB = 1

3`.

A
B

C

D

K

m

Figura 5.34.: L’oscillatore considerato nel problema.

Trovare la posizione di equilibrio e la frequenza della piccole oscillazioni attorno ad
essa.

Soluzione

Introducendo come coordinata l’angolo θ dell’asta rispetto all’orizzontale possiamo
scrivere l’energia cinetica

K =
1
2

mv2 =
1
2

m`2θ̇2

e l’energia potenziale

U = mg` sin θ +
K
2

[
2
9
`2 (1− sin θ)

]

La posizione di equilibrio stabile corrisponde al minimo del potenziale, che è della
forma

U =

(
mg`− K

9
`2
)

sin θ + costante
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5.43. MOLLA CON MASSA NON TRASCURABILE. ANALISI APPROSSIMATA. ? ? ?

avremo quindi un minimo per θ = −π/2 se mg` > K`2/9 oppure per θ = π/2 se
mg` < K`2/9. Se mg` = K`2/9 allora U = 0.

Nel primo caso scriviamo θ = −π/2 + ε da cui

E =
1
2

m`2 ε̇2 +

(
mg`− K

9
`2
)

sin
(
−π

2
+ ε
)
+ costante

=
1
2

m`2 ε̇2 +

(
mg`− K

9
`2
)

ε2

2
+ costante + O(ε4) .

Questa è l’energia di un oscillatore armonico di frequenza

f =
1

2π

√
mg`− K`2/9

m`2

Nel secondo caso scriviamo θ = π/2 + ε e analogamente troviamo l’energia di un
oscillatore armonico di frequenza

f =
1

2π

√
K`2/9−mg`

m`2

PROBLEMA 5.43

Molla con massa non trascurabile. Analisi approssimata. ? ? ?

Si vuole trattare approssimativamente l’effetto della massa non nulla µ di una molla
sulla frequenza di oscillazione. Per fare questo si scrive l’energia del sistema supponen-
do che la molla si muova nello stesso modo in cui si muoverebbe se la sua massa fosse
nulla.

con do tale metodo si determini la frequenza di oscillazione del sistema in Figura 5.35,
supponendo la molla di lunghezza a riposo nulla.

M

k,µ

Figura 5.35.: L’oscillatore considerato nel problema, con una molla di massa non nulla
µ.

Soluzione

Scriviamo l’energia del sistema nella forma

E =
1
2

M ˙̀2 +
1
2

k`2 + Kmolla
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5.44. OSCILLAZIONE IN UNA GUIDA PARABOLICA ??

dove Kmolla è l’energia cinetica della molla, e ` la sua lunghezza. Parametrizziamo la
posizione di un elemento della molla come

x = `u

con 0 ≤ u ≤ 1. Derivando rispetto al tempo otteniamo

ẋ = ˙̀u

e
dx = `du .

La parametrizzazione scelta è equivalente alla ipotesi che la molla si dilati in maniera
uniforme. Abbiamo allora

Kmolla =
1
2

ˆ
dµ ẋ2 =

µ

2

ˆ 1

0
u2 ˙̀2du =

1
2

µ

3
˙̀2 .

In conclusione l’energia del sistema si scrive nella forma

E =
1
2

(
M +

µ

3

)
˙̀2 +

1
2

k`2

che corrisponde ad un oscillatore di frequenza

f =
1

2π

√
k

M + µ/3
.

PROBLEMA 5.44

Oscillazione in una guida parabolica ??

Si calcoli la frequenza di oscillazione di un punto materiale di massa m vincolato a
muoversi su una guida descritta dall’equazione

y = αx2

con α > 0, nella approssimazione di piccole oscillazioni attorno a x = 0.

Soluzione

Utilizzando come coordinata l’ascissa x del punto materiale scriviamo l’energia del
sistema

E =
1
2

m
(
ẋ2 + ẏ2)+ mgy

nella forma
E =

1
2

m
(
1 + 4α2x2) ẋ2 + mgαx2 .
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5.45. OSCILLAZIONI DI UN MANUBRIO ??

Sviluppando per piccoli valori di x, ẋ otteniamo al secondo ordine

E =
1
2

mẋ2 + mgαx2

che corrisponde ad un oscillatore armonico di frequenza

f =
1

2π

√
2gα

PROBLEMA 5.45

Oscillazioni di un manubrio ??

Agli estremi di un’asta di lunghezza ` e massa trascurabile sono fissate due masse m1
e m2 (vedere Figura 5.36). L’asta è libera di ruotare in un piano verticale attorno ad
un perno posto su essa, a distanza |x| ≤ ` dalla massa m1. Determinare la frequenza
delle piccole oscillazioni attorno alla posizione di equilibrio stabile in funzione di x. È
possibile interpretare le soluzioni ottenute per |x| > `?

m2

ℓ− x

x

m1

Figura 5.36.: Il manubrio considerato nel problema, libero di ruotare attorno al perno
indicato dal piccolo cerchio scuro.
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5.46. MOTO LIBERO IN COORDINATE GENERALI ??

Soluzione

Usando come coordinata l’inclinazione θ del manubrio rispetto alla verticale possiamo
scrivere l’energia del sistema come

E =
1
2
[
m1x2 + m2(`− x)2] θ̇2 + [m1gx−m2g(`− x)] cos θ .

La posizione di equilibrio stabile corrisponde al minimo del potenziale, cioè

θ = 0 se m1x−m2(`− x) < 0
θ = π se m1x−m2(`− x) > 0

ossia a seconda se il perno sia sopra o sotto il centro di massa del sistema. Trattiamo
il primo caso, il secondo è completamente analogo. Per piccoli valori di θ possiamo
approssimare

cos θ ' 1− θ2

2

da cui

E =
1
2
[
m1x2 + m2(`− x)2] θ̇2 +

1
2
[m2g(`− x)−m1gx] θ2 + costante .

Questa è l’energia di un oscillatore armonico di frequenza

f =
1

2π

√
m2g(`− x)−m1gx
m1x2 + m2(`− x)2 .

Per |x| > ` possiamo pensare ad una estensione della sbarra esterna alle due masse,
sulla quale è posto il perno. Per x = −L con L molto grande abbiamo ad esempio

f ∼ 1
2π

√
g
L

PROBLEMA 5.46

Moto libero in coordinate generali ??

Un punto materiale è libero di muoversi nello spazio in assenza di forze. Si vuole
descrivere il suo moto utilizzando 3 coordinate arbitrarie ui, i = 1, 2, 3 funzioni delle
coordinate cartesiane xi e del tempo.

Scrivere le equazioni del moto per le coordinate ui.
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5.47. LANCIO DI UN PROIETTILE DA UNA PEDANA MOBILE ??

Soluzione

L’equazione del moto in coordinate cartesiane vale

mẍi = 0 .

Immaginando queste come funzione delle coordinate generali ui possiamo scrivere

ẋi = ∑
j=1,2,3

∂xi

∂uj
u̇j

e

ẍi = ∑
j=1,2,3

∂xi

∂uj
üj + ∑

j=1,2,3
∑

k=1,2,3

∂2xi

∂uj∂uk
u̇ju̇k

da cui le equazioni del moto cercate

m

(
∑

j=1,2,3

∂xi

∂uj
üj + ∑

j=1,2,3
∑

k=1,2,3

∂2xi

∂uj∂uk
u̇ju̇k

)
= 0 .

PROBLEMA 5.47

Lancio di un proiettile da una pedana mobile ??

Nel sistema in figura 5.37 il proiettile di massa m viene lanciato da una esplosione
istantanea con un angolo θ rispetto alla orizzontale, nel sistema di riferimento solidale
con la piattaforma. Detta W l’energia liberata dall’esplosione determinare per quale
angolo la gittata è massima. La piattaforma di lancio ha massa M ed è libera di muoversi
orizzontalmente.

θ

m

M

Figura 5.37.: Il sistema considerato nell’esercizio.

Soluzione

Scriviamo la conservazione dell’energia e della quantità di moto orizzontale tra l’istante
immediatamente precedente e successivo al lancio:

W =
1
2

m
[
(v0 cos θ + V)2 + v2

0 sin2 θ
]
+

1
2

MV2

0 = MV + m (v0 cos θ + V)
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5.48. GIRO DELLA MORTE SU GUIDA MOBILE ??

dove v0 è il modulo della velocità del proiettile nel sistema solidale con la piattaforma.
Risolvendo abbiamo

V = −mv0 cos θ

M + m
e

W =
1
2

m

[(
v0 cos θ − mv0 cos θ

M + m

)2

+ v2
0 sin2 θ

]
+

1
2

M
m2

(M + m)2 v2
0 cos2 θ

da cui

v2
0 =

4(m + M)W
m(m + 2M + m cos 2θ)

.

Le componenti della velocità del proiettile nel sistema di laboratorio sono

vx =
M

M + m
v0 cos θ

vy = v0 sin θ

corrispondenti ad una gittata di

` =
2vxvy

g
= 2

M
M + m

v2
0

g
sin θ cos θ =

4MW sin 2θ

mg(m + 2M + m cos 2θ)

che ha un massimo quando

cos 2θ = − m
m + 2M

.

Questo corrisponde ad un angolo θ > π/4. Per M � m si ritrova il caso classico
θ = π/4.

PROBLEMA 5.48

Giro della morte su guida mobile ??

La guida circolare di raggio R e massa M evidenziata in Figura 5.38 può muoversi libe-
ramente in direzione orizzontale. Determinare per quale velocità v0 il punto materiale
di massa m riesce a percorrerla completamente. Di quanto si è spostata la guida dopo
che questo è avvenuto?

Soluzione

Due quantità conservate in questo problema sono la quantità di moto orizzontale di
tutto il sistema (non ci sono forze esterne orizzontali) e l’energia totale (non ci sono forze
non conservative). Utilizzando come coordinate l’angolo θ che descrive la posizione
della particella sulla guida e la coordinata X del centro di questa abbiamo

x = X + R sin θ

y = R(1− cos θ)
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R

M

m,v0

Figura 5.38.: . Il sistema considerato nell’esercizio. La guida mobile è evidenziata in blu.

e

ẋ = Ẋ + Rθ̇ cos θ

ẏ = Rθ̇ sin θ

da cui

mv0 = MẊ + m
(
Ẋ + Rθ̇ cos θ

)

1
2

mv2
0 =

1
2

MẊ2 +
1
2

m
[(

Ẋ + Rθ̇ cos θ
)2

+
(

Rθ̇ sin θ
)2
]
+ mgR(1− cos θ)

Utilizzando la prima relazione possiamo eliminare Ẋ dalla seconda, ottenendo:

Ẋ =
m

M + m
(
v0 − Rθ̇ cos θ

)

1
2

µv2
0 =

1
2

µR2θ̇2 cos2 θ +
1
2

mR2θ̇2 sin2 θ + mgR(1− cos θ) .

Siamo adesso in grado di conoscere θ̇, Ẋ in funzione di θ. Se il vincolo della guida
è bilatero per poter percorrere il giro della morte è sufficiente che θ̇ > 0 per θ = π.
Abbiamo in generale

θ̇2 =
µv2

0 − 2mgR(1− cos θ)

R2(µ cos2 θ + m sin2 θ)

e quindi deve essere

v0 >

√
4mgR

µ
.

Se il vincolo è monolatero è invece necessario che la reazione vincolare della guida sia
sempre rivolta verso il suo centro. Possiamo discutere il problema nel sistema solidale
alla guida: l’equazione del moto in direzione ortogonale alla guida si scrive

−mRθ̇2 = N + mg cos θ −mẌ sin θ
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dove abbiamo tenuto conto della opportuna proiezione della forza apparente. Possiamo
scrivere N in funzione di θ utilizzando le relazioni precedenti, notando che

Ẋ =
m

M + m

(
v0 − R cos θ

√
µv2

0 − 2mgR(1− cos θ)

R2(µ cos2 θ + m sin2 θ)

)
.

Derivando ancora una volta, e sostituendo nuovamente θ̇ otteniamo infine tutto ciò che
serve per porre N(θ) < 0. Per quanto riguarda lo spostamento della guida, possiamo
integrare Ẋ:

L =

ˆ
Ẋdt =

ˆ 2π

0

m
M + m

(
v0 − Rθ̇ cos θ

) dθ

θ̇

ossia

L =
mv0

M + m

ˆ 2π

0

√
R2(µ cos2 θ + m sin2 θ)

µv2
0 − 2mgR(1− cos θ)

dθ .

PROBLEMA 5.49

Sistema oscillante ??

La guida in Figura 5.39 ha la forma di una semicirconferenza di raggio R, ha massa M
ed è libera di muoversi orizzontalmente. Un punto materiale di massa m è vincolato
a muoversi al suo interno. Calcolare la frequenza delle piccole oscillazioni del sistema
attorno alla sua configurazione di equilibrio stabile.

m

R

M

Figura 5.39.: Il sistema considerato nell’esercizio.

Soluzione

Usiamo come coordinate l’angolo θ che identifica la posizione della massa e la coordi-
nata orizzontale X della guida. L’energia totale è conservata:

E =
1
2

MẊ2 +
1
2

m
[(

Ẋ + Rθ̇ cos θ
)2

+ R2θ̇2 sin2 θ
]
+ mgR(1− cos θ)

e nel sistema di riferimento solidale con la posizione orizzontale del centro di massa la
quantità di moto lungo x è nulla:

MẊ + m
(
Ẋ + Rθ̇ cos θ

)
= 0
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Utilizziamo questa ultima relazione per eliminare Ẋ:

E =
1
2

Mm2

(M + m)2 R2θ̇2 cos2 θ

+
1
2

m

[(
M

M + m

)2

R2θ̇2 cos2 θ + R2θ̇2 sin2 θ

]
+ mgR(1− cos θ)

Per piccoli valori di θ, θ̇ abbiamo cos θ ' 1− θ2/2 e sin θ ' θ quindi al secondo ordine

E =
1
2

µR2θ̇2 + mgR
θ2

2

Questa è l’energia di un oscillatore armonico di frequenza

f =
1

2π

√
(m + M)g

MR

PROBLEMA 5.50

Pendolo in regime di alta energia ? ? ?

Un pendolo di lunghezza ` viene lanciato dalla sua posizione di equilibrio con velocità
iniziale v0. Stimare il periodo del pendolo quando v0 è molto grande, precisando cosa
questo significhi. Mostrare che in prima approssimazione il periodo non dipende da g,
e calcolare la prima correzione a questo risultato.

Soluzione

L’energia del pendolo si può scrivere nella forma

E =
1
2

m`2θ̇2 + mg`(1− cos θ)

da cui

θ̇ =

√
2E
m`2 −

2g
`
(1− cos θ) .

Possiamo scrivere anche

1√
2E

m`2 − 2g
` (1− cos θ)

dθ

dt
= 1

e integrando su un periodo membro a membro

ˆ T

0

1√
2E

m`2 − 2g
` (1− cos θ)

dθ

dt
dt = T .
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Introducendo come variabile di integrazione u = θ(t) abbiamo
ˆ 2π

0

du√
2E

m`2 − 2g
` (1− cos u)

= T

dove si è tenuto conto del fatto che un periodo corrisponde a un giro completo. Ci serve
il limite per grandi velocità dell’integrale precedente. Dato che E = mv2

0/2 abbiamo

T =
`

v0

ˆ 2π

0

du√
1− 2g`

v2
0
(1− cos u)

' `

v0

ˆ 2π

0

[
1 +

g`
v2

0
(1− cos u)

]
du

dove abbiamo utilizzato lo sviluppo (1 + ε)α ' 1 + αε, valido per ε � 1. Integrando
otteniamo

T ' 2π`

v0

(
1 +

g`
v2

0

)
.

PROBLEMA 5.51

Pendolo doppio ? ? ?

Scrivere le equazioni del moto del pendolo doppio rappresentato in Figura 5.40. Studiare
le piccole oscillazioni del sistema attorno alla posizione di equilibrio stabile.

Soluzione

Introduciamo i due versori n̂1 e n̂2 allineati con la direzione dei due fili. La posizione
delle due masse si scriverà allora

~r1 = `1n̂1

~r2 = `1n̂1 + `2n̂2

dove, esplicitamente,

n̂1 =

(
sin θ1
− cos θ1

)
, n̂2 =

(
sin θ2
− cos θ2

)

Derivando rispetto al tempo otteniamo le velocità

~v1 = `1θ̇1τ̂1

~v2 = `1θ̇1τ̂1 + `2θ̇2τ̂2

e le accelerazioni

~a1 = `1θ̈1τ̂1 − `1θ̇2
1 n̂1

~a2 = `1θ̈1τ̂1 − `1θ̇2
1 n̂1 + `2θ̈2τ̂2 − `2θ̇2

2 n̂2
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ℓ1

m1

ℓ2

m2

Figura 5.40.: Il pendolo doppio considerato nell’esercizio.

con

τ̂1 =

(
cos θ1
sin θ1

)
, τ̂2 =

(
cos θ2
sin θ2

)

Possiamo scrivere adesso le equazioni del moto. Per la prima massa abbiamo

m1`1
(
θ̈1τ̂1 − θ̇2

1 n̂1
)
= −T1n̂1 + T2n̂2 −m1gŷ (5.51.1)

e per la seconda

m2
[
`1
(
θ̈1τ̂1 − θ̇2

1 n̂1
)
+ `2

(
θ̈2τ̂2 − θ̇2

2 n̂2
)]

= −T2n̂2 −m2gŷ . (5.51.2)

Le (5.51.3) e (5.51.4) sono 4 equazioni differenziali nelle incognite θ1, θ2, T1 e T2.
Per piccole oscillazioni sviluppiamo le equazioni al primo ordine nelle variabili θ1, θ2,

θ̇1, θ̇2. Questo significa che possiamo porre

n̂1 '
(

θ1
−1

)
= −ŷ + θ1 x̂, n̂2 '

(
θ2
−1

)
= −ŷ + θ2 x̂ ,
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τ̂1 =

(
1
θ1

)
= x̂ + θ1ŷ, τ̂2 =

(
1
θ2

)
= x̂ + θ2ŷ .

e a meno di termini di ordine superiore le equazioni divengono

m1`1θ̈1 x̂ = −T1(−ŷ + θ1 x̂) + T2(−ŷ + θ2 x̂)−m1gŷ (5.51.3)

m2
(
`1θ̈1 + `2θ̈2

)
x̂ = −T2(−ŷ + θ2 x̂)−m2gŷ . (5.51.4)

In direzione verticale questo significa

T1 = (m1 + m2)g

T2 = m2g

cioè le tensioni non dipendono dall’angolo. In direzione orizzontale si trova

m1`1θ̈1 = −T1θ1 + T2θ2

m2
(
`1θ̈1 + `2θ̈2

)
= −T2θ2

che si potevano ottenere sin dall’inizio notando che per piccole oscillazioni

x1 = `1θ1

x2 = `1θ1 + `2θ2

e

F1,x = −T1θ1 + T2θ2

F2,x = −T2θ2

Abbiamo quindi
`1θ̈1 = −(1 + m2/m1)gθ1 + m2/m1gθ2

`1θ̈1 + `2θ̈2 = −gθ2 .

Sottraendo la prima equazione dalla seconda abbiamo infine

θ̈1 + (1 +
m2

m1
)

g
`1

θ1 −
m2

m1

g
`1

θ2 = 0

θ̈2 − (1 +
m2

m1
)

g
`2

θ1 +

(
1 +

m2

m1

)
g
`2

θ2 = 0

Cerchiamo delle soluzioni del tipo
(

θ1
θ2

)
=

(
u1
u2

)
eiΩt

Sostituendo otteniamo (γ = m2/m1, ω2
i = g/`i)

(
(1 + γ)ω2

1 −Ω2 −γω2
1

−(1 + γ)ω2
2 (1 + γ)ω2

2 −Ω2

)(
u1
u2

)
=

(
0
0

)

che avrà soluzioni non banali solo quando il determinante della prima matrice è nullo,
cioè per particolari valori di Ω legati alle frequenze dei modi di oscillazione.
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5.52. URTO NON ISTANTANEO TRA UNA MASSA E UN SISTEMA COMPOSTO
? ? ?

PROBLEMA 5.52

Urto non istantaneo tra una massa e un sistema composto
? ? ?

Nel sistema in Figura 5.41 la velocità iniziale v0 è tale da evitare il contatto tra le masse
m1 e m3. La molla esterna ha lunghezza a riposo `0 ed è fissata alla sola massa m3. Inoltre
m1 = m2 = 3

2 m3 = m.

m3

k
m2

m1

v0
k, ℓ0

Figura 5.41.: Il sistema considerato nell’esercizio.

Calcolare la velocità del centro di massa del sistema m2 + m3 dopo l’urto, e confron-
tarla con il caso di urto elastico istantaneo.

Soluzione

Scriviamo le equazioni del moto delle tre masse valide durante il contatto tra la molla e
la massa m1. Indicando con x1, x2 e x3 le coordinate delle tre masse abbiamo

m1 ẍ1 = k(x3 − x1 − `0)

m2 ẍ2 = k(x3 − x2)

Introducendo il vettore qT = (x1 + `0, x2, x3) queste possono essere scritte nella forma

Mq̈ + Kq = 0

dove

M =




m 0 0
0 m 0
0 0 2

3 m




e

K =




k 0 −k
0 k −k
−k −k 2k




Determiniamo i modi normali di vibrazione, trovando le soluzioni di

(
K−Ω2M

)
q = 0
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? ? ?

Il determinante della matrice vale zero per

Ω2 = Ω2
0 = 0

Ω2 = Ω2
1 =

k
m

Ω2 = Ω2
2 = 4

k
m

Le corrispondenti soluzioni possono scriversi a meno di una costante moltiplicativa
nella forma

qT
0
=
(

1, 1, 1
)

qT
1
=
(

1, −1, 0
)

qT
2
=
(
− 1

3 , − 1
3 , 1

)

La soluzione generale delle equazioni del moto è quindi

q(t) = q
0
(a0 + b0t) + q

1
(a1 cos Ω1t + b1 sin Ω1t) + q

2
(a2 cos Ω2t + b2 sin Ω2t)

e le costanti arbitrarie si possono determinare tenendo conto che

qT(0) =
(

0, 0, 0
)
= q

0
a0 + q

1
a1 + q

2
a2

q̇T(0) =
(

v0, 0, 0
)
= q

0
b0 + q

1
Ω1b1 + q

2
Ω2b2

Usando l’ortogonalità dei vettori q
i

rispetto al prodotto scalare definito dalla matrice M
si trova facilmente

a0 = a1 = a2 = 0

e

b0 =
3
8

v0, b1 = − 1
2Ω1

v0, b2 = − 3
16Ω1

v0

da cui

q(t) =
3
8

q
0
v0t− 1

2
q

1

v0

Ω1
sin Ω1t− 3

8
q

2

v0

Ω1
sin Ω2t

q̇(t) =
3
8

q
0
v0 −

1
2

q
1
v0 cos Ω1t− 3

4
q

2
v0 cos Ω2t .

Determiniamo a quale tempo t∗ la massa m1 si separa nuovamente. Questo corrispon-
de a x3 − x1 = `0 ossia

x3 − x1 − `0 = −1
2

v0

Ω1
sin Ω1t∗ − 1

4
v0

Ω1
sin 2Ω1t∗ = 0

ossia
cos Ω1t∗ = −1
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La velocità del centro di massa del sistema m2 + m3 sarà data da

v23 =
m2v2(t∗) + m3v3(t∗)

m2 + m3
=

3
5

v0

Se l’urto è istantaneo possiamo trascurare m2 per calcolare le velocità immediatamente
successive di m1 e m3. In particolare per quest’ultima si avrà

v3 =
2m3

m1 + m3
v0 (5.52.1)

e quindi

v23 =
m3v3

m2 + m3
=

8
25

v0 (5.52.2)

PROBLEMA 5.53

Molle multiple ??

Una massa m si muove nello spazio ed è collegata ad un estremo di N molle di lunghezza
a riposo nulla.

La costante elastica della molla j-sima è k j, e l’altro estremo è fissato ad un punto~rj,
fisso nello spazio.

Mostrare che il sistema è equivalente ad una massa m collegata ad un’unica molla di
costante elastica k e lunghezza a riposo nulla, fissata ad un punto~r. Calcolare k e~r.

Soluzione

L’energia potenziale totale del sistema è data dalla somma delle energie potenziali di
ciascuna molla

U(~r) = ∑
i

ki

2
|~r−~ri|2

e sviluppando i calcoli otteniamo

U(~r) = ∑
i

ki

2
~r ·~r + ∑

i

ki

2
~ri ·~ri −∑

i

ki

2
2~r ·~ri

=
1
2

(
~r ·~r ∑

i
ki + ∑

i
ki~ri ·~ri − 2~r ·∑

i
ki~ri

)

e introducendo
k = ∑

i
ki

~R =
∑i ki~ri

∑ ki
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possiamo scrivere

U(~r) =
k
2

(
~r ·~r− 2~r · ~R + ~R · ~R

)
+

1
2

(
∑

i
ki~ri ·~ri − ~R · ~R

)

Il secondo membro è una costante irrilevante, il primo l’energia potenziale di una molla
equivalente, di costante k e fissata in ~R

U(~r) =
k
2

∣∣∣~r− ~R
∣∣∣
2

PROBLEMA 5.54

Orbite circolari su un cono ?

Una particella di massa m è vincolata a muoversi su un cono con asse verticale, angolo
di apertura 2θ e vertice disposto verso il basso. Determinare in funzione del raggio la
velocità delle possibili traiettorie circolari.

2θ

Figura 5.42.: La superficie conica sulla quale si muove la particella.

Soluzione

In un’orbita circolare l’accelerazione in direzione verticale è sicuramente nulla. Nel
piano che contiene l’orbita non vi sono forze in direzione tangenziale (il vincolo è liscio)
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per cui il modulo della velocità è costante. Infine, le forze in direzione radiale devono
essere uguali alla massa per l’accelerazione centripeta.

In formule:

0 = −mg + N sin θ

mRω̇ = 0

−mRω2 = −N cos θ

dove N Da queseazione vincolare. Da questo segue

N =
mg

sin θ

e quindi

ω =

√
g cos θ

R sin θ

PROBLEMA 5.55

Catena di oscillatori ? ? ?

Si vuole modellare una molla di lunghezza `, massa m e costante elastica K con una
catena di N masse µ unite da N − 1 molle di costante elastica χ, come in Figura 5.43.
Studiate le oscillazioni di questo sistema se le masse agli estremi sono bloccate.

..............

Figura 5.43.: La catena di oscillatori considerata nell’esercizio.

Soluzione

Detta xk la coordinata della k-sima massa riferita alla sua posizione di equilibrio abbiamo
le equazioni del moto per le masse intermedie della forma

µẍk = χ(xk−1 + xk+1 − 2xk)

dove imponendo che la massa totale sia m abbiamo chiaramente µN = m, mentre per
la costante elastica deve valere K−1 = (N − 1)χ−1. Per le masse agli estremi abbiamo le
equazioni modificate

x1 = xN = 0

Utilizziamo direttamente le equazioni del moto cercando soluzioni del tipo

xk(t) = uα(t)eiαk
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e sostituendo nelle equazioni per le masse intermedie abbiamo

µeiαküα + χ
(

2− e−iα − eiα
)

eiαkuα = 0

ossia

üα +
4χ

µ
sin2

(
1
2

α

)
uα = 0

Questa è l’equazione di un oscillatore con

ωα = 2
√

χ

µ

∣∣∣sin
α

2

∣∣∣

e tutti i valori reali di α sono permessi. Dobbiamo però tenere ancora conto delle
equazioni per le masse agli estremi. Queste danno le condizioni

uαeiα = 0

uαeiNα = 0

che non possono però essere soddisfatte qualunque sia il valore di α. Possiamo però so-
vrapporre soluzioni corrispondenti a±α, che oscillano nel tempo con la stessa frequenza.
La nostra soluzione sarà quindi del tipo

xk(t) =
(

Aeiαk + Be−iαk
)

uα(t)

e le condizioni per gli estremi diventano

Aeiα + Be−iα = 0

AeiαN + Be−iαN = 0

Questo sistema lineare omogeneo ammette soluzioni non banali solo se

sin α(N − 1) = 0

ossia quando

αm =
mπ

(N − 1)

con m intero. Si hanno N soluzioni indipendenti per m = 0, · · · , N− 1 che si scriveranno

x(m)
k (t) = uαm(t)

(
eiαm(k−1)k − e−iαm(k−1)

)

ossia
x(m)

k (t) = Am sin [αm(k− 1)] cos (ωαm t + ϕ)
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m2

ℓ

m1

Figura 5.44.: Il pendolo mobile considerato. La massa superiore può scorrere
orizzontalmente e non vi è attrito.

PROBLEMA 5.56

Pendolo mobile ??

Nel pendolo in Figura 5.44 la massa superiore è libera di muoversi orizzontalmente.
Determinare la frequenza delle piccole oscillazioni attorno alla posizione di equilibrio.

Soluzione

Possiamo usare come coordinate l’ascissa x della massa superiore e l’angolo di inclina-
zione del pendolo θ. L’energia cinetica si scrive

K =
1
2

m1 ẋ2 +
1
2

m2

[(
ẋ + `θ̇ cos θ

)2
+ `2θ̇2 sin2 θ

]

ossia
K =

1
2
(m1 + m2)ẋ2 +

1
2

m2
[
`2θ̇2 + 2`ẋθ̇ cos θ

]

L’energia potenziale vale invece

U = −m2g` cos θ

Si conserva inoltre la quantità di moto orizzontale, e nel sistema del centro di massa
possiamo scrivere

m1 ẋ + m2
(
ẋ + `θ̇ cos θ

)
= 0

da cui

ẋ = −m2`θ̇ cos θ

m1 + m2

Il minimo del potenziale si ha per θ = 0, e per piccole oscillazioni attorno a questa
posizione di equilibrio stabile si ha

K ' 1
2
(m1 + m2)ẋ2 +

1
2

m2
[
`2θ̇2 + 2`ẋθ̇

]

U ' 1
2

m2g`θ2 + costante
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ẋ ' − m2`θ̇

m1 + m2

Eliminando ẋ tramite l’ultima relazione si trova

E ' 1
2

[
m1m2

m1 + m2

]
`2θ̇2 +

1
2

m2g`θ2

riconoscibile come energia di un oscillatore di frequenza

f =
1

2π

√
m2

µ

g
`

La frequenza risulta aumentata rispetto a un pendolo semplice da un fattore uguale alla
radice quadrata del rapporto tra m2 e la massa ridotta del sistema:

m2

µ
= 1 +

m2

m1

PROBLEMA 5.57

Pendolo sospeso ? ? ?

Nel sistema in Figura 5.45 la massa m1 può muoversi solo verticalmente, ed è vincolata
al soffitto tramite una molla di costante elastica k e lunghezza a riposo nulla. Alla massa
m1 è inoltre fissato un pendolo di lunghezza ` e massa m2, libero di oscillare.

k

ℓ

m1

m2

Figura 5.45.: Il pendolo sospeso considerato nell’esercizio.

Scrivere le equazioni del moto del sistema e studiare il suo comportamento per piccole
oscillazioni attorno alla posizione di equilibrio.

Soluzione

Studiamo il sistema in un riferimento non inerziale solidale con la massa m1. Ci riducia-
mo in questo modo ad un pendolo semplice sottoposto alla forza apparente

~F = −m2ÿŷ
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dove abbiamo indicato con y la posizione del punto di sospensione superiore della
molla rispetto a m1. Abbiamo allora per l’accelerazione tangenziale

m2`θ̈ = −m2 (g + ÿ) sin θ

e per quella radiale
m2`θ̇2 = T −m2(g + ÿ) cos θ

La condizione di equilibrio per la massa m1 è

0 = −m1ÿ− ky− T cos θ −m1g

Per piccole oscillazioni attorno θ = 0 queste equazioni si riducono a

m2`θ̈ = −m2gθ (5.57.1)

T = m2g + m2ÿ

e
(m1 + m2) ÿ + ky = − (m1 + m2) g (5.57.2)

La (5.57.1) è l’equazione del moto di un pendolo di frequenza

f =
1

2π

√
g
`

la (5.57.2) quella di un oscillatore con posizione di equilibrio

y0 =
(m1 + m2)g

k

e frequenza

f =
1

2π

√
k

m1 + m2

PROBLEMA 5.58

Superare una pedana ?

La pedana in Figura 5.46, di massa M, è libera di muoversi orizzontalmente ed ha spigoli
opportunamente arrotondati. La massa m ha inizialmente velocità v0 ed è vincolata a
muoversi sulla superficie orizzontale o sulla pedana. Calcolare per quale velocità iniziale
la massa riesce a superare la pedana.
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θθ
v0

h

m M

Figura 5.46.: La doppia pedana considerata nell’esercizio.

Soluzione

Possiamo utilizzare la conservazione della quantità di moto orizzontale del sistema e
dell’energia. Nel caso limite la particella arriva nel punto più alto della pedana avendo
la stessa velocità orizzontale V di quest’ultima, e velocità verticale nulla. Quindi deve
essere

mv0 = (m + M)V

e
1
2

mv2
0 =

1
2
(m + M)V2 + mgh

Segue che
mM

m + M
v2

0 = 2mgh

ossia

v0 ≥
√

2mgh
µ

=

√
2(m + M)gh

M

PROBLEMA 5.59

Urti e attrito ? ? ?

La pedana in Figura 5.47 di massa M è poggiata su un piano orizzontale con attrito,
coefficienti µs e µd. La particella di massa m < M si muove al suo interno, in assenza
di attrito, con velocità iniziale v0 rimbalzando elasticamente sulle pareti. Calcolare lo
spostamento totale della pedana per t→ ∞. Si può considerare la separazione tra le due
pareti grande a piacere. Cosa succede per m > M?

Soluzione

Studiamo il singolo urto. Dato che la separazione tra le due pareti è grande possiamo
considerare la pedana ferma, dato che l’energia acquistata nell’urto precedente è stata
dissipata. Allora immediatamente dopo l’urto avremo le velocità

v =
m−M
m + M

v0
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m

M

µs, µd

Figura 5.47.: Il sistema considerato nell’esercizio.

e
V =

2m
m + M

v0

L’energia cinetica della pedana sarà tutta dissipata in attrito, per cui questa percorrerà
un tratto ∆ determinato da

1
2

MV2 = µd(m + M)g∆

cioè

∆ =
2Mm2

µdg(m + M)3 v2
0

Tutto questo si ripeterà ad ogni urto, ogni volta con la velocità della particella ridotta di
un fattore e lo spostamento cambiato di segno, cioè

vn =

(
m−M
m + M

)n

v0

e

∆n = (−1)n 2Mm2

µdg(m + M)3 v2
n = (−1)n 2Mm2v2

0
µdg(m + M)3

(
m−M
m + M

)2n

.

Lo spostamento totale si trova sommando la serie geometrica

L =
2Mm2v2

0
µdg(m + M)3

∞

∑
n=0

[
−
(

m−M
m + M

)2
]n

=
2Mm2v2

0
µdg(m + M)3

1

1 +
(m−M

m+M

)2

ossia

L =
Mm

(m + M)

m
m2 + M2

v2
0

µdg
Se m > M la massa non inverte il proprio moto dopo l’urto, e anche i successivi av-
verranno dalla stessa parte. Quindi tutta l’energia viene dissipata da spostamenti della
pedana nello stesso verso, e quindi

1
2

mv2
0 = µd(M + m)gL

da cui

L =
mv2

0
2µd(m + M)g

Questa espressione coincide con la precedente per m = M.
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PROBLEMA 5.60

Campo di forze I ?

Un campo di forze nel piano è della forma

Fx = Axm

Fy = Aym

con m e A 6= 0 costanti. Per quali valori di m e A si tratta di un campo centrale? Si tratta
di un campo conservativo?

Soluzione

Il campo sarà centrale se della forma

~F = f (x, y)~r

Dovrà quindi essere
Axm−1 = Aym−1

e quindi m = 1.
Se la forza è conservativa deve essere possibile scriverla a partire di una funzione

potenziale, deve cioè essere

Fx = Axm = −∂U
∂x

Fy = Aym = −∂U
∂y

Integrando la prima equazione in x e la seconda in y otteniamo

U = − A
m + 1

xm+1 + f1(y)

e

U = − A
m + 1

ym+1 + f2(x)

che sono compatibili se

U = − A
m + 1

(ym+1 + xm+1) + C

dove C è una costante arbitraria. Quindi la forza è conservativa ∀m.
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PROBLEMA 5.61

Campo di forze II ?

Sotto quali condizioni il campo di forze nel piano

Fx = ax + by (5.61.1)
Fy = cx + dy (5.61.2)

è conservativo? Calcolare in tali casi il potenziale. Sotto quali condizioni è un campo
centrale?

Soluzione

Per essere conservativo deve valere

Fx = ax + by = −∂U
∂x

(5.61.3)

Fy = cx + dy = −∂U
∂y

. (5.61.4)

Integrando la prima equazione in x abbiamo

U = − a
2

x2 − bxy + g(y) (5.61.5)

dove g è una funzione arbitraria. Derivando rispetto a y otteniamo

Fy = bx− g′(y) (5.61.6)

che è consistente con la seconda equazione solo se

b = c (5.61.7)
g′(y) = dy (5.61.8)

e quindi il potenziale sarà della forma

U = − a
2

x2 − d
2

y2 − bxy (5.61.9)

Il campo sarà centrale se
~F = f (x, y)~r (5.61.10)

e scrivendo

Fx = x
(

a + b
y
x

)
(5.61.11)

Fy = y
(

c
x
y
+ d
)

(5.61.12)

troviamo che deve essere
a + b

y
x
= c

x
y
+ d (5.61.13)

da cui b = c = 0 e a = d. Notare che il campo è conservativo, e il potenziale vale

U = − a
2
(
x2 + y2) (5.61.14)
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PROBLEMA 5.62

Campo di forze III ??

Mostrare che un campo centrale nel piano della forma

~F = f (r, θ)~r

è conservativo se e solo se la funzione f non dipende da θ.

Soluzione

Supponiamo
~F = f (r)~r (5.62.1)

e mostriamo che il campo è conservativo. Dovrà essere

Fx = f (r)x = −∂U
∂x

(5.62.2)

Fy = f (r)y = −∂U
∂y

(5.62.3)

Questo è possibile prendendo

U(r) = −
ˆ r

r0

u f (u)du (5.62.4)

come si verifica direttamente:

− ∂U
∂x

= −∂U
∂r

∂r
∂x

= r f (r)
x
r

(5.62.5)

e similmente per y.
Mostriamo adesso che se f dipende da θ il campo non può essere conservativo. Se per

assurdo lo fosse, il lavoro del campo di forze su un qualsiasi percorso chiuso dovrebbe
essere nullo. Ma considerando il percorso in Figura 5.48 questo significherebbe che la
quantità

Lr1→r2(θ) =

ˆ r2

r1

f (r, θ) r dr (5.62.6)

deve essere indipendente da θ, dato che˛
γ

~F · d~x = Lr1→r2(θ1)− Lr1→r2(θ2) . (5.62.7)

Questo significa che per r1 e r2 arbitrari deve essereˆ r2

r1

∂ f (r, θ)

∂θ
r dr = 0 (5.62.8)

cioè
∂ f (r, θ)

∂θ
= 0
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θ1

θ2

r1

r2

γ

Figura 5.48.: Un possibile percorso chiuso sul quale calcolare il lavoro del campo di
forze. Gli unici contributi non nulli sono sui tratti di percorso radiale, dato
che sugli altri la forza è perpendicolare allo spostamento.

PROBLEMA 5.63

Moto in un campo centrale I ??

Una particella di massa m1 viene fissata tramite un filo inestensibile di lunghezza ` ad
un’altra massa che può muoversi solo verticalmente come in figura. Il filo attraversa il
piano tramite un piccolo foro senza attrito.

Classificare le possibili orbite del sistema.

Soluzione

Il sistema ha due quantità conservate, l’energia totale e il momento angolare della massa
m1 rispetto al foro. L’energia si conserva perchè le forze vincolari non fanno lavoro. Il
momento angolare perchè il momento della forza applicata alla particella m1 (la tensione
del filo) rispetto al polo scelto è nulla.

Usando coordinate polari per descrivere la posizione della massa m1 possiamo scri-
vere

E =
1
2

m1ṙ2 +
1
2

m1r2θ̇2 +
1
2

m2ṙ2 + m2gr (5.63.1)
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�
�
�

�
�
�

�
�
�
�

m1

m2

Figura 5.49.: Il piano sul quale si muove la particella m1.

e per la componente z del momento angolare della particella m1 abbiamo

Lz = m1r2θ̇ (5.63.2)

Possiamo utilizzare quest’ultima legge di conservazione per eliminare θ̇ dall’energia
totale:

E =
1
2
(m1 + m2)ṙ2 +

L2
z

2m1r2 + m2gr (5.63.3)

e il problema diviene equivalente al moto unidimensionale di una particella in un
potenziale efficace.

E0

E1

L2

2m1r2
m2gr

Ueff(r)

Figura 5.50.: Il potenziale effettivo (in blu) e i due termini che lo compongono: il po-
tenziale gravitazionale originario (in rosso) e il potenziale centrifugo (in
verde).

Dal relativo grafico (Figura 5.50) si conclude che se Lz 6= 0 non è possibile la caduta
sul centro, ed inoltre tutte le orbite sono limitate. In particolare si avranno orbite circolari
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di raggio r0 quando E coinciderà con il minimo del potenziale effettivo, cioè

L2
z

m1r3 = m2g (5.63.4)

ossia
m1rθ̇2 = m2g (5.63.5)

che è ovviamente la usuale relazione tra forza radiale e accelerazione centripeta. In
Figura 5.50 questo corrisponde all’energia E0.

PROBLEMA 5.64

Moto in un campo centrale II ??

Determinare le orbite di una particella nel piano sottoposta a un potenziale armonico

U =
k
2

r2 (5.64.1)

usando coordinate polari.

Soluzione

Si conservano il momento angolare e l’energia totale. Queste quantità si scrivono nelle
coordinate scelte nella forma

L = mr2θ̇ (5.64.2)

e
E =

1
2

mṙ2 +
1
2

mr2θ̇2 +
1
2

kr2 (5.64.3)

ed utilizzando la prima relazione per eliminare la velocità angolare nell’energia ottenia-
mo

E =
1
2

mṙ2 +
1
2

kr2 +
L2

2mr2 (5.64.4)

Sempre dal momento angolare otteniamo la regola

dr
dt

= θ̇
dr
dθ

=
L

mr2
dr
dθ

(5.64.5)

e possiamo riscrivere l’energia nella forma

E =
L2

2mr4

(
dr
dθ

)2

+
1
2

kr2 +
L2

2mr2 (5.64.6)

Introduciamo adesso una nuova variabile della forma

s =
1
r2 − β (5.64.7)
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ottenendo

E(s + β) =
L2

8m

(
ds
dθ

)2

+
1
2

k +
L2

2m
(s + β)2 (5.64.8)

Possiamo scegliere β in modo da eliminare il termine del primo ordine in s:

β =
Em
L2 (5.64.9)

da cui

E′ =
E2m
2L2 −

k
2
=

L2

8m

(
ds
dθ

)2

+
L2

2m
s2

Questa può essere vista come l’energia E′ di un oscillatore armonico per il quale

T = π (5.64.10)

da cui otteniamo

s =
1
r2 −

Em
L2 =

√
2mE′

L2 cos (2θ + ϕ) (5.64.11)

L’orbita è chiaramente chiusa. La scelta di ϕ equivale chiaramente ad una rotazione
dell’orbita, e ci limitiamo a considerare ϕ = 0. Possiamo allora scrivere

r2 =
L2

mE

1 +
√(

1− L2k
mE2

)
cos (2θ)

(5.64.12)

che è l’equazione di un’ellisse centrata sull’origine come segue da

r2

[
1 +

√(
1− L2k

mE2

)
cos (2θ)

]
=

L2

mE
(5.64.13)

ossia [
1 +

√(
1− L2k

mE2

)]
x2 +

[
1−

√(
1− L2k

mE2

)]
y2 =

L2

mE
(5.64.14)

Notare che

E =
1
2

mṙ2 +
1
2

kr2 +
L2

2mr2 ≥
1
2

kr2 +
L2

2mr2 ≥
√

kL2

m
(5.64.15)

da cui
kL2

mE2 ≤ 1

L’uguaglianza corrisponde a un’orbita circolare.
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PROBLEMA 5.65

Periodo del pendolo ? ? ?

Determinare la prima correzione al periodo di un pendolo rispetto alla formula valida
per piccole oscillazioni.

Soluzione

Dall’espressione dell’energia totale del pendolo

E =
1
2

m`2θ̇2 + mg`(1− cos θ)

si trova
θ̇√

2
m`2 [E−mg`(1− cos θ)]

= ±1

e integrando arriviamo alla formula per il periodo

T = 4
ˆ θmax

0

dθ√
2E

m`2

[
1− 2mg`

E sin2 θ
2

]

dove θmax è il massimo angolo di oscillazione, corrispondente al valore che annulla il
denominatore dell’integrando. Introducendo la variabile

u =

√
2mg`

E
sin

θ

2

abbiamo

du =

√
mg`
2E

cos
θ

2
dθ =

√
mg`
2E

√
1− E

2mg`
u2dθ

da cui

T = 4

√
`

g

ˆ 1

0

1√
1− E

2mg`u2

du√
1− u2

.

Sviluppando al primo ordine in E
mg` abbiamo

T = 4

√
`

g

ˆ 1

0

du√
1− u2

(
1 +

E
4mg`

u2
)

.

Usando gli integrali ˆ 1

0

du√
1− u2

=
π

2
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ˆ 1

0

u2du√
1− u2

=
π

4
otteniamo infine

T = 2π

√
`

g

(
1 +

E
8mg`

)

Possiamo esprimere questo risultato in funzione dell’ampiezza di oscillazione:

T = 2π

√
`

g

(
1 +

1
16

θ2
max

)

PROBLEMA 5.66

Oscillazioni forzate ? ? ?

m m
k1 k1k2

Figura 5.51.: Il sistema considerato nell’esercizio. Si ha attrito viscoso proporzionale alla
velocità relativa tra le due masse.

Nel sistema in Figura 5.51 è presente un attrito viscoso γ proporzionale alla velocità
relativa tra le due masse. Alla massa più a sinistra è inoltre applicata una forza

F = F0 cos Ωt

Calcolare la risposta in ampiezza del sistema. Supponendo che la forza sia presente solo
da t > 0 mostrare che in generale il transiente non sarà mai trascurabile.

Soluzione

Possiamo scrivere le equazioni del moto nella forma

mẍ1 + γ(ẋ1 − ẋ2) + k1x1 + k2(x1 − x2) = F0 cos Ωt
mẍ2 + γ(ẋ2 − ẋ1) + k2(x2 − x1) + k1x2 = 0 .

Cerchiamo soluzioni della forma

xi = ReZieiΩt .

Estendendo le equazioni del moto al campo complesso e sostituendo otteniamo il
sistema algebrico

−mΩ2z1 + iΩγ(z1 − z2) + k1z1 + k2(z1 − z2) = F0

−mΩ2z2 + iΩγ(z2 − z1) + k2(z2 − z1) + k1z2 = 0
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ossia
(
−mΩ2 + iΩγ + k1 + k2

)
z1 − (k2 + iΩγ) z2 = F0

− (iΩγ + k2) z1 +
(
−mΩ2 + iΩγ + k1 + k2

)
z2 = 0 .

Risolvendo otteniamo

z1 =

∣∣∣∣
F0 − (k2 + iΩγ)
0

(
−mΩ2 + iΩγ + k1 + k2

)
∣∣∣∣

∣∣∣∣
(
−mΩ2 + iΩγ + k1 + k2

)
− (k2 + iΩγ)

− (iΩγ + k2)
(
−mΩ2 + iΩγ + k1 + k2

)
∣∣∣∣

z2 =

∣∣∣∣
(
−mΩ2 + iΩγ + k1 + k2

)
F0

− (iΩγ + k2) 0

∣∣∣∣
∣∣∣∣
(
−mΩ2 + iΩγ + k1 + k2

)
− (k2 + iΩγ)

− (iΩγ + k2)
(
−mΩ2 + iΩγ + k1 + k2

)
∣∣∣∣

ossia

z1 =
F0
(
−mΩ2 + iΩγ + k1 + k2

)

(−mΩ2 + iΩγ + k1 + k2)
2 − (iΩγ + k2)

2

z2 =
F0 (k2 + iΩγ)

(−mΩ2 + iΩγ + k1 + k2)
2 − (iΩγ + k2)

2 .

Il numeratore di queste espressioni può essere fattorizzato ed abbiamo

z1 = − F0
(
mΩ2 − iΩγ− k1 − k2

)

(mΩ2 − k1) (mΩ2 − 2iγΩ− k1 − 2k2)

z2 =
F0 (k2 + iΩγ)

(mΩ2 − k1) (mΩ2 − 2iγΩ− k1 − 2k2)

e calcolando il modulo di queste espressioni otteniamo la risposta in ampiezza

|z2| =
√

k2
2 + Ω2γ2

(mΩ2 − k1 − 2k2)
2 + 4γ2Ω2

F0

|mΩ2 − k1|
.

Notare che il denominatore si annulla per il valore reale della frequenza

Ω = ±
√

k1

m
.

Questo indica la presenza di un modo di oscillazione non smorzata nell’evoluzione
libera del sistema. L’interpretazione fisica è che le due masse possono oscillare in fase
con velocità relativa nulla, ed in questo caso non sono presenti effetti dissipativi. Per
questo motivo non sarà possibile in generale trascurare la presenza di un transiente,
anche per tempi molto grandi.
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5.67. SLITTA VERTICALE ??

PROBLEMA 5.67

Slitta verticale ??

M

g

v0

m

Figura 5.52.: Slitta verticale.

Su una slitta di massa M e dimensioni trascurabili è montato un condotto liscio che per-
mette il passaggio di una pallina di massa m, lanciata verso la slitta con velocità iniziale
v0 parallela all’orizzontale dalla stessa quota ad una distanza d (vedere Figura 5.52). La
slitta è libera di muoversi senza attrito su un binario verticale e viene lasciata andare al
momento del lancio.

1. In assenza di gravità, calcolare le velocità finali di slitta e pallina.

2. In presenza di gravità, sotto quali condizioni la pallina entra nel tubo?

3. In presenza di gravità, per quale valore di v la slitta si ferma subito dopo l’urto?
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5.67. SLITTA VERTICALE ??

Soluzione

Domanda 1

In assenza di gravità si conserva l’energia cinetica totale e la quantità di moto verticale).
Abbiamo quindi

1
2

mv2
0 =

1
2

mẏ2 +
1
2

MẎ2 (5.67.1)

e
0 = mẏ + MẎ (5.67.2)

Ricaviamo ẏ dalla seconda relazione

ẏ = −M
m

Ẏ (5.67.3)

e sostituendo nella prima otteniamo

1
2

mv2
0 =

1
2

M
m

(M + m) Ẏ2 (5.67.4)

e quindi

Ẏ = ±
√

m2

M(M + m)
v0 (5.67.5)

e

ẏ = ∓
√

M
(M + m)

v0 (5.67.6)

La soluzione con Ẏ < 0, ẏ > 0 non è chiaramente accettabile.

Domanda 2

In presenza di gravità la particella si muove con accelerazione costante g diretta verso
il basso e con velocità costante in orizzontale. La slitta si muove verso il basso con
accelerazione g. Le leggi orarie si scrivono quindi

x = d− v0t (5.67.7)

y = −1
2

gt2 (5.67.8)

X = 0 (5.67.9)

Y = −1
2

gt2 (5.67.10)

e dato che il moto verticale di slitta e particella è identico, la pallina entra sempre nel
tubo.
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5.67. SLITTA VERTICALE ??

Domanda 3

Dato che le dimensioni della slitta sono trascurabili, l’interazione tra slitta e particella
avviene pure in un tempo trascurabile. Questo significa che la forza di gravità sarà tra-
scurabile durante l’urto rispetto alla forza impulsiva tra slitta e particella.e successivo
ale, tra l’istante immediatamente precedente e quello immediatamente successivo al
contatto tra particella e slitta varrà la conservazione della quantità di moto verticale
totale (l’unica forza verticale non trascurabile è quella impulsiva interna) e la conser-
vazione dell’energia cinetica totale (lo spostamento verticale di slitta e particella sono
trascurabili).

L’interazione avviene all’istante
t =

d
v0

(5.67.11)

e in tale istante (prima dell’urto) l’energia cinetica del sistema vale

K =
1
2

M
(
−g

d
v0

)2

+
1
2

m

[
v2

0 +

(
−g

d
v0

)2
]
=

1
2
(M + m)

g2d2

v2
0

+
1
2

mv2
0 (5.67.12)

e la quantità di moto verticale totale

Py = − (M + m) gd
v0

(5.67.13)

Eguagliando alle stesse quantità dopo l’urto abbiamo

K =
1
2

MẎ2 +
1
2

mẏ2 (5.67.14)

e
Py = −MẎ−mẏ (5.67.15)

Siamo interessati al caso Ẏ = 0, quindi deve essere

1
2
(M + m)

g2d2

v2
0

+
1
2

mv2
0 =

1
2

mẏ2 (5.67.16)

e

− (M + m) gd
v0

= −mẏ (5.67.17)

Ricavando ẏ dalla seconda relazione e sostituendo nella prima abbiamo

(M + m)
g2d2

v2
0

+ mv2
0 = m

[
(M + m)gd

mv0

]2

(5.67.18)

che risulta verificata quando

v2
0 = gd

√
M(M + m)

m2
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5.68. PENDOLO SFERICO ??

PROBLEMA 5.68

Pendolo sferico ??

Discutere le traiettorie di un pendolo sferico, cioè di una particella vincolate nello spazio
da un filo inestensibile di lunghezza `.

Soluzione

Conviene descrivere il sistema in coordinate sferiche. Possiamo scrivere l’energia cineti-
ca come

K =
1
2

mv2 =
1
2

m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2) = 1

2
m`2 (θ̇2 + sin2 θϕ̇2)

e l’energia potenziale
U = mgz = mg` cos θ .

Osserviamo che sulla particella agiscono due forze: la forza peso e la reazione vincolare
della superficie. Possiamo scrivere

~F = −mgêz − Nêr

ma dato che
~r = `êr

abbiamo
~M =~r ∧ ~F = −mg`êr ∧ êz − N`êr ∧ êr

da cui segue che ~M · êz = 0. Quindi il momento delle forze non ha componenti verticali
e la componente z del momento angolare si conserva:

Lz = m`2 sin2 θϕ̇

Utilizziamo questa relazione per riscrivere l’energia totale nella forma

E =
1
2

m`2θ̇2 + Ue f f (θ)

dove

Ue f f (θ) = mg` cos θ +
L2

z

2m`2 sin2 θ
= mg`

(
cos θ +

β2

1− cos2 θ

)
.

Per comodità abbiamo introdotto la variabile adimensionale

β2 =
L2

z
2m2`3g

.

Il grafico qualitativo è riportato in Figura 5.53, per diversi valori di β.
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5.69. PENDOLO SFERICO PICCOLO MOMENTO ANGOLARE ??
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β2 = 0.1

β2 = 1

β2 = 4

Ueff

mgℓ

Figura 5.53.: Potenziale effettivo per il pendolo sferico.

PROBLEMA 5.69

Pendolo sferico piccolo momento angolare ??

Studiare le orbite circolari del pendolo sferico nel limite di piccolo momento angolare,
cioè quando β� 1 nella notazione dell’esercizio precedente.

Soluzione

Introducendo x = cos θ abbiamo

Ue f f (θ) = mg`
(

x +
β2

1− x2

)

Possiamo studiare il potenziale effettivo in −1 ≤ x ≤ 1. Avremo un minimo dove

(1− x2)2 + 2β2x = 0

e occorrerebbe determinare la radice di questa equazione tale che −1 ≤ x ≤ 1. La for-
mula essatta è complicata, ma se β� 1 (piccolo momento angolare) possiamo scrivere
approssimativamente

x = x0 + βx1

dove x0 è la soluzione a β = 0 e x1 una prima correzione. Avremo

(1− x2
0)

2 − 4βx0x1(1− x2
0) + β2(2x0 − 2x2

1 + 6x2
0x2

1) + O(β3) = 0
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5.70. PENDOLO SFERICO GRANDE MOMENTO ANGOLARE ??

e identificando i termini al primo e al secondo ordine abbiamo

x0 = ±1
4x2

1 = 2

e quindi

x ' −1 +
β√
2

.

La posizione di minimo è quindi leggermente spostata rispetto alla verticale.

PROBLEMA 5.70

Pendolo sferico grande momento angolare ??

Studiare le orbite circolari del pendolo sferico nel limite di grande momento angolare,
cioè quando β� 1 nella notazione dell’esercizio precedente.

Soluzione

Introducendo x = cos θ abbiamo

Ue f f (θ) = mg`β2
(

x
β2 +

1
1− x2

)
.

Il minimo si avrà per
1
β2

(
1− x2)2

+ 2x = 0 .

Questa volta β−1 � 1 e quindi dall’approssimazione x = x0 + β−1x1 otteniamo

2x0 +
1
β

(
1− 2x2

0 + x4
0 + 2x1

)
+ O

(
1
β2

)
= 0

da cui x0 = 0 e x1 = −1/2. Segue che

x = cos θ = − 1
2β

cioè

θ =
π

2
+

1
2β

.

L’orbita circolare sarà quindi leggermente al di sotto del cerchio massimo orizzontale.
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5.71. CAMBIAMENTO PARAMETRI ORBITA ??

PROBLEMA 5.71

Cambiamento parametri orbita ??

Un pianeta di massa m é in orbita circolare (raggio R0) attorno ad una stella di massa
M. Ad un certo istante la stella espelle verso l’esterno una parte ∆M della sua mas-
sa, concentrandola in un guscio sferico di raggio r(t) crescente. Supponendo di poter
trascurare l’effetto dell’urto del materiale sul pianeta calcolare l’eccentricità dell’orbita
quando r(t) > R0. Si assuma M− ∆M� m.

Soluzione

Figura 5.54.: Il valore dell’energia totale in unità k/R0 (retta orizzontale tratteggiata) e
del potenziale efficace (curva continua) dopo l’espulsione della massa in
funzione di r/R0. Le differenti curve si riferiscono a ∆M/M = 0 (nessuna
espulsione, nero) ∆M/M = 1/4 (rosso) ∆M/M = 1/2 (verde) ∆M/M = 1
(massa completamente espulsa,blu). Notare che una intersezione è sempre
a r = R0.
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5.71. CAMBIAMENTO PARAMETRI ORBITA ??

Per semplicità poniamo k = GMm e k′ = k− ∆k con ∆k = G∆Mm. Possiamo scrivere
l’energia del pianeta nella forma

E =
1
2

mṙ2 +
L2

2mr2 −
k
r

Se la particella si trova in un’orbita circolare di raggio R0 allora

∂Ue f f

∂r
(R0) = −

L2

mR3
0
+

k
R2

0
= 0

cioè
L2 = kmR0

Al momento in cui il guscio sferico di massa supera l’orbita il momento angolare non
cambia, e la velocità radiale rimane nulla. Quindi l’energia vale

E′ =
L2

2mR2
0
− k′

R0
=

k
2R0
− k′

R0

e il nuovo potenziale efficace

U′e f f =
L2

2mr2 −
k′

r
=

kR0

2r2 −
k′

r
Il raggio massimo e minimo saranno determinati dalle soluzioni di E′ = U′e f f cioè

k
2R0
− k′

R0
=

kR0

2r2 −
k′

r
Riordinando i termini abbiamo

kR0

2

(
1

R2
0
− 1

R2

)
= k′

(
1

R0
− 1

R

)

Eliminando la soluzione banale R = R0 troviamo infine

1
R

=

(
2k′

k
− 1
)

1
R0

=

(
1− 2

∆k
k

)
1

R0

Notiamo che è la variazione relativa della massa della stella. Se ∆k/k < 1/2 ottenia-
mo una nuova orbita ellittica, in caso contrario la nuova orbita è illimitata. Possiamo
calcolare direttamente l’eccentricità usando la formula

e =

√
1 +

2E′L2

mk′2
=

√
1 +

2R0

k

(
k

2R0
− k′

R0

)
=

√
2∆k

k

ossia

e =

√
2∆M

M
(5.71.1)

La formula conferma che abbiamo un ellisse per ∆M/M < 1/2, una parabola per
∆M/M = 1/2 ed un’iperbole per 1/2 < ∆M/M < 1. Il caso ∆M/M = 1 corrisponde
ad una traiettoria rettilinea, dato che tutta la massa è stata espulsa e non vi sono più
forze gravitazionali, che possiamo interpretare anche come iperbole degenere.
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5.72. PRECESSIONE DI UN’ORBITA ? ? ?

PROBLEMA 5.72

Precessione di un’orbita ? ? ?

Studiare le orbite limitate di un punto materiale in un potenziale della forma

U = −α

r
+

ε

r2

dove r è la distanza dall’origine di un sistema di coordinate e α > 0. Mostrare che il
punto di massimo e di minimo avvicinamento al centro precede per ε 6= 0 e calcolare
l’angolo di precessione.

Soluzione

Dato che si conserva l’energia totale e il momento angolare rispetto all’origine del si-
stema di coordinate, sappiamo che il moto avviene in un piano e possiamo descriverlo
utilizzando coordinate polari. Abbiamo allora

E =
1
2

m
(
ṙ2 + r2θ̇2)− α

r
+

ε

r2

e
L = mr2θ̇

Possiamo anzitutto scrivere l’energia nella forma

E =
1
2

m

[(
dr
dθ

)2

+ r2

]
θ̇2 − α

r
+

ε

r2

ed eliminare θ̇ utilizzando la conservazione del momento angolare

E =
L2

2mr4

(
dr
dθ

)2

+

(
L2

2m
+ ε

)
1
r2 −

α

r

ottenendo un’equazione che lega r a θ, e permette in linea di principio di ottenere la tra-
iettoria. Introduciamo adesso la nuova coordinata u = 1/r: sostituendo nell’equazione
precedente otteniamo

E =
L2

2m

(
du
dθ

)2

+

(
L2

2m
+ ε

)
u2 − αu

che formalmente è l’energia di un oscillatore armonico soggetto ad una forza costante.
In effetti se deriviamo rispetto a θ otteniamo

dE
dθ

=
L2

m
du
dθ

d2u
dθ2 +

(
L2

m
+ 2ε

)
u

du
dθ
− α

du
dθ

175 versione del 5 ottobre 2016



5.73. USCIRE DA UNA BOTTIGLIA ??

che si deve annullare dato che E si conserva. Questo accade nei due casi

du
dθ

= 0

L2

m
d2u
dθ2 +

(
L2

m
+ 2ε

)
u = α

Il primo corrisponde ad una traiettoria circolare, r = 1/u = costante. Concentriamoci
sul secondo, che ha per soluzione generale

u = A cos (βθ + φ) + α

(
L2

m
+ 2ε

)−1

dove A e φ sono costanti arbitrarie da determinare con le condizioni al contorno, e

β =

√
1 +

2mε

L2

Chiaramente un cambiamento di φ equivale ad una rotazione globale dell’orbita, pos-
siamo quindi fissare φ = 0 senza perdere di generalità. I punti di massimo e minimo
avvicinamento corrisponderanno ai minimi e ai massimi del coseno, e quindi a

βθ = kπ

e quindi ad ogni giro questi avanzeranno di un angolo

δθ = 2π

(
1
β
− 1
)

che si annulla per ε = 0.

PROBLEMA 5.73

Uscire da una bottiglia ??

Un punto materiale è vincolato a muoversi su una superficie liscia descritta in coordinate
cilindriche dall’equazione

ρ = a + b cos kz

con a > b > 0 (vedere Figura 5.55). Studiare le possibili orbite in assenza di gravità,
verificando in particolare l’esistenza di orbite limitate e circolari.

Soluzione

L’unica forza in gioco è la reazione vincolare, normale alla superficie liscia. Dato che la
velocità della particella è sempre tangente alla superficie tale forza non può fare lavoro,
si conserva quindi l’energia cinetica. Questo significa che il modulo della velocità della
particella rimane costante.
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5.73. USCIRE DA UNA BOTTIGLIA ??

Inoltre per motivi di simmetria la forza è contenuta nel piano definito dall’asse z
e dal vettore posizione del punto materiale, e quindi il suo momento non può avere
componenti lungo z. Esplicitamente, la reazione vincolare sarà del tipo

~N = Nρ êρ + Nz êz

cioè priva di componenti nella direzione di êφ. Dato che il vettore posizione è

~R = zêz + ρêρ

si verifica subito che

~M = ~R ∧ ~N =
(

Nρ êρ + Nz êz
)
∧
(
zêz + ρêρ

)

ossia
~M =

(
zNz − ρNρ

) (
êz ∧ êρ

)

(notare che êz ∧ êρ = êφ). Di conseguenza si conserva la componente z del momento
angolare

Lz = mρ2φ̇

Quindi l’energia si scrive

E =
1
2

mv2 =
1
2

m
(
ρ̇2 + ρ2φ̇2 + ż2)

Possiamo eliminare φ̇ usando la conservazione di Lz, e usare la condizione di apparte-
nenza al piano per eliminare ρ e

ρ̇ = −bkż sin kz

ottenendo
E =

1
2

m
(
1 + b2k2 sin2 kz

)
ż2 + Ue f f (5.73.1)

con

Ue f f =
L2

z

2m (a + b cos kz)2

Dato che il primo termine al membro destro della (5.73.1) deve essere positivo abbiamo
che il moto può avvenire solo nella regione in cui Ue f f (z) < E. Rappresentando grafica-
mente il potenziale effettivo (Figura (5.56)) che è una funzione periodica di z, troviamo
che esistono orbite a z costante, per un valore dell’energia

E = min Ue f f =
L2

z

2m (a + b)2

che corrisponde al minimo del potenziale effettivo. Dato che ρ è funzione di z, queste
saranno anche orbite circolari.
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Se

min Ue f f < E < max Ue f f =
L2

z

2m (a− b)2

avremo orbite limitate. Infine per

E > max Ue f f

avremo orbite illimitate.
Consideriamo infine due casi particolari.
Se Lz = 0 allora , e Ue f f = 0. La particella si muove quindi longitudinalmente lungo

la superficie.
Se E = max Ue f f la particella si avvicina alla z corrispondente al massimo del poten-

ziale effettivo. Per capire cosa accada in questo caso conviene approssimare l’energia in
un intorno di tale massimo. Poniamo ad esempio z = π/k + δ, e sostituendo otteniamo

L2
z

2m (a− b)2 =
1
2

mδ̇2 +
L2

z

2m (a− b)2 −
1
2

bk2L2
z

m (a− b)3 δ2

che possiamo integrare scrivendo

δ̇ = ±
√

1
2

bk2L2
z

m2 (a− b)3 δ2

e quindi

t = ±
ˆ δ(t)

δ(0)

1
δ

√
2m2 (a− b)3

bk2L2
z

dδ

Dato che l’integrale diverge se δ(t)→ 0, la particella arriverà al massimo del potenziale
effettivo in un tempo infinito.
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Figura 5.55.: La superficie su cui avviene il moto del punto materiale.
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5.73. USCIRE DA UNA BOTTIGLIA ??

Figura 5.56.: Sulle ordinate, il potenziale effettivo in unità L2
z

2ma2 . Sulle ascisse, kz. In nero,
il potenziale effettivo per b/a = 1/4 (linea continua) e per b/a = 7/10
(linea tratteggiata). Per un fissato valore del momento angolare, la barriera
da superare cresce quando b si avvicina ad a (bottiglia molto “strozzata”).
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5.74. MOTO SU UN TORO ? ? ?

PROBLEMA 5.74

Moto su un toro ? ? ?

Una particella di massa m è vincolata a muoversi sulla superficie del toro in Figura 5.57,
descritto dalle equazioni parametriche

x = (R + r cos θ) cos φ

y = (R + r cos θ) sin φ

z = r sin θ

Verificare la conservazione del momento angolare in direzione z, e determinare le traiet-
torie.

φ
θ

Figura 5.57.: La superficie sulla quale avviene il moto della particella.

Soluzione

La conservazione del momento angolare in direzione z discende dal fatto che l’unica
forza in gioco (la reazione vincolare, normale alla superficie) ha sempre un momento
con componente z nulla. Utilizziamo le coordinate θ, φ per descrivere la posizione del
punto sulla superficie. Possiamo costruire due versori tangenti alla superficie derivando
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5.74. MOTO SU UN TORO ? ? ?

~r rispetto ad esse e normalizzando:

d~r
dθ

=



−r sin θ cos φ
−r sin θ sin φ

r cos θ




d~r
dφ

=



−R sin φ
R cos φ

0




da cui

êθ =



− sin θ cos φ
− sin θ sin φ

cos θ




êφ =



− sin φ
cos φ

0




Possiamo completare la base introducendo il versore

ên = êθ ∧ êφ =

∣∣∣∣∣∣

x̂ ŷ ẑ
− sin θ cos φ − sin θ sin φ cos θ
− sin φ cos φ 0

∣∣∣∣∣∣
=



− cos φ cos θ
− sin φ cos θ
− sin θ




normale alla superficie. La terna di versori introdotta è, come si verifica facilmente,
ortonormale. Nel seguito ci serviranno le loro derivate rispetto al tempo, che valgono

dêθ

dt
= −φ̇ sin θêφ + θ̇ên

dêφ

dt
= φ̇ sin θêθ + φ̇ cos θên

dên

dt
= −θ̇êθ − cos θφ̇êφ

Scriviamo adesso il vettore posizione come

~r = −R sin θêθ − (r + R cos θ) ên

e derivando otteniamo la velocità

~v = rθ̇êθ + (R + r cos θ) φ̇êφ

e l’accelerazione

~a =
[
φ̇2 (R + r cos θ) sin θ + rθ̈

]
êθ

+
[
(R + r cos θ) φ̈− 2rθ̇φ̇ sin θ

]
êφ

+
[
rθ̇2 + φ̇2 cos θ (R + r cos θ)

]
ên
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5.74. MOTO SU UN TORO ? ? ?

Dato che non si hanno forze tangenti alla superficie le accelerazioni nelle direzioni êθ

e êφ è nulla, per cui

φ̇2 (R + r cos θ) sin θ + rθ̈ = 0
(R + r cos θ) φ̈− 2rθ̇φ̇ sin θ = 0

La seconda può essere integrata direttamente, dopo aver moltiplicato per m (R + r cos θ)

d
dt

[
m (R + r cos θ)2 φ̇

]
= 0

ma questa è proprio la conservazione del momento angolare in direzione z, dato che
R + r cos θ è la distanza da tale asse e φ̇ la componente z della velocità angolare

Lz = m (R + r cos θ)2 φ̇

Scriviamo adesso l’energia cinetica, che si conserva:

E =
1
2

mv2 =
1
2

m
[
r2θ̇2 + (R + r cos θ)2 φ̇2

]

Possiamo eliminare φ̇ utilizzando la conservazione del momento angolare, ottenendo

E =
1
2

mr2θ̇2 +
L2

z

2mR2
(
1 + r

R cos θ
)2

che permette lo studio qualitativo del moto in θ. Il potenziale effettivo è rappresentato
in Figura 5.58. Abbiamo una soluzione con θ = 0 (corrispondente al minimo del poten-
ziale effettivo) in cui la particella resta sul bordo esterno del toro, compiendo un moto
circolare uniforme con velocità angolare

φ̇ =
Lz

m (R + r)2

Per valori dell’energia intermedi tra il massimo e il minimo θ oscilla tra un valore
massimo e il suo opposto, la traiettoria è quindi una oscillazione centrata sul bordo
esterno del toro, accompagnata da un’avanzamento di φ. Infine per valori dell’energia
maggiori del massimo θ aumenta (o diminuisce) senza limite. La traiettoria è quindi
una spirale che si avvolge al toro.
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Figura 5.58.: Il potenziale effettivo in unità L2
z

2mR2 in funzione di θ per r/R = 0.2 (in rosso)
e r/R=0.5 (in blu).

PROBLEMA 5.75

Pendolo nello spazio delle fasi ??

Si condideri un pendolo di lunghezza ` e massa m. Detto θ l’angolo che il pendolo forma
rispetto alla verticale e ω la sua velocità angolare

1. Mostrare che le equazioni del moto si possono scrivere nella forma

dω

dt
= f (ω, θ)

dθ

dt
= g(ω, θ)

e determinare le funzioni f e g.

2. Determinare le possibili traiettorie del pendolo nel piano ω, θ nella forma

G(ω, θ) = 0

dove G è una opportuna funzione, rappresentarle graficamente e discuterne il
significato.

3. Trovare la G(ω, θ) che corrisponde alle condizioni iniziali

θ(0) = 0
ω(0) = ω0
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scegliendo per ω0 il minimo valore che permette al pendolo di raggiungere la
posizione θ = π. Mostrare che tale posizione viene raggiunta in un tempo infinito
(si supponga che la massa sia vincolata ad una sbarretta rigida).

Soluzione

Domanda 1

L’equazione del moto del pendolo si può scrivere immediatamente in coordinate polari
scrivendo ~F = m~a per la componente tangenziale alla traiettoria. Per un moto circolare
l’accelerazione tangenziale vale `θ̈ e la componente tangenziale della forza −mg sin θ,
da cui

m`θ̈ = −mg sin θ .

Dato che ω = θ̇ sostituendo nella precedente relazione troviamo subito

ω̇ = − g
`

sin θ = f (ω, θ)

θ̇ = ω = g(ω, θ) .

Domanda 2

Dividendo membro a menbro le equazioni scritte precedentemente si trova subito che

dω

dθ
=

f (ω, θ)

g(ω, θ)
= − g

`

sin θ

ω
.

Questa è un’equazione differenziale a variabili separabili che si può integrare diretta-
mente: ˆ

ωdω = − g
`

ˆ
sin θdθ

da cui
1
2

ω2 − g
`

cos θ − C = G(ω, θ) = 0

dove C è una costante arbitraria. Possiamo scrivere allora

ω = ±
√

2
(

C +
g
`

cos θ
)

.

Osserviamo che il luogo dei punti che soddisfano questa relazione è simmetrico rispetto
agli assi ω = 0 e θ = 0. Inoltre si ripete periodicamente lungo θ con periodo 2π, sarà
quindi sufficiente studiarlo tra θ = −π e θ = π.

Occorre distinguere diversi casi:

1. Se C < − g
` la quantità sotto radice è sempre negativa, e non esiste nessuna

traiettoria.
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2. Se − g
` ≤ C ≤ g

` solo alcuni valori di θ sono possibili, più precisamente quelli per i
quali

cos θ > − `

g
C .

3. Per C > g
` tutti i valori di θ sono possibili.

−6 −4 −2 2 4 6

−4

−2

2

4

Figura 5.59.: Alcune possibili traiettorie, corrispondenti a C = −9/10 (rossa), C = 0
(gialla) C = 1 (verde) C = 2 (blu) e (viola). L’asse orizzontale corrisponde
a θ, quello verticale a ω e si è scelto g/` = 1.

Alcune possibili traiettorie sono rappresentate in Figura 5.59. Le curve chiuse (C < 1)
rappresentano moti oscillatori, le altre corrispondono ai casi nei quali il pendolo, avendo
energia sufficientemente elevata, ruota sempre nello stesso verso (senso orario per la
traiettoria con ω < 0 e senso antiorario per quella con ω > 0).

Problema 3

Date le condizioni iniziali la traiettoria deve passare dal punto (θ, ω) = (0, ω0), deve
cioè essere

G(ω0, 0) =
1
2

ω2
0 −

g
`
− C = 0

che significa

C =
1
2

ω2
0 −

g
`

.
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Per determinare ω0 si può imporre che l’energia cinetica iniziale sia esattamente uguale
alla differenza tra energia potenziale in θ = π e θ = 0, cioè

1
2

m`2ω2
0 = 2mg`

da cui
ω2

0 =
4g
`

e quindi

C =
g
`

.

In altre parole la traiettoria vale

ω = ±
√

2g
`
(1 + cos θ)

che corrisponde alla curva verde in figura. Per calcolare il tempo necessario a raggiun-
gere la posizione θ = π si può considerare l’equazione precedente come un’equazione
differenziale. Scegliendo il segno positivo abbiamo

dω

dt
=

√
2g
`
(1 + cos θ) =

√
4g
`

cos2 θ

2

ma possiamo separare le variabili e integrare, ottenendo
√

4g
`

ˆ t

0
dt =

ˆ θ∗

0

dθ

cos θ
2

.

Il membro destro è proporzionale al tempo impiegato per arrivare a θ?, ma è evidente
che il membro sinistro tende a +∞ quando θ∗ tende a π. In questo caso particolare è
possibile integrare esplicitamente anche il secondo membro. Si ottiene

√
4g
`

t = 4 arctanh
(

tan
θ(t)

4

)

oppure

tan
θ(t)

4
= tanh

1
2

√
g
`

t .

L’angolo in funzione del tempo è rappresentato in Figura 5.60.
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Figura 5.60.: La legge oraria θ(t) nel caso particolare considerato nella terza domanda.

PROBLEMA 5.76

Moto su una guida ellittica ??

Un punto materiale di massa m è vincolato a muoversi nel piano su una guida ellittica
descritta dalle equazioni parametriche

x = a cos θ

y = b sin θ

con velocità iniziale v0.
Determinare la reazione vincolare della guida in funzione di θ, e il raggio di curvatura

della traiettoria. Discutere il caso particolare a = b = R.

Soluzione

Dato che in assenza di attrito la guida non può esercitare forze nella direzione tangente
il modulo della velocità si conserva e quindi vale sempre v0. Possiamo quindi scrivere

ẋ = −aθ̇ sin θ

ẏ = bθ̇ cos θ

da cui ricaviamo il versore tangente alla traiettoria:

τ̂ =
1√

a2 sin2 θ + b2 cos2 θ

( −a sin θ
b cos θ

)
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e inoltre
v2

0 = ẋ2 + ẏ2 = θ̇2 (a2 sin2 θ + b2 cos2 θ
)

(5.76.1)

Il vettore velocità si può scrivere nella forma ~v = v0τ̂. Possiamo allora calcolare l’accele-
razione:

~a = v0
dτ̂

dt
=

v0θ̂√
a2 sin2 θ + b2 cos2 θ

[(−a cos θ
−b sin θ

)
−
(
a2 − b2) sin θ cos θ(

a2 sin2 θ + b2 cos2 θ
)
(−a sin θ

b cos θ

)]

Svolgendo i calcoli e utilizzando l’equazione (5.76.1) troviamo

~N = m~a = − mabv2
0(

a2 sin2 θ + b2 cos2 θ
)2

(
b cos θ
a sin θ

)
.

Notare che l’accelerazione è normale alla traiettoria: ~N · τ̂ = 0, possiamo quindi estrarre
dall’espressione precedente il versore normale:

n̂ =
1√

a2 sin2 θ + b2 cos2 θ

(
b cos θ
a sin θ

)

e scrivere
~N = − mabv2

0(
a2 sin2 θ + b2 cos2 θ

)3/2 n̂ .

Confrontando con l’espressione dell’accelerazione normale in termini del raggio di
curvatura, v2

0/ρ, troviamo

ρ =

(
a2 sin2 θ + b2 cos2 θ

)3/2

ab
.

Utilizzando coordinate polari possiamo trovare la componente radiale della reazione
vincolare:

Nr = ~N · êr = −
mabv2

0
(
b cos2 θ + a sin2 θ

)
(
a2 sin2 θ + b2 cos2 θ

)2

e la componente diretta come êθ :

Nθ = ~N · êθ = −
mabv2

0 (b− a) sin θ cos θ
(
a2 sin2 θ + b2 cos2 θ

)2 .

Il caso particolare a = b = R corrisponde a una guida circolare di raggio R. Abbiamo

~N = −mv2
0

R
êr

e
ρ = R .
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m1

m2

M

Figura 5.61.: Il sistema considerato nel problema.

PROBLEMA 5.77

Macchina di Atwood: effetti della massa del filo ? ? ?

Nella macchina di Atwood in Figura 5.61 il filo è inestensibile, ma di massa M non
trascurabile. Non vi sono attriti. Si vuole determinare il moto del sistema.

Soluzione

Data l’inestensibilità del filo, il modulo della accelerazione delle masse e di ciascun
elemento del filo sarà lo stesso. Possiamo allora scrivere

m1a = T1 −m1g (5.77.1)

e
−m2a = T2 −m2g (5.77.2)

dove e T2 sono le tensioni del filo alle masse.
Consideriamo adesso un tratto infinitesimo del filo: avremo

µd ~̀a(`) = −µd`gŷ + T (`+ d`) τ̂ (`+ d`)− T(`)τ̂(`) + N (`) n̂(`)d` (5.77.3)

dove µ = M/L, e abbiamo parametrizzato con ` la posizione lungo il filo (` = 0
corrisponde alla connessione con la massa m1, ` = L alla connessione con la massa
m2). Il versore τ̂ è tangente al filo nel punto considerato, quello n̂ è normale. Inoltre
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N rappresenta la reazione normale della carrucola. Sviluppando al primo ordine in d`
otteniamo

µ

[
aτ̂(`)− v2

ρ
n̂(`)

]
= −µgŷ + N(`)n̂(`) +

d
d`

[T(`)τ̂(`)] . (5.77.4)

Notare che abbiamo scomposto l’accelerazione del filo in componenti tangenti e normali,
e che il raggio di curvatura del filo vale ρ = R sulla carrucola e ρ = ∞ nei tratti rettilinei.
Sviluppando la derivata e ricordando che

dτ̂

d`
= −1

ρ
n̂ (5.77.5)

otteniamo

µ

[
aτ̂(`)− v2

ρ
n̂(`)

]
= −µgŷ + N(`)n̂(`) +

dT(`)
d`

τ̂(`)− 1
ρ

T(`)n̂(`) . (5.77.6)

Prendendo il prodotto scalare con τ̂ di ambo i membri otteniamo

µa = −µgŷ · τ̂ +
dT(`)

d`
(5.77.7)

che integrata tra gli estremi da

T2 − T1 = µaL + µg
ˆ L

0
ŷ · τ̂d` . (5.77.8)

Il tratto che si avvolge sulla carrucola non contribuisce all’ultimo integrale, che si riduce
quindi a

T2 − T1 = µaL + µg (`1 − `2) (5.77.9)

dove `1 e `2 sono le lunghezze dei tratti verticali del filo.
Questa è l’ultima equazione che ci serviva. Dalle prime due che abbiamo scritto

otteniamo
(m1 + m2)a = T1 − T2 + (m2 −m1) g (5.77.10)

e quindi

a =
m2 + µ`2 −m1 − µ`1

(m1 + m2 + M)
g . (5.77.11)

Teniamo conto adesso del fatto che

L = `1 + `2 + πR (5.77.12)

e che
῭2 = a . (5.77.13)

Abbiamo quindi

῭2 −
2µg

(m1 + m2 + M)
`2 =

m2 −m1 − µ (L− πR)
(m1 + m2 + M)

g . (5.77.14)
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Questa equazione ammette come soluzione particolare

`2 = `2,0 =
m1 −m2 + M

(
1− π R

L

)

2M
L (5.77.15)

che rappresenta una configurazione di equilibrio. La soluzione generale dell’equazione
omogenea

῭2 −
2µg

(m1 + m2 + M)
`2 = 0 (5.77.16)

è invece
`2(t) = Aeγt + Be−γt (5.77.17)

con

γ =

√
2µg

m1 + m2 + M
(5.77.18)

La soluzione generale sarà quindi

`2(t) = A′ cosh γt + B′ sinh γt +
m1 −m2 + M

(
1− π R

L

)

2M
(5.77.19)

In termini delle condizioni al contorno

`2(0) = A′ +
m1 −m2 + M

(
1− π R

L

)

2M
(5.77.20)

˙̀2(0) = γB′ (5.77.21)

e quindi

`2(t) =

(
`2(0)−

m1 −m2 + M
(
1− π R

L

)

2M

)
cosh γt +

˙̀2(0)
γ

sinh γt

+
m1 −m2 + M

(
1− π R

L

)

2M

PROBLEMA 5.78

Pendolo invertito ??

Il pendolo invertito in Figura 5.62 è costituito da una massa m fissata su un’asta di
lunghezza ` e massa trascurabile. L’asta può ruotare attorno all’altro estremo, ma è
soggetta ad un momento proporzionale alla sua deviazione dalla verticale,

M = −kθ . (5.78.1)

Determinare le posizioni di equilibrio del sistema e discuterne la stabilità, in funzione
dei parametri dati.
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θ

ℓ

m

g

Figura 5.62.: Rappresentazione schematica di un pendolo invertito.

Soluzione

Scelta come coordinata l’angolo θ, la seconda equazione cardinale

dL
dt

= M (5.78.2)

per la componente del momento angolare ortogonale al piano della figura si può scrivere

d
dt

m`2θ̇ = −kθ + mg` sin θ (5.78.3)

ossia

θ̈ =
g
`

(
sin θ − k

mg`
θ

)

Le posizioni di equilibrio corrispondono ai valori di θ per i quali l’espressione tra pa-
rentesi si annulla. Possiamo determinarle graficamente studiando le intersezioni tra le
curve

y = sin θ (5.78.4)
y = qθ (5.78.5)

al variare del parametro adimensionale

q =
k

mg`
, (5.78.6)

con q ≥ 0. Per qualsiasi valore di q abbiamo la soluzione θ = 0. Per determinare la
stabilità di questa configurazione di equilibrio possiamo sviluppare l’equazione del
moto attorno al primo ordine intorno ad essa, sin θ ' θ, ottenendo

θ̈ =
g
`
(1− q) θ (5.78.7)
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Figura 5.63.: Studio grafico delle posizioni di equilibrio e della loro stabilità. Le
curve (5.78.4) e (5.78.5) sono rappresentate in funzione di θ, per q = 1/9.

che corrisponde ad un oscillatore stabile solo quando q > 1.
Per q > 1 la posizione di equilibrio trovata è anche l’unica. Al diminuire di q sono

possibili altre intersezioni, come evidente dalla Figura 5.63, che corrisponde al caso
q = 1/9.

Possiamo determinare direttamente da un grafico di questo tipo la stabilità di una
posizione di equilibrio. Infatti il segno del momento applicato al sistema è dato dalla
differenza tra la sinusoide e la retta. In figura, l’intersezione per θ = 0 corrisponde a
equilibrio instabile, le successive per θ > 0 si alternano tra stabili e instabili.

Possiamo riassumere le conclusioni nel grafico 5.64. Sulle ordinate abbiamo il valore
di θ all’equilibrio, sulle ascisse q.

Da notare che le 4 più lontane corrispondono a una configurazione nella quale |θ| >
2π.
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Figura 5.64.: Posizioni di equilibrio θ e loro stabilità, in funzione di q. La linea continua
corrisponde all’equilibrio stabile, quella tratteggiata all’equilibrio instabile.
Sono rappresentate solo le 7 posizioni di equilibrio più vicine a θ = 0.

PROBLEMA 5.79

Urto con un piano inclinato ??

v0 α

Figura 5.65.: Il piano inclinato mobile e la pallina che lo urta.

Il piano inclinato in Figura 5.65, di massa M, è vincolato a muoversi su un piano
orizzontale privo di attrito. Su di esso viene lanciata una pallina di massa m che si muove
inizialmente nel piano con velocità v0, e non è ad esso vincolata. Calcolare l’angolo θ
che la velocità della pallina forma con l’orizzontale dopo l’urto, tenendo conto del fatto
che la giunzione tra piano inclinato e piano orizzontale non è arrotondata e che l’urto
avviene in un tempo molto breve.
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Soluzione

L’energia e la quantità di moto orizzontale del sistema si conservano. Inoltre, dato che
l’urto avviene in un tempo molto breve, l’unica forza non trascurabile applicata alla
pallina è la reazione normale alla superficie del piano inclinato. Durante l’urto quindi
si conserverà la componente della quantità di moto della pallina parallela al piano
inclinato.

Abbiamo quindi la conservazione dell’energia

1
2

mv2
0 =

1
2

m
(

v2
x + v2

y

)
+

1
2

MV2 (5.79.1)

dove si è tenuto conto che immediatamente dopo l’urto la posizione della pallina non
è cambiata, e che quindi non è necessario includere l’energia potenziale gravitazionale.
Per la conservazione della quantità di moto orizzontale sarà

mv0 = mvx + MV (5.79.2)

ed infine per la componente della quantità di moto della pallina parallela al piano
inclinato

mv0 cos α = m
(
vx cos α + vy sin α

)
. (5.79.3)

Ricavando V dalla seconda relazione abbiamo (γ = M/m)

v2
0 = v2

x + v2
y +

1
γ
(v0 − vx)

2 (5.79.4)

v0 = vx + vy tan α (5.79.5)

ossia
(
vx + vy tan α

)2
= v2

x + v2
y +

1
γ

v2
y tan2 α . (5.79.6)

Risolvendo per tan θ = vy/vx otteniamo le due soluzioni

tan θ = 0 (5.79.7)

e

tan θ =
2 tan α

1−
(

1− 1
γ

)
tan2 α

. (5.79.8)

Solo quest’ultima è fisicamente accettabile. Nel caso particolare da considerare γ→ ∞,
e quindi

tan θ → 2 tan α

1− tan2 α
=

2 sin α cos α

cos2 α− sin2 α
= tan 2α (5.79.9)

cioè l’angolo di incidenza con il piano inclinato è uguale a quello di riflessione, come ci
si aspetta se la pedana è ferma.
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v0

v0

ℓ1

ℓ2

P

m1

m2

Figura 5.66.: Il manubrio considerato nell’esercizio e il perno P contro il quale urta.

PROBLEMA 5.80

Urto di un manubrio ??

Il manubrio in Figura 5.66 è costituito da due masse puntiformi m1 e m2, unite da una
barra di lunghezza ` = `1 + `2 di massa trascurabile. Inizialmente si muove traslando
rigidamente con velocità v0, urta quindi un perno P posto a una distanza `1 dalla massa
superiore, e vi rimane attaccato, libero però di ruotare. Calcolare la velocità angolare
finale del manubrio e l’energia dissipata nell’urto.

Soluzione

Vale la conservazione del momento angolare~L rispetto al perno, dato che le uniche forze
esterne sono applicate in esso al manubrio, e quindi hanno braccio nullo. Consideria-
mo in particolare la componente di ~L normale al piano in cui si muove il manubrio.
Inizialmente questa vale

−m1v0`1 + m2v0`2 (5.80.1)

ed alla fine
m1ω`2

1 + m2ω`2
2 (5.80.2)

dove ω è la velocità angolare finale. Equagliando queste due espressioni si ottiene

ω =
(m2`2 −m1`1)v0

m1`2
1 + m2`2

2
. (5.80.3)
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Quindi il manubrio ruoterà in senso antiorario se m2`2 > m1`1, in senso orario se
m2`2 < m1`1 e non ruoterà affatto se m1`1 = m2`2. Queste alternative corrispondono ad
un urto del perno sopra, sotto o in corrispondenza del centro di massa del manubrio.
L’energia dissipata si calcola come differenza tra energia cinetica iniziale e finale:

∆E =
1
2
(m1 + m2) v2

0 −
1
2

m1`
2
1ω2 − 1

2
m2`

2
2ω2 (5.80.4)

ossia,

∆E =
1
2
(m1 + m2) v2

0 −
1
2
(m2`2 −m1`1)

2
(
m1`2

1 + m2`2
2

) v2
0

=
1
2
(m1 + m2)

(
m1`

2
1 + m2`2

2
)
− (m2`2 −m1`1)

2
(
m1`2

1 + m2`2
2

) v2
0

ed infine

∆E =
1
2

m1m2 (`1 + `2)
2

(
m1`2

1 + m2`2
2

) v2
0 . (5.80.5)

PROBLEMA 5.81

Il grande attrattore ? ? ?

Supponiamo di avere a disposizione una massa di plastilina: possiamo modellarla nella
forma voluta, ma non possiamo cambiare la sua densità ρ. Vogliamo capire che forma
dobbiamo dargli per rendere massima l’attrazione gravitazionale esercitata su un punto
materiale di massa m.

Soluzione

Poniamo il punto materiale nell’origine di un sistema di coordinate. Qualunque sia la
soluzione del problema, con una rotazione del sistema potremo allineare la forza attrat-
tiva totale con l’asse z. Da questo segue che un elemento dM della massa di plastilina
posto nalle posizione~r darà un contributo utile alla forza totale uguale a

dFz = −G
mdM

r3 ~r · ẑ

dato che la somma di tutte le componenti perpendicolari a ẑ si dovrà annullare. Usando
coordinate sferiche questo significa

dFz = −G
mdM

r2 cos θ

Possiamo spostare l’elemento dM mantenendo dFz costante se ci muoviamo sulla super-
ficie

r2 = −K cos θ
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dove K è una costante definita da

K−1 =
1

Gm
dFz

dM

Chiaramente K−1 è proporzionale all’importanza del contributo di dM. Al variare di K
avremo diverse superfici, invarianti per rotazioni attorno all’asse z. Alcune di queste
sono rappresentate in Figura 5.67.

Figura 5.67.: Le superfici r2 = −K cos θ. Dalla più piccola alla più grande corrispondono
a K = 1/10, 1, 2. L’origine del sistema di riferimento è nel punto in comune.

Avendo a disposizione una massa M totale converrà iniziare a riempire le superfici
a K più piccolo (ma positivo). Per determinare il valore di K corrispondente alla super-
ficie più grande completamente riempita basterà imporre che la massa totale in essa
contenuta sia quella a disposizione, cioè

ρ

ˆ
dV = M
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ossia
ρ

ˆ ˆ ˆ
r2drd cos θdφ = M

Integriamo su φ e scriviamo esplicitamente i limiti di integrazione di quanto resta

2πρ

ˆ 0

−1
d cos θ

ˆ √−K cos θ

0
dr r2 = M

da cui
4

15
πρK3/2 = M

Otteniamo infine che K scala come la potenza 2/3 del volume della plastilina

K =

(
15M
4πρ

)2/3

=

(
15V
4π

)2/3

Possiamo infine calcolare la forza attrattiva ottenuta, scrivendo

Fz = −Gm
ˆ

dM
r2 cos θ

= −Gmρ

ˆ
cos θ

r2 r2drd cos θdφ

= −2πGmρ

ˆ 0

−1
cos θd cos θ

ˆ √−K cos θ

0
dr

=
4π

5
Gmρ

√
K

=
4πG

5
mρ

(
15V
4π

)1/3

Possiamo confrontare questo risultato con ciò che si otterrebbe con una distribuzione
sferica di plastilina,

Fz =
GmM

R2 =
4πG

5
mρ

(
V
4π

125
9

)1/3

che risulta minore di un fattore (25/27)1/3 ' 0.97. Per maggiore chiarezza riportiamo
in Figura 5.68 le sezioni trasversali delle superfici.
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-0.5 0.5

-1.5

-1.0

-0.5

Figura 5.68.: Le sezioni trasverse delle superfici riportate in Figura 5.67 per K = 1/10
(blu), K = 1 (verde) e K = 10 (arancio). Le linee tratteggiate corrispondono
alle sfere di uguale volume.

PROBLEMA 5.82

Razzo in un campo gravitazionale costante ??

Studiare il moto di un razzo in un campo gravitazionale costante. La massa iniziale del
missile è M0. Il sistema di propulsione emette una massa costante di gas Γ per unità
di tempo, ad una velocità −u relativa al razzo. Determinare in particolare sotto quali
condizioni il razzo riesce a sollevarsi da terra.

Soluzione

La quantità di moto del sistema al tempo t, escludendo il gas espulso fino a quell’istante,
è

P(t) = M(t)V(t)
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La quantità di moto al tempo t + dt vale invece, tenendo conto del gas espulso tra t e
t + dt,

P(t + dt) = [M(t)− Γ(t)dt]V(t + dt) + [−u + V(t)] Γ(t)dt

dove abbiamo considerato una massa espulsa per unità di tempo Γ = −Ṁ non necessa-
riamente costante. La variazione della quantità di moto è uguale all’impulso delle forze
esterne

P(t + dt)− P(t) = −M(t)gdt

da cui

[M(t)− Γ(t)dt]
[
V(t) + V̇(t)dt

]
+ [−u + V(t)] Γ(t)dt−M(t)V(t) = −M(t)gdt

Sviluppando e omettendo i termini del secondo ordine si ottiene

M(t)V̇(t) = Γ(t)u−M(t)g

Vediamo che il razzo si solleverà dal suolo se

Γ(0)u > M0g

Passiamo adesso all’integrazione delle equazioni del moto. Abbiamo

dV
dt

=
uΓ(t)

M0 −
´ t

0 Γ(t′)dt′
− g

ed integrando otteniamo

V(t) =
ˆ t

0

uΓ(t′)

M0 −
´ t′

0 Γ(t′′)dt′
dt′ − gt

che posto di conoscere Γ(t) e di saper calcolare gli integrali al membro destro da una
1soluzione completa del problema. Considerando Γ costante in particolare abbiamo

V(t) =

ˆ t

0

uΓ
M0 − Γt′

dt′ − gt

= −u log
(

1− Γt
M0

)
− gt

PROBLEMA 5.83

Razzo vincolato ??

Un razzo di massa iniziale M0 è fissato ad un estremo di un’asta di massa trascurabile
e lunghezza `, perpendicolarmente ad essa, come in Figura 5.69. L’asta può ruotare
liberamente attorno all’altro estremo in un piano orizzontale. All’accensione il razzo è
fermo, e da quel momento il gas viene espulso con una velocità relativa costante −u.
Determinare la velocità del razzo in funzione della massa di gas espulso.
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`
M

Figura 5.69.: Razzo vincolato.

Soluzione

Nella situazione considerata il momento angolare del sistema composto dall’asta, dal
razzo e dal gas espulso si conserva, dato che il vincolo non può esercitare un momento
di forza. Calcoliamo il momento angolare del missile ad un dato istante, tenendo conto
del gas non ancora espulso:

L = M`V

Se ad un istante successivo calcoliamo il momento angolare del missile e del gas espulso
nel frattempo, dobbiamo trovare lo stesso valore. Indicando con dM la variazione della
massa del missile abbiamo

L = (M + dM) ` (V + dV)− dM` (V − u)

ed uguagliando troviamo, trascurando variazioni del secondo ordine,

MdV`+ dM`u = 0
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ossia ˆ V(m)

V(0)
dV = −u

ˆ M0−m

M0

dM
M

dove abbiamo indicato con m la massa di gas espulso. Integrando troviamo

V(m) = V(0)− u log
(

1− m
M0

)

PROBLEMA 5.84

Razzo a più stadi ??

Un razzo non può chiaramente utilizzare tutta la sua massa come propellente. Suppo-
niamo che il rapporto tra la massa totale e quella utilizzabile sia γ < 1, e che la velocità
di espulsione relativa al missile sia −u. La strategia più semplice per un razzo di massa
iniziale M0 è quella di espellere tutta la massa disponibile γM0, raggiungendo una certa
velocità finale.

Un’altra possibilità è quella di dividere il missile in due stadi di massa M0/2. Si
espelle quindi tutto la massa γM0/2 del primo stadio, raggiungendo una velocità V1. A
questo punto quanto rimane del primo stadio (massa (1− γ)M0/2) viene abbandona-
to e si procede espellendo la rimanente massa disponibile (ancora γM0/2). Calcolare
la velocità finale raggiunta in questo caso, e dire se è maggiore o minore di quella
precedente.

Soluzione

Utilizzando la prima strategia si raggiunge una velocità finale data da

Vf = −u log
(1− γ) M0

M0
= −u log (1− γ)

Con la seconda strategia al momento dell’abbandono del primo stadio si ha

V1 = −u log
(1− γ/2) M0

M0

e al termine avremo

V ′f = −u log
(1− γ/2) M0

M0
− u log

(1− γ) M0/2
M0/2

= −u log
(

1− γ

2

)
− u log (1− γ)

che è maggiore di quella ottenuta nel primo caso di

V ′f −Vf = −u log
(

1− γ

2

)
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PROBLEMA 5.85

Forze di marea ??

Un osservatore libero di muoversi sotto l’azione di un campo gravitazionale esterno
indipendente dalla posizione non avverte nessun disagio, per quanto intenso il campo
possa essere. La ragione è che ogni elemento del suo corpo viene accelerato nello stesso
modo. In un campo gravitazionale dipendente dalla posizione questo non è vero: la
forza che agisce sui piedi può essere diversa da quella che agisce sulla testa e il corpo
viene posto in tensione. L’effetto in condizioni normali è piccolo: stimate la tensione
subita dal vostro corpo in caduta libera sulla superficie terrestre (trascurate l’attrito
dell’aria) e confrontatela con quella che, secondo voi, dovrebbe essere una tensione
dolorosa.

Soluzione

m/2

m/2

T

F
(1)
z

F
(2)
z

Figura 5.70.: Calcolo della tensione su un corpo in un campo gravitazionale.

Consideriamo il semplice modello in Figura 5.70. La massa è distribuita sui due corpi
(testa e piedi), uniti da una sbarra che per semplicità immaginiamo priva di massa.
L’equazione del moto del primo corpo è

m1a = F(1)
z − T

e per il secondo

m2a = F(2)
z + T

205 versione del 5 ottobre 2016



5.86. MASSIMA FORZA DI MAREA ? ? ?

dove si è tenuto conto che l’accelerazione è la stessa, e T è la tensione. A noi interessa la
tensione, che vale

T =
m1m2

m1 + m2

(
1

m1
F(1)

z −
1

m2
F(2)

z

)

=
m1m2

m1 + m2
(−g (z) + g (z + h))

dove
g(z) = −GMT

z2

è l’accelerazione di gravità ad una distanza z dal centro della terra (se z è maggiore del
raggio terrestre RT) e MT è la massa della terra. In prima approssimazione quindi

T ' m1m2

m1 + m2

∂g
∂z

h =
m1m2

m1 + m2

3GMT

z3 h

= 3
m1m2

m1 + m2

(
GMT

z2

)(
h
z

)

' 3
m1m2

m1 + m2

(
GMT

R2
T

)(
h

RT

)

e ponendo m1 = m2 = 40kg, h = 1.8m otteniamo

T ' 3× 20kg× 9.8m s−2 × 1.8m
6.3× 106m

' 1.7× 10−4N

La tensione è depressa rispetto alla forza peso di un fattore molto piccolo, il rapporto
h/RT tra l’altezza del corpo e il raggio della terra. Per avere un termine di confronto,
l’ordine di grandezza di una tensione dolorosa è lo stesso del peso del corpo, ∼ 103N.

PROBLEMA 5.86

Massima forza di marea ? ? ?

Avendo a disposizione un volume V della stessa plastilina di densità ρ del problema 5.81
la si vuole disporre, questa volta, in modo da rendere massima la variazione

∂Fz

∂z

in un punto dato, dove Fz indica la componente z della forza attrattiva generata dal-
la plastilina. Una possibile applicazione è una versione scientificamente avanzata del
banco di stiramento in Figura 5.71.

Determinare la forma da dare alla plastilina, e stimare la massa necessaria a rendere
l’apparato utile al suo scopo, considerando ρ = 103kg m−3. Conviene utilizzare un
materiale più o meno denso?
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Figura 5.71.: Il banco di stiramento, uno strumento di tortura usato nel medio evo, ma
di origini ben più antiche.

Soluzione

Immaginiamo una massa m all’origine di un sistema di coordinate. La forza che una
massa dM posta in~r esercita su di essa sarà

~F =
GmdM

r3 ~r

e quindi

Fz =
GmdM

r3 z

∂Fz

∂z
= GmdM

(
1
r3 − 3

z2

r5

)

Esprimiamo quest’ultima quantità in coordinate sferiche:

∂Fz

∂z
= GmdM

(
1− 3 cos2 θ

r3

)

Analogamente a quanto visto nell’esercizio 5.81 il contributo della massa dM a ∂Fz/∂z
sarà lo stesso per tutti i punti appartenenti alla superficie

r3 = K
(
1− 3 cos2 θ

)
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dove

K = GmdM
(

∂Fz

∂z

)−1

è una costante tanto più piccola quanto maggiore è il contributo. Per rendere massimo
∂Fz/∂z dovremo determinare la superficie capace di contenere tutta la massa disponibile
corrispondente al minimo valore positivo di K.

Figura 5.72.: A sinistra, la distribuzione di massa che rende massimo e positivo ∂Fz/∂z
nell’origine. A destra, la distribuzione che rende massimo in valore assolu-
to ma negativo ∂Fz/∂z. La prima superficie corrisponde a K = 1, la seconda
a K = −1.

Notiamo che il massimo valore di ∂Fz/∂z corrisponde ad una azione di trazione
esercitata sul corpo vicino all’origine (la testa a z > 0 viene spinta verso l’alto, i piedi a
z < 0 verso il basso).

Per ottenere una compressione dobbiamo chiederci invece quale sia la configurazione
corrispondente ad un ∂Fz/∂z massimo in valore assoluto ma negativo. In questo caso è
sufficiente trovare la superficie capace di contenere tutta la massa disponibile corrispon-
dente al valore di K più piccolo in valore assoluto, ma negativo. Il grafico per le superfici
corrispondenti ad entrambi i casi (per K = 1 e K = −1) sono riportati in Figura 5.72.

Analogamente a quanto visto nell’esercizio 5.81 sommiamo i contributi di tutta la
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massa contenuta all’interno di una superficie data. Questo significa per K > 0

∂Fz

∂z
= Gmρ

ˆ (
1− 3 cos2 θ

r3

)
dV

= 2πGmρ

ˆ
d cos θ

ˆ [K(1−3 cos2 θ)]
1/3

0
dr
(

1− 3 cos2 θ

r

)

= 2πGmρ

ˆ 1/
√

3

−1/
√

3
d cos θ

(
1− 3 cos2 θ

) ˆ [K(1−3 cos2 θ)]
1/3

0

dr
r

Una particolarità di questa espressione è che l’integrale sulla coordinata radiale è di-
vergente. Il significato di tutto questo è che il contributo della massa vicina a r = 0 è
dominante, e questo permette di ottenere un valore grande quanto vogliamo di ∂Fz/∂z
con qualsiasi massa a disposizione. Sembra quindi che sia possibile costruire un ban-
co di stiramento estremamente efficace a poco prezzo. In realtà è chiaro che in pratica
questo non funziona: per un utilizzo pratico abbiamo bisogno di una regione sufficiente-
mente ampia priva di massa in cui alloggiare il torturato. Quindi l’integrale precedente
deve essere modificato in

∂Fz

∂z
= 2πGmρ

ˆ 1/
√

3

−1/
√

3
d cos θ

(
1− 3 cos2 θ

) ˆ [K(1−3 cos2 θ)]
1/3

rmin

dr
r

che non è più divergente:

∂Fz

∂z
=

2π

3
Gmρ

ˆ 1/
√

3

−1/
√

3
d cos θ

(
1− 3 cos2 θ

)
log

K
(
1− 3 cos2 θ

)

r3
min

=
8π

9
√

3
Gmρ

(
log

4K
r3

min
− 5

3

)

Per calcolare K valutiamo il volume complessivo

V =

ˆ
dφ

ˆ
d cos θ

ˆ
r2dr

= 2π

ˆ 1/
√

3

−1/
√

3
d cos θ

ˆ [K(1−3 cos2 θ)]
1/3

rmin

r2dr

=
2π

3

ˆ 1/
√

3

−1/
√

3

[
K
(
1− 3 cos2 θ

)
− r3

min
]

d cos θ

=
8π

9
√

3
K− 4πr3

min

3
√

3

da cui

K =
9
√

3
8π

V +
3
2

r3
min '

9
√

3
8π

V

209 versione del 5 ottobre 2016



5.87. PENDOLO NON IDEALE ??

Per ottenere un banco efficace dovremo avere

∂Fz

∂z
rmin > mg

e quindi
Gρrmin

g

[
log

(
9
√

3
2π

V
r3

min
+ 6

)
− 5

3

]
>

9
√

3
8π

Dato che il fattore

α =
Gρrmin

g
' 7× 10−9

(
ρ

103kg m−3

)( rmin

1m

)

è molto piccolo, è chiaro che per ottenere il risultato voluto dovremo avere un volume
totale enormemente più grande di r3

min, dato che il logaritmo dovrà essere O
(
α−1), quin-

di il dispositivo è del tutto irrealizzabile. Aumentare la densità può aiutare: all’interno
di una stella di neutroni ρ ' 1018kg m−3 e quindi α ' 7× 106. In questo caso, suppo-
nendo di poter applicare l’espressione per la forza gravitazionale di Newton, sarebbe
sufficiente avere

V & 2r3
min

Considerazioni analoghe si possono fare nel caso K < 1.

PROBLEMA 5.87

Pendolo non ideale ??

Un punto materiale di massa m è sospeso ad un punto fisso da una molla con lunghezza
di riposo `0 e costante elastica k. Per semplicità si può supporre che il moto avvenga in
un piano verticale. Studiare le piccole oscillazioni del sistema attorno alla posizione di
equilibrio stabile.

Soluzione

Conviene utilizzare coordinate polari per specificare la posizione del punto materiale
rispetto all’origine. L’estremo opposto della molla è fissato in quest’ultima (Figura 5.73).
Possiamo allora scrivere le equazioni del moto nella direzione radiale e tangenziale nella
forma

m
(
r̈− rθ̇2) = mg cos θ − k (r− `0) (5.87.1)

m
(
rθ̈ + 2ṙθ̇

)
= −mg sin θ (5.87.2)

La posizione di equilibrio si trova annullando nelle equazioni precedenti velocità e
accelerazioni. Deve quindi essere

sin θ = 0 (5.87.3)

cos θ =
k

mg
(r− `0) (5.87.4)
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m

k `0

θ

Figura 5.73.: Coordinate polari utilizzate per descrivere il pendolo.

e troviamo le due soluzioni
(r, θ) =

(
`0 −

mg
k

, π
)

(5.87.5)

e
(r, θ) =

(
`0 +

mg
k

, 0
)

(5.87.6)

Studiamo piccole oscillazioni attorno alla prima introducendo due nuove coordinate

θ = π + δθ (5.87.7)

r = `0 −
mg
k

+ δr (5.87.8)

legate agli spostamenti rispetto alla posizione di equilibrio scelta. Sostituendo nelle
equazioni del moto abbiamo

m
[
δr̈−

(
`0 −

mg
k

+ δr
)

δθ̇2
]
= mg cos (π + δθ)− k

(
`0 −

mg
k

+ δr− `0

)
(5.87.9)

m
[(

`0 −
mg
k

+ δr
)

δθ̈ + 2δṙδθ̇
]
= −mg sin (π + δθ) (5.87.10)

Trascurando tutte le quantità di ordine maggiore del primo rispetto alle piccole va-
riazioni e utilizzando le approssimazioni sin (π + δθ) ' −δθ e cos (π + δθ) ' −1
otteniamo

mδr̈ = −kδr (5.87.11)

m
(
`0 −

mg
k

)
δθ̈ = mgδθ (5.87.12)

211 versione del 5 ottobre 2016



5.87. PENDOLO NON IDEALE ??

La seconda equazione non corrisponde a piccole oscillazioni se, come supporremo,
`0 > mg/k. In effetti la sua soluzione generale è del tipo

δθ(t) = Aekt + Be−kt (5.87.13)

con

k =

√
g

`0 − mg
k

(5.87.14)

e questo permette di concludere che il punto di equilibrio studiato non è stabile.
Passiamo allora alla seconda soluzione di equilibrio. Questa volta le “piccole” coordi-

nate saranno definite da

θ = δθ (5.87.15)

r = `0 +
mg
k

+ δr (5.87.16)

e sostituendo come nel caso precedente nelle equazioni del moto troviamo

m
[
δr̈−

(
`0 +

mg
k

+ δr
)

δθ̇2
]

= mg cos (δθ)− k
(
`0 +

mg
k

+ δr− `0

)
(5.87.17)

m
[(

`0 +
mg
k

+ δr
)

δθ̈ + 2δṙδθ̇
]

= −mg sin (δθ) (5.87.18)

Questa volta utilizzeremo le approssimazioni sin δθ ' δθ e cos δθ ' 1. Trascurando
nuovamente prodotti di quantità piccole avremo

mδr̈ = −kδr (5.87.19)

m
(
`0 +

mg
k

)
δθ̈ = −mgδθ (5.87.20)

Entrambe le equazioni descrivono oscillatori armonici, ed hanno per soluzioni generali

δr(t) = A cos ωrt + B sin ωrt (5.87.21)
δθ(t) = C cos ωθt + D sin ωθt (5.87.22)

con

ωr =

√
k
m

(5.87.23)

ωθ =

√
g

`0 +
mg
k

(5.87.24)

Abbiamo quindi una oscillazione radiale, la cui frequenza dipende dalla costante di
richiamo della molla, e una oscillazione tangenziale. Per la seconda la frequenza è iden-
tica a quella di un pendolo di lunghezza ` = `0 +

mg
k , cioè alla lunghezza della molla

nella posizione di equilibrio.
Le due oscillazioni sono indipendenti, e nel limite k → ∞, che ci aspettiamo corri-

sponda al caso di un filo inestensibile, la frequenza di oscillazione radiale tende pure
all’infinito, mentre quella tangenziale diviene la frequenza di un pendolo di lunghezza
`0.
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PROBLEMA 5.88

Moto di una scodella ??

Una scodella di massa M e sezione S può muoversi liberamente su un piano orizzontale
senza attrito. Su di essa cade della pioggia: ciascuna goccia all’arrivo sulla scodella ha
una velocità orizzontale Vx > 0 e una verticale Vy < 0. Inoltre la massa di acqua che
arriva su una superficie S fissa sul terreno è costante e vale Γ.

Supponendo che la pioggia raccolta dalla scodella rimanga in quiete rispetto ad essa,
e che questa si inizialmente ferma, studiarne il moto. Trascurare l’effetto dell’urto della
pioggia sulle superfici laterali della scodella.

v

M

Figura 5.74.: La scodella ha una sezione orizzontale S, la pioggia cade su di essa con un
angolo determinato dalle componenti orizzontali e verticali della velocità.
Se la scodella è ferma, la massa di acqua raccolta in un’unità di tempo è
costante e vale Γ.

Soluzione

Calcoliamo prima di tutto la massa di pioggia raccolta per unità di tempo da una sco-
della che si sta muovendo con velocità v. Questa è la massa contenuta nel cilindro
rappresentato dall’insieme dei vettori in Figura 5.74, con base S e altezza uguale alla
componente verticale della velocità della pioggia. Dato che quest’ultima non cambia al
variare della velocità della scodella, otterremo ancora Γ.

Scriviamo la quantità di moto della scodella al tempo t + dt. Esso sarà dato da

P = (M + m(t + dt)) v(t + dt)

dove m(t + dt) è la pioggia raccolta a quell’istante. Al tempo t questa dovrà essere
uguale alla quantità di moto della scodella più quella (orizzontale) della pioggia raccolta
nell’intervallo dt successivo:

P = (M + m(t)) v(t) + ΓVxdt

Eguagliando queste due espressioni troviamo

(M + m(t)) v(t) + ΓVxdt = (M + m(t + dt)) v(t + dt)
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Usando il fatto che m(t + dt) = m(t) + Γdt possiamo scrivere

(M + m(t)) v(t) + ΓVxdt = (M + m(t) + Γdt) (v(t) + v̇(t)dt)

ossia, trascurando i termini di ordine superiore al primo

(M + m) v̇ = Γ (Vx − v)

A questo punto possiamo scrivere (Γ = dm/dt)

(M + m) Γ
dv
dm

= Γ (Vx − v)

che si può integrare direttamente:

ˆ v(m)

0

1
Vx − v′

dv′ =
ˆ m

0

1
M + m′

dm′

ottenendo

− log
Vx − v(m)

Vx
= log

M + m
M

e quindi

v(m) =
m

M + m
Vx

Questa soluzione fornisce la velocità della scodella in funzione della massa della pioggia
raccolta. Come si vede per grandi valori di m v → Vx: questo si interpreta facilmente
tenendo condo che quando v = Vx la pioggia cade verticalmente nel sistema di riferi-
mento solidale con la scodella, che diviene anche un sistema di riferimento inerziale.
Notanto che m = Γt possiamo anche scrivere la velocità della scodella in funzione del
tempo:

v(t) =
Γt

M + Γt
Vx

PROBLEMA 5.89

Urto contro una sfera ? ? ?

Dei proiettili, schematizzabili come punti materiali, si muovono con velocità ~v = −v0ẑ
è sono distribuiti uniformemente, nel senso che il numero di proiettili che attraversano
una superficie qualsiasi ortogonale all’asse ẑ è dato da

N = ΦS∆t

dove S è l’area della superficie, Φ una costante e ∆t l’intervallo di tempo considerato. I
proiettili rimbalzano elasticamente su una sfera di raggio r fissa nell’origine del sistema
di coordinate. Calcolare il numero di urti che avvengono in un secondo e mostrare che i
proiettili vengono deviati uniformemente in tutte le direzioni, nel senso che i proiettili
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deviati che attraversano una qualsiasi parte di una superficie sferica di raggio R� r è
data da

N′ = Φ′S′∆t

Nella formula precedente S′ è l’area della parte di superficie sferica considerata e Φ′ è
una costante. Calcolare inoltre Φ′.

Soluzione

Un proiettile urterà la sfera se si troverà all’interno del cilindro di raggio r avente con
l’asse nella direzione ẑ. Tante particelle attraverseranno una sezione trasversa di questo
cilindro, tanti saranno gli urti. Quindi avremo

Nurti = Φπr2

urti al secondo. Notare che il numero di particelle che attraversano la sezione trasversa
è anche il numero di particelle contenute nel cilindro di base πr2 e altezza v0∆t, quindi
Nurti = ρv0πr2 e Φ = ρv0 dove ρ è la densità di volume dei proiettili.

Nell’urto elastico il proiettile viene deviato specularmente. Supponiamo infatti che n̂
sia il versore normale alla superficie della sfera nel punto di impatto, abbiamo due leggi
di conservazione. L’energia, dato che l’urto è elastico

1
2

mv2
0 =

1
2

mv2
f

e la quantità di moto del proiettile parallela alla superficie, che possiamo ottenere sot-
traendo alla quantità di moto totale quella perpendicolare alla superficie, ~p⊥ = m~v⊥ =
m (~v · n̂) n̂

~p‖ = m~v‖ = m [~v− (~v · n̂) n̂]

In questo caso si tratta in realtà di due quantità conservate, dato che ~p‖ ha due compo-
nenti indipendenti. Abbiamo quindi le equazioni

~v0‖ = ~v f ‖

v2
0 = v2

f

Se separiamo le velocità in componenti perpendicolari e parallele la conservazione
dell’energia da

(
~v0⊥ +~v0‖

)2
=
(
~v f⊥ +~v f ‖

)2

e quindi, sviluppando e tenendo conto che componenti parallele e perpendicolari sono
ortogonali tra loro,

v2
0⊥ + v2

0‖ = v2
f⊥ + v2

f ‖

Usando la seconda legge di conservazione troviamo quindi

v2
0⊥ = v2

f⊥
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cioè
~v f⊥ = ±~v0⊥

In quest’ultimo passaggio abbiamo potuto derivare l’uguaglianza (a meno di un segno)
dei vettori dall’uguaglianza dei moduli dato che la direzione di un vettore perpendico-
lare alla superficie è fissato univocamente. In conclusione

~v f = ~v f ‖ +~v f⊥ = ~v0‖ ±~v0⊥

Entrambe le velocità finali soddisfano le condizioni di conservazione che abbiamo posto,
ma quella con il segno positivo (corrispondente ad una velocità inalterata) non sono
rilevanti per il nostro problema. Abbiamo quindi esplicitamente

~v f = ~v0‖ −~v0⊥ = ~v0 − 2 (~v0 · n̂) n̂

θ

θ

θ

b

n̂

ŵ

Figura 5.75.: La relazione tra particelle entranti e particelle uscenti. La particella si avvi-
cina alla sfera muovendosi parallelamente all’asse z, ad una distanza b da
esso.

Questa è la legge di riflessione speculare: la traiettoria dopo l’urto giace nel piano
determinato dalla traiettoria prima dell’urto e dalla normale n̂. Inoltre l’angolo tra la
traiettoria e la normale è lo stesso prima e dopo l’urto. Se utilizziamo coordinate sferiche
vediamo che la traiettoria della particella dopo l’urto è data da in funzione del parametro
s > 0 da

~r′ = rn̂ + sŵ

dove n̂ è il versore radiale nel punto di impatto,

n̂ =




sin θ cos φ
sin θ sin φ

cos θ



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mentre ŵ è nella direzione del moto dopo l’urto. Dalla costruzione in Figura 5.75
vediamo che possiamo scrivere ŵ nella forma

ŵ =




sin 2θ cos φ
sin 2θ sin φ

cos 2θ




e che b = r sin θ, detta b la distanza tra la traiettoria iniziale della particella e l’asse ẑ.
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Figura 5.76.: La relazione tra particelle entranti e particelle uscenti. Il fascio in ingresso
con sezione a corona circolare (in azzurro, area ∆S = π[(b + ∆b)2 − b2])
viene trasformato nell’area a forma di anello ∆S′ sulla sfera esterna di
raggio R. Nell’animazione l’area ∆S viene mantenuta costante, e si può
verificare che anche ∆S′ si mantiene approssimativamente costante. Questo
non è esattamente vero perchè la condizione R� r non è particolarmente
rispettata nella figura (R/r = 3). Animazione disponibile all’indirizzo
http://www.df.unipi.it/~cella/videos/ueg/UrtoSfera.html
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Al variare del punto di impatto θ varia nell’intervallo 0 < θ < π/2 e φ in 0 < φ < 2π.
Quindi θ′ = 2θ varia in 0 < θ′ < π ed il versore ŵ varia sull’intera sfera unitaria (vedere
Figura 5.76).

Considerando un elemento infinitesimo di una superficie ortogonale all’asse z, che
potremo scrivere come

dS = b db dφ = r sin θ d (r sin θ) dφ

= r2 sin θ cos θdθdφ

il numero di particelle che la attraverseranno prima dell’urto nel tempo ∆t sarà (b < r è
d’ora in poi sottointeso)

dN = ΦdS∆t = Φ∆t r2 sin θ cos θdθdφ

Possiamo riscrivere questa quantità nella forma

dN =
1
4

( r
R

)2
Φ∆t R22 sin 2θdθdφ

=
1
4

( r
R

)2
Φ∆t

[
R2d cos θ′dφ

]

e notare che l’espressione tra parentesi quadre è l’elemento di superficie infinitesima
dS′ su una sfera di raggio R. Dato che per R � r le traiettorie delle particelle dopo
l’urto sono approssimativamente radiali,~r′ ' sŵ, tutte le particelle che attraversano la
superficie attraversano successivamente dS′, e quindi potremo scrivere

dN = Φ′dS′∆t

con
Φ′ =

1
4

( r
R

)2
Φ

Notare che integrando su tutta la sfera abbiamo

N = Φ′4πR2∆t = Φπr2∆t = Nurti

cioè il numero di urti in un intervallo di tempo è uguale al numero di particelle che
attraversano la superficie sferica.

PROBLEMA 5.90

Perturbazione di un oscillatore armonico ? ? ?

Un oscillatore armonico è ottenuto collegando una massa m ad un punto fisso mediante
una molla di lunghezza a riposo trascurabile e costante di richiamo k. Il moto è unidi-
mensionale, e la massa si trova inizialmente nella posizione di equilibrio con velocità v0.
La legge oraria è ben nota:

x(t) =
v0

ω
sin ωt
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con ω =
√

k/m.
Si aggiunge adesso una nuova molla, in parallelo a quella precedente, anch’essa di

lunghezza a riposo trascurabile e costante di richiamo εk � k, e si vuole calcolare la
nuova legge oraria, mantenendo le stesse condizioni iniziali.

Anche in questo caso la soluzione esatta è facilmente calcolabile. Si vuole però proce-
dere in modo diverso. Supponendo che la soluzione possa essere approssimata da uno
sviluppo in potenze di ε

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · ·
vogliamo provare a determinare x0(t) e x1(t) sostituendo lo sviluppo nell’equazione del
moto ed eguagliando i termini dello stesso ordine in ε.

Confrontare il risultato approssimato con la soluzione esatta: si può dire che l’appros-
simazione sia buona se ε� 1? Dare una spiegazione di ciò che succede.

Soluzione

L’equazione del moto del sistema si può scrivere nella forma

mẍ + (1 + ε) kx = 0

che ha per soluzione esatta con le condizioni iniziali volute

x(t) =
v0

ω′
sin ω′t

dove ω′ =
√
(1 + ε)ω.

Sostituiamo adesso la soluzione approssimata troncata al primo ordine in ε

m (ẍ0 + εẍ1) + (1 + ε) k (x0 + εx1) = 0

ed eguagliamo i termini formalmente dello stesso ordine in ε. Otteniamo le due equa-
zioni

ẍ0 + ω2x0 = 0

e
ẍ1 + ω2x1 = −ω2x0

con ω2 = k/m. La soluzione generale della prima è data da

x0(t) = A cos ωt + B sin ωt

e sostituendo nella seconda otteniamo

ẍ1 + ω2x1 = −ω2 (A cos ωt + B sin ωt)

che rappresenta un oscillatore armonico forzato alla sua stessa frequenza naturale. La
soluzione generale dell’equazione omogenea associata è identica alla precedente, resta
da determinare una soluzione particolare. Verifichiamo che questa è della forma

xp(t) = Ct cos ωt + Dt sin ωt
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Infatti derivando due volte otteniamo

ẍp(t) = −ω [(Ctω− 2D) cos ωt + (2C + Dtω) sin ωt]

e sostituendo

−ω [(Ctω− 2D) cos ωt + (2C + Dtω) sin ωt] + ω2 (Ct cos ωt + Dt sin ωt)

= −ω2 (A cos ωt + B sin ωt)

da cui
2D cos ωt− 2C sin ωt = −ωA cos ωt−ωB sin ωt

e quindi

D = −1
2

ωA

C =
1
2

ωB

In conclusione la soluzione generale sarà

x(t) ' x0(t) + εx1(t) =
(

A +
ε

2
Bωt

)
cos ωt +

(
B− ε

2
Aωt

)
sin ωt

Imponiamo le condizioni al contorno

x(0) = A = 0

ẋ(0) =
1
2

B (2 + ε)ω = v0

da cui

x0(t) + εx1(t) =
2v0

(2 + ε)ω
(sin ωt + εωt cos ωt)

=
v0

ω

[(
1− 1

2
ε

)
sin ωt + εωt cos ωt

]
+ O

(
ε2)

Già da questa espressione finale possiamo iniziare a capire quanto sia valida la so-
luzione approssimata ottenuta. Infatti ci attendiamo che il termine O(ε) debba essere
una piccola correzione rispetto a quello O(1). Ma questo non è vero: infatti per quanto
piccolo possa essere ε vediamo che per tempi abbastanza grandi (tali che ωt > ε−1) il
secondo termine tra parentesi quadre diviene dominante.

Una conferma viene dal confronto tra i grafici della soluzione esatta (in rosso) e di
quella approssimata in Figura 5.77 a sinistra. Come si vede l’approssimazione al primo
ordine in ε x0(t) + εx1(t), riportata in verde, sembra addirittura peggiore di quella
all’ordine zero x0(t) riportata in blu.
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Figura 5.77.: A sinistra, il confronto tra la soluzione esatta (in rosso), quella approssimata
all’ordine zero x0(t) (in blu) e quella approssimata al primo ordine x0(t) +
εx1(t) (in verde). Sono stati scelti i valori ε = 10−1, ω = 1rad s−1 e v0 =
1m s−1 A destra, la differenza tra espresso in secondi. A destra, la differenza
tra x0(t) e la soluzione esatta (in verde) e tra x0(t) + εx1(t) e la soluzione
esatta (in rosso) per 0 < t < 1 con la stessa scelta di parametri.

Cerchiamo di capire perché. Se espandiamo formalmente la soluzione esatta in ε,
dovremmo ottenere quella approssimata. Ora, possiamo iniziare scrivendo

x(t) =
1√

1 + ε

v0

ω
sin
(√

1 + εωt
)

e dato che ε� 1 sarà sicuramente una buona approssimazione (1 + ε)α ' 1+ αε da cui

x(t) ' v0

ω

(
1− 1

2
ε

)
sin
(

ωt +
1
2

εωt
)

Se procediamo meccanicamente, dovremmo adesso espandere il seno nella forma

sin
(

ωt +
1
2

εωt
)
' sin ωt +

1
2

εωt cos ωt (5.90.1)

ed in effetti otterremmo la soluzione approssimata x0(t) + εx1(t) (dopo aver cancellato
un termine O(ε2). Il problema è che affinchè l’approssimazione (5.90.1) sia accurata non
è sufficiente ε� 1. Occorre infatti che la correzione alla fase del seno sia piccola,

1
2

εωt� 2π

e questo smette di essere vero per tempi abbastanza grandi, comunque piccolo sia ε.
Possiamo riassumere la discussione dicendo che in realtà la variabile “piccola” nella
quale ha senso espandare la soluzione non è bensì εωt.

Ci si può chiedere infine se la soluzione al primo ordine sia in qualche modo più accu-
rata di quella di ordine zero. Da quanto visto è facile rispondere che l’approssimazione
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x0 + εx1 sarà migliore della x0 nel regime εωt � 1. Ad esempio prendendo ε = 10−2

e ω = 1rad s−1 ci attendiamo un errore piccolo per t � 10 s. Questo è confermato dal
grafico a destra in Figura 5.77, dove sono riportate la differenza tra x0(t) e la soluzione
esatta (in verde) e la differenza tra x0(t) + εx1(t) e la soluzione esatta (in rosso) per
0 < t < 1 con questa stessa scelta di parametri. Vediamo che in effetti l’errore al primo
ordine è minore di quello all’ordine zero.

PROBLEMA 5.91

Pendolo modificato ? ? ?

Il pendolo in Figura 5.78, di lunghezza ` e massa m, è sospeso nel punto in cui si congiun-
gono due semicirconferenze di raggio R. Calcolare la frequenza delle piccole oscillazioni
attorno alla posizione di equilibrio. Come cambia la risposta se invece di due semicir-
conferenze si considerano due curve qualsiasi, ma con tangente verticale al punto di
sospensione e raggio di curvatura R?

`

m

g

RR

Figura 5.78.: Il pendolo modificato descritto nel problema. Durante l’oscillazione una
parte del filo si appoggia ad una delle due semicirconferenze.

Soluzione

Usiamo come coordinata l’angolo θ di inclinazione del filo rispetto alla verticale. Ponen-
do l’origine nel punto di sospensione le coordinate della massa si scrivono

x = R (1− cos θ) + (`− Rθ) sin θ = `θ − 1
2

Rθ2 + O
(
θ3)

y = −R sin θ − (`− Rθ) cos θ = −`+ 1
2
`θ2 + O

(
θ3)
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θ

θ

Figura 5.79.: Ponendo l’origine nel descritto nel problema. Durante l’oscillazione una
parte del filo si appoggia ad una delle due semicirconferenze.

per θ > 0 e

x = −R (1− cos θ) + (`+ Rθ) sin θ =
1
2

Rθ2 + `θ + O
(
θ3)

y = R sin θ − (`+ Rθ) cos θ = −`+ 1
2
`θ2 + O

(
θ3)

per θ < 0. I valori approssimati valgono per piccole oscillazioni attorno a θ = 0. Sempre
per piccole oscillazioni le velocità varranno

ẋ = `θ̇ − Rθθ̇ + O
(
θ2θ̇
)

ẏ = `θθ̇ + O
(
θ2θ̇
)

per θ > 0 e

ẋ = Rθθ̇ + `θ̇ + O
(
θ2θ̇
)

ẏ = `θθ̇ + O
(
θ2θ̇
)

per θ < 0. L’energia vale, per piccole oscillazioni,

E =
1
2

m
(
ẋ2 + ẏ2)+ mgy

=
1
2

m`2θ̇2 −mg`+
1
2

mg`θ2

che è identica all’energia di un pendolo semplice. Dunque le semicirconferenze non
hanno alcun effetto sulle piccole oscillazioni.
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Se al posto delle circonferenze si avessero due curve con tangente verticale nell’origine
e raggio di curvatura (sempre nell’origine) ρ, sarebbe possibile riscrivere le coordinate
della massa nella forma

x = X(s) + (`− s) sin θ(s)
y = Y(s)− (`− s) cos θ(s)

dove Y e Y sono le coordinate della curva e abbiamo usato come parametro la lunghezza
s del filo che si appoggia ad essa. Per piccoli valori si s (e quindi di θ) avremo per θ > 0

x =
1
2

d2X
ds2 (0)s2 + (`− s)

dθ

ds
(0)s + O(s3)

y =
dY
ds

(0)s +
1
2

d2Y
ds2 (0)s

2 − `+ s +
1
2
`

(
dθ

ds

)2

s2 + O(s3)

e per la velocità

ẋ =
d2X
ds2 (0)sṡ +

(
`

dθ

ds
(0)ṡ− 2

dθ

ds
(0)sṡ

)
+ O(s2ṡ)

ẏ =
dY
ds

(0)ṡ +
d2Y
ds2 (0)sṡ + ṡ + `

(
dθ

ds

)2

sṡ + O(s2ṡ)

ma dato che la tangente è verticale dY
ds (0) = −1, inoltre dθ

ds = ρ−1. Espressioni analoghe
varranno per θ < 0. Notiamo infine che vale

dY
ds

= − cos θ

e che quindi
d2Y
ds2 =

dθ

ds
sin θ =

1
ρ

sin θ

si annulla per θ = 0. L’energia per piccole oscillazioni sarà quindi a meno di costanti

E =
1
2

m
(
`

ρ
ṡ
)2

+
1
2

mg
`

ρ2 s2

che corrisponde ad un’equazione del moto del pendolo semplice

s̈ +
g
`

s = 0

Quindi anche in questo caso le curve non hanno alcun effetto sul sistema per piccole
oscillazioni. Notare che questo risultato è vero indipendentemente dal valore di ρ.
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PROBLEMA 5.92

Accelerazione massima su disco rotante ??

Un disco di massa M e raggio R è libero di ruotare attorno ad un asse verticale orto-
gonale ad esso e passante per il suo centro. Sul suo bordo si trova una macchinina di
dimensioni trascurabili e massa m. Le ruote della macchinina sono bloccate in modo da
vincolare quest’ultima ad un moto circolare di raggio R. Tra le ruote della macchinina e
il disco si ha attrito statico, con coefficiente µs.

m

M,R

ωM

ωD

Figura 5.80.: Sia la macchinina che il disco si muovono, rispettivamente con velocità
angolare ωM(t) e ωD(t).

Inizialmente disco e macchinina sono fermi, e l’accelerazione di quest’ultima ha
in ogni istante il massimo valore che permette di mantenere l’aderenza con il disco.
Ad un certo momento l’accelerazione tangenziale della macchinina si deve annullare:
determinare l’angolo percorso dalla macchinina e dal disco.

Soluzione

L’unica forza orizzontale che agisce sulla macchinina è quella di attrito. La massima
forza di attrito statico deve uguagliare la massa della macchinina per il modulo della
sua accelerazione, che avrà una componente tangenziale aT = Rω̇M e una componente
centripeta ac = Rω2

M

µsmg = m
√
(Rω̇M)2 +

(
Rω2

M
)2

Inizialmente ωM = 0, quindi l’accelerazione è solo tangenziale e vale aT = µsg. Mano
mano che ωT aumenta l’accelerazione tangenziale deve diminuire, fino ad annullarsi
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quando µsg = ac = Rω2
M, cioè quando

ω2
M =

µsg
R

Otteniamo quindi l’equazione differenziale

ω̇2
M + ω4

M =
(µsg

R

)2

Conviene usare come variabile indipendente non il tempo ma l’angolo θM. In termini di
questo l’equazione precedente si scrive

(
dωM

dθM

)2

ω2
M + ω4

M =
(µsg

R

)2

dato che θ̇M = ωM. Quindi

ωM
dωM

dθM
= ±

√(µsg
R

)2
−ω4

M

ossia
1
2

dω2
M

dθM
= ±

√(µsg
R

)2
−ω4

M

Questa è un’equazione a variabili separabili, che possiamo integrare direttamente per
ottenere l’angolo totale percorso dalla macchinina, θ∗M

ˆ θ∗M

0
dθM = ±1

2

ˆ µsg/R

0

dω2
M√( µsg

R

)2 −ω4
M

Introducendo la variabile x = ω2
MR/(µsg) abbiamo

θ∗M = ±1
2

ˆ 1

0

dx√
1− x2

= ±π

4

risultato che non dipende dalle masse o dal raggio del disco. I due segni dipendono dai
due possibili versi dell’accelerazione.

Per determinare l’angolo di rotazione del disco usiamo la conservazione del momento
angolare del sistema, inizialmente nullo. Abbiamo allora

mR2ωM + IωD = 0

e quindi, integrando e tenendo conto che inizialmente , otteniamo

θ∗D = −mR2

I
θ∗M = −2

m
M

θ∗M = − m
M

π

2
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PROBLEMA 5.93

Caduta in un fossato ??

Un punto materiale si muove in un piano orizzontale con velocità di modulo V. Ad
un certo punto arriva sul bordo di un fossato con sezione semicircolare di raggio R,
perpendicolarmente ad esso. Cade nel fossato (senza rimanere aderente alla superficie) e
rimbalza elasticamente in una certa posizione del fondo. Si osserva che dopo il rimbalzo
la particella si muove verticalmente verso l’alto: calcolare la velocità V e la massima
altezza h raggiunta.

R

g

V

Figura 5.81.: La particella arriva sul bordo del fossato perpendicolarmente ad esso, si
stacca e cade sotto l’azione della gravità.

Soluzione

L’altezza massima raggiunta rispetto al piano si trova facilmente con la conservazione
dell’energia,

1
2

mV2 = mgh

da cui

h =
V2

2g
In un sistema di riferimento con origine nel centro della circonferenza determinata dalla
sezione del fossato la traiettoria del punto materiale è determinata dalle leggi orarie

y = −1
2

gt2

x = −R + Vt

nella forma
y = − g

2V2 (x + R)2

Dato che l’intersezione della traiettoria con la semicirconferenza si ottiene quando x2 +
y2 = R2, quindi conviene usare la parametrizzazione x = R cos θ, y = R sin θ. Abbiamo
quindi una prima relazione

sin θ = − gR
2V2 (1 + cos θ)2 (5.93.1)

228 versione del 5 ottobre 2016
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Dobbiamo adesso imporre che dopo l’urto la particella si muova verticalmente. La
velocità ~v prima dell’urto è

ẏ = −gt = −
√
−2gy

ẋ = V

e dato che l’urto è elastico, la velocità ~v′ immediatamente dopo è data da

~v′ = ~v− 2 (~v · n̂) n̂

ma per ipotesi ~v′ · x̂ = 0, cioè

~v · x̂ = 2 (~v · n̂) (n̂ · x̂)
Dato che

n̂ =

(
cos θ
sin θ

)

esplicitamente questo significa

2 cos2 θ − 1 = 2 sin θ cos θ

√
−2gR

V2 sin θ

ossia, usando la (5.93.1)

2 cos2 θ − 1 =
2gR
V2 sin θ cos θ (1 + cos θ) (5.93.2)

Dividendo membro a membro la (5.93.2) per la (5.93.1) otteniamo l’equazioneda cui

cos θ = 1− 1√
2

Sostituendo nella (5.93.1) otteniamo

V =
√

gR
(√

2− 1
2

)3/4

' 0.935
√

gR

Possiamo ora calcolare esplicitamente anche l’altezza massima raggiunta

h =
1
2

R
(√

2− 1
2

)3/2

' 0.437 R

Notare che dipende solo dal raggio del fossato.

PROBLEMA 5.94

Piccole oscillazioni I ??

Sulla metà di un cilindro di raggio R è appoggiata una sbarra di lunghezza ` e massa
trascurabile. Agli estremi della sbarra sono fissate due massa uguali m. La sbarra è libera
di inclinarsi rotolando senza strisciare sul cilindro, e non sono presenti attriti. Dire se la
posizione di equilibrio in figura è stabile: in caso positivo calcolare la frequenza della
piccole oscillazioni.
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m m`/2 `/2

R

g

Figura 5.82.: Il punto medio della sbarra è appoggiato alla sommità del cilindro. La
sbarra rotola senza strisciare, in altre parole il punto della sbarra a contatto
con il cilindro è istante per istante fermo.

Soluzione

Usiamo come coordinata l’angolo tra la direzione verticale e il segmento che congiunge
il centro del cilindro con il punto di contatto, come in Figura (5.83).

m

m
R

g
θ

`
2 −Rθ

`
2 +Rθ

Figura 5.83.: Il punto medio della sbarra è appoggiato alla sommità del cilindro. La
sbarra rotola senza strisciare, in altre parole il punto della sbarra a contatto
con il cilindro è istante per istante fermo.

Scegliendo un sistema di riferimento con origine nel centro del cilindro, possiamo
scrivere le coordinate delle due masse. Per quella a sinistra vale

x1 = R sin θ −
(
`

2
+ Rθ

)
cos θ

y1 = R cos θ +

(
`

2
+ Rθ

)
sin θ
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e per quella a destra

x2 = R sin θ +

(
`

2
− Rθ

)
cos θ

y2 = R cos θ −
(
`

2
− Rθ

)
sin θ

L’energia potenziale si può scrivere adesso come

U(θ) = mgy1 + mgy2 = 2mgR (cos θ + θ sin θ)

Per piccole oscillazioni attorno a θ = 0 abbiamo

U(θ) = 2mgR
(

1 +
θ2

2

)
+ O

(
θ4
)

che ha un minimo appunto in θ = 0: quindi questa posizione è di equilibrio stabile.
Per determinare la frequenza delle piccole oscillazioni scriviamo l’energia cinetica.

Possiamo derivare le coordinate e trovare le componenti della velocità. Più semplice-
mente possiamo osservare che la sbarra ruota istante per istante attorno al punto di
contatto con velocità angolare θ̇, e quindi

|v1| =
∣∣∣∣
(
`

2
+ Rθ

)
θ̇

∣∣∣∣

|v2| =
∣∣∣∣
(
`

2
− Rθ

)
θ̇

∣∣∣∣

Per piccole oscillazioni possiamo trascurare i termini proporzionali al prodotto θθ̇ e
quindi a meno di una costante

E =
1
2

2m
(
`

2

)2

θ̇2 +
1
2

2mgRθ2

che è l’energia di un oscillatore armonico di frequenza

f =
1

2π

√√√√
2mgR

2m
(
`
2

)2 =
1

2π

√
4gR
`2

PROBLEMA 5.95

Materia oscura ??

In un semplice modello per una galassia ciascuna stella si muove in un’orbita circolare,
sotto l’azione di un potenziale centrale U(r) che tiene conto delle interazioni gravita-
zionali con le rimanenti. Le osservazioni mostrano che la velocità di una stella dipende
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dalla sua distanza dal centro della galassia come

V(r) =

√
K

1 + r
r0

(5.95.1)

dove K e r0 sono costanti positive.

1. Determinare il potenziale U(r) che potrebbe spiegare i dati sperimentali.

2. Studiare qualitativamente le orbite nel potenziale U(r), dicendo in particolare se
sono possibili orbite illimitate.

3. Supponendo che la galassia sia approssimabile con una distribuzione sferica di
massa, determinarne la massa totale.

Soluzione1

Per un’orbita circolare di raggio r la massa per l’accelerazione centripeta deve essere
uguale alla forza radiale

−m
V2(r)

r
= Fr = −

∂U
∂r

Inserendo l’espressione della velocità otteniamo

dU
dr

=
Km

r
(

1 + r
r0

)

e quindi a meno di una costante deve essere

U(r) = Km log
(

2r
r + r0

)

Il potenziale efficace vale

Ue f f (r) =
L2

2mr2 + Km log
(

2r
r + r0

)

che diverge ∝ r−2 per piccoli r e tende alla costante C∞ = Km log 2 per r → ∞. Esistono
quindi orbite illimitate, corrispondenti a energie E > C∞. Il potenziale ha un unico
minimo determinato dall’unica soluzione positiva di

dUe f f (r)
dr

=
Km2r2r0 − L2(r + r0)

mr3 (r + r0)
= 0

cioè

r = r∗ =
L2 + L

√
L2 + 4Km2r2

0

2Km2r0

1Prova scritta del 1/5/2009
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corrispondente all’orbita circolare di momento angolare L (e energia E = Ue f f (r∗)).
Se la distribuzione di massa della galassia è sferica deve essere

Fr(r) =
GmM(r)

r2

dove M(r) è la parte della massa totale contenuta in una sfera di raggio r. Se con-
frontiamo questa espressione della forza radiale con quella ottenuta precedentemente
abbiamo

Km

r
(

1 + r
r0

) =
GmM(r)

r2

La massa totale della galassia sarà dunque

lim
r→∞

M(r) = lim
r→∞

Kr2

Gr
(

1 + r
r0

) =
Kr0

G

PROBLEMA 5.96

Urti istantanei e attrito ??

v0

m M
α

µ

Figura 5.84.: La particella urta contro il piano inclinato: in quel momento ha una velocità
~v = v0 x̂.

Su un piano orizzontale è appoggiato un cuneo di massa M. Contro la sua faccia
obliqua, inclinata di un angolo α rispetto all’orizzontale, viene lanciato un proiettile
di massa m. Al momento dell’urto la velocità del proiettile è orizzontale e vale v0 in
modulo. Si sa che la forza tra il proiettile e il cuneo è conservativa e perpendicolare al
piano che viene urtato.

Tra il cuneo e il piano orizzontale è presente attrito dinamico, descritto da un coeffi-
ciente µ. Non si tiene conto del possibile attrito statico: per esempio si può immaginare
che la velocità iniziale del cuneo non sia esattamente nulla ma molto piccola.

Considerare il caso limite di urto istantaneo. Trovare, se ci sono, delle quantità conser-
vate durante l’urto e calcolare le velocità finali di cuneo e proiettile.

Soluzione

Indichiamo con R(t) la forza di reazione che il lato obliquo del cuneo esercita sul pro-
iettile durante l’urto. Possiamo allora scrivere le equazioni del moto, sempre durante
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l’urto, nella forma

max(t) = −R(t) sin α

may(t) = R(t) cos α−mg
MAx(t) = R(t) sin α− µN(t)

0 = −R(t) cos α + N(t)−Mg (5.96.1)

Abbiamo indicato con ax, ay le componenti dell’accelerazione del proiettile, con Ax
l’accelerazione del cuneo e con N la reazione normale del piano su cui il cuneo è appog-
giato. Se l’interazione tra proiettile e cuneo avviene per 0 < t < τ possiamo integrare le
equazioni precedenti in tale intervallo , ottenendo

mvx(t) = mv0 − I(t) sin α

mvy(t) = I(t) cos α−mgt
MVx(t) = I(t) sin α− µ [I(t) cos α + Mgt]

dove

I(t) =
ˆ t

0
R(t′)dt′

è l’impulso ceduto dal cuneo al proiettile al tempo t. In particolare immediatamente
dopo l’urto avremo

vx(τ) = v0 −
1
m

I(τ) sin α

vy(τ) =
1
m

I(τ) cos α− gτ

Vx(t) =
1
M

I(τ) (sin α− µ cos α)− µgτ (5.96.2)

Nel limite di urto istantaneo
lim
τ→0

I(τ) = I∗

resta finito, ma possiamo trascurare le forze peso. Questo si esprime dicendo che le forze
peso non sono forze impulsive, cioè restano finite nel limite di urto istantaneo. Invece
sia R(t) che N(t) sono forze impulsive, in particolare anche la forza di attrito µN(t) lo
sarà e non potrà essere trascurata.

Ad ogni modo abbiamo espresso le velocità finali in termini dell’impulso totale I∗.
Per quanto riguarda le leggi di conservazione, osserviamo che dall’ipotesi che R sia
normale alla superfice obliqua del cuneo segue immediatamente che si deve conservare
la componente della quantità di moto del proiettile parallela ad essa. Verifichiamolo
direttamente:

p‖ = mvx cos α + mvy sin α

= m
(

v0 −
I∗

m
sin α

)
cos α + m

(
I∗

m
cos α

)
sin α

= mv0 cos α
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Possiamo quindi calcolare la variazione dell’energia cinetica

∆Ec =
1
2

m

{[
v0 −

I∗

m
sin α

]2

+

[
I∗

m
cos α

]2
}
+

1
2

M
[

I∗

M
(sin α− µ cos α)

]2

− 1
2

mv2
0

=
1
2

I∗
{

I∗
[

1
m

+
1
M

(sin α− µ cos α)2
]
− 2v0 sin α

}

e della quantità di moto orizzontale totale

∆Px = −µI∗ cos α

Per quest’ultima concludiamo che non si ha conservazione, come ci si poteva aspettare
dato che la forza di attrito (impulsiva) è orizzontale. Per poter dire qualcosa di più sul-
l’energia, e per finire di calcolare le velocità finali, dobbiamo calcolare I?. Non abbiamo
ancora sfruttato il fatto che la forza R è conservativa. Calcoliamo il lavoro fatto da essa
sul sistema durante l’urto, che si può scrivere come

L =

ˆ τ

0

[
(−R sin α) vx + (R cos α) vy + (R sin α)V

]
dt

Ma adesso inseriamo le espressioni delle velocità durante l’urto ricavate dalle (5.96.2)
ottenendo

L =

ˆ τ

0
R(t)

{
−v0 sin α +

1
m

I(t) +
1
M

I(t)
(
sin2 α− µ cos α sin α

)}
dt

Notare che abbiamo nuovamente trascurato le forze peso, dato che siamo sempre inte-
ressati al limite di urto istantaneo. Dato che la forza è conservativa deve essere L = 0,
quindi

[
1
m

+
1
M
(
sin2 α− µ cos α sin α

)] ˆ τ

0
R(t)I(t)dt = v0 sin α

ˆ τ

0
R(t)dt

Sappiamo già che l’integrale a destra vale I∗. Per calcolare quello a sinistra osserviamo
che R = İ, e quindi

ˆ τ

0
R(t)I(t)dt =

ˆ τ

0
İ(t)I(t)dt =

1
2

ˆ τ

0

d
dt
(

I2) dt =
1
2

I∗2

Otteniamo infine
I∗ =

2v0 sin α
1
m + 1

M

(
sin2 α− µ cos α sin α

)

Se sostituiamo nell’espressione per la variazione dell’energia ricavata precedentemente
otteniamo

∆E = I∗
{

1
m + 1

M (sin α− µ cos α)2

1
m + 1

M

(
sin2 α− µ cos α sin α

) − 1

}
v0 sin α

= −1
2

µM−1 I∗2 (sin α− µ cos α) cos α
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Notiamo che in assenza di attrito (µ = 0) l’energia si conserva. Lo stesso accade per
α = π/2: questo risultato in apparenza sorprendente dipende dal fatto che quando il
lato obliquo del cuneo diviene verticale la reazione N(t) non è più impulsiva, e quindi
l’attrito si può trascurare durante l’urto.

PROBLEMA 5.97

Attrito e paradossi ? ? ?

I risultati del problema 5.96 sembrano condurre a delle situazioni paradossali. In par-
ticolare, per certi valori del coefficiente di attrito dinamico µ il sistema può acquistare
energia nell’urto (∆E > 0) e il cuneo può iniziare a muoversi nella direzione da cui
proviene il proiettile. Mostrate (se possibile) che queste situazioni paradossali non si
verificano, se il modello usato per la forza di attrito è ragionevole.

Soluzione

Riprendiamo dall’esercizio precedente i due risultati “incriminati”. Il primo riguarda la
velocità del cuneo immediatamente dopo l’urto, che riscriviamo nella forma

Vx(t) = 2v0
sin α cos α (tan α− µ)

M
m + sin α cos α (tan α− µ)

(5.97.1)

e il secondo la variazione dell’energia durante il medesimo

∆E = −1
2

µM−1 I∗2 (tan α− µ) cos2 α

Se µ < tan α non succede niente di particolare. Al contrario se µ > tan α durante l’urto
apparentemente si ha sempre ∆E > 0, inoltre se

−M
m

< sin α cos α (tan α− µ) < 0

si trova anche Vx < 0.
Per risolvere il paradosso osserviamo che nell’esercizio precedente le equazioni sono

state scritte utilizzando due assunzioni implicite:

1. la velocità del cuneo Vx è positiva: in caso contrario la forza di attrito cambia segno

2. la reazione normale del piano è positiva: in caso contrario il cuneo si stacca da
terra

Affinchè la seconda assunzione sia consistente, è necessario che R(t) > 0, come segue
dalla quarta equazione delle (5.96.1). In particolare deve essere I∗ > 0, ma dato che

I∗ =
2Mv0 sin α

M
m + sin α cos α (tan α− µ)
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questo esclude i casi in cui

sin α cos α (tan α− µ) < −M
m

Tolta questa possibilità, avremo ∆E < 0 se Vx > 0 e ∆E > 0 se Vx < 0.
Possiamo chiederci cosa accade in realtà se le nostre equazioni predicono Vx < 0.

Dato che abbiamo supposto, per evitare di considerare l’attrito statico, che la velocità
iniziale del cuneo fosse molto piccola ma positiva, abbiamo che se µ > tan α il cuneo si
ferma per un istante durante l’urto. In questo caso non possiamo più trascurare l’attrito
statico, e dobbiamo capire se a causa di questo il cuneo rimane fermo. In effetti questo
avverrà se

Fa + R sin α = 0

cioè se
R sin α < µsR cos α

ossia per
tan α > µs

Ma dato che µs > µ possiamo concludere che quando tan α > µ il cuneo sarà in realtà
fermo dopo l’urto.

PROBLEMA 5.98

Moto in un campo centrale III ? ? ?

Studiare le traiettorie di un punto materiale sul quale è applicata una forza

~F =
α

r4~r

dove~r è il vettore posizione e α una costante.

Soluzione

La forza è attrattiva se α < 0 e repulsiva altrimenti. Dato che è anche centrale si conserva
il momento angolare. Inoltre la forza è conservativa: possiamo verificare che l’energia
potenziale corretta è

U(r) =
1
2

α

r2

dato che
∂U
∂x

= − α

r3
∂r
∂x

= −αx
r4 = −Fx

e così via per le altre componenti. Quindi le quantità

E =
1
2

m
(
ṙ2 + r2θ̇2)+ 1

2
α

r2

L = mr2θ̇
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sono costanti. Ricaviamo θ̇

θ̇ =
L

mr2

e sostituendo otteniamo

E =
1
2

mṙ2 +
L2 + mα

2mr2

Per studiare le traiettorie possiamo riscrivere l’espressione precedente nella forma

E =
m
2

(
dr
dθ

θ̇

)2

+
L2 + mα

2mr2

=
m
2

(
dr
dθ

L
mr2

)2

+
L2 + mα

2mr2

Introduciamo adesso la nuova variabile u = 1/r, da cui

E =
L2

2m

(
du
dθ

)2

+

(
L2 + mα

2m

)
u2

Derivando rispetto a θ otteniamo

dE
dθ

=
L2

m
du
dθ

d2u
dθ2 +

(
L2 + mα

m

)
du
dθ

u

e dato che E è costante otteniamo una equazione per la traiettoria

d2u
dθ2 +

(
1 +

mα

L2

)
u = 0

Le caratteristiche della soluzione generale dipendono dal valore di mαL−2.
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Figura 5.85.: Alcuni esempi di orbite. Le prime 8 traiettorie, da sinistra verso destra
e dall’alto verso il basso, corrispondono al caso 1. per k = 2/n e n =
1, 2, 3, 4, 5, 6, 7, 8. La traiettoria in basso a sinistra corrisponde al caso 2. (per
a = 1/5). La traiettoria in basso a destra corrisponde al caso 3., per r0 = 1
e k = 1. In quest’ultimo caso non è possibile apprezzare dalla figura il
numero infinito di rivoluzioni attorno all’origine.

1. Se mαL−2 > −1 la soluzione è oscillatoria:

u =
1
r
= A cos

[√
1 +

mα

L2 (θ + φ)

]

e le costanti A, φ dipendono dalle condizioni iniziali. In particolare possiamo
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limitarci a studiare il caso φ = 0, dato che il caso generale si ottiene semplicemente
ruotando la traiettoria di φ. Abbiamo quindi un’equazione della forma

r =
r0

cos kθ

con k =
√

1 + mαL−2 e r0 = A−1 assume il significato di raggio di massimo avvi-
cinamento, che corrisponde a θ = 0. All’aumentare di θ la particella si allontana, e
sfugge all’infinito quando θ = π

2k . Alcune traiettorie possibili sono rappresentate
in Figura 5.85. Un caso particolare interessante corrisponde a k = 1, cioè

r cos θ = x = r0

che corrisponde a una traiettoria rettilinea 2.

2. Se mαL−2 = −1 si ha

u =
1
r
= a (θ + φ)

e quindi a meno di una rotazione

r =
1
aθ

La traiettoria si può descrivere come una spirale che si avvicina all’origine ruotan-
do infinite volte attorno ad essa. Un caso particolare è rappresentato in Figura 5.85,
in basso a sinistra.

3. Se mαL−2 < −1 la soluzione è

u =
1
r
= A cosh

[√
−1− mα

L2 (θ + φ)

]

di conseguenza, sempre a meno di una rotazione,

r =
r0

cosh kθ

con k =
√
−1−mαL−2. In questo caso r0 rappresenta la distanza di massimo

allontanamento, che si ha per θ = 0. Successivamente la particella si avvicina all’o-
rigine indefinitamente, ruotando infinite volte attorno ad essa. Un caso particolare
è rappresentato in Figura 5.85, in basso a destra.

PROBLEMA 5.99

Orbita nel sistema rotante ??

Scrivere l’equazione del moto di una particella che si muove in una forza centrale
qualsiasi in un sistema di riferimento con origine sul centro di forze, e con assi che
ruotano insieme alla particella.

2Questo risultato è evidente, dato che per k = 1 si ha α = 0, cioè assenza di forze.
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Soluzione

La forza centrale sarà data in un sistema non rotante da

~F = A(r, θ)~r

dove A(r, θ) è una funzione arbitraria e~r il vettore posizione della particella (r = |~r|).
Scegliamo un sistema rotante con asse x nella direzione della particella. Potremo scrivere
l’equazione del moto lungo tale asse nella forma

mẍ = A (x, θ(t)) x + mθ̇2(t)x

dove si è tenuto conto della forza centrifuga e θ(t) è l’angolo di rotazione, che non
possiamo conoscere prima di avere risolto il problema.

Nel sistema scelto la particella non accelera in direzione y, quindi la relativa equazione
del moto diviene una condizione di equilibrio

mÿ = 0 = −mxθ̈(t)− 2mẋθ̇(t)

Infatti moltiplicando per onservazione del momento angolare. Infatti moltiplicando per
x troviamo

mx2θ̈(t) + 2mxẋθ̇(t) = 0

ma questo si può anche scrivere come

d
dt
[
mx2θ̇(t)

]
= 0

e la quantità tra parentesi è esattamente il momento angolare della particella in un
sistema non rotante

mx2θ̇(t) = L

In conclusione possiamo scrivere le equazioni del moto nella forma

mẍ = A (x, θ) x +
L2

mx3

θ̇ =
L

mx2

Se A non dipende dall’angolo θ abbiamo un’ulteriore legge di conservazione. Infatti

mẍẋ = A (x) xẋ +
L2

mx3 ẋ

da cui

d
dt

(
1
2

mẋ2
)

=
d
dt

ˆ [
A(x)x +

L2

mx3

]
ẋdt

=
d
dt

ˆ [
A(x)x +

L2

mx3

]
dx

=
d
dt

[ˆ
A(x)xdx− L2

2mx2

]
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Riconosciamo la legge di conservazione dell’energia

1
2

mẋ2 −
ˆ

A(x)xdx +
L2

2mx2 = E

dove l’integrale da l’energia potenziale corrispondente alla forza, e L2/(2mx2) è il
potenziale centrifugo. Quindi il potenziale efficace

Ue f f = U +
L2

2mx2

può essere interpretato come potenziale che descrive le forze nel sistema che ruota
insieme alla particella.

PROBLEMA 5.100

Il problema di Keplero ??

Discutere le traiettorie di due masse puntiformi m1 e m2 che si muovono nello spazio
sotto l’azione della sola forza di attrazione gravitazionale di Newton,

~F12 = G
m1m2

|~r1 −~r2|3
(~r1 −~r2)

dove ~F12 è la forza che il corpo 1 (che si trova nella posizione~r1) esercita sul corpo 2 (che
si trova nella posizione~r2).

Soluzione

Iniziamo scrivendo le equazioni del moto per le due masse puntiformi. Dato che l’unica
forza è quella gravitazionale abbiamo

m1
d2~r1

dt2 = −G
m1m2

|~r1 −~r2|3
(~r1 −~r2)

m2
d2~r2

dt2 = G
m1m2

|~r1 −~r2|3
(~r1 −~r2)

Servono quindi 6 coordinate (ad esempio le 3 coordinate cartesiane delle due masse)
per descrivere una configurazione del sistema. Dato che le forze che si esercitano sulle
due masse sono uguali e opposte abbiamo la conservazione della quantità di moto
totale. Questo si verifica direttamente sommando membro a membro le due equazioni
precedenti, e ottenendo

d
dt

[
m1

d~r1

dt
+ m2

d~r2

dt

]
= 0

che ci dice effettivamente che la quantità di moto totale

~P = m1
d~r1

dt
+ m2

d~r2

dt
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è costante. Alternativamente possiamo dire che l’accelerazione del centro di massa è
zero,

d2

dt2
m1~r1 + m2~r2

m1 + m2
=

d2~rCM

dt2 = 0

Quindi il centro di massa si muove di moto rettilineo uniforme, e possiamo scegliere
un sistema di riferimento nel quale esso si trova in quiete nell’origine. Abbiamo quindi
determinato il moto di 3 dei 6 gradi di libertà del sistema.

Un’altra variabile conveniente per descrivere il sistema è la posizione della massa m1
relativa alla massa m2,

~r =~r1 −~r2

Osserviamo che conoscendo~r e~rCM possiamo ricavare~r1 e ~r2 dalle formule

~r1 = ~rCM +
m2

m1 + m2
~r

~r2 = ~rCM −
m1

m1 + m2
~r

che si verificano imediatamente. Sarà quindi sufficiente trovare~r: per farlo moltiplichia-
mo per m2: per farlo moltiplichiamo per oto precedenti e per m1 la seconda, e sottraiamo
membro a membro. Abbiamo

m1m2
d2

dt2 (~r1 − ~r2) = −(m1 + m2)G
m1m2

|~r1 −~r2|3
(~r1 −~r2)

ossia

µ
d2~r
dt2 = −G

m1m2

|~r|3
~r

dove µ = m1m2/(m1 + m2) è la massa ridotta del sistema. Queste sono tre equazioni
del moto (non indipendenti tra loro) che permettono in linea di principio di calcolare
la posizione relativa in funzione del tempo, per date condizioni iniziali. Formalmente
sono equazioni per una massa puntiforme fittizia µ che si muove sotto l’azione di una
forza centrale. Da questo segue che avremo una costante del moto, il momento angolare

~L = µ~r× d~r
dt

Inoltre la forza centrale è anche conservativa. Questo si verifica immediatamente notan-
do che la possiamo ottenere a partire dal potenziale

U = −G
m1m2

r

Verifichiamo questa affermazione: deve essere

Fx = −∂U
∂x

=
∂

∂x
G

m1m2

r
= Gm1m2

∂

∂x
1
r
= Gm1m2

(
− 1

r2

)
∂r
∂x
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ma
∂r
∂x

=
∂

∂x

√
x2 + y2 + z2 =

1
2

1√
x2 + y2 + z2

2x =
x
r

e quindi

Fx = −Gm1m2
x
r3

che è effettivamente la componente x dell’attrazione gravitazionale. Calcoli assoluta-
mente analoghi permettono di verificare che il potenziale da anche la corretta compo-
nente y e z.

La conservazione del momento angolare ha come conseguenza che il moto della
particella fittizia avviene in un piano, più precisamente nel piano ortogonale a ~L. Per
verificarlo calcoliamo il prodotto scalare tra~r e~L, che è nullo

~r ·~L = µ~r ·
(
~r× d~r

dt

)
= 0

dato che il prodotto vettoriale tra~r e ~v è sicuramente perpendicolare a~r.
Scegliamo adesso coordinate polari nel piano in cui avviene l’orbita. Potremo scrivere

la componente perpendicolare al piano del momento angolare come

L = µr2θ̇

e l’energia come

E =
1
2

µṙ2 +
1
2

µr2θ̇2 − G
m1m2

r
Entrambe queste quantità si conservano, in particolare possiamo usare la prima per
determinare la velocità angolare in funzione della distanza dal centro,

θ̇ =
L

µr2 (5.100.1)

che sostituita nell’energia permette di ottenere

E =
1
2

µṙ2 +
L2

2µr2 −
Gm1m2

r

Espressa in questo modo, questa formalmente è l’energia di una particella di massa µ
che si muove in una dimensione sotto l’azione di un potenziale “efficace”

Ue f f =
L2

2µr2 −
Gm1m2

r

Notiamo che l’energia cinetica dovuta al moto radiale è

1
2

µṙ2 = E−Ue f f (r)
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E > 0

E = 0

Emin < E < 0

E = Emin

rcr− r+

rN

r

Ueff (r)

Figura 5.86.: Caratteristiche qualitative delle orbite per il problema di Keplero. Il grafico
azzurro rappresenta il potenziale efficace, per un fissato valore di L. Le
rette verdi tratteggiate rappresentano possibili valori dell’energia E.

e dato che deve essere non negativa, per un fissato valore di E il moto sarà possibile solo
per i valori di r tali che

Ue f f (r) < E

Possiamo sfruttare questo fatto per una prima discussione qualitativa delle orbite.
Per piccoli valori di r il termine proporzionale a r−2 del potenziale efficace (il cosid-

detto potenziale centrifugo) è dominante, e quindi

lim
r→0

Ue f f (r) = +∞

Invece a grandi valori di r il termine gravitazionale domina,

lim
r→+∞

Ue f f (r) = 0−

Inoltre il potenziale efficace ha un minimo. Determiniamo la sua posizione: la derivata

dUe f f

dr
= − L2

µr3 +
Gm1m2

r2
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si annulla in

rc =
L2

µGm1m2

e il potenziale efficace assume in rc il valore

Ue f f (rc) = −
µG2m2

1m2
2

2L2

Il tutto è rappresentato schematicamente in Figura 5.86. Al variare di E abbiamo diversi
intervalli permessi per r, in particolare

◦ Se E < Ue f f (rc) non esistono r tali da avere una energia cinetica radiale positiva.
Quindi questi valori dell’energia non sono permessi.

◦ Se E = Ue f f (rc), l’energia cinetica radiale è nulla per r = rc. Altri valori di r
non sono permessi, quindi durante il moto r si mantiene costante. Si tratta quindi
di un’orbita circolare (di raggio rc). Dato che il raggio non varia, neppure θ̇ lo
farà a causa della relazione (5.100.1). Abbiamo quindi un moto circolare uniforme.
Questo caso particolare si poteva ricavare più semplicemente dall’equazione del
moto radiale

−µrθ̇2 = −G
m1m2

r2

sostituendo θ̇ in termini del momento angolare e risolvendo per r.

◦ Se Ue f f (rc) < E < 0 esiste un intervallo r− < r < r+ in cui il moto è permesso. Il
moto radiale sarà quindi una oscillazione tra questi due estremi, mentre θ crescerà
o diminuirà in accordo con la legge (5.100.1). Da notare che il segno della velocità
angolare è determinato dal segno di L, e non può cambiare. Di conseguenza la
particella orbiterà girando attorno all’origine senza cambiare mai segno.

◦ Se E = 0 l’intervallo permesso è r ≥ rp, dove rp è il valore a cui il potenziale
effettivo si annulla

rp =
L2

2µGm1m2

Quindi la particella si avvicinerà al centro fino ad una distanza rp, e sfuggirà
quindi all’infinito. Da notare che la velocità radiale tenderà a zero quando r → ∞.

◦ Infine se E > 0 avremo ancora una distanza minima rN determinata da

E = Ue f f (rN)

e ancora una volta la particella si avvicinerà al centro fino ad una distanza rN per
poi sfuggire all’infinito. Questa volta perà la velocità radiale rimarrà positiva per
r → ∞.

Passiamo adesso ad uno studio più dettagliato della forma delle orbite.
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Calcolo delle orbite

Abbiamo già potuto notare che il segno di θ̇ non può cambiare. Di conseguenza θ sa-
rà una funzione monotona (crescente o decrescente) del tempo, e potremo utilizzarla
al posto di quest’ultimo per parametrizzare l’orbita. Riprendiamo quindi l’energia e
scriviamola nella forma

E =
1
2

µ

(
dr
dθ

θ̇

)2

+
L2

2µr2 −
Gm1m2

r

Sostituendo nuovamente θ̇ otteniamo infine

E =
1
2

µ

(
dr
dθ

L
µr2

)2

+
L2

2µr2 −
Gm1m2

r

Conviene a questo punto introdurre la nuova variabile u = 1/r. La sua derivata rispetto
all’angolo è legata a quella di r dalla relazione

dr
dθ

= − 1
u2

du
dθ

e sostituendo nell’energia troviamo

E =
L2

2µ

(
du
dθ

)2

+
L2

2µ
u2 − Gm1m2u

Dato che l’energia si conserva dovrà essere dE/dθ = 0, e quindi

dE
dθ

=
L2

µ

du
dθ

d2u
dθ2 +

L2

µ

du
dθ

u− Gm1m2
du
dθ

= 0

e quindi dovrà essere, scartando du/dθ = 0,

d2u
dθ2 + u =

µGm1m2

L2

Questa equazione determina la traiettoria, ed è formalmente identica a quella cheun
oscillatore armonico sottoposto a una forza costante (con θ che gioca il ruolo del tempo).
La soluzione generale può essere scritta nella forma

u = A cos (θ + φ) +
µGm1m2

L2

dove le costanti A e φ dipendono dalle condizioni iniziali. In particolare sostituendo
nell’energia possiamo determinare A in funzione delle costanti del moto. Abbiamo

2µE
L2 =

(
du
dθ

)2

+ u2 − 2µGm1m2

L2 u
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e quindi

A2 =
2µE
L2 +

(
µGm1m2

L2

)2

Ricordando la definizione di u possiamo anche scrivere

r =
p

1 + e cos (θ + φ)
(5.100.2)

dove

p =
L2

µGm1m2

e = ± L2

µGm1m2

√
2µE
L2 +

(
µGm1m2

L2

)2

Variando φ otteniamo orbite della stessa forma, ma ruotate di tale angolo. Senza perdere
generalità possiamo quindi limitarci a φ = 0. Inoltre anche un cambiamento di segno di
e sarà equivalente ad una rotazione di π dell’orbita, e potremo limitarci a considerare il
caso e ≥ 0 corrisponde a minima energia accettabile, corrispondente all’orbita circolare,
corrisponde a e = 0: in tutti gli altri casi l’espressione sotto radice è positiva).

Possiamo adesso discutere la forma delle orbite. Scrivendo l’Equazione (5.100.2) nella
forma

r = p− er cos θ

ed elevando al quadrato otteniamo
(
1− e2) x2 − 2pex + y2 = p2

che è l’equazione di una conica. Notiamo anzitutto che il parametro p determina le
dimensioni dell’orbita, e non la sua forma. Per quanto riguarda e abbiamo diversi casi
possibili

Se e = 0 il raggio è costante, r = p. Siamo nel caso dell’orbita circolare visto preceden-
temente.

1. Se al variare di θ il denominatore della (5.100.2) non si annulla mai, e resta finito.
Abbiamo a che fare con un’orbita limitata, che in effetti è un’ellisse. L’ellisse ha un
fuoco sul centro di forza. Inoltre possiamo scrivere

r+ =
p

1− e
, r− =

p
1 + e

che permettono di ottenere il raggio di massimo e minimo avvicinamento al centro
in termini delle costanti del moto (o viceversa).

2. Se e = 1 il denominatore della (5.100.2) si annulla per , e quindi r → ∞ per questi
valori. L’orbita non è dunque limitata, ed in effetti si tratta di una parabola. Anche
in questo caso il centro di forza è nel fuoco.
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Infine se e > 1 il denominatore si annulla per due angoli ±θ∗ minori in modulo di π. di
un’iperbole (con il centro di forza su un fuoco)erifica che si tratta di un’iperbole (con il
centro di forza su un fuoco). In questo caso e nel precedente la posizione di massimo
avvicinamento si può ottenere da

rN =
p

1 + e

fig:KeplerOrbitsi orbite possibili sono rappresentati schematicamente in Figura (5.87).

Figura 5.87.: Alcune possibili orbite. Abbiamo sempre p = 1, mentre rispettivamente
e = 0 (orbita rossa, circonferenza), e = 0.7 (orbita verde, ellisse), e = 1
(orbita blu, parabola) ed e = 1.3 (orbita arancio, iperbole). Il centro delle
forze è nell’origine.

Altri aspetti del problema saranno studiati in un esercizio successivo.
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PROBLEMA 5.101

Oscillatore forzato e transiente ??

Un oscillatore armonico smorzato (massa m e costante elastica k) è inizialmente fermo.
A partire dall’istante t = 0 subisce una forza

F(t) = F0 cos ωt (t > 0)

e si vuole calcolare la sua risposta. Discutere il risultato in funzione dei parametri del
problema.

Soluzione

L’equazione del moto per t > 0 si può scrivere nella forma

ẍ +
k
m

x =
F0

m
cos ωt

e sappiamo che la sua soluzione generale è data dalla somma di una soluzione partico-
lare e della soluzione generale dell’equazione omogenea. La soluzione generale cercata
è un’oscillazione libera

xom(t) = a cos ω0t + b sin ω0t

con ω2
0 = k/m. Determiniamo adesso una soluzione particolare: sappiamo che per

ω 6= ω0 possiamo cercarla nella forma

xp(t) = A cos ωt + B sin ωt

e sostituendo nell’equazione del moto troviamo

(
−ω2A cos ωt−ω2B sin ωt

)
+ ω2

0 (A cos ωt + B sin ωt) =
F0

m
cos ωt

da cui

(
ω2

0 −ω2) A =
F0

m(
ω2

0 −ω2) B = 0

Risolvendo otteniamo (ω2
0 = k/m)

A =
1(

ω2
0 −ω2

) F0

m
B = 0

Quindi la soluzione generale sarà

x(t) = a cos ω0t + b sin ω0t +
1

ω2
0 −ω2

F0

m
cos ωt
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Imponiamo adesso le condizioni al contorno a t = 0:

x(0) = a +
1(

ω2
0 −ω2

) F0

m
= 0

ẋ(0) = bω0 = 0

da cui
x(t) =

1(
ω2

0 −ω2
) F0

m
(cos ωt− cos ω0t)

Cerchiamo adesso di ottenere la soluzione nel caso ω = ω0 come limite della precedente.
Abbiamo

x(t) = lim
ω→ω0

F0

m

(
cos ωt− cos ω0t

ω2
0 −ω2

)

Applicando il teorema di de l’Hôpital

x(t) = lim
ω→ω0

F0

m

(−t sin ωt
−2ω

)
=

F0

2mω0
t sin ω0t

PROBLEMA 5.102

Piccole perturbazioni di un’orbita circolare ? ? ?

Un pianeta si muove in un campo di forze centrali descritto da un potenziale della
forma

U(r) = − k
r

e−r/r0

dove k e r0 sono costanti positive. Determinate il periodo dell’orbita circolare di raggio
r0, e studiare le orbite non circolari vicine ad essa.

Soluzione

Per un’orbita circolare deve essere

−mrω2 = −∂U
∂r

= −
(

k
r2 +

k
rr0

)
e−r/r0

da cui

T = 2π

√
mer3

0
2k

L’energia del sistema si può scrivere nella forma

E =
1
2

mṙ2 +
L2

2mr2 −
k
r

e−r/r0

Per l’orbita circolare sappiamo che ed inoltre

E = E0 = 0
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Intoduciamo una piccola perturbazione del sistema, ponendo

L2 = L2
0 + ∆L2

E = ∆E

Introducendo una nuova coordinata proporzionale alla deviazione radiale dalla traiet-
toria circolare,

r = r0 + δ

possiamo scrivere l’energia del sistema nella forma

∆E =
1
2

mδ̇2 +
L2

0 + ∆L2

2m (r0 + δ)2 −
ke−1

r0 + δ
e−δ/r0

Sviluppando al secondo ordine in δ otteniamo

∆E =
1
2

mδ̇2 +
L2

0

2mr2
0

(
1 +

∆L2

L2
0

)
1

(1 + δ/r0)
2 −

k
er0

1
1 + δ/r0

e−δ/r0

' 1
2

mδ̇2 +
L2

0

2mr2
0

(
1 +

∆L2

L2
0

)(
1− 2

δ

r0
+ 3

δ2

r2
0

)
− k

er0

(
1− δ

r0
+

δ2

r2
0

)(
1− δ

r0
+

1
2

δ2

r2
0

)

dove sono state utilizzate le approssimazioni, valide per x � 1,

(1 + x)α ' 1 + αx +
1
2

α (α− 1) x2

ex ' 1 + x +
1
2

x2

Sviluppando i prodotti otteniamo

∆E =
L2

0

2mr2
0
− k

er0

+
∆L2

2mr2
0
− L2

0

mr2
0

δ

r0
+

2k
er0

δ

r0

+
1
2

mδ̇2 − ∆L2

mr2
0

δ

r0
+

3L2
0

2mr2
0

δ2

r2
0
− 5k

2er0

δ2

r2
0

I primi due termini sommano ad E0 = 0. Nella seconda riga, i termini lineari in δ si
cancellano dato che l’orbita circolare è nel minimo del potenziale efficace corrispondente
a L = L0. Alla fine rimane

∆E −
∆L2

2mr2
0

=
1
2

mδ̇2 +

(
3L2

0

2mr2
0
− 5k

2er0

)
δ2

r2
0
− ∆L2

mr2
0

δ

r0

=
1
2

mδ̇2 +
1
2

k
er0

δ2

r2
0
− ∆L2

mr2
0

δ

r0
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La nuova energia corrisponde ad un oscillatore armonico: infatti derivando rispetto al
tempo otteniamo l’equazione del moto

mδ̈ +
k

er3
0

δ =
∆L2

mr3
0

Notare che se ∆L2 = 0 l’oscillazione radiale avviene attorno all’orbita circolare prece-
dente. In caso contrario attorno a una nuova orbita circolare di raggio

δ =
e∆L2

mk

In ogni caso la frequenza delle oscillazioni radiali sarà data da

f =
1

2π

√
k

emr3
0

Per studiare la traiettoria scriviamo l’energia nella forma

∆E −
∆L2

2mr2
0

=
1
2

m
(

dδ

dθ
θ̇

)2

+
1
2

k
er0

δ2

r2
0
− ∆L2

mr2
0

δ

r0

=
1
2

m
(

dδ

dθ

L2
0

2mr2
0

)2

+
1
2

k
er0

δ2

r2
0
− ∆L2

mr2
0

δ

r0

Notare che al secondo ordine nella deviazione è stato sufficiente sostituire θ̇ con il suo
valore imperturbato della traiettoria circolare originaria. Di conseguenza l’orbita si può
chiudere solo se la frequenza delle oscillazioni radiali appena determinata è in rapporto
razionale con l’inverso del periodo di rotazione, determinato precedentemente. Ma nel
caso considerato questo non è vero, dato che

1
T

=
1

2π

√
2k

mer3
0
= f
√

2

PROBLEMA 5.103

Oscillatore bidimensionale forzato ??

Una massa m è collegata ad una molla di costante elastica k e lunghezza di riposo
trascurabile, ed è libera di muoversi in un piano. Su di essa agisce una forza di attrito
viscoso ~F = −γ~v. L’altro estremo della molla viene spostato secondo la legge

x0(t) = a cos ωt
y0(t) = b sin ωt

cioè su una ellisse di semiassi a e allineati agli assi coordinati. Determinare la traiettoria
della massa a regime.
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Soluzione

Scriviamo le equazioni del moto nella forma

mẍ + γẋ + kx = ka cos ωt
mÿ + γẏ + ky = kb sin ωt

e introduciamo la variabile complessa

z =
x
a
+ i

y
b

che dovrà soddisfare l’equazione

mz̈ + γż + kz = keiωt

A regime la soluzione è data da

z =
k

−mω2 + iωγ + k
eiωt

Quindi nel piano di coordinate a−1x, b−1y la traiettoria è una circonferenza di raggio

R =

∣∣∣∣
k

−mω2 + iωγ + k

∣∣∣∣ =
k√

(k−mω2)2 + γ2ω2

e nel piano di coordinate x, y troviamo un’ellisse di semiassi aR e bR.

PROBLEMA 5.104

Caduta su una scodella ??

hi

m

M

R

Figura 5.88.: La scodella semisferica del problema.

Una scodella semisferica di massa M è appoggiata su un piano orizzontale privo di
attrito. Un punto materiale di massa m viene lasciato cadere da una altezza hi > R, in
modo da arrivare sul bordo sinistro della scodella. Da questo momento esso rimane
vincolato ad essa, fino ad arrivare eventualmente al bordo opposto e lasciarla.

1. Calcolare lo spostamento orizzontale della scodella al momento del distacco, e
l’altezza finale a cui arriva il punto materiale.
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2. Calcolare la velocità del punto materiale al suo passaggio nel punto più basso
della scodella.

3. Applicando una forza orizzontale alla scodella la si mantiene ferma. Quale è il
valore massimo della forza da applicare?

Soluzione3

Domanda 1 Indichiamo con Xi la posizione orizzontale iniziale del centro di massa
della sola scodella. Per il centro di massa del sistema avremo

Xcm,i =
MXi + m (Xi − R)

M + m
(5.104.1)

Al momento del distacco avremo

Xcm, f =
M (Xi + d) + m (Xi + d + R)

M + m
(5.104.2)

dove d è lo spostamento cercato. Ma dato che la componente orizzontale della quantità
di moto del sistema si conserva ed è inizialmente nulla sarà Xcm,i = Xcm, f , quindi

MXi + m (Xi − R)
M + m

=
M (Xi + d) + m (Xi + d + R)

M + m
(5.104.3)

e risolvendo troviamo

d = − 2mR
m + M

(5.104.4)

Indichiamo con vx, vy le componenti della velocità della particella, con V la velocità
della scodella.

Al distacco la componente orizzontale della velocità della particella relativa alla sco-
della è nulla. Ma dato che la quantità di moto orizzontale si conserva ed è inizialmente
nulla abbiamo

0 = mvx + MV = m (vx −V) + (M + m)V = (m + M)V (5.104.5)

Quindi V = 0, ma anche vx = −M
m V = 0. In conclusioni al momento del distacco la

scodella è ferma e la particella si muove verticalmente. Dalla conservazione dell’energia
segue che l’altezza finale sarà uguale a quella iniziale.

Domanda 2 Usando la conservazione dell’energia possiamo scrivere

mghi =
1
2

mv2 +
1
2

MV2 (5.104.6)

3Scritto del 9 marzo 2011
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dove abbiamo indicato con v, V le velocità della particella e della scodella (entrambe
orizzontali quando la prima si trova nel punto più basso). Inoltre dalla conservazione
della quantità di moto orizzontale abbiamo

0 = mv + MV (5.104.7)

e quindi

V = − m
M

v (5.104.8)

Sostituendo otteniamo
mghi =

1
2

m
(

1 +
m
M

)
v2

e quindi

v =

√
2ghi

(
M

m + M

)
(5.104.9)

Domanda 3 Dato che la forza da applicare è l’unica che agisce

F = (M + m)
max

m + M
= max (5.104.10)

dove ax è l’accelerazione orizzontale della particella. D’altra parte

max = −N sin θ (5.104.11)

dove N è la reazione vincolare della scodella. Se scriviamo l’equazione del moto per la
particella nella direzione radiale abbiamo invece

m
v2

R
= −mg cos θ + N (5.104.12)

Inoltre dalla conservazione dell’energia

mghi = mgR(1− cos θ) +
1
2

mv2 (5.104.13)

Sostituendo nellala velocità in funzione della posizione. Sostituendo nella (5.104.11)
otteniamo

N = 2mg
(

hi

R
− 1 + cos θ

)
+ mg cos θ (5.104.14)

e quindi

F = −mg
[

2
(

hi

R
− 1
)
+ 3 cos θ

]
sin θ (5.104.15)

Cerchiamo il minimo:

dF
dθ

= −mg
[

2
(

hi

R
− 1
)
+ 3 cos θ

]
cos θ + 3mg sin2 θ = 0 (5.104.16)
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cioè
cos2 θ + 2γ cos θ − 1

2
= 0 (5.104.17)

dove abbiamo posto per semplicità

γ =
1
6

(
hi

R
− 1
)

(5.104.18)

Risolvendo troviamo

cos θ = −γ±
√

γ2 +
1
2

(5.104.19)

Scartando la soluzione negativa (non corrisponde ad una posizione sulla scodella) e
sostituendo abbiamo

F = ±3mg

(
3γ +

√
γ2 +

1
2

)√
1
2
− 2γ2 + 2γ

√
γ2 +

1
2

(5.104.20)

PROBLEMA 5.105

Problema di Keplero: costanti del moto ? ? ?

Nel problema di Keplero si conserva il momento angolare~L e l’energia E. Dato che le
orbite limitate sono ellissi con il fuoco nel centro di forza, se consideriamo un versore n̂
diretto dal centro di forza al punto di massimo avvicinamento vediamo che si tratta di
una costante del moto. Calcolare esplicitamente questa costante in funzione del vettore
posizione ~R e della quantità di moto ~P della particella orbitante. Quante “nuove” costan-
ti del moto abbiamo ottenuto oltre alle quattro (E, Lx, Ly e Lz) già note precedentemente?
“Nuove” significa non esprimibili come funzioni delle altre.

Soluzione

Descriviamo la traiettoria usando coordinate polari nel piano passante per il centro di
forza e perpendicolare a~L. Come abbiamo verificato in un esercizio precedente questa
si può scrivere nella forma

R =
p

1 + e cos (θ + φ)

dove per una traiettoria ellittica 0 < e < 1. La posizione del punto di massimo avvi-
cinamento corrispondono dunque a θ = −φ, e quindi le componenti cartesiane di n̂
sono

n̂ =




cos φ
− sin φ

0




D’altra parte, dall’equazione della traiettoria segue che

R cos (θ + φ) =
p− R

e
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ossia
nx cos θ + ny sin θ = n̂ · êr =

p− R
eR

Derivando questa espressione rispetto al tempo otteniamo

n̂ · êθ = −
p

eθ̇R2
Ṙ

da cui segue che il versore cercato è della forma

n̂ =
1
e

[(
p− R

R

)
êr −

p
R2θ̇

Ṙêθ

]

Cerchiamo di esprimere questa espressione in funzione dei vettori posizione e quantità
di moto. Possiamo scrivere

n̂ =
1
e

[( p
R
− 1
)

êr −
p

R2θ̇
Ṙêθ

]

=
1
e

[( p
R
− 1
)

êr −
p

R2θ̇

(
Ṙêθ − Rθ̇êr + Rθ̇êr

)]

=
1
e

[
−êr −

p
R2θ̇

(
Ṙêθ − Rθ̇êr

)]

=
1
e

[
−êr −

p
R2θ̇

L̂ ∧ ~V
]

=
1
e

[
−êr +

mp
L2

~V ∧~L
]

=
1
e

[ p
L2

~P ∧~L− êr

]

D’altra parte possiamo scrivere l’inverso del raggio di massimo e minimo avvicinamento
nella forma

p
R−

= 1 + e

p
R+

= 1− e

da cui
1

R+
+

1
R−

=
2
p

Ora, 1/R+ e 1/R− sono soluzioni di

L2

2mR2 −
k
R
− E =

L2

2m

(
1
R
− 1

R+

)(
1
R
− 1

R−

)
= 0

e troviamo

p =
L2

km
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Analogamente possiamo verificare che anche e si può scrivere in funzione delle costanti
del moto,

e = 1− p
R+

= −
√

1 +
2EL2

k2m

In conclusione possiamo scrivere il versore cercato nella forma

n̂ =
1

kme

[
~P ∧~L− km

~R
R

]

=
1

kme

[
~P ∧

(
~R ∧ ~P

)
− km

~R
R

]

In questa espressione non abbiamo più quantità che dipendono da una particolare scelta
del piano orbitale, quindi il risultato sarà vero in generale.

Per specificare un versore in tre dimensioni sono necessari due parametri (ad esempio
i due parametri angolari delle coordinate sferiche). Sappiamo però che n̂ giace nel
piano dell’orbita, che è completamente determinato dal momento angolare. Resta quindi
un’unica nuova quantità conservata.

Osserviamo infine che il vettore

~A = kmen̂ = ~P ∧~L− km
~R
R

diretto come n̂ è noto come vettore di Lenz. Da quanto abbiamo visto segue che ~A è una
costante del moto per il problema di Keplero.

PROBLEMA 5.106

Sistema solare su un cono ??

Una particella di massa m1 si muove vincolata ad un cono senza attrito, con angolo di
apertura 2α, sotto l’azione della sola interazione gravitazionale con una massa m2 fissata
sul vertice. In coordinate cilindriche l’equazione del cono è

ρ = z tan α (5.106.1)

1. Scrivere le costanti del moto del sistema in termini delle sole coordinate ρ e φ.

2. Determinare il periodo di un’orbita circolare corrispondente ad un valore fissato
di ρ.

3. Determinare la forma delle traiettorie.
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m1

m2

φ

X

Y

Z

Figura 5.89.: Il cono sul quale si muove la particella di massa m1. La massa m2 è fissa nel
vertice.

Soluzione

Domanda 1 Le costanti del moto del problema sono l’energia totale e la proiezione del
momento angolare lungo l’asse z. L’energia si conserva perchè la forza gravitazionale
è conservativa, e il lavoro da essa fatto sarà incluso nell’energia totale come energia
potenziale. L’unica altra forza che agisce sulla massa m1 è la reazione vincolare del cono,
ma dato che il vincolo è privo di attrito questa è perpendicolare alla superficie e quindi
allo spostamento, per cui non fa lavoro.

L’energia totale si scrive nelle coordinate desiderate come

E =
1
2

m

[(
ρ̇

sin α

)2

+ ρ2φ̇2

]
− Gm1m2 sin α

ρ
(5.106.2)

dato che ρ è legato alla distanza tra le due masse da ρ = r12 sin α. Per la proiezione del
momento angolare lungo l’asse z abbiamo invece

Domanda 2 Data la forma del vincolo un’orbita circolare è una traiettoria a costante.
La seconda legge della dinamica si scrive quindi nella forma

m1
(
−φ̇2ρêρ + ρφ̈êφ

)
= ~R− Gm1m2

r3
12

~r21 (5.106.3)

dove ~R è la reazione vincolare del cono e~r12 il vettore che unisce il vertice del cono
alla particella di massa m1. Dato che ~R è normale alla superficie e quindi a~r12 conviene
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proiettare lungo quest’ultimo l’equazione precedente, ottenendo

− φ̇2ρêρ ·~r12 = −Gm2

r12
(5.106.4)

dato che~r12 · êφ = 0. Inoltre êρ ·~r12 = ρ e quindi

φ̇2 =
Gm2 sin α

ρ3 (5.106.5)

da cui

φ̇ =
2π

T
=

√
Gm2 sin α

ρ3 (5.106.6)

ossia

T = 2π
ρ3/2

√
Gm2 sin α

(5.106.7)

Alternativamente si poteva eliminare φ̇ dall’energia ottenendo il potenziale efficace

E =
1
2

m1

(
ρ̇

sin α

)2

+
L2

z
2m1ρ2 −

Gm1m2 sin α

ρ
(5.106.8)

che è minimo al valore di ρ corrispondente all’orbita circolare. Derivando rispetto a ρ−1

otteniamo
L2

z
m1ρ
− Gm1m2 sin α = 0 (5.106.9)

ossia

ρ =
L2

z

Gm2
1m2 sin α

(5.106.10)

d’altra parte sostituendo Lz otteniamo

φ̇−2 =
ρ3

Gm2 sin α
(5.106.11)

che coincide col risultato precedente.

Domanda 3 Le orbite si possono ottenere analiticamente con un metodo analogo a
quello usato per il problema di Keplero. Utilizzando come parametro la coordinata φ e
non il tempo possiamo scrivere l’energia nella forma

E =
1
2

m1

(
1

sin α

dρ

dφ
φ̇

)2

+
L2

z
2m1ρ2 −

Gm1m2 sin α

ρ

=
1
2

m1

(
1

sin α

dρ

dφ

Lz

m1ρ2

)2

+
L2

z
2m1ρ2 −

Gm1m2 sin α

ρ
(5.106.12)
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Introducendo adesso la coordinata u = 1/ρ abbiamo

E =
1
2

L2
z

m1 sin2 α

(
du
dφ

)2

+
L2

z
2m1

u2 − Gm1m2u sin α (5.106.13)

e derivando rispetto a φ (l’energia è costante) otteniamo

dE
dφ

=
L2

z

m1 sin2 α

du
dφ

d2u
dφ2 +

L2
z

m1

du
dφ

u− Gm1m2
du
dφ

sin α = 0

cioè un’equazione per la traiettoria

L2
z

m1 sin2 α

d2u
dφ2 +

L2
z

m1
u = Gm1m2 sin α (5.106.14)

che ha per soluzione generale

u =
1
ρ
=

Gm2
1m2 sin α

L2
z

+ A cos (φ sin α + β) (5.106.15)

dove A, β dipendono dalle condizioni iniziali. Se α = π/2 il cono si riduce ad un
piano e le traiettorie sono le familiari coniche del problema di Keplero. La soluzione
nel caso generale si può interpretare facilmente immaginando di “tagliare” il cono e di
“incollarlo” su un piano come in Figura 5.90. L’operazione è possibile senza deformare
la superficie, come si può osservare notando che le coordinate

r =
ρ

sin α
(5.106.16)

θ = φ sin α (5.106.17)

si possono interpretare come coordinate polari nel piano in cui è stato “incollato” il cono
tagliato. In tali coordinate il problema è indistinguibile da quello di Keplero, come si
può verificare riscrivendo le costanti del moto

E =
1
2

m
(
ṙ2 + r2θ̇2)− Gm1

r
(5.106.18)

L′z =
Lz

sin α
= m1r2θ̇ (5.106.19)

se si eccettua il fatto che non tutto il piano è ricoperto dal cono se α < π/2 (oppure è
ricoperto più volte se α > π/2). Avremo quindi, ad esempio, orbite ellittiche che però
andranno collegate sui due bordi del taglio, che dovranno essere identificati. Questo
equivarrà ad un angolo di precessione delle orbite di ∆φ = 2π

sin α . Vedere la Figura 5.90 e
la discussione del problema
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a

b

Figura 5.90.: Un cono può essere tagliato e “incollato” su un piano senza deformarlo.
Nel caso considerato l’angolo α è tale che sin α = 3/4, quindi il cono ricopre
tre quarti del piano. Le orbite sono tratti di coniche, perchè il problema è
indistinguibile da quello di Keplero. Si devono però identificare i bordi
del taglio, per cui quando un’orbita (ellittica in figura) arriva nel taglio al
punto a, deve essere prolungata a partire dal punto corrispondente (a e b è
tale che essa distanza dal vertice). Inoltre l’angolo tra orbita e taglio deve
essere lo stesso sia in a che in b.

PROBLEMA 5.107

Pendolo urtato da un proiettile ??

v0

Figura 5.91.: La massa sospesa e il proiettile. L’urto è istantaneo.

Una massa m è sospesa al soffitto mediante una molla di costante elastica k e lunghezza
a riposo nulla. Si trova inizialmente nella posizione di equilibro. Un proiettile di massa
m′ = γm la urta orizzontalmente con velocità v0, rimanendo attaccato ad essa. L’urto è
istantaneo.

1. Calcolare la velocità delle due masse immediatamente dopo l’urto.

2. Per quali valori di γ e v0 le masse urtano il soffitto?
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3. Calcolare il massimo allungamento della molla, nel caso γ = 1

Soluzione

Domanda 1 Durante l’urto le sole forze importanti sono quelle impulsive tra la massa
sospesa e quella in arrivo. Dato che si tratta di forze interne, la quantità di moto si
conserva e quindi

γmv0 x̂ = (γ + 1)m~v (5.107.1)

quindi la velocità finale sarà orizzontale e varrà

~v =
γ

γ + 1
v0 x̂ (5.107.2)

Domanda 2 Immediatamente dopo l’urto le equazioni del moto per la massa risultante
saranno

(γ + 1)mẍ + kx = 0 (5.107.3)
(γ + 1)mÿ + ky = −(γ + 1)mg (5.107.4)

quindi il moto sarà la composizione di un’oscillazione orizzontale attorno alla po-
sizione di equilibrio x = 0, e di una verticale attorno alla posizione di equilibrio
y = − (γ + 1) mg

k . Entrambe le oscillazioni avranno la frequenza angolare

ω =

√
k

m (γ + 1)
(5.107.5)

Consideriamo in particolare l’oscillazione verticale, che sarà data da

y(t) = A cos ωt + B sin ωt− (γ + 1)
mg
k

(5.107.6)

Poniamo le condizioni al contorno, tenendo presente che inizialmente la massa non si
muove verticalmente e si trova in y = −mg/k. Abbiamo

y(0) = A− (γ + 1)
mg
k

= −mg
k

(5.107.7)

ẏ(0) = Bω = 0 (5.107.8)

di conseguenza A = γmg/k, B = 0 e

y(t) =
mg
k

[γ cos ωt− (γ + 1)] (5.107.9)

In altri termini, l’ampiezza di oscillazione è la differenza tra la quota iniziale e quella
di equilibrio. Ma allora il massimo valore di y raggiungibile sarà quello iniziale, y(0) =
−mg/k, e la massa non potrà mai urtare il soffitto.
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O

mg
k

γmgk

γmgk

E

P

A

B

Figura 5.92.: Il massimo allungamento. Le masse si trovano inizialmente nel punto P,
che è il punto di equilibrio della massa sospesa prima dell’urto, ed è sotto
il punto di sospensione della molla O di OP = mg/k. Dopo l’urto il punto
di equilibrio diviene E, con OE = (γ + 1)mg/k.

Domanda 3 Abbiamo determinato in precedenza y(t). Per quanto riguarda x(t) la
soluzione generale è

x(t) = C cos ωt + D sin ωt (5.107.10)

e imponendo le condizioni al contorno

x(0) = C = 0 (5.107.11)

ẋ(0) = Dω =
1
2

v0 (5.107.12)

otteniamo
x(t) =

v0

2ω
sin ωt (5.107.13)

Possiamo adesso scrivere l’allungamento della molla nel caso γ = 1 come

`2(t) = x(t)2 + y(t)2 =
v2

0
4ω2

[
sin2 ωt +

g2

v2
0ω2 (cos ωt− 2)2

]
(5.107.14)

e per semplificare la discussione conviene introdurre la scala adimensionale β = g/(v0ω).
Troviamo il massimo di 5.107.14 . La derivata vale

d`2

dt
=

v2
0

2ω

[
2β2 +

(
1− β2) cos ωt

]
sin ωt = 0

e si annulla per sin ωt = 0, che corrisponde ai due allungamenti quadri

`2(t) =
v2

0
4ω2 β2 (±1− 2)2 =

{
1
4

v2
0

ω2 β2

9
4

v2
0

ω2 β2
(5.107.15)
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delle quali il secondo è il maggiore, e corrisponde al punto più basso raggiunto dalla
traiettoria. L’altra possibile soluzione è

cos ωt =
2β2

β2 − 1
(5.107.16)

che è accettabile (perchè minore di 1 in modulo) nell’intervallo 0 < β < 1/
√

3. La
lunghezza corrispondente è

`2(t) =
1
4

v2
0

ω2
1 + 3β2

1− β2

che è sempre l’allungamento massimo in questo intervallo.
Si può interpretare graficamente questo risultato. La traiettoria è una delle ellissi in

Figura (5.92): il semiasse verticale vale sempre γmg/k, quello orizzontale è tanto più
grande quanto maggiore è la velocità iniziale. Se il semiasse orizzontale è piccolo (β
grande) la distanza massima tra O e un punto dell’ellisse è OA. Quando il semiasse
orizzontale diviene abbastanza grande il massimo diviene OB. Dalla figura è chiaro che
questo accade quando il raggio di curvatura della traiettoria in A diviene maggiore di ,
cioè quando

(2γ + 1)
mg
k

< ρA =

∣∣∣∣
v2

a⊥

∣∣∣∣
A
=

∣∣∣∣
ẋ2

ÿ

∣∣∣∣
A
=

k
mgγω2

(v0

2

)2
=

1
gγ

(v0

2

)2

cioè per
γ (2γ + 1) β2 < 1

che per γ = 1 si riduce alla condizione trovata precedentemente β < 1/
√

3.

PROBLEMA 5.108

Moto su superficie di rotazione ??

Un punto materiale è vincolato a muoversi sotto l’azione della gravità su una superficie
liscia, la cui equazione in coordinate cilindriche è ρ = αz2.

1. Determinare le quantità conservate.

2. Studiare l’esistenza di orbite circolari ρ = rc e determinarne la velocità in funzione
di rc.

3. Calcolare la frequenza delle piccole oscillazioni radiali attorno alle orbite circolari.

Soluzione4

Domanda 1

Si conserva la somma di energia cinetica e potenziale gravitazionale, e la componente
verticale del momento angolare rispetto ad un polo posto nell’origine (o più in generale

4Primo problema scritto 11/9/2008
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sull’asse z). Infatti, la reazione vincolare è normale alla superficie e quindi alla velocità
del punto materiale, quindi non fa lavoro. Inoltre posta la particella in in punto arbitrario
sulla superficie, se consideriamo il piano determinato dal suo vettore posizione rispetto
al polo e dall’asse z vediamo che esso contiene anche tutte le forze presenti (reazione
vincolare e forza di gravità). Quindi il momento sarà perpendicolare a tale piano, e non
potrà avere una componente verticale.

Domanda 2

Supponiamo che la particella si muova in un’orbita circolare di raggio rc. Dato che il
momento angolare è conservato la velocità angolare è costante. Inoltre avremo, usando
coordinate cilindriche (ρ, φ, z)

mz̈ = N cos θ −mg = 0 (5.108.1)

e
−mrcφ̇2 = −N sin θ (5.108.2)

dove θ è la pendenza della superficie nel punto considerato,

tan θ =
dz
dρ

=
1√
4rcα

. (5.108.3)

Risolvendo otteniamo

v = rcφ̇ = rc

√
g
rc

tan θ =

(
g2rc

4α

)1/4

(5.108.4)

Domanda 3

Scriviamo l’energia totale nella forma

E =
1
2

m
(
ż2 + ṙ2 + r2φ̇2)+ mgz (5.108.5)

e il momento angolare lungo z:
Lz = mr2φ̇

Possiamo adesso eliminare ṙ e tenendo conto del vincolo (ṙ = 2αzż) e φ̇ usando il
momento angolare, ottenendo

E =
1
2

m
(
1 + 4α2z2) ż2 +

L2
z

2mα2z4 + mgz (5.108.6)

che sviluppiamo per piccole variazioni attorno all’orbita circolare. Questa corrisponde
ad un’energia uguale al minimo del potenziale effettivo. Poniamo

z = zc + ε, ż = ε̇ (5.108.7)
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e sviluppando al secondo ordine abbiamo

E− E0 =
1
2

m
(
1 + 4α2z2

c
)

ε̇2 +
5L2

z
mα2z6

c
ε2 (5.108.8)

che corrisponde all’energia di un oscillatore armonico con

2π

T
=

√
10L2

z
m2α2z6

c (1 + 4α2z2
c)

=

√
5g

(1 + 4αrc)

√
α

rc
(5.108.9)

PROBLEMA 5.109

Cambio di orbita ??

Un punto materiale di massa m si muove sotto l’azione di un potenziale

U(r) = − k
r

e percorre un’orbita ellittica con distanze di minimo e massimo avvicinamento al centro
delle forze data da rmin = b e rmax = a. Mediante un sistema di propulsione è possi-
bile trasferire al punto materiale in un tempo molto breve un impulso ~Q. Il sistema di
propulsione viene azionato nella posizione di massimo avvicinamento.

v

ba

Figura 5.93.: L’orbita ellittica considerata. Sono indicate le distanze di massimo e
minimo avvicinamento al centro di forza, posto nell’origine degli assi
coordinati.

1. Determinare modulo, direzione e verso dell’impulso ~Q necessario a porre la parti-
cella in orbita circolare rimanendo nello stesso piano dell’orbita precedente.

2. Determinare il minimo modulo dell’impulso ~Q necessario a far cadere la particella
sul centro delle forze.

3. Determinare il minimo modulo di ~Q necessario a porre la particella su un’orbita
illimitata.
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Soluzione5

Domanda 1

La velocità iniziale v si può calcolare scrivendo l’energia totale in r = a e r = b:

E =
L2

2mb2 −
k
b

E =
L2

2ma2 −
k
a

dove si è utilizzato il fatto che nei punti di massimo e minimo avvicinamente E = Ue f f .
Segue che

L2

2m

(
1
b2 −

1
a2

)
= k

(
1
b
− 1

a

)

ossia

(mvb)2 = L2 = 2mk
ab

a + b

e quindi

v =

√
2k
m

a
b

1
a + b

.

Dato che l’impulso è applicato in un tempo molto breve la posizione iniziale della
nuova orbita sarà ancora quella di massimo avvicinamento, ma la velocità sarà cambiata:

~vc = vτ̂ +
1
m
~Q .

Se la nuova orbita deve essere circolare è chiaro che la nuova velocità deve essere ancora
puramente tangenziale, da cui ~Q = Qτ̂. Inoltre la massa per l’accelerazione centripeta
dovranno essere uguali alla forza radiale,

m
v2

c
b

=
k
b2

da cui
k

mb
= v2

c =

(
v +

Q
m

)2

e quindi

~Q =

(√
mk
b
−mv

)
τ̂ =

√
mk
b

(
1−

√
2a

a + b

)
τ̂ .

5Secondo problema scritto 30/3/2007
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Domanda 2

Un’orbita corrisponde alla caduta sul centro di forze quando il momento angolare è
nullo, l’impulso dovrà quindi essere applicato in modo tale da annullarne il valore
iniziale. Scrivendo separatamente la componente radiale e tangenziale

~Q = Qτ τ̂ + Qnn̂

abbiamo la condizione
∆~L = −~L = bn̂ ∧ (Qτ τ̂ + Qnn̂)

da cui
L = −mvb = bQτ

mentre Qn resta arbitrario. Il modulo minimo di ~Q corrisponde ovviamente a Qn = 0
ed abbiamo

~Q = −mvτ̂ = −
√

km
b

2a
a + b

τ̂

che corrisponde all’impulso necessario a fermare la particella nella posizione in cui si
trova.

Domanda 3

Per ottenere un’orbita illimitata è sufficiente avere E > 0. Dopo l’applicazione dell’im-
pulso l’energia totale vale

E =
1
2

m
(

Qr

m

)2

+
(mvb + Qτb)2

2mb2 − k
b

da cui

Q2
r + (mv + Qτ)

2 ≥ 2mk
b

.

Sviluppando i quadrati

Q2
r + Q2

τ + 2mvQτ + m2v2 ≥ 2mk
b

vediamo che il modo più efficiente di aumentare il membro destro è quello di applicare
l’impulso tangenzialmente (a causa del termine lineare in Qτ). Quindi avremo un Q
minimo dato da

Q2 + 2mvQ + m2v2 − 2mk
b

= 0

ossia

Q = −mv +

√
2mk

b
=

√
2mk

b

(
1−

√
a

a + b

)
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PROBLEMA 5.110

Formica su un giradischi ??

Una formica di massa m si trova sul bordo di un giradischi di raggio R, che ruota con
velocità angolare ω. La formica vuole raggiungere il centro, ed è capace di spostarsi con
una velocità radiale di modulo costante v0 > ωR rispetto al giradischi.

1. Supponendo che la formica punti sempre il centro del giradischi, determinare
l’equazione della sua traiettoria, in un opportuno sistema di coordinate, e rappre-
sentarla graficamente.

2. Sempre nell’ipotesi precedente, determinare la forza risultante agente sulla formi-
ca in funzione della sua distanza dal centro.

3. Se invece la formica volesse percorrere una traiettoria rettilinea, quanto tempo
impiegherebbe a raggiungere il centro?

Soluzione6

Domanda 1

Conviene descrivere il moto in un sistema di coordinate polari. La formica avrà una
velocità radiale uguale a −v0êr e una velocità tangenziale (dovuta al trascinamento del
disco) uguale a rωêθ . D’altra parte l’espressione generale della velocità in coordinate
polari è

~v = ṙêr + rθ̇êθ (5.110.1)

e quindi

ṙ = −v0 (5.110.2)
θ̇ = ω . (5.110.3)

Possiamo integrare direttamente queste equazioni, e imponendo le condizioni iniziali
abbiamo

r = R− v0t (5.110.4)
θ = θ0 + ωt (5.110.5)

da cui
r = R− v0

ω
(θ − θ0) . (5.110.6)

La traiettoria è la combinazione di un moto uniforme in direzione radiale e di una
rotazione uniforme, cioè una spirale di passo costante. In realtà l’angolo percorso prima
di raggiungere il centro è dato da

(θ − θ0) =
ωR
v0

< 1 (5.110.7)

6Secondo esercizio scritto 12/11/2008
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ed è quindi sempre inferiore ad un radiante. La traiettoria è rappresentata in Figura 5.94
per diversi valori di ωR/v0.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figura 5.94.: Alcune possibili traiettorie sul disco, corrispondenti a ωR/v0 = 1/2 (blu)
e ωR/v0 = 1 (verde). Per confronto è riportata anche una traiettoria
corrispondente a ωR/v0 = 10 (in rosso).

Domanda 2

L’espressione generale per l’accelerazione in coordinate polari è data da

~a =
(
r̈− rθ̇2) êr +

(
rθ̈ + 2ṙθ̇

)
êθ (5.110.8)

ma nel nostro caso r̈ = 0, θ̇ = ω, θ̈ = 0 e ṙ = −v0. Otteniamo infine

~F = m~a = −rmω2êr − 2v0ωêθ (5.110.9)
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Domanda 3

Per muoversi radialmente la formica deve dirigere parte della sua velocità nella direzio-
ne tangenziale, in modo da annullare il trascinamento del disco. Detto α l’angolo tra la
direzione della formica e il raggio avremo

v0 sin α = −ωr (5.110.10)
v0 cos α = −ṙ . (5.110.11)

Dalla prima equazione segue

sin α = −ωr
v0

(5.110.12)

(notare che α dipende da r e che ωr/v0 < 1, quindi è sempre possibile soddisfare questa
equazione. Sostituendo nella seconda otteniamo

v0

√
1−

(
ωr
v0

)2

= −dr
dt

(5.110.13)

(abbiamo usato cos α =
√

1− sin2 α) da cui

1 = − 1

v0

√
1−

(
ωr
v0

)2

dr
dt

. (5.110.14)

Integriamo adesso membro a membro rispetto al tempo,
ˆ T

0
dt = −

ˆ T

0

1

v0

√
1−

(
ωr
v0

)2

dr
dt

dt (5.110.15)

e cambiando variabile nel secondo integrale otteniamo
ˆ T

0
dt = −

ˆ r(T)

r(0)

dr

v0

√
1−

(
ωr
v0

)2
(5.110.16)

cioè

T =

ˆ R

0

dr

v0

√
1−

(
ωr
v0

)2
=

1
ω

arcsin
(

ωR
v0

)
. (5.110.17)

PROBLEMA 5.111

Urto con una massa vincolata elasticamente ??

Un proiettile urta come in Figura 5.95-(a) un bersaglio tenuto da una molla di lunghezza
nulla e costante elastica k. Il proiettile ha massa tripla del bersaglio, l’urto ha una durata
trascurabile ed è elastico.
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(a) (b)

3m m

k3m m

Figura 5.95.: I due urti considerati nell’esercizio.

1. Si calcoli la velocità di bersaglio e proiettile appena dopo l’urto.

2. Si calcoli la massima elongazione della molla.

3. Ora il bersaglio è tenuto fermo a distanza ` dalla posizione di equilibrio al momen-
to dell’urto, in maniera che la molla sia perpendicolare alla velocità del proiettile
come in Figura 5.95-(b). Si calcoli il momento angolare del bersaglio (sempre dopo
l’urto) e quindi la massima elongazione della molla.

Soluzione7

Domanda 1

Durante l’urto, che avviene in un tempo molto breve, la molla rimane di lunghezza nulla.
Si può considerare quindi il bersaglio come una massa libera, e varrà la conservazione
dell’energia

3
2

mv2
0 =

3
2

mv2
p +

1
2

mv2
b (5.111.1)

e della quantità di moto
3mv0 = 3mvp + mvb (5.111.2)

dove abbiamo indicato con vp e vb le velocità finali di proiettile e bersaglio. Risolvendo
il sistema si ottiene la soluzione

vp = v0 (5.111.3)
vb = 0 (5.111.4)

che chiaramente è da scartare (le particelle non cambiano velocità) e

vp =
3m−m
3m + m

v0 =
1
2

v0 (5.111.5)

vb =
6m

3m + m
v0 =

3
2

v0 (5.111.6)

7Primo problema scritto 19/12/2008.
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che è quella cercata.

Domanda 2

Dopo l’urto l’energia totale Eb della sistema costituito dal bersaglio e dalla molla si con-
serva. Eguagliando l’espressione di Eb immediatamente dopo l’urto (solo energia cineti-
ca, dato che la molla non è allungata) a quella nel momento di massimo allungamento
(solo energia potenziale della molla, dato che la massa è ferma) si ottiene

1
2

m
(

3
2

v0

)2

=
1
2

kδ2
MAX (5.111.7)

e risolvendo

δMAX =
3
2

v0

√
m
k

. (5.111.8)

Notare che si conserva anche il momento angolare del sistema considerato, valutato
rispetto all’estremo fisso della molla. Questo perchè la forza di richiamo della molla è
centrale. Ma questa legge di conservazione non da alcuna informazione utile (Lb = 0
banalmente perchè il moto è radiale).

Domanda 3

Anche in questo caso dopo l’urto si conserva sia l’energia totale Eb che il momento
angolare totale Lb del sistema costituito dal bersaglio e dalla molla. A differenza del caso
precedente entrambe le leggi di conservazione danno informazioni utili. Osservando
che la velocità iniziale del bersaglio vb = 3v0/2 è la stessa dei casi precedenti abbiamo
per l’energia

1
2

mv2
b +

k
2
`2 =

m
2
(
ṙ2 + r2θ̇2)+ k

2
r2 (5.111.9)

e per il momento angolare
−mvb` = mr2θ̇ (5.111.10)

dove abbiamo espresso la posizione del bersaglio in coordinate polari. Ricavando dalla
relazione (5.111.10)

θ̇ = −vb`

r2 (5.111.11)

e sostituendo nella (5.111.9) otteniamo

mv2
b + k`2 = m

(
ṙ2 +

v2
b`

2

r2

)
+ kr2 (5.111.12)

Tenendo conto che nell’istante di massimo e minimo allungamento ṙ = 0 possiamo
riscrivere questa relazione nella forma

(
mv2

b
r2 − k

)
(
r2 − `2) = 0 (5.111.13)
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che ci fornisce le due possibili soluzioni

r = `

e

r = vb

√
m
k

. (5.111.14)

Il massimo allungamento sarà il maggiore tra questi due valori.
Si sarebbe potuto arrivare a questo risultato anche ricordando che il moto di una

massa vincolata nel piano e da una molla si riduce alla composizione di due oscillazioni
armoniche. Abbiamo quindi

x = A cos ωt + B sin ωt (5.111.15)
y = C cos ωt + D sin ωt (5.111.16)

con ω =
√

k/m. Imponendo le condizioni iniziali

x =
vb

ω
sin ωt (5.111.17)

y = ` cos ωt (5.111.18)

che corrisponde a un’ellisse di semiassi ` e vb/ω. Il semiasse maggiore corrisponde
all’allungamento massimo, e otteniamo nuovamente il risultato precedente.

PROBLEMA 5.112

Urto tra una particella e un pendolo ??

Nel sistema in Figura 5.96 il pendolo costituito dalla massa m2 e da una bacchetta rigida
di massa trascurabile si trova, al momento dell’urto con la massa m1, in quiete nella
posizione indicata, parametrizzata dall’angolo θ0.

1. Supponendo l’urto istantaneo e completamente anelastico, trovare se esistono
eventuali quantità conservate durante esso.

2. Trovare l’ampiezza dell’oscillazione del pendolo dopo l’urto se la velocità iniziale
della massa m1 vale v0.

3. Per quali valori di θ0 l’energia dissipata nell’urto è massima e minima?

Soluzione8

Domanda 1

Si conserva il momento angolare rispetto al punto di sospensione del pendolo, dato che
l’unica forza esterna applicata al sistema ha braccio nullo rispetto ad esso. Scegliendo

8Secondo problema scritto 21/9/2009
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m1,v0

θ0

m2

Figura 5.96.: Il pendolo nella posizione iniziale e la massa che lo urta.

coordinate polari possiamo scrivere questa legge di conservazione come

m1v0` cos θ0 = (m1 + m2)`
2ω (5.112.1)

dove ω è la velocità angolare del pendolo immediatamente dopo l’urto.
Si conserva anche la quantità di moto del sistema lungo la direzione perpendicolare

alla bacchetta, dato che non ci sono forze esterne così dirette. La legge di conservazione
si scrive

m1v0 cos θ0 = (m1 + m2)ω` (5.112.2)

e quindi è equivalente alla precedente.

Domanda 2 Abbiamo appena calcolato la velocità angolare iniziale del pendolo. Avre-
mo per la conservazione dell’energia

1
2
(m1 + m2) `

2ω2 − (m1 + m2) g` cos θ0 = − (m1 + m2) g` cos θmax (5.112.3)

e quindi

cos θmax = cos θ0 −
`ω2

2g
= cos θ0 −

v2
0

2g`

(
m1

m1 + m2

)2

cos2 θ0 (5.112.4)

Se la quantità precedente è minore di −1 non si ha una oscillazione ma il pendolo
compie delle rotazioni complete.
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Domanda 3

L’energia dissipata nell’urto è data dalla differenza delle energie cinetiche,

∆E =
1
2

m1v2
0 −

1
2
(m1 + m2) `

2ω2 (5.112.5)

e quindi

∆E =
1
2

m1v2
0

(
1− m1

m1 + m2
cos2 θ0

)
. (5.112.6)

Il valore massimo si ha per θ0 = ±π/2, nel qual caso tutta l’energia cinetica iniziale è
dissipata. Il valore minimo si ha per θ0 = 0 e θ0 = π. In questo caso

∆E =
1
2

m1m2

m1 + m2
v2

0 (5.112.7)

che corrisponde all’energia disponibile nel centro di massa.

PROBLEMA 5.113

Caduta di una struttura ??

m m

m

θ0
g

v1 v3

~v2

Figura 5.97.: La struttura in caduta.

Tre masse identiche sono collegate da due aste di lunghezza ` e massa trascurabile
come in Figura 5.97. Le masse agli estremi sono vincolate a scorrere su un piano oriz-
zontale, mentre l’angolo tra le due aste può variare liberamente, e vale inizialmente
θ0.

1. Se v1(0) = V e v3(0) = 0 determinare la velocità iniziale della massa intermedia
~v2(0).

2. Nel caso v1(0) = v3(0) = 0 determinare la velocità~v2 quando la massa intermedia
urta il piano.

3. Se v3(0) = 0, determinare il minimo valore di v1(0) che permette alle masse agli
estremi di toccarsi.
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Soluzione9

Domanda 1

Posto un sistema di coordinate cartesiane con origine nella posizione della terza massa
abbiamo

x2 = −` sin
θ

2
(5.113.1)

y2 = ` cos
θ

2
(5.113.2)

per le coordinate della massa intermedia e

x1 = −2` sin
θ

2
(5.113.3)

per quella della prima massa. Derivando rispetto al tempo quest’ultima relazione otte-
niamo, all’istante iniziale,

v1(0) = −`θ̇ cos
θ0

2
= V (5.113.4)

e quindi

θ̇ = − V
` cos θ0

2

(5.113.5)

Derivando x2 e y2 otteniamo le due componenti della velocità ~v2:

ẋ2 = v2x = − `

2
θ̇ cos

θ

2
(5.113.6)

ẏ2 = v2y = − `

2
θ̇ sin

θ

2
(5.113.7)

che valutate all’istante iniziale danno, utilizzando la (5.113.5),

v2x =
V
2

(5.113.8)

v2y =
V
2

tan
θ0

2
. (5.113.9)

Domanda 2

Possiamo utilizzare due principi di conservazione, quello dell’energia totale e quello del-
la quantità di moto orizzontale. Dalla seconda segue che il centro di massa del sistema
non si muove orizzontalmente. Ma la posizione orizzontale del centro di massa coincide
con quella della massa intermedia, che quindi si muoverà solo verticalmente. Ma allora

9Problema compitino 19/12/2008
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possiamo scrivere, scegliendo un sistema di coordinate con origine nella proiezione del
centro di massa sul piano orizzontale,

x1 = −` sin
θ

2
(5.113.10)

x2 = 0 (5.113.11)

x3 = ` sin
θ

2
(5.113.12)

e anche

y2 = ` cos
θ

2
. (5.113.13)

Scriviamo adesso l’energia totale conservata. Abbiamo

E =
m
2
(
ẋ2

1 + ẋ2
3 + ẏ2

2
)
+ mgy2 . (5.113.14)

All’istante iniziale le masse sono tutte ferme, ed abbiamo

E = mgy2 = mg` cos
θ0

2
. (5.113.15)

Quando la massa intermedia tocca terra θ = π. Quindi

ẋ1 = − `

2
θ̇ cos

π

2
= 0 (5.113.16)

ẋ3 =
`

2
θ̇ cos

π

2
= 0 (5.113.17)

ed otteniamo
E =

m
2

ẏ2
2 . (5.113.18)

Eguagliando le due espressioni dell’energia otteniamo infine

ẏ2 = −
√

2g` cos
θ0

2
(5.113.19)

che è la velocità cercata.

Domanda 3

Anche in questo caso possiamo usare la conservazione dell’energia e della quantità di
moto orizzontale. Notare che con le condizioni al contorno specificate il centro di massa
si muove anche in direzione orizzontale, ovviamente di moto rettilineo uniforme.

Inizialmente l’energia totale vale

E =
1
2

m
(

v2
1(0) + v2

2x(0) + v2
2y(0)

)
+ mgy2 (5.113.20)
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che si può scrivere, utilizzando quanto visto rispondendo alla prima domanda,

E =
1
2

m
(

V2
i +

1
4

V2
i +

1
4

V2
i tan2 θ0

2

)
+ mg` cos

θ0

2
. (5.113.21)

Gli estremi si toccheranno se θ = 0. In questo caso avremo

E =
1
2

m
(

3V2
f

)
+ mg` (5.113.22)

dove si è usato il fatto che nel caso limite le tre masse si muoveranno solo orizzontal-
mente con la stessa velocità Vf .

La conservazione della quantità di moto orizzontale ci da

m
(

Vi +
1
2

Vi

)
= 3mVf (5.113.23)

e quindi

1
2

mV2
i

(
5
4
+

1
4

tan2 θ0

2

)
+ mg` cos

θ0

2
=

1
2

m
(

3V2
f

)
+ mg` (5.113.24)

=
1
2

m
(

3
4

V2
i

)
+ mg` (5.113.25)

da cui ricaviamo la velocità iniziale cercata

Vi =

√√√√√
8g`

(
1− cos θ0

2

)

(
2 + tan2 θ0

2

) . (5.113.26)

PROBLEMA 5.114

Un pendolo su un blocco mobile ??

Un pendolo di lunghezza ` e massa m è montato su un blocco di massa M poggiato
su un piano orizzontale. Tra blocco e piano è presente solo attrito statico µs (µd = 0).
Il blocco e il pendolo sono inizialmente in moto con velocità v0, col pendolo nella sua
posizione di equilibrio, e urtano frontalmente un secondo blocco in modo elastico. In
seguito all’urto il primo blocco si arresta.

1. Determinare la massa del secondo blocco.

2. Supponendo µs abbastanza grande da impedire strisciamenti, determinare il valo-
re minimo di v0 affinchè il pendolo percorra un giro completo (il vincolo del filo
si intende monolatero).

3. Per v0 =
√

5g` determinare il minimo valore di µs affinchè il blocco resti in quiete.
Volendo è possibile considerare solo il caso M � m, dando il risultato al primo
ordine in m/M.
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Soluzione10

Domanda 1

Durante l’urto le uniche forze impulsive sono quelle che agiscono orizzontalmente tra i
due blocchi. Possiamo quindi trascurare la presenza del pendolo, e la massa del secondo
blocco è quindi uguale a quella del primo, perchè solo in questo caso quest’ultimo si
ferma.

Domanda 2

La velocità del pendolo sarà inizialmente v0. Nel punto più alto essa diverrà

v2 = v2
0 − 4g` (5.114.1)

e la tensione del filo sarà determinata da

m
v2

`
= T + mg (5.114.2)

da cui

T = m
(

v2
0
`
− 4g

)
−mg = m

(
v2

0
`
− 5g

)
≥ 0 (5.114.3)

cioè

v0 ≥
√

5g` (5.114.4)

Domanda 3

Per una inclinazione qualsiasi la tensione sarà determinata da

v2 = 5g`− 2g` (1− cos θ) (5.114.5)

e

m
v2

`
= T −mg cos θ (5.114.6)

e risolvendo si trova
T = 3mg (1 + cos θ) . (5.114.7)

Imponendo l’equilibrio del carrello abbiamo

Fa + T sin θ = 0 (5.114.8)
N − T cos θ −Mg = 0 (5.114.9)

10Secondo problema scritto 11/9/2008
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da cui

Fa = −3mg (1 + cos θ) sin θ (5.114.10)
N = 3mg cos θ(1 + cos θ) + Mg (5.114.11)

ma dato che |Fa| ≤ µsN avremo

(1 + cos θ) sin θ

(1 + cos θ) cos θ + M
3m
≤ µs (5.114.12)

(supponendo che sia sempre N > 0). Dobbiamo massimizzare rispetto a θ il primo
membro. I punti stazionari corrispondono alle soluzioni di

(
1 +

2M
3m

)
cos2 θ +

(
2 +

M
3m

)
cos θ +

(
1− M

3m

)
= 0 (5.114.13)

che ha per soluzioni
cos θ = −1 (5.114.14)

e

cos θ =
1− 3m

M

2 + 3m
M

(5.114.15)

e quest’ultimo valore corrsponde al minimo. Per m/M� 1

cos θ ' 1
2

(5.114.16)

µs ≥
9m
4M

√
3 (5.114.17)

PROBLEMA 5.115

Urto con un cuneo mobile ??

Nel sistema in Figura 5.98 il piano inclinato è libero di scorrere sul piano orizzontale, ed è
inizialmente fermo. La particella ha velocità iniziale v0, e all’istante t = 0 arriva al piano
inclinato. Particella e piano inclinato hanno la stessa massa m e θ = π/4. Si supponga
che la giunzione tra piano obliquo e piano inclinato sia stata resa sufficientemente
regolare, e che non vi sia alcun genere di attrito.

1. La particella, considerata un punto materiale, è vincolata a rimanere aderente al
piano obliquo. Per quale valore minimo della velocità v0,min essa riesce a superare
il blocco?

2. Se v0 < v0,min calcolare le velocità finali del piano inclinato e della particella.

3. Calcolare la velocità del blocco immediatamente dopo l’istante t = 0.
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m

ℓ

π/4

m

Figura 5.98.: Il cuneo e la particella prima dell’urto.

Soluzione11

Domanda 1

Usiamo la conservazione dell’energia e della quantità di moto orizzontale. L’energia
totale del sistema si può scrivere nella forma

E =
1
2

mV2 +
1
2

m
(

v2
x + v2

y

)
+ mgy =

1
2

mv2
0,min (5.115.1)

e la quantità di moto orizzontale

Px = mV + mvx = mv0,min . (5.115.2)

Nel caso limite la particella arriva nel punto più alto del piano inclinato, con velocità
nulla rispetto ad esso (vx = V, vy = 0 ). Allora possiamo scrivere

mV2 + mg
√

2
2

` =
1
2

mv2
0,min

e
V =

1
2

v0,min . (5.115.3)

da cui
v0,min =

√
2
√

2g` . (5.115.4)

Domanda 2

Dato che siamo interessati alle sole velocità finali, possiamo trattare il problema come un
urto completamente elastico. In dettaglio, le equazioni per la conservazione di energia
e quantità di moto orizzontale si possono scrivere

1
2

mv2
0 =

1
2

mV2 +
1
2

mv2 (5.115.5)

mv0 =mv + mV (5.115.6)

11Primo esercizio scritto 31/1/2007
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Risolvendo il sistema si trova che particella e piano inclinato si scambiano le velocità,
cioè

v = 0 (5.115.7)
V = v0 (5.115.8)

Domanda 3

Abbiamo nuovamente conservazione di energia e di quantità di moto orizzontale. Inol-
tre l’energia potenziale non varia, quindi

1
2

mv2
0 =

1
2

mV2 +
1
2

m
(

v2
x + v2

y

)
(5.115.9)

mv0 = mV + mvx (5.115.10)

Abbiamo infine un vincolo da imporre, cioè il fatto che per t > 0 la velocità relativa della
particella rispetto al piano è inclinata di π/4 rispetto all’orizzontale. Questo significa

vx −V = vy (5.115.11)

Usando le ultime due relazioni per esprimere la conservazione dell’energia in funzione
di V abbiamo

v2
0 = V2 + (v0 −V)2 + (v0 − 2V)2 (5.115.12)

che da

V =
1
2

(
1±
√

3
3

)
v0 . (5.115.13)

La soluzione accettabile è quella con il segno negativo, la sola che corrisponda ad una
velocità verticale positiva della particella:

vy = v0 − 2V =
1√
3

v0 (5.115.14)

PROBLEMA 5.116

Doppia cerniera mobile ??

Nel sistema in Figura 5.99 la massa m1, libera di muoversi verticalmente, e la massa m2,
libera di muoversi orizzontalmente, sono collegate da un filo inestensibile di lunghezza
` privo di massa. Inizialmente il sistema è fermo nella configurazione in figura con il
filo inclinato di un angolo θ = θ0 rispetto alla verticale. Si consiglia di utilizzare questo
parametro per descrivere il sistema.

1. Supponendo la presenza di attrito tra la particella m2 e il vincolo orizzontale,
determinare per quale valore minimo del coefficiente di attrito statico µs il sistema
è in equilibrio.
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m1

m2

θ0

Figura 5.99.: Il sistema considerato nell’esercizio.

2. In assenza di attrito si lascia adesso il sistema libero di muoversi. Calcolare la
velocità della massa m2 quando θ = 0 (filo verticale).

3. Determinare la tensione del filo in funzione dell’angolo θ durante l’evoluzione da
θ = θ0 a θ = 0, sempre in assenza di attrito.

Soluzione12

Domanda 1

Facendo riferimento al diagramma delle forze in Figura 5.100, all’equilibrio deve essere

N1 = m2g + T cos θ0 (5.116.1)

FA = T sin θ0 (5.116.2)

e d’altra parte |FA| ≤ µsN1 da cui

µs (m1 + m2) g ≥ m1g tan θ0 (5.116.3)

cioè
µs ≥

m1

m1 + m2
tan θ0 (5.116.4)

Domanda 2

In assenza di attrito vale la conservazione dell’energia totale. Inoltre nella configurazio-
ne finale la massa m1 è ferma. Possiamo quindi scrivere

−m1g` cos θ0 = −m1g`+
1
2

m2v2
2 (5.116.5)

da cui

v2 = −
√

2
m1

m2
g` (1− cos θ0) . (5.116.6)

12Secondo esercizio scritto 31/1/2007
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m 1

m 2

0

m2g

N2

T

T m1g

N1

FA

Figura 5.100.: Diagramma delle forze. Sono rappresentate le forze applicate alle due
masse.

Domanda 3

Scriviamo ancora una volta la conservazione dell’energia confrontando la configurazio-
ne iniziale con quella ad un generico angolo θ. Otteniamo

−m1g` cos θ0 = −m1g` cos θ +
1
2

m1v2
1 +

1
2

m2v2
2 . (5.116.7)

In funzione della coordinata scelta le velocità si scrivono

v1 =
d
dt
` cos θ = −`θ̇ sin θ (5.116.8)

v2 =
d
dt
` sin θ = `θ̇ cos θ (5.116.9)

(5.116.10)

da cui
1
2
[
m1 sin2 θ + m2 cos2 θ

]
`2θ̇2 = m1g` (cos θ − cos θ0) . (5.116.11)

D’altra parte deve essere

m2
dv2

dt
= −T sin θ (5.116.12)

m1
dv1

dt
= −m1g + T cos θ (5.116.13)
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cioè
m2
(
`θ̈ cos θ − `θ̇2 sin θ

)
= −T sin θ (5.116.14)

m1
(
−`θ̈ sin θ − `θ̇2 cos θ

)
= −m1g + T cos θ (5.116.15)

er semplificare i calcoli possiamo prendere una combinazione delle equazioni prece-
denti che cancella i termini in θ̈, cioè la somma di m1 sin θ volte la prima e di m2 cos θ
volte la seconda:

−m1m2`θ̇2 = −T
(
m1 sin2 θ −m2 cos2 θ

)
−m1m2g cos θ (5.116.16)

da cui

T =
m1m2`θ̇2 −m1m2g cos θ

m1 sin2 θ −m2 cos2 θ
(5.116.17)

e ricavando θ̇2 dalla conservazione dell’energia otteniamo la risposta finale:

T = m1m2g
m1 cos θ − 2m1 cos θ0 + (m1 −m2) cos3 θ(

m1 sin2 θ −m2 cos2 θ
) (

m1 sin2 θ + m2 cos2 θ
) . (5.116.18)

PROBLEMA 5.117

Massa su guida circolare e molla ??
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Figura 5.101.: Il punto materiale vincolato alla guida circolare.

Un punto materiale di massa m è vincolato ad una guida liscia circolare di raggio r
disposta in un piano verticale. Tra il punto materiale e il punto più alto della guida è
inoltre fissata una molla di lunghezza a riposo nulla e costante elastica k.

1. Discutere, in funzione di k, le posizioni di equilibrio per il sistema e la loro stabilità.
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2. Supponendo kr < mg e che inizialmente il punto materiale si trovi nel punto più
basso della guida determinare per quale velocità iniziale esso può percorrere un
giro completo.

3. Discutere il moto del punto materiale nel caso kr = mg.

Soluzione13

Domanda 1

Scriviamo l’energia potenziale in funzione dell’angolo θ in Figura 5.101. Abbiamo

U = mgh +
1
2

k`2 = mgr cos θ + 2kr2 sin2 θ

2
= mgr cos θ + kr2 (1− cos θ)

dove è stata indicata con h = r cos θ l’altezza della particella relativa al centro della
guida e con ` = 2r sin θ/2 la lunghezza della molla. Dall’ultima espressione segue
che gli estremi del potenziale sono in θ1 = 0 e θ2 = π. In particolare se mg < kr si
ha equilibrio stabile in θ1 e instabile in θ2, viceversa se mg > kr. Il caso mg = kr è
particolare: l’energia potenziale non dipende da θ e qualsiasi posizione è di equilibrio
indifferente.

Domanda 2

Nel caso considerato la posizione iniziale è di equilibrio stabile. Imponendo la conser-
vazione dell’energia totale troviamo che l’energia cinetica iniziale deve essere almeno
uguale alla massima variazione di energia potenziale:

1
2

mv2
0 > 2(mgr− kr2)

da cui

v0 > 2

√
gr− kr2

m
.

Domanda 3

Nel caso considerato l’energia è, a meno di una costante, solo cinetica:

E =
1
2

mr2θ̇2

da cui seguono le equazioni del moto:

Ė = mr2θ̇θ̈ = 0→ θ̈ = 0 .

Il moto quindi è circolare uniforme:

θ = θ0 + ωt .
13Secondo esercizio 10/9/2007
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PROBLEMA 5.118

Modello di urto non istantaneo ??

Le due masse in Figura 5.102 somo m1 = m2 = m. Quella a sinistra si muove inizialmen-
te con velocità v0, l’altra è ferma. La molla ha lunghezza a riposo e costante elastica k,
ed è libera ad un estremo.

v0m1
m2

k,ℓ

Figura 5.102.: Il modello di urto non istantaneo tra le due masse considerato
nell’esercizio.

1. Per quali valori v0 le due masse non arrivano a toccarsi?

2. Calcolare la velocità delle masse quando queste sono di nuovo separate.

3. Se la velocità iniziale è sufficiente a far toccare le massa, e queste rimangono
attaccate, calcolare la velocità finale del sistema.

Soluzione14

Domanda 1

Cerchiamo sotto quali condizioni le masse si toccano. Possiamo utilizzare la conser-
vazione dell’energia e della quantità di moto. Uguagliando il valore iniziale di queste
quantità a quello posseduto al momento del contatto abbiamo

m1v0 ≥ (m1 + m2)v2

e
1
2

m1v2
0 ≥

1
2
(m1 + m2)v2

2 +
1
2

k`2 .

Si è utilizzato il fatto che al momento del contatto v2 ≤ v1, e la molla è completamente
contratta. Ricavando v f dalla prima relazione si trova

v2 ≤
m1

m1 + m2
v0

e sostituendo nella seconda

m1v2
0 ≥

m2
1

m1 + m2
v2

2 + k`2

14Prima parte compitino 22/12/2006
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da cui

v0 ≥
√

k
µ
`

dove µ = m1m2/(m1 + m2) = m/2 è la massa ridotta del sistema. Le masse non
arriveranno dunque a toccarsi per

v0 <

√
k
µ
` .

Domanda 2

Si tratta di un urto elastico, e dato che le masse sono uguali deve essere

m1v0 = m1v1 + m2v2

1
2

m1v2
0 =

1
2

m1v2
1 +

1
2

m2v2
2

ossia v1 = 0 e v2 = v0 se m1 = m2 = m.

Domanda 3

Anche in questo caso possiamo vedere il problema come un urto, questa volta comple-
tamente anelastico. Sarà ovviamente

m1v0 = m1v1 + m2v2 = (m1 + m2)v f

Avremo quindi (m1 = m2 = m)

v f =
1
2

v0

PROBLEMA 5.119

Carrucola su cuneo ??

Un cuneo di massa M a forma di prisma triangolare di apertura angolare θ è libero di
muoversi sul piano orizzontale su cui è appoggiato. Sul cuneo si trovano due masse m1
e m2 (m2 > m1), collegate tra loro da un filo inestensibile di massa nulla come mostrato
in Figura 5.103. Il filo scorre senza attrito su un perno solidale al piano inclinato. Non vi
è attrito tra le masse e il piano inclinato.

1. Se il cuneo è mantenuto immobile, determinare il moto delle masse m1 e m2
(lasciate andare da ferme).

2. Se il cuneo è libero di muoversi senza attrito sul piano orizzontale, determinare il
suo spostamento quando la massa m2 raggiunge il bordo.

3. In presenza di attrito statico µs tra il cuneo e il piano orizzonale, determinare il
valore minimo affinchè il cuneo resti immobile durante la discesa di m2.
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m
2

1
m

M L

Figura 5.103.: La carrucola con le due massa appoggiate sul cuneo mobile.

Soluzione15

Domanda 1

Consideriamo le forze che agiscono sulle due masse lungo la direzione parallela al piano.
Per la prima abbiamo

m1a1 = m1g sin θ − T

e per la seconda
m2a2 = m2g sin θ − T .

Abbiamo preso come verso positivo per le accelerazioni di entrambe le masse quello
verso lo spigolo del cuneo. Sottraendo membro a membro abbiamo

m1a1 −m2a2 = (m1 −m2)g sin θ

ma a2 = −a1 da cui

a1 =
m1 −m2

m1 + m2
g sin θ < 0 .

Le due masse quindi si muovono di moto uniformemente accelerato. Partendo da fermi
e misurando lo spostamento a partire dalla posizione iniziale di ciascuna massa abbiamo

s1 =
1
2

m1 −m2

m1 + m2
g sin θ t2

s2 =
1
2

m2 −m1

m1 + m2
g sin θ t2

15Seconda parte compitino 22/12/2006
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Domanda 2

La quantità di moto orizzontale del sistema si conserva. Questo significa che la posizione
orizzontale del centro di massa non cambia, dato che inizialmente è ferma. Possiamo
dunque scrivere

MX0 + m1x1 + m2x2

M + m1 + m2
=

M (X0 + ∆) + m1 (x1 + δ1) + m2 (x2 + δ2)

M + m1 + m2

dove X0, x1 e x2 sono le coordinate orizzontali iniziali del centro di massa del cuneo e
delle due masse, e ∆, δ1, δ2 i relativi spostamenti finali, il tutto nel sistema di riferimento
del laboratorio. D’altra parte lo spostamento orizzontale finale della massa m2 è noto

δ2 − ∆ = L cos θ

e per l’inestensibilità del filo deve essere

δ2 − ∆ = − (δ1 − ∆) .

Ricavando δ1, δ2 da queste ultime due relazioni otteniamo

δ2 = ∆ + L cos θ

δ1 = ∆− L cos θ

e sostituendo nella prima abbiamo

M∆ + m1 (∆− L cos θ) + m2 (∆ + L cos θ) = 0

da cui

∆ =
(m1 −m2)L cos θ

M + m1 + m2
.

Domanda 3

Facciamo riferimento ai diagrammi delle forze agenti sul cuneo e sulle due masse ri-
portati in Figura 5.104. Indichiamo con T la tensione del filo, con N1 e N2 le reazioni
vincolari del piano obliquo, con R la reazione vincolare del piano orizzontale e con la
forza di attrito.

Scriviamo le equazioni del moto per le masse e per il cuneo, nell’ipotesi che quest’ul-
timo resti fermo. Tenendo conto del fatto che

ÿ1 = −ÿ2

ẍ1 = −ẍ2 .

possiamo scrivere

m1 ẍ1 = N1 sin θ − T cos θ (5.119.1)
m1ÿ1 = N1 cos θ + T sin θ −m1g (5.119.2)
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2T

Mg
R

FA

N1

N2

T

m1g

N1

T N2

m2g

Figura 5.104.: Diagrammi delle forze.

−m2 ẍ1 = N2 sin θ − T cos θ (5.119.3)
−m2ÿ1 = N2 cos θ + T sin θ −m2g (5.119.4)

e

0 = − (N1 + N2) sin θ + 2T cos θ + FA (5.119.5)
0 = R−Mg− (N1 + N2) cos θ − 2T sin θ . (5.119.6)

Dato che
ÿ1

ẍ1
=

ÿ2

ẍ2
= − tan θ

dividendo membro a membro le Equazioni (5.119.1) (5.119.2) e (5.119.3), (5.119.4) otte-
niamo

N1 = m1g cos θ
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N2 = m2g cos θ

Dalle equazioni del moto per le masse abbiamo
(

N1

m1
+

N2

m2

)
sin θ − T

(
1

m1
+

1
m2

)
cos θ = 0

(
N1

m1
+

N2

m2

)
cos θ + T

(
1

m1
+

1
m2

)
sin θ = 2g

da cui (µ = m1m2/(m1 + m2))
T = 2gµ sin θ .

Sostituendo nella equazione (5.119.6) troviamo

R = Mg + (m1 + m2)g cos2 θ + 4gµ sin2 θ

e tenendo conto che deve essere |FA| ≤ µsR abbiamo infine

[(m1 + m2)− 4µ] |cos θ sin θ| ≤ µs
[
M + (m1 + m2) cos2 θ + 4µ sin2 θ

]

ossia

µs ≥
(m1 −m2)2 cos θ sin θ

M(m1 + m2) + (m1 + m2)2 cos2 θ + 4m1m2 sin2 θ
.

PROBLEMA 5.120

Massa su guida circolare e molla II ??

Una particella di massa m è vincolata alla guida circolare di raggio R posta in un piano
orizzontale. Inoltre è fissata ad una molla di costante k e lunghezza a riposo `0. L’altro
estremo della molla è fissato a un punto posto a una distanza R/2 dal centro della guida.

1. Se `0 = 0 determinare la minima velocità che deve avere la particella nel punto di
minimo allungamento della molla per poter percorrere completamente la guida.

2. In funzione di `0 ≥ 0 discutere le posizioni di equilibrio del sistema.

3. Scelta una opportuna coordinata scrivere le equazioni del moto per il sistema,
sempre per `0 generico.

Soluzione16

Domanda 1

Possiamo scegliere come coordinata l’angolo θ tra il raggio corrispondente alla posizio-
ne della particella e quello corrispondente alla posizione di massimo avvicinamento.

16Secondo esercizio scritto 11/1/2007
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k, ℓ0

R/2

m

Figura 5.105.: Il sistema considerato nell’esercizio.

L’energia cinetica si scriverà quindi

K =
1
2

mv2 =
1
2

mR2θ̇2

e quella potenziale

U =
1
2

k(`− `0)
2

Con

` =
√

R2 sin2 θ + (R cos θ − R/2)2 = R

√
5
4
− cos θ .

Nel nostro caso `0 = 0 quindi

E = K + U =
1
2

mR2θ̇2 +
kR2

2

(
5
4
− cos θ

)
.

Eguagliando l’energia nel punto di massimo e di minimo avvicinamento otteniamo

1
2

mv2
0 +

1
2

k`2
min >

1
2

k`2
max

da cui

v0 =

√
k
m
(
`2

max − `2
min

)

ossia

v0 =

√
k
m

R2
(
`2

max − `2
min

)
= R

√
2k
m
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Domanda 2

Se sulla molla vi è tensione, una posizione sarà di equilibrio solo quando questa è
ortogonale al vincolo. Ciò è possibile soltanto in θ = 0 e θ = π.

L’altra possibilità è che non vi sia tensione. Questo accade quando la molla è alla sua
lunghezza di riposo, il che significa

`2
0 = R2

(
5
4
− cos θ

)

cosa possibile solo se
1
2

R ≤ `0 ≤
3
2

R .

Il relativo angolo è dato da

cos θ =
5
4
− `2

0
R2

Domanda 3

Possiamo ottenere le equazioni del moto derivando l’energia totale rispetto al tempo:

Ė =
d
dt


1

2
mR2θ̇2 +

k
2

(
R

√
5
4
− cos θ − `0

)2



= mR2θ̇θ̈ + k

(
R

√
5
4
− cos θ − `0

)
R sin θ

2
√

5
4 − cos θ

θ̇

da cui

mRθ̈ +
k
2


R− `0√

5
4 − cos θ


 sin θ = 0

PROBLEMA 5.121

Orbita di un satellite ??

Un satellite di massa m si trova in orbita circolare attorno alla terra, la durata del periodo
è 24h. La massa del satellite è molto minore della massa della terra, m � MT = 6×
1024kg.

1. Determinare il raggio dell’orbita, sapendo che la costante di gravitazione univer-
sale vale G = 6.7× 10−11m3kg−1s−2.

2. Mediante un opportuno impulso~I applicato istantaneamente in direzione tangen-
ziale si vuole portare il satellite su un’orbita parabolica. Determinare~I.
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3. Supponendo nuovamente il satellite in orbita circolare come al punto 1., lo si vuole
portare su un’orbita circolare di raggio doppio, applicando ad opportuni istanti
due impulsi~I1 e~I2, passando attraverso un’orbita ellittica intermedia. Calcolare~I1
e~I2 supponendoli entrambi applicati in direzione tangenziale.

Soluzioni17

Domanda 1 L’equazione del moto in direzione radiale si scrive

m
v2

R
= G

mMT

R2

e d’altra parte per il periodo vale

v =
2πR

T
da cui

R =

(
GMTT2

4π2

)1/3

'
(

6.7× 10−11 × 6× 1024 × (24× 60× 60)2

4π2

)1/3

m

' 4.2× 107m

Domanda 2 Prima di applicare l’impulso l’energia vale

E =
L2

2mR2 −
k
R

dato che l’orbita è circolare. Inoltre sappiamo che il potenziale effettivo è minimo,

d
dR

(
L2

2mR2 −
k
R

)
= − L2

mR3 +
k

R2 = 0

da cui
L2 = kmR

Applicando l’impulso cambiamo il momento angolare di ∆L = IR. Dato che la velocità
radiale resta nulla la nuova energia vale

E′ =
(L + IR)2

2mR2 − k
R

e per avere un’orbita parabolica deve essere E′ = 0. Quindi (supponendo L > 0)
otteniamo (√

kmR + IR
)2

= 2kmR

17Seconda domanda compitino 13 aprile 2011
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da cui

I = −
(

1±
√

2
)√ km

R
Si può quindi applicare l’impulso con lo stesso verso della velocità

I =
(√

2− 1
)√ km

R

oppure in verso opposto

I = −
(√

2 + 1
)√ km

R

Domanda 3 Applicando il primo impulso si ottiene un’orbita ellittica che deve avere
il perigeo in R e l’apogeo in 2R. Per ottenere questo l’equazione

E1 =
(L + I1R)2

2mr2 − k
r

deve essere verificata in r = R e r = 2R, ossia

E1 =
(L + I1R)2

2mR2 − k
R

E1 =
(L + I1R)2

8mR2 − k
2R

Sottraendo membro a membro troviamo

3
8
(L + I1R)2

mR2 − k
2R

= 0

da cui

I1 = −
(

1±
√

4
3

)√
km
R

Il secondo impulso deve essere applicato all’apogeo, in modo da ottenere un’orbita
circolare di raggio 2R e quindi un momento angolare

L′ = ±
√

2kmR

Se vogliamo L′ > 0 abbiamo dunque le due possibilità determinate da

L + RI1 + 2RI2 =
√

2kmR

ossia

I2 =

[
1√
2
± 1√

3

]√
km
R
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mentre se L′ < 0 (l’orbita circolare finale è percorsa nel verso opposto di quella iniziale)
deve essere

L + RI1 + 2RI2 = −
√

2kmR

e quindi

I2 =

[
− 1√

2
± 1√

3

]√
km
R

Riassumendo abbiamo le quattro possibilità in tabella

I1 I2

−
(

1 + 2√
3

)√
km
R

(
1√
2
+ 1√

3

)√
km
R

−
(

1− 2√
3

)√
km
R

(
1√
2
− 1√

3

)√
km
R

−
(

1 + 2√
3

)√
km
R

(
− 1√

2
+ 1√

3

)√
km
R

−
(

1− 2√
3

)√
km
R

(
− 1√

2
− 1√

3

)√
km
R

PROBLEMA 5.122

Nibiru ?? S

Figura 5.106.: L’orbita di Nibiru.

Secondo una teoria accreditata da un grandissimo numero di pagine web ogni 3600
anni il pianeta Nibiru arriva con la sua orbita in prossimità della terra. Il prossimo
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avvicinamento è previsto da alcuni attorno al primo aprile del 2013. Nel seguito si
considereranno solo le interazioni gravitazionali tra la terra e il sole e tra Nibiru e il sole,
per semplicità si considererà la massa di Nibiru uguale a quella della terra, e l’orbita di
quest’ultima circolare e di raggio aT ' 1.5× 1011m. Inoltre si supporrà che il perielio di
Nibiru e quello della terra coincidano, che le orbite siano nello stesso piano e percorse
nello stesso senso.

1. Sulla base dei dati precedenti calcolate il rapporto tra l’afelio di Nibiru e la distanza
terra-sole.

2. Modellando l’eventuale scontro tra la terra e Nibiru come un’urto istantaneo com-
pletamente anelastico al perielio calcolare la frazione di energia cinetica dissipata
durante l’urto.

3. Determinare l’afelio dell’unico pianeta risultante.

Soluzione18

Domanda 1

Conosciamo il periodo T dell’orbita e il perielio. Dalla terza legge di Keplero sappiamo
che

T2
N

a3
N

=
T2

T

a3
T

dove a è il semiasse maggiore. Quindi

aN =

(
TN

TT

)2/3

aT ' 234.9 aT

Indicati con r− e r+ il perielio e l’afelio dell’orbita abbiamo

r+ + r− = 2a

e quindi
r+ = 2aN − aT ' 468.9 aT

Domanda 2

Al momento dell’urto le velocità radiali sono entrambe nulle, e si conserva il momento
angolare totale (o anche la quantità di moto nella direzione tangente all’orbita, che è
proporzionale a quest’ultimo). Quindi

L f = LT + LN

18Secondo esercizio compitino 18 aprile 2012
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L’energia cinetica immediatamente prima dell’urto è

Ei =
L2

T + L2
N

2mTa2
T

e immediatamente dopo l’urto

E f =
(LT + LN)

2

4mTa2
T

quindi si è dissipata un’energia

∆E =
2L2

T + 2L2
N − (LT + LN)

2

4mTa2
T

=
(LT − LN)

2

4mTa2
T

e quindi
∆E
Ei

=
1
2
(LT − LN)

2

L2
T + L2

N
=

1
2
(LT − LN)

2

L2
T + L2

N
=

1
2
(1− ρ)2

1 + ρ2

dove abbiamo indicato con ρ il rapporto

ρ =
LT

LN

Dato che (indicando con MS la massa del sole)

E =
L2

2mTr2
−
− GmT MS

r−

E =
L2

2mTr2
+

− GmT MS

r+

abbiamo

L =

√
2GMSm2

T

(
r+r−

r+ + r−

)

e quindi

ρ =

√
GMSm2

TaT
√

2GMSm2
T

aTr+
r++aT

=

√
1
2
(aT + r+)

r+
'
√

1
2

1 + 468.9
468.9

' 0.7

Sostituendo otteniamo

∆E
Ei

=
1
2
(1− 0.7)2

1 + (0.7)2 ' 0.03
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Domanda 3

L’orbita dopo l’urto è definita dal valore delle due costanti del moto, l’energia

E =
(LT + LN)

2

4mTa2
T
− 2GmT MS

aT

e il momento angolare
L = LT + LN

Il perielio e l’afelio sono soluzioni dell’equazione

L2

4mTr2 −
2GmT MS

r
− E =

L2

4mT

(
1
r
− 1

r+

)(
1
r
− 1

r−

)
= 0

e quindi, dato che una delle due soluzioni concide com aT, possiamo scrivere per l’altra

L2

4mT

1
r

1
aT

= −E

cioè

r = − L2

4mTaTE
=

(LT + LN)
2

[
8Gm2

T MSaT − (LT + LN)
2
] aT

=
(LT + LN)

2
[
8L2

T − (LT + LN)
2
] aT =

(LT + LN)
2

7L2
T − 2LN LT − L2

N
aT

=
(1 + ρ)2

7ρ2 − 2ρ− 1
aT ' 2.7aT

PROBLEMA 5.123

Un pendolo in un ascensore ?? S

La cabina di un ascensore di massa M può muoversi in direzione verticale, ed è tratte-
nuta da un cavo sottoposto ad una tensione T. All’interno di essa è fissato un pendolo
costituito da una massa m sospesa a un filo inestensibile e privo di massa di lunghezza
`. Inizialmente la cabina è ferma ed il pendolo compie oscillazioni di ampiezza angolare
θ0, come in Figura 5.107.

1. Determinare la massima e la minima tensione del cavo che regge l’ascensore.

2. Supponiamo adesso che le oscillazioni siano piccole, θ0 � 1. Ad un certo istante il
pendolo si trova in posizione verticale, e l’ascensore viene trascinato dal cavo verso
l’alto, con accelerazione costante a. Calcolare la nuova ampiezza delle oscillazioni.

3. Appena il pendolo torna in posizione verticale l’ascensore smette di accelerare.
Calcolare il lavoro fatto sino a quel momento dal motore che trascinava il cavo.
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`

m

θ

T

Figura 5.107.: L’ascensore in movimento del problema.

Soluzione 19

Domanda 1 La tensione del filo deve equilibrare la somma della forza peso della ca-
bina e della componente verticale della tensione TP del pendolo. Scrivendo l’equazione
del moto di quest’ultimo nella direzione del filo abbiamo

m`θ̇2 = TP −mg cos θ

ossia
TP = m`θ̇2 + mg cos θ

Dalla conservazione dell’energia abbiamo

1
2

m`2θ̇2 −mg` cos θ = −mg` cos θ0

θ̇2 =
2g
`
(cos θ − cos θ0)

e quindi
TP = mg (3 cos θ − 2 cos θ0)

In conclusione

T = TP cos θ + Mg
= mg (3 cos θ − 2 cos θ0) cos θ + Mg

19Seconda domanda scritto Fisica I del 10 settembre 2010
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da cui

TMAX = mg (3− 2 cos θ0) + Mg

TMIN = mg cos2 θ0 + Mg

rispettivamente per θ = 0 e θ = θ0.

Domanda 2 Lavoriamo nel sistema di riferimento dell’oscillatore. Prima dell’accelera-
zione, che supponiamo iniziare a t = 0, abbiamo

θ = θ0 sin ω0t

con

ω0 =

√
g
`

Dopo l’accelerazione sarà, tenendo conto della continuità,

θ = θ1 sin ω1t

dove

ω1 =

√
g + a
`

Imponendo anche la continuità di θ̇ troviamo

θ1 =
ω0

ω1
θ0

Domanda 3 Il pendolo tornerà in posizione verticale a

τ =
π

ω1

e da quel momento oscillerà secondo la legge

θ = A cos ω0 (t− τ) + B sin ω0 (t− τ)

Imponendo la continuità di θ e θ̇ troviamo A = 0 e B = θ0. Quindi l’oscillatore si muove
nuovamente con l’ampiezza iniziale. L’energia del sistema sarà aumentata di

∆E =
1
2
(M + m) v2 + (M + m) gh

=
1
2
(M + m) a2τ2 +

1
2
(M + m) gaτ2

=
1
2

π2 (M + m) a`

dato che per ascensore e pendolo sono saliti di h = 1
2 aτ2 ed hanno acquistato una

velocità verticale v = aτ. Questo corrisponde al lavoro fatto dal motore.
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PROBLEMA 5.124

Urto contro un corpo composito ?? S

m

m

I k k

2a

Figura 5.108.:

Un contenitore di massa m della forma in Figura 5.108 ospita al suo interno un corpo
puntiforme, pure di massa m. Il corpo può muoversi senza attrito sul fondo, che ha una
lunghezza totale 2a, ed è fissato ai due bordi da molle di lunghezza a riposo trascurabile
e costante elastica k. Inizialmente il contenitore è in quiete su un piano orizzontale privo
di attrito, e anche il corpo si trova all’interno in quiete nella posizione di equilibrio.

1. In un tempo molto breve si applica al contenitore un impulso orizzontale I. Deter-
minare nell’istante immediatamente successivo la velocità del contenitore e quella
del corpo all’interno.

2. Per quale valore minimo di I il corpo all’interno urta contro le pareti?

3. Se tra corpo e contenitore esistesse attrito, quale frazione dell’energia cinetica
iniziale del sistema verrebbe dissipata?

Soluzione20

Domanda 1

Dato che l’urto è istantaneo il corpo all’interno del contenitore non ne risente, e qindi la
sua velocità resta nulla. Per la velocità del contenitore abbiamo invece

mvc = I

Domanda 2

Usando il teorema di Koenig l’energia del sistema si può scrivere nella forma

E =
1
2
(2m)v2

cm +
1
2

(m
2

)
ẋ2

r +
k
2
(xr − a)2 +

k
2
(xr + a)2

dove vcm è la velocità del centro di massa (costante) e xr la posizione del corpo relativa
al centro del contenitore. Usando la conservazione dell’energia abbiamo inizialmente

Ei =
1
2
(2m)v2

cm +
1
2

(m
2

)
v2

c +
2k
2

a2

20Scritto 8 febbraio 2012
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e al momento dell’urto, nel caso limite in cui la velocità relativa si annulla,

E f =
1
2
(2m)v2

cm +
2k
2

a2 +
2k
2

a2

Usando la conservazione dell’energia otteniamo

m
4

v2
c = ka2

e quindi

I = mvc = m

√
4ka2

m

Domanda 3

L’energia dissipata sarebbe quella cinetica disponibile nel centro di massa. La frazione
rispetto alla cinetica totale sarà

γ =
1
2

(m
2

)
v2

c
1
2 (2m)v2

cm + 1
2

(m
2

)
v2

c
=

v2
c

4v2
cm + v2

c
=

I2

I2 + 4 I2

4

=
1
2

PROBLEMA 5.125

Un problema inverso in campo centrale ?? S

Una particella di massa m si muove in un piano sottoposta ad una forza

~F = A(r)~r

dove~r è il vettore posizione della particella, r il suo modulo e A(r) una funzione incogni-
ta. Si sa che sono possibili orbite circolari di raggio qualsiasi, e che tutte corrispondono
allo stesso valore L0 del modulo del momento angolare.

1. Determinare A(r).

2. Determinare due costanti del moto e scriverle usando opportune coordinate (si
consigliano coordinate polari).

3. Discutere qualitativamente le caratteristiche delle possibili traiettorie della parti-
cella. Se, in particolare, esistono delle traiettorie che portano la particella a cadere
sul centro, dire se tale caduta avviene in un tempo finito.
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Soluzione21

Problema 1

In un’orbita circolare

−m
v2

r
= A(r)r

e d’altra parte
L0 = mvr

Sostituendo otteniamo

− L2
0

mr3 = A(r)r

e quindi

A(r) = − L2
0

mr4

Problema 2

L’energia e il momento angolare si conservano:

L = mr2θ̇

E =
1
2

mṙ2 +
1
2

mr2θ̇2 − L2
0

2mr2

L’energia potenziale è stata determinata integrando la relazione

− L2
0

mr3 = −∂U
∂r

da cui

U(r) = − L2
0

2mr2

Problema 3

Il potenziale efficace vale

Ue f f =
L2 − L2

0
2mr2

e dal suo studio vediamo che per L2 > L2
0 tutte le orbite sono illimitate. Per L2 < L2

0 le
orbite che corrispondono ad un’energia negativa sono limitate e terminano nel centro.
Se invece E ≥ 0 l’orbita può condurre la particella nel centro o farla sfuggire a r → ∞
a seconda del segno della velocità radiale iniziale. Il caso L2 = L2

0 è particolare. Il moto
radiale è del tipo

r(t) = r0 + v0t

21Prova scritta 8 febbraio 2012
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che corrisponde a una caduta nel centro per v0 < 0, ad un’orbita illimitata per v0 > 0 e
a un’orbita circolare per v0 = 0.

Il tempo necessario per la caduta nel centro si può determinare a partire dall’energia,
scritta come

E =
1
2

mṙ2 +
L2 − L2

0
2mr2

e quindi

dr
dt

= −
√

2
m

(
E +

L2
0 − L2

2mr2

)

Possiamo integrare questa equazione differenziale ed ottenere il tempo di caduta da una
distanza iniziale r0

τ =

ˆ r0

0

dr√
2
m

(
E +

L2
0−L2

2mr2

)

L’integrale si calcola esplicitamente, ma è sufficiente notare che è finito, ricordando che
siamo interessati al caso L2

0 > L2.

PROBLEMA 5.126

Cilindro spinto in discesa ? ? ?

M

M g

Figura 5.109.: Il cilindro spinto verso il basso da un cubo.

Un cilindro di massa M e raggio R rotola senza strisciare su un piano obliquo inclinato
di un angolo θ rispetto all’orizzontale. Un cubo di uguale massa è appoggiato sul piano
inclinato a fianco del cilindro, dal lato corrispondente alla pendenza crescente come
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in Figura 5.109. Il cubo è libero di strisciare sul piano inclinato, senza alcun attrito.
Tra cubo e cilindro si ha invece attrito dinamico caratterizzato da un coefficiente µD
e all’occorrenza attrito statico. Discutere il moto del sistema, nelle ipotesi che cubo e
cilindro non si possano staccare tra di loro e dal piano. Si utilizzi un modello per l’attrito
dinamico descritto dall’equazione

~FD = −µD

∣∣∣~N
∣∣∣ ~v
|~v| (5.126.1)

dove ~FD è la forza di attrito che agisce su uno dei due corpi in contatto, ~N la reazione
normale alla superficie nel punto di contatto e~v la velocità del corpo considerato relativa
al secondo, sempre al punto di contatto.

Soluzione

T

R

Mg cos θ

Mg sin θN

FD

Mg sin θ

Mg cos θ

N

R′

FD

Figura 5.110.: Le forze che agiscono sul cilindro (in blu) e quelle che agiscono sul cubo
(in rosso).

Scriviamo le equazioni del moto per il cilindro, facendo riferimento alla Figura 5.110.
La prima equazine cardinale (nella direzione parallela al piano) e la seconda equazione
cardinale (scritta scegliendo il centro del cilindro come polo) si scrivono

Ma = N + T + Mg sin θ

Iα = −FDR + TR

Invece la prima equazione cardinale nella direzione parallela al piano per il cubo si
scrive

Ma = −N + Mg sin θ
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Dobbiamo adesso scrivere esplicitamente FD. Tenendo conto che la velocità del cilindro
relativa al cubo nel punto di contatto vale −ωR possiamo scrivere

FD = µD |N|
ω

|ω|
Inoltre a causa del vincolo di rotolamento puro abbiamo a = −αR e v = −ωR. Le tre
equazioni precedenti diventano

Ma = N + T + Mg sin θ

−I
a
R

= −µD |N|
ω

|ω|R + TR

Ma = −N + Mg sin θ

Ricaviamo N dalla terza equazione e sostituiamolo nelle precedenti:

Ma = M (g sin θ − a) + T + Mg sin θ

−I
a
R

= −µD M |g sin θ − a| ω

|ω|R + TR

N = M (g sin θ − a)

infine ricaviamo T dalla prima equazione e sostituiamolo nella seconda

T = 2M (a− g sin θ)

a + 2µD |a− g sin θ| v
|v| + 4 (a− g sin θ) = 0

dove si è tenuto conto che I = MR2/2. Per discutere questa espressione conviene
esplicitare µD

µD =
4g sin θ − 5a
2 |a− g sin θ|

v
|v|

e rappresentarlo graficamente in funzione di a
g sin θ come in Figura 5.111.

Le due curve corrispondono al caso v > 0 (linea continua rossa) e v < 0 (linea
tratteggiata verde). Se v > 0 abbiamo una soluzione per µD < 5/2. In particolare per
0 ≤ µD < 2 il sistema si muove con accelerazione positiva costante, per µD = 2 si ha un
moto a velocità costante e per 2 < µD < 5/2 l’accelerazione è negativa, di conseguenza
v diminuisce fino ad annullarsi. Quando questo accade il sistema resta in equilibrio:
questo è possibile dato che le equazioni divengono

0 = N + T + Mg sin θ

0 = −FsR + TR
0 = −N + Mg sin θ

da cui otteniamo la forza di attrito statico

Fs = −2Mg sin θ
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µD

a
g sin θ

a = 4
5g sin θ

µD = 5/2

Figura 5.111.: La relazione tra il coefficiente di attrito µD e l’accelerazione espressa in
unità g sin θ. Il grafico rosso continuo si riferisce al caso v > 0, quello
verde tratteggiato al caso v < 0.

per la quale la relazione

2Mg sin θ = |Fs| ≤ µS |N| = Mg sin θ

è verificata dato che
µs > µD > 2

Infine non si hanno soluzioni con v > 0 per µD > 5/2.
Per v < 0 si hanno soluzioni per qualsiasi valore di µD, corrispondenti a una ac-

celerazione positiva costante. Il modulo della velocità del sistema diminuisce fino ad
annullarsi. A questo punto se µD > 2 il sistema resta fermo, altrimenti continua ad
accelerare in accordo col caso v > 0 visto precedentemente.

La soluzione è unica però solo per µD ≤ 5/2. Per µD > 5/2 abbiamo due soluzioni
corrispondenti a N > 0 (cioè a < g sin θ) e a (cioè a > g sin θ).

La soluzione trovata appare ragionevole per (esiste ed è unica), ma problematica per
µD > 5/2. Il problema considerato può essere visto come un semplice esempio che
mostra come il modello di attrito (5.126.1) (legge di Coulomb) sia solo in apparenza
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semplice, e possa condurre a situazioni paradossali che generalmente appaiono quando
si considerano sistemi con corpi rigidi e grandi valori del coefficiente di attrito. Per
approfondimenti vedere ad esempio [1].
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PROBLEMA 5.127

Masse e molla: identificare un errore ??

h

m

M

k, `0

g

Figura 5.112.: La massa M è inizialmente in equilibrio, la massa m in quiete.

Una massa M è sospesa mediante una molla di costante elastica k e lunghezza a riposo
`0 al di sopra di un piano, come in Figura (5.112), e si trova inizialmente in equilibrio.
Una seconda massa m viene lasciata cadere da ferma, partendo da un punto posto
ad una altezza h al di sopra della prima. Le due masse si urtano, e restano attaccate.
Successivamente la lunghezza della molla si riduce ulteriormente di

δ =

√
2m2gh

k (m + M)

Dimostrate che il risultato precedente è errato. Fatelo senza calcolare il risultato cor-
retto, ma utilizzando un argomento basato su un opportuno caso limite. Infine trovate
esplicitamente la risposta giusta.

Soluzione

Si può osservare che la molla si deve abbassare anche nel caso h = 0. Infatti anche
appoggiando semplicemente la massa m su quella M si aumenta la forza peso che deve
essere equilibrata dalla molla, quindi questa si dovrà contrarre. Al contrario il risultato
proposto predice δ = 0 in questo caso.

Per trovare il risultato corretto si può usare la conservazione dell’energia, che è solo
potenziale sia nella configurazione iniziale (massa m appena lasciata libera) che in quella
finale (massima contrazione della molla).
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L’energia potenziale si può scrivere in funzione della lunghezza ` della molla e della
posizione z della massa m come

U(`, z) =
k
2
(`− `0)

2 + Mg`+ mgz

Il primo termine corrisponde al potenziale della molla, il secondo al potenziale gravita-
zionale della massa M, in terzo al potenziale gravitazionale della massa m. Inizialmente
la molla è in equilibrio, quindi la lunghezza della molla è determinata dal minimo di U
rispetto ad `:

∂U
∂`

= k (`− `0) + Mg = 0

e quindi da

` = `0 −
Mg

k
Sostituendo possiamo scrivere l’energia potenziale iniziale nella forma

Ui = Mg`0 −
M2g2

2k
+ mgh

Quella finale varrà

U f =
k
2

(
`0 −

Mg
k
− δ− `0

)2

+ (M + m) g
(
`0 −

Mg
k
− δ

)

Ponendo Ui = U f e risolvendo per δ otteniamo

δ =
gm
k
±
√

g2m2

k2

[
1 + 2

k
gm

(
h− `0 +

Mg
k

)]

La soluzione corretta corrisponde al segno positivo, che significa anche δ > 0, dato che

h > `0 −
Mg

k
L’altra soluzione corrisponde invece all’altro valore di δ per il quale la molla si trova in
quiete durante l’oscillazione.

PROBLEMA 5.128

Proiettile con attrito viscoso: traiettoria ??

Un proiettile di massa m viene lanciato da terra con una velocità iniziale di modulo v0
che forma un angolo θ rispetto all’orizzontale. Oltre a un campo di gravità costante è
presente una forza di attrito viscoso

~F = −γ~v

Trovare l’equazione esplicita della traiettoria, e discutere il limite nel quale si può
considerare “piccolo” l’attrito, dicendo in modo preciso che cosa si intende con questo.
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Soluzione

Scegliamo un sistema di coordinate cartesiane con origine nella posizione iniziale del
proiettile. Scriviamo le equazioni del moto nella direzione orizzontale e verticale. Ab-
biamo

ẍ = − γ

m
ẋ (5.128.1)

ÿ = − γ

m
ẏ− g (5.128.2)

Risolviamo esplicitamente la (5.128.1), cercando soluzioni del tipo

x = eλt

Sostituendo otteniamo la condizione

λ2 +
γ

m
λ = 0

e quindi i due possibili valori λ = 0, λ = −γ/m. Abbiamo quindi

x = A + Be−
γ
m t

ed imponendo le condizioni al contorno

x(0) = A + B = 0

ẋ(0) = − γ

m
B = vx,0

otteniamo
x(t) =

mvx,0

γ

[
1− e−

γ
m t
]

(5.128.3)

Passiamo alla (5.128.2). La soluzione si ottiene aggiungendo alla soluzione generale
dell’equazione omogenea (identica alla (5.128.1)) una soluzione particolare. Sappiamo
che nel caso considerato questa può corrispondere ad un moto a velocità costante, y =
vlt, e sostituendo nella (5.128.2) troviamo vl = −mg/γ. Quindi la soluzione generale
sarà

y = A + Be−
γ
m t − mg

γ
t

Imponiamo ancora una volta le condizioni iniziali:

y(0) = A + B = 0

ẏ(0) = − γ

m
B− mg

γ
= vy,0

da cui

y =
m
γ

[
vy,0 +

mg
γ

] [
1− e−

γ
m t
]
− mg

γ
t (5.128.4)

318 versione del 5 ottobre 2016



5.129. CARRELLO CON MASSA SCORREVOLE ??

Veniamo adesso alla traiettoria. Possiamo ricavare dalla (5.128.3)

1− e−
γ
m t =

γx
mvx,0

e

t = −m
γ

log
(

1− γx
mvx,0

)

Sostituendo nella (5.128.4) otteniamo l’equazione desiderata,

y =
vy,0

vx,0
x +

m2g
γ2

[
γx

mvx,0
+ log

(
1− γx

mvx,0

)]
(5.128.5)

Per valori di x tali che
γx

mvx,0
� 1 (5.128.6)

possiamo utilizzare l’approssimazione

log (1− x) = −x− 1
2

x2 + O(x3)

e ottenere

y =
vy,0

vx,0
x− 1

2
gx2

v2
x,0

+ O
(

γx
mvx,0

)3

cioè la stessa traiettoria valida in assenza di attrito. Per valori maggiori di x il termine
logaritmico diventa importante, ed in effetti la traiettoria ha un asintoto verticale per

x∗ =
mvx,0

γ

L’interpretazione di questo fatto è che a causa dell’attrito il proiettile non supera oriz-
zontalmente il valore x = x∗, come d’altra parte è chiaro dalla (5.128.3).

Discutiamo il limite di piccolo attrito. Per x fissato se vale la condizione (5.128.6), che
possiamo riscrivere nella forma

γ� mvx,0

x
potremo approssimare il logaritmo come in precedenza e ottenere la soluzione priva di
attrito. Notiamo però che, per quanto piccolo possa essere γ, per valori sufficientemente
grandi di x la traiettoria risulterà comunque fortemente modificata.

PROBLEMA 5.129

Carrello con massa scorrevole ??

Un carrello di massa M scorre su un piano inclinato (di un angolo θ rispetto all’orizzon-
tale) in assenza di attrito. Sopra al carrello è montata un’asta verticale e su questa scorre,
sempre in assenza di attrito, una massa m. Massa e carrello sono collegati mediante
un sistema di carrucole ideali e un filo inestensibile come in Figura 5.113. Calcolare
l’accelerazione del carrello in presenza di un campo gravitazionale costante .
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m

M

θ

~g

Figura 5.113.: Il carrello di massa M scorre liberamente sul piano, la massa m è vincolata
a scorrere (senza attrito) lungo l’asta verticale.

Soluzione

Scriviamo prima di tutto l’equazione del moto per il sistema composto dal carrello e
dalla massa nella direzione parallela al piano inclinato. Lungo tale direzione massa e
carrello hanno la stessa accelerazione a‖, quindi possiamo scrivere

(M + m) a‖ = (M + m) g sin θ − 2T

Consideriamo adesso l’equazione del moto per la sola massa, nella direzione perpendi-
colare al piano inclinato. Dato che l’asta è priva di attrito possiamo scrivere

ma⊥ = T −mg cos θ

Infine teniamo conto della inestensibilità del filo. Da essa segue che la somma dei due
tratti orizzontali del filo e del tratto tra la carrucola e la massa deve rimanere costante,

2`x + `y = Costante
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e derivando due volte rispetto al tempo, e tenendo conto che ῭x = a‖, ῭y = −a⊥
otteniamo

2a‖ = a⊥

Sostituendo nelle equazioni del moto otteniamo

(M + m) a‖ = (M + m) g sin θ − 2T
2ma‖ = T −mg cos θ

ed infine

a‖ =
(M + m) g sin θ − 2mg cos θ

M + 5m

PROBLEMA 5.130

Carrello triangolare ??

m1 m2

M

~g

α β

Figura 5.114.: Il carrello triangolare considerato nel problema.

Un carrello di sezione triangolare come in Figura 5.114 (angoli alla base α e β) e di
massa M è appoggiato su un piano orizzontale privo di attrito, sul quale è libero di
muoversi. Sui piani inclinati che corrispondono a due suoi lati sono appoggiate due
masse m1 e m2. Queste sono collegate tra loro da un filo inestensibile e privo di massa, e
possono scorrere liberamente e senza attriti. Il sistema è immerso in un campo gravita-
zionale costante: determinare l’accelerazione del carrello. Considerare in particolare il
caso α = β.

Soluzione

Scriviamo l’equazione per il moto orizzontale del carrello. Abbiamo

Ma = N1 sin α− N2 sin β− T cos α + T cos β (5.130.1)

dove N1, N2 sono le forze di contatto che le due masse esercitano sul carrello, e T la
tensione del filo.
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Scriviamo adesso le equazioni del moto per le due masse, nella direzione della nor-
male al piano al quale sono appoggiate. Osserviamo che in tali direzioni le accelerazioni
delle masse rispetto al carrello sono nulle, e quindi quelle assolute coincidono con le
relative componenti dell’accelerazione del carrello. Quindi

m1 (−a sin α) = N1 −m1g cos α

m2 (a sin β) = N2 −m2g cos β (5.130.2)

Scriviamo le analoghe equazioni per il moto delle due masse nelle direzioni parallele al
piano al quale sono appoggiate. Otteniamo

(
a cos α + a(r)1‖

)
=

T
m1
− g sin α

(
a cos β + a(r)2‖

)
= − T

m2
+ g sin β

dove a(1)1‖ e a(2)2‖ sono le accelerazioni relative al carrello. A causa dell’inestensibilità del

filo a(1)1‖ = a(2)2‖ , possiamo quindi sottrarre membro a membro ottenendo

a (cos α− cos β) =

(
1

m1
+

1
m2

)
T − g (sin α + sin β)

ossia
T =

m1m2

m1 + m2
[a (cos α− cos β) + g (sin α + sin β)]

Sostituiamo la tensione così ottenuta nella (5.130.1) insieme con le espressioni per N1 e
N2 ricavati dalle (5.130.2), ottenendo l’accelerazione richiesta

a =
(m1 cos α + m2 cos β)(m1 sin α−m2 sin β)

M(m1 + m2) + m1m2(cos α− cos β)2 + (m1 + m2)
(
m1 sin2 α + m2 sin2 β

) g

Nel caso α = β abbiamo

a =
(m1 −m2) sin α cos α

M + (m1 + m2) sin2 α
g

PROBLEMA 5.131

Sistema a tre corpi: energia nel sistema del centro di massa ?

Mostrare che l’energia cinetica per un sistema di tre punti materiali di massa m1, m2 e
m3 e velocità ~v1, ~v2 e ~v3 può essere scritta nella forma

Ec =
1
2
(m1 + m2 + m3) v2

cm +
1
2

µ12 (~v1 −~v2)
2 +

1
2

µ23 (~v2 −~v3)
2 +

1
2

µ31 (~v3 −~v1)
2

dove

~vcm =
m1~v1 + m2~v2 + m3~v3

m1 + m2 + m3

è la velocità del centro di massa e le costanti µ12, µ23 e µ31 sono funzioni delle masse.
Determinare esplicitamente µ12, µ23 e µ31.
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Soluzione

Sostituendo l’espressione della velocità del centro di massa troviamo

Ec =
1
2

1
m1 + m2 + m3

(m1~v1 + m2~v2 + m3~v3)
2

+
1
2

µ12 (~v1 −~v2)
2 +

1
2

µ23 (~v2 −~v3)
2 +

1
2

µ31 (~v3 −~v1)
2

e sviluppando i quadrati

Ec =
1
2

m2
1v2

1 + m2
2v2

2 + m2
3v2

3 + 2m1m2~v1 ·~v2 + 2m2m3~v2 ·~v3 + 2m3m1~v3 ·~v1

m1 + m2 + m3

+
1
2

µ12
(
v2

1 + v2
2 − 2~v1 ·~v2

)

+
1
2

µ23
(
v2

2 + v2
3 − 2~v2 ·~v3

)

+
1
2

µ31
(
v2

3 + v2
1 − 2~v3 ·~v1

)

Questa espressione si deve ridurre a

Ec =
1
2

m1v2
1 +

1
2

m2v2
2 +

1
2

m3v2
3

quindi i termini misti si devono annullare. Questo da le condizioni

m1m2

m1 + m2 + m3
= µ12

m2m3

m1 + m2 + m3
= µ23

m3m1

m1 + m2 + m3
= µ31

Quello che rimane è

Ec =
1
2

(
m2

1
m1 + m2 + m3

+ µ12 + µ31

)
v2

1

+
1
2

(
m2

2
m1 + m2 + m3

+ µ12 + µ23

)
v2

2

+
1
2

(
m2

3
m1 + m2 + m3

+ µ23 + µ31

)
v2

3

ma il primo termine tra parentesi si riduce a

m2
1

m1 + m2 + m3
+ µ12 + µ31 =

m2
1 + m1m2 + m1m3

m1 + m2 + m3
= m1

e similmente gli altri si riducono rispettivamente a m2 e m3, per cui la relazione cercata
è verificata.
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PROBLEMA 5.132

Nastro trasportatore ??

vcγ

Figura 5.115.: Il nastro trasportatore considerato nel problema. Si può immaginare che
la sabbia depositata abbia inizialmente una velocità nulla nella direzione
orizzontale.

Su un nastro trasportatore, mantenuto in movimento con velocità costante vC, viene
depositata continuamente della sabbia. La massa di sabbia depositata per unità di tempo
è costante e vale

dm
dt

= γ

Calcolare la potenza del motore necessaria a mantenere il nastro in movimento.

Soluzione

Consideriamo una quantità ∆m di sabbia che cade sul nastro. Il nastro trasportatore
eserciterà su di essa una forza ∆F(t) che la farà accelerare fino a raggiungere la velocità
vc. Questo significa che l’impulso totale esercitato dal nastro sulla massa sarà

∆I =
ˆ

∆F(t)dt = ∆m vc

Per il terzo principio la sabbia avrà esercitato una forza uguale e contraria sul nastro, e
quindi avrà fatto su di esso un lavoro

∆L = −
ˆ

∆F dx = −
ˆ

∆Fvcdt = −vc

ˆ
∆F(t)dt = −∆mv2

c

Ma l’energia del nastro trasportatore non varia, quindi questo lavoro deve essere com-
pensato dal lavoro fatto dal motore, che vale quindi

∆LM = ∆mv2
c

Dividendo per il tempo che è stato necessario ad immettere la massa otteniamo la
potenza del motore,

P =
∆LM

∆t
= γv2

c
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5.133. PROPULSIONE A REAZIONE “ISTANTANEA” ??

Possiamo chiederci anche quanta potenza Pdiss sia stata dissipata in attrito. Dato che
l’energia cinetica della massa è aumentata di

∆Ek =
1
2

∆m v2
c

vediamo che esattamente metà della potenza del motore è dissipata in attrito, dato che

P = Pdiss +
∆Ek

∆t

PROBLEMA 5.133

Propulsione a reazione “istantanea” ??

L’equipaggio di un razzo inizialmente fermo vuole aumentare la propria velocità espel-
lendo una massa ηm di gas. La velocità del gas al momento dell’emissione relativa al
razzo è sempre −v0. La massa iniziale di quest’ultimo è m e chiaramente 0 < η < 1.
Indicheremo con µ(t) la massa espulsa al tempo t. Calcolate µ(t) nei due casi seguenti:

1. Tutta la massa viene espulsa istantaneamente a t = 0

2. La massa espulsa per unità di tempo è costante, e viene espulsa tutta in un tempo
τ

Dette v(1)f e v(2)f le velocità finale del razzo nel primo e nel secondo caso, stabilire se è
vero che

lim
τ→0

v(2)f = v(1)f

Soluzione

Se la massa viene espulsa tutta a t = 0 sarà

µ(t) =

{
0 t < 0
ηm t > 0

Nel secondo caso avremo invece

µ(t) =





0 t < 0
ηm
τ t 0 < t < τ

ηm t > τ

Calcoliamo la velocità finale del razzo.
Usando la conservazione della quantità di moto possiamo scrivere

[m− µ(t)] v(t) = [m− µ(t)− dµ] [v(t) + dv]− [v0 − v(t)] dµ
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5.134. PERDITA DI ENERGIA DI UN OSCILLATORE ??

ossia
v0dµ = [m− µ(t)] dv (5.133.1)

Integrando otteniamo ˆ ηm

0

v0

m− µ
dµ =

ˆ v f

0
dv

che da
v(2)f = −v0 log (1− η)

Questa formula non è però applicabile nel primo caso. Applicando nuovamente la
conservazione della quantità di moto abbiamo infatti

0 = (m− ηm) v(1)f − v0ηm

da cui
v(1)f = v0

η

1− η

Notare che v(2)f non dipende da τ, di conseguenza

lim
τ→0

v(2)f = −v0 log (1− η) 6= v(1)f

PROBLEMA 5.134

Perdita di energia di un oscillatore ??

Un oscillatore armonico è realizzato mediante una massa m collegata ad una molla
di costante elastica k. Inizialmente la massa si trova nella posizione di equilibrio, con
velocità v0. Determinare per quale valore del coefficiente di attrito viscoso λ l’energia
totale dell’oscillatore si riduce più rapidamente.

Soluzione

L’equazione del moto dell’oscillatore

mẍ + λẋ + kx = 0

ammette per soluzione generale

x = Aeα1t + Beα2t

dove α1 e α2 sono le due soluzioni di

mα2 + λα + k = 0
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5.134. PERDITA DI ENERGIA DI UN OSCILLATORE ??

che supponiamo per il momento distinte. Imponiamo le condizioni iniziali: abbiamo

x(0) = A + B = 0
ẋ(0) = α1A + α2B = v0

Risolvendo otteniamo

A =
v0

α1 − α2

B = − v0

α1 − α2

e quindi

x(t) =
v0

α1 − α2

(
eα1t − eα2t)

ẋ(t) =
v0

α1 − α2

(
α1eα1t − α2eα2t)

Sostituendo nell’energia troviamo

E =
1
2

mẋ2 +
1
2

kx2

=
1
2

v2
0

(α1 − α2)
2

[
m
(
α1eα1t − α2eα2t)2

+ k
(
eα1t − eα2t)2

]

=
1
2

mv2
0

(α1 − α2)
2

[(
α2

1 +
k
m

)
e2α1t +

(
α2

2 +
k
m

)
e2α2t − 2

(
α1α2 +

k
m

)
e(α1+α2)t

]

La parte reale di α1, è sempre negativa (per λ > 0), e corrisponderà ad un termine
decrescente esponenzialmente. La riduzione più rapida di energia si avrà quindi per il
massimo valore di

τ−1 = min (−Re α1,−Reα2)

D’altra parte

αi = −
λ

2m
±
√(

λ

2m

)2

− k
m
≡ − λ

2m
±
√

∆

e quindi

τ−1 =

{
λ

2m 0 < λ <
√

4mk
λ

2m −
√(

λ
2m

)2 − k
m λ >

√
4mk

che ha un massimo per λ =
√

4mk, che corrisponde allo smorzamento critico. Si trat-
ta proprio del caso che non abbiamo considerato esplicitamente (α1 = α2), che però
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5.135. ENERGIA DI UN OSCILLATORE FORZATO A REGIME ??

possiamo considerare come limite delle espressioni precedenti. In particolare

lim
∆→0

E(t) = lim
∆→0

1
2

mv2
0



(
− λ

2m
e
√

∆t − e−
√

∆t

2
√

∆
+

e
√

∆t + e−
√

∆t

2

)2

+
k
m

(
e
√

∆t − e−
√

∆t

2
√

∆

)2

 e−

λ
m t

=
1
2

mv2
0

[(
1− λt

2m

)2

+
kt2

m

]
e−

λ
m t

La decrescita non è più esponenziale, ma le conclusioni non cambiano.

PROBLEMA 5.135

Energia di un oscillatore forzato a regime ??

Un oscillatore armonico è caratterizzato da una massa m, una costante di richiamo
elastica k e un coefficiente di attrito viscoso λ. Supponendo che su di esso sia applicata
una forzante periodica

F(t) = F0 cos ωt

e che solo le oscillazioni forzate siano presenti (condizione di regime) calcolare l’energia
totale in funzione del tempo,

E(t) =
1
2

mẋ2(t) +
1
2

kx2(t)

Soluzione

L’equazione del moto del sistema è

mẍ + λẋ + kx = F0 cos ωt

La soluzione a regime sarà della forma

x = A cos ωt + B sin ωt

dove A e B sono costanti da determinare. Calcolando le derivate prime e seconde e
sostituendo troviamo

(
k−mω2) (A cos ωt + B sin ωt) + λω (−A sin ωt + B cos ωt) = F0 cos ωt

Segue che deve essere
(
k−mω2) A + λωB = F0(
k−mω2) B− λωA = 0
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5.136. RISPOSTA ALLA RISONANZA E FATTORE DI QUALITÀ ??

Il sistema ha per soluzioni

B =
λω

(k−mω2)2 + λ2ω2
F0

A =
k−mω2

(k−mω2)2 + λ2ω2
F0

Scriviamo adesso l’energia, ponendo ω2
0 = k/m. Abbiamo

E(t) =
mω2

0
2

[
ω2

ω2
0
(−A sin ωt + B cos ωt)2 + (A cos ωt + B sin ωt)2

]

=
mω2

0
2

{
1
2
(

A2 + B2)
(

1 +
ω2

ω2
0

)

+
1
2

(
1− ω2

ω2
0

) [(
A2 − B2) cos 2ωt + 2AB sin 2ωt

]}

Notiamo un termine costante e un termine oscillante (assente se ω = ω0). Sostituendo
A e B abbiamo infine

E(t) =
m
2

ω2
0

{
1
2

(
1 +

ω2

ω2
0

)

+
1
2

(
1− ω2

ω2
0

)[(
ω2

0 −ω2)2 − Γ2ω2

(
ω2

0 −ω2
)2

+ Γ2ω2
cos 2ωt + 2

Γω
(
ω2

0 −ω2)
(
ω2

0 −ω2
)2

+ Γ2ω2
sin 2ωt

]}

× F2
0 /m2

(
ω2

0 −mω2
)2

+ Γ2ω2

dove Γ = λ/m.

PROBLEMA 5.136

Risposta alla risonanza e fattore di qualità ??

Un oscillatore armonico caratterizzato da una massa m, una costante di richiamo elastica
k e un coefficiente di attrito viscoso λ viene sottoposto ad una forzante periodica

F(t) = F0 cos ωt

Detta A(ω) l’ampiezza di oscillazione a regime, mostrare che il rapporto

A(ωr)

A(0)

dove ωr è la frequenza di risonanza dell’oscillatore si può scrivere come una funzione
del solo fattore di qualità Q.
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5.137. FORZANTE PERIODICA PER T > 0 ??

Soluzione

La soluzione a regime dell’equazione del moto

mẍ + λẋ + kx = F0 cos ωt

si può scrivere come

xr(t) = Re
[

F0eiωt

k−mω2 + λiω

]

ed è dunque una oscillazione di ampiezza (ω2
0 = k/m)

A(ω) =
F0

m
1√(

ω2
0 −ω2

)2
+ λ2

m2 ω2

La frequenza di risonanza si determina calcolando il massimo di questa espressione,
che corrisponde al valore di ω2 che rende minimo il termine al denominatore. Questo si
determina da

d
dω2

[(
ω2

0 −ω2)2
+

λ2

m2 ω2
]
= 2

(
ω2 −ω2

0
)
+

λ2

m2 = 0

ossia

ω2
r = ω2

0 −
λ2

2m2

Sostituendo troviamo
A(ωr)

A(0)
=

mω0

λ
=

√
km
λ2 = Q

PROBLEMA 5.137

Forzante periodica per t > 0 ??

Un oscillatore armonico caratterizzato da una massa m e da una costante di richiamo
elastica k (non c’è attrito) è inizialmente fermo nella posizione di equilibrio. Per t > 0
viene sottoposto ad una forzante periodica

F(t) = F0 cos ωt

Calcolare l’evoluzione temporale x(t)

Soluzione

L’equazione del moto è
mẍ + kx = F0 cos ωt
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5.138. FERMARE UN OSCILLATORE??

che ammette come soluzione particolare

xp(t) =
F0

k−mω2 cos ωt

Per ottenere la soluzione generale dobbiamo aggiungere la soluzione generale dell’omo-
genea. Quindi abbiamo

x(t) =
m−1F0

ω2
0 −ω2

cos ωt + A cos ω0t + B sin ω0t

dove abbiamo posto ω2
0 = k/m. Imponiamo adesso le condizioni iniziali. Abbiamo

x(0) =
m−1F0

ω2
0 −ω2

+ A = 0

ẋ(0) = Bω0 = 0

da cui ricaviamo

B = 0

A = − m−1F0

ω2
0 −ω2

e quindi

x(t) =
F0

m
cos ωt− cos ω0t

ω2
0 −ω2

Notare che possiamo prendere il limite ω → ω0. Applicando la regola di de L’Hopital
abbiamo

lim
ω→ω0

F0

m
cos ωt− cos ω0t

ω2
0 −ω2

= lim
ω→ω0

F0

m
−t sin ωt
−2ω

=
F0

2mω0
t sin ω0t

che possiamo interpretare come risposta del sistema forzato alla risonanza.

PROBLEMA 5.138

Fermare un oscillatore??

Un oscillatore armonico caratterizzato da una massa m e da una costante di richiamo
elastica k (non c’è attrito) si trova inizialmente nella posizione x = x0 con velocità
nulla. Detto T il suo periodo di oscillazione, determinare una forza F(t) che può essere
applicata per ridurlo in quiete nella posizione di equilibrio per t > T.
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5.138. FERMARE UN OSCILLATORE??

Soluzione

Dobbiamo trovare una F(t) tale che la soluzione di

mẍ + kx = F(t)

con le condizioni iniziali specificate si annulli per t > T. Una possibile strategia è otte-
nere x(T′) = 0 e ẋ(T′) = 0 con T′ < T, smettendo di applicare la forza successivamente.
Dato che dobbiamo imporre due condizioni scegliamo una forza semplice con due
parametri liberi, ad esempio (il fattore m è introdotto per convenienza)

F(t) =





0 t < 0
am sin ωt + bm cos ωt 0 < t < T′

0 t > T′

Dobbiamo quindi risolvere il problema

mẍ + kx = am sin ωt + bm cos ωt

Una soluzione particolare è della forma

xp =
1

ω2
0 −ω2 (a sin ωt + b cos ωt)

e quindi la soluzione generale sarà

x =
1

ω2
0 −ω2 (a sin ωt + b cos ωt) + A cos ω0t + B sin ω0t

con ω2
0 = k/m. Imponiamo le condizioni iniziali.

x(0) =
b

ω2
0 −ω2

+ A = x0

ẋ(0) =
aω

ω2
0 −ω2

+ Bω0 = 0

da cui

A = x0 −
b

ω2
0 −ω2

B = − ω

ω0

a
ω2

0 −ω2

e quindi

x =
1

ω2
0 −ω2 (a sin ωt + b cos ωt) +

(
x0 −

b
ω2

0 −ω2

)
cos ω0t− ω

ω0

a
ω2

0 −ω2
sin ω0t

332 versione del 5 ottobre 2016



5.139. MOLLA CON MASSA DISTRIBUITA I ??

Imponiamo adesso le condizioni a t = T′. Abbiamo

x(T′) =
1

ω2
0 −ω2

(
a sin ωT′ + b cos ωT′

)

+

(
x0 −

b
ω2

0 −ω2

)
cos ω0T′ − ω

ω0

a
ω2

0 −ω2
sin ω0T′ = 0

ẋ(T′) =
ω

ω2
0 −ω2

(
a cos ωT′ − b sin ωT′

)

−ω0

(
x0 −

b
ω2

0 −ω2

)
sin ω0T′ −ω

a
ω2

0 −ω2
cos ω0T′ = 0

Questo è un sistema nelle incognite a, b

sin ωT′ − ω
ω0

sin ω0T′

ω0 −ω
a +

cos ωT′ − cos ω0T′

ω0 −ω
b = −x0 (ω0 + ω) cos ω0T′

cos ωT′ − cos ω0T′

ω0 −ω
a +

ω0
ω sin ω0T′ − sin ωT′

ω0 −ω
b =

ω0

ω
(ω0 + ω) x0 sin ω0T′

Sarebbe possibile risolvere il sistema in generale, ma per semplificare ulteriormente
l’espressione prendiamo il limite ω → ω0, ottenendo

(−ω0T cos ω0T + sin ω0T) a + (ω0T sin ω0T) b = −2x0ω2
0 cos ω0T

(ω0T sin ω0T) a + (sin ω0T + ω0T cos ω0T) b = 2ω2
0x0 sin ω0T

Inoltre scegliendo T′ = T = 2π/ω0 abbiamo

a =
ω2

0x0

π
b = 0

e quindi

F(t) =
kx0

π
sin ω0t 0 < t < T

PROBLEMA 5.139

Molla con massa distribuita I ??

Una molla ha lunghezza a riposo L0, una costante elastica K e una massa M, unifor-
memente distribuita. Per avere un modello concreto si può pensare, ad esempio, ad un
numero N molto grande di molle, ciascuna di lunghezza L0/N, costante elastica k e
massa m = MN−1.

◦ Quanto vale k in funzione di K e N?
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5.139. MOLLA CON MASSA DISTRIBUITA I ??

x1

x2

x3

x4

x5

x6

x7

h(x1)

h(x2)

h(x3)

h(x4)

h(x5)

h(x6)
h(x7)

L0

Figura 5.116.: La molla nella configurazione di riposo (a sinistra) e in quella di equilibrio
(a destra). Il valore di h(x) corrisponde alla posizione verticale del punto
rispetto alla sospensione.

Si appende un suo estremo e si permette all’altro di pendere verticalmente. Sulla molla
agisce la forza di gravità. Considerando il limite N → ∞, indichiamo con x la coordinata
dell’elemento che si trova ad una distanza x dall’estremo appeso (0 < x < L0, vedere
Figura 5.116) in condizioni di riposo. Determinare nella configurazione di equilibrio

◦ il valore della tensione T(x) lungo la molla;

◦ la distanza y(x) del punto identificato da x dall’estremo appeso;

◦ l’allungamento totale della molla e la sua lunghezza.

Soluzione

Per quanto riguarda la costante elastica k di una delle molle componenti, dato che queste
sono in serie tra loro ed identiche avremo (vedere l’Esercizio 5.27)

1
K

=
N

∑
i=1

1
k

e quindi k = NK. Per il seguito conviene scrivere la costante di un tratto di elastico
molto piccolo, che si ottiene facilmente ponendo N = L0/∆x, cioè

k = K
L0

∆x

Calcoliamo adesso la tensione all’equilibrio in funzione di x. Consideriamo il tratto
di elastico sottostante al punto identificato da x. Questo avrà una massa

m(x) = M
L0 − x

L0

334 versione del 5 ottobre 2016



5.140. MOLLA CON MASSA DISTRIBUITA II ??

e su di esso agiranno la tensione e la forza peso. All’equilibrio dovremo avere dunque

T(x) = Mg
(

1− x
L0

)

Per quanto riguarda la lunghezza, consideriamo adesso il tratto di elastico tra il punto
x e il punto x + ∆x. Il suo allungamento (la differenza tra la lunghezza a riposo e quella
all’equilibrio) sarà dato da

∆`(x) = y(x + ∆x)− y(x)− ∆x

e dovrà essere legato alla tensione dalla relazione

T(x) = k∆`(x) = KL0
y(x + ∆x)− y(x)− ∆x

∆x
passando al limite ∆x → 0 si trova

T(x) = k∆`(x) = KL0

(
dy(x)

dx
− 1
)

Possiamo adesso ricavare esplicitamente y(x), riscrivendo l’equazione precedente nella
forma

dy
dx

=
1

KL0
T(x) + 1 =

Mg
KL0

(
1− x

L0

)
+ 1

ed integrando troviamo

y(x) =
Mg
KL0

(
x− x2

2L0

)
+ x

La costante di intregrazione è stata posta uguale a zero, dato che y(0) = 0. Vediamo che
la distanza di ogni elemento della molla dal punto di sospensione cresce, e che ponendo
g = 0 otteniamo y(x) = x, come deve essere. La lunghezza della molla sarà data da

L = y (L0) =
Mg
2K

+ L0

e il suo allungamento da

∆L = L− L0 =
Mg
2K

la metà di quello che si otterebbe se tutto la massa fosse concentrata all’estremo inferiore.

PROBLEMA 5.140

Molla con massa distribuita II ??

Considerare la molla con massa distribuita descritta nell’Esercizio 5.139. Mostrare che
l’accelerazione di un suo elemento generico che si trova in x nella condizione di riposo
è descritto dall’equazione

µ
∂2y(x, t)

∂t2 = µg +
∂T(x, t)

∂x
(5.140.1)
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5.140. MOLLA CON MASSA DISTRIBUITA II ??

dove µ = M/L0. Usando l’espressione della tensione trovata nell’esercizio precedente
mostrare che deve valere

µ
∂2y(x, t)

∂t2 − χ
∂2y(x, t)

∂x2 = µg (5.140.2)

e calcolare il valore di χ. Mostrate infine che

y(x, t) = F (x− vt) + G (x + vt) +
1
2

gt2 (5.140.3)

dove F e G sono funzioni arbitrarie è soluzione della Equazione (5.140.2) per un oppor-
tuno valore della costante v, e determinare quest’ultimo.

Soluzione

Consideriamo l’equazione del moto di un tratto di filo posto tra x e x + ∆x. Per la
seconda legge di Newton

(
M
L0

∆x
)(

1
∆x

ˆ x+∆x

x

∂2y(x, t)
∂t2 dx

)
= T(x + ∆x, t)− T(x, t) +

(
M
L0

∆x
)

g

In questa equazione abbiamo a destra la massa del tratto considerato, moltiplicato per
l’accelerazione del suo centro di massa. A destra abbiamo le tensioni agli estremi e la
forza peso. Dividendo membro a membro per ∆x e passando al limite ∆x → 0 otteniamo

M
L0

∂2y(x, t)
∂t2 =

∂T(x, t)
∂x

+ g
M
L0

Derivando l’espressione per la tensione trovata nell’esercizio precedente abbiamo

∂

∂x
T(x, t) = KL0

∂

∂x

(
∂y(x, t)

∂x
− 1
)
= KL0

∂2y(x, t)
∂x2

e sostituendo

µ
∂2y(x, t)

∂t2 − KL0
∂2y(x, t)

∂x2 = µg (5.140.4)

che è l’espressione cercata se χ = KL0. Verifichiamo per sostituzione che la (5.140.3) è
una soluzione. Abbiamo (indichiamo con un apice la derivata di una funzione rispetto
al suo argomento)

∂2y(x, t)
∂t2 = v2F′′ (x− vt) + v2G′′ (x + vt) + g (5.140.5)

e
∂2y(x, t)

∂x2 = F′′(x− vt) + G′′(x + vt)

Sostituendo nella (5.140.4) otteniamo

v2 [F′′ (x− vt) + v2G′′ (x + vt)
]
+ g− χ

µ

[
F′′ (x− vt) + G′′ (x + vt)

]
= g

che è verificata se v =
√

χ/µ.
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5.141. MOLLA CON MASSA DISTRIBUITA III ? ? ??

PROBLEMA 5.141

Molla con massa distribuita III ? ? ??

La molla con massa distribuita considerata negli Esercizi 5.139 e 5.140 si trova inizial-
mente appesa in quiete nella configurazione di equilibrio considerata precedentemente.
All’improvviso l’estremo superiore si stacca, e la molla cade liberamente sotto l’effetto
della accelerazione di gravità. Determinare, facendo uso dei risultati precedenti,

1. La legge oraria del centro di massa della molla.

2. La legge oraria dell’estremo superiore della molla.

3. La legge oraria dell’estremo inferiore della molla.

Soluzione

Si può rispondere immediatamente alla prima domanda: il centro di massa si muoverà
con moto uniformemente accelerato verso il basso, con accelerazione g, dato che deve
essere

MÿCM = −Mg

In seguito verificheremo direttamente questa affermazione.
Per quanto riguarda il moto degli estremi, proviamo a cercare una soluzione per la

caduta della molla nella forma vista nell’Esercizio 5.140, ossia

y(x, t) = F (x− vt) + G (x + vt) +
1
2

gt2 (5.141.1)

Per il seguito risulta conveniente scrivere

y(x, t) = x + u(x, t)

da cui

u(x, t) = F (x− vt) + G (x + vt)− x +
1
2

gt2

= A (x− vt) + B (x + vt) +
1
2

gt2 (5.141.2)

con

A(x) = F(x)− x
2

B(x) = G(x)− x
2

Dobbiamo imporre che a A(x− la soluzione coincida con la configurazione di equili-
brio determinata nell’Esercizio 5.139, ossia

u(x, 0) = A(x) + B(x) =
Mg
KL2

0

(
L0x− x2

2

)
=

gL0

v2

(
x− x2

2L0

)
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per 0 < x < L. Inoltre nell’istante immediatamente successivo al distacco la molla sarà
ferma, quindi sempre per 0 < x < L dovremo avere

u̇(x, 0) = v
[
A′(x)− B′(x)

]
= 0

e quindi le funzioni A e B potranno differire solo per una costante, B(x) = A(x) + C.
Sostituendo nell’equazione precedente avremo

A(x) =
gL0

2v2

(
x− x2

2L0

)
− C

2

B(x) =
gL0

2v2

(
x− x2

2L0

)
+

C
2

e confrontando con la (5.141.1) vediamo che la costante è irrilevante, per cui porremo
C = 0.

Se consideriamo adesso la struttura della soluzione (5.141.2), vediamo che, a parte il
termine gt2/2, la funzione u(x, t) può essere interpretata come la somma di una funzio-
ne A(x− vt) che si trasla rigidamente con velocità v che i una funzione B(x + vt) che fa
lo stesso con velocità −v. Con le considerazioni precedenti abbiamo determinato A(x)
e B(x) nell’intervallo 0 < x < L0, ma non sappiamo ancora niente sulla loro forma per
x > L0 e x < 0.

Sappiamo però che la tensione all’estremo x = L0 è nulla. Come abbiamo visto negli
esercizi precedenti

∂u
∂x

=
1

KL0
T

e quindi dovrà essere

∂u(L0, t)
∂x

= A′(L0 − vt) + B′ (L0 + vt) = 0

Dopo il distacco anche la tensione in x = 0 si dovrà annullare, e quindi per t > 0

∂u(0, t)
∂x

= A′(−vt) + B′ (vt) = 0

Segue che

A′(x) = −B′ (2L0 − x)
A′(x) = −B′(−x)

Integrando otteniamo

A(x) = B (2L0 − x)
A(x) = B(−x)

a meno di costanti che dobbiamo considerare nulle se vogliamo che y(x, t) sia continua.
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Queste relazioni permettono di determinare la forma di A e B al di fuori dell’intervallo
0 < x < L0. Infatti vediamo che riflettendo B(x) rispetto x = 0 si deve ottenere A(x).
Lo stesso deve accadere per una riflessione rispetto x = L0.

La conclusione è che sia A(x) che B(x) sono funzioni periodiche con periodo 2L0, e
che possiamo scrivere

A(x) = B(x) =
gL0

2v2

(
γ(x)− γ(x)2

2L0

)
(5.141.3)

con

γ(x) = 2L0

⌊
x

2L0

⌋

e bxc è il più grande intero minore di x (vedere Figura (5.117)).

x = L

x = L

A(x)

B(x)

x

x

Figura 5.117.: Le funzioni A(x) (linea nera tratteggiata) e B(x) (linea rossa continua)
sono rappresentate in alto. La funzione u(x, t)Plain Layout meno del ter-
mine gt2/2 alla somma di A(x − vt) e di B(x + vt), cioè delle funzioni
traslate rigidamente verso destra e verso sinistra di vt (figura in basso).

Possiamo adesso determinare facilmente il moto di un punto generico della molla,
ottenendo

y(x, t) = x +
gL0

2v2

[
γ (x− vt) + γ (x + vt)− γ (x− vt)2 + γ(x + vt)2

2L0

]
+

1
2

gt2

Notiamo che y(x, t) è continua, ma la sua derivata ∂y/∂x ha una discontinuità. Questa
discontinuità si genera al momento del distacco, quando la tensione all’estremo superio-
re cambia bruscamente, ∆T = −Mg. Dalla Figura 5.117 è evidente che tale discontinuità
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si propagherà inizialmente dall’estremo inferiore a quello superiore con velocità

vD = lim
x→vt

(
∂y
∂x

v +
∂y
∂t

)

Ad ogni arrivo ad un estremo verrà riflessa e invertirà il suo moto. Notare che mentre
∂y/∂x deve avere una discontinuità, il limite precedente deve esistere: quindi anche
∂y/∂t deve avere una discontinuità e deve valere22

∆
(

∂y
∂t

)
= −v∆

(
∂y
∂x

)
, ∆ f ≡ lim

x→vt+
f − lim

x→vt−
f

Figura 5.118.: La funzione y(x, t) (in rosso) nell’intervallo 0 < t < 2L0/v. Per confronto
sono riportate anche le funzioni A(x− vt) (in blu), B(x + vt) (in verde) e
y(x, 0) (tratteggiata). Si è preso L0 = 1m e v = 4ms−1, quindi 2L0/v =
0.5s. L’animazione è disponibile all’indirizzo http://www.df.unipi.it/
~cella/videos/ueg/T2.html

Notiamo inoltre che la funzione y(x, t)− gt2/2 si può interpretare come la configu-
razione della molla vista in un sistema di riferimento solidale al centro di massa (cioè,

22Verificatelo esplicitamente, usando i risultati che seguono.
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in moto uniformemente accelerato con accelerazione g), e che si ripete periodicamente
per t > 0 con periodo 2L0/v. Studiamo quindi y(x, t) a partire da tm = 2mL0/v con
m ∈ {0, 1, · · · }. Ponendo t = tm + τ possiamo distingure due fasi:

1. 0 < vτ < L0. La discontinuità nella derivata si muove da sinistra verso destra, e
si trova in xD = vτ. Possiamo scrivere per 0 < x < xD

y(x, t) = x +
gL0

v2

[
x + L0 −

(x + 2L0 − vτ)2 + (x + vτ)2

4L0

]
+

g
2

(
2mL0

v
+ τ

)2

= y(x, 0) +
gL0

v2 (vτ − x) +
2gmL0

v

(
τ +

mL0

v

)

e per xD < x < L0

y(x, t) = y(x, 0) +
2gmL0

v

(
τ +

mL0

v

)

Notare che tutti i punti della molla in x < xD si stanno muovendo con la stessa
velocità costante

∂y
∂t

=
gL0

v
(1 + 2m)

e quelli con x > xD con
∂y
∂t

=
gL0

v
(2m)

2. L0 < vτ < 2L0. La discontinuità nella derivata si muove da destra verso sinistra,
e si trova in xD = 2L0 − vτ. Possiamo scrivere per 0 < x < xD

y(x, t) = y(x, 0) +
gL0

v2 (vτ − x) +
2gmL0

v

(
τ +

mL0

v

)

e per xD < x < L0

y(x, t) = y(x, 0) +
2gL0

v2 (vτ − L0) +
2gmL0

v

(
τ +

mL0

v

)

Questa volta i punti con x < xD si muovono con la velocità costante

∂y
∂t

=
gL0

v
(1 + 2m)

e quelli con x > xD con
∂y
∂t

=
gL0

v
(2 + 2m)

Possiamo in conclusione descrivere il moto in questi termini: inizialmente la molla
è ferma. Come descritto in precedenza, la discontinuità in ∂y/∂x inizia a muoversi
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dall’estremo che si è staccato, e si sposta continuamente da un capo all’altro. Possiamo
adesso calcolare esplicitamente la sua velocità.

Al passaggio della discontinuità un punto della molla incrementa istantaneamente la
sua velocità di

∆V =
gL0

v

L’evoluzione e rappresentata nella animazione 5.118 tra t = 0 e t = 2L0/v, interval-
lo corrispondente ai primi due “passaggi” della discontinuità (m = 0 nelle formule
precedenti). Notare in particolare che l’estremo inferiore della molla rimane immobile
fino al sopraggiungere di questa. In conclusione le estremità della molla si muoveranno
con velocità costante: solo al momento dell’arrivo della discontinuità la loro velocità
aumenterà improvvisamente di ∆V.

Figura 5.119.: Le leggi orarie dell’estremo superiore (in rosso) e dell’estremo inferiore
(in blu) della molla. Sull’asse delle ascisse è riportato il tempo in secondi,
sull’asse delle ordinate y in metri. Si è preso L0 = 1m e v = 4ms−1.
La discontinuità in ∂y/∂x passa quindi dall’estremo superiore in tm =
2mL0/v = 0.0s, 0.5s, · · · ed in quello inferiore in tm = (2m + 1) L0/v =
0.25s, 0.75s, · · · .

Calcoliamo infine esplicitamente il moto del centro di massa, limitandoci a 0 < t <
L0/v. Dato che

ycm =
1
M

ˆ
ydm =

µ

M

ˆ L0

0
ydx

otteniamo
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ycm =
1
L0

ˆ vt

0

[
y(x, 0) +

gL0

v2 (vt− x)
]

dx

+
1
L0

ˆ L0

vt
y(x, 0)dx

=
1
L0

ˆ L0

0

[
x +

gL0

2v2

(
2x− x2

L0

)]
dx

+
g
v2

ˆ vt

0
(vt− x) dx

=

(
1 +

2gL0

3v2

)
L0

2
+

1
2

gt2

Questo conferma quanto detto inizialmente. Un calcolo analogo darebbe lo stesso risul-
tato per t > 0 qualsiasi. Molto più semplicemente, sappiamo che le masse a sinistra e a
destra della discontinuità si muovono con velocità costante. Considerando ad esempio
la fase 1 vista precedentemente possiamo scrivere

vCM =
vt
L0

gL0

v
(1 + 2m) +

(
1− vt

L0

)
gL0

v
2m

da cui
aCM = g

ed analogamente nella fase 2.
Concludiamo osservando che il modello considerato ha delle limitazioni. Se calcolia-

mo infatti la quantità ∂y/∂x troviamo, con la notazione usata in precedenza,

∂y
∂x

(x, t) =

{
1− gx

v2 0 < x < xD

1 + gL0
v2

(
1− x

L0

)
xD < x < L0

Si vede facilmente che se
gL0

v2 > 1

in qualche punto della molla si avrà

∂y
∂x

< 0

Questo significa che y non è una funzione crescente di x: in altre parole durante l’evolu-
zione una punto della molla può superare quelli successivi. I parametri della animazio-
ne 5.118 sono stati scelti in modo che questo non accada, ma con altre scelte il fenomeno
avviene (vedere l’animazione 5.120), ed è chiaramente non realistico.

Per risolvere il problema si deve complicare il modello, ad esempio modificando la
legge di Hooke imposta nell’Equazione in modo da impedire la compressione. Per un
possibile approccio vedere[1]. Un esempio “dal vivo” di un sistema di questo tipo si
trova all’indirizzo http://www.youtube.com/watch?v=uiyMuHuCFo4.
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Figura 5.120.: La funzione y(x, t) (in rosso) nell’intervallo 0 < t < 2L0/v. Per confronto
sono riportate anche le funzioni A(x− vt) (in blu), B(x + vt) (in verde) e
y(x, 0) (traggeggiata). Si è preso L0 = 1m e v = 2ms−1, quindi 2L0/v = 1s.
Notare che in questo caso alcuni punti della molla superano i successivi
nel corso dell’evoluzione. L’animazione è disponibile all’indirizzohttp:
//www.df.unipi.it/~cella/videos/ueg/T3.html
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PROBLEMA 5.142

Molecola triangolare ? ? ?

Un semplice modello di molecola è costituito da tre masse identiche m collegate da tre
molle di costante elastica k e lunghezza a riposo `0, in modo da formare un triangolo
equilatero. Studiare le piccole oscillazioni attorno a questa posizione di equilibrio.

Soluzione

Il sistema ha sei gradi di libertà, dato che ciascuna massa può muoversi nel piano in
due direzioni indipendenti. Scegliamo le coordinate delle tre masse nella forma

~r1 = (d + δu1) û1 + δv1v̂1

~r2 = (d + δu2) û2 + δv2v̂2

~r3 = (d + δu3) û3 + δv3v̂3

dove δui, δvi parametrizzano le piccole oscillazioni. Per la definizione dei versori ûi e v̂i
fare riferimento alla Figura 5.121.

Possiamo adesso scrivere l’energia potenziale

U =
k
2 ∑

(i,j)∈L

[∣∣~ri −~rj
∣∣− `0

]2

con L ∈ {(1, 2), (2, 3), (3, 1)}. Sostituendo le coordinate nel potenziale otteniamo l’e-
spressione

U =
k
2 ∑

(i,j)∈L

{√[
(d + δui) ûi + δviv̂i −

(
d + δuj

)
ûj − δvjv̂j

]2 − `0

}2

=
k
2 ∑

(i,j)∈L

{√[
d
(
ûi − ûj

)
+ δuiûi − δujûj + δviv̂i − δvjv̂j

]2 − `0

}2

Dato che nella posizione di equilibrio

d
∣∣ûi − ûj

∣∣ = d
√

3 = `0
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û1

û2

û3
v̂1

v̂2

v̂3

Figura 5.121.: La parametrizzazione utilizzata per studiare il sistema. Notare che i
versori ûi, v̂i non sono indipendenti tra loro.

per ottenere lo sviluppo del potenziale al secondo ordine nelle coordinate δui, δvi è
sufficiente espandere la radice quadrata al primo ordine. Abbiamo allora

U ' k
2 ∑

(i,j)∈L

{√
`2

0 + 2d
(
ûi − ûj

)
·
(
δuiûi − δujûj + δviv̂i − δvjv̂j

)
− `0

}2

' 1
2

k ∑
(i,j)∈L

{
`0

√
1 +

2d
`2

0

(
ûi − ûj

)
·
(
δuiûi − δujûj + δviv̂i − δvjv̂j

)
− `0

}2

=
1
2

k
3 ∑

(i,j)∈L

[(
δui + δuj

) (
1− ûi · ûj

)
− δviûj · v̂i − δvjûi · v̂j

]2
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Tenendo conto che

û1 · û2 = û2 · û3 = û3 · û1 =− 1
2

v̂1 · v̂2 = v̂2 · v̂3 = v̂3 · v̂1 =− 1
2

û1 · v̂2 = û2 · v̂3 = û3 · v̂1 =−
√

3
2

v̂1 · û2 = v̂2 · û3 = v̂3 · û1 =

√
3

2

otteniamo infine

U ' 1
2

k
4 ∑

(i,j)∈L

[√
3
(
δui + δuj

)
−
(
δvi − δvj

)]2

=
1
2

k
4

{[√
3 (δu1 + δu2)− (δv1 − δv2)

]2

+
[√

3 (δu2 + δu3)− (δv2 − δv3)
]2

+
[√

3 (δu3 + δu1)− (δv3 − δv1)
]2
}

Possiamo adesso scrivere le equazioni del moto. Ad esempio

mδü1 = − ∂U
∂u1

= − k
4

{
(6δu1 + 3δu2 + 3δu3) +

√
3 (δv2 − δv3)

}

mδv̈1 = − ∂U
∂v1

= − k
4

{√
3 (δu3 − δu2) + (2δv1 − δv2 − δv3)

}

e similmente per le altre. Possiamo rappresentare l’insieme completo di equazioni nella
forma

δq̈ +
1
4

ω2
0




6 3 3 0
√

3 −
√

3
3 6 3 −

√
3 0

√
3

3 3 6
√

3 −
√

3 0
0 −

√
3
√

3 2 −1 −1√
3 0 −

√
3 −1 2 −1

−
√

3
√

3 0 −1 −1 2




δq = 0

dove
δqT =

(
δu1 δu2 δu3 δv1 δv2 δv3

)

e ω2
0 = k/m.

Per trovare un numero sufficiente di soluzioni proveremo adesso ad ipotizzare la
forma dei modi di oscillazione a frequenza fissata del tipo

δq = Qeiωt
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dove Q è un vettore costante. Sostituendo vediamo che Q deve soddisfare l’equazione

1
4

ω2
0




6 3 3 0
√

3 −
√

3
3 6 3 −

√
3 0

√
3

3 3 6
√

3 −
√

3 0
0 −

√
3
√

3 2 −1 −1√
3 0 −

√
3 −1 2 −1

−
√

3
√

3 0 −1 −1 2




Q = ω2Q

cioè deve essere un autovettore della matrice che rappresenta le forze di richiamo del-
le molle. Prima di tutto ci aspettiamo che una soluzione possa essere una semplice
rotazione della molecola attorno al centro. In questo caso avremo

QT
1 ∝

(
0 0 0 1 1 1

)

e si verifica immediatamente che questo è un autovettore (con autovalore nullo), dato
che la somma degli elementi delle ultime tre colonne è nullo su ogni riga. Analogamente
avremo soluzioni che corrisponderanno ad una semplice traslazione. Per esempio per
una traslazione nella direzione x avremo

QT
2 ∝

(√
3

2 0 −
√

3
2

1
2 −1 1

2

)

ed anche in questo caso abbiamo un autovettore con autovalore nullo. Analogamente
per una traslazione nella direzione y abbiamo

QT
3 ∝

(
− 1

2 1 − 1
2

√
3

2 0 −
√

3
2

)

Vogliamo adesso andare oltre tenendo conto delle simmetrie del problema. Dato un
possibile modo di oscillazione, ci aspettiamo che applicando una trasformazione di
simmetria del problema possano succedere due cose:

1. il modo resta uguale a se stesso, cioè la molecola oscilla mantenendo completa-
mente la sua simmetria;

2. il modo cambia, ma si trasforma in una combinazione di altri modi della stessa
frequenza.

La prima possibilità si realizza in una eventuale oscillazione nella quale le tre masse
oscillano in sincrono in direzione radiale: istante per istante la forma della molecola è
sempre quella di un triangolo equilatero. Questo modo dovrebbe essere descritto da un
vettore del tipo

QT
4 ∝

(
1 1 1 0 0 0

)

che effettivamente è un autovettore corrispondente a ω2 = 3ω2
0.

Restano ancora da trovare due modi di oscillazione per risolvere completamente il
problema. Non possiamo più mantenere completamente la simmetria, ma possiamo
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cercare un modo che ne conserva una parte, per esempio la simmetria di riflessione
attorno all’asse passante per l’origine e orientato come û2. Il vettore Q dovrebbe essere
del tipo

QT
5 ∝

(
β α β γ 0 −γ

)

ed imponendo che il centro di massa del sistema non si sposti abbiamo

αm + 2m

(
−1

2
β +

√
3

2
γ

)
= 0

α = β−
√

3γ

e quindi, a meno di una costante moltiplicativa,

QT
5 ∝

(
β β−

√
3 β 1 0 −1

)

Il valore di γ si può determinare imponendo che Q sia in effetti un autovettore. Troviamo
che




6 3 3 0
√

3 −
√

3
3 6 3 −

√
3 0

√
3

3 3 6
√

3 −
√

3 0
0 −

√
3
√

3 2 −1 −1√
3 0 −

√
3 −1 2 −1

−
√

3
√

3 0 −1 −1 2







β

β−
√

3
β
1
0
−1




=




−2
(√

3− 6β
)

−8
√

3 + 12β

−2
(√

3− 6β
)

6
0
−6




e quindi β =
√

3/3,

QT
5 ∝

(
1√
3
− 2√

3
1√
3

1 0 −1
)

e ω2 = 3ω2
0/2.

û1

û2

û3
v̂1

v̂2

v̂3 û1

û2

û3
v̂1

v̂2

v̂3 û1

û2

û3
v̂1

v̂2

v̂3

Figura 5.122.: I modi di oscillazione corrispondenti ai vettori Q4, Q5 e Q6. Il modo Q6
si ottiene dal Q5 con una rotazione antioraria di 2π/3.
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5.143. PENDOLO INCLINATO ??

L’ultimo modo di oscillazione si trova facilmente osservando che ruotando di 2π/3
quello appena trovato se ne deve ottenere un’altro indipendente, della stessa frequenza.
La trasformazione è equivalente al cambiamento di variabili

δu1 → δu2

δu2 → δu3

δu3 → δu1

δv1 → δv2

δv2 → δv3

δv3 → δv1

e quindi
QT

6 ∝
(
− 2√

3
1√
3

1√
3

0 −1 1
)

e si può verificare direttamente che questo è ancora una volta un autovettore, sempre con
ω2 = 3ω2

0/2. In questo modo abbiamo trovato sei vettori linearmente indipendenti23.
Se omettiano i modi corrispondenti alle due traslazioni e alla rotazione rigida della
molecola, possiamo scrivere la soluzione generale nella forma

δq(t) = Q4

(
A4 cos ω0

√
3t + B4 sin ω0

√
3t
)

+ Q5

(
A5 cos ω0

√
3/2t + B5 sin ω0

√
3/2t

)

+ Q6

(
A6 cos ω0

√
3/2t + B6 sin ω0

√
3/2t

)

Le costanti Ak e Bk possono essere determinate imponendo le condizioni iniziali, che
devono essere compatibili con l’assenza di traslazioni e rotazioni.

PROBLEMA 5.143

Pendolo inclinato ??

Su un piano inclinato di un angolo θ = π/6 rispetto all’orizzontale è fissato un pendolo
di massa M e lunghezza L. Inizialmente il pendolo si trova nella posizione di equilibrio
e viene lanciato con una velocità iniziale v0. Tra il piano e la massa M si ha attrito
dinamico con coefficiente µD = 2/

√
3. Trovare il valore minimo di v0 per il quale il

pendolo riesce ad effettuare un giro completo.

Soluzione

Usando il sistema di coordinate rappresentato in Figura 5.123 possiamo scrivere

y = −L cos φ

23Che cosa si otttiene mediante un’altra rotazione di 2π/3?

351 versione del 5 ottobre 2016



5.143. PENDOLO INCLINATO ??

φ

θ

L

M

xy

Figura 5.123.: Il pendolo adagiato sul piano inclinato.

e misurando l’altezza della massa rispetto ad un piano orizzontale passante per l’origine
abbiamo

h = −L cos φ sin θ

Scriviamo l’energia del pendolo, tenendo conto del potenziale gravitazionale. Abbiamo

E =
1
2

ML2φ̇2 −MgL sin θ cos φ

Il teorema delle forze vive ci dice che la variazione dell’energia totale è uguale al lavoro
della forza di attrito. Quest’ultima vale

Fa = µD N

dove
N = Mg cos θ

è la reazione normale del piano. Applicando in teorema tra la posizione iniziale e una
posizione generica del pendolo abbiamo

1
2

ML2φ̇2 −MgL sin θ cos φ− 1
2

Mv2
0 + MgL sin θ = −LφµD Mg cos θ

dalla quale possiamo dedurre φ̇2 nella posizione generica
Affinchè possa avvenire un giro completo, è necessario che la tensione del filo sia

sempre positiva o nulla. Scrivendo l’equazione del moto per la massa nella direzione
radiale sul piano inclinato abbiamo

−MLφ̇2 = −T + Mg sin θ cos φ

da cui
T = MLφ̇2 + Mg sin θ cos φ
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5.144. ORBITA CIRCOLARE PERTURBATA ??

Sostituendo il valore di φ̇2 trovato precedentemente abbiamo

T = 3Mg sin θ cos φ− 2Mg sin θ − 2MgφµD cos θ +
Mv2

0
L
≥ 0

Questo da la condizione

3Mg sin θ cos φ− 2Mg sin θ − 2MgφµD cos θ +
Mv2

0
L
≥ 0

Sostituendo esplicitamente i valori di µD e θ abbiamo

v2
0 ≥ gL

(
1− 3

2
cos φ + 2φ

)

Derivando il membro destro vediamo che si tratta di una funzione sempre crescente di
φ. Il valore massimo su un giro completo è quindi a φ = 2π, e troviamo la condizione

v0 ≥
√

gL
(

4π − 1
2

)

PROBLEMA 5.144

Orbita circolare perturbata ??

Una particella di massa m si muove in un campo di forza centrale descritto da un
potenziale U(r). Supponendo che esista un’orbita circolare per r = r0 per un certo
valore dell’energia E0 = U(r0) e del momento angolare, determinare le caratteristiche
dell’orbita corrispondente ad una piccola perturbazione E = E0 + δE. In particolare,
sotto quali condizioni l’orbita si chiude dopo una rivoluzione?

Soluzione

L’energia e il momento angolare sono conservate. Possiamo quindi scrivere

E =
1
2

mṙ2 +
L2

2mr2 + U(r)

L = mr2θ̇

Utilizziamo la seconda equazione per eliminare il parametro temporale dalla prima,
ottenendo

E =
1
2

m
(

dr
dθ

L
mr2

)2

+

[
L2

2mr2 + U(r)
]

(5.144.1)

Introducendo la coordinata u = r−1 abbiamo infine

mE
L2 =

1
2

(
du
dθ

)2

+
1
2

[
u2 +

2m
L2 U

(
u−1

)]
(5.144.2)
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5.144. ORBITA CIRCOLARE PERTURBATA ??

Possiamo adesso sviluppare il potenziale attorno a r0. Ponendo u = u0 + ε abbiamo al
secondo ordine

m
L2 U

(
u−1

0

)
+

mδE
L2 =

1
2

(
dε

dθ

)2

+
1
2

[
u2

0 + 2u0ε + ε2 +
2m
L2 U

(
u−1

0

)

+
2m
L2

dU
du

(
u−1

0

)
ε +

1
2

2m
L2

d2U
du2

(
u−1

0

)
ε2
]

ma se u0 corrisponde ad un’orbita circolare il termine O(ε) si deve annullare

u0 +
m
L2

dU
du

(
u−1

0

)
= 0 (5.144.3)

e quindi
mδE
L2 =

1
2

(
dε

dθ

)2

+
1
2

[
1 +

m
L2

d2U
du2

(
u−1

0

)]
ε2

Derivando rispetto a θ troviamo l’equazione della traiettoria

d2ε

dθ2 +

[
1 +

m
L2

d2U
du2

(
u−1

0

)]
ε = 0

che ha per soluzione generale
ε = A cos (kθ + φ)

con

k =

√
1 +

m
L2

d2U
du2

(
u−1

0

)

L’ampiezza dell’oscillazione si calcola dall’espressione dell’energia:

A =

√
2mδE
L2k2

Dato che

d
du

= −r2 d
dr

= − 1
u2

d
dr

d2

du2 = 2r3 d
dr

+ r4 d2

dr2 =
2
u3

d
dr

+
1
u4

d2

dr2

possiamo scrivere anche

k =

√
1 +

m
L2

(
2
u3

0
U′ +

1
u4

0
U′′
)

e la (5.144.3) diviene
u0 −

m
L2u2

0
U′ = 0 (5.144.4)
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da cui

k =

√
3 +

m
L2u4

0
U′′

In generale un’orbita si chiuderà dopo una rivoluzione se k è un numero intero.
Possiamo chiederci se, per particolari potenziali, tutte le orbite perturbate si chiudono

in questo modo. Una condizione necessaria è che k sia indipendente da u0. Se stiamo
perturbando un’orbita circolare deve essere anzitutto

m
L2u3

0
=

1
U′

ed in particolare il potenziale deve essere una funzione crescente di r. Sostituendo
nell’espressione di k troviamo

k =

√
3 +

1
u0

U′′

U′

Dato che k non deve dipendere da u0 troviamo

U′′

U′
=

d
dr

log U′ =
C1

r

ossia

log U′ = C1 log r + C2

U′ = A1rC1

U =
A1

C1 + 1
rC1+1 + C2

che corrisponde a

k =
√

3 + C1

Abbiamo quindi
C1 = k2 − 3

Ad esempio per k = 1 troviamo

U ∝ −1
r

cioè un potenziale gravitazionale attrattivo. Per k = 2

U ∝ r2

cioè un oscillatore bidimensionale. Come è noto in entrambi i casi tutte le orbite si
chiudono dopo una rivoluzione.
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θ
~g

M, r, I

R

Figura 5.124.: La pallina vincolata a rimanere in contatto con la guida circolare nella posi-
zione iniziale (in nero) ed in una posizione intermedia qualsiasi (in rosso).
Il tratteggio sulla metà a destra indica il vincolo di puro rotolamento.

PROBLEMA 5.145

Pallina in caduta su guida circolare ??

Una pallina di massa M, raggio r e momento di inerzia I rispetto ad un asse passante per
il centro di massa è vincolata a rimanere in contatto con una guida circolare di raggio R,
come in Figura 5.124. Inizialmente si trova in quiete nel punto più in alto (θ = π). Sulla
metà di destra della guida la pallina è anche vincolata ad un moto di puro rotolamento.
Sulla metà di sinistra invece è assente qualunque attrito.

Si sposte leggermente la pallina, e questa inizia a cadere. Calcolare la massima altezza
alla quale il centro di massa riesce ad arrivare prima di fermarsi nuovamente, sul lato
sinistro della guida.

Successivamente il moto continua, e la pallina torna sul lato destro fino a fermarsi
nuovamente. Calcolare la nuova altezza raggiunta.
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5.145. PALLINA IN CADUTA SU GUIDA CIRCOLARE ??

Soluzione

Durante la discesa dal lato destro della guida l’energia si conserva, e può essere scritta
come

E =
1
2
(

I + Mr2)ω2 −Mg (R− r) cos θ

di conseguenza confrontando l’energia iniziale (θ = π, ω = 0) con quella al momento
di arrivo nel punto più basso (θ = 0, ω = ω1) troviamo

1
2
(

I + Mr2)ω2
f = 2Mg (R− r)

da cui

ω1 =

√
4Mg (R− r)

I + Mr2

Dato che la velocità del centro di massa è legata a ω dalla condizione di puro rotolamen-
to avremo

v1 = −ω1r = −
√

4Mgr2 (R− r)
I + Mr2

Nella risalita dal lato sinistro la velocità del centro di massa e quella angolare sono
indipendenti. L’energia si scriverà allora come

E =
1
2

Mv2 +
1
2

Iω2 −Mg (R− r) cos θ

Inoltre si conserverà il momento angolare della pallina rispetto al suo centro di massa

L = Iω

dato che il momento della forza di gravità e della reazione normale della guida è nullo ri-
spetto ad esso. Chiaramente anche la velocità angolare si conserverà. Ponendo l’energia
iniziale uguale a quella nel punto più alto raggiunto (v = 0) abbiamo quindi

1
2

Mv2
1 +

1
2

Iω2
1 −Mg (R− r) =

1
2

Iω2
1 −Mg (R− r) cos θ1

che permette di calcolare l’angolo corrispondente alla posizione più in alto

cos θ1 = −1 + 2
I

Mr2

1 + I
Mr2

Per I � Mr2 si ha cos θ1 ' −1, cioè la pallina ritorna alla stessa posizione di partenza.
Per I � Mr2 si ha cos θ1 ' 1, ossia la pallina rimane vicino al punto più basso. Notare
che per I = Mr2 si ottiene cos θ1 = 0, cioè θ1 = −π/2.
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5.146. MOTO CIRCOLARE IN UN SISTEMA ROTANTE ??

Tornando indietro la pallina arriva nel punto più basso con

ω = ω1

v = ω1r

e quindi non si trova in condizioni di puro rotolamento (la velocità v ha il segno sba-
gliato). Al momento dell’entrata nel lato di destra la guida applicherà un impulso nel
punto di contatto, che però non cambierà il momento angolare rispetto ad esso. Quindi
avremo

Iω1 −Mrω1r =
(

I + Mr2)ω2

che permette di calcolare la velocità angolare iniziale sul lato destro,

ω2 =
I −Mr2

I + Mr2 ω1

La velocità angolare cambia segno per I < Mr2. Se I > Mr2 la pallina “rimbalza” e
risale nuovamente dal lato sinistro. Noratare però che per una pallina non si può avere
I > Mr2 (sarebbe necessario distribuire a distanze maggiori di r dall’asse di rotazione
passante per il centro di massa). Usando adesso la conservazione dell’energia possiamo
nuovamente determinare l’angolo corrispondente all’altezza massima raggiunta

1
2
(

I + Mr2)ω2
2 −Mg (R− r) = −Mg (R− r) cos θ2

da cui

cos θ2 = −1 + 8
I

Mr2
(
1 + I

Mr2

)2

Notare che cos θ = −1 solo se I = 0. In tutti gli altri casi l’altezza massima finale è
maggiore di quella iniziale. Questo è dovuto al fatto che nel passaggio tra il lato sinistro
e il lato destro viene dissipata energia. Il valore massimo di cos θ2 si ottiene per I = Mr2

(cos θ2 = 1). In quel caso la pallina rimane sul fondo, dissipando interamente la propria
energia.

PROBLEMA 5.146

Moto circolare in un sistema rotante ??

Un punto materiale si muove in un piano orizzontale rimanendo vincolato ad un filo
inestensibile di massa trascurabile e lunghezza ` come in Figura 5.125. Il moto è quindi
circolare, ed avviene a velocità angolare costante ω. Scrivere le equazioni del moto per
il punto, in direzione radiale e tangenziale, in un sistema di riferimento che ruota con
velocità angolare costante ω attorno ad un asse normale al piano e passante per il centro
dell’orbita. Utilizzare le equazioni per determinare la tensione del filo. La tensione del
filo dipende da ω?
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x y

z

`

Figura 5.125.: Il punto materiale in moto circolare uniforme. La velocità angolare del
moto è ω in un sistema di riferimento inerziale, e viene studiata in un
sistema di riferimento che ruota attorno all’asse z con velocità angolare
ω.

Soluzione

Nel sistema rotante osserviamo un moto circolare che avviene con velocità angolare
(ω−ω) êz, quindi l’unica accelerazione è quella centripeta. Usando coordinate cilindri-
che, e tenendo conto che il moto è limitato al piano, possiamo scrivere quindi

~a = − (ω−ω)2 `êρ

Le forze che agiscono sul punto materiale sono:

1. La forza peso ~Fp = −mgêz

2. La reazione normale del piano ~FN = Nêz

3. La forza dovuta alla tensione del filo ~FT = −Têρ

4. La forza centrifuga
~FCF = mω2`êρ

5. La forza di Coriolis
~FCO = 2mω (ω−ω) `êρ

In conclusione le equazioni del moto per il punto si scrivono

m~a = ~Fp + ~FN + ~FT + ~FCF + ~FCO

ossia, esplicitamente,

−m (ω−ω)2 `êρ = −mgêz + Nêz − Têρ + mω2`êρ + 2mω (ω−ω) `êρ
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Nella direzione êz questo significa
N = mg

e nella direzione radiale

−m (ω−ω)2 ` = −T + mω2`+ 2mω (ω−ω) `

Svolgendo i calcoli troviamo
T = m`ω2

che non dipende dalla velocità di rotazione ω del sistema di riferimento. Questo era da
attendersi, dato che la forza dovuta alla tensione non è apparente, e quindi non deve
dipendere dal sistema di riferimento scelto.

PROBLEMA 5.147

Manubrio in orbita ? ? ?

θ

φ

m

m

r

Figura 5.126.: Il manubrio in orbita. Le condizioni iniziali sono scelte in modo da far
rimanere entrambe le masse nel piano che contiene l’orbita percorsa dal
centro di massa.

Un manubrio formato da due masse identiche m collegate da una sbarra di lunghezza
2a e massa trascurabile si muovono sotto l’azione di un campo gravitazionale descritto
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dal potenziale

U = − km
r

dove k è una costante positiva e r la distanza dall’origine di un sistema di coordinate
scelto opportunamente. Per semplicità le condizioni iniziali sono scelte in modo che
entrambe le masse rimangano nel piano dell’orbita percorsa dal centro di massa del
sistema.

Scegliendo le coordinate r, θ e φ come in Figura 5.126 determinare se esistono possibili
orbite circolari per il centro di massa, con φ costante.

Soluzione

La forza totale che agisce sul manubrio vale

~F = −km

[
(~r +~a)
|~r +~a|3

+
(~r−~a)
|~r−~a|3

]

dove~a è il vettore che unisce il centro di massa del manubrio con uno dei sue estremi,

~a = a




cos θ cos φ− sin θ sin φ
sin θ cos φ + cos θ sin φ

0




= a cos φêr + a sin φêθ

ed~r il vettore posizione del centro di massa del manubrio

~r = r




cos θ
sin θ

0




Esplicitamente questo significa

~F = −km

[
rêr + a cos φêr + a sin φêθ

(r2 + a2 + 2ar cos φ)3/2 +
rêr − a cos φêr − a sin φêθ

(r2 + a2 − 2ar cos φ)3/2

]

= −km

[
r + a cos φ

(r2 + a2 + 2ar cos φ)3/2 +
r− a cos φ

(r2 + a2 − 2ar cos φ)3/2

]
êr

− km

[
a sin φ

(r2 + a2 + 2ar cos φ)3/2 −
a sin φ

(r2 + a2 − 2ar cos φ)3/2

]
êθ

dove abbiamo distinto la componente radiale e la componente tangenziale all’orbita
circolare.

Se r e φ restano costanti, allora sia la forza radiale che quella tangenziale sono costanti.
Segue che l’accelerazione centripeta è costante, e quindi il moto circolare deve essere
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uniforme. D’altra parte questo significa che non si può avere accelerazione tangenziale,
e quindi deve essere

[
1

(r2 + a2 + 2ar cos φ)3/2 −
1

(r2 + a2 − 2ar cos φ)3/2

]
a sin φ = 0

L’equazione precedente ha soluzioni solo per sin φ = 0 e per cos φ = 0, che corrispondo-
no ad un manubrio orientato radialmente e tangenzialmente. Senza perdere generalità
data la simmetria del problema possiamo limitarci a studiare i casi φ = 0 e φ = π/2.

Dobbiamo ancora verificare che i valori di φ considerati siano di equilibrio. Per farlo
scriviamo la seconda equazione cardinale per il manubrio, rispetto al suo centro di
massa. Calcoliamo prima di tutto il momento delle forze: abbiamo

~M =~a ∧
(
− km (~r +~a)
|~r +~a|3

)
+ (−~a) ∧

(
− km (~r−~a)
|~r−~a|3

)

= km

(
1

|~r−~a|3
− 1

|~r +~a|3

)
(~a ∧~r)

e quindi

~a ∧~r =

∣∣∣∣∣∣

x̂ ŷ ẑ
a cos (θ + φ) a sin (θ + φ) 0

r cos θ r sin θ 0

∣∣∣∣∣∣
= ar [cos (θ + φ) sin θ − sin (θ + φ) cos θ] ẑ

= −ar sin φẑ

In conclusione la seconda equazione cardinale si scriverà

dLcm

dt
= ~M · ẑ

ossia (tenendo conto che in un moto circolare uniforme θ̈ = 0)

φ̈ = − rk
2a

[
1

(r2 + a2 − 2ar cos φ)3/2 −
1

(r2 + a2 + 2ar cos φ)3/2

]
sin φ (5.147.1)

Possiamo quindi verificare che il membro destro si annulla sia per φ = 0 che per φ =
π/2, quindi l’orbita circolare considerata è possibile. Resta da determinare la velocità
con la quale viene percorsa l’orbita. Abbiamo

−2m
v2

r
= −km

[
r + a cos φ

(r2 + a2 + 2ar cos φ)3/2 +
r− a cos φ

(r2 + a2 − 2ar cos φ)3/2

]

cioè

v2 =
kr
2

[
1

(r + a)2 +
1

(r− a)2

]
' k

r

(
1 + 3

a2

r2

)
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per φ = 0 e

v2 =
kr2

(r2 + a2)3/2 '
k
r

(
1− 3

2
a2

r2

)

per φ = π/2. Le approssimazioni valgono per a� r, e mostrano che l’orbita è percorsa
più velocemente quando il manubrio è orientato in direzione radiale.

PROBLEMA 5.148

Manubrio in orbita: piccole perturbazioni ??

Studiare le piccole oscillazioni del manubrio nella situazione determinate nell’Eserci-
zio 5.126, considerando il caso φ = 0. Per semplicità si può considerare la lunghezza
del manubrio molto minore del raggio dell’orbita, e supporre che l’orbita del centro di
massa rimanga imperturbata.

Soluzione

Riprendiamo la seconda equazione cardinale (5.147.1) e sviluppiamola al primo ordine
prendendo φ = δφ. Otteniamo\

δφ̈ = − r0k
2a

[
1

(r0 − a)3 −
1

(r0 + a)3

]
δφ (5.148.1)

Abbiamo quindi piccole oscillazioni di frequenza angolare

Ω =

√√√√ r0k
2a

[
1

(r0 − a)3 −
1

(r0 + a)3

]
'
√

3
k
r3

0
' ω0

√
3

L’approssimazione vale per a� r0.

PROBLEMA 5.149

Moto su un cono in presenza di gravità ? ? ?

Un punto materiale è vincolato a muoversi su un cono di ampiezza 2α posto con l’asse
verticale e il vertice verso il basso. Discutere le possibili traiettorie.

Soluzione

Scegliamo un sistema di coordinate cilindriche con l’origine nel vertice del cono. L’ener-
gia del sistema sarà in coordinate cilindriche

E =
1
2

m
[(

1 + tan2 α
)

ż2 + z2 tan2 αφ̇2]+ mgz
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5.150. MANUBRIO IN ORBITA: PICCOLE PERTURBAZIONI II ??

dove si è tenuto conto del fatto che ρ e z sono legati da

ρ = z tan α

La posizione del punto materiale è determinato da

~r = zêz + ρêρ

e le forze ad esso applicate valgono

~F = −mgêz + N
(
− cos αêρ + sin αêz

)

dove il primo termina è la forza peso e il secondo la reazione normale alla superficie.
Quindi il momento non ha componenti lungo êz

êz · ~M = êz ·
(
~r ∧ ~F

)
= êz ·

[(
zêz + ρêρ

)
∧
(
−mgêz + N sin αêz − N cos αêρ

)]

= êz ·
[
−Nz cos αêz ∧ êρ + ρ (−mg + N sin α) êρ ∧ êz

]
∝ êz ·

(
êρ ∧ êz

)
= 0

Quindi la componente z del momento angolare si conserva, e possiamo scrivere

Lz = mρ2φ̇

Eliminando ρ̇, φ̇ nell’energia otteniamo

E =
1
2

m
(
1 + tan2 α

)
ż2 +

L2
z

2mz2 tan2 α
+ mgz

Il potenziale effettivo ha un minimo in

z =

(
L2

z

gm2 tan2 α

)1/3

che corrisponde ad un’orbita circolare. Dato che limz→0 Ue f f = +∞ e limz→+∞ Ue f f =
+∞ tutte le orbite sono limitate. Il caso Lz = 0 è speciale, il potenziale efficace si riduce
a mgz e le orbite si riducono a cadute nel centro del tipo

φ = φ0

z = z0 + ż0t− 1
2

g
1 + tan2 α

t2

PROBLEMA 5.150

Manubrio in orbita: piccole perturbazioni II ??

Studiare le piccole perturbazioni delle orbite determinate nell’Esercizio 5.126, conside-
rando il caso φ = π/2. Per semplicità si può considerare la lunghezza del manubrio
molto minore del raggio dell’orbita, e supporre che l’orbita del centro di massa rimanga
imperturbata.
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5.151. MONOPOLO I ? ? ?

Soluzione

In questo caso l’equazione cardinale (5.147.1) diviene, ponendo φ = π/2 + δφ

φ̈ = − r0k
2a

[
1

(r2 + a2 + 2arδφ)3/2 −
1

(r2 + a2 − 2arδφ)3/2

]

= − r0k

2a
(
r2

0 + a2
)3/2


 1
(

1 + 2ar
r2

0+a2 δφ
)3/2 −

1
(

1− 2ar
r2

0+a2 δφ
)3/2




' 3kr2
0(

r2
0 + a2

)5/2 δφ

Non abbiamo in questo caso oscillazioni, ma una instabilità esponenziale che si sviluppa
con un tempo caratteristico

τ =

√√√√
(
r2

0 + a2
)5/2

3kr2
0

'
√

r3
0

3k
' 1√

3ω0

La posizione del manubrio considerata è dunque instabile.

PROBLEMA 5.151

Monopolo I ? ? ?

Un punto materiale si muove nello spazio sotto l’azione di una forza della forma

~F =
g
r3~v ∧~r (5.151.1)

dove~r è il vettore posizione e ~v il vettore velocità. Mostrare che l’energia cinetica del
punto si conserva, ma non il momento angolare ~L. Trovare quindi un vettore ~J (~v,~r)
conservato. Calcolare infine la quantità

W =
~r
r
·~J

e trarne delle conseguenze riguardo alle caratteristiche delle orbite.

Soluzione

L’energia cinetica si conserva perché la forza è perpendicolare alla velocità, e quindi non
è in grado di fare lavoro. Esplicitamente

dL = ~F · d~r = g
r3 (~v ∧~r) · d~r

=
g
r3

(
d~r ∧ d~r

dt

)
·~r = 0
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5.151. MONOPOLO I ? ? ?

Per il momento angolare abbiamo

d~L
dt

=~r ∧ ~F =
g
r3~r ∧ (~v ∧~r)

Se scomponiamo la velocità in una componente parallela a~r (radiale) e una componente
perpendicolare

~v = ~v‖ +~v⊥

abbiamo
d~L
dt

=~r ∧ ~F =
g
r
~v⊥ (5.151.2)

che non si annulla, a meno che ~v⊥ = 0. D’altra parte la derivata del versore radiale
r̂ =~r/r vale

d
dt
~r
r
=

~v
r
− 1

r
r̂ṙ

=
1
r
(
~v−~v‖

)

=
~v⊥
r

e quindi possiamo scrivere la (5.151.2) nella forma

d~L
dt

= g
d
dt

r̂

ossia
d
dt

(
~L− gr̂

)
= 0

Di conseguenza il vettore
~J = ~L− gr̂

si conserva. Da notare che J2 = L2 + g2 e quindi anche il modulo del momento angolare
è conservato. Inoltre

W = r̂ ·~J = mr̂ · (~r ∧~v)− g = −g

è costante. Questo significa che l’angolo tra il vettore posizione e ~J si mantiene fissato,
in altre parole l’orbita avviene su un cono con l’asse lungo~J e semiapertura angolare α
data da

cos α =
r̂ ·~J∣∣∣~J
∣∣∣
= − g√

L2 + g2

con vertice nell’origine. Notare che se L� g abbiamo α ' π/2 e il cono si riduce a un
piano.
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5.152. MONOPOLO II ??

PROBLEMA 5.152

Monopolo II ??

Nell’Esercizio 5.151 si è visto che la traiettoria di una particella sottoposta alla for-
za (5.151.1) giace su un cono. Scegliendo il sistema di riferimento in modo da avere

~J = −Jẑ

con J > 0 ed utilizzando opportune coordinate (ad esempio, coordinate polari o car-
tesiane per la proiezione della posizione della particella nel piano perpendicolare a ~J)
studiare in dettaglio il moto della particella.

Soluzione

x y

z

α

~r

~L

~vr = ṙêr

~vφ = r sinαφ̇êφ

~J

Figura 5.127.: Il sistema di riferimento utilizzato.

Abbiamo visto nell’esercizio precedente che il modulo del momento angolare ~L si
conserva. Inoltre~L è perpendicolare alla superficie del cono sul quale si svolge il moto, e
quindi anche la sua proiezione sull’asse z s conserva. Possiamo utilizzare come equazio-
ni del moto leggi di conservazione dell’energia cinetica e di Lz, che possiamo scrivere
nella forma

1
2

mṙ2 +
1
2

mr2 sin2 αφ̇2 = E

mr2 sin2 αφ̇ = Lz

Ricavando φ̇ dalla seconda equazione e sostituendolo nella prima abbiamo

E =
1
2

mṙ2 +
L2

z

2mr2 sin2 α

φ̇ =
Lz

mr2 sin2 α
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5.152. MONOPOLO II ??

e vediamo che il problema è formalmente identico a quello del moto di una particella
vincolata al cono. Si tratta di un caso particolare del problema 5.106 (oppure del 5.149)
in assenza di gravità. Possiamo quindi ripetere analoghe considerazioni: in particolare
se tagliamo e incolliamo il cono su un piano, vedremo le orbite come linee rette.

Approfittiamone per verificare questo fatto con un altro procedimento, e otteniamo
esplicitamente le leggi orarie. Introduciamo le coordinate

X = r cos (φ sin α)

Y = r sin (φ sin α)

che possono essere interpretate come coordinate cartesiane sul cono tagliato e incollato
sul piano. Le relazioni inverse sono

r =
√

X2 + Y2

φ =
1

sin α
arctan

Y
X

Derivando rispetto al tempo troviamo

ṙ =
XẊ + YẎ√

X2 + Y2

φ̇ =
1

sin α

XẎ−YẊ
X2 + Y2

Sostituendo nell’energia e nel momento angolare troviamo

E =
1
2

m
(
XẊ + YẎ

)2

X2 + Y2 +
1
2

m
(
XẎ−YẊ

)2

X2 + Y2

=
1
2

m
(
Ẋ2 + Ẏ2)

Lz

sin α
= L′z = m

(
XẎ−YẊ

)

cioè le espressioni di una particella libera. Derivando rispetto al tempo otteniamo
(

X Y
−Y X

)(
Ẍ
Ÿ

)
=

(
0
0

)

che ha per soluzione

Ẍ = 0
Ÿ = 0

e quindi

X = C1 + C2t
Y = C3 + C4t
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5.153. ISOCRONA DI BERNOULLI ??

dove le costanti Ci devono essere determinate imponendo le condizioni iniziali. Occorre
ricordare che il cono non ricopre tutto il piano. Ad ogni modo possiamo ora scrivere
esplicitamente la soluzione

r(t) =

√
(C1 + C2t)2 + (C3 + C4t)2

φ(t) =
1

sin α
arctan

C3 + C4t
C1 + C2t

PROBLEMA 5.153

Isocrona di Bernoulli ??

~g

y

x

y = F (x)

~v

Figura 5.128.: Il punto materiale e il profilo considerato. Si è scelto il sistema di coordina-
te in modo che il punto di partenza sia nell’origine. La curva disegnata è
solo a titolo di esempio, ed anzi si può capire sulla base di considerazioni
qualitative che non è sicuramente quella cercata.

Una particella di massa m scivola su un profilo privo di attrito come in Figura 5.128,
sotto l’azione della forza di gravità. La forma del profilo

y = F(x)
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5.153. ISOCRONA DI BERNOULLI ??

è tale che la componente verticale della velocità rimane costantemente identica la suo
valore iniziale.

◦ Per quale motivo il profilo di esempio in Figura 5.128 non può essere quello giusto?

◦ Determinare la forma corretta del profilo.

Soluzione

Osserviamo prima di tutto che la curva in Figura 5.128 ha la concavità rivolta verso
il basso. Questo significa che, se la componente verticale della velocità deve rimanere
costante, quella orizzontale deve diminuire. Infatti

ẏ = F′(x)ẋ

e quindi

ẋ =
ẏ

F′(x)

ma F′(x) è una funzione crescente. Il modulo della velocità di conseguenza diminuisce
nel tempo, ma questo è impossibile perché mano mano che la particella scende verso il
basso dovrebbe aumentare la propria energia cinetica. Per questo ci attendiamo che la
curva corretta abbia la concavità rivolta verso l’alto.

Per determinare quest’ultima conviene scrivere

x = G(y)

dove G è la funzione inversa di F. Scriviamo adesso l’energia totale, che deve conservar-
si, nella forma

E =
1
2

m
[
1 + G′(y)2] ẏ2 + mgy

dove G′ indica la derivata di G rispetto al suo argomento. Dato che ẏ = vy = costante
possiamo anche scrivere

1
2

m
[
1 + G′(0)2] v2

y =
1
2

m
[
1 + G′(y)2] v2

y + mgy

e in conclusione
dx
dy

= ±
√

G′(0)2 − 2gy
v2

y

Questa è un’equazione differenziale per la funzione x = G(y) che si integra diretta-
mente, tenendo conto del fatto che G(0) = 0 nel sistema di riferimento scelto. Otteniamo
quindi

x = ±G′(0)
ˆ y

0

√
1− 2gu

v2
yG′(0)2 du
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5.153. ISOCRONA DI BERNOULLI ??

L’integrale si può calcolare per tutti i valori di y tali che

y <
v2

yG′(0)2

2g

otteniamo quindi una serie di curve

x = ±
v2

y

3g


G′(0)3 −

(
G′(0)2 − 2g

v2
y

y

)3/2

 (5.153.1)

che soddisfano le proprietà richieste. Se adesso riscriviamo la relazione precedente nella
forma

3g
v2

y

(
x∓

v2
y

3g
G′(0)3

)
= ±

(
2g
v2

y

)3/2(
v2

y

2g
G′(0)2 − y

)3/2

vediamo che abbiamo a che fare in realtà sempre con la stessa curva di base, ad esempio
quella ottenuta per G′(0) = 0

3g
v2

y
x = ±

(
2g
v2

y

)3/2

(−y)3/2

alla quale è stata applicata la traslazione più generale che continua a farla passare per
l’origine, come potevamo attenderci a priori.

La curva di base considerata si può riscrivere più semplicemente come

y
λ
= −1

2

(
3
|x|
λ

)2/3

(5.153.2)

dove λ = v2
y/g, ed è rappresentata in Figura 5.129 per λ = 1m. Si può verificare che,

come ci aspettavamo, la concavità è adesso rivolta verso l’alto. Dalla (5.153.1)
Possiamo infine svincolarci dalla particolare scelta fatta per il sistema di coordinate, ed

affermare che si potrà ottenere il profilo più generale con le proprietà volute applicando
alla curva in Figura 5.129 una trasformazione di scala del fattore λ desiderato e una
traslazione arbitraria.
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5.154. OSCILLAZIONI IN UN POTENZIALE??

y

x

y = −1m

x = 1mx = −1m

Figura 5.129.: La forma corretta del profilo (curva continua), data dall’Equazio-
ne (5.153.2) prendendo v2

y/g = 1m. La curva più generale (5.153.1) si può
ottenere applicando a questa una traslazione arbitraria che però continui
a farla passare per l’origine. Un esempio è la curva tratteggiata.

PROBLEMA 5.154

Oscillazioni in un potenziale??

Una particella di massa m si muove in una dimensione soggetta ad un potenziale

U(x) =

{
kx2

2 + βx x > 0
kx2

2 − βx x < 0

dove k e β sono costanti positive di opportune dimensioni e x è la coordinata cartesiana
della particella.

Calcolare il periodo dell’oscillazione risultante, in funzione dell’energia totale E. Con-
siderare in particolare il caso E→ 0 e E→ ∞.
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5.154. OSCILLAZIONI IN UN POTENZIALE??

Soluzione

Per x > 0 il potenziale è equivalente a quello di una molla di costante elastica k e
lunghezza a riposo nulla, fissata nel punto

x = −β

k

e per x < 0 a quello di una molla identica, ma fissata nel punto

x =
β

k

Di conseguenza in ciascuna regione la particella compierà un tratto di una oscillazione

armonica. Se poniamo come condizioni iniziali x(0) = 0 e v(0) =
√

2E
m data la simmetria

il periodo sarà il doppio della durata del moto in x > 0.
La soluzione generale dell’equazione del moto per x > 0 sarà

x(t) = A cos ωt + B sin ωt− β

k

con ω =
√

k/m.
Imponiamo le condizioni iniziali:

x(0) = A− β

k
= 0

ẋ(0) = Bω =

√
2E
m

e quindi

x(t) =
β

k
(cos ωt− 1) +

1
ω

√
2E
m

sin ωt

Determiniamo dopo quanto tempo la particella torna in x = 0. Scriviamo l’equazione
x(t) = 0 nella forma

(
−2β

k
sin

ωt
2

+
2
ω

√
2E
m

cos
ω

2
t

)
sin

ω

2
t = 0

Abbiamo ovviamente la soluzione t = 0. Ci interessa la seconda, che si ottiene quando
si annulla l’espressione tra parentesi. Otteniamo

tan
ωt
2

=
k

ωβ

√
2E
m

ossia

t =
2
ω

arctan

(
k

ωβ

√
2E
m

)
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5.154. OSCILLAZIONI IN UN POTENZIALE??

U(x)

x

Figura 5.130.: Il grafico del potenziale U(x) considerato nel problema, tracciato con una
linea continua. Sono stati tracciati anche i due potenziali quadratici che
coincidono con esso per x > 0 e x < 0.

In conclusione avremo per il periodo

T(E) =
4
ω

arctan

(
k

ωβ

√
2E
m

)

Per piccoli valori dell’energia

E� mω2β2

2k2

possiamo utilizzare l’approssimazione arctan x ' x e otteniamo

T(E) ' 4k
ω2β

√
2E
m

e quindi T(E) ∝
√

E. Nel limite opposto di grande energia possiamo approssimare
arctan x ' π/2 e otteniamo

T(E) =
2π

ω
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5.155. SEZIONE D’URTO DI DIFFUSIONE DA UNA BUCA DI POTENZIALE
SFERICA??

cioè il periodo di un oscillatore armonico di massa m e costante elastica k.

PROBLEMA 5.155

Sezione d’urto di diffusione da una buca di potenziale
sferica??

Calcolare la sezione d’urto differenziale di diffusione di un campo di forza centrale
definito dal potenziale

U(~r) =

{
0 |~r| > R
U0 |~r| < R

in funzione dell’energia della particella incidente. Può essere utile fare riferimento al
problema 5.38.

Soluzione

PROBLEMA 5.156

Lavatrice viaggiatrice ??

d

m

M

ω

x

y

z

µs, µd

~g

Figura 5.131.:

Il carico di una lavatrice è mal distribuito nel cestello. Modelliamo la situazione con
un cubo di massa M che rappresenta la lavatrice stessa, e una massa m (il carico) che
si trova ad una distanza d dal centro di massa di questa (vedere Figura 5.131). La lava-
trice è appoggiata su un piano orizzontale, con attrito statico e dinamico descritto da
coefficienti µs e µd.

Quando viene azionata la centrifuga, il carico ruota attorno al centro di massa della
lavatrice con velocità angolare costante ~ω = ωẑ. Supponendo che la lavatrice possa solo
traslare in direzione x, calcolare

◦ il minimo valore di µs necessario a mantenere ferma la lavatrice;
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5.156. LAVATRICE VIAGGIATRICE ??

◦ la velocità media con la quale la lavatrice trasla, se µs è minore del valore determi-
nato precedentemente.

Soluzione
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CAPITOLO6

Dinamica del corpo rigido

377



6.1. TENSORE DI INERZIA DI UN CUBO I ?

PROBLEMA 6.1

Tensore di inerzia di un cubo I ?

Determinare il tensore di inerzia di un corpo rigido formato da masse puntiformi di
massa m poste ai vertici di un cubo di lato a, collegate tra loro con barre di massa
trascurabile. Porre l’origine nel centro di massa del cubo.

Soluzione

Il corpo è simmetrico rispetto a inversioni e permutazioni degli assi coordinati. Da
questo segue che gli elementi fuori diagonale sono nulli, e quelli diagonali tutti uguali.

Calcoliamo allora
Ixx = ∑ m

(
y2

i + z2
i
)

Tutte le masse sono alla stessa distanza dall’asse z, data da

y2
i + z2

i =
a2

2

da cui

Ixx = Iyy = Izz = 8m
a2

2
= 4ma2

PROBLEMA 6.2

Tensore di inerzia di un cubo II ??

Determinare il tensore di inerzia di un cubo omogeneo di lato a e massa M. Porre
l’origine del sistema di coordinate nel centro di massa.

Soluzione

A causa della simmetria del corpo il tensore di inerzia è diagonale, con elementi diago-
nali uguali. Possiamo allora calcolare

Ixx =

ˆ
(x2 + y2)dm

dove l’integrazione è estesa a tutto il corpo. In coordinate cartesiane abbiamo

dm = ρdV =
M
a3 dxdydz

e quindi l’integrale diviene

Ixx =
M
a3

ˆ a/2

−a/2
dx
ˆ a/2

−a/2
dy
ˆ a/2

−a/2
dz (x2 + y2) .
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6.3. TENSORE DI INERZIA E ROTAZIONI ? ? ?

Integriamo su z

Ixx =
M
a3 a
ˆ a/2

−a/2
dx
ˆ a/2

−a/2
dy (x2 + y2)

quindi su y

Ixx =
M
a3 a
ˆ a/2

−a/2
dx (ax2 + 2

1
3

1
8

a3)

ed infine su x, ottenendo

Ixx = Iyy = Izz =
1
6

Ma2 .

PROBLEMA 6.3

Tensore di inerzia e rotazioni ? ? ?

Trovare la legge di trasformazione del tensore di inerzia di un corpo rigido per rotazioni
infinitesime del sistema di coordinate. Mostrare che se il corpo rigido è invariante per
rotazioni il tensore di inerzia è diagonale.

Soluzione

Il tensore di inerzia si può scrivere nella forma

Iab =

ˆ
dm (r2δab − rarb) .

Sappiamo che sotto rotazioni infinitesime possiamo scrivere la legge di trasformazione
di un vettore (ad esempio~r) come

~r →~r +~ε ∧~r =~r + Γ~r

dove

Γ =




0 −εz εy
εz 0 −εx
−εy εx 0


 .

Il tensore trasformerà come il prodotto delle componenti di due vettori, e quindi come

I → (1 + Γ)I(1 + Γ)T = I + ΓI − IΓ .

Se il corpo rigido è invariante deve essere

ΓI − IΓ = 0

ossia



0 −εz εy
εz 0 −εx
−εy εx 0






Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz






0 −εz εy
εz 0 −εx
−εy εx 0


 .
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6.4. TENSORE DI INERZIA E TRASLAZIONI ? ? ?

Calcolando la componente 1, 1 di ambo i membri abbiamo

−εz Iyx + εy Izx = εz Ixy − εy Ixz

da cui Iyx = Ixy = 0 e Ixz = Izx = 0. Dalla componente 2, 2 abbiamo analogamente

εz Ixy − εx Izy = −εz Iyx + εx Iyz

da cui segue anche Iyz = Izy = 0. Il tensore di inerzia è dunque diagonale. Considerando
la componente 1, 2 abbiamo

−εz Iyy = −εz Ixx

e dalla 1, 3
εy Izz = εy Ixx

da cui segue Ixx = Iyy = Izz.

PROBLEMA 6.4

Tensore di inerzia e traslazioni ? ? ?

Supponendo noto il tensore di inerzia di un corpo rispetto al suo centro di massa,
calcolare quello di un corpo identico traslato di~a.

Soluzione

Le componenti del tensore di inerzia riferito al centro di massa si scrivono nella forma

Iab
cm = ∑

i
mi

(
r2

i δab − ra
i rb

i

)
.

Con una traslazione definiamo un nuovo sistema di coordinate con origine in −~a
~ui =~ri +~a

e sostituendo abbiamo

Iab
cm = ∑

i
mi

[
(~ui +~a)2 δab − (ua

i + aa)
(

ub + ab
)]

ossia
Iab
cm = ∑

i
mi

[(
u2

i + a2 − 2~ui ·~a
)

δab −
(

ua
i ub

i + aaab − ua
i ab − aaub

i

)]
.

Separando i diversi termini abbiamo

Iab
cm = ∑

i
mi

[
u2

i δab − ua
i ub

i

]

−
[

2δab~a ·∑
i

mi~ui −
(

ab ∑
i

miua
i + aa ∑

i
miub

i

)]

+
[

a2δab − aaab
]
∑

i
mi
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6.5. TEOREMA DI STEINER ??

e tenendo conto che

∑
i

mi~ui = ~uCM =~a

∑
i

mi = M

abbiamo

Iab
cm = ∑

i
mi

[
u2

i δab − ua
i ub

i

]

− 2M
[

a2δab − aaab
]

+ M
[

a2δab − aaab
]

.

Riassumendo abbiamo
Iab = Iab

cm + M
[

a2δab − aaab
]

PROBLEMA 6.5

Teorema di Steiner ??

Dimostrare, utilizzando i risultati dell’esercizio precedente, il risultato che segue. Sia
Icm il momento di inerzia di un corpo rispetto ad un asse n̂ passante per il suo centro di
massa.

Il momento di inerzia dello stesso corpo rispetto ad un asse ad esso parallelo a
distanza a dal centro di massa è dato da

Ia = Icm + Ma2 .

Soluzione

Dal problema precedente abbiamo per una traslazione qualsiasi

Iij
a = Iij

cm + M
(

a2δij − aiaj
)

.

Calcolando il momento di inerzia rispetto all’asse identificato dal versore n̂ abbiamo

Iij
a ninj = Iij

cmninj + M
(

a2δij − aiaj
)

ninj

ossia
Ia = Icm + M

(
a2 −~a · n̂~a · n̂

)

ma scegliendo la traslazione ortogonale a n̂ abbiamo~a · n̂, che è il risultato cercato.
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6.6. CILINDRO SU UN PIANO INCLINATO?

PROBLEMA 6.6

Cilindro su un piano inclinato?

Un cilindro ruota senza strisciare su un piano inclinato di un angolo α. Calcolare
l’accelerazione del suo centro di massa.

Soluzione

Possiamo scrivere l’energia totale nella forma

E =
1
2

Mṡ2 +
1
2

Iθ̇2 −Mgs sin α

dove s è una coordinata presa lungo il piano e I il momento di inerzia del cilindro
rispetto al suo asse. Dalla condizione di puro rotolamento Rθ̇ = −ṡ abbiamo

E =
1
2

(
M +

I
R2

)
ṡ2 −Mgs sin α

e derivando rispetto al tempo

Ė =

(
M +

I
R2

)
ṡs̈−Mgṡ sin α = 0

abbiamo le equazioni del moto

s̈ =
Mg sin α

M + I
R2

che forniscono direttamente l’accelerazione.

PROBLEMA 6.7

Carrucola ??

La carrucola in Figura 6.1 è un cilindro libero di ruotare attorno al suo asse. Attorno ad
essa è avvolto un filo inestensibile al cui estremo è fissata una massa M. Determinare
l’accelerazione della massa e la tensione del filo.

Soluzione

Detto I il momento di inerzia del cilindro rispetto al suo asse abbiamo

I
dω

dt
= −TR

dove T è la tensione del filo e ω la velocità angolare del cilindro. Per quanto riguarda la
massa abbiamo

M
dv
dt

= Mg− T .
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6.8. JOJO ??

M

I

R

v

ω

Figura 6.1.: La carrucola considerata nell’esercizio.

La velocità della massa e ω sono legate da v = −Rω e otteniamo infine

I
R2 a = T

Ma = Mg− T

da cui

a =
MR2g

MR2 + I

e

T =
I

MR2 + I
Mg .

PROBLEMA 6.8

JoJo ??

v
ω R

I,M

Figura 6.2.: Un modello di JoJo, ottenuto avvolgendo un filo attorno a un cilindro.

Calcolate l’accelerazione del cilindro in Figura 6.2, attorno al quale è avvolto un filo
inestensibile e privo di massa che si srotola durante la caduta.
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6.9. CAMPO DI VELOCITÀ DI UN CORPO RIGIDO ??

Soluzione

Scriviamo le equazioni cardinali. Per il moto verticale del centro di massa abbiamo

Mÿ = −Mg + T

e per la rotazione
Iθ̈ = −TR

dove I è il momento di inerzia del cilindro rispetto al suo centro di massa, I = MR2/2.
La condizione di rotolamento puro sul filo dà

Rθ̈ = ÿ

da cui
T = − I

R2 ÿ

e sostituendo nella prima equazione si trova
(

M +
I

R2

)
ÿ = −Mg

da cui

ÿ = − MR2

I + MR2 g = −2
3

g (6.8.1)

PROBLEMA 6.9

Campo di velocità di un corpo rigido ??

Un cilindro di raggio R appoggiato su un piano ruota attorno al suo asse e trasla. Detta
~V = Vêx la velocità del centro di massa e ~ω = ωêz la velocità angolare ad un dato istante,
determinare il campo di velocità del corpo, ossia la velocità ~v di un punto qualsiasi del
cilindro. In quali punti del cilindro la velocità è massima e minima in modulo?

Soluzione

Possiamo scrivere in forma vettoriale

~v = ~ω ∧ (~r−~rcm) +~vcm

L’asse z è lungo l’asse del cilindro e quello x nella direzione del moto del centro di massa.
Scriviamo esplicitamente le componenti della velocità ad un dato istante:

~v =

∣∣∣∣∣∣

êx êy êz
0 0 ω

x− xcm y− ycm z− zcm

∣∣∣∣∣∣
+ Vêx
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6.9. CAMPO DI VELOCITÀ DI UN CORPO RIGIDO ??

da cui

vx = V −ω(y− ycm)

vy = ω(x− xcm)

vz = 0

.

ω

V

ω

V

ω

V

ω

V

ω

V

ω

V

V
ω < −R V

ω = −R

−R < V
ω < 0 0 < V

ω < R

V
ω < −R

V
ω = R V

ω > R

Figura 6.3.: Il cerchietto corrisponde al punto di minima velocità in modulo, il quadrato
al punto di massima velocità in modulo. Quando il cerchietto è annerito il
punto è istantaneamente in quiete. Il caso V = −ωR corrisponde a puro
rotolamento.

Calcoliamo il modulo quadro della velocità,

v2 = V2 + ω2(y− ycm)
2 + ω2(x− xcm)

2 − 2ωV(y− ycm)

e determiniamone eventuali massimi e minimi rispetto a x, y:

∂v2

∂x
= 2ω2(x− xcm) = 0

∂v2

∂y
= 2ω2(y− ycm)− 2ωV = 0

Troviamo una unica soluzione che corrisponde a

x = xcm

y = ycm +
V
ω
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6.10. TENSORE DI INERZIA DI UN PARALLELEPIPEDO ??

e quindi a v2 = 0. Se |V/ω| ≤ R il punto precedente è all’interno del cilindro, ed è chia-
ramente il minimo assoluto del modulo della velocità. Altri eventuali punti stazionari
potranno aversi sul bordo. Parametrizzando quest’ultimo:

x− xcm = R cos θ

y− ycm = R sin θ

abbiamo
v2 = V2 + ω2R2 − 2ωVR sin θ

e quindi
∂v2

∂θ
= −2ωVR cos θ

cioè

θ =
π

2
v2 = (V −ωR)2

x− xcm = 0
y− ycm = R

e

θ =
3π

2
v2 = (V + ωR)2

x− xcm = 0
y− ycm = −R

Riassumiamo i possibili casi in Figura 6.3.

PROBLEMA 6.10

Tensore di inerzia di un parallelepipedo ??

Calcolare il tensore di inerzia di un parallelepipedo di lati a, b e c e massa totale M
distribuita omogeneamente, in un sistema di riferimento opportunamente scelto.

Soluzione

Scegliendo l’origine del sistema di riferimento nel centro di massa e gli assi x̂, ŷ e ẑ
paralleli ai lati di lunghezza a, b e c rispettivamente, abbiamo che il tensore di inerzia è
diagonale. Infatti la distribuzione di massa è invariante rispetto alla riflessione x → −x,
mentre Ixy e Ixz cambiamo segno, per cui deve essere Ixy = 0 e Ixz = 0. Ragionando allo
stesso modo per la riflessione y→ −y si conclude che deve essere anche Iyz = 0.
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6.11. TENSORE DI INERZIA DI UNA LAMINA RETTANGOLARE ??

Calcoliamo adesso esplicitamente Izz:

Izz =

ˆ
dm (x2 + y2)

ossia
Izz =

ˆ
ρ dV (x2 + y2) .

Utilizzando coordinate cartesiane e ρ = M/V = M/(abc) abbiamo

Izz =
M
abc

ˆ a/2

−a/2
dx
ˆ b/2

−b/2
dy
ˆ c/2

−c/2
dz(x2 + y2) .

L’integrale in z è immediato:

Izz =
M
ab

ˆ a/2

−a/2
dx
ˆ b/2

−b/2
dy(x2 + y2)

e quello in y da

Izz =
M
ab

ˆ a/2

−a/2
dx(x2b +

1
12

b3)

infine
Izz =

M
ab

(
1
12

a3b +
1
12

ab3) =
M
12

(a2 + b2)

Il risultato per Iyy e Ixx si ottiene immediatamente sostituendo a e b con le lunghezze
dei lati perpendicolari all’asse considerato:

Ixx =
M
12

(b2 + c2)

Iyy =
M
12

(a2 + c2)

PROBLEMA 6.11

Tensore di inerzia di una lamina rettangolare ??

Utilizzando il risultato del problema precedente calcolare il tensore di inerzia di una
lamina rettangolare (spessore trascurabile) di lati a e b e massa M.

Soluzione

Consideriamo prima di tutto Izz. La sua espressione

Izz =
M
12

(a2 + b2)
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non dipende dallo spessore c, per cui resta invariata. Per Ixx abbiamo

Ixx = lim
c→0

M
12

(b2 + c2) =
M
12

b2

e analogamente

Iyy = lim
c→0

M
12

(a2 + c2) =
M
12

a2 .

Notare che Ixx + Iyy = Izz.

PROBLEMA 6.12

Tensore di inerzia di una lamina ??

Mostrare che un asse principale di inerzia di una lamina è perpendicolare ad essa.
Scegliendo l’asse z lungo tale direzione mostrare che vale sempre

Izz = Ixx + Iyy

Soluzione

Se scegliamo la direzione z perpendicolare alla lamina e l’origine su di essa per tutti i
punti sarà ovviamente z = 0. Da questo segue che il tensore di inerzia avrà la struttura




Ixx Ixy 0
Ixy Iyy 0
0 0 Izz




Ma se scriviamo esplicitamente gli elementi diagonali

Ixx =

ˆ
dm y2

Iyy =

ˆ
dm x2

Izz =

ˆ
dm (x2 + y2)

concludiamo immediatamente che Izz = Ixx + Iyy.

PROBLEMA 6.13

Disuguaglianze tra elementi del tensore di inerzia ??

Mostrare che per qualsiasi corpo si ha

Ixx Iyy ≥ I2
xy
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6.14. TENSORE DI INERZIA DI UNA DISTRIBUZIONE LINEARE DI MASSA ??

Soluzione

Il tensore di inerzia è semidefinito positivo, perchè i suoi autovalori (momenti principali
di inerzia) non possono essere negativi. Ma allora i determinanti di tutti i suoi minori
principali sono ≥ 0, in particolare scegliendo la prima e la seconda riga abbiamo

Ixx Iyy − I2
xy ≥ 0

che è quanto richiesto.

PROBLEMA 6.14

Tensore di inerzia di una distribuzione lineare di massa ??

Mostrare che il determinante di un tensore di inerzia è zero se e solo se la massa è
distribuita su una retta passante per l’origine.

Soluzione

Dimostriamo la sufficienza. Dato che il determinante è invariante per rotazioni del
sistema di coordinate, possiamo scegliere senza perdere di generalità una distribuzione
di massa lungo l’asse z. Il tensore di inerzia è allora diagonale, perchè per tutti i punto
x = 0 e y = 0 e quindi tutti i prodotti del tipo xy, xz e yz sono nulli. Inoltre

Izz =

ˆ
dm (x2 + y2) = 0

da cui segue subito che il determinante è nullo.
Dimostriamo ora la necessità. Per quanto detto in precedenza possiamo sempre sce-

gliere un sistema di riferimento nel quale il tensore è diagonale. Se il determinante è
nullo allora almeno uno di Ixx, Iyy e Izz deve esserlo. Supponiamo ad esempio che sia
Izz = 0, allora per tutti i punti dovrà essere x = 0 e y = 0 e la massa sarà distribuita
sull’asse z. Analogamente negli altri due casi.

PROBLEMA 6.15

Cilindro lanciato su un piano ??

Un cilindro viene lanciato su un piano con coefficienti di attrito µs e µd. Il cilindro ha
raggio R, e la massa al suo interno è distribuita con una densità dipendente solo dalla
distanza dall’asse. Inizialmente il moto è di pura traslazione. Calcolare in funzione del
tempo la velocità del centro di massa e quella angolare. Per quale distribuzione di massa
la velocità finale è minima?
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Soluzione

Inizialmente si ha una forza di attrito µd Mg, e le equazioni del moto saranno

Mv̇ = −µd Mg
Iω̇ = µd MgR

per cui la velocità diminuirà linearmente in funzione del tempo e la velocità angolare
aumenterà, sempre linearmente. Mettendo le opportune condizioni iniziali abbiamo

v = v0 − µdgt

ω = µd
MgR

I
t .

Queste relazioni saranno valide fino a quando non si arriverà, a t = t?, ad una condizio-
ne di rotolamento puro, definita da v = ωR, cioè

v0 − µdgt = µd
MgR2

I
t

da cui si trova

t∗ =
v0

µdg
1

1 + MR2

I

.

Da questo momento in poi le velocità rimarranno costanti:

v = ωR =
MR2

I

1 + MR2

I

v0 .

Per minimizzare la velocità finale dovremo rendere minimo il rapporto MR2/I. Il valore
massimo di I si ottiene se tutta la massa è distribuita sulla superficie laterale, in questo
caso I = MR2 e

v = ωR =
1
2

v0 .

Per un cilindro omogeneo I = MR2/2 e

v = ωR =
2
3

v0 .

Infine, se tutta la massa è concentrata sull’asse I = 0 e v = ωR = v0. L’interpreta-
zione di questo caso limite è che in assenza di inerzia angolare il cilindro si mette
immediatamente a ruotare senza strisciare, come si può verificare dalla formula per t?.
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6.16. SBARRA SU RULLI ROTANTI ??

PROBLEMA 6.16

Sbarra su rulli rotanti ??

Una sbarra di lunghezza ` e massa m è appoggiata su due rulli di raggio ρ che ruotano
con velocità angolare costante −ω0 e ω0 attorno al loro asse, come in Figura 6.4. La
distanza tra i rulli è 2a < ` e tra essi e la sbarra c’è attrito, descritto da coefficienti µs e µd
(gli stessi per entrambi i rulli). Supponendo la velocità della sbarra piccola in modulo
rispetto a |ρω0| Scrivere l’equazione del moto per il movimento orizzontale della sbarra
e studiare la possibilità di soluzioni oscillatorie.

−ω0
ω0

Figura 6.4.: La sbarra appoggiata sui rulli rotanti considerata nel problema. Viene
indicata la direzione di rotazione.

Soluzione

Scriviamo anzitutto le equazioni del moto. L’accelerazione verticale della sbarra è nulla,
quindi

N1 + N2 −mg = 0

dove N1 e N2 sono le reazioni normali dei cilindri. deve essere nullo non ruota, e quindi
il momento totale applicato ad essa deve essere nullo. Calcolando i momenti rispetto al
centro di massa della sbarra abbiamo

−N1 (a + x) + N2 (a− x) = 0

dove x è lo spostamento del centro di massa della sbarra rispetto al punto intermedio
tra i due contatti. Risolvendo otteniamo

N1 =
mg
2

(
1− x

a

)

N2 =
mg
2

(
1 +

x
a

)
.

Scriviamo adesso l’equazione per il moto orizzontale della sbarra. Tenendo conto che
la velocità della sbarra non supera mai in modulo quella del rullo al punto di contatto
possiamo scrivere per ω0 > 0

mẍ = µd (N1 − N2) = −
µdmg

a
x
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che descrive una oscillazione armonica di periodo

T = 2π

√
a

µdg
.

Nel caso ω0 < 0 abbiamo invece

mẍ = −µd (N1 − N2) =
µdmg

a
x

che descrive una soluzione del tipo

x = AeΩt + Be−Ωt

con

Ω =

√
µdg

a
.

PROBLEMA 6.17

Tensore di inerzia di una sfera ??

Calcolare il tensore di inerzia di una sfera omogenea di massa M e raggio R, riferito al
suo centro di massa.

Soluzione

La disribuzione di massa è invariante per rotazioni, quindi il tensore di inerzia deve
essere diagonale e con tutti gli elementi diagonali uguali. Possiamo quindi calcolare il
momento di inerzia rispetto ad un asse qualsiasi, ad esempio quello z. Abbiamo quindi

Izz =

ˆ
dm (x2 + y2) =

M
V

ˆ
dV (x2 + y2)

Conviene calcolare l’integrale in coordinate sferiche, per le quali

x = r sin θ cos φ

y = r sin θ sin φ

dV = r2 sin θdrdθdφ

da cui

Izz =
M
V

ˆ R

0
dr
ˆ π

0
sin θdθ

ˆ 2π

0
dφ r4 sin2 θ
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6.18. ENERGIA DI UN SISTEMA DI CORPI RIGIDI ??

ossia

Izz =
M

4π
3 R3

2π

ˆ R

0
dr
ˆ 1

−1
d cos θ r2 (1− cos2 θ

)

=
M

4π
3 R3

2π

(
2− 2

3

) ˆ R

0
dr r4

=
M

4π
3 R3

8π

3
R5

5
=

2
5

MR2

PROBLEMA 6.18

Energia di un sistema di corpi rigidi ??

Calcolare l’energia cinetica del sistema di corpi rigidi in Figura 6.5, esprimendola in
funzione della coordinata θ e assumendo condizioni di puro rotolamento tra tutti i corpi
in contatto. I due cilindri hanno massa m1, m2, momento di inerzia rispetto al loro asse
I1, I2 e raggio R1, R2. Il cilindro più esterno è immobile e ha raggio R > R1 + R2. L’asta
ha massa m e momento di inerzia I rispetto all’asse passante per il suo centro di massa.
Tutte le distribuzioni di massa sono omogenee.

θ

I1,m1, R1

I2,m2, R2

I,m

Figura 6.5.: Il sistema di corpi rigidi considerato nel problema.
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6.19. CILINDRO SU PIANO INCLINATO ??

Soluzione

Date le condizioni di rotolamento puro, il sistema ha un unico grado di libertà. Utilizze-
remo come coordinata per descriverlo l’angolo θ in figura. Per scrivere l’energia cinetica,
sommiamo i contributi dei diversi corpi rigidi presenti.

Per quanto riguarda l’asta, osserviamo che essa ruota attorno al punto posto al centro
del cilindro grande con velocità angolare θ̇. Possiamo scrivere quindi

Kasta =
1
2

Iasta θ̇2 (6.18.1)

dove I è il momento di inerzia rispetto all’asse passante per il punto fisso

Iasta =
m

`1 + `2

ˆ `2

−`1

r2dr =
1
3

m
`1 + `2

(
`3

2 + `3
1
)
=

m
3
(
`2

1 + `2
2 − `1`2

)
(6.18.2)

dove `1 = R− R1 e `2 = R− R2 sono le lunghezze dei due segmenti dell’asta con un
estremo nel centro di rotazione.

Possiamo considerare il moto dei due cilindri come una pura rotazione attorno al
punto di contatto. Quindi serve calcolare le velocità angolari. Osserviamo che il centro
del primo cilindro si muove con velocità

v1 = `1θ̇ (6.18.3)

ma d’altra parte deve essere anche

v1 = −ω1R1 (6.18.4)

ed eguagliando le due espressioni si ottiene

ω1 = − `1

R1
θ̇ = −R− R1

R1
θ̇ (6.18.5)

Ragionando nello stesso modo per il secondo cilindro si trova

ω2 = − `2

R2
θ̇ = −R− R2

R2
θ̇ (6.18.6)

Mettendo insieme tutti i termini otteniamo infine

K =
1
2

Iasta θ̇2 +
1
2
(

I1 + m1R2
1
)

ω2
1 +

1
2
(

I2 + m2R2
2
)

ω2
2 (6.18.7)

dove

I1,2 =
1
2

m1,2R2
1,2 . (6.18.8)
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v0

ω0

α

Figura 6.6.: Il cilindro considerato nel problema, con velocità del centro di massa e
velocità angolare iniziali arbitrarie.

PROBLEMA 6.19

Cilindro su piano inclinato ??

Il cilindro in figura viene lasciato cadere sul piano inclinato in Figura 6.6 con velocità
iniziale v0 e velocità angolare iniziale ω0. Tra piano e cilindro si ha attrito con coefficienti
statici e dinamici µs, µd. Determinare in quali condizioni dopo un tempo sufficiente il
cilindro mantiene un moto di puro rotolamento.

Soluzione

Scriviamo le equazioni del moto per il cilindro. Per l’accelerazione in direzione parallela
al piano abbiamo

Mv̇ = Fa + Mg sin α

e in direzione perpendicolare
0 = N −Mg cos α

La seconda equazione cardinale da invece

Iω̇ = RFa

Per la forza di attrito si devono distinguere tre casi, a seconda che la velocità del cilindro
al punto di contatto sia positiva, negativa o nulla. Questa si scrive anzitutto

vc = v + Rω
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e quindi avremo

Mv̇ = −µdN + Mg sin α (6.19.1)
Iω̇ = −µdNR (6.19.2)

per vc > 0,

Mv̇ = Fs + Mg sin α (6.19.3)
Iω̇ = FsR (6.19.4)

per vc = 0 (con |Fs| < µsN) e

Mv̇ = µdN + Mg sin α (6.19.5)
Iω̇ = µdNR (6.19.6)

per vc < 0. In ciascun caso N = Mg cos α. Combinando le equazioni precedenti
possiamo scrivere delle equazioni per vc:

v̇c = −µda + g sin α vc > 0

v̇c =
Fs

N
a + g sin α vc = 0

v̇c = µda + g sin α vc < 0

dove

a = N
(

1
M

+
R2

I

)
= 3g cos α (6.19.7)

Abbiamo diversi possibili scenari, riassunti in Figura 6.7.
Se µd > 1

3 tan α la velocità del punto di contatto diminuisce (linearmente nel tempo) se
positiva, e aumenta (sempre linearmente) se negativa. Questo significa che in un tempo
finito avremo vc = 0, indipendentemente dalle condizioni iniziali. Per consistenza dovrà
essere v̇c = 0, cioè

|Fs| =
N
3

tan α < µsN

che è assicurato dato che µs > µd.
Se µd = 1

3 tan α una velocità del punto di contatto inizialmente positiva rimane co-
stante, quindi non si arriva a rotolamento puro se v0 + ω0R > 0. Invece se la velocità del
punto di contatto è inizialmente negativa, cresce linearmente e si arriva a rotolamento
puro in un tempo finito.

Infine se µd < 1
3 tan α la velocità del punto di contatto cresce comunque linearmente

nel tempo. Quindi se v0 + ω0R > 0 non si arriverà mai a rotolamento puro. Se v0 +
ω0R ≤ 0 invece si arriverà in un tempo finito ad esso, e la condizione perchè questo
continui si scrive ancora

µs >
1
3

tan α

ma non è automaticamente assicurata da µs > µd. Se µs <
1
3 tan α la velocità del punto

di contatto continuerà ad aumentare.
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vc vc

vc vc

µd >
1
3 tanα µd =

1
3 tanα

µd <
1
3 tanα µd <

1
3 tanαµs >

1
3 tanα µs <

1
3 tanα

t t

t t

Figura 6.7.: Evoluzione della velocità del punto di contatto tra cilindro e piano, per
diversi possibili valori di µd, e delle condizioni iniziali.

PROBLEMA 6.20

Sistema di carrucole e corpi rigidi ??

Nel sistema in Figura 6.8 il filo inestensibile e privo di massa è avvolto ai due cilindri
appesi e resta aderente alla carrucola. Scrivere le equazioni che determinano le accele-
razioni angolari e lineari dei tre corpi rigidi, e la tensione del filo. I momenti di inerzia
sono dati rispetto ad un asse passante per il centro di massa dei cilindri. Cosa succede
alla tensione se I → 0?

Soluzione

Scriviamo l’equazione del moto per la carrucola, indicando con T1 e T2 le tensioni del
filo dal lato della massa M1 e di quella M2

Iθ̈ = R (T1 − T2) (6.20.1)

Analogamente per la massa a destra

I1θ̈1 = R1T1

M1ÿ1 = T1 −M1g
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I, R

I1, R1,M1

I2, R2,M2

Figura 6.8.: Il sistema di carrucole e corpi rigidi considerato nell’esercizio.

e per quella a sinistra

I2θ̈2 = −R2T2

M2ÿ2 = T2 −M2g

dove y1 e y2 sono le posizioni verticali dei loro centri di massa. Dato che il filo è
inestensibile, e resta aderente alla carrucola, deve essere

ÿ1 = −Rθ̈ − R1θ̈1

ÿ2 = Rθ̈ + R2θ̈2
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ed abbiamo un numero sufficiente di equazioni per ricavare le quantità incognite. Po-
nendo I1 = m1R2

1/2 e I2 = m2R2
2/2 troviamo

θ̈ =
gR (M1 −M2)

3I + (M1 + M2) R2

θ̈1 =
2g
(
3I + 2M2R2)

3 [3I + (M1 + M2) R2] R1

θ̈2 = − 2g
(
3I + 2M1R2)

3 [3I + (M1 + M2) R2] R2

ÿ1 =
g
[
6I + (3M1 + M2) R2]

3 [3I + (M1 + M2) R2]

ÿ2 = − g
[
6I + (M1 + 3M2) R2]

3 [3I + (M1 + M2) R2]

T1 =
gM1

(
3I + 2M2R2)

3 [3I + (M1 + M2) R2]

T2 =
gM2

(
3I + 2M1R2)

3 [3I + (M1 + M2) R2]

Nel caso I → 0 si trova
T1 = T2 =

2gM1M2

3 (M1 + M2)

L’uguaglianza tra le due tensioni era evidente già considerando l’equazione (6.20.1).

PROBLEMA 6.21

Sistema di carrucole ??

Scrivere le equazioni che determinano accelerazioni e tensioni dei fili per il sistema in
Figura 6.9, sapendo che il filo inestensibile e privo di massa non slitta sui cilindri.

Soluzione

Usando le convenzioni in Figura 6.10 scriviamo le equazioni del moto per il primo
cilindro

M1ÿ1 = T1 + T2 −M1g
I1θ̈1 = R1 (T2 − T1)

per la carrucola
I2θ̈2 = R2 (T2 − T3)

e per la massa sospesa
M3ÿ3 = T3 −M3g
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I1,M1, R1

I2, R2

M3

Figura 6.9.: Il sistema di carrucole considerato nell’esercizio.

Dato che il filo rimane aderente ai cilindri, ed è inestensibile, abbiamo inoltre le
condizioni che seguono:

1. Il punto A del cilindro rimane istantaneamente fermo,

ẏ1 − R1θ̇1 = 0

2. Il punto B del cilindro ha la stessa velocità del punto C della carrucola

ẏ1 + R1θ̇1 = −R2θ̇2

3. Il punto D della carrucola ha la stessa velocità della massa sospesa

R2θ̇2 = ẏ3

Derivando queste condizioni rispetto al tempo otteniamo dei vincoli tra le accelerazioni.
Abbiamo quindi un numero sufficiente di equazioni per determinare ÿ1, ÿ3, θ̈1, θ̈2, T1, T2,
T3.
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B

C

A

D

I1,M1, R1

I2, R2

M3

T1 T2

T2 T3

T3

M3g

M1g

Figura 6.10.: Forze applicate al sistema per il problema 6.21.

PROBLEMA 6.22

Contatto tra corpi rigidi ??

I tre cilindri identici (momento di inerzia I, raggio R) in Figura 6.11 inizialmente ruo-
tano liberamente attorno al proprio asse con la stessa velocità angolare ω0. A meno
di non tovarsi in una condizione di rotolamento puro in ciascun punto di contatto si
sviluppano delle forze di attrito. Calcolare le velocità angolari a regime, cioè dopo un
tempo arbitrariamente lungo.

ω0 ω0 ω0

Figura 6.11.: I tre cilindri in contatto. Sono indicate le velocità angolari iniziali.
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Soluzione

Possiamo scrivere le equazioni del moto dei tre cilindri nella forma

Iω̇1 = R f1 (6.22.1)
Iω̇2 = R f1 + R f2 (6.22.2)
Iω̇3 = R f2 (6.22.3)

dove f1 e f2 sono forze (incognite) che rappresentano l’attrito tra un cilindro e l’altro.
Da questo segue immediatamente

I (ω̇1 + ω̇3 − ω̇2) = 0 (6.22.4)

cioè la quantità ω1 + ω3 − ω2 si conserva. Nella situazione finale deve essere ω1 =
−ω2 e ω2 = −ω3 (velocità relativa nulla ai punti di contatto), mentre inizialmente
ω1 + ω3 −ω2 = ω0, quindi

ω1 =
1
3

ω0 (6.22.5)

da cui le velocità finali:

ω1 =
1
3

ω0, ω2 = −1
3

ω0, ω3 =
1
3

ω0 (6.22.6)

PROBLEMA 6.23

Momento di inerzia e proiezioni I ??

Mostrare che il momento di inerzia di un corpo rispetto ad un asse γ non cambia
spostando arbitrariamente ciascun elemento di massa parallelamente a γ. Utilizzare
questo risultato per dimostrare che il momento di inerzia di un cilindro di massa M e
raggio R fissati rispetto al suo asse non dipendono dalla altezza h.

Soluzione

Senza perdita di generalità calcoliamo il momento di inerzia rispetto all’asse z. Abbiamo

I = ∑
i

mi(x2
i + y2

i )

dove mi è la massa dell’elemento i-esimo, posto in (xi, yi, zi). Una arbitraria traslazione
di questo lungo z non cambia le coordinate xi e yi, quindi I non cambia. Considerando
un cilindro, possiamo traslare ciascun elemento in modo da portarlo in z = 0, senza
cambiare il suo momento di inerzia. Quest’ultimo non potrà quindi dipendere da h.
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PROBLEMA 6.24

Momento di inerzia e proiezioni II ??

Mostrare che il momento di inerzia di un corpo rispetto ad un asse γ si può scrivere come
somma dei momenti di inerzia di due lamine ottenute proiettando tutti gli elementi di
massa su due piani passanti per γ e ortogonali tra di loro. Usare questo risultato e quello
del problema 6.24 per calcolare il momento di inerzia di un cilindro omogeneo di massa
M, raggio di base R e altezza h rispetto all’asse in Figura 6.12.

Figura 6.12.: L’asse rispetto al quale calcolare il momento di inerzia nel problema.

Soluzione

Scegliamo per γ l’asse z. Abbiamo quindi

I = ∑
i

mix2
i + ∑

i
miy2

i

dove il primo termine è il momento di inerzia del corpo proiettato sul piano y = 0 e
il secondo quello del corpo proiettato sul piano x = 0. Nel caso del cilindro, la prima
proiezione (Px, vedere Figura 6.13) da un disco di massa M uniformemente distribuita
e raggio R, per cui

I1 =
M

πR2

ˆ ˆ
r2 cos2 θrdrdθ =

MR2

4
Per calcolare il secondo termine proiettiamo prima nel piano z = 0 (Pz, vedere Figu-
ra 6.13): per quanto discusso nel problema 6.23 il momento di inerzia non cambia. Pro-
iettiamo adesso nel piano y = 0 (Py, vedere figura): abbiamo una distribuzione lineare
uniforme di massa, e quindi

I2 =
1
12

Mh2
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z

z

x

y

y

x

Px

Py ◦ Pz

Figura 6.13.: Proiezioni del cilindro.

Il risultato finale è quindi

I = I1 + I2 =
1
4

M
(

R2 +
1
3

h2
)

PROBLEMA 6.25

Tensore di inerzia corpo composto ??

All’interno di una sfera di raggio R si trova una cavità pure sferica di raggio R/2 centrata
in un punto a distanza d ≤ R/2 dal centro della prima. Calcolare il tensore di inerzia
del corpo rispetto al centro di massa, se la sua massa totale è M.

Soluzione

Calcoliamo prima di tutto il tensore di inerzia di una sfera piena di massa M e raggio
R rispetto al suo centro di massa. Data la simmetria, il tensore sarà proporzionale alla
matrice identica, cioè Ixx = Iyy = Izz. Inoltre

Ixx + Iyy + Izz =

ˆ
(y2 + z2)dm +

ˆ
(x2 + z2)dm +

ˆ
(x2 + y2)dm
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R

R/2

d

Figura 6.14.: La sfera cava considerata nell’esercizio.

da cui

3Ixx = 2
ˆ (

x2 + y2 + z2) dm

Abbiamo quindi

Ixx = Iyy = Izz =
2
3

ρ

ˆ
r2dV

e dato che

ρ =
M

4
3 πR3

e
dV = 4πr2dr

otteniamo

Ixx = Iyy = Izz =
2
3

M
4π
3 R3

ˆ R

0
4πr4dr =

2
5

MR2

Calcoliamo adesso la posizione del centro di massa del corpo. Se mancasse la ca-
vità, esso sarebbe al centro della sfera grande, dove fissiamo l’origine del sistema di
coordinate. Chiaramente dovrà essere

~0 =
1
7 M~d + M~r

8
7 M

dove ~d è la posizione del centro della cavità rispetto all’origine, M/7 la massa della sfera
che la occuperebbe la cavità,~r la posizione del centro di massa del corpo. Otteniamo
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quindi

~r = −1
7
~d

Costruiamo adesso il tensore di inerzia, sottraendo da quello di una sfera piena quello
di una sfera che occuperebbe la cavità. Scegliendo le coordinate in modo da avere
~d = (0, 0, d) otteniamo

I =
2
5

(
8
7

M
)

R2




1 0 0
0 1 0
0 0 1


+

8
7

M




(d/7)2 0 0
0 (d/7)2 0
0 0 0




− 2
5

(
1
7

M
)(

R
2

)2



1 0 0
0 1 0
0 0 1


− 1

7
M




(8d/7)2 0 0
0 (8d/7)2 0
0 0 0




dove abbiamo applicato il teorema di Steiner (vedere l’esercizio 6.5) per riferire ogni
tensore al centro di massa del corpo. Il risultato finale è

I =
31
70

MR2




1− 80
217

(
d
R

)2
0 0

0 1− 80
217

(
d
R

)2
0

0 0 1




PROBLEMA 6.26

Trottola simmetrica ? ? ?

Una trottola simmetrica è costituita da un corpo rigido con simmetria di rotazione
attorno ad un asse. Un suo estremo viene vincolato come in Figura 6.15, per il resto
è lasciata libera di ruotare su se stessa e attorno al vincolo. Si vogliono discutere le
caratteristiche del suo moto, fissate le condizioni iniziali. In particolare si vuole studiare
cosa accade se inizialmente il centro di massa della trottola è fermo. In questo primo
esercizio verranno impostate le equazioni necessarie.

Soluzione

Utilizziamo coordinate sferiche per determinare la posizione del centro di massa del
corpo rigido rispetto all’origine del sistema delle coordinate. Abbiamo

~rCM = dêr (6.26.1)

dove abbiamo indicato con d la distanza tra il vincolo e il centro di massa, costante.
Fissato il centro di massa, il corpo rigido può ancora ruotare su se stesso. In linea di
principio avremmo bisogno di una terza coordinata, che però come vedremo non gioca
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x y

z

θ

φ

êr

êφ

êθ

CM

d

Figura 6.15.: Le coordinate usate per lo studio della trottola simmetrica.

alcun ruolo nel caso considerato. Per il seguito scriviamo esplicitamente l’espressione
dei versori êr, êθ e êφ di cui ci serviremo:

êr =




sin θ cos φ
sin θ sin φ

cos θ




êθ =




cos θ cos φ
cos θ sin φ
− sin θ




êφ =




sin φ
cos φ

0




Abbiamo due evidenti leggi di conservazione.
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1. L’energia totale, somma di energia cinetica e di energia potenziale gravitazionale.
Infatti l’unica altra forza esterna presente è la reazione vincolare, che non compie
lavoro dato che il punto a cui è applicata non si muove.

2. La componente verticale del momento angolare, considerando come polo il punto
a cui la trottola è vincolata. Infatti l’unica forza con un momento è la forza di
gravità. Dato che essa è verticale il suo momento non avrà mai una componente
lungo l’asse z.

L’energia cinetica si può scrivere come e

U = MgzCM = Mgd cos θ (6.26.2)

L’energia cinetica si può scrivere come energia di rotazione attorno al punto vincolato,
e quindi

EC =
1
2
~ωT · I · ~ω (6.26.3)

dove I è il tensore di inerzia della trottola e ~ω la velocità angolare del corpo rigido.
Invece per il momento angolare si ha

~L = I~ω (6.26.4)

Il tensore di inerzia si scrive facilmente in un sistema di riferimento con gli assi alli-
neati agli assi principali di inerzia della trottola. Ma questo sistema di riferimento è de-
terminato dai tre versori êr, êθ e êφ legati alle coordinate sferiche utilizzate. Osserviamo
che possiamo scrivere

I = I1êr êT
r + I2êθ êT

θ + I2êφ êT
φ (6.26.5)

Nello scrivere l’espressione precedente abbiamo tenuto conto del fatto che êA êT
A è il

proiettore lungo la direzione êA. Inoltre il momento di inerzia rispetto all’asse êθ è
identico a quello rispetto all’asse êφ, dato che la trottola è simmetrica. Infine, dato che la
somma dei tre proiettori è la matrice identica 1 possiamo scrivere

I = I1êr êT
r + I2

(
1− êr êT

r

)
= I21 + (I1 − I2)êr êT

r (6.26.6)

Analogamente la velocità angolare si potrà scrivere nella forma

~ω = ωr êr + ωθ êθ + ωφ êφ (6.26.7)

e il momento angolare usando l’Equazione (6.26.4) sarà

~L = Lr êr + Lθ êθ + Lφ êφ (6.26.8)
= I1ωr êr + I2ωθ êθ + I2ωφ êφ (6.26.9)

L’energia si può quindi scrivere nella forma

E =
1
2

[
I1ω2

r + I2

(
ω2

θ + ω2
φ

)]
+ Mgd cos θ (6.26.10)
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e la componente verticale del momento angolare

Lz = êz ·~L = Lr êz · êr + Lθ êz · êθ + Lφ êz · êφ

= Lr cos θ − Lθ sin θ (6.26.11)

Mostriamo adesso che anche Lr si conserva. Abbiamo

dLr

dt
=

d
dt

(
~L · êr

)
=

d~L
dt
· êr +~L · dêr

dt
= ~M · êr +~L · (~ω ∧ êr) (6.26.12)

dove ~M è il momento delle forze esterne e si è tenuto conto che, dato che êr è solidale al
corpo rigido1, vale

dêr

dt
= ~ω ∧ êr (6.26.13)

I due termini della (6.26.12) si annullano: il primo perchè ~M =~rcm ∧ (−Mgêz) è ortogo-
nale a êr, il secondo perchè

~L · (~ω ∧ êr) = ~ω · I ·
(
!̃ ∧ êr

)
(6.26.14)

ma dato che ~ω ∧ êr è perpendicolare a êr sarà I · (~ω ∧ êr) = I2 (~ω ∧ êr) e quindi

~ω · I ·
(
!̃ ∧ êr

)
= I2~ω ·

(
!̃ ∧ êr

)
= 0 (6.26.15)

perchè ~ω ∧ êr è ortogonale anche a ~ω.
Possiamo ora scrivere l’energia nella forma

E =
1
2

[
L2

r
I1

+
L2

θ

I2
+ I2ω2

φ

]
+ Mgd cos θ (6.26.16)

ed anche, utilizzando la (6.26.11), come

E =
L2

r
2I1

+
1

2I2

(
Lr cos θ − Lz

sin θ

)2

+
I2

2
ω2

φ + Mgd cos θ (6.26.17)

La componente Lφ del momento angolare non è costante, ma può essere espressa in
funzione della coordinata. Per farlo scriviamo esplicitamente l’Equazione (6.26.13). Ab-
biamo

d
dt




sin θ cos φ
sin θ sin φ

cos θ


 =

∣∣∣∣∣∣

êr êθ êφ

ωr ωθ ωφ

1 0 0

∣∣∣∣∣∣

ossia
θ̇êθ + φ̇ sin θêφ = ωφ êθ −ωθ êφ

1Notare che êφ e êθ non sono solidali al corpo rigido.
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che ci permette di scrivere due componenti della velocità angolare in funzione delle
coordinate

Sostituendo nell’energia otteniamo infine

E =
I2

2
θ̇2 +

L2
r

2I1
+

1
2I2

(
Lr cos θ − Lz

sin θ

)2

+ Mgd cos θ (6.26.18)

equivalente a quella di una particella descritta da una coordinata θ in un potenziale
efficace

Ueff =
1

2I2

(
Lr cos θ − Lz

sin θ

)2

+ Mgd cos θ +
L2

r
2I1

(6.26.19)

La discussione delle soluzioni possibili sarà fatta nell’Esercizio 6.35.

PROBLEMA 6.27

Scontro tra cubetti di ghiaccio ??

a

v0

a

Figura 6.16.: Le condizioni iniziali per i due cubetti. Il primo è fermo, il secondo ha un
moto traslatorio con una velocità verticale ~v = v0ŷ. Le facce dei due cubeti
sono parallele, l’urto avviene su una regione molto piccola vicino ad uno
spigolo di ciascun cubetto.

Un cubetto di ghiaccio di lato a è fermo sopra ad una superficie orizzontale priva di
attrito. Un altro cubetto, identico, gli viene lanciato contro con velocità ~v = v0ŷ come in
Figura 6.16. La densità di massa all’interno del cubetto è distribuita in modo non noto,
ma si sa che il tensore di inerzia rispetto al centro di massa è proporzionale all’identità.
Si conoscono la massa totale m e il momento di inerzia I rispetto ad un asse qualsiasi
passante per il centro di massa.

L’urto è elastico ed istantaneo, e si vogliono calcolare le velocità lineari e angolari
(inizialmente nulle) dei due cubetti dopo l’urto. Inoltre si vuole sapere se i cubetti si
urtano nuovamente dopo il primo impatto. Discutere il risultato al variare di m e I.

Soluzione

Dato che non sono presenti forze esterne (orizzontali) si conserva la quantità di moto
totale del sistema. Conviene studiare l’urto in un sistema di riferimento solidale al centro
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−v0
2

v0
2

ω1

ω2

v1,x

v1,y

v2,x

v2,y

Figura 6.17.: Le posizioni e le velocità dei due cubi in un sistema solidale col cen-
tro di massa (posto nell’origine) immediatamente prima (a sinistra) e
immediatamente dopo (a destra) l’urto.

di massa. In esso la situazione prima dell’urto è quella in Figura 6.17, a sinistra, e la
quantità di moto totale è nulla.

Per determinare le 2 componenti delle 2 velocità finali e le due velocità angolari ci
servono 6 leggi di conservazione, che sono le seguenti:

1. La quantità di moto totale totale lungo x (non ci sono forze esterne lungo x):

0 = mv1,x + mv2m,x (6.27.1)

2. La quantità di moto totale lungo y (non ci sono forze esterne lungo y):

0 = mv1,y + mv2,y (6.27.2)

3. L’energia (l’urto è elastico):
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2 (6.27.3)

4. Il momento angolare totale perpendicolare al piano xy rispetto all’origine del
sistema di coordinate:

m
v0

2
a
2
× 2 = −m

(
v1,x

a
2
+ v1,y

a
2

)
+ m

(
v2,x

a
2
+ v2,y

a
2

)
+ Iω1 + Iω2 (6.27.4)

5. La quantità di moto orizzontale di ogni cubetto (le forze impulsive durante l’urto
sono perpendicolari alla superficie di contatto e quindi verticali). Queste sono due
leggi di conservazione, ma non sono indipendenti dato che la loro somma da la
conservazione della quantità di moto totale lungo x considerata precedentemente:

0 = mv1,x (6.27.5)
0 = mv2,x (6.27.6)
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6.27. SCONTRO TRA CUBETTI DI GHIACCIO ??

6. Il momento angolare totale di ciascun cubetto non cambia (le forze impulsive
durante l’urto sono applicate nell’origine, che abbiamo preso come polo, ed hanno
quindi momento nullo). Anche in questo caso le due leggi di conservazione non
sono indipendenti, dato che la loro somma da la conservazione del momento
angolare totale:
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)
+ Iω1 (6.27.7)

m
v0

2
a
2
= m

(
v2,x

a
2
+ v2,y

a
2

)
+ Iω2 (6.27.8)

Dalle (6.27.5) e (6.27.6) concludiamo immediatamente che i cubetti si muovono in di-
rezione verticale subito dopo l’urto. Inoltre dalla (6.27.2) segue che le velocità verticali
saranno uguali ed opposte. Riscriviamo adesso la (6.27.3), la (6.27.7) e la (6.27.8) nella
forma (v0

2
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(6.27.9)
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ω1 (6.27.10)
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= −v1,y +

2I
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ω2 (6.27.11)

Sottraendo membro a membro le ultime due troviamo ω1 = ω2 (i due cubetti ruotano
nello stesso verso). Sommandole abbiamo invece

v1,y =
2I
ma

ω1 −
1
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v0

Sostituendo infine nell’energia abbiamo
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1 (6.27.12)

da cui (
1 +

4I
ma2

)
ω2

1 −
2v0

a
ω1 = 0

La soluzione ω1 = 0 è compatibile con le leggi di conservazione, ma non con il fatto che
l’urto sia realmente avvenuto (le velocità non cambiano). La seconda soluzione invece è

ω1 =
2(

1 + 4I
ma2

) v0

a
(6.27.13)
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]
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v0 (6.27.14)

Se
I >

1
4

ma2 (6.27.15)
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6.28. MOTO SU UNA SBARRA ROTANTE ??

le velocità dei cubetti cambiamo verso in seguito all’urto, e quindi non si urtano una
seconda volta. Se la massa vviene una nuova collisione. Se la massa è distribuita
uniformemente nel cubetto abbiamo

I =
1
6

ma2 (6.27.16)

e quindi si ha una seconda collisione.

PROBLEMA 6.28

Moto su una sbarra rotante ??

θ

m

I

Figura 6.18.: Il sistema da studiare. La sbarra può ruotare liberamente attorno al suo
punto medio, la massa scorre su di essa liberamente. La molla ha costante
elastica k e lunghezza a riposo trascurabile.

Una sbarra di lunghezza ` e momento di inerzia I può ruotare liberamente attorno al
suo punto medio in un piano orizzontale. Su di essa può scorrere una massa m, fissata al
centro di rotazione con una molla di costante elastica k e lunghezza a riposo trascurabile.
Discutere qualitativamente le possibili orbite della massa, al variare delle condizioni
iniziali.

Soluzione

L’energia totale del sistema si conserva. Introducendo coordinate polari per descrivere
la posizione della massa (e della sbarra) e fissando l’origine nel punto medio della sbarra
possiamo scrivere

E =
1
2

m
(
ṙ2 + r2θ̇2)+ 1

2
Iθ̇2 +

k
2

r2
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6.28. MOTO SU UNA SBARRA ROTANTE ??

L’unica forza esterna che agisce sul sistema è la reazione vincolare applicata al centro di
rotazione. Dato che rispetto ad esso ha momento nullo, si conserverà anche il momento
angolare totale

L = mr2θ̇ + Iθ̇

Possiamo ricavare θ̇ da quest’ultima relazione

θ̇ =
L

I + mr2

e sostituendo otteniamo una energia efficace che dipende solo dalla coordinata radiale

E =
1
2

mṙ2 +
1
2

L2

I + mr2 +
k
2

r2

Possiamo adesso studiare qualitativamente le orbite a partire dal potenziale efficace 2

Anzitutto Ue f f (0) = L2/2I, e limr→∞ Ue f f (r) = +∞. Derivando otteniamo

dUe f f

dr
= r

[
k− L2m

(I + mr2)2

]

che si annulla per r = 0 e per 3

rmin =

√
L√
km
− I

m
(6.28.1)

se 4

L > I

√
k
m

(6.28.2)

Possiamo adesso discutere le orbite al variare di L e di E. Distinguiamo due casi:

1. L > I
√

k/m. Questo corrisponde al grafico blu in Figura 6.19. Abbiamo un minimo
del potenziale effettivo, associato ad un’orbita circolare di raggio rmin che si ottiene
quando l’energia vale

E = E1 = Ue f f (rmin)

2Esprimendo questa relazione nella forma

mUe f f

kI
=

1
2

(
mL2

kI2
1

1 + mr2

I

+
mr2

I

)

otteniamo una relazione tra i parametri adimensionali u = mk−1 I−1Ue f f , ρ = mI−1r2 e `2 =

mk−1 I−2L2

u =
1
2

(
`2

1 + ρ2 + ρ2
)

dalla quale risulta evidente che le caratteristiche qualitative dell’orbita possono solo dipendere da `,
come sarà evidente nel seguito.

3In termini delle variabili adimensionali introdotte precedentemente, per ρ =
√
`− 1.

4Cioè per ` > 1.

414 versione del 5 ottobre 2016



6.28. MOTO SU UNA SBARRA ROTANTE ??
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Figura 6.19.: Il potenziale effettivo Ue f f . Sulle ascisse è riportato il valore di r
√

m/I e sul-
le ordinate di mk−1 I−1Ue f f (r) al variare di LI−1

√
m/k. In particolare la cur-

va rossa è ottenuta per LI−1
√

m/k = 1/2, quella verde per LI−1
√

m/k = 1
e quella blu per LI−1

√
m/k = 2.

Il periodo dell’orbita si determina direttamente dalla velocità angolare,

T =
2π

ω
= 2π

I + mr2
min

L

Per valori dell’energia compresi tra E1 ed E2 la massa si muove tra un raggio mi-
nimo e un raggio massimo determinato delle soluzioni di Ue f f (r) = E. Quando
E = E2 abbiamo una possibile soluzione nella quale la massa è ferma nell’origine,
mentre l’asta ruota con la velocità angolare ω = L/I. La massa è in equilibrio
instabile: se perturbata percorre un’orbita fino ad una distanza massima determi-
nata dalla soluzione non nulla di E2 = Ue f f (r) e torna nell’origine in un tempo
infinito 5. Infine per E > E2 la riesce ad attraversare l’origine, e si allontana fino ad
una distanza massima determinata dall’unica soluzione di Ue f f (r) = E, per poi
tornare nuovamente verso l’origine e ripetere il ciclo.

2. L < I
√

k/m. Questo corrisponde al grafico rosso in figura. Per E = E1 la particella
è ferma nell’origine, e questa volta la sua posizione di equilibrio è stabile. Per
E > E1 si ottengono orbite qualitativamente simili a quella discussa nel caso
precedente per E > E2. Il caso L = I

√
k/m è qualitativamente simile a questo 6

5Lo studio dettagliato di questo caso particolare sarà fatto in un esercizio successivo.
6Una differenza tra i due sarà l’argomento di un esercizio successivo.
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6.29. PICCOLE OSCILLAZIONI DI METÀ CILINDRO ? ? ?

Concludiamo osservando che per una sbarra di lunghezza finita ` le orbite valide
saranno quello che non si allontaneranno dall’origine più di `/2.

PROBLEMA 6.29

Piccole oscillazioni di metà cilindro ? ? ?

La metà di un cilindro omogeneo di raggio R, massa m e altezza h è appoggiato su un
piano obliquo come in Figura 6.20, ed è libero di ruotare senza strisciare. Potete indicare
con b la distanza del centro di massa dall’asse del cilindro.

θ

α

Figura 6.20.: Il semicilindro appoggiato sul piano obliquo: convenzioni per gli angoli.

1. Calcolare l’inclinazione α del cilindro nella posizione di equilibrio in funzione di
θ, e l’angolo massimo θ∗ per il quale l’equilibrio è possibile.

2. Se θ = 0 partendo dalla posizione di equilibrio per quale velocità angolare iniziale
minima il corpo si capovolge?

3. Sempre per θ = 0 calcolare la frequenza delle piccole oscillazioni del sistema
attorno alla posizione di equilibrio.

Soluzione7

Domanda 1 Consideriamo la costruzione rappresentata in Figura 6.21. Fissato il punto
di contatto P, conduciamo la perpendicolare al piano inclinato passante per esso. Su
essa prendiamo il punto a distanza R da P. La circonferenza di raggio b e centro O è il
luogo delle possibili posizioni del centro di massa.

Le forze che agiscono sul sistema sono l’attrito statico ~Fa (applicata in P) la reazione
normale al vincolo ~N (applicata in P) e la forza di gravità m~g (applicata nel centro di
massa). La prima condizione di equilibrio da

~Fa + ~N + m~g = 0 (6.29.1)

7Scritto del 31/1/2007
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6.29. PICCOLE OSCILLAZIONI DI METÀ CILINDRO ? ? ?
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Figura 6.21.: La costruzione utilizzata per rispondere alla prima domanda.

e può sempre essere soddisfatta scegliendo opportunamente ~Fa e ~N. La seconda con-
dizione, scegliendo come polo il punto di contatto, dice che il momento rispetto a P
della forza di gravità deve essere nullo. Questo significa che si avrà equilibrio solo con
il centro di massa sulla verticale di P (le posizioni M e M′ in Figura 6.21).

Considerando il triangolo MPO abbiamo dal teorema dei seni la relazione

b
sin θ

=
R

sin (π − γ− θ)
=

R
sin α

(6.29.2)

dato che γ = α− θ. Quindi

R sin θ = b sin α (6.29.3)

che determina l’angolo α di equilibrio in funzione di θ. Si hanno soluzioni solo se
sin θ ≤ b/R, che determina il massimo valore possibile θ∗ = arcsin(b/R). Esplicitamen-
te l’angolo di equilibrio vale

α = arcsin
(

R
b

sin θ

)
(6.29.4)

Alternativamente dalla Figura 6.21 si vede direttamente che il valore massimo di α
corrisponde a α + θ = π/2 (la retta MM′ diviene tangente alla circonferenza di raggio
b). Questo corrisponde a sin θ∗ = b/R. Osserviamo che per piccoli spostamenti rispetto
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6.29. PICCOLE OSCILLAZIONI DI METÀ CILINDRO ? ? ?

ad M del centro di massa la forza di gravità agisce come forza di richiamo. Quindi la
configurazione considerata è di equilibrio stabile. Al contrario la configurazione con
centro di massa in M′ sarà di equilibrio instabile.

b

R

Figura 6.22.: La posizione estrema da raggiungere prima del capovolgimento.

Domanda 2 Per capovolgersi, il corpo dovrà superare la posizione di altezza massima
per il suo centro di massa. Questo avviene nella situazione in Figura 6.22. Rispetto al
terreno l’altezza del centro di massa è allora

h f =
√

b2 + R2 (6.29.5)

e imponendo la conservazione dell’energia abbiamo

1
2

IPω2
0 + mg (R− b) = mg

√
b2 + R2 (6.29.6)

dove IP è il momento di inerzia del mezzo cilindro rispetto al punto di contatto, nella
configurazione iniziale. Otteniamo quindi

ω0 =

√
2mg

IP

(√
R2 + b2 − R + b

)
(6.29.7)

Per calcolare IP osserviamo che il momento di inerzia di un cilindro intero rispetto al
suo asse vale

Icil =
1
2

Mcil R2 (6.29.8)

e quello di metà cilindro, rispetto allo stesso asse,

IO =
1
2

mR2 (6.29.9)

(ovviamente m = Mcil/2). Usando il teorema di Steiner troviamo il momento rispetto
ad un asse passante per il centro di massa

ICM = IO −mb2 (6.29.10)

ed infine, usando nuovamente il teorema, rispetto ad un asse passante per il punto di
contatto iniziale
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6.30. PICCOLE OSCILLAZIONI METÀ CILINDRO, NIENTE ATTRITO ??

Domanda 3 Conviene scrivere l’energia cinetica come somma del contributo legato al
centro di massa e della rotazione attorno ad esso:

K =
1
2

m
(

ẋ2
cm + ẏ2

cm
)
+

1
2

ICMα̇2 . (6.29.11)

Le coordinate del centro di massa si possono scrivere, fissato un sistema di riferimento
con origine nella posizione iniziale del punto O,

xcm = Rα− b sin α (6.29.12)
ycm = −b cos α (6.29.13)

da cui, aggiungendo l’energia potenziale gravitazionale mgycm, otteniamo

E =
1
2

m
[
(Rα̇− bα̇ cos α)2 + (bα̇ sin α)2

]
+

1
2

ICMα̇2 −mgb cos α . (6.29.14)

Sviluppando per piccole oscillazioni otteniamo, al secondo ordine in α e α̇,

E =
1
2

[
m (R− b)2 + ICM

]
α̇2 +

mgb
2

α2 −mgb . (6.29.15)

Notare che questo si può anche scrivere, trascurando una costante irrilevante,

E =
1
2

IPα̇2 +
mgb

2
α2 (6.29.16)

cioè per piccole oscillazioni si può trascurare il fatto che l’asse di rotazione cambia.
L’energia appena scritta è formalmente quella di un oscillatore armonico, da cui

ω = 2π f =

√
mgb

IP
. (6.29.17)

PROBLEMA 6.30

Piccole oscillazioni metà cilindro, niente attrito ??

La metà di un cilindro omogeneo di raggio R, massa M e altezza h è appoggiato su
un piano orizzontale privo di attrito. Calcolare la frequenza delle piccole oscillazioni
attorno alla posizione di equilibrio.

Soluzione

La componente orizzontale della quantità di moto del sistema si conserva, dato che
non esistono forze esterne orizzontali applicate al sistema. Possiamo allora scegliere
un sistema di riferimento inerziale nel quale il centro di massa si trova in ogni istante
sull’asse y, come in Figura 6.23.
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6.30. PICCOLE OSCILLAZIONI METÀ CILINDRO, NIENTE ATTRITO ??

b

R
θ

Figura 6.23.: Il semicilindro durante l’oscillazione, in un sistema di riferimento nel quale
la componente orizzontale della velocità del centro di massa è nulla. Il
sistema è stato scelto in modo che il centro di massa (indicato dal punto
scuro) si trovi sull’asse delle ordinate.

Scriviamo l’energia potenziale. Detto θ l’angolo tra la verticale e il segmento che
congiunge il centro della semicirconferenza al centro di massa possiamo scrivere la
posizione verticale di quest’ultimo

ycm = R− b cos θ

Allora
U(θ) = Mg (R− b cos θ)

che ha un minimo per θ = 0, che è quindi una posizione di equilibrio stabile.
Scriviamo l’energia cinetica nella forma

Ec =
1
2

Mv2
cm +

1
2

Icmω2

dove v2
cm = ẏ2

cm è il quadrato della velocità del centro di massa (che si muove solo
verticalmente nel sistema scelto) e ω2 = θ̇2 è il quadrato della velocità angolare. Il
momento di inerzia Icm è calcolato rispetto al centro di massa del sistema, e può essere
calcolato usando il teorema di Steiner:

1
2

Icyl = Icm + Mb2

dove
Icyl =

1
2
(2M) R2

è il momento di inerzia di un cilindro completo rispetto al suo asse. In conclusione

Icm =
1
2

M
(

R2 − 2b2)
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6.31. CENTRO DI MASSA METÀ CILINDRO ??

Derivando ycm rispetto al tempo troviamo

ẏcm = bθ̇ sin θ

e sostituendo otteniamo l’energia finale

E =
1
2
(

Mb2 sin2 θ + Icm
)

θ̇2 + Mg (R− b cos θ)

Per piccole oscillazioni attorno θ = 0 possiamo approssimare questa espressione al
secondo ordine in θ, ottenendo

E =
1
2

Icm θ̇2 +
1
2

Mgbθ2

che corrisponde ad un oscillatore armonico di frequenza

f =
1

2π

√
Mgb
Icm

=
1

2π

√
2gb

R2 − 2b2

PROBLEMA 6.31

Centro di massa metà cilindro ??

Calcolare la distanza b tra il centro di massa e l’asse del semicilindro che compare negli
esercizi 6.29 e 6.30 e usatelo per confrontare le frequenze delle piccole oscillazioni trovate
nei due casi.

b

R

Figura 6.24.: Il sistema di coordinate utilizzato per il calcolo del centro di massa.

Soluzione

Scegliamo un sistema di coordinate come in Figura 6.24. A causa della simmetria
orizzontale xcm = 0. Per calcolare ycm = b calcoliamo

ycm =
1
M

ˆ
ydm
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6.32. GIRO DELLA MORTE PER UNA SFERA ??

che diviene, utilizzando coordinate polari,

ycm =
1
M

ˆ
y

dm
dS

dS

=
1
M

M
πR2/2

ˆ ˆ
r sin θrdrdθ

=
2

πR2

ˆ R

0
drr2
ˆ π

0
dθ sin θ

=
2

πR2
R3

3
2 =

4
3π

R ' 0.424 R

La frequenza delle piccole oscillazioni è, nel caso senza attrito considerato nell’Eserci-
zio 6.30

f =
1

2π

√
2gb

R2 − b2 =
1

2π

√√√√
8

3π

1− 16
9π2

g
R
' 0.162

√
g
R

e in quello con rotolamento puro considerato nell’Esercizio 6.29

f =
1

2π

√
2gb

3R2 − 4Rb
=

1
2π

√
8

3π

3− 16
3π

g
R
' 0.128

√
g
R

(6.31.1)

PROBLEMA 6.32

Giro della morte per una sfera ??

Una sfera di massa M e raggio r rotola senza strisciare all’interno di un tubo di raggio
R > r come in Figura 6.25. Il tubo si comporta come un vincolo monolatero.

Scegliendo l’angolo θ come coordinata,

1. scrivere l’energia totale del sistema in funzione di θ e θ̇;

2. supponendo che θ(t = 0) = 0, determinare il minimo valore di θ̇(t = 0) che
permette alla sfera di percorrere un giro completo senza staccarsi dal tubo;

3. determinare la frequenza delle piccole oscillazioni attorno alla posizione di equili-
brio stabile.

Soluzione8

Domanda 1

La velocità del centro di massa del cilindro si scrive

vcm = (R− r)θ̇

8Scritto del 2 marzo 2011
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6.32. GIRO DELLA MORTE PER UNA SFERA ??

R

r

θ

Figura 6.25.: La sfera all’interno del cilindro e la coordinata usata per descriverla.

ma anche, usando la condizione di rotolamento puro,

vcm = −rω

dove ω è la velocità angolare del cilindro. Da queste due relazioni segue che

ω = −R− r
r

θ̇

Possiamo adesso scrivere l’energia nella forma

E =
1
2

Mv2
cm +

1
2

Iω2 −Mg(R− r) cos θ

=
1
2

M(R− r)2θ̇2 +
1
2

I
(

1− R
r

)2

θ̇2 −Mg(R− r) cos θ

=
1
2

M

[
(R− r)2 +

2
5

r2
(

1− R
r

)2
]

θ̇2 −Mg(R− r) cos θ

=
1
2

7
5

M(R− r)2θ̇2 −Mg(R− r) cos θ

dove si è utilizzato il momento di inerzia della sfera, I = 2Mr2/5. Notare che il termine
cinetico si può anche scrivere nella forma

Ec =
1
2

[
7
5

Mr2
] [

(R− r)2

r2 θ̇2
]
=

1
2

I′ω2
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6.33. CAMPO DI VELOCITÀ DI UNA MONETA ? ? ?

dove I′ = 7Mr2/5 è il momento di inerzia della sfera rispetto al punto di contatto.

Domanda 2

La componente radiale dell’equazione del moto del centro di massa della sfera si scrive

−M(R− r)θ̇2 = −N + Mg cos θ

da cui è possibile calcolare la reazione vincolare.

N = Mg cos θ + M(R− r)θ̇2

La sfera rimarrà aderente al vincolo se N ≥ 0, cioè

g cos θ + (R− r)θ̇2 ≥ 0 (6.32.1)

Dalla conservazione dell’energia possiamo ora determinare (R− r)θ̇2 in funzione di θ:

1
2

7
5

M(R− r)2θ̇2
0 −Mg(R− r) =

1
2

7
5

M(R− r)2θ̇2 −Mg(R− r) cos θ

da cui

(R− r)θ̇2 = (R− r)θ̇2
0 −

10
7

g (1− cos θ)

e sostituendo nella (6.32.1) troviamo

(R− r)θ̇2
0 ≥ g

(
10
7
− 17

7
cos θ

)

Il caso peggiore è θ = π, quindi deve essere

∣∣θ̇0
∣∣ ≥

√
27
7

g
(R− r)

Domanda 3

La posizione di equilibrio stabile è θ = 0. Sviluppando l’energia al secondo ordine
troviamo a meno di una costante

E =
1
2

7
5

M(R− r)2θ̇2 +
1
2

Mg(R− r)θ2 + O
(

θ4
)

quindi la frequenza delle piccole oscillazioni è

f =
1

2π

√
5g

7(R− r)
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6.33. CAMPO DI VELOCITÀ DI UNA MONETA ? ? ?

y

z

x O

P

d
r

Figura 6.26.: Il moto della monetina sul piano. La velocità ~v0 specificata nel problema è
quella del punto geometrico P di contatto tra monetina e piano.

PROBLEMA 6.33

Campo di velocità di una moneta ? ? ?

Si vuole studiare il campo di velocità di una monetina molto sottile di raggio r che si
muove facendo rotolamento puro su un piano. Il punto di contatto P tra la monetina e il
piano si muove su una circonferenza di raggio d attorno ad un centro O (vedere Figura)
con velocità costante in modulo v0. La monetina rimane tangente alla circonferenza. Si
vuole determinare in particolare

◦ L’asse istantaneo di rotazione

◦ Il campo di velocità ~v (x, z) della monetina nel sistema di riferimento rappresenta-
to sulla sinistra in Figura (6.26)

◦ Il vettore velocità angolare

Soluzione

Il metodo più veloce per determinare l’asse istantaneo di rotazione è quello di trovare
due punti istantaneamente fermi del corpo rigido considerato. Notiamo che tali punti
potranno essere esterni alla monetina, ma collegati “rigidamente” ad essa. Nel caso
considerato il punto F1 della monetina (Figura 6.27 ) che è ad un certo istante a contatto
col piano orizzontale è sicuramente fermo, data la condizione di rotolamento puro.

Consideriamo adesso, sempre in Figura 6.27, il punto F2 posto ad una altezza r sulla
verticale di O: la sua distanza da un punto qualsiasi della monetina si mantiene costante
durante il moto, e quindi possiamo pensarlo collegato ad essa rigidamente. Si tratta
quindi di un secondo punto fisso, e l’asse di rotazione istantaneo è la retta passante tra
F1 e F2. Notare che il punto O non rimane ad una distanza fissa dai punti della monetina:
ad esempio la distanza tra O ed un punto A posto sul bordo varia da un minimo di
OA = d (quando A ≡ P) ad un massimo di OA =

√
d2 + 4r2 (quando A si trova sulla

verticale del punto di contatto col piano).
Il vettore velocità angolare avrà una direzione parallela all’asse istantaneo di rotazio-

ne. Per determinarne il modulo osserviamo che la velocità del centro della monetina
C è, all’istante rappresentato in Figura 6.27, ~v = −v0 x̂. Dato che il moto è di puro
rotolamento dovrà anche essere

~v = ~ω ∧~r (6.33.1)
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O

F1

F2
~ω

~r

y

z

x

C

Figura 6.27.: Una costruzione che permette di determinare l’asse istantaneo di rotazione
della monetina, vista in sezione trasversa ad un dato istante. Dato che sia
F1 che F2 sono istantaneamente fermi, l’asse istantaneo di rotazione passa
da essi.

dove~r è un qualsiasi vettore che collega un punto istantaneamente fermo con C, ad
esempio il due vettori

−→
F1C e

−→
F2C rappresentati in blu. Avremo quindi

−v0 x̂ = ~ω ∧−→F1C =

∣∣∣∣∣∣

x̂ ŷ ẑ
ωx ωy ωz
0 0 r

∣∣∣∣∣∣
= rωy x̂− rωxŷ

da cui segue ωy = −v0/r, ωx = 0. Oppure

−v0 x̂ = ~ω ∧−→F2C =

∣∣∣∣∣∣

x̂ ŷ ẑ
ωx ωy ωz
0 d 0

∣∣∣∣∣∣
= dωx ẑ− dωz x̂

da cui otteniamo ωz = v0/d. In conclusione scegliendo il riferimento come in 6.27
abbiamo

~ω =
(

0,−v0

r
,

v0

d

)
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6.34. TROTTOLA “BLOCCATA” NEL PIANO ??

Determiniamo adesso il campo di velocità sulla monetina. Possiamo usare direttamente
l’espressione (6.33.1). Nel sistema di riferimento a sinistra in Figura (6.26) abbiamo

~ω =




0
−v0/r
v0/d


 ; ~r =




x
0

z + r


 ; ~v =




vx
vy
vz




da cui

~v =

∣∣∣∣∣∣

x̂ ŷ ẑ
0 −v0/r v0/d
x 0 z + r

∣∣∣∣∣∣
= −v0

z + r
r

x̂ + v0
x
d

ŷ + v0
x
r

ẑ

Si verifica che il punto di contatto (0, 0,−r) è istantaneamente fermo. Inoltre i punti che
non si trovano sull’asse z hanno una componente non nulla della velocità lungo ŷ, come
ci si poteva attendere dato che la monetina deve curvare per rimanere sulla propria
traiettoria circolare. Il limite d→ ∞ corrisponde in effetti al caso di traiettoria rettilinea,
per il quale

~v = −v0
z + r

r
x̂ + v0

x
r

ẑ

e
~ω = −v0

r
ŷ

PROBLEMA 6.34

Trottola “bloccata” nel piano ??

Una ruota di bicicletta può ruotare liberamente attorno ad un’asta. L’asta a sua volta è
fissata come in Figura 6.28 ad un suo estremo nel punto O e può ruotare liberamente
attorno ad esso. Per fare in modo che l’asta rimanga in un piano fissato si aggiunge una
guida liscia circolare (in blu in Figura 6.28) e si vincola l’asse a rimanere aderente ad
essa. Per gli scopi del problema si può indicare con I1 il momento di inerzia del corpo
rigido lungo l’asse delll’asta, con I2 quello in una direzione perpendicolare ad essa, in
entrambi i casi rispetto al punto O, con m la massa totale e con d la distanza del centro
di massa da O.

Supponendo di porre in rotazione attorno all’asse la ruota con velocità angolare ωρ,
e di lasciare libero il sistema da un angolo iniziale θ = θ0, discutere il moto successivo
scrivendo le equazioni del moto. In particolare, come si muove il sistema se ωρ = 0?
Cambia qualcosa se ωρ 6= 0?

Soluzione

Utilizziamo coordinate cilindriche per descrivere la posizione del centro di massa del
sistema

~rCM = dêρ
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6.34. TROTTOLA “BLOCCATA” NEL PIANO ??

ωr

θg
P

O

Figura 6.28.: Il sistema considerato nel problema visto in sezione rispetto al piano nel
quale l’asse è vincolato. La ruota è in grigio, la guida che vincola l’asse in
blu.

Il vettore velocità angolare ha componenti non nulle solo lungo le direzioni êρ e êz,
quindi

~ω = ωρ êρ + ωz êz

Notiamo che ωρ descrive la rotazione attorno all’asse, e ωz la rotazione (oscillazione)
dell’asse attorno ad O. Per ragioni di simmetria gli assi principali del corpo rigido sono
chiaramente lungo l’asta e perpendicolari ad essa, quindi

~L = I1ωρ êρ + I2ωz êz

Per quanto riguarda i momenti, avremo quello della forza di gravità e il momento della
reazione vincolare della guida

~M = −mgd sin θêz + MR êθ

Scriviamo adesso l’equazione del moto d~L/dt = ~M. Abbiamo

d~L
dt

= I1ω̇ρ êρ + I1ωρ ˙̂eρ + I2ω̇z êz + I2ωz ˙̂ez

= I1ω̇ρ êρ + I1ωρ θ̇êθ + I2ω̇z êz

= I1ω̇ρ êρ + I1ωρ θ̇êθ + I2θ̈êz
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6.35. TROTTOLA SIMMETRICA: DISCUSSIONE DELLE SOLUZIONI ? ? ?

dove si è usato ˙̂ez = 0 e ωz = θ̇. L’equazione cardinale diventa

I1ω̇ρ êρ + I1ωρ θ̇êθ + I2θ̈êz = −mgd sin θêz + MR êθ

da cui

I1ω̇ρ = 0

I1ωρ θ̇ = MR

I2θ̈ = −mgd sin θ

La prima equazione ci dice che ωρ è costante. In particolare se ωρ = 0 le altre due si
riducono a

MR = 0

I2θ̈ = −mgd sin θ

quindi il sistema oscilla come un pendolo, e la guida non esercita nessuna reazione
vincolare. Nel caso generale vediamo che l’equazione del moto per θ non cambia, quindi
il moto sarà ancora una volta quello di un pendolo. Ma questa volta la guida eserciterà
sul sistema una reazione, equivalente al momento

MR = I1ωρ θ̇

e questo significa che in assenza di essa il moto non resterebbe confinato nel piano. In
effetti avremmo una trottola con un punto fisso, problema analizzato negli Esercizi 6.26
e 6.35.

PROBLEMA 6.35

Trottola simmetrica: discussione delle soluzioni ? ? ?

Nell’Esercizio 6.26 l’energia E e la componente verticale Lz del momento angolare di
una trottola simmetrica fissata ad un estremo, entrambe quantità costanti, sono state
scritte nella forma

E =
I2

2
θ̇2 +

L2
r

2I1
+

1
2I2

(
Lr cos θ − Lz

sin θ

)2

+ Mgd cos θ

Lz = Lr cos θ + I2φ̇ sin2 θ

dove Lr è la componente del monento angolare lungo l’asse della trottola, anche esso
costante. In questo esercizio si studierà qualitativamente il moto della trottola al variare
delle condizioni iniziali.
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6.35. TROTTOLA SIMMETRICA: DISCUSSIONE DELLE SOLUZIONI ? ? ?

Soluzione

Conviene scrivere l’equazione che definisce l’energia nella forma

I2

2
θ̇2 sin2 θ =

(
E− L2

r
2I1

)
sin2 θ − 1

2I2
(Lr cos θ − Lz)

2 −Mgd cos θ sin2 θ (6.35.1)

da cui segue direttamente che il moto sarà possibile solo nelle regioni in cui il secondo
membro è positivo. Avremo quindi la condizione

[(
2I2E

L2
r
− I2

I1

)
− 2I2Mgd

L2
r

cos θ

] (
1− cos2 θ

)
−
(

cos θ − Lz

Lr

)2

≥ 0 (6.35.2)

ed inoltre
I2φ̇(1− cos2 θ) = Lz − Lr cos θ (6.35.3)

In termini di x = cos θ il membro destro dell’Equazione (6.35.2) è un polinomio di terzo
grado

P(x) = (α− βx)
(
1− x2)− (x− γ)2

dove abbiamo posto

α =

(
2I2E

L2
r
− I2

I1

)

β =
2I2Mgd

L2
r

γ =
Lz

Lr

I valori agli estremi sono negativi o nulli,

P(±1) = − (γ∓ 1)2

Questo significa che la trottola potrà raggiungere la posizione verticale solo nei due casi
Lz = Lr (sarà possibile θ = 0) o Lz = −Lr (sarà possibile θ = π). Notiamo che

I2(1− x2)φ̇ = Lz − Lrx

e quindi il segno di φ̇ (la velocità di precessione) potrà cambiare, e sarà in ogni istante
lo stesso di Lz − Lrx.

In termini delle condizioni iniziali abbiamo adesso

E =
I2

2
θ̇2

0 +
L2

r
2I1

+
1
2

I2φ̇2
0 sin2 θ0 + Mgd cos θ0

Lz = Lr cos θ0 + I2φ̇0 sin2 θ0
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6.36. CADUTA DI UN MANUBRIO ??

e quindi (notare che la velocità del centro di massa della trottola è data da v2
cm =

d2 (θ̇2
0 + φ̇2

0 sin2 θ0
)
)

α =
I2
2

L2
r

(
θ̇2

0 + φ̇2
0 sin2 θ0

)
+

2MgdI2

L2
r

cos θ0

=
I2
2

d2L2
r

v2
cm,0 + β cos θ0

β =
2I2Mgd

L2
r

γ = cos θ0 +
I2

Lr
φ̇0 sin2 θ0

inoltre
I2φ̇ sin2 θ = Lr (cos θ0 − cos θ) + I2φ̇0 sin2 θ0

Studiamo alcuni casi particolari. (......................)

PROBLEMA 6.36

Caduta di un manubrio ??

θ

Figura 6.29.: Il sistema descritto nel problema. I due estremi dell’asta sono sulla super-
ficie delle sfere, in altre parole la distanza tra i centri delle due sfere è
L + 2R.

Due sfere di massa M e raggio R sono collegate da un’asta di uguale massa e lunghezza
L. Gli estremi dell’asta sono saldati perpendicolarmente alle superfici delle due sfere.
Inizialmente una sfera è appoggiata su un piano orizzontale, e l’asta forma un angolo
θ0 con l’orizzontale. Ad un certo punto si elimina in vincolo che mantiene il sistema in
equilibrio.

1. Supponendo che il piano sia privo di attrito determinare la velocità angolare del
corpo quando la seconda sfera tocca terra.
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6.36. CADUTA DI UN MANUBRIO ??

2. Rispondere alla stessa domanda precedente, supponendo questa volta che la sfera
inizialmente in contatto con il piano rotoli senza strisciare su quest’ultimo.

3. Determinare la reazione normale del piano quando l’inclinazione dell’asta rispetto
all’orizzontale diviene θ0/2.

Soluzione

Domanda 1 Se il piano non ha attrito, non ci sono forze esterne orizzontali applicate
al sistema. Di conseguenza la quantità di moto orizzontale si conserva, e il centro di
massa si muove solo verticalente, dato che inizialmente è fermo. L’energia del sistema
si può allora scrivere

E =
1
2

3Mẏ2
cm +

1
2

Icmω2 + 3Mgycm (6.36.1)

dove ω = θ̇ è la velocità angolare del corpo rigido e

ycm =

(
R +

L
2

)
sin θ (6.36.2)

è l’altezza del centro di massa (al centro del manubrio) misurata rispetto all’altezza del
centro della sfera poggiata a terra. Sostituendo otteniamo

E =
1
2

[
3M

(
R +

L
2

)2

cos2 θ + Icm

]
θ̇2 + 3Mg

(
R +

L
2

)
sin θ (6.36.3)

L’espressione tra parentesi quadre

I0 = 3M
(

R +
L
2

)2

cos2 θ + Icm (6.36.4)

si può interpretare come momento di inerzia del manubrio rispetto al punto istantanea-
mente fermo attorno al quale sta ruotando, come si vede dalla Figura 6.30.

Uguagliando l’energia iniziale a quella finale abbiamo

1
2

[
3M

(
R +

L
2

)2

+ Icm

]
θ̇2 = 3Mg

(
R +

L
2

)
sin θ0 (6.36.5)

da cui

θ̇2 =
6Mg

(
R + L

2

)

3M
(

R + L
2

)2
+ Icm

sin θ0 (6.36.6)

Per quanto riguarda Icm abbiamo

Icm =
1

12
ML2 + 2

[
2
5

MR2 + M
(

R +
L
2

)2
]

(6.36.7)

dove il primo termine è il momento di inerzia dell’asta attorno al suo centro, e il secondo
il momento di inerzia delle due sfere (il fattore 2) ottenuto aggiungendo al momento di
inerzia rispetto al centro il contributo prescritto dal teorema di Steiner.
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6.36. CADUTA DI UN MANUBRIO ??

CMP

θ

(
R + L

2

)
sin θ

(
R + L

2

)
cos θ

Figura 6.30.: Il manubrio ruota attorno al punto fisso P, che si può determinare con la
costruzione in figura notando che il punto di contatto col terreno si muove
orizzontalmente e il centro di massa verticalmente. Quindi P deve trovarsi
alle intersezioni delle rette perpendicolari alle due velocità.

Domanda 2 In questo caso possiamo considerare istante per istante il moto del manu-
brio come puro rotolamento attorno al punto di contatto. Quindi per l’energia abbiamo

E =
1
2

I′0θ̇2 + 3Mg
(

R +
L
2

)
sin θ (6.36.8)

dove

I′0 = Icm + 3M

{(
R +

L
2

)2

cos2 θ +

[
R +

(
R +

L
2

)
sin θ

]2
}

(6.36.9)

Dalla conservazione dell’energia segue adesso

θ̇2 =
6Mg

(
R + L

2

)

Icm + 3M
[(

R + L
2

)2
+ R2

] sin θ0 (6.36.10)

minore della precedente. La ragione è che al momento dell’arrivo a terra il centro di
massa si sta muovendo anche orizzontalmente (con velocità vcm,x = −Rθ̇) e parte del-
l’energia potenziale iniziale si è trasformata nell’energia cinetica legata a questo moto,
quindi non è disponibile come energia cinetica di rotazione.

Domanda 3 L’accelerazione verticale del centro di massa è determinata dall’equazione

3Mÿcm = N − 3Mg (6.36.11)
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dove N è la reazione vincolare che dobbiamo determinare. D’altra parte

ÿcm =

(
R +

L
2

) (
θ̈ cos θ − θ̇2 sin θ

)
(6.36.12)

e quindi

N = 3M
[

g +

(
R +

L
2

)(
θ̈ f cos

θ0

2
− θ̇2

f sin
θ0

2

)]
(6.36.13)

dove θ̈ f , θ̇ f sono l’accelerazione angolare e la velocità angolare al momento considerato.
Dalla conservazione dell’energia abbiamo

1
2

I
(

θ0

2

)
θ̇2

f + 3Mg
(

R +
L
2

)
sin

θ0

2
= 3Mg

(
R +

L
2

)
sin θ0 (6.36.14)

dove I(θ) è data dalla (6.36.4) o dalla (6.30) a seconda che si consideri il caso senza
attrito o con rotolamento puro. In conclusione per un dato angolo

θ̇2 =
6Mg

(
R + L

2

)

I
(

θ0
2

) (sin θ0 − sin θ) (6.36.15)

e derivando

θ̈ = −3Mg
(

R + L
2

)

I
(

θ0
2

) cos θ (6.36.16)

Valutando le espressioni precedenti per θ = θ0/2 si ottengono θ̈ f , θ̇ f che sostituiti nella
Equazione (6.36.13) danno la soluzione cercata.

PROBLEMA 6.37

Scambio di momento angolare ??

Un satellite di massa m ruota in un’orbita circolare di raggio R attorno ad un pianeta di
massa M� m. Inizialmente sia il pianeta che il satellite ruotano su se stessi con velocità
angolari ~ωM e ~ωm, non necessariamente perpendicolari al piano dell’orbita. A causa di
forze non meglio specificate i due corpi interagiscono tra di loro, e parte dell’energia del
sistema viene dissipata. Supponendo che l’orbita del satellite rimanga circolare, deter-
minare le caratteristiche del sistema quando la massima quantità possibile di energia è
stata dissipata.

Soluzione

Indichiamo con ~Ω la velocità angolare dell’orbita circolare del satellite. Dato che M� m
possiamo identificare il centro di questa con il centro del pianeta. Possiamo scrivere
l’energia cinetica totale nella forma

Ec =
1
2

IMω2
M +

1
2

Imω2
m +

1
2

mR2Ω2
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R

~Ω

~ωM

~ωm

~L

R

~L~ωM ~ωm~Ω

Figura 6.31.: A destra, una possibile configurazione iniziale (vista trasversalmente). Le
velocità di rotazione ~ωm e ~ωM non sono necessariamente perpendicolari
al piano dell’orbita, mentre per definizione lo è ~Ω. Nella configurazione
finale (a sinistra) ~ωM = ~ωm = ~Ω. Di conseguenza tutte e tre sono parallele
al momento angolare conservato~L che determina quindi il piano dell’orbita
finale.

dove il primo e il secondo termine sono le energie cinetiche dovute alla rotazione di
pianeta e satellite attorno al loro centro di massa, e il terzo è l’energia cinetica dovuta
al moto del centro di massa del satellite. Questa energia non si conserva, deve però
conservarsi il momento angolare totale del sistema

~L = IM~ωM + Im~ωm + mR2~Ω

Possiamo usare questa legge di conservazione per scrivere l’energia cinetica in funzione
delle velocità angolari ~ωM e ~ωm

Ec =
1
2

IMω2
M +

1
2

Imω2
m +

1
2

mR2

(
~L− IM~ωM − Im~ωm

mR2

)2

dato che

~Ω =
~L− IM~ωM − Im~ωm

mR2 (6.37.1)

Adesso possiamo minimizzare l’energia cinetica rispetto a ~ωM e ~ωm. Otteniamo le
due condizioni

∂Ec

∂~ωM
= IM~ωM − IM

(
~L− IM~ωM − Im~ωm

mR2

)
= 0

∂Ec

∂~ωm
= Im~ωm − Im

(
~L− IM~ωM − Im~ωm

mR2

)
= 0
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Dividendo la prima per IM, la seconda per Im e sottraendo membro a membro otteniamo

~ωm = ~ωM

e quindi nella configurazione finale pianeta e satellite hanno la stessa velocità angolare
di rotazione su se stessi. Sostituendo, ad esempio, nella prima equazione otteniamo

~ωM = ~ωm =
~L

(IM + Im + mR2)

cioè entrambe le velocità angolari sono lungo la direzione del momento angolare ini-
ziale. Per quanto riguarda la velocità angolare orbitale abbiamo adesso, sostituendo
nella (6.37.1)

~Ω = ~ωM = ~ωm

In conclusione le velocità angolari orbitali sono adesso perpendicolari al piano dell’orbi-
ta, e la velocità angolare orbitale è identica a quella di rotazione. In altre parole il satellite
e il pianeta rivolgono l’uno verso l’altro sempre la stessa faccia: si muovono come un
unico corpo rigido (Figura (6.31)).

PROBLEMA 6.38

Rotolamento puro di un cono ??

Figura 6.32.: Il cono appoggiato sul piano orizzontale considerato nell’esercizio.

Un cono di raggio R, massa M e altezza h rotola senza strisciare su un piano orizzon-
tale. Il suo tensore di inerzia, riferito agli assi principali passanti per il centro di massa,
vale

I =




I0 0 0
0 I0 0
0 0 I1



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1. Scelto un opportuno sistema di coordinate determinare la posizione del centro di
massa in funzione del tempo, se il modulo della sua velocità iniziale vale v0.

2. Nelle stesse condizioni della domanda precedente determinare la velocità angola-
re ~ω del cono e il suo momento angolare~L.

3. Se il piano viene adesso inclinato di un angolo θ rispetto all’orizzontale deter-
minare la frequenza della piccole oscillazioni attorno alla posizione di equilibrio
stabile.

Soluzione9

Domanda 1

Il centro di massa sarà lungo l’asse del cono. Per determinare la distanza dal vertice si
può scrivere

`cm =
1
V

ˆ h

0
zπ
( z

h
R
)2

dz =
π R2

h2
h4

4
1
3 πR2h

=
3
4

h

Dato che il cono rotola senza strisciare, tutti i suoi punti a contatto con il piano sono
fermi, e definiscono l’asse istantaneo di rotazione. In particolare il vertice è sempre a
contatto, quindi è un punto fisso. L’altezza del centro di massa rispetto al piano resta
costante nel tempo e uguale a

zcm = `cm sin α

dove abbiamo indicato con α la metà dell’angolo al vertice,

tan α =
R
h

La proiezione del centro di massa sul piano si muoverà invece rimanendo a una distanza
dal vertice data da ρcm = `cm cos α. Avremo

xcm = ρcm cos φ

ycm = ρcm sin φ

dove φ (l’angolo che determina la posizione dell’asse istantaneo di rotazione) è determi-
nato dalla condizione

vcm = ρcmφ̇

e dato che, come discusso in seguito, il modulo vcm della velocità del centro di massa è
costante avremo φ = φ0 +

v0
ρcm

t.

9Primo esercizio dello scritto di Fisica 1 del 19/6/2007
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Domanda 2

La velocità angolare sarà diretta come l’asse istantaneo di rotazione. Inoltre dovrà essere

vcm = ωzcm

possiamo quindi scrivere
~ω =

vcm

zcm
(x̂ cos φ + ŷ sin φ)

Per quanto riguarda il momento angolare, possiamo scriverlo rispetto a un polo preso
nel vertice del cono. Dato che questo è un punto fisso possiamo scrivere semplicemente

~L = IV~ω

dove IV è il tensore di inerzia relativo ad esso. Possiamo ottenere quest’ultimo in due pas-
si. Scriviamo anzitutto il tensore di inerzia relativo al vertice riferito agli assi principali
del cono.

I1

I2I3

~ω
α

Figura 6.33.: Gli assi principali di inerzia del cono (visto in sezione) e la loro relazione
rispetto al vettore velocità angolare, che è parallelo all’asse istantaneo di
rotazione. L’angolo α tra ~ω e la direzione principale corrispondente a I3 è
quindi la metà dell’angolo al vertice del cono.

Dal teorema di Steiner abbiamo

IV =




I0 + m`2
cm 0 0

0 I0 + m`2
cm 0

0 0 I1




Sempre nello stesso sistema possiamo scrivere la velocità angolare nella forma (vedere
Figura 6.33)

~ω =




0
ω sin α
ω cos α




da cui

~L = IV~ω =




0
(I0 + m`2

cm)ω sin α
I1ω cos α



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Quindi~L è contenuto nel piano determinato da ~ω e dall’asse del cilindro. Infine ~ω e~L
sono costanti in modulo e l’angolo tra di essi è pure costante. Possiamo scrivere l’energia
cinetica del cilindro nella forma

E =
1
2
~L · ~ω =

1
2
[(

I0 + m`2
cm
)

sin2 α + I1 cos2 α
]

ω2

e dalla sua conservazione segue che ~ω è costante in modulo, quindi anche vcm lo sarà.

Domanda 3

Possiamo risolvere il problema aggiungendo all’energia cinetica un termine di energia
potenziale gravitazionale. Abbiamo

E =
1
2

Iω2 + mgdcm

dove
dcm = zcm cos θ − xcm sin θ

cioè
dcm = −3

4
h cos α sin θ cos φ + costante

Dato che
ω = φ̇ cot α

abbiamo per piccole oscillazioni

E =
1
2

I cot2 αφ̇2 +
3
8

mgh cos α sin θφ2

e quindi

f =
1

2π

√
3mgh sin2 α sin θ

4I cos α

PROBLEMA 6.39

Un carrello in discesa ??

Il carrello in Figura 6.34 è ottenuto unendo due cilindri di massa m1 e m2 e raggio R
mediante una sbarra di massa mA e lunghezza `. Sia i cilindri che l’asta sono omogenei. I
cilindri sono liberi di ruotare attorno al proprio asse ed è presente attrito statico descritto
dal coefficiente µs.

1. Assumendo che i due cilindri ruotino senza strisciare calcolare le reazioni normali
N1 e N2 che il piano esercita su di essi.

2. Calcolare l’accelerazione del centro di massa del carrello.

3. Calcolare il minimo valore di µs necessario a permettere ai cilindri di ruotare senza
strisciare, per un fissato angolo α.
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α

mA, ℓ

m1, R

m2, R

Figura 6.34.: Il carrello descritto nell’esercizio.

Soluzione10

Domanda 1

N1

N2

P1

P2

m1g

m2g

α

Figura 6.35.: Le forze applicate al cilindro che contribuiscono nella direzione normale al
piano.

La somma delle forze applicate a ciascun cilindro in direzione perpendicolare al piano
devono annullarsi. Da questo segue

N1 + P1 −m1g cos α = 0
N2 + P2 −m2g cos α = 0

dove come indicato nella Figura 6.35 P1 e P2 sono le componenti perpendicolari al piano
delle forze che l’asta applica al centro del cilindro. Se consideriamo adesso il momento
delle forze applicate all’asta rispetto al suo centro di massa abbiamo che deve essere

P1
`

2
− P2

`

2
= 0

10Primo esercizio scritto 30/3/2007
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mentre la somma delle forze applicate all’asta in direzione perpendicolare al piano deve
pure annullarsi:

P1 + P2 + mAg cos α = 0 .

Da queste due relazioni segue

P1 = P2 = −1
2

mAg cos α

e quindi

N1 =

(
m1 +

1
2

mA

)
g cos α

N2 =

(
m2 +

1
2

mA

)
g cos α

Domanda 2

Possiamo scrivere l’energia del sistema nella forma

E =
1
2
(m1 + m2 + mA) ẋ2 +

1
2
(I1 + I2)ω2 − (m1 + m2 + mA) gx sin α

dove x è una coordinata scelta parallelamente al piano. Dalla condizione di rotolamento
puro segue che ω = ẋ/R e poichè I1 = 1

2 m1R2, I1 = 1
2 m2R2 abbiamo

E =
1
2

(
3
2

m1 +
3
2

m2 + mA

)
ẋ2 − (m1 + m2 + mA) gx sin α

Derivando rispetto al tempo otteniamo l’equazione del moto

ẍ =
(m1 + m2 + mA) g sin α( 3

2 m1 +
3
2 m2 + mA

)

che ci dà direttamente l’accelerazione.

Domanda 3

Possiamo utilizzare la soluzione della domanda precedente e scrivere per ciascun cilin-
dro

−Ii
ẍ
R

= FiR

dove Fi è la forza di attrito. Segue che

Fi = −
1
2

mi
(m1 + m2 + mA) g sin α( 3

2 m1 +
3
2 m2 + mA

)
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α

N1

N2

F1

F2

Figura 6.36.: Le reazioni vincolari del piano.

ma deve essere |Fi| ≤ µsNi da cui

mi
(m1 + m2 + mA) g sin α

(3m1 + 3m2 + 2mA)
≤ µs

(
mi +

1
2

mA

)
g cos α

ossia per i = 1, 2

µs ≥
(m1 + m2 + mA)

(3m1 + 3m2 + 2mA)

mi(
mi +

1
2 mA

) tan α .

La condizione più restrittiva è quella relativa alla più grande tra le due masse m1, m2.

PROBLEMA 6.40

Oscillazioni forzate di un’asta ??

Un’asta di lunghezza ` e massa m è fissata a una parete verticale attraverso un giunto
elastico con momento di richiamo M = −kθ, dove θ è l’angolo con il quale si deforma
il giunto. Si suppone il giunto sufficientemente rigido per cui gli angoli sono piccoli. In
assenza di gravità l’asta è perpendicolare alla parete.

1. Calcolare la posizione di equilibrio sotto l’influenza della gravità e il periodo delle
piccole oscillazioni.

2. La parete si muove con moto sinusoidale di ampiezza y0 con frequenza ω. Si
calcoli l’ampiezza del moto a regime dell’asta.

3. Il giunto ha una dissipazione viscosa che genera un momento Mv = −γθ̇. Si
calcoli l’ampiezza e la fase del moto a regime dell’asta in funzione di ω. Qual’è
l’energia dissipata per ciclo?
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θ

mg

Figura 6.37.: L’asta fissata sulla parete mediante un giunto elastico.

Soluzione11

Problema 1

Riferendosi alla Figura 6.37, possiamo scrivere l’equazione del moto nella forma

dL
dt

= −mg
`

2
cos θ − kθ (6.40.1)

dove L = Iθ̇ è il momento angolare rispetto ad un polo posto nel giunto elastico. Il
momento di inerzia è dato da

I =
ˆ `

0

m
`

r2dr =
m`2

3
(6.40.2)

Per piccoli angoli possiamo porre cos θ ' 1, ottenendo per la posizione di equilibrio

θeq = −
mg`
2k

(6.40.3)

Nella stessa approssimazione l’equazione del moto si scrive

Iδ̈ + kδ = 0 (6.40.4)

dove abbiamo posto θ = θeq + δ. Il periodo delle piccole oscillazioni è dato quindi da

T = 2π

√
I
k
= 2π

√
m`2

3k
(6.40.5)

11Secondo esercizio compitino 1/4/2009.
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Problema 2

Se la parete si muove secondo y = y0 cos ωt nel sistema solidale ad essa agisce una forza
apparente

F = my0ω2 cos ωt (6.40.6)

e quindi
Iδ̈ + kδ =M (6.40.7)

doveM è il momento della forza apparente,

M = m
`

2
y0ω2 cos ωt = Re

(
M0eiωt

)
(6.40.8)

ed abbiamo posto

M0 = m
`

2
y0ω2 . (6.40.9)

Utilizzando il metodo dei fasori otteniamo la soluzione a regime della forma

δ = Re
(
Aeiωt

)
(6.40.10)

con

A =
M0

(k− Iω2)
(6.40.11)

che rappresenta l’ampiezza del moto a regime.

Problema 3

L’equazione del moto diventa adesso

Iδ̈ + γδ̇ + kδ =M . (6.40.12)

Con lo stesso metodo utilizzato in precedenza otteniamo adesso

A =
M0

(k + iωγ− Iω2)
(6.40.13)

che corrisponde ad una ampiezza

|A| = M0√
γ2ω2 + (k− Iω2)2

(6.40.14)

e a una fase
φ = argA (6.40.15)
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con

cos φ =
k− Iω2

√
γ2ω2 + (k− Iω2)2

(6.40.16)

sin φ =
−ωγ√

γ2ω2 + (k− Iω2)2
. (6.40.17)

L’energia dissipata in un ciclo si può ottenere a regime calcolando il lavoro fatto dalla
forza esterna in un periodo. Tenendo conto che la forza è applicata al centro di massa
abbiamo

Wdiss =

ˆ T

0
F× v dt =

ˆ T

0
M× δ̇dt (6.40.18)

e d’altra parte

Wdiss =

ˆ T

0
Re
(
M0eiωt

)
× Re

(
iωAeiωt

)
dt (6.40.19)

Usando l’identità ˆ T

0
Re
(

ueiωt
)

Re
(

veiωt
)

dt =
π

ω
Re (u∗v) (6.40.20)

valida per due numeri complessi u, v qualsiasi, troviamo

Wdiss =
π

ω
Re [iωM0A] =

π

ω
Re
[

iωM2
0

k + iωγ− Iω2

]
(6.40.21)

ossia

Wdiss =
πωγM2

0

(k− Iω2)2 + ω2γ2
(6.40.22)

PROBLEMA 6.41

Distacco di una bacchetta rotante ??

La bacchetta rigida in Figura 6.38, di lunghezza `, massa m e spessore trascurabile, ruota
attorno all’asse verticale con velocità angolare costante ω. L’angolo θ tra asse e bacchetta
è fisso.

1. Calcolare l’energia cinetica del sistema.

2. Calcolare il vettore momento angolare del sistema,~L(t).

3. Supponendo che a un certo istante il vincolo venga a mancare discutere il moto
successivo tenendo conto dell’effetto della gravità.
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6.41. DISTACCO DI UNA BACCHETTA ROTANTE ??

ℓ,m

ω

Figura 6.38.: La bacchetta forma un angolo costante rispetto all’asse attorno al quale
ruota.

Soluzione12

Domanda 1

L’energia cinetica si può scrivere come energia di pura rotazione attorno al punto fisso,

E =
1
2

Iω2. (6.41.1)

Il calcolo del momento di inerzia I si può fare direttamente, integrando sulla lunghezza
della sbarra:

I =
ˆ `

0

m
`
(r sin θ)2 dr =

m
3
`2 sin2 θ . (6.41.2)

Domanda 2

Possiamo calcolare il momento angolare totale sommando i contributi di ogni elemento
della sbarra. Questo significa valutare

~L =

ˆ
dm~r ∧~v . (6.41.3)

Introducendo un versore τ̂ nella direzione della bacchetta e identificando l’asse di
rotazione con l’asse z possiamo scrivere

dm =
m
`

dr (6.41.4)

12Primo problema scritto 21/1/2009
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~r = τ̂r (6.41.5)

~v = ~ω ∧~r = ωr (ẑ ∧ τ̂) (6.41.6)

e quindi

~L =
mω

`
τ̂ ∧ (ẑ ∧ τ̂)

ˆ `

0
drr2 (6.41.7)

Sfruttando l’identità~a ∧
(
~b ∧~c

)
=~b (~a ·~c)−~c

(
~a ·~b

)
si trova

τ̂ ∧ (ẑ ∧ τ̂) = ẑ− τ̂ (ẑ · τ̂) = ẑ + cos θτ̂ (6.41.8)

e quindi, ponendo l’asse x ad un dato istante nel piano contenente l’asse di rotazione e
la bacchetta, abbiamo

~L =
mω

3
`2 (ẑ + cos θτ̂) =

mω

3
`2 sin θ [sin θẑ + cos θx̂] (6.41.9)

Notare che il momento angolare è sempre ortogonale alla bacchetta:

Domanda 3

Dal momento in cui il vincolo viene a mancare si conserva il momento angolare e l’ener-
gia. Quindi, supponendo che il distacco avvenga quando la bacchetta si trova nel piano
z,x:

1. Il centro di massa della bacchetta si muoverà di moto uniformemente accelerato
(accelerazione ), con la velocità iniziale che aveva al momento del distacco, cioè

~v0 =
1
2
~ω ∧~rdist =

`

2
ω (ẑ ∧ τ̂) =

`

2
ω sin θŷ (6.41.10)

2. Nel sistema del centro di massa, in caduta libera con la bacchetta, non vi sono
forze esterne. Il moto è quindi quello di una trottola simmetrica libera.

3. Ponendoci nel piano identificato dalla bacchetta e dalla velocità angolare ad un
istante dato come in Figura 6.39, possiamo scomporre ~ω in una componente pa-
rallela alla bacchetta ~ωP e in una trasversale ~ωT. Dato che il momento di inerzia
rispetto all’asse della bacchetta è nullo, avremo

~L = IT~ωT (6.41.11)

dove IT = 1
12 m`2 è il momento di inerzia della bacchetta rispetto ad un asse tra-

sverso passante per il centro di massa. Quindi anche ~ωT si conserva, e la bacchetta
ruota attorno a~L fisso nello spazio con velocità angolare ω sin θ.
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~ω

~ωT

~ωP

~L

Figura 6.39.: La bacchetta al momento del distacco: il momento angolare è in verde, la
velocità angolare in rosso.

PROBLEMA 6.42

Un altro giro della morte ??

La guida in Figura 6.40 è formata da settori di circonferenza, di raggio R2 e R3 > R2, che
sono collegati nella sequenza A− B, B− C, C− B e B− D. Un disco di raggio R1 < R2
e massa m rotola senza strisciare sulla guida, partendo dal punto A con velocità del
centro di massa vcm = v0.

1. Calcolare in modulo, direzione e verso la reazione vincolare della guida immedia-
tamente prima e immediatamente dopo il primo passaggio per il punto B e dire
se essa è impulsiva al momento del passaggio.

2. Ponendo v0 = 0 determinare il massimo valore di R2 per il quale la guida viene
percorsa completamente, considerando il vincolo monolatero.

3. Calcolare la frequenza delle piccole oscillazioni attorno al punto B.
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B

A

D

C

v0

R1
R3

R2

Figura 6.40.: La guida considerata nell’esercizio.

Soluzione13

Domanda 1

Dato che l’energia totale si conserva

E =
1
2

mv2
cm +

1
2

Icmω2 + mgz (6.42.1)

e che velocità del centro di massa e velocità angolare del disco sono legate da vcm =
−R1ω segue che

E =
1
2

(
m +

Icm

R2
1

)
v2

cm + mgz =
3
4

mv2
cm + mgz (6.42.2)

Questo significa che la velocità del centro di massa dipende solo dalla sua posizione
z. Quindi immediatamente prima e immediatamente dopo B vcm non sarà cambiata
(nemmeno in direzione, dato che sarà sempre orizzontale) e quindi non è presente
nessuna forza impulsiva.

Il centro di massa percorre una traiettoria circolare, per cui immediatamente prima di
B sarà

m
v2

cm
R3 − R1

= N −mg (6.42.3)

e immediatamente dopo

m
v2

cm
R2 − R1

= N −mg (6.42.4)

13Primo problema scritto 11/9/2008
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da cui si deduce che la reazione normale della guida è diversa.
Si può osservare che in B l’accelerazione tangenziale del centro di massa è nulla:

questo si ricava direttamente scrivendo l’energia nella forma

E =
3
4

m (R3 − R1)
2 θ̇2 + mg (R3 − R1) (1− cos θ) (6.42.5)

valida prima di B e derivando rispetto al tempo

Ė =
3
2

m (R3 − R1)
2 θ̇θ̈ + mg (R3 − R1) θ̇ sin θ = 0 (6.42.6)

si ottengono le equazioni del moto

3
2

m (R3 − R1)
2 θ̈ + mg (R3 − R1) sin θ = 0 (6.42.7)

che permettono di concludere θ̈ = 0 in θ = 0. Analogamente si può derivare l’equazione
del moto valida dopo B

3
2

m (R2 − R1)
2 θ̈ + mg (R2 − R1) sin θ = 0 (6.42.8)

in entrambi i casi si è utilizzata come coordinata l’angolo tra la direzione verticale e la
normale alla guida.

Dato che non c’è accelerazione tangenziale, non si avranno forze orizzontali, e la
reazione ha la sola componente normale discontinua calcolata precedentemente.

Domanda 2

La velocità nel punto C si calcola dalla conservazione dell’energia:

mgR3 =
3
4

mv2
cm + mg (2R2 − R1) (6.42.9)

da cui
v2

cm =
4
3

g (R1 + R3 − 2R2) (6.42.10)

ma per poter passare deve essere

m
v2

cm
(R2 − R1)

≥ mg (6.42.11)

da cui
4
3
(R1 + R3 − 2R2) ≥ (R2 − R1) (6.42.12)

e quindi

R2 ≤
7R1 + 4R3

11
(6.42.13)
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Domanda 3

Il periodo è la somma di un semiperiodo a sinistra di B più un semiperiodo a destra.
Il primo è determinato dalla equazione del moto scritta in precedenza, sviluppata per
piccole oscillazioni:

3
2

m (R3 − R1)
2 θ̈ + mg (R3 − R1) θ = 0 (6.42.14)

da cui

T1 = 2π

√
3 (R3 − R1)

2g
(6.42.15)

e analogamente la seconda

T1 = 2π

√
3 (R2 − R1)

2g
(6.42.16)

quindi

T =
T1 + T2

2
= π

√
3

2g

(√
R3 − R1 +

√
R2 − R1

)
(6.42.17)

PROBLEMA 6.43

Sbarra in guida circolare, vincolo bilatero ??

Una sbarra omogenea di lunghezza ` e massa m ha i due estremi vincolati (vincolo
bilatero) ad una guida circolare di raggio r > `/2 come in Figura 6.41. La guida è
montata verticalmente, in presenza di gravità. Non esiste nessun tipo di attrito.

θ

ℓ

Figura 6.41.: La sbarra con gli estremi vincolati alla guida circolare.

1. Se inizialmente θ = 0 determinare il minimo valore di θ̇(0) che permette alla
sbarra di percorrere un giro completo sulla guida.
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2. Scrivere le equazioni del moto del sistema. Esistono quantità conservate?

3. Calcolare il periodo delle piccole oscillazioni del sistema attorno alla posizione di
equilibrio stabile.

Soluzione14

Domanda 1

Possiamo scrivere l’energia del sistema nella forma

E =
1
2

Iθ̇2 −Mgd cos θ

In questa espressione d è la distanza tra il punto medio della sbarra (il suo centro di
massa) e il centro della guida, che vale

d =

√
r2 − `2

4

I è il momento di inerzia della sbarra rispetto all’asse di rotazione, che passa per il
centro della guida. I si calcola applicando il teorema di Steiner:

I =
1
12

M`2 + Md2

Per percorrere un giro completo dovrà essere cioè

θ̇(0) >

√
4Mgd

I

Domanda 2

Si conserva l’energia totale, dato che le reazioni vincolari non fanno lavoro sul sistema.
Le equazioni del moto si possono ottenere rapidamente derivando E rispetto al tempo

Ė = Iθ̈θ̇ + Mgdθ̇ sin θ = 0

da cui
Iθ̈ + Mgd sin θ = 0

Domanda 3

Possiamo utilizzare l’equazione del moto determinata precedentemente. La posizione
di equilibrio stabile è chiaramente θ = 0, che è un minimo dell’energia potenziale
gravitazionale. Considerando piccole oscillazioni possiamo porre sin θ ' θ e quindi

Iθ̈ + Mgdθ = 0

14Primo esercizio scritto 11/1/2007
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6.44. URTO CON UN’ASTA SUL FONDO DI UNA SCODELLA ??

Questa è l’equazione del moto di un oscillatore armonico di periodo

T = 2π

√
I

Mgd

PROBLEMA 6.44

Urto con un’asta sul fondo di una scodella ??

r,m

r

m

A B

O

Figura 6.42.: L’asta con gli estremi vincolati alla guida semicircolare.

Un’asta di massa m e lunghezza r si muove con gli estremi vincolati ad una guida
semicircolare priva di attrito. Il raggio della guida è uguale alla lunghezza dell’asta,
e quest’ultima si trova inizialmente in equilibrio nella posizione in Figura 6.42. Una
particella di massa uguale a quella dell’asta viene lasciata cadere sulla verticale di un’e-
stremo dell’asta, da un’altezza iniziale uguale a quella del centro della guida. L’urto con
l’estremo dell’asta è istantaneo e la particella rimane attaccata ad essa.

1. Determinare l’angolo che l’asta forma con l’orizzontale nella posizione di equili-
brio del sistema.

2. Calcolare l’energia dissipata durante l’urto.

3. Calcolare l’altezza massima raggiunta dal centro di massa del sistema dopo l’urto.

Soluzione15

Domanda 1

Il centro di massa del sistema si trova nel punto P posto a una distanza r/4 dal punto A,
e la posizione di equilibrio si avrà quando l’energia potenziale gravitazionale è minima,

15Primo esercizio compitino 23 marzo 2010
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r
√
3
2

A B

O

r/4

P

Figura 6.43.: La posizione del centro di massa e l’angolo di rotazione all’equilibrio.

cioè quando P si troverà sotto O. Questo significa che l’asta avrà ruotato di un angolo θ
dato da

tan θ =
1
4 r
√

3
2 r

=
1

2
√

3

Domanda 2

Immediatamente prima dell’urto la velocità della particella vale (h = r
√

3/2 è l’altezza
da cui cade)

v0 =
√

2gh =

√
gr
√

3

Durante l’urto si conserva il momento angolare rispetto al punto O, perchè le uni-
che forze impulsive esterne (le reazioni vincolari) hanno momento nullo. Questo vale
immediatamente prima

LO = mv0
r
2
= m

r
2

√
gr
√

3

e immediatamente dopo
LO = Iω

dove I è il momento di inerzia del sistema rispetto ad O:

I =
(

1
12

mr2 +
3
4

mr2
)
+ mr2 =

11
6

mr2

Nell’espressione precedente il termine tra parentesi è il momento di inerzia della sbarra,
calcolato tramite il teorema di Steiner, e l’altro il contributo della particella. Abbiamo
quindi

ω2 =
(mr

2I

)2
gr
√

3

L’energia cinetica del sistema dopo l’urto vale quindi

E f =
1
2

Iω2 =
3
√

3
44

mgr
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mentre prima valeva

Ei =
1
2

mv2
0 =

√
3

2
mgr

l’energia dissipata è quindi

∆E = Ei − E f =
19
44

√
3mgr

Domanda 3

Il centro di massa raggiungerà la sua altezza massima rispetto alla quota iniziale quando
tutta l’energia cinetica si sarà convertita in energia potenziale. Quindi

3
√

3
44

mgr = 2mg∆h

ossia

∆h =
3
√

3
88

r

PROBLEMA 6.45

Oscillatore con carrucole e corpi rigidi ??

K

M

M1, R1 M2, R2

Figura 6.44.: L’oscillatore descritto nell’esercizio.

I due dischi in Figura 6.44, di massa M1, M2 e raggio R1, R2 sono vincolati a ruotare
intorno ai loro centri e lo fanno senza strisciare uno sull’altro. Una massa M è appesa a
un filo inestensibile avvolto al disco di destra, il sinistro è collegato mediante una molla
di costante elastica e lunghezza a riposo nulla ad un punto fisso.

1. Il sistema è inizialmente in quiete, e l’allungamento della molla è nullo. Viene
lasciato libero di muoversi: calcolare di quanto si abbassa al massimo la massa M.

2. Mostrare che il sistema è equivalente ad un oscillatore armonico, e determinarne
la frequenza.
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6.45. OSCILLATORE CON CARRUCOLE E CORPI RIGIDI ??

3. Se sulla massa M agisce una forza di attrito viscoso F = −λv, dove λ è una
costante positiva dalle opportune dimensioni, valutare il fattore di qualità dell’o-
scillatore.

Soluzioni16

Domanda 1 L’energia del sistema si conserva, e vale

E =
1
2

I1ω2
1 +

1
2

I2ω2
2 +

1
2

Mẏ2 + Mgy +
K
2

δ2

dove ω1, ω2 sono le velocità angolari dei due cilindri ed y l’altezza della massa misurata
rispetto alla posizione iniziale. La deformazione della molla δ è data da δ = y a causa
della condizione di rotolamento puro. Uguagliando l’energia iniziale a quella nella
posizione di massimo allungamento abbiamo

Mgy +
K
2

y2 = 0

da cui otteniamo il massimo abbassamento

y = −2Mg
K

Domanda 2 Le condizioni di rotolamento puro sono

ω1R1 = −ω2R2

ω2R2 = y

da cui segue che l’energia può essere scritta nella forma (usando I1 = M1R2
1/2 e I2 =

M2R2
2/2)

E =
1
2

(
M +

1
2

M1 +
1
2

M2

)
ẏ2 + Mgy +

K
2

y2

Derivando rispetto al tempo

Ė =

(
M +

1
2

M1 +
1
2

M2

)
ẏÿ + Mgẏ + Kyẏ = 0

troviamo le equazioni del moto
(

M +
1
2

M1 +
1
2

M2

)
ÿ + Ky = −Mg

che sono quelle di un oscillatore armonico sottoposto ad una forza costante. La frequen-
za sarà dunque

f =
1

2π

√
2K

2M + M1 + M2

16Primo esercizio compitino 13 aprile 2011
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Non volendo utilizzare l’energia, possiamo scrivere direttamente le equazioni del
moto. Per la massa sospesa abbiamo

Mÿ = −Mg + T

dove T è la tensione del filo. La seconda equazione cardinale per il primo cilindro si
scrive

I1θ̈1 = −KR2
1θ1 + FR1

dove F è la forza applicata al punto di contatto e θ1 è lo spostamento angolare dalla
posizione iniziale. Per il secondo abbiamo

I2θ̈2 = FR2 − TR2

dove θ2 è lo spostamento angolare dalla posizione iniziale. La condizione di puro
rotolamento si scrive

R1θ̇1 = −R2θ̇2

ossia
R1θ1 = −R2θ2

Inoltre
y = R2θ2

Esprimendo tutte le equazioni in funzione di y abbiamo

Mÿ = −Mg + T

I1ÿ = −KR2
1y− FR2

1

I2ÿ = FR2
2 − TR2

2

da cui (
M +

I1

R2
1
+

I2

R2
2

)
ÿ = −Mg− Ky

ossia (
M +

1
2

M1 +
1
2

M2

)
ÿ + Ky = −Mg

Domanda 3 In presenza di attrito viscoso l’equazione del moto diventa
(

M +
1
2

M1 +
1
2

M2

)
ÿ + λẏ + Ky = −Mg

Il fattore di qualità è dato dal prodotto

Q = ωτ
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dove τ è il tempo di smorzamento,

τ =
2
(

M + 1
2 M1 +

1
2 M2

)

λ

Quindi

Q =
2
(

M + 1
2 M1 +

1
2 M2

)

λ

√
K

M + 1
2 M1 +

1
2 M2

=
1
λ

√
2K (2M + M1 + M2)

PROBLEMA 6.46

Ancora sulla caduta di un manubrio ??

Facendo riferimento all’esercizio 6.36 determinare come varia durante la caduta (cioè in
funzione di θ) la reazione tangente al piano di appoggio se

1. il piano è privo di attrito

2. Il manubrio ruota senza strisciare sul piano di appoggio

Soluzione

Se il piano è privo di attrito la reazione tangente è per definizione nulla.
Nel caso di rotolamento puro invece possiamo scrivere

Rx = 3Mẍcm (6.46.1)

dove xcm è la posizione orizzontale del centro di massa del sistema rispetto a un sistema
di riferimento inerziale. Fissando un’origine sul piano possiamo scrivere

xcm = X +

(
R +

L
2

)
cos θ (6.46.2)

dove X è la posizione del punto di appoggio del manubrio rispetto all’origine scelta.
Derivando rispetto al tempo abbiamo

ẋcm = Ẋ− θ̇

(
R +

L
2

)
sin θ (6.46.3)

Ma Ẋ è anche la velocità del centro della sfera appoggiata a terra, che vale −Rθ̇ a causa
della condizione di rotolamento. Quindi

ẋcm = −Rθ̇ − θ̇

(
R +

L
2

)
sin θ (6.46.4)

Derivando ancora abbiamo

ẍcm = −Rθ̈ −
(

R +
L
2

) (
θ̇2 cos θ + θ̈ sin θ

)
(6.46.5)
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6.47. CADUTA DI DUE ASTE INCERNIERATE ??

e quindi

Rx = −3M
[

Rθ̈ +

(
R +

L
2

) (
θ̇2 cos θ + θ̈ sin θ

)]
(6.46.6)

Dalla legge di conservazione dell’energia scritta nell’esercizio 6.36 possiamo scrivere θ̇2

in funzione dell’angolo, ottenendo (Equazioni (6.36.8) e (6.36.9))

θ̇2 =
6Mg

(
R + L

2

)

Icm + 3M
{(

R + L
2

)2
cos2 θ +

[
R +

(
R + L

2

)
sin θ

]2
} ≡ F(θ)

e derivando rispetto al tempo otteniamo (omettiamo i calcoli per semplicità)

θ̈ =
1
2

dF
dθ

(6.46.7)

che sostituite nella (6.46.6) danno la soluzione del problema. Notare che omettendo il
termine X nella (6.46.2) si sarebbe ottenuto un risultato scorretto, infatti (R + L/2) cos θ
è la posizione orizzontale del centro di massa rispetto al punto di contatto tra corpo
rigido e piano orizzontale, che si muove orizzontalmente ed in particolare accelera.

PROBLEMA 6.47

Caduta di due aste incernierate ??

Due aste di lunghezza `1 ed e di massa e m2 sono collegate ad un estremo da una
cerniera che permette una rotazione libera. L’altro estremo dell’asta di lunghezza `1
è fissato ad un punto fisso, come in Figura 6.45, con un altra cerniera identica alla
precedente. Inizialmente le due aste sono in quiete, ed entrambe inclinate di un angolo
θ0 rispetto all’orizzontale. Vengono quindi lasciate libere di cadere sotto l’azione di un
campo di gravità costante.

Per opportuni valori di , `2, m1 e m2 è possibile che durante la caduta le aste rimangano
allineate?

Soluzione

Supponiamo che le due aste rimangano allineate, e verifichiamo che le equazioni car-
dinali siano consistenti. La seconda equazione cardinale per il sistema complessivo,
scegliendo come polo la cerniera che si trova ad una estremità, si scrive

[
1
3

m1`
2
1 +

1
12

m2`
2
2 + m2

(
`1 +

1
2
`2

)2
]

θ̈ = −
[

1
2

m1`1 + m2

(
`1 +

1
2
`2

)]
g cos θ

(6.47.1)
che permette subito di calcolare l’accelerazione angolare θ̈. La seconda equazione cardi-
nale per la sbarra di lunghezza `2, rispetto al suo centro di massa, si scrive invece

1
12

m2`
2
2θ̈ = F⊥

`2

2
(6.47.2)
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`1,m1

`2,m2
g

θ

θ

Figura 6.45.: Le due aste (blu e rossa) e gli snodi (in verde). Nella configurazione iniziale
le sbarre sono allineate, come in figura.

dove F⊥ è la componente della forza che agisce sulla sbarra alla giuntura perpendicolare
alla sbarra stessa. Da questo segue

F⊥ =
1
6

m2`2θ̈ (6.47.3)

Chiaramente le equazioni (6.47.1) e (6.47.2) ammettono una soluzione per qualsiasi valo-
re dei parametri, quindi non ci danno informazioni sul mantenimento dell’allineamento
tra le due sezioni. Però in linea di principio permettono di calcolare in modo univoco
θ(t) e F⊥.

Date queste informazioni, verifichiamo la compatibilità con le prime equazioni cardi-
nali. Consideriamo adesso l’accelerazione tangenziale del centro di massa della sbarra
di lunghezza `2. Deve essere

m2

(
`1 +

`2

2

)
θ̈ = −m2g cos θ − F⊥ (6.47.4)

ossia, sostituendo l’espressione di F⊥ determinata precedentemente,
(
`1 +

2
3
`2

)
θ̈ = −g cos θ (6.47.5)

Sostituiamo infine θ̈ usando la (6.47.1)
(
`1 +

2
3
`2

) [
1
2

m1`1 + m2

(
`1 +

1
2
`2

)]
=

1
3

m1`
2
1 +

1
12

m2`
2
2 +m2

(
`1 +

1
2
`2

)2

(6.47.6)

Questa è la relazione cercata tra i parametri.
Studiamo in particolare il caso in cui la densità lineare di massa delle due aste è la

stessa. In questo caso abbiamo
(
`1 +

2
3
`2

) [
1
2
`2

1 + `2

(
`1 +

1
2
`2

)]
=

1
3
`3

1 +
1

12
`3

2 + `2

(
`1 +

1
2
`2

)2

(6.47.7)
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che si può semplificare come

`1 [`1m1 + `2 (2m1 + m2)] = 0 (6.47.8)

Quindi, a parte il caso banale `1 = 0, non è possibile mantenere le sbarre allineate
durante la caduta.

PROBLEMA 6.48

Pendolo fisico con contrappeso ??

Figura 6.46.: Il sistema considerato nell’esercizio.

Un’asta omogenea di lunghezza L, massa m e spessore trascurabile è rigidamente
connessa ad un disco di raggio r e massa m, come in Figura 6.46. Il disco è vincolato a
ruotare attorno ad un perno fisso passante per il suo centro. Uno degli estremi dell’asta
coincide con il centro del disco. Attorno al disco è avvolto un filo inestensibile di massa
trascurabile, che scorre sul bordo senza strisciare. All’estremità inferiore del filo è sospe-
so un corpo puntiforme di massa m. Tutti e tre i corpi hanno la stessa massa. Il tutto è
immerso in un campo gravitazionale uniforme di intensità g diretto verso il basso.

1. Assumendo che la sbarra sia inizialmente ferma formando un angolo θ0 noto
con la verticale, determinare quali condizioni devono soddisfare i parametri del
sistema (m, L e r) affinchè la massa sospesa al filo acceleri verso il basso.

2. Trovare eventuali posizioni di equilibrio stabile del sistema, determinando che
condizioni devono essere soddisfatte dai parametri affinchè esistano.

3. Nell’ipotesi che una posizione di equilibrio stabile esista, determinare la frequenza
delle piccole oscillazioni attorno a questa.
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Soluzione17

Domanda 1

Il disco ruota soggetto ai momenti di due forze, calcolati rispetto al centro del disco: la
forza peso dell’asta e la tensione della fune:

Iω̇ = −L
2

mg sin θ + rT (6.48.1)

dove I è il momento di inerzia del sistema calcolato rispetto al perno del disco. Per
ora non serve calcolarlo. Abbiamo preso come verso positivo per ω quello che deter-
mina una rotazione in senso anti-orario. Il moto del corpo appeso al filo è determinato
dall’equazione

mz̈ = −mg + T (6.48.2)

dove z è crescente verso l’alto. Il fatto che la fune non strisci sul disco dà il vincolo:

z̈ = −rω̇ (6.48.3)

Sostituendo nell’Equazione (6.48.1) e ricavando T dalla (6.48.2) si ottiene

z̈ = mg
L
2 sin θ − r

I
r + mr

(6.48.4)

Il corpo accelera verso il basso se z̈ < 0, ovvero se

L <
2r

sin θ
(6.48.5)

Domanda 2

Per trovare le posizioni di equilibrio si scrive l’energia potenziale del sistema e si cercano
i minimi. L’energia potenziale ha solamente contributi gravitazionali:

U = mgz−mg
L
2

cos θ = −mgrθ −mg
L
2

cos θ = −mg
(

rθ +
L
2

cos θ

)
(6.48.6)

dove si è usata la relazione di rotolamento della corda (rθ̇ = −ż) e si è omessa una
costante irrilevante. Otteniamo la derivata

dU
dθ

= mg
(
−r +

L
2

sin θ

)
(6.48.7)

che si annulla quando

sin θ =
2r
L

(6.48.8)

17Primo problema compitino 18 aprile 2011
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Esiste soluzione solamente se 2r/L < 1 ovvero L > 2r. In questo caso esistono due
angoli che danno lo stesso seno, uno compreso tra 0 e π/2 e l’altro compreso tra π/2 e
π. Per vedere quali posizioni sono di equilibrio stabile, serve la derivata seconda

d2U
dθ2 = mg

L
2

cos θ (6.48.9)

che è positiva (equilibrio stabile) per 0 < θeq < π/2 e negativa (equilibrio instabile) per
π/2 < θeq < π.

Domanda 3

La frequenza delle piccole oscillazioni si trova ponendo θ = θeq + δ nell’espressione
dell’energia

E =
m
2

ż2 +
1
2

Iθ̇2 −mg
[

rθ − L
2

cos θ

]
(6.48.10)

Sviluppando al secondo ordine si trova

E =
1
2
(
mr2 + I

)
δ̇2 −mg

[
r
(
θeq + δ

)
− L

2
cos

(
θeq + δ

)]

=
1
2
(
mr2 + I

)
δ̇2 −mg

[
r
(
θeq + δ

)
− L

2
cos θeq +

L
2

δ sin θeq −
1
2

L
2

δ2 cos θeq

]
+ O(δ2)

=
1
2
(
mr2 + I

)
δ̇2 +

1
2

mg
L
2

δ2 cos θeq + costante + O(δ2) (6.48.11)

Il momento d’inerzia rispetto al perno è dato dalla somma dei contributi del disco e
dell’asta (che si ottiene usando il teorema di Koenig):

I =
1
2

mr2 +

[
1
12

mL2 + m
(

L
2

)2
]
= m

(
r2

2
+

L2

3

)
(6.48.12)

La pulsazione delle piccole oscillazioni è data infine da

Ω2 =
L
2 cos θeq

I + mr2 =
mg L

2

√
1− sin2 θeq

m
( 3

2 r2 + 1
3 L2
)

=
g L

2

√
1− 4r2

L2( 3
2 r2 + 1

3 L2
) =

g
√

L2

4 − r2

( 3
2 r2 + 1

3 L2
) (6.48.13)

PROBLEMA 6.49

Un carretto in discesa ??

Un carretto è costruito come in Figura 6.47 da tre cilindri uniti tra loro da tre barre rigide
e prive di massa. I cilindri possono ruotare liberamente attorno al proprio asse. Si ha
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R1,M1

R2,M2

R3,M3

θ

g

Figura 6.47.: Lo schema del carrello. I tre cilindri hanno massa M1, M2, M3 e raggi R1,
R2, R2.

rotolamento puro sia nei punti di contatto tra i cilindri, sia nel contatto tra cilindri e
piano.

Il carretto è appoggiato su un piano inclinato di un angolo θ rispetto all’orizzontale,
ed è immerso in un campo gravitazionale costante.

1. Il carretto può scendere lungo il piano per qualsiasi valore di R1, R2 e R3?

2. Calcolare l’accelerazione del carretto.

Soluzione

Se indichiamo con ω1, ω2 e ω3 le velocità angolari dei tre cilindri le condizioni di
rotolamento puro sul piano inclinato danno

vcm = −R1ω1 (6.49.1)
vcm = −R3ω3 (6.49.2)

dove vcm è la velocità del centro di massa del carretto, parallela al piano. Imponendo
rotolamento puro anche nei punti di contatto tra i cilindri abbiamo inoltre

ω1R1 = −ω2R2 (6.49.3)
ω3R3 = −ω2R2 (6.49.4)

Abbiamo quattro condizioni per le quattro variabili vcm, ω1, e ω3 che però non sono tutte
indipendenti tra loro: ad esempio sottraendo membro a membro le Equazioni (6.49.1)
e (6.49.2) oppure le Equazioni (6.49.3) e (6.49.4) otteniamo infatti lo stesso risultato. In
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conclusione è possibile esprimere tutte le velocità angolari in funzione della velocità vcm

ω1 = −vcm

R1

ω2 =
vcm

R2

ω3 = −vcm

R3

ma quest’ultima può avere un valore arbitrario e quindi la discesa è possibile.
Un metodo veloce per calcolare l’accelerazione è scrivere l’energia del carretto. Ab-

biamo

E =
1
2

I1ω2
1 +

1
2

I2ω2
2 +

1
2

I3ω2
3 +

1
2
(M1 + M2 + M3) v2

cm + (M1 + M2 + M3) gh (6.49.5)

dove I1 = M1R2
1/2, I2 = M2R2

2/2 e I3 = M3R2
3/2 sono i momenti di inerzia dei cilindri

rispetto ad un asse passante per il centro di massa. Possiamo anche scrivere

h = h0 − scm sin θ

dove scm è lo spostamento del centro di massa rispetto alla posizione iniziale, che si
trova ad una quota h0. Chiaramente vcm = ṡcm. Sostituendo abbiamo

E =
1
2

3
2
(M1 + M2 + M3) ṡ2

cm + (M1 + M2 + M3) g (h0 − scm sin θ) (6.49.6)

e derivando rispetto al tempo

3
2
(M1 + M2 + M3) ṡcm s̈cm − (M1 + M2 + M3) gṡcm sin θ = Ė = 0 (6.49.7)

da cui

s̈cm =
2
3

g sin θ (6.49.8)

PROBLEMA 6.50

Caduta di una torre ? ? ?

Su un piano inclinato rispetto all’orizzontale di un angolo α si costruisce una torre come
in Figura 6.48 sovrapponendo un numero infinito di strati. Ciascun strato è formato da
una coppia di cilindri di raggio R e massa M, sui quali appoggia un parallelepipedo di
massa M. I cilindri rotolano senza strisciare su tutti i piani con i quali sono a contatto.

Determinare le accelerazioni angolari dei cilindri.
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ω1

ω2

ω3

ω4

ω5
ωk

fk

gk

θ

g

Figura 6.48.: La torre sul piano inclinato. Con gk si indica la componente della forza di
contatto esercitata dallo strato k-simo di cilindri sul piano inferiore paral-
lela a quest’ultimo. Similmente con fk si indica la componente della forza
di contatto esercitata dallo strato k-simo di cilindri sul piano superiore,
sempre parallela a quest’ultimo.

Soluzione

Se scriviamo le equazioni del moto per i cilindri e per i parallelepipedi, notiamo che
queste consistono in relazioni lineari tra le costanti in gioco. Inoltre l’unica componente
rilevante dell’accelerazione di gravità è quella parallela al piano. Di conseguenza per
motivi dimensionali l’accelerazione angolare dei cilindri del primo strato dovrà essere
della formadove β è una costante adimensionale da determinare. Per la condizione di
rotolamento puro l’accelerazione del primo parallelepipedo è parallela al piano inclinato
e vale

a1 = −2Rω̇1 = −2βg sin θ (6.50.1)

Consideriamo adesso il sistema appoggiato su questo parallelepipedo. Dato che la torre
è costituita da un numero infinito di strati, esso è indistinguibile dalla torre completa.
L’unica differenza è che nel sistema solidale con la base dovremo tenere conto della
forza apparente dovuta all’accelerazione, che si tradurrà in una accelerazione di gravità
efficace lungo il piano uguale a

g′ sin θ = g sin θ − a1 = g sin θ (1 + 2β) (6.50.2)

e di conseguenza

ω̇2 = β
g′ sin θ

R
= β

g sin θ

R
(1 + 2β) (6.50.3)

Scriviamo adesso le equazioni del moto per i cilindri del primo strato. Abbiamo per il
centro di massa di ciascuno di essi

−MRω̇1 = −Mβg sin θ = Mg sin θ − 1
2
( f1 + g1) (6.50.4)
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ω2 ω2

ω1 ω1

a

g1

f1

g2

f2

Mg sin θ Mg sin θ

Mg sin θ

Mg sin θMg sin θ

Mg sin θ

Figura 6.49.:

e per l’accelerazione angolare

Iω̇1 =
1
2

MR2β
g sin θ

R
=

1
2

R ( f1 − g1) (6.50.5)

Per il centro di massa del parallelepipedo abbiamo invece

Ma1 = −2Mβg sin θ = f1 + g2 (6.50.6)

Abbiamo tre relazioni e quattro incognite (gta, f1, g1, g2). Aggiungiamo quindi le equa-
zioni per il secondo strato. Nel sistema di riferimento solidale con il parallelepipedo
abbiamo per il centro di massa di ciascuno dei cilindri

−MRω̇2 = −MRβ
g sin θ

R
(1 + 2β) = Mg sin θ (1 + 2β)− 1

2
( f2 + g2) (6.50.7)

e per le loro accelerazioni angolari

Iω̇2 =
1
2

MR2β
g sin θ

R
(1 + 2β) =

1
2

R ( f2 − g2) (6.50.8)

Abbiamo adesso un numero sufficiente di equazioni. Le riscriviamo per chiarezza:

2M (1 + β) g sin θ = f1 + g1

Mβg sin θ = f1 − g1

−2Mβg sin θ = f1 + g2

2Mg sin θ (1 + β) (1 + 2β) = f2 + g2

Mg sin θβ (1 + 2β) = f2 − g2
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Ricaviamo f1 sommando membro a membro le prime due equazioni e g2 sottraendo le
ultime due

f1 = Mg sin θ

(
1 +

3
2

β

)

g2 = Mg sin θ (1 + 2β)

(
1 +

1
2

β

)

ed infine sostituiamo nella terza, ottenendo

1 +
3
2

β + (1 + 2β)

(
1 +

1
2

β

)
+ 2β = 0

Abbiamo le due soluzioni β = −3 ±
√

7. Abbiamo già determinato le accelerazioni
angolari dei primi due strati di cilindri in funzione di β. Per determinare quelle dei
successivi possiamo osservare che l’accelerazione del parallelepipedo k-simo sarà

ak = −2R
k

∑
i=1

ω̇k (6.50.9)

e risolvendo per i cilindri posati sopra di esso avremo

ω̇k+1 =
β

R
(g sin θ − ak)

che confrontata con la relazione valida per lo strato precedente

ω̇k =
β

R
(g sin θ − ak−1)

permette di ottenere (sottraendo membro a membro) la relazione ricorsiva

ω̇k+1 = (1 + 2β) ω̇k

ossia
ω̇k = (1 + 2β)k−1 ω̇1 = β (1 + 2β)k−1 g sin θ

R
che non diverge se |1 + 2β| < 1. Di conseguenza l’unica soluzione accettabile corrispon-
de a β = −3 +

√
7: numericamente questo significa

ω̇k ' −0.35× (0.29)k−1 g sin θ

R
(6.50.10)

cioè la accelerazioni angolari tendono a zero esponenzialmente con k. Anche le accelera-
zioni dei parallelepipedi si calcolano facilmente: sommando la serie geometrica (6.50.9)
abbiamo

ak = g sin θ
[
1− (1 + 2β)k−1

]
(6.50.11)

cioè limk→∞ ak = g sin θ: l’accelerazione dei parallelepipedi degli strati più alti è sempre
più vicina a quella di un corpo che scivola liberamente sul piano inclinato. Quelle dei
parallelepipedi sottostanti sono inferiori.

468 versione del 5 ottobre 2016



6.51. CILINDRO VINCOLATO AD UNA MOLLA ?? S

PROBLEMA 6.51

Cilindro vincolato ad una molla ?? S

k

O

A

Figura 6.50.: Il cilindro vincolato da una molla, indicata dalla linea trattaggiata.

Il cilindro in Figura 6.50, di raggio R e massa M, rotola senza strisciare su un piano
orizzontale. Il suo centro A è fissato ad un punto O del piano da una molla di costante
elastica k e lunghezza a riposo nulla. Inizialmente A si trova sulla verticale di O.

1. Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compie-
re un giro completo.

2. Scelta un’opportuna coordinata scrivere l’equazione del moto del cilindro.

3. Determinare la frequenza delle piccole oscillazioni attorno alla posizione di equi-
librio.

Soluzione18

Domanda 1 L’energia del sistema si conserva e vale

E =
1
2

Iω2 +
k
2
`2

dove I = 3
2 MR2 è il momento di inerzia del cilindro rispetto al punto di appoggio, ω la

velocità angolare e ` la lunghezza della molla. Inizialmente

Ei =
1
2

Iω2
0 +

k
2

R2

e dopo un giro completo, supponendo che il cilindro sia fermo,

E f =
k
2
(

R2 + 4π2R2)

Ponendo Ei = E f troviamo

ω0 =

√
4π2kR2

I
18Primo esercizio scritto Fisica 1 del 10 settembre 2010
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abbiamo2 Scrivendo l’energia in funzione dell’angolo di rotazione θ abbiamo

E =
1
2

Iθ̇2 +
k
2
(

R2 + R2θ2)

ed eguagliando a zero la derivata dell’energia

Ė = Iθ̇θ̈ + kR2θθ̇ = 0

otteniamo l’equazione del moto

Iθ̈ + kR2θ = 0

che corrisponde ad un oscillatore armonico.

Domanda 3 Dall’equazione del moto precedente troviamo direttamente

f =
1

2π

√
kR2

I
=

1
2π

√
2k

3M

Notare che l’approssimazione di piccole oscillazioni non è necessaria, dato che il sistema
è un oscillatore armonico.

PROBLEMA 6.52

Urto tra un triangolo e un quadrato ??

A′B′

C ′

AB

C D

V0

mT mQ

Figura 6.51.: Il triangolo e il quadrato prima dell’urto.

Un quadrato di lato a e massa mQ è appoggiato su un piano orizzontale privo di attrito.
Un triangolo isoscele e rettangolo di massa mT, con cateti della stessa lunghezza del lato
del quadrato, disposto come in Figura 6.51, si muove liberamente verso il quadrato con
velocità iniziale v0. L’urto avviene istantaneamente e il vertice A′ del triangolo rimane
vincolato al vertice B del quadrato. Il triangolo può però ruotare liberamente attorno ad
A′ ≡ B. Dire anzitutto se durante l’urto si conserva il momento angolare del sistema
rispetto al polo B. Determinare quindi per quale minima velocità v0 l’ipotenusa del
triangolo arriva a contatto con un lato del quadrato.
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Soluzione

Durante l’urto l’unica forza impulsiva che agisce sul triangolo è la reazione vincolare in
A′ ≡ B. Di conseguenza durante l’urto si conserva il momento angolare del triangolo
rispetto a tale punto. Prima dell’urto questo vale

~Li = mT~b ∧ ~V0

dove~b è il vettore che unisce il punto A′ ≡ B con il centro di massa del triangolo. Il
valore di~b verrà determinato nell’Esercizio 6.54.

Dopo l’urto il quadrato si muoverà con velocità V, e il triangolo ruoterà attorno al
punto A′ ≡ B con velocità angolare ω.

B′

C ′

AA′ ≡ B

C D

V

ω
cm

~b

x

y

Figura 6.52.: Il triangolo e il quadrato immediatamente dopo l’urto.

Il suo momento angolare sarà dato dal contributo del centro di massa e dal momento
angolare di rotazione attorno ad esso. La velocità del centro di massa del triangolo sarà

~VCM,T = Vx̂ + ~ω ∧~b

e quindi
~L f = mT~b ∧ ~VCM,T + IT~ω

dove abbiamo indicato con IT il momento di inerzia del triangolo rispetto ad un asse
parallelo all’asse z passante per il suo centro di massa, che calcoleremo nell’Esercizio 6.54.
Dalla conservazione segue che

mT~b ∧ ~V0 = mT~b ∧
(

Vx̂ + ~ω ∧~b
)
+ IT~ω

= mTV~b ∧ x̂ + mT~b ∧
(
~ω ∧~b

)
+ IT~ω

Inoltre si conserva la quantità di moto orizzontale del sistema, cioè

mTV0 = mTV + mT

(
~ω ∧~b

)
· x̂ + mQV
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Queste due equazioni permettono di calcolare le velocità V e ~ω. Calcoliamo esplicita-
mente i prodotti vettoriali,Utilizzando queste identità possiamo riscrivere la conserva-
zione del momento angolare come

−mTV0by = −mTVby + mTω
(

b2
x + b2

y

)
+ ITω

mTV0 = mTV −mTωby + mQV

e risolvendo troviamo

ω = − bymQmT

mT

[
b2

x(mQ + mT) + b2
ymQ

]
+ IT(mQ + mT)

V0

V =
mT
(
mTb2

x + IT
)

mT

[
b2

x(mQ + mT) + b2
ymQ

]
+ IT(mQ + mT)

V0

Dato che V 6= 0 dopo l’urto il quadrato si muove, e quindi ha un momento angolare non
nullo. Di conseguenza il momento angolare del quadrato non si è conservato (prima
dell’urto è nullo) e neppure lo ha fatto quello totale del sistema. Questo significa che
durante l’urto il piano orizzontale ha applicato un momento impulsivo diverso da zero
al quadrato.

Dopo l’urto si conserva l’energia totale del sistema e la sua quantità di moto orizzon-
tale. La minima velocità necessaria per avere il contatto si può determinare scrivendo
l’energia iniziale nella forma

Ei =
1
2

mTV2
CM,T +

1
2

ITω2 +
1
2

mQV2 + mTgby

dove

V2
CM,T =

(
Vx̂ + ~ω ∧~b

)2

=
(
Vx̂ + ωbxŷ−ωby x̂

)2

=
(
V −ωby

)2
+ ω2b2

x

e ω, V sono le velocità appena determinate. L’energia al momento del contatto sarà
invece la somma dell’energia cinetica del centro di massa e di quella gravitazionale

E f =
1
2
(mT + mQ)

(
mTV0

mT + mQ

)2

+ mTg
√

2
2
(
by + bx

)

Dall’eguaglianza Ei = E f si determina V0.

PROBLEMA 6.53

Cilindro vincolato ad una molla sul bordo ??

Il cilindro in Figura 6.53, di raggio R e massa M, rotola senza strisciare su un piano
orizzontale. Un punto P sul bordo è fissato ad un punto O del piano da una molla di
costante elastica k e lunghezza a riposo nulla. Inizialmente P coincide con O.
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θ

O

P

Q

`

Figura 6.53.: Il cilindro vincolato è vincolato ad un moto di puro rotolamento, ed è
collegato ad una molla indicata dalla linea tratteggiata.

1. Discutere le posizioni di equilibrio e la loro stabilità.

2. Per quale velocità angolare iniziale il cilindro riesce a fare un giro completo?.

3. Determinare le equazioni del moto del sistema. Cosa succede alla frequenza di
oscillazione attorno alla posizione di equilibrio stabile nel limite di piccole oscilla-
zioni?

Soluzione19

Domanda 1 Utilizzando come coordinata l’angolo di rotazione del cilindro scriviamo
l’energia potenziale

U =
1
2

k`2

dove ` è l’allungamento della molla. Si ha

`2 = (Rθ − R sin θ)2 + (R− R cos θ)2

= 2R2 + R2θ2 − 2R2θ sin θ − 2R2 cos θ

e quindi, a meno di una costante

U =
1
2

kR2 (θ2 − 2θ sin θ − 2 cos θ
)

Troviamo i punti stazionari. Derivando otteniamo

U′ = kR2θ (1− cos θ)

e quindi si ha equilibrio per
θ = 2mπ

dove m è un intero. Studiamo la stabilità, derivando ancora una volta:

U′′ = kR2 (1− cos θ + θ sin θ)

19Primo esercizio scritto Fisica 1 del 10 settembre 2010
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che si annulla nei punti di equilibrio. Derivando ulteriormente abbiamo

U′′′ = kR2 (θ cos θ + 2 sin θ)

che calcolata nei punti di equilibrio da

U′′′ = 4kR2mπ

Abbiamo dei flessi orizzontali (equilibrio instabile) per θ = 2mπ con m 6= 0. Per θ = 0
(m = 0) serve ancora una derivata. Abbiamo

U′′′′ = kR2 (3 cos θ − t sin θ)

e quindi un minimo (equilibrio stabile) per θ = 0.

Domanda 2 L’energia si conserva, e vale

E =
1
2

Iθ̇2 +
1
2

kR2 (θ2 − 2θ sin θ − 2 cos θ
)

Inoltre il potenziale è una funzione non decrescente di θ per θ > 0. Eguagliando energia
iniziale e finale abbiamo quindi

1
2

Iω2 − kR2 = kR2 (2π2 − 1
)

e quindi

ω =

√
4π2kR2

I

=

√
8π2

3
k
m

dove si è tenuto conto del fatto che I = 3
2 mR2 è il momento d’inerzia del cilindro rispetto

al suo asse di rotazione istantaneo.

Domanda 3 L’equazione del moto si può ottenere rapidamente derivando l’energia.
Si trova

Iθ̈ + kR2θ (1− cos θ) = 0

Per piccole oscillazioni possiamo approssimare 1− cos θ ' θ2/2 e l’equazione diventa

Iθ̈ +
kR2

2
θ3 = 0

Non si tratta di un’oscillazione armonica. Per studiare il periodo di oscillazione consi-
deriamo nuovamente l’energia.

E =
1
2

Iθ̇2 +
1
2

kR2 (θ2 − 2θ sin θ − 2 cos θ
)
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Per piccoli valori di θ possiamo approssimare

sin θ ' θ − 1
6

θ3 + O
(
θ5)

cos θ ' 1− 1
2

θ2 +
1
24

θ4 + O
(
θ6)

Si deve andare oltre l’approssimazione al secondo ordine dato che i termini del secondo
ordine, come si verificherà tra un momento, si cancellano. Sostituendo abbiamo, a meno
di una costante irrilevante,

E ' 1
2

Iθ̇2 +
1
8

kR2θ4

e le piccole oscillazioni si hanno per E→ 0. Possiamo scrivere

dθ

dt
= ±

√
2E
I
− kR2

4I
θ4

che si integra per separazione delle variabili

ˆ t

0
dt =

ˆ θ(t)

θ(0)

dθ√
2E
I − kR2

4I θ4

Scegliendo come angolo iniziale θ(0) = 0 e come angolo finale l’estremo dell’oscil-
lazione l’integrale al primo membro da un quarto del periodo. Quanto all’estremo
dell’oscillazione, si tratta dell’angolo che annulla il termine sotto radice, cioè

θmax =

(
8E
kR2

)1/4

e quindi
T
4
=

ˆ θmax

0

dθ√
2E
I − kR2

4I θ4

Usando la nuova variabile u = θ/θmax l’integrale diventa

T
4
=

(
2I2

kR2E

)1/4 ˆ 1

0

du√
1− u4

L’integrale è una costante indipendente da E che non è importante calcolare, e vediamo
che

lim
E→0

T = ∞

quindi per piccole oscillazioni la frequenza tende a zero.
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PROBLEMA 6.54

Centro di massa e momento di inerzia di un triangolo ??

Determinare la posizione del centro di massa di un triangolo di lati a, b e c qualsiasi. Se
il triangolo ha una massa totale m distribuita in modo omogeneo trovare il momento di
inerzia rispetto ad un asse passante per il centro di massa e ortogonale al piano a cui il
triangolo appartiene. Specializzare il risultato ottenuto per determinare il vettore~b e il
momento di inerzia IT definiti nell’Esercizio 6.52.

Soluzione

Indichiamo con ~rA,~rB e ~rC i vettori corrispondenti alle posizioni dei tre vertici del
triangolo. Per comodità conviene introdurre anche i due vettori

~AB = ~rB −~rA
~AC = ~rC −~rA

L’area totale del triangolo è data da

S =
1
2

∣∣∣ ~AB ∧ ~AC
∣∣∣

e un qualsiasi punto del triangolo sarà parametrizzabile nella forma

~r(s, t) =~rA + s ~AB + t ~AC

con s + t ≤ 1. Calcoliamo anzitutto il centro di massa. Applicando direttamente la
definizione abbiamo

~rCM =
1
m

ˆ
ρ~r(s, t)dS

= ~rA +
1
m

2m∣∣∣ ~AB ∧ ~AC
∣∣∣

ˆ 1

0
dt
ˆ 1−t

0
ds
∣∣∣ ~AB ∧ ~AC

∣∣∣~r(s, t)

dove si è tenuto conto del fatto che l’elemento di superficie è

dS =
∣∣∣ ~AB ∧ ~AC

∣∣∣ dsdt
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e si è indicato con ρ la densità superficiale di massa. Scriviamo esplicitamente l’integrale:

~rCM =~rA + 2
ˆ 1

0
dt
ˆ 1−t

0
ds
[
s ~AB + t ~AC

]

=~rA + 2
ˆ 1

0
dt
ˆ 1−t

0
ds
[
t ~AB + t ~AC

]

=~rA + 2
[
~AB + ~AC

] ˆ 1

0
dt t(1− t)

=~rA +
1
3

[
~AB + ~AC

]

=
1
3
(~rA +~rB +~rC)

Per semplificare i calcoli si è tenuto conto del fatto che l’integrale non non varia scam-
biando tra loro s e t nell’integrando. Si tratta del baricentro del triangolo.

Calcoliamo adesso il momento di inerzia. Abbiamo

ICM =

ˆ
ρdS (~r−~rCM)2

= 2m
ˆ 1

0
dt
ˆ 1−t

0
ds
(
~rA + s ~AB + t ~AC−~rA −

1
3
~AB− 1

3
~AC
)2

= 2m
ˆ 1

0
dt
ˆ 1−t

0
ds
[(

s− 1
3

)
~AB +

(
t− 1

3

)
~AC
]2

= 2m
ˆ 1

0
dt
ˆ 1−t

0
ds

[(
s− 1

3

)2 ∣∣∣ ~AB
∣∣∣
2
+

(
t− 1

3

)2 ∣∣∣ ~AC
∣∣∣
2

+ 2
(

s− 1
3

)(
t− 1

3

)
~AB · ~AC

]

I due integrali rilevanti (sfruttando ancora la possibilità di scambiare s e t nell’integran-
do) valgono

ˆ 1

0
dt
ˆ 1−t

0
ds
(

t− 1
3

)2

=

ˆ 1

0
dt (1− t)

(
t− 1

3

)2

=
1
36ˆ 1

0
dt
ˆ 1−t

0
ds
(

s− 1
3

)(
t− 1

3

)
= −1

2

ˆ 1

0
dt (1− t)

(
t− 1

3

)2

= − 1
72

e quindi

ICM =
m
18

(∣∣∣ ~AB
∣∣∣
2
+
∣∣∣ ~AC

∣∣∣
2
− ~AB · ~AC

)

Possiamo anche scrivere

ICM =
m
18

[
1
2

(∣∣∣ ~AB
∣∣∣
2
+
∣∣∣ ~AC

∣∣∣
2
)
+

1
2

(∣∣∣ ~AB
∣∣∣
2
+
∣∣∣ ~AC

∣∣∣
2
− 2 ~AB · ~AC

)]
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ed usando il teorema di Carnot otteniamo infine

ICM =
m
36
(
a2 + b2 + c2)

Applicando questi risultati all’Esercizio 6.52 otteniamo

~b =~rCM −~rA′ =
1
3
(~rB′ +~rC′ − 2~rA′)

=
1
3
(~rB′ −~rA′) +

1
3
(~rC′ −~rA′)

=
1
3



−a
0
0


+

1
3



−a
−a
0


 = − a

3




2
1
0




e

IT = ICM + mT

∣∣∣~b
∣∣∣
2

= mT
a2

9
+ mT

5a2

9

=
2
3

mTa2

dove a e mT sono i parametri definiti nell’esercizio.

PROBLEMA 6.55

Urto con una sbarra incastrata ??

Una sbarra di lunghezza ` e massa m è appoggiata su un piano orizzontale privo di
attrito. I suoi due estremi sono appoggiati a due pareti perpendicolari tra di loro come in
Figura 6.54, non si possono staccare da queste ma possono scorrervi sopra liberamente.

La sbarra è inizialmente ferma ed inclinata di θ0 = π/4 rispetto all’orizzontale.
Un punto materiale di massa m′ si muove parallelamente ad una delle due pareti ad

una distanza b da essa, come in Figura, con velocità v0 in modulo. Ad un certo istante
colpisce la sbarra e rimane attaccata ad essa. Calcolate la velocità angolare del sistema
asta+massa

◦ immediatamente dopo l’urto

◦ negli istanti successivi, in funzione dell’angolo θ di inclinazione rispetto all’oriz-
zontale

Soluzione

Le forze esterne che agiscono sul sistema sono le reazioni normali delle pareti. Se pren-
diamo come polo l’intersezione tra le rette perpendicolari alle pareti nei punti di contatto
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v0

b

`

θ0

Figura 6.54.: La sbarra appoggiata ad un angolo tra due pareti.

con la sbarra vediamo che entrambe le reazioni hanno momento nullo, di conseguenza
si conserva il momento angolare. Ponendo l’origine nell’intersezione tra le due pareti il
polo si trova nel punto di coordinate

(x, y, z) = (` cos θ0, ` sin θ0, 0) =

(
`

√
2

2
, `

√
2

2
, 0

)

abbiamo prima dell’urto

~Li = −m′ (b− ` cos θ0) v0ẑ = −m′
(

b− `

√
2

2

)
v0ẑ

ed immediatamente dopo
~L f = I0ω0ẑ

dove I0 è il momento di inerzia del sistema rispetto al polo prescelto. Tenendo conto che
la massa rimane attaccata alla sbarra ad una distanza d = b/(cos θ0) dal suo estremo
abbiamo

I0 = m
`2

12
+ m

`2

4
+ m′

[
(` cos θ0 − b)2 + b2 tan2 θ0

]

= m
`2

12
+ m

`2

4
+ m′



(
`

√
2

2
− b

)2

+ b2



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Di conseguenza la velocità angolare immediatamente dopo l’urto sarà

ω0 = −
m′
(

b− `
√

2
2

)

I0
v0

In seguito si conserva l’energia cinetica del sistema, che scriveremo nella forma

E =
1
2

I(θ)ω2 =
1
2

I0ω2
0

Adesso I(θ) è il momento di inerzia del sistema rispetto al suo asse di rotazione istan-
taneo. Ma quest’ultimo coincide con l’intersezione tra le rette perpendicolari alle pareti
nei punti di contatto (e quindi inizialmente I = I0). In altre parole

I(θ) = m
`2

12
+ m

`2

4
+ m′

[(
` cos θ − b

cos θ

cos θ0

)2

+

(
b

sin θ

cos θ0

)2
]

e quindi

ω = ω0

√
I0

I(θ)

PROBLEMA 6.56

Urto anelastico contro un pendolo fisico ??

CM

d

L

θ

v0

ω

O O O
x

y

x

y

x

y

`

Figura 6.55.: Il pendolo fisico considerato nel problema, prima dell’urto (a sinistra) im-
mediatamente dopo (al centro) e alla massima inclinazione raggiunta (a
destra).
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Un’asta di lunghezza L e massa M può ruotare liberamente attorno ad un punto posto
ad una distanza d < L/2 dal suo centro di massa. Inizialmente si trova in equilibrio in
posizione verticale. Una massa m colpisce l’asta al di sotto del punto di sospensione, ad
una distanza ` da esso, con velocità v0 diretta orizzontalmente, e rimane attaccata. Per
quale valore minimo di v0 l’asta inizia a ruotare? (vedere Figura 6.55).

Soluzione

Dato che durante l’urto l’unica forza impulsiva che agisce sul sistema è la reazione
vincolare al punto di sospensione O, il momento angolare del sistema rispetto ad esso si
conserva. Il momento angolare immediatamente prima dell’urto è quello della massa,

~Li = m [−`ŷ] ∧ (v0 x̂) = m`v0ẑ

Dopo l’urto abbiamo un unico corpo rigido che ruota attorno al punto di sospensione
con velocità angolare

~ω = ωẑ

quindi il momento angolare finale sarà

~L f = Iωẑ

dove Iẑ e passante per O, I = Imassa + Iasta e

Imassa = m`2

Iasta =
1
12

ML2 + Md2

Dalla conservazione~L f = ~Li otteniamo la velocità angolare

ω =
m
I
`v0 (6.56.1)

Dopo l’urto la conservazione del momento angolare non è più valida a causa del momen-
to della forza di gravità. Si conserva però l’energia, che inizialmente (immediatamente
dopo l’urto) varrà

Ei =
1
2

Iω2 −Mgd−mg`

Quando θ raggiunge il suo valore massimo (θ = π) avremo ω = 0, quindi

E f = Mgd + mg`

e da Ei = E f otteniamo

ω2 = 4
Mgd + mg`

I
cioè, sostituendo la (6.56.1)

v2
0 =

4Ig
m2

Md + m`

`2

ed infine

v0 =

√
4g
`2

(
`+

M
m

d
) [

`2 +
M
m

(
1
12

L2 + d2

)]
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PROBLEMA 6.57

Tre cilindri in equilibrio ??

Fg

M,R

Figura 6.56.: I tre cilindri in contatto considerati nel problema.

Tre cilindri identici di massa M e raggio R sono disposti come in Figura 6.56 su un
piano orizzontale privo di attrito. Al centro di massa del cilindro in basso a sinistra
è applicata una forza costante F. Determinare per quali valori di F il sistema accelera
come un tutto unico mantenendo invariate le posizioni relative dei cilindri.

Soluzione

Sappiamo che i tre cilindri devono avere la stessa accelerazione. Consideriamoli separa-
tamente. Per quello in basso a sinistra avremo lungo la direzione orizzontale

Ma = F− N1 −
1
2

N3

e per quello in basso a destra

Ma = N1 +
1
2

N2

Per il cilindro in alto varranno le due equazioni

Ma =
1
2

N3 −
1
2

N2

0 =

√
3

2
N2 +

√
3

2
N3 −Mg

Con N1, N2 e N3 abbiamo indicato le forze di contatto che i cilindri esercitano reciproca-
mente, scelte come in Figura 6.57.

L’accelerazione si calcola facilmente sommando membro a membro le prime tre
equazioni. Il risultato è

a =
F

3M
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g

M,R

N2N3

N2

N1N1

N3

Figura 6.57.: La convenzione scelta per le forze di contatto. In rosso sono indicate le
forze applicate al cilindro in basso a sinistra, in verde quelle applicate al
cilindro in basso a destra, in blu quelle applicate al cilindro in alto.

come era facile anticipare considerando il moto del centro di massa del sistema. Sot-
traendo membro a membro otteniamo dalle prime tre equazioni e dall’ultima il sistema

2N1 +
1
2

N2 +
1
2

N3 = F

N1 + N2 −
1
2

N3 = 0
√

3
2

N2 +

√
3

2
N3 = Mg

che ha per soluzione

N1 =
1
2

F− 1
2
√

3
Mg

N2 =
1√
3

Mg− 1
3

F

N3 =
1
3

F +
1√
3

Mg

Il segno delle forze di contatto è riassunto nel diagramma 6.58 al variare di F.
Dato che queste possono essere nella situazione considerata solo positive vediamo

che le posizioni relative possono rimanere invariate solo per

Mg√
3
< F < Mg

√
3

che corrisponde all’intervallo di possibili accelerazioni

g
3
√

3
< a <

1√
3

g
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F = −Mg
√
3 F = Mg√

3
F = Mg

√
3

N1

N2

N3

Figura 6.58.: Il segno delle reazioni normali al variare di F. Le posizioni relative rimango-
no invariate solo nell’intervallo Mg/

√
3 < F < Mg

√
3. In tutti gli altri casi

almeno una delle reazioni Ni diviene negativa, segnalando che i cilindri
perdono contatto nel modo indicato.

PROBLEMA 6.58

Sistema di punti materiali equivalenti ad una sfera ? ? ?

Si vuole sostituire una sfera omogenea di massa M e raggio R con un insieme di punti
materiali identici di collegati rigidamente tra loro, in modo che i due sistemi abbiano le
stesse proprietà dinamiche. Qual’è il minimo numero di punti materiali necessari? Che
massa devono avere? Come devono essere disposti?

Soluzione

Per avere le stesse proprietà dinamiche della sfera il sistema costruito deve avere la
stessa massa totale e lo stesso tensore di inerzia. Ponendo il polo nel centro di massa
questo sarà della forma

I =
2
5

MR2




1 0 0
0 1 0
0 0 1




Mostriamo anzitutto che sono necessari almeno quattro punti materiali. Un unico punto
ha un tensore di inerzia nullo. Con due punti abbiamo una asse (quello passante per
essi) con momento di inerzia nullo, ma una sfera ha un momento di inerzia 2

5 MR2

lungo un asse qualsiasi. Infine, tre punti appartengono necessariamente ad un piano.
Si è verificato in un esercizio precedente (Esercizio 6.12) che il momento di inerzia
perpendicolare a tale piano è uguale alla somma dei momenti di inerzia relativi a due
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assi appartenenti allo stesso, mentre nel caso che ci interessa dovrebbero essere tutti
uguali.

Consideriamo adesso le coordinate di quattro punti materiali. Introduciamo le quan-
tità

u = (x1, x2, x3, x4)

v = (y1, y2, y3, y4)

w = (z1, z2, z3, z4)

dove xi, yi e zi sono le coordinate del punto materiale i-simo. Dato che il centro di massa
è nell’origine deve essere

∑
i

xi = ∑
i

yi = ∑
i

zi = 0

quindi u, v e w appartengono tutti al sottospazio di R4 dei vettori con somma delle
componenti nulle. Ciascun punto avrà massa totale M/4. Per ottenere i corretti elementi
sulla diagonale del tensore di inerzia dovrà essere

Izz =
M
4 ∑

i

(
x2

i + y2
i
)

=
M
4

(
|u|2 + |v|2

)
=

2
5

MR2

Iyy =
M
4 ∑

i

(
x2

i + z2
i
)

=
M
4

(
|u|2 + |w|2

)
=

2
5

MR2

Ixx =
M
4 ∑

i

(
z2

i + y2
i
)

=
M
4

(
|w|2 + |v|2

)
=

2
5

MR2

da cui segue

|u|2 = |v|2 = |w|2 =
4
5

R2

Inoltre gli elementi fuori diagonale sono nulli, quindi

Ixy = −M
4 ∑

i
xiyi = −

M
4

u · v = 0

Ixz = −M
4 ∑

i
xizi = −

M
4

u ·w = 0

Iyz = −M
4 ∑

i
yizi = −

M
4

v ·w = 0

cioè i tre vettori sono ortogonali tra loro. Una base nel sottospazio desiderato si può
scegliere ad esempio nella forma

e1 =
1√
2
(1, 0, 0,−1)

e2 =
1√
2
(0,−1, 1, 0)

e3 =
1
2
(1,−1,−1, 1)
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e quindi potremo scrivere

u =

√
4
5

Re1 =

√
2
5

R
(
1, 0, 0, −1

)

v =

√
4
5

Re2 =

√
2
5

R
(
0, −1, 1, 0

)

w =

√
4
5

Re3 =

√
2
5

R
(

1√
2
, − 1√

2
,− 1√

2
, 1√

2

)

Questa è solo una delle soluzioni possibili. Tutte le altre si possono ottenere ruotan-
do la base scelta, rimanendo però nel sottospazio scelto. Questo è equivalente ad una
rotazione rigida arbitraria del sistema attorno all’origine, come ci si può aspettare. In
conclusione le masse devono essere poste nei punti

~r1 =

√
2
5

R
(

1, 0,
1√
2

)

~r2 =

√
2
5

R
(

0,−1,− 1√
2

)

~r3 =

√
2
5

R
(

0, 1,− 1√
2

)

~r4 =

√
2
5

R
(
−1, 0,

1√
2

)

Tutti gli~ri hanno la stessa lunghezza,

|~ri| =
√

3
5

R

e l’angolo tra due qualsiasi di essi è dato da

cos θ =
~ri ·~rj

|~ri|
∣∣~rj
∣∣ = −

1
3

(i 6= j)

Le masse si trovano quindi ai vertici di un tetraedro, che per quanto visto può essere
ruotato arbitrariamente attorno all’origine.

PROBLEMA 6.59

Tiro al piattello ??

Un disco di massa M e raggio R si muove liberamente su un piano orizzontale z = 0.
La velocità del centro di massa è ~v = v0 x̂, la velocità angolare ~ω = λv0/Rẑ. Con una
apposita pistola si vuole trapassare il disco con un chiodo. Dopo che questo è avvenuto
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ω

v0 x

y

Figura 6.59.: Il disco del problema, in un sistema di riferimento con origine nel suo
centro.

il disco rimane vincolato e può solo ruotare attorno al chiodo, che rimane infisso nel
piano.

Determinare (se possibile) quale punto del disco è necessario trapassare per un dato
valore del parametro λ se si vuole che

1. Su disco perda tutta l’energia cinetica posseduta;

2. il disco conservi tutta l’energia cinetica posseduta.

Soluzione

Una quantità che si conserva durante l’impatto con il chiodo è il momento angolare
rispetto al punto in cui questo viene infisso. Fissiamo un sistema di riferimento con ori-
gine nella posizione del centro del disco al momento dell’impatto. Il momento angolare
rispetto a un punto generico posto in

~r = xx̂ + yŷ

è dato prima dell’urto da

~L = m (−~r) ∧ (~v) +
1
2

mR2~ω

= −m (xx̂ + yŷ) ∧ (v0 x̂) +
1
2

mRλv0ẑ

= mv0

(
y +

λ

2
R
)

ẑ
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1. Se tutta l’energia cinetica viene persa, allora dopo l’urto~L = 0. Ma allora anche il
momento angolare iniziale sarà nullo, e questo accade se

y = −λ

2
R

mentre x può essere scelto arbitrariamente. Potremo dunque fermare completa-
mente il disco con il chiodo per −2 < λ < 2.

2. Affinchè tutta l’energia cinetica si conservi dovremo evitare che la reazione del
chiodo nel momento in cui viene infisso faccia lavoro. Colpiremo quindi il disco
nel punto fermo in quell’istante. La velocità di un punto generico sarà

~V (~r) = ~v + ~ω ∧~r = v0 x̂ +
(

λ
v0

R
ẑ
)
∧ (xx̂ + yŷ)

= v0

(
1− λ

y
R

)
x̂ + λ

v0

R
xŷ

e quindi dovremo scegliere

x = 0

y =
R
λ

Questo sarà possibile per −1 < λ < 1.2

PROBLEMA 6.60

Cilindro in caduta su un piano inclinato ??

θ

v0

ω0

g

Figura 6.60.: Il cilindro nella posizione iniziale. Le velocità v0 e ω0 sono arbitrarie (anche
in segno).
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Un cilindro di massa M e raggio R viene lanciato lungo un piano inclinato con velocità
iniziale v0 e velocità angolare ω0. Il piano è inclinato rispetto alla direzione orizzontale
di un angolo θ, ed è presente attrito dinamico, caratterizzato dal coefficiente µ. Discu-
tere sotto quali condizioni il cilindro dopo un tempo sufficientemente lungo inizia a
compiere un moto di puro rotolamento.

Soluzione

Scriviamo la prima e la seconda equazione cardinale per il cilindro. Abbiamo

dv
dt

= g sin θ +
1
m

Fa

dω

dt
=

Fa

I
R (6.60.1)

dove abbiamo indicato con Fa la forza di attrito, che scriveremo nella forma

Fa =

{
µmg cos θ vP < 0
−µmg cos θ vP > 0

dove
vP = v + ωR

è la velocità del punto del cilindro a contatto con il piano. La condizione di rotolamento
puro corrisponde a vP = 0. Combinando le due equazioni del moto possiamo costruire
una equazione per vP

dvP

dt
=

d
dt

(v + ωR) = g sin θ +

(
1 +

mR2

I

)
Fa

m

ossia
dvP

dt
=

{
g sin θ − 3µg cos θ vP > 0
g sin θ + 3µg cos θ vP < 0

Vediamo che nel caso vP < 0 l’accelerazione v̇P è costante e positiva. Di conseguenza vP
crescerà linearmente e avremo rotolamento puro dopo un intervallo di tempo

t = − v0 + ω0R
g (sin θ + 3µ cos θ)

Nel caso vP > 0 dobbiamo distinguere due casi. Se

µ >
1
3

tan θ

avremo v̇P > 0, e arriveremo al rotolamento puro dopo un tempo

t =
v0 + ω0R

g (3µ cos θ − sin θ)
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v

ωR

Rotolamento puro

Figura 6.61.: L’evoluzione del sistema nel piano (ωR, v).

In caso contrario v̇P < 0 e la condizione di rotolamento puro non sarà mai raggiunta. La
situazione è riassunta in Figura 6.61.

In essa un punto nel piano corrisponde ad una possibile combinazione di velocità
e velocità angolare. Gli assi e la bisettrice del secondo e quarto quadrante dividono il
piano in sei zone: per ciascuna è indicato il verso della velocità angolare, della velocità
del punto di contatto con il piano e del centro di massa. La linea rossa corrisponde ai
moti di puro rotolamento.

Indipendentemente da µ e θ un punto al di sotto della della linea rossa evolve sempre
verso di essa. Infatti dalle Equazioni (6.60.1) segue che in questa regione ω̇ > 0, v̇ > 0,
dato che Fa > 0. Quindi il sistema si sposterà come indicato dale frecce viola.

Un punto al di sopra della linea rossa ha ω̇ < 0, ma v̇ può essere sia positivo che
negativo (Fa < 0, Equazioni (6.60.1)). Quindi può evolvere verso rotolamento puro
(linee viola) oppure no (linee verdi), in accordo con l’analisi precedente.

PROBLEMA 6.61

Distacco da una calotta sferica ??

Dalla sommità di una calotta sferica di raggio R viene lasciato cadere, con velocità
iniziale trascurabile, un corpo rigido è di forma sferica (raggio r). La massa totale m è
distribuita simmetricamente attorno al centro del corpo in modo tale che questo ha un
momento di inerzia I rispetto ad un asse passante per il centro.
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θ

R

r m, I

g

Figura 6.62.: Il corpo sferico in caduta dalla calotta.

Se il cilindro rotola senza strisciare sulla calotta determinare l’angolo a cui avviene
il distacco. Considerare in particolare il caso di massa distribuita uniformemente, e
quello corrispondente al massimo e minimo valore possibile per I. Come deve essere
distribuita la massa negli ultimi due casi?

Soluzione

Scriviamo l’energia totale del sistema, utilizzando l’angolo θ in figura come coordinata.
Abbiamo

E =
1
2

I′ω2 + mg (R + r) cos θ

dove
I′ = I + mr2

è il momento di inerzia del corpo rispetto al punto di contatto e ω la sua velocità an-
golare. Per determinare quest’ultima notiamo che il centro del corpo compie un moto
circolare con velocità

v = (R + r) θ̇

che deve però anche essere, data la condizione di puro rotolamento,

v = −ωr

da cui

ω = −
(

1 +
R
r

)
θ̇

Sostituendo nell’energia troviamo

E =
1
2

I′
(

1 +
R
r

)2

θ̇2 + mg (R + r) cos θ
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Uguagliando all’energia iniziale (θ = 0, θ̇ = 0) otteniamo

θ̇2 =
2mg

I′
r2

(R + r)
(1− cos θ)

che ci permette di conoscere θ̇2 in funzione dell’angolo.
Dato che il centro di massa del corpo compie un moto circolare, l’equazione del moto

nella direzione radiale sarà

−m (R + r) θ̇2 = N −mg cos θ

dove N è la reazione normale della superficie della calotta. Il distacco si avrà per N = 0,
ossia per

N = mg
[

cos θ − 2mr2

I′
(1− cos θ)

]
= 0

Questo significa

cos θ =
2mr2

I′

(
1 +

2mr2

I′

)−1

Se la massa è distribuita uniformemente

I′ =
2
5

mr2 + mr2 =
7
5

mr2

e quindi

cos θ =
10
17
' 0.588

Il minimo valore di I si ottiene concentrando tutta la massa nel centro. In questo caso
I = 0 e I′ = mr2, quindi

cos θ =
2
3
' 0.667

lo stesso valore che si ottiene per la caduta di un punto materiale. Il massimo valore
di I si ottiene concentrando tutta la massa sulla superficie esterna del corpo (si deve
mantenere la distribuzione simmetrica). In questo caso

I =
m

4πr2

ˆ
r4 sin2 θd cos θdφ

=
mr2

2

ˆ 1

−1

(
1− u2) du

=
2
3

mr2

Segue che I′ = 5mr2/3 e quindi

cos θ =
6
11
' 0.545

Da notare che questo è il caso in cui il distacco avviene più in basso.
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PROBLEMA 6.62

Piccole oscillazioni di un cilindro parabolico ? ? ?

F

x

y

P

s

û

v̂

x′

y′

O′

O ≡ V

Figura 6.63.: Il cilindro parabolico nella posizione di equilibrio. L’asse rispetto al quale
si vuole calcolare il momento di inerzia passa per il vertice della parabola
V ed è diretto lungo l’asse z.

Un cilindro parabolico pieno è costruito con un materiale omogeneo ed è tagliato
parallelamente alla direttrice della parabola che lo genera ad una altezza tale che il suo
centro di massa coincide con il suo fuoco (Figura 6.63). La distanza tra il vertice e il
fuoco della parabola è p/2, la massa totale m.

1. Discutere in maniera generale la posizione del centro di massa in funzione dell’al-
tezza di taglio, considerando sempre tagli paralleli alla direttrice della parabola.
Determinare l’altezza alla quale è stato tagliato il cilindro.

2. Supponendo che il cilindro rotoli senza strisciare su di un piano, descrivere la
traiettoria percorsa dal suo fuoco nel sistema di riferimento solidale con il piano.

3. Calcolare il momento di inerzia del cilindro rispetto ad un asse passante per il
vertice della parabola e perpendicolare alle basi.

4. Determinare la velocità angolare ω del cilindro in funzione dell’angolo di rotazio-
ne.

5. Discutere le piccole oscillazioni del cilindro attorno alla posizione di equilibrio.
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Soluzione

1. Consideriamo il cilindro nella posizione in Figura 6.63. La parabola generatrice
avrà equazione

y =
x2

2p

Dato che la massa è distribuita uniformemente, le coordinate del centro di massa
saranno date da xCM = 0 (per ragioni di simmetria) e da

yCM =

´ ´
y dS´ ´
dS

Scriviamo l’espressione precedente nella forma

yCM =

´ h
0 dy

´√2py

−
√

2py
dx y

´ h
0 dy

´√2py

−
√

2py
dx

dove abbiamo indicato con h l’altezza del taglio. La prima integrazione è imme-
diata ed abbiamo infine

yCM =
2
√

2p
´ h

0 dy y3/2

2
√

2p
´ h

0 dy y1/2
=

3
5

h

Notare che il denominatore è la superfice totale della base

S =
4
3

√
2ph3/2

che ci servirà in seguito. Se il centro di massa deve coincidere con il fuoco avremo

3
5

h =
p
2

da cui

h =
5
6

p

L’equazione della parabola sarà dunque

y =
5x2

12h

2. Possiamo indicare con s la lunghezza dell’arco tra il vertice V della parabola e
il punto di contatto P con il piano ad un istante generico. Una coppia di versori
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normali e tangenti alla parabola in P ≡
(

x, x2

2p

)
sono dati da

û =
1√

1 + y′2

(
1
y
′

)
=

1√
p2 + x2

(
p
x

)
=

(
cos θ
− sin θ

)

v̂ =
1√

1 + y′2

( −y′

1

)
=

1√
p2 + x2

( −x
p

)
=

(
sin θ
cos θ

)

dove θ è l’angolo di rotazione del cilindro. Dato che la parabola ruota senza stri-
sciare è anche la distanza O′P rispetto al punto di appoggio iniziale. Quindi le
coordinate del fuoco della parabola saranno

xF = s +
−→
PF · û

yF =
−→
PF · v̂

ossia, dato che
−→
PF =

(
−x

p
2 − x2

2p

)

xF = s− x√
p2 + x2

(
p
2
+

x2

2p

)

yF =
1√

p2 + x2

(
x2

2
+

p2

2

)

Per quanto riguarda s, avremo

s =
ˆ √

ẋ2 + ẏ2dt

=

ˆ x

0

√
1 + y′2dx

= p
ˆ x/p

0

√
1 + u2du

=
p
2



(

x
p

)√
1 +

(
x
p

)2

+ sinh−1
(

x
p

)


e quindi

xF = − p
2

log
(

1 + sin θ

cos θ

)

yF =
p
2

1
cos θ

Questa è la traiettoria del fuoco espressa parametricamente in funzione dell’angolo
di rotazione. Si può anche eliminare θ. Abbiamo infatti

yF =
p
2

cosh
(

2xF

p

)
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3. Il momento di inerzia si può determinare direttamente dall’integrale

IV =
m
S

ˆ h

0
dy
ˆ √2py

−
√

2py
dx
(
x2 + y2)

=
3
4

m
1√

2ph3/2

ˆ h

0
dy
[

2
3
(2py)3/2 + 2

√
2pyy2

]

=
3
4

m
[

8
15

ph +
4
7

h2
]
=

53
84

mp2

dove S è la superfice della base determinata precedentemente. Per il seguito sarà
utile il momento di inerzia rispetto al centro di massa,

ICM = IV −m
p2

4
=

8
21

mp2

4. La velocità angolare cercata è semplicemente θ̇. Usiamo la conservazione dell’e-
nergia per valutarla ad un angolo di rotazione generico. Possiamo scrivere questa
nella forma

E =
1
2

I (θ)ω2 + mgyF

Dove I(θ) è il momento di inerzia del cilindro rispetto a P, che possiamo ottenere
applicando il teorema di Steiner,

I(θ) = ICM + mFP2

= ICM + m

[
x2 +

(
p
2
− x2

2p

)2
]

= ICM + mp2
[

tan2 θ +
1
4
(
1− tan2 θ

)2
]

e yF ha il valore determinato precedentemente. Abbiamo quindi

ω =

√
mgp
I(θ)

(
1− 1

cos θ

)

5. Per piccole oscillazioni possiamo considerare θ � 1 e sviluppare l’energia al
secondo ordine. Otteniamo, a meno di una costante irrilevante

E =
1
2

I (0) θ̇2 +
1
2

mg
p
2

θ2

con
I(0) = ICM +

1
4

mp2 =
53
84

mp2

da cui possiamo calcolare la frequenza delle piccole oscillazioni

f =
1

2π

√
42g
53p
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PROBLEMA 6.63

Caduta di una ruota esagonale lungo un pendio ? ? ?

θ

g

ω

M

`,m

Figura 6.64.: La struttura considerata nel problema. La forma è quella di un esagono
regolare.

La struttura rigida esagonale rappresentata in Figura 6.64 è costituita da sei aste
identiche di lunghezza ` e massa m, e da una massa M fissata nel centro. Viene lanciata
con velocità angolare iniziale ω0 su un piano inclinato dalla posizione in Figura 6.64.
Nel momento in cui una delle aste tocca il suolo rimane vincolata ad esso, ma libera di
ruotare, mentre la gamba vincolata precedentemente si libera.

Studiare, al variare di ω0 e degli altri parametri del problema, la caduta della struttura.
Dire in particolare se esistono condizioni nelle quali la caduta ha termine, condizioni
nelle quali la velocità angolare cresce senza limite, e condizioni nelle quali si stabilizza.

Soluzione

Nel seguito indicheremo con µ = M + 6m la massa totale della struttura, e con

I = 6m
`2

3
= 2m`2

il suo momento di inerzia rispetto al suo centro di massa.
Consideriamo la caduta come successione di rotazioni di π/3 della struttura. Osser-

viamo che ad ogni passo l’energia potenziale gravitazionale varia di

∆U = −µg` sin θ
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Fino al momento del nuovo contatto della struttura con il piano inclinato si conserva
l’energia totale. Invece al momento del contatto, che considereremo istantaneo, si con-
serva il momento angolare rispetto ad un polo posto nel nuovo punto di appoggio, se
supponiamo che non vi siano forze impulsive che agiscono su P.

θ

g

ω

M

`,m

ωi`

ωf`

P ′

P

Figura 6.65.: La costruzione utilizzata per raccordare la velocità angolare della struttura
tra l’istante immediatamente precedente e quello immediatamente seguen-
te il momento del contatto con il punto P. I vettori azzurri indicano le
velocità del centro di massa, prima e dopo il contatto.

Possiamo utilizzare questo fatto per calcolare la variazione della velocità angolare.
Facendo riferimento alla Figura 6.65 vediamo che immediatamente prima del contatto la
struttura sta ruotando attorno al punto di appoggio precedente P. Il momento angolare
rispetto a P′ immediatamente prima del contatto vale quindi

Li = Iωi + µ`2ωi sin
π

6
=

(
I +

1
2

µ`2
)

ωi

Subito dopo, la struttura ruota attorno a P′, con un momento angolare

L f = Iω f + µ`2ω f =
(

I + µ`2)ω f

Uguagliando queste due espressioni troviamo

ωi =
I + µ`2

I + 1
2 µ`2

ω f

In conclusione detta ωn la velocità angolare immediatamente dopo il contatto n-simo
avremo

1
2
(

I + µ`2)
(

I + µ`2

I + 1
2 µ`2

)2

ω2
n+1 =

1
2
(

I + µ`2)ω2
n − ∆U
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e quindi

ω2
n+1 =

(
I + 1

2 µ`2

I + µ`2

)2 [
ω2

n −
2∆U

I + µ`2

]

ω2
n+1 = λ

(
ω2

n + β
)

(6.63.1)

con

λ =

(
I + 1

2 µ`2

I + µ`2

)2

< 1

β =
2µg` sin θ

I + µ`2

Cerchiamo adesso un eventuale soluzione della (6.63.1) del tipo ωn = ω. Queste saranno
determinate da

ω2 = λ
(
ω2 + β

)

ossia

ω2 =
λβ

1− λ

Poniamo adesso
ω2

n = ω2 + δn

e sostituiamo nella (6.63.1) ottenendo

δn+1 = λδn

da cui
δn = λnδ0

In conclusione possiamo scrivere la soluzione generale nella forma

ω2
n = ω2

n −ω2 + ω2 = δn + ω2 = λn (ω2
0 −ω2)+ ω2

Vediamo quindi che, indipendentemente dal valore di ω0, le velocità angolari immedia-
tamente dopo l’appoggio si stabilizzano al valore

ω =

√
4g sin θ

`

(
I + 1

2 µ`2)
√(

2I + 3
2 µ`2

)
(I + µ`2)

In realtà è necessario imporre un’ulteriore condizione: ωn deve essere abbastanza gran-
de da permettere alla struttura una rotazione completa di π/3. Questo accade certamen-
te se

θ +
π

3
>

π

2
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in caso contrario l’energia cinetica deve essere sufficiente a portare il centro di massa
sulla verticale della posizione di appoggio, cioè

1
2
(

I + µ`2)ω2
n > µg`

[
1− sin

(
θ +

π

3

)]

ossia

ωn > ω∗ ≡
√

4g sin θ

`

√
1
2 µ`2

I + µ`2

√
1− sin

(
θ + π

3

)

sin θ

Se ωn < ω? la velocità angolare cambia segno. La nuova velocità angolare immediata-
mente dopo il contatto sarà data da

ω2
n+1 = λ2ω2

n

e quindi tenderà a zero.

ω2
n+1 = λ(ω2

n + β)

ω2
n+1

ω2
n

ω

ω = 0

ω = ω?

ω = ω

ω2
n+1 = λ2ω2

n

ωn < ω∗

Figura 6.66.: Studio grafico della relazione ricorsiva (6.63.1). Per valori iniziali della
velocità angolare maggiori di ω∗ si ha convergenza verso ω, che è quindi
un punto fisso “attrattivo”. Per ω < ω? (la fascia gialla) la velocità angolare
tende invece verso 0, un altro punto fisso attrattivo. ω∗ è un punto fisso
“repulsivo”.

La situazione è riassunta nel diagramma in Figura 6.66.
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PROBLEMA 6.64

Urto tra una massa e un sistema con cilindro rotante ??

m1 m2 m3

k, `0

v0 v0

R

Figura 6.67.: Il sistema descritto nell’esercizio. Le masse m2 e m3 scorrono sul piano
senza attrito, il cilindro rotola senza strisciare.

Un cilindro di massa m1 e raggio R è collegato ad una massa m2 da una molla di
costante elastica k e lunghezza a riposo `0. La massa m2 può muoversi sul piano senza
attrito, mentre il cilindro è vincolato a ruotare senza strisciare. Inizialmente entrambi
i corpi si muovono come in Figura 6.67, con la stessa velocità v0 e con la molla alla
lunghezza di riposo. Avviene quindi un urto istantaneo completamente anelastico tra
la massa m2 e una massa m3: anche quest’ultima può muoversi senza attrito sul piano
orizzontale. Calcolare la massima compressione raggiunta successivamente dalla molla.

Soluzione

Durante l’urto la molla rimane alla sua lunghezza di riposo, dato che questo avviene
istantaneamente. Quindi non ci sono forze esterne orizzontali applicate al sistema m2 +
m3 e la sua quantità di moto si conserva. Detta v′0 la velocità di m2 + m3 dopo l’urto
abbiamo

m2v0 = (m2 + m3) v′0
e quindi

v′0 =
m2

m2 + m3
v0

Per la stessa ragione (molla a riposo) non ci sono forze esterne orizzontali che agiscono
su m1, quindi la sua quantità di moto non cambia e la sua velocità immediatamente
dopo l’urto rimane v0.

Abbiamo adesso il sistema rappresentato in Figura 6.68. L’energia si conserva, e la
possiamo scrivere nella forma

E =
1
2

ICMω2 +
1
2

m1v2
1 +

1
2
(m2 + m3) v2

2+3 +
k
2

∆2

dove abbiamo indicato con
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m1

m2 +m3

k, `0

v1 v2+3

R

P

Figura 6.68.: Il sistema dopo l’urto. In rosso sono rappresentate le forze esterne che
agiscono sul cilindro, in blu quelle che agiscono sul corpo m2 +m3, in verde
quelle interne.

◦ ω la velocità angolare del cilindro;

◦ v1 la velocità del centro di massa del cilindro;

◦ ICM il momento di inerzia del cilindro rispetto al suo asse, che passa dal centro di
massa;

◦ v2+3 la velocità del corpo m2 + m3;

◦ ∆ la compressione della molla.

Nel momento di massima compressione abbiamo v1 = v2+3 ≡ v f . Inoltre dalla condizio-
ne di puro rotolamento segue che ω = −v1/R. Di conseguenza eguagliando l’energia
immediatamente dopo l’urto a quella nel momento di massima compressione otteniamo
(usando ICM = m1R2/2)

1
2

(
3
2

m1 +
m2

2
m2 + m3

)
v2

0 =
1
2

(
3
2

m1 + m2 + m3

)
v2

f +
k
2

∆2
MAX

Per calcolare v f ci serva un’altra legge di conservazione. La quantità di moto orizzontale
del sistema non si conserva: infatti a si scrive vincolo di puro rotolamento al cilindro è
applicata una reazione orizzontale. La seconda equazione cardinale applicata al cilindro,
rispetto ad un polo posto nel punto di contatto, si scrive

d
dt

(ICMω−m1v1R) = k∆R

mentre la prima equazione per il corpo m2 + m3 si scrive

d
dt

[(m2 + m3) v2+3] = k∆

Moltiplicando quest’ultima membro a membro per R e sottraendo alla prima abbiamo

d
dt

[ICMω−m1v1R− (m1 + m2) Rv2+3] = 0
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Di conseguenza la quantità

A = −3
2

m1v1R− (m2 + m3) Rv2+3

si conserva. Da notare che questo non è in generale il momento angolare totale rispetto
al punto di appoggio del cilindro, che si scriverebbe (indicando con hCM l’altezza del
centro di massa del corpo m2+3)

L = −3
2

m1v1R− (m2 + m3) hCMv2+3

e non sarebbe conservato. La non conservazione è dovuta al momento delle reazioni
normali distribuite che il piano esercita sul corpo m2 + m3.

Eguagliando il valore iniziale e finale di A troviamo

v f =
3
2 m1 + m2

3
2 m1 + m2 + m3

v0

e sostituendo nella conservazione dell’energia troviamo

k∆2
MAX =

[
6m1 +

2m2
2

m2 + m3
− 2

( 3
2 m1 + m2

)2

3m1 + 2m2 + 2m3

]
v2

0

PROBLEMA 6.65

Urto di un settore cilindrico ??

R
v0 g

x y

z

Figura 6.69.: Il settore cilindrico in moto prima dell’urto con l’ostacolo.

In un sistema di riferimento scelto come in Figura 6.69 un settore cilindrico di massa
M si muove con velocità costante ~v = v0ŷ su un piano orizzontale privo di attrito, in
presenza di un campo di gravità uniforme ~g = −gẑ (vedere Figura 6.69). L’ampiezza
angolare del settore è θ = π/2 e il raggio R. Ad un certo momento esso urta contro
un ostacolo posto sull’asse x. Il settore può adesso ruotare liberamente attorno al suo
asse, che rimane vincolato all’ostacolo. Nel seguito si può indicare con d la distanza del
centro di massa del settore dal suo asse, che vale

d =
4
√

2
3π

R
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1. Trovare una quantità conservata durante l’urto, motivando la risposta, e calcolarne
il valore iniziale in funzione dei parametri del problema.

2. Calcolare le componenti dell’impulso esercitato dall’ostacolo durante l’urto.

3. Per quali valori di v0 il settore si capovolge?

Soluzione

Domanda 1

Scegliendo un polo sull’asse x vediamo che si conserva la componente parallela ad
esso del momento angolare. Infatti durante l’urto l’unica forza rilevante è la reazione
impulsiva dell’ostacolo, che non ha momento. Inoltre dato che il corpo può ruotare
liberamente attorno all’asse x il vincolo non può applicare momenti paralleli ad esso.

Dato che inizialmente il parallelepipedo ha solo un moto di traslazione il valore
iniziale di questa quantità sarà

Lx = −Mv0d
√

2
2

Domanda 2

Dalla conservazione di Lx segue che dopo l’urto il settore ruota attorno all’asse x con
velocità angolare data da

−Mv0d
√

2
2

= Iω

dove I = 1
2 MR2 è il suo momento di inerzia rispetto all’asse specificato. Segue che

ω = −v0d
R2

√
2

e il centro di massa del settore avrà una velocità

~vCM = ~ω ∧~r = ωx̂ ∧
(
−d
√

2
2

ŷ + d
√

2
2

ẑ

)

=

√
2

2
dω (−x̂ ∧ ŷ + x̂ ∧ ẑ)

= −
√

2
2

dω (ẑ + ŷ)

= v0
d2

R2 (ẑ + ŷ)

La variazione della quantità di moto durante l’urto è uguale all’impulso cercato, e quindi

~I = M~vCM −Mv0ŷ = Mv0
d2

R2 ẑ + Mv0

(
d2

R2 − 1
)

ŷ
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Domanda 3

Dopo l’urto si conserva l’energia, e per ottenere il capovolgimento il centro di massa
del settore dovrà arrivare sulla verticale dell’origine, ad una altezza d. Confrontan-
do l’energia in questa situazione con quella immediatamente dopo l’urto abbiamo la
condizione

Mgd <
1
2

Iω2 + Mgd
√

2
2

Inserendo il valore di ω determinato precedentemente troviamo

2v2
0d2

R4 >
2gd
R2

(
2−
√

2
)

e quindi

v0 > R
√

g
d

(
2−
√

2
)

PROBLEMA 6.66

Energia persa e rotolamento puro ??

x

y

z

~v

~ω

Figura 6.70.: La sfera lanciata su un piano orizzontale.

Una sfera di raggio R e massa M viene lanciata su un piano orizzontale con velocità
angolare ~ω e velocità del centro di massa ~v, scelte come in Figura6.70. Tra sfera e piano
si ha attrito dinamico.

1. Mostrare che il momento angolare del cilindro rispetto a un polo scelto opportu-
namente si conserva.

2. Scrivere l’energia della sfera in funzione del momento angolare conservato e della
velocità istantanea del punto del cilindro a contatto con il piano.
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6.66. ENERGIA PERSA E ROTOLAMENTO PURO ??

3. Utilizzare l’espressione dell’energia cinetica ottenuta per calcolare il valore del-
l’energia che viene dissipata per attrito prima che la sfera inizi a rotolare senza
strisciare.

Soluzione

Consideriamo la retta sulla quale si muove il punto di contatto tra sfera e piano. Se
scegliamo il polo in un punto qualsiasi di questa, vediamo che il momento angolare si
conserva. Infatti le uniche forze che agiscono sulla sfera sono

◦ la reazione normale del piano Nŷ

◦ la forza di gravità −Mgŷ

◦ La forza di attrito Fa x̂

Dato che il centro di massa della sfera non accelera nella direzione ŷ deve essere N = Mg.
Ma entrambe le forze hanno lo stesso braccio rispetto al polo scelto, quindi i rispettivi
momenti si cancellano. Inoltre la forza di attrito ha braccio nullo: la conclusione è che
il momento di forza totale applicato alla sfera è nullo, e il suo momento angolare si
conserva, e vale

~L =~r ∧M~v + ICM~ω

Dato che ~ω = ωẑ, ~v = vx̂ e~r = xx̂ + Rŷ abbiamo

~L = (ICMω−MRv) ẑ ≡ Lz ẑ

La velocità del punto di contatto è invece

~v0 = ~v− R~ω ∧ ŷ = (v + Rω) x̂ ≡ vo x̂

Esprimendo ω e v in funzione di Lz e v0 otteniamo

v =
ICMv0 − RLz

ICM + mR2 =
ICMv0 − RLz

IO

ω =
Lz + MRv0

ICM + mR2 =
Lz + MRv0

IO

dove IO è il momento di inerzia rispetto al punto di contatto.
L’energia vale

E =
1
2

Mv2 +
1
2

ICMω2

e sostituendo le espressioni precedenti troviamo

E =
1
2

L2
z

I0
+

1
2

ICM

I0
Mv2

o
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6.67. URTO TRA UN CILINDRO E UN PARALLELEPIPEDO ??

Quando la sfera inizia a rotolare senza strisciare si ha vo = 0. Inoltre Lz si è conservato.
Segue che l’energia dissipata è il secondo termine dell’equazione precedente, ossia

Ediss =
1
2

ICM

I0
Mv2

o

In particolare se tutta la massa è concentrata al centro della sfera ICM = 0 e non viene
dissipata energia.

PROBLEMA 6.67

Urto tra un cilindro e un parallelepipedo ??

ω

v

VM1

M2

h

R

Figura 6.71.: Il sistema considerato. Inizialmente ω = ω0, v = −Rω0 (per la condizione
di puro rotolamento) e V = 0.

Un cilindro di massa M1 e raggio R ruota senza strisciare su un piano orizzontale.
Sullo stesso piano si trova un parallelepipedo di massa M2 e altezza h. Il parallelepipedo
può scorrere liberamente sul piano orizzontale, ma non può staccarsi da esso, ed inizial-
mente è fermo. Il cilindro invece ha inizialmente una velocità angolare ω0 < 0 e muo-
vendosi urta elasticamente il parallelepipedo. L’urto si può considerare praticamente
istantaneo. Calcolare

◦ le velocità di cilindro e parallelepipedo dopo l’urto;

◦ l’impulso totale e il momento totale ceduto dal piano orizzontale al parallelepipe-
do durante l’urto.

Soluzione

Dato che l’urto è elastico si conserva l’energia. Di conseguenza possiamo scrivere

1
2

IOω2
0 =

1
2

IOω2 +
1
2

MV2
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6.67. URTO TRA UN CILINDRO E UN PARALLELEPIPEDO ??

dove abbiamo scritto l’energia cinetica del cilindro come energia di puro rotolamento
rispetto al punto di contatto con la superficie orizzontale, istantaneamente ferma. Per
questo motivo

IO =
3
2

M1R2

Notiamo che nell’urto non si conserva la quantità di moto orizzontale, dato che sul
cilindro agisce una forza esterna orizzontale, l’attrito statico necessario a mantenere la
condizione di rotolamento puro. Non è nemmeno possibile trovare a priori un polo
rispetto al quale il momento delle forze esterne sia nullo. Infatti il piano orizzontale
eserciterà durante l’urto sul parallelepipedo un momento di forza impulsivo non noto.

Sappiamo però che il cilindro durante l’urto applica un impulso orizzontale J al
blocco, e quindi possiamo scrivere

M2∆V = J

Il blocco applicherà un impulso uguale e contrario al cilindro, e quindi un impulso
angolare JR rispetto ad un polo preso nel punto di contatto col terreno. Allora potremo
scrivere la variazione del momento angolare del cilindro nella forma

∆Lc = JR

Combinando le due equazioni precedenti troviamo

∆ (Lc −M2RV) = 0

quindi la quantità
Lc −M2RV = Iω−M2RV

è conservata. Uguagliando i valori di questa prima e dopo l’urto troviamo

IOω0 = IOω−M2RV

In conclusione abbiamo le due equazioni

IO
(
ω2

0 −ω2) = M2V2

IO (ω0 −ω) = −M2RV

e risolvendo il sistema otteniamo

V = − 2RI0

I0 + M2R2 ω0

ω =
I0 −M2R2

I0 + M2R2 ω0

v = −ωR =
I0 −M2R2

I0 + M2R2 v0

Notare che questi risultati non dipendono da h.
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6.68. MATITA CHE SCIVOLA LUNGO UN PIANO INCLINATO ??

Per quanto riguarda l’impulso verticale che il piano esercita sul parallelepipedo, que-
sto deve essere nullo. Se questo non fosse vero dopo l’urto la quantità di moto verticale
del parallelepipedo dovrebbe essere diversa da zero, ma questo è impossibile per ipotesi.

L’impulso angolare K esercitato dal piano sul parallelepipedo in generale non sarà
nullo, perché sappiamo che il parallelepipedo non deve ruotare. Prendendo il polo nel
centro di massa del parallelepipedo dovrà essere

K− J
(

R− h
2

)
= 0

e quindi

K = J
(

R− h
2

)
= M2V

(
R− h

2

)

Se invece prendiamo il polo sul piano orizzontale avremo

K− JR = −M2V
h
2

che da (ovviamente?) lo stesso risultato.

PROBLEMA 6.68

Matita che scivola lungo un piano inclinato ??

α

β
~g

C

`

Figura 6.72.: La matita (in rosso) in caduta lungo il piano inclinato. L’angolo β resta
fisso.

Una matita (un’asta sottile e omogenea) ha una lunghezza ` e una massa totale m.
Un suo estremo C viene appoggiato ad un piano inclinato rispetto all’orizzontale di
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6.68. MATITA CHE SCIVOLA LUNGO UN PIANO INCLINATO ??

un angolo α. L’asta e la normale per C al piano inclinato giacciono sullo stesso piano
verticale π.

L’angolo β, misurato sul piano π, tra l’asta e il piano inclinato è scelto in modo tale
che l’asta possa scendere lungo il piano inclinato senza ruotare (vedere Figura 6.72) con
accelerazione costante a. Il piano esercita una forza di attrito dinamico caratterizzato da
un coefficiente µ.

Calcolare, se esiste, l’angolo β e l’accelerazione a.

Soluzione

Scriviamo le due componenti della prima equazione cardinale nel piano π, lungo la
direzione perpendicolare e parallela al piano. Abbiamo

0 = N −mg cos α

ma = −µN + mg sin α

Abbiamo usato il fatto che l’asta non ruota, e quindi tutta l’accelerazione a del suo centro
di massa è parallela al piano. Inoltre stiamo supponendo v > 0. Risolvendo otteniamo

N = mg cos α

a = g (sin α− µ cos α)

Utilizziamo adesso la seconda equazione cardinale rispetto ad un polo posto nel centro
di massa dell’asta. Dato che rispetto al polo scelto il momento angolare è nullo possiamo
scrivere, per la componente L del momento angolare e M del momento perpendicolare
a π

0 = N
`

2
cos β + µN

`

2
sin β

e sostituendo il valore di N troviamo la condizione

(cos β + µ sin β) cos α = 0

A parte il caso nel quale il piano è verticale (cos α = 0) per il quale la relazione è sempre
verificata, vediamo che deve essere

tan β = − 1
µ

quindi l’asta deve essere inclinata di un angolo β > π/2, tendente a π/2 per µ → 0.
Notare che per µ → +∞ apparentemente β → π. Questo è un risultato corretto, ma si
deve tenere conto del fatto che per

µ > tan α

l’accelerazione dell’asta diviene negativa. Quindi questa se lanciata inizialmente con
velocità positiva arriva a fermarsi e l’analisi fatta non è più applicabile.
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6.69. PICCOLE OSCILLAZIONI DI ANELLI ? ? ?

PROBLEMA 6.69

Piccole oscillazioni di anelli ? ? ?

φ
θ

M1, R1

M2, R2

~g

Figura 6.73.: I due anelli, e due possibili coordinate che si possono introdurre per de-
scriverne il moto. Si ha rotolamento puro sia tra l’anello grande e il piano
orizzontale, sia tra i due anelli.

Due anelli di massa M1, M2 e raggio R1, R2 < R1 possono muoversi in un piano
verticale. L’anello di massa M1 è appoggiato su un piano orizzontale sul quale può
compuere un moto di puro rotolamento. L’anello di massa M2 si trova all’interno del
primo. I due anelli sono vincolati da una condizione di rotolamento puro.

Dopo avere introdotto delle coordinate opportune, scrivere le equazioni del moto del
sistema e risolverle nel regime di piccole oscillazioni rispetto alla posizione di equilibrio.

Soluzione

~g

θ
φ

P1 P2

x

y

Figura 6.74.: Le coordinate utilizzate per descrivere il sistema. L’angolo φ definisce la
posizione del disco piccolo, l’angolo θ la rotazione del disco grande.

Il sistema ha due gradi di libertà. Per descriverlo utilizzeremo due angoli θ e φ, definiti
come in Figura 6.74. Per quanto riguarda le posizioni di equilibrio, notiamo che tutti
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6.69. PICCOLE OSCILLAZIONI DI ANELLI ? ? ?

i valori di θ sono equivalenti. Al contrario, avremo equilibrio stabile solo per φ = 0, e
quindi potremo considerare φ (e φ̇) piccolo nel regime di piccole oscillazioni.

Cerchiamo di determinare due equazioni del moto che lo descrivano completamente.
Poniamoci in un sistema non inerziale che trasla insieme al centro del disco grande, e
cerchiamo equazioni del moto indipendenti dalle reazioni vincolari.

La prima è la seconda equazione cardinale di tutto il sistema, scelta prendendo come
polo il punto P1 in Figura 6.74 posto nel punto di contatto tra disco grande e piano
orizzontale. Rispetto ad esso la componente z del momento angolare del disco grande è

L1z = 2m1R2
1θ̇

e quella del disco piccolo, in approssimazione di piccole oscillazioni φ� 1

L2z = m2R2
2ω2 −m2R2 (R1 − R2) φ̇

Per calcolare la velocità angolare del disco piccolo ω2 scriviamo la velocità del suo centro
di massa come

v = (R1 − R2) φ̇

dato che questo compie un moto circolare attorno al centro del disco grande. Possiamo
scrivere la stessa velocità, data la condizione di rotolamento puro, come velocità del
punto P2 più velocità relativa ad esso:

v = R1θ̇ −ω2R2

Confrontando le due espressioni troviamo

ω2 =
R1

R2
θ̇ −

(
R1

R2
− 1
)

φ̇

e quindi
L2z = m2R1R2θ̇ − 2m2R2 (R1 − R2) φ̇

Possiamo adesso scrivere l’equazione del moto nella forma

d
dt
[
R1 (2m1R1 + m2R2) θ̇ − 2m2R2 (R1 − R2) φ̇

]
= −m2g (R1 − R2) φ

+ m2R2a + m1R1a

Nella seconda riga abbiamo il momento delle forze apparenti: l’accelerazione del siste-
ma di riferimento, data la condizione di rotolamento puro, è

a = −R1θ̈

e quindi

2R1

(
3
2

m1R1 + m2R2

)
θ̈ − 2m2R2 (R1 − R2) φ̈ = −m2g (R1 − R2) φ
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6.69. PICCOLE OSCILLAZIONI DI ANELLI ? ? ?

Per ottenere la seconda equazione, consideriamo adesso la seconda equazione cardinale
per il disco piccolo, scritta rispetto al polo P2. Si tratta di un polo mobile, ma la sua
velocità nel sistema che abbiamo scelto è parallela a quella del centro di massa del disco,
e quindi non è necessario aggiungere alcun termine alle equazioni del moto.

Sempre nel regime di piccole oscillazioni possiamo calcolare il momento angolare del
disco piccolo (del primo ordine nelle velocità) trascurando lo spostamento di P2 rispetto
a P1, e quindi

L′2z = L2z

L’equazione del moto sarà allora

d
dt
[
m2R1R2θ̇ − 2m2R2 (R1 − R2) φ̇

]
= m2gR2φ− R2m2a

ossia
2m2R2 (R1 − R2) φ̈ = −m2gR2φ

e sostituendo nella prima equazione otteniamo

2R1

(
3
2

m1R1 + m2R2

)
θ̈ = −2m2g (R1 − R2) φ

La seconda equazione è quella di un oscillatore armonico

φ̈ = − g
2 (R1 − R2)

φ

di frequenza angolare

Ω1 =

√
g

2 (R1 − R2)

Otteniamo la soluzione generale

φ = A cos Ω1t + B sin Ω1t

= φ0 cos Ω1t +
1

ω1
φ̇0 sin Ω1t

Sostituendo nella prima equazione otteniamo

θ̈ = − m2g (R1 − R2)

R1
( 3

2 m1R1 + m2R2
)
(

φ0 cos Ω1t +
1

ω1
φ̇0 sin Ω1t

)

Integrando due volte abbiamo infine

θ =
m2g (R1 − R2)

ω2
1R1

( 3
2 m1R1 + m2R2

)
(

φ0 cos Ω1t +
1

ω1
φ̇0 sin Ω1t

)
+ Ct + D

=
2m2 (R1 − R2)

2

R1
( 3

2 m1R1 + m2R2
)
(

φ0 cos Ω1t +
1

ω1
φ̇0 sin Ω1t

)
+ Ct + D
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Imponiamo le condizioni iniziali:

θ0 =
2m2 (R1 − R2)

2

R1
( 3

2 m1R1 + m2R2
)φ0 + D

θ̇0 =
2m2 (R1 − R2)

2

R1
( 3

2 m1R1 + m2R2
) φ̇0 + C

e quindi

θ =
2m2 (R1 − R2)

2

R1
( 3

2 m1R1 + m2R2
)
[

φ0 (cos Ω1t− 1) + φ̇0

(
1

ω1
sin Ω1t− t

)]
+ θ̇0t + θ0

Una soluzione particolare si ottiene per φ0 = 0 e φ̇0 = 0. In questo caso

φ(t) = 0

θ(t) = θ̇0t + θ0

Nel sistema di riferimento scelto il disco piccolo rimane sempre in basso, e quello gran-
de ruota con velocità angolare costante. Notare che, a causa della condizione di puro
rotolamento, il disco piccolo ruota con velocità angolare

ω2 =
R1

R2
θ̇0

In un sistema di riferimento solidale al suolo le soluzioni per θ(t) e φ(t) trovate restano
valide. Il centro di massa del disco grande sarà però in moto in direzione orizzontale
con

xcm,1(t) = −R1θ(t)

e per il centro di massa del disco piccolo avremo (sempre per piccole oscillazioni)

xcm,2(t) = −R1θ(t) + (R1 − R2) φ

ycm,2(t) = − (R1 − R2)

La soluzione può essere interpretata in termini di modi normali a frequenza fissata: nel
primo modo (di frequenza angolare Ω1, corrispondente a C = D = 0) sia il disco piccolo
che quello grande hanno un moto oscillatorio. Nel secondo (di frequenza angolare nulla)
i due dischi ruotano con velocità angolare costante.
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CAPITOLO7

Dinamica dei fluidi
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7.1. VENTOSA ??

PROBLEMA 7.1

Ventosa ??

Un tronco cono di altezza h, raggio di base inferiore R1, raggio di base superiore R2 e
densitá ρ aderisce perfettamente al fondo di un recipiente. Il recipiente é riempito fino
al livello L > h di un liquido di densitá ρL > ρ.

Determinare sotto quali condizioni il cono rimane sul fondo.

R2

R1

h

L

Figura 7.1.: Il tronco di cono considerato nell’esercizio. Notare che si può considerare
sia il caso R1 > R2 (in figura) che il caso R2 > R1.

Soluzione

Se il cono non aderisse sul fondo le forze agenti su di esso sarebbero la forza peso e la
spinta di Archimede. Nella situazione considerata è necessario sottrarre la spinta dovuta
alla pressione sulla base e aggiungere la reazione vincolare N del fondo. Abbiamo
quindi all’equilibrio

(ρL − ρ)Vg− ρLgLπR2
1 + N = 0

e per non avere distacco é necessario che N > 0. Questo significa

ρLgLπR2
1 > (ρL − ρ)Vg

ossia

ρLgLπR2
1 > (ρL − ρ) g

h
3

π
(

R2
1 + R1R2 + R2

2
)
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da cui (
1 +

R2

R1
+

R2
2

R2
1

)
<

3L
h

ρL

ρL − ρ

Questo significa che il rapporto R2/R1 non deve essere troppo grande, più esattamente

R2

R1
< −1

2
+

√
3L
h

ρL

ρL − ρ
− 3

4

Notare che per ρL ≤ ρ il corpo rimane sempre sul fondo.

PROBLEMA 7.2

Secchio rotante ??

Un recipiente cilindrico di raggio a ruota attorno al suo asse con velocità angolare ω,
e contiene un volume V di un liquido. Il fluido viene trascinato dal recipiente, e in
condizioni stazionarie si muove rigidamente e solidalmente con esso. Dire se la quantità

H = P +
1
2

ρv2 + ρgz (7.2.1)

assume un valore costante in tutto il liquido e calcolare la forma della superficie libera
di esso.

Soluzione

Il teorema di Bernoulli dice che in condizioni stazionarie la quantità H è costante su
ogni linea di flusso del fluido. Per concludere che questa costante è la stessa su ogni
linea è però necessario che il campo di velocità sia irrotazionale, ipotesi non verificata
in questo caso.

Per averne conferma, possiamo cercare di rispondere alla seconda domanda sup-
ponendo che H sia veramente costante. Allora sulla superficie libera del fluido deve
essere

1
2

ρω2r2 + ρgz = K (7.2.2)

cioè

z = K′ − ω2r2

2g
(7.2.3)

Ma questo ci dice che la superficie è un paraboloide di rotazione con concavità rivolta
verso il basso, il che è assurdo.

Possiamo invece porci in un sistema che ruota solidale al recipiente. In questo caso
il fluido appare in quiete, quindi il suo campo di velocità è ovviamente irrotazionale.
Siamo nelle condizioni per poter dedurre dal teorema di Bernoulli che la quantità

H = P + ρφ (7.2.4)
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è effettivamente costante in tutto il fluido, indicando con φ l’energia potenziale per unità
di massa, che tiene conto della forza centrifuga apparente:

φ = gz− 1
2

ω2r2 (7.2.5)

Da questo segue immediatamente che

z = K +
ω2r2

2g
(7.2.6)

cioè un paraboloide di rotazione con concavità rivolta verso l’alto, risultato sensato. Per
determinare la costante K calcoliamo il volume del liquido:

V =

ˆ a

0

(
K +

ω2r2

2g

)
2πrdr = 2π

(
K

a2

2
+

ω2a4

8g

)
(7.2.7)

cioè

K =
V

πa2 −
ω2a2

4g
. (7.2.8)

PROBLEMA 7.3

Tubo piegato ??

Un tubo ha una estremità di sezione SA e un’altra di sezione SB. Le due estremità del
tubo si trovano alla stessa quota, e il tubo è piegato come in Figura 7.2 di un angolo α.
Dall’estremità di sezione SA entra un liquido di densità ρ con velocità VA.

Calcolare la forza che il liquido esercita sul tubo. Considerare in particolare il caso
α = 0.

Soluzione

La forza che il liquido esercita sul tubo è uguale e opposta a quella che il tubo esercita
sul liquido. Quest’ultima è uguale alla variazione della quantità di moto del liquido,
che possiamo scrivere come

d~P = −dM~VA + dM~VB (7.3.1)

D’altra parte
dM = ρSA|VA|dt = ρSB|VB|dt (7.3.2)

quindi possiamo scrivere

d~P = ρSA|VA|dt (|VA|n̂A + |VB|n̂B) = ρSAV2
Adt

(
n̂A +

SA

SB
n̂B

)
(7.3.3)
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7.4. EQUILIBRIO DI UN CILINDRO IMMERSO IN UN LIQUIDO ? ? ?

Sa, Va Sb, Vb

α

Figura 7.2.: Il tubo piegato considerato nell’esercizio.

dove n̂A = (− sin α
2 , cos α

2 ), n̂A = (sin α
2 , cos α

2 ). Abbiamo infine

~F = −d~P
dt

= −ρSAV2
A


 sin α

2

(
−1 + SA

SB

)

cos α
2

(
1 + SA

SB

)

 . (7.3.4)

In particolare se α = 0

~F = −ρSAV2
A

(
0(

1 + SA
SB

)
)

= −ρ
SA

SB
(SA + SB) |VA|~VA . (7.3.5)

PROBLEMA 7.4

Equilibrio di un cilindro immerso in un liquido ? ? ?

Un cilindro di densità costante ρ, raggio di base R e altezza h galleggia in un liquido di
densità ρL > ρ, con l’asse in direzione verticale. Studiare la stabilità della posizione di
equilibrio.

Soluzione

Poniamo inizialmente un sistema di riferimento con l’origine O sull’asse del cilindro a
una distanza OP = d dalla base inferiore, come mostrato in Figura 7.3. In tale sistema
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di riferimento il centro di massa sarà in x = y = 0 e z = h/2− d. Immaginiamo adesso
di tagliare il cilindro con un piano passante per O e inclinato di un angolo θ rispetto
all’orizzontale. Sempre facendo riferimento alla Figura 7.3, il centro di massa della parte
del cilindro al di sotto del piano, che rappresenterà la parte immersa nel fluido, si troverà
in xG(θ), yG = 0, zG(θ).

O

A
θ B

C

D

P

G

M

Figura 7.3.: Il cilindro del problema. L’origine del sistema di coordinate (asse verticale z,
asse orizzontale x) è scelto in modo da avere OP = d.

Notiamo che il volume totale di tale parte non dipende da θ e vale

VI = πR2d

All’equilibrio, con il cilindro in posizione verticale, la spinta di Archimede deve egua-
gliare la forza peso, quindi gρLVI = gρV, cioè

ρLπR2dg = ρπR2hg

e quindi

d =
ρ

ρL
h

Si verifica facilmente che il sistema è stabile verticalmente. Se l’altezza della parte
immersa vale d− x infatti si ha una forza di richiamo verticale

F(x) = −ρLπR2gx

Vediamo sotto quale condizione il sistema è stabile sotto rotazioni. Ruotando di un ango-
lo θ il cilindro attorno ad un asse orizzontale passante per O abbiamo per le coordinate
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di un punto generico

x′ = x cos θ − z sin θ

z′ = x sin θ + z cos θ

ossia, usando i risultati precedenti,

x′M =

(
h
2
− d
)

sin θ

x′G = xG(−θ) cos θ − zG(−θ) sin θ

A

B

C D

O

x

z

G

M

A

B

C D

O

x

z

G

M

Figura 7.4.: Due possibili posizioni del centro di massa M del cilindro e del centro di
galleggiamento G. La situazione a sinistra corrisponde alla instabilità, quella
a destra alla stabilità.

Quindi sul cilindro agisce il momento

M = ρgV
(
x′G − x′M

)

Utilizzando le espressioni esplicite per xG e zG, calcolate alla fine dell’esercizio, ottenia-
mo per piccoli angoli,

x′M =

(
h
2
− d
)

θ

x′G =

(
−d

2
+

R2

8πd

)
θ

e il momento delle forze vale esplicitamente

M =
1
2

ρgV
(

h− d− R2

4πd

)
θ
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Per avere stabilità il momento deve tendere a riportare il cilindro nella posizione di
equilibrio, quindi

(
h− d− R2

4πd

)
< 0

cioè

4π
ρ

ρL

(
1− ρ

ρL

)
<

R2

h2

Si avrà stabilità quindi quando il rapporto R/h è sufficientemente grande.

Calcolo del centro di massa della parte immersa del cilindro.

Considerando il cilindro in Figura 7.3, troviamo il centro di massa G della parte del
cilindro al di sotto di un piano passante dal punto O e inclinato di un angolo θ (passante
per C e D in figura). Abbiamo

xG =
1

πR2d

ˆ
xdV

zG =
1

πR2d

ˆ
zdV

che possiamo scrivere esplicitamente in coordinate cilindriche. Per xG si ottiene, tenendo
conto che x = r cos φ e che la faccia superiore ha equazione z = x tan θ

xG =
1

πR2d

ˆ 2π

0
dφ

ˆ R

0
rdr
ˆ r cos φ tan θ

−d
dz r cos φ

=
1

πR2d

ˆ 2π

0
dφ

ˆ R

0
r2dr cos φ (r cos φ tan θ + d)

=
1

πR2d

ˆ R

0

1
2

r3dr tan θ

=
1
8

R4

πR2d
tan θ

=
R2

8πd
tan θ
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Per quanto riguarda zG

zG =
1

πR2d

ˆ 2π

0
dφ

ˆ R

0
rdr
ˆ r cos φ tan θ

−d
dz z

=
1

πR2d

ˆ 2π

0
dφ

ˆ R

0
rdr

1
2
(
r2 cos2 φ tan2 θ − d2)

=
1

πR2d

ˆ R

0
dr

1
2

(
1
2

r3 tan2 θ − 2πd2r
)

=
1

πR2d

(
R2

8πd2 tan2 θ − 1
)

quindi

x′M =

(
h
2
− d
)

sin θ

x′G =
R2

8πd
sin θ +

d
2

(
R2

8πd2 tan2 θ − 1
)

sin θ

PROBLEMA 7.5

Campo di velocità I ??

Il campo di velocità di un fluido è descritto da ~v = (αx,−αy, 0). La regione x2 + y2 +
z2 < 1 viene marcata con un colorante a t = 0. Determinare la forma della regione
colorata agli istanti successivi, e il suo volume.

Soluzione

Dall’espressione del campo di velocità si determinano le traiettorie degli elementi di
fluido risolvendo

dx
dt

= αx

dy
dt

= −αy

dz
dt

= 0

che si integrano direttamente ottenendo

x(t) = x(0)eαt

y(t) = y(0)e−αt

z(t) = z(0)
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Dato che x(0)2 + y(0)2 + z(0)2 < 1 otteniamo

x(t)2

e2αt +
y(t)2

e−2αt + z(t)2 < 1

quindi agli istanti successivi la macchia di colore ha la forma di un ellissoide con
semiassi ax = eαt, ay = e−αt, az = 1. Il volume è dato da

V(t) =
4
3

πaxayaz =
4
3

π

e si conserva.

PROBLEMA 7.6

Recipiente conico forato ??

Il recipiente in Figura 7.5 ha la forma di un tronco di cono rovesciato, con un foro
circolare sul fondo di sezione S0. Inizialmente è riempito fino ad una altezza h0 con un
liquido non viscoso. Detto τ il tempo necessario affinchè l’altezza del liquido si riduca

a h1 < h0, scrivere τ come integrale definito e calcolarlo supponendo h1 �
√

S0
π cot2 θ

.

h

θ

S

Figura 7.5.: Il recipiente conico considerato nell’esercizio.

Soluzione

Poniamo l’origine di un sistema di coordinate nel vertice del cono. La superficie trasver-
sa dipenderà da z come

S(z) = πz2 cot2 θ (7.6.1)
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ed in particolare il foro si troverà a una quota z0 determinata da

S(z0) = πz2
0 cot2 θ = S0 (7.6.2)

mentre la superficie del liquido sarà in

z = h + z0

Il volume contenuto nel recipiente sarà quindi

V =
1
3
[S(z0 + h) (z0 + h)− S0z0] =

π

3
cot2 θ

[
(h + z0)

3 − z3
0

]
(7.6.3)

La variazione del volume V del liquido contenuto nel recipiente è dato da

dV
dt

= π cot2 θ (h + z0)
2 dh

dt
= −S0v− (7.6.4)

dove è la velocità di fuoriuscita, da cui

v− = −
(

1 +
h
z0

)2 dh
dt

(7.6.5)

Se applichiamo il teorema di Bernoulli ad una linea di flusso che collega la superficie
al foro di uscita abbiamo

1
2

ρ

(
dh
dt

)2

+ ρgh =
1
2

ρv2
− (7.6.6)

e sostituendo il valore di v− determinato precedentemente troviamo

dh
dt

= −
√√√√√

2gh[(
1 + h

z0

)4
− 1
] (7.6.7)

L’equazione differenziale è a variabili separabili e il tempo di svuotamento vale

t =
ˆ h0

h1

√√√√
(

1 + h
z0

)4
− 1

2gh
dh (7.6.8)

Introducendo la variabile x = h/z0 abbiamo infine

t =
√

z0

2g

ˆ h0/z0

h1/z0

√
(1 + x)4 − 1

x
dx (7.6.9)

Dobbiamo calcolare questo integrale nel caso h1 � z0. Possiamo supporre allora x � 1
e approssimare √

(1 + x)4 − 1
x

' x3/2 (7.6.10)

Otteniamo quindi

t =
√

z0

2g

ˆ h0/z0

h1/z0

x3/2dx =
2
5

√
z0

2g

[(
h0

z0

)5/2

−
(

h1

z0

)5/2
]

(7.6.11)
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PROBLEMA 7.7

Svuotamento di un serbatoio ??

Un recipiente cilindrico di sezione S è riempito fino ad una altezza h1 di acqua, per
la parte rimanente di vapore saturo. Sul fondo è praticato un foro di sezione S1 �
S, collegato ad una conduttura che nel tratto finale riduce la sua sezione a S2 < S1.
Fornendo calore al sistema si mantiene la pressione del vapore ad un valore P. Nella
conduttura si innesta un cilindro verticale aperto M, come in Figura 7.6. I diametri della
conduttura sono tutti di dimensioni trascurabili rispetto ad h1.

h1

h2

P

Patm

V
S1

S2

M

Figura 7.6.: Il sistema descritto nel problema.

1. Che altezza h2 raggiunge l’acqua nel cilindro M se l’apertura di sezione S2 è
mantenuta chiusa?

2. Si apre adesso la conduttura, e in breve tempo si raggiunge lo stato stazionario.
Calcolare la nuova altezza h2 del liquido in M e la velocità con la quale l’acqua
esce dalla conduttura.

Detta V la velocità calcolata al punto precedente, dire quanto calore è necessario fornire
al sistema per unità di tempo per mantenere le condizioni stazionarie. Indicare con λ il
calore latente di evaporazione e con ρV la densità del vapore.

Soluzione1

Domanda 1

Dato che la pressione sul fondo è la stessa ovunque deve essere

P + ρgh1 = Patm + ρgh2 (7.7.1)

1Secondo problema compitino 28 maggio 2008

526 versione del 5 ottobre 2016



7.8. TRASLOCARE UN ACQUARIO ??

e quindi

h2 = h1 +
P− Patm

ρg
. (7.7.2)

Domanda 2

Detta V1 la velocità nel tratto di sezione S1 dal teorema di Bernoulli segue che

P + ρgh1 = Patm + ρgh2 +
1
2

ρV2
1 = Patm +

1
2

ρV2 (7.7.3)

e dalla conservazione della massa

S1V1 = S2V . (7.7.4)

Risolvendo abbiamo

V =

√
2 (P− Patm + ρgh1)

ρ
(7.7.5)

e

h2 =
(P− Patm + ρgh1)

(
S2

1 − S2
2
)

ρgS2
1

. (7.7.6)

Domanda 3

Dato che la sezione S è molto grande possiamo considerare h1 costante. Man mano che
il liquido defluisce è necessario rimpiazzarlo con nuovo vapore saturo, per mantenere
costante la pressione P. La massa di vapore da creare per unità di tempo è

ρVVS2 (7.7.7)

che corrisponde alla massa di liquido da far evaporare. Quindi

dQ
dt

= λρVVS2 . (7.7.8)

PROBLEMA 7.8

Traslocare un acquario ??

Una vasca rettangolare è riempita parzialmente di liquido, e viene fatta scendere da un
piano inclinato di un angolo θ rispetto all’orizzontale, come in Figura 7.7. Le condizioni
iniziali sono scelte in modo tale che il liquido rimane in quiete rispetto alla vasca. Cal-
colare l’accelerazione di quest’ultima e descrivere le caratteristiche della superficie del
liquido. Calcolare inoltre la pressione sul fondo della vasca, supponendo che il livello
del liquido quando la vasca è orizzontale e in quiete sia h e la sua densità ρ.

527 versione del 5 ottobre 2016



7.9. DIAVOLETTO DI CARTESIO ??

θ

g

Figura 7.7.: La vasca scivola lungo un piano inclinato privo di attrito, e per le particolari
condizioni iniziali scelte il liquido è in quiete rispetto alla vasca.

Soluzione

Se il liquido è in quiete rispetto alla vasca, tutto il sistema è equivalente ad una unica
massa che scende lungo un piano inclinato senza attrito. Di conseguenza l’accelerazione
è parallela al piano e vale a = g sin θ. Se adesso ci poniamo in un sistema di riferimento
solidale alla vasca, avremo che ogni elemento del fluido sarà sottoposto alla forza di
gravità e ad una forza apparente costante, in totale

d~F = −dmgẑ− dm (g sin θ) τ̂ (7.8.1)

dove τ̂ è il versore parallelo al piano. D’altra parte ẑ = n̂ cos θ + τ̂ sin θ (n̂ è normale alla
superficie) per cui

d~F = −dmg cos θn̂ (7.8.2)

Nel sistema di riferimento scelto quindi le forze sono equivalenti a quelle di un campo
gravitazionale uniforme di intensità g cos θ perpendicolare al piano inclinato. La su-
perficie del liquido sarà quindi un piano parallelo al piano inclinato, e la pressione sul
fondo si otterrà applicando la legge di Stevino. Dato che anche il fondo è parallelo alla
superficie avremo ovunque

P = ρg cos θh

Può essere utile confrontare questo esercizio con il 5.23.

PROBLEMA 7.9

Diavoletto di Cartesio ??

Il recipiente cilindrico in Figura 7.8 (sezione S) non permette passaggio di calore. La sua
base superiore può scorrere liberamente. All’interno del cilindro si trova una mole di
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esafloruro di zolfo (SF6, massa molecolare µ = 146.6 g/mol), e una piccola sfera di un
materiale di densità media ρ e capacità termica trascurabile.

F

Figura 7.8.: La sfera immersa nell’esafloruro di zolfo contenuto nel recipiente.

Inizialmente si osserva che la sfera é appoggiata sul fondo, e l’esafluoruro di zolfo,
che si assume si comporti come un gas perfetto, si trova a valori dati T = T0 e P = P0 di
pressione e temperatura.

1. Cosa si puó dire di ρ? Di quanto si deve abbassare il pistone per fare in modo che
la sfera si sollevi dal fondo?

2. Se tale abbassamento avviene aumentando molto lentamente la forza esterna
F, quanto vale la variazione totale ∆F di quest’ultima? Quanto vale ∆F se la
variazione è invece improvvisa?

3. Nei due casi precedenti, calcolare la variazione di entropia del sistema.

Soluzione2

Osserviamo preliminarmente che la temperatura del gas sarà ovunque la stessa, dato
che le diverse parti del sistema sono libere di scambiarsi calore. Al contrario, la pressione
dipenderà dalla coordinata verticale, che chiameremo z. Possiamo scrivere per la legge
dei gas perfetti

µP(z) = ρ(z)RT

ed inoltre
dP = −ρgdz

da cui
dP
dz

= − µg
RT

P

che si può integrare ottenendo

P(z) = P(0)e−
µg
RT z .

2Primo esercizio compitino 30 maggio 2007
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Analogamente per la densità avremo

ρG(z) = ρG(0)e−
µg
RT z

che possiamo esprimere alternativamente in funzione del volume e della massa totale.
Da

m = µ = SρG(0)
ˆ h

0
e−

µg
RT zdz = SρG(0)

RT
µg

(
1− e−

µgh
RT

)

otteniamo

ρG(z) =
µ2g
RTS

(
1− e−

µgh
RT

)−1
e−

µg
RT z .

In prima approssimazione potremo trascurare ovunque la variazione di pressione e
densità con l’altezza, salvo tenerne implicitamente conto per il calcolo della spinta di
Archimede.

I.1

Alla sfera sono applicate due forze: quella di gravità e la spinta di Archimede, risultante
dall’azione complessiva della pressione del gas. Per calcolare quest’ultima basta valutare
la forza peso del gas che occuperebbe il volume della sfera, cioè

~FA = FA ẑ = gVsρG ẑ .

Se la sfera resta sul fondo avremo chiaramente

ρ > ρG =
µP0

RT0
.

Per sollevare la sfera si deve comprimere il gas fino ad avere

ρ′G = ρG
V0

V ′
= ρ

da cui segue

∆h =
1
S
(
V ′ −V0

)
=

V0

S

(
ρG

ρ
− 1
)
=

RT0

SP0

(
ρG

ρ
− 1
)
< 0 .

I.2

Aumentando molto lentamente la forza esterna abbiamo una trasformazione adiabatica
reversibile. In questo caso pressione e volume sono legati da

PVγ = P0Vγ
0

dove γ = cp/cve quindi la pressione finale vale

P = P0


 V0

V0 + V0

(
ρG
ρ − 1

)




γ

=

(
ρ

ρG

)γ

P0 .
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Da questo segue che

∆Frev = P0S
[(

ρ

ρG

)γ

− 1
]

.

Se la variazione è improvvisa, sul gas viene fatto un lavoro W = − (F + ∆F)∆h e quindi
la sua energia interna aumenterà della stessa quantità. Da questo segue che

cv∆T = − (F + ∆F)∆h

cioè
PV ] = − (F + ∆F)

∆V0

S
e quindi

(F + ∆F)V0

[
cv

R
ρG

ρ
+

(
ρG

ρ
− 1
)]

= ScvT0

ossia

∆Firr = P0S
γ
(

1− ρG
ρ

)

1− γ
(

1− ρG
ρ

) .

Da notare che ∆Frev ≥ ∆Firr, e che se le densità iniziali sono molto vicine

∆Frev = P0Sγ

(
1− ρG

ρ

)
+ O

[(
1− ρG

ρ

)2
]

∆Firr = P0Sγ

(
1− ρG

ρ

)
+ O

[(
1− ρG

ρ

)2
]

.

La disuguaglianza si comprende tenendo conto che a parità di variazione di volume il
lavoro fatto sul sistema è sempre maggiore nel caso irreversibile, e quindi la pressione
finale sarà pure maggiore (il volume è lo stesso). I valori di ∆F sono uguali al primo
ordine nella differenza tra densità perchè quando ρG ' ρ le trasformazioni sono piccole,
e possono essere considerate al limite entrambe reversibili.

PROBLEMA 7.10

Estrazione di una provetta ??

Una provetta di massa m, lunghezza ` e sezione S è immersa completamente in un
fluido di densità ρ, che la riempie completamente. La pressione all’esterno del fluido è
quella atmosferica PA. Si può trascurare il volume occupato dalla massa della provetta.
La si inizia ad estrarre mantenendola capovolta come in Figura 7.9. Vale ρg` > PA e si
può considerare la sezione del recipiente che contiene il fluido arbitrariamente grande.

Si chiede di determinare, sommando esplicitamente le forze in gioco, la forza ~F che è
necessario applicare per mantenere la provetta in equilibrio in funzione della lunghezza
h della parte emersa.
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~F

h

Figura 7.9.: La provetta completamente immersa nel liquido (cioè nel caso h < 0).

Soluzione

Facendo riferimento alla Figura 7.10 possiamo distinguere quattro diverse fasi dell’estra-
zione. Per ciascuna consideriamo il valore delle tre forze che agiscono verticalmente: la
forza peso (sempre −mg), la forza associata alla pressione P(int) applicata alla parte ter-
minale della provetta dal suo interno, la forza F(ext)

p = −SP(ext) associata alla pressione
P(ext) applicata alla parte terminale della provetta dal suo esterno. Per avere equilibrio
dovremo quindi applicare una forza verticale

F = mg− SP(int) + SP(ext)

1. La provetta è completamente immersa nel fluido. Dato che possiamo trascurare
lo spessore della provetta, le pressioni P(int) e P(ext) saranno uguali (perchè alla
stessa altezza), e quindi

F = mg

2. Adesso una parte della provetta di lunghezza h è al di fuori del fluido. Se ρgh < PA
l’interno della provetta resta completamente riempito di fluido. Avremo quindi
P(int) = PA − ρgh e P(ext) = PA, da cui

F = mg + Sρgh

3. Appena ρgh > PA l’altezza della colonna di fluido all’interno della provetta smette
di salire, lasciando una frazione vuota. Di conseguenza P(int) = 0 e P(ext) = PA, da
cui

F = mg + SPA
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(1)

(2)

(3) (4)

Figura 7.10.: Le quattro fasi di estrazione della provetta.

4. Adesso la provetta contiene aria, quindi P(int) = P(ext) = PA e

F = mg

Notare che la forza F dipende da h in modo continuo, salvo che al passaggio dalla
fase 3 alla fase 4 quando si svuota bruscamente di fluido.

PROBLEMA 7.11

Estrazione di una provetta, considerazioni energetiche. ??

Vogliamo risolvere il Problema 7.11 basandoci su considerazioni energetiche. Per fare
questo scriviamo l’energia potenziale del sistema in funzione della posizione verticale
della provetta. Il ragionamento che segue è errato, e conduce a un risultato diverso da
quello corretto ottenuto nel problema precedente. Si chiede di scoprire e correggere
l’errore.

Sempre facendo riferimento alle quattro fasi rappresentate in Figura 7.10 scriviamo l’energia
potenziale del sistema in funzione della posizione verticale della parte più alta della provetta
rispetto alla superficie del fluido, indicandola con h.

1. Abbiamo h < 0, e l’unica forza esterna che fa lavoro è la forza di gravità applicata alla
provetta. Di conseguenza a meno di una costante avremo

U = mgh
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2. Adesso le forze che fanno lavoro sono la forza di gravità applicata alla provetta, la forza
di gravità applicata al fluido, la pressione esterna. Dato che la superficie del contenitore
è arbitrariamente grande possiamo trascurare la variazione del suo livello e scrivere i tre
contributi descritti, nell’ordine, come

U = mgh + (ρSh) g
(

1
2

h
)
+ PASh

Per scrivere il secondo termine abbiamo moltiplicato la massa totale della colonna di fluido
sollevata ρSh per g e per l’altezza a cui è salito il relativo centro di massa h/2. L’ultimo
termine infine è la pressione esterna per la variazione di volume.

3. Dato che la colonna di fluido smette di salire quando ρgh = PA, da quel momento la forza
di gravità applicata alla colonna di fluido smetterà di fare lavoro, e quindi

U = mgh + PASh +
1
2

ρSg
(

PA

ρg

)

dove l’ultimo termine costante è stato scelto in modo da raccordarsi con continuità con
l’espressione valida nella fase precedente.

Appena h > ` la provetta si svuota e rimane il solo contributo della forza peso, e quindi

U = mgh

Se adesso deriviamo le espressioni precedenti rispetto ad h otteniamo la forza mecessaria ad
equilibrare la provetta, ossia

F =
∂U
∂h

=





mg h < 0
mg + PAS + ρgSh 0 < h < PA

ρg

mg + PAS PA
ρg < h < `

mg h > `

Soluzione

L’espressione dell’energia potenziale nella fase 2 è scorretta, come si può notare con-
frontando l’espressione della forza con quella determinata nel Problema 7.11, perchè il
termine legato al lavoro della pressione atmosferica PASh deve essere omesso. Questo si
può comprendere tenendo conto che l’energia potenziale che vogliamo scrivere è quella
del sistema costituito dalla provetta e dal fluido. La pressione atmosferica fa lavoro
quindi non solo agendo sulla superfice della provetta, ma anche sulla superficie libera
del fluido. Il totale sarà dato quindi da

dL = PAdV
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7.12. TEMPO DI SVUOTAMENTO DI UN CONTENITORE ?

dove dV è la variazione totale del volume del sistema, che in questa fase coincide con il
volume del fluido (la provetta è completamente piena). Ma il fluido è incomprimibile,
per cui dV = 0.

Si può rimanere confusi dal fatto che nel limite di recipiente molto grande la variazio-
ne di altezza del livello del fluido tende a zero. Questo è vero, ma non tende invece a
zero il prodotto tra la variazione di altezza e la superficie libera.

PROBLEMA 7.12

Tempo di svuotamento di un contenitore ?

Un contenitore cilindrico di sezione S è riempito di un liquido di densità ρ. Ad una
profondità h viene praticato un foro nella parete laterale di sezione s � S. Calcolare
dopo quanto tempo il livello del liquido scende di tratto ∆ < h.

Soluzione

Consideriamo una linea di flusso che collega la superficie del liquido con il foro. Dal
teorema di Bernoulli segue che la quantità H = 1

2 ρv2 + ρgz + P deve avere lo stesso
valore sulla superficie, dove abbiamo

H = P0 + ρgh +
1
2

ρv2
1 (7.12.1)

e al foro, dove invece

H = P0 +
1
2

ρv2
2 (7.12.2)

da cui

h =
1

2g
(
v2

2 − v2
1
)

(7.12.3)

Abbiamo indicato con v1 = −dh/dt la velocità con cui la superficie del liquido si
abbassa, e con v2 la velocità di uscita dal foro. D’altra parte dato che il liquido è
incompressibile (la densità ρ è fissata) deve essere

Sv1 = sv2 (7.12.4)

e quindi

h =
1

2g

(
S2

s2 − 1
)

v2
1 =

1
2g

(
S2

s2 − 1
)(

dh
dt

)2

(7.12.5)

Separando le variabili otteniamo

ˆ h(t)

h0

dh√
h
= ±

ˆ t

0

√
2gs2

S2 − s2 dt (7.12.6)
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7.13. LA MISURA DI COMPTON DELLA VELOCITÀ DI ROTAZIONE
TERRESTRE? ? ?

da cui, scegliendo il segno opportunamente,

√
h(t) =

√
h0 −

√
gs2

2 (S2 − s2)
t (7.12.7)

Il tempo cercato si ottiene ponendo in questa espressione h(t) = h0 − ∆

t =
(√

h0 −
√

h0 − ∆
)√2 (S2 − s2)

gs2

' S
s

√
2
g

(√
h0 −

√
h0 − ∆

)
(7.12.8)

Nella soluzione non si è tenuto conto di diverse correzioni possibili, che verranno
discusse in altri esercizi. In particolare

1. non si è tenuto conto del fatto che la velocità di uscita del fluido non è perpendi-
colare alla superficie del foro, quindi non è del tutto corretto stimare il flusso in
uscita come sv2

2. è stato trascurato qualsiasi attrito

3. non si è tenuto conto del fatto che il fluido non è realmente in uno stato sta-
zionario, dato che le velocità in ogni punto cambiano mel tempo. L’approssima-
zione dovrebbe essere buona per s � S, almeno lontano dalle fasi finali dello
svuotamento.

PROBLEMA 7.13

La misura di Compton della velocità di rotazione
terrestre? ? ?

Un metodo proposto da A. H. Compton per misurare la velocità di rotazione terrestre
consiste nel riempire di acqua un tubo cavo circolare di raggio R come in Figura 7.11.
Trascurando gli attriti, si suppone che l’acqua possa scorrere liberamente all’interno del
tubo.

Inizialmente questo si trova parallelo ad un piano orizzontale, ed il fluido è in quie-
te. Successivamente viene ruotato di 180◦ attorno ad un suo diametro fino a tornare
nuovamente orizzontale, e si osserva che il fluido sta scorrendo con una certa velocità
angolare ω lungo il tubo.

Calcolate la velocità angolare del fluido in funzione di R (si può supporre la sezione
del tubo molto piccola), della latitudine λ alla quale si trova il laboratorio e della velocità
angolare di rotazione Ω della terra, supponendo che il diametro attorno al quale avviene
la rotazione sia disposto da ovest verso est. Se λ = π/4 e R = 1m quanto vale ω? Cosa
succede se il diametro attorno al quale avviene la rotazione è disposto da sud a nord?
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TERRESTRE? ? ?

vD

R

Figura 7.11.: Rappresentazione schematica del dispositivo di Compton. Il fluido scorre
liberamente all’interno del tubo circolare, che viene ruotato attorno ad un
asse passante per un suo diametro come rappresentato.

Soluzione
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8.1. SFERA RADIANTE ??

PROBLEMA 8.1

Sfera radiante ??

All’interno di una sfera di raggio R e conducibilità termica η viene prodotto calore in
modo omogeneo. Il calore prodotto per unità di volume e unità di tempo vale w.

La sfera è immersa in uno spazio vuoto allo zero assoluto nel quale irraggia come un
corpo nero. Calcolare la temperatura all’interno del corpo all’equilibrio.

Soluzione

Per motivi di simmetria il calore si propagherà radialmente, e potremo scrivere la
relativa componente della sua densità di corrente come

Jq(r) = −η
∂T(r)

∂r
dove, per simmetria, anche la temperatura dipenderà solo dal raggio.

Il calore che attraversa una superficie sferica di raggio r sarà dato da

dQ
dt

(r) = 4πr2 Jq(r) = −4πηr2 ∂T(r)
∂r

(8.1.1)

e dovrà essere uguale al calore prodotto per unità di tempo in tutto il volume in esso
contenuto:

4
3

πr3w = −4πηr2 ∂T(r)
∂r

Otteniamo un’equazione differenziale per la temperatura della forma

∂T
∂r

= − rw
3η

che possiamo integrare direttamente:

T(r) = T(0)− w
6η

r2

Per determinare la costante di integrazione imponiamo che il flusso di calore irradiato
sia uguale a quello determinato dalla (8.1.1)

4πR2 Jq(R) = 4πR2σT(R)4

cioè

4πη
w
3η

R3 = 4πR2σ

(
T(0)− w

6η
R2
)4

da cui

T(0) =
(

wR
3σ

)1/4

+
w
6η

R2

Da tutto ciò segue

T(r) =
(

wR
3σ

)1/4

+
w
6η

(
R2 − r2)
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8.2. SBARRA CONDUCIBILITÀ VARIABILE ??

PROBLEMA 8.2

Sbarra conducibilità variabile ??

Calcolare la resistenza termica di una sbarra di lunghezza ` e sezione S, se la conducibi-
lità termica del materiale varia secondo la legge

κ(z) = κ0 + (κ` − κ0)
z
`

(8.2.1)

lungo essa.

Soluzione

In condizioni stazionarie la corrente che attraversa una sezione della sbarra deve essere
indipendente da z. Inoltre

I
S
= J = −κ(z)

dT(z)
dz

(8.2.2)

da cui ˆ T2

T1

dT = − I
S

ˆ `

0

dz
κ(z)

= −RI (8.2.3)

La resistenza termica vale quindi

R =
1
S

ˆ `

0

dz
κ0 + (κ` − κ0)

z
`

(8.2.4)

oppure, introducendo la nuova variabile

κ = κ0 + (κ` − κ0)
z
`

(8.2.5)

R =
1
S

`

k` − k0

ˆ k`

k0

dk
k

=
1
S

`

k` − k0
log

k`
k0

(8.2.6)

PROBLEMA 8.3

Tre corpi in contatto termico ??

Due corpi di uguale capacità termica sono collegati tra di loro e ad un bagno termico di
temperatura T0 tramite delle resistenze termiche R1 e R2 come in Figura 8.1. Calcolare
la temperatura all’equilibrio e l’evoluzione delle temperature T1(t) e T2(t) a partire da
una data condizione iniziale. Trascurare la capacità termica delle resistenze.
Soluzione

La temperatura di equilibrio è ovviamente quella del bagno termico. Per verificarlo
possiamo immaginare che il bagno termico abbia in realtà una capacità termica C0
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8.3. TRE CORPI IN CONTATTO TERMICO ??

T1(t) T2(t)

R1 R2

C C

T0

Figura 8.1.: I tre corpi (quello più a sinistra è un bagno termico) in contatto tra loro.

molto grande. In accordo con la formula generale all’equilibrio termico avremo

Tf =
C0T0 + CT1 + CT2

C0 + 2C
(8.3.1)

e passando al limite C0 → ∞ otteniamo Tf = T0.
Scriviamo adesso le equazioni che determinano la evoluzione delle temperature. Per

le correnti di calore abbiamo

R1 I1(t) = T0 − T1(t) (8.3.2)
R2 I2(t) = T1(t)− T2(t) (8.3.3)

e d’altra parte

C
dT1(t)

dt
= I1(t)− I2(t) (8.3.4)

C
dT2(t)

dt
= I2(t) (8.3.5)

cioè
d
dt

(
T1
T2

)
+

(
γ1 + γ2 −γ2
−γ2 γ2

)(
T1
T2

)
=

(
γ1T0

0

)
(8.3.6)

dove abbiamo posto γ−1
1 = R1C e γ−1

2 = R2C. Questo è un sistema di equazioni diffe-
renziali lineari a coefficienti costanti, non omogeneo. Cercheremo prima una soluzione
particolare, quindi la soluzione generale del sistema omogeneo associato.

Se all’istante iniziale le temperature dei due corpi sono uguali a quelle di equilibrio, ci
aspettiamo che rimangano tali anche successivamente. In altre parole T1(t) = T2(t) = T0
è una soluzione particolare, come si verifica facilmente per sostituzione.
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Veniamo alla soluzione generale dell’omogenea, che cercheremo nella forma
(

T1
T2

)
=

(
A1
A2

)
eβt . (8.3.7)

Sostituendo troviamo

β

(
A1
A2

)
eβt +

(
γ1 + γ2 −γ2
−γ2 γ2

)(
A1
A2

)
eβt =

(
0
0

)
(8.3.8)

ossia (
γ1 + γ2 + β −γ2
−γ2 γ2 + β

)(
A1
A2

)
=

(
0
0

)
. (8.3.9)

Questo sistema lineare omogeneo avrà soluzioni non banali solo quando il determinante
della matrice sarà nullo. Da

∣∣∣∣
γ1 + γ2 + β −γ2
−γ2 γ2 + β

∣∣∣∣ = β2 + (γ1 + 2γ2) β + γ1γ2 = 0 . (8.3.10)

troviamo che questo accade per due valori (entrambi reali e negativi) di β:

β± =
− (γ1 + 2γ2)±

√
γ2

1 + 4γ2
2

2
. (8.3.11)

Le corrispondenti soluzioni per A1 e A2 saranno

β = β+ :
(

A1
A2

)
= c1

(
γ2 + β+

γ2

)
(8.3.12)

β = β− :
(

A1
A2

)
= c2

(
γ2 + β−

γ2

)
(8.3.13)

con c1 e c2 costanti arbitrarie. Otteniamo quindi la soluzione generale sommando la
soluzione generale dell’omogenea alla soluzione particolare.

(
T1
T2

)
= c1

(
γ2 + β+

γ2

)
eβ+t + c2

(
γ2 + β−

γ2

)
eβ−t +

(
T0
T0

)
. (8.3.14)

Imponiamo le condizioni iniziali a t = 0:
(

T0
1 − T0

T0
2 − T0

)
= c1

(
γ2 + β+

γ2

)
+ c2

(
γ2 + β−

γ2

)
=

(
γ2 + β+ γ2 + β−

γ2 γ2

)(
c1
c2

)

(8.3.15)
che ci permettono di calcolare c1 e c2:

c1 =

∣∣∣∣
T0

1 − T0 γ2 + β−
T0

2 − T0 γ2

∣∣∣∣
∣∣∣∣

γ2 + β+ γ2 + β−
γ2 γ2

∣∣∣∣
=

γ2
(
T0

1 − T0
)
−
(
T0

2 − T0
)
(γ2 + β−)

γ2 (β+ − β−)
(8.3.16)
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c2 =

∣∣∣∣
γ2 + β+ T0

1 − T0
γ2 T0

2 − T0

∣∣∣∣
∣∣∣∣

γ2 + β+ γ2 + β−
γ2 γ2

∣∣∣∣
=
−γ2

(
T0

1 − T0
)
+
(
T0

2 − T0
)
(γ2 + β+)

γ2 (β+ − β−)
. (8.3.17)

Consideriamo adesso due casi particolari, cominciando da γ2 � γ1. In questo caso
R2 � R1. Abbiamo

β+ = −2γ2

[(
1 +

γ1

2γ2

)
−
√

1 +
γ2

1

4γ2
2

]
= −2γ2

[
γ1

2γ2
+ O

(
γ2

1

γ2
2

)]
' −γ1 (8.3.18)

β− = −2γ2

[(
1 +

γ1

2γ2

)
+

√
1 +

γ2
1

4γ2
2

]
= −2γ2

[
2 + O

(
γ1

γ2

)]
' −2γ2 (8.3.19)

(
γ2 + β+

γ2

)
'
(

γ2
γ2

)
(8.3.20)

(
γ2 + β−

γ2

)
'
( −γ2

γ2

)
(8.3.21)

c1 '
T0

1 + T0
2 − 2T0

2γ2
(8.3.22)

c2 '
T0

2 − T0
1

2γ2
. (8.3.23)

e quindi
(

T1
T2

)
' T0

1 + T0
2 − 2T0

2

(
1
1

)
e−γ1t +

T0
2 − T0

1
2

( −1
1

)
e−2γ2t +

(
T0
T0

)
. (8.3.24)

possiamo interpretare la soluzione nel seguente modo: la differenza di temperatura tra
i due corpi tende a zero molto velocemente, con un tempo caratteristico dato da 1

2 γ−1
2 .

Invece la temperatura media dei due corpi tende alla temperature di equilibrio, ma con
un tempo caratteristico molto più grande γ−1

1 . Questo è facilmente comprensibile, dato
che a causa della bassa resistenza termica tra i due corpi questi tenderanno a stabilire
un equilibrio locale tra di loro molto velocemente. Un esempio è riportato in Figura 8.2

Vediamo invece cosa accade se γ1 � γ2. In questo caso

β+ =
1
2

γ1

[
−
(

1 + 2
γ2

γ1

)
+

√
1 + 4

γ2
2

γ2
1

]
' −γ2 (8.3.25)

β− =
1
2

γ1

[
−
(

1 + 2
γ2

γ1

)
−
√

1 + 4
γ2

2

γ2
1

]
' −γ1 (8.3.26)

(
γ2 + β+

γ2

)
'
(

0
γ2

)
(8.3.27)
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Figura 8.2.: Evoluzione delle temperature per γ1 = 1 s−1, γ2 = 10 s−1, T0 = 10 K, T0
1 =

20 K, T0
2 = 30 K.

(
γ2 + β−

γ2

)
'
( −γ1

0

)
(8.3.28)

c1 =

(
T0

2 − T0
)

γ2
(8.3.29)

c2 =
−
(
T0

1 − T0
)

γ1
. (8.3.30)

e quindi
(

T1
T2

)
'
(
T0

2 − T0
) ( 0

1

)
e−γ2t −

(
T0

1 − T0
) ( −1

0

)
e−γ1t +

(
T0
T0

)
. (8.3.31)

Anche in questo caso l’interpretazione è chiara: il primo corpo tende molto rapidamente
alla temperatura del bagno termico, con un tempo caratterstico dato da γ−1

1 . Il secondo
termalizza più lentamente, con un tempo caretteristico dato da γ−1

2 � γ−1
1 . Un esempio

è in Figura 8.3.
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Figura 8.3.: Evoluzione delle temperature per γ1 = 10 s−1, γ2 = 1 s−1, T0 = 10 K, T0
1 =

20 K, T0
2 = 30 K.

PROBLEMA 8.4

Sbarra conduttrice ??

La temperatura di una sbarra di lunghezza ` e sezione S è inizialmente

T(x, 0) = T1

(
1− β cos

π

`
x
)

(8.4.1)

con β < 1. La sbarra è isolata termicamente, ed è costituita di un materiale di conducibi-
lità termica κ, calore specifico c e densità ρ. Calcolare la temperatura finale,

Tf = lim
t→∞

T(x, t) (8.4.2)

e l’evoluzione temporale T(x, t).

Soluzione

La temperatura finale si può calcolare immediatamente come media delle temperature
iniziali dei diversi elementi della sbarra, pesati con le capacità termiche. Dato che la
capacità termica di un tratto infinitesimo della sbarra è ρScdx abbiamo

Tf =

´
T(x, 0) ρSc dx´

ρScdx
=

1
`

ˆ `

0
T1

(
1− β cos

π

`
x
)

dx = T1 . (8.4.3)

548 versione del 5 ottobre 2016



8.5. EQUAZIONE DEL CALORE UNIDIMENSIONALE ??

Per calcolare l’evoluzione temporale ricordiamo che la densità di corrente di calore è
proporzionale al gradiente di temperatura:

Jq = −κ
∂T
∂x

(8.4.4)

e che la variazione temporale della temperatura è data da

cρ
∂T
∂t

= −∂Jq

∂x
(8.4.5)

da cui
∂T
∂t

=
κ

cρ

∂2T
∂x2 . (8.4.6)

Se calcoliamo la derivata seconda della temperatura iniziale rispetto ad x otteniamo

∂2T(x, 0)
∂x2 = βT1

π2

`2 cos
π

`
x . (8.4.7)

Questo suggerisce di cercare una soluzione della forma

T(x, t) = T1 + ∆(t) cos
π

`
x . (8.4.8)

Sostituendo nell’equazione troviamo

∆̇(t) cos
π

`
x = − κ

cρ

π2

`2 ∆ cos
π

`
x (8.4.9)

e quindi

∆(t) = C1e−γt (8.4.10)

con γ = κπ2

cρ`2 . Imponendo la condizione iniziale troviamo C1 = −βT1 e quindi

T(x, t) = T1

(
1− βe−γt cos

π

`
x
)

. (8.4.11)

PROBLEMA 8.5

Equazione del calore unidimensionale ??

Ricavare l’equazione del calore in una dimensione, nel caso generale in cui densità,
calore specifico e conducibilità termica sono funzione della posizione.
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Soluzione

La prima equazione da cui partire è quella che da la densità di corrente di calore,

Jq(x, t) = −κ(x)
∂T(x, t)

∂x
(8.5.1)

la seconda quella che lega l’aumento della temperatura in un tratto della sbarra al calore
entrante:

ρ(x)c(x)
∂T(x, t)

∂t
= −∂Jq(x, t)

∂x
. (8.5.2)

Questa si ottiene applicando cm∆T = ∆Q a un tratto della sbarra compresa tra x− dx/2
e x + dx/2.

c(x)ρ(x)Sdx
∂T(x, t)

∂x
= Jq(x− dx/2, t)S− Jq(x + dx/2, t)S = −∂Jq(x, t)

∂x
Sdx + O(dx2) .

(8.5.3)
Derivando la prima equazione rispetto a x e eliminando la corrente di calore usando

la seconda otteniamo
∂

∂x

(
k

∂T
∂x

)
= ρc

∂T
∂t

. (8.5.4)

PROBLEMA 8.6

Fluttuazione di temperatura su una sbarra ??

Determinate se possibile ∆(t) e σ(t) in modo che la funzione

T(x, t) = T0 + ∆ (t) exp
(
−1

2
x2

A (t)

)
(8.6.1)

sia soluzione dell’equazione del calore

∂T
∂t

= µ
∂2T
∂x2 (8.6.2)

con (vedere l’Esercizio 8.5) e date una interpretazione del risultato.

Soluzione

Calcoliamo le derivate della (8.6.1). Abbiamo

∂T
∂t

=

(
∆̇ +

1
2

∆
Ȧ
A2 x2

)
exp

(
−1

2
x2

A

)

µ
∂2T
∂x2 = µ∆

[( x
A

)2
− 1

A

]
exp

(
−1

2
x2

A

)
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Figura 8.4.: L’evoluzione temporale della fluttuazione di temperatura considerata nel
problema. La curva più alta corrisponde alla fluttuazione iniziale, le succes-
sive via via più basse a µt = 1, 2, 3, 4, 5. Sulle ascisse la posizione in unità σ0,
sulle ordinate la fluttuazione in unità ∆0.

ed uguagliando queste due espressioni vediamo che devono valere le due condizioni

∆̇ = −µ∆
A

1
2

∆
Ȧ
A2 =

µ∆
A2

La seconda equazione si integra immediatamente dopo una semplice semplificazione
ottenendo

A(t) = σ2
0 + 2µt

e sostituendo nella prima abbiamo

∆̇
∆

=
d
dt

log ∆ = − µ

σ2
0 + 2µt

da cui

∆(t) = ∆0

√
σ2

0

σ2
0 + 2µt

Sostituendo otteniamo

T(x, t) = T0 + ∆0

√
σ2

0

σ2
0 + 2µt

exp
(
−1

2
x2

σ2
0 + 2µt

)
(8.6.3)
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UNIDIMENSIONALE ? ? ?

Possiamo interpretare il risultato come l’evoluzione temporale di una fluttuazione di
temperatura Gaussiana su un sistema unidimensionale omogeneo (per esempio una

sbarra). La larghezza della fluttuazione cresce con legge σ(t) ≡
√

σ2
0 + 2µt. La sua

ampiezza al tempo stesso si riduce: questo è una conseguenza della conservazione
dell’energia: infatti l’energia totale della fluttuazione è data dall’integrale

E f = ρc
ˆ ∞

−∞
∆0

√
σ2

0

σ2
0 + 2µt

exp
(
−1

2
x2

σ2
0 + 2µt

)
dx (8.6.4)

Introducendo la nuova variabile y = x/σ(t) vediamo che l’integrale si scrive nella
forma

E f = ρc∆0σ0

ˆ ∞

−∞
exp

(
−1

2
y2
)

dy (8.6.5)

che è evidentemente indipendente dal tempo.

PROBLEMA 8.7

Una soluzione particolare dell’equazione del calore
unidimensionale ? ? ?

Data l’equazione del calore unidimensionale

∂T
∂t

= µ
∂2T
∂x2

studiare, se esistono, soluzioni particolari del tipo

T(x, t) = N(t)Φ
(

x
f (t)

)

dove N(t) e f (t) sono funzioni incognite da determinare. Assumere che l’energia della
sbarra si finita e si conservi.

Soluzione

L’energia totale della sbarra si può scrivere nella forma

U(t) = ρc
ˆ ∞

−∞
T(x, t)dx

cioè, per la soluzione proposta,

U(t) = ρc
ˆ ∞

−∞
N(t)Φ

(
x

f (t)

)
dx

= ρcN(t) f (t)
ˆ ∞

−∞
Φ (u) du
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dove abbiamo introdotto la variabile u = x/σ. Dato che l’integrale è ovviamente
indipendente dal tempo, dovrà essere

N =
1
f

Calcolando le derivate abbiamo

∂T
∂t

= − ḟ
f 2 Φ− x

f 3 ḟ Φ′

∂2T
∂x2 =

1
f 3 Φ′′

e sostituendo otteniamo

µ

f 2 Φ′′ (u) +
ḟ
f

uΦ′ (u)
ḟ
f

Φ (u) = 0

Ma questo si può anche scrivere nella forma

Φ′′ +
f ḟ
µ

d
du

(uΦ) = 0

Integrando rispetto ad u otteniamo

Φ′(u) +
f ḟ
µ

uΦ(u) = C1

otteniamomembro a membro rispetto al tempo vediamo che deve essere

d
dt

f ḟ = 0

cioè
d2

dt2 f 2 = 0

e integrando otteniamo
f 2 = f 2

0 + αt

dove α e f0 sono costanti arbitrarie. L’equazione differenziale per Φ si può riscrivere
allora nella forma

Φ′(u) +
α

2µ
uΦ(u) = C1

Si tratta di un’equazione differenziale lineare del primo ordine. Il metodo standard per
la risoluzione consiste nel moltiplicare membro a membro per un opportuno fattore
integrante. In questo caso ad esempio otteniamo

[
Φ′(u) +

α

2µ
uΦ(u)

]
e

α
4µ u2

= C1e
α

4µ u2
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che si può riscrivere come
d

du

[
Φe

α
4µ u2]

= C1e
α

4µ u2

Integrando abbiamo

Φ = C1e−
α

4µ u2
ˆ u

0
e

α
4µ w2

dw + C2e−
α

4µ u2

Infine

T(x, t) =
1

σ(t)
exp

(
− x2

2σ(t)2

)[
C′1

ˆ x
σ

0
e

w2
2 dw + C′2

]

dove abbiamo definito

σ(t) ≡
√

2µ f 2
0

α
+ 2µt =

√
2µ

α
f (t)

Notiamo adesso che termine proporzionale a C′1 non è accettabile fisicamente. Infatti
essendo una funzione dispari di x, assume valori negativi (temperature negative non
sono accettabili) o per x positivi o per x negativi, e domina per |x| sufficientemente
grandi su quello proporzionale a C′2. Di conseguenza le uniche soluzioni accettabili
sono

T(x, t) =
A

σ(t)
exp

(
− x2

2σ(t)2

)

σ(t) =
√

σ2
0 + 2µt

cioè quelle studiate nell’Esercizio 8.6.

PROBLEMA 8.8

Temperatura a regime di una sbarra radioattiva ??

Una sbarra di lunghezza `, sezione S e conducibilità termica σ, sezione a tra due corpi
molto grandi mantenuti a temperatura costante T1 e T2 > T1 (Figura 8.5). La sbarra è
radioattiva, e al suo interno viene continuamente prodotta energia: il calore generato
per unità di volume e di tempo è η.

◦ Determinare la temperatura della sbarra a regime.

◦ Per quali valori di η il punto più caldo della sbarra non si trova ad un estremo?

◦ In quali condizioni non si ha trasmissione di calore tra la sbarra e il corpo a
temperatura T2?
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T1 T2

T (x)

Figura 8.5.: La sbarra radioattiva considerata nel problema

Soluzione

A regime il calore uscente da un tratto di sbarra compreso tra e x = x2 deve essere
uguale a quello prodotto all’interno. Detta J(x) la densità di corrente di calore abbiamo
dunque

SJ(x2)− SJ(x1) = (x2 − x1) Sη

ed in particolare prendendo x1 = 0 e x2 = x

J(x) = J(0) + xη

Dato che il calore viene trasmesso per conduzione abbiamo dalla legge di Fourier

∂T
∂x

= − 1
σ

J(x) = − 1
σ

J(0)− η

σ
x

ed integrando troviamo

T(x) = T1 −
x
σ

J(0)− η

2σ
x2

Imponendo le condizioni al contorno T(`) = T2

T1 −
`

σ
J(0)− η`2

2σ
= T2

troviamo la corrente all’estremo sinistro della sbarra,

J(0) =
σ

`
(T1 − T2)−

η`

2

e quindi

T(x) = T1 +
x
`
(T2 − T1) +

η

2σ
x (`− x)

l punto più caldo non si trova ad un estremo se il massimo della funzione T(x) è
all’interno dell’intervallo 0 < x < `. Dato che

∂T
∂x

=
1
`
(T2 − T1) +

η

2σ
(`− 2x)
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deve essere
− `

2
<

σ

η`
(T2 − T1) <

`

2

dato che
xmax =

σ

η`
(T2 − T1) +

`

2

cioè per

η >
2σ

`2 (T2 − T1)

Infine, dalla legge di Fourier troviamo che J si annulla nel massimo di T(x). Questo si
troverà in x = ` quando

η =
2σ

`2 (T2 − T1)

e in tali condizioni J(`) = 0. Notare che non è mai possibile ottenere J(0) = 0, in altre
parole del calore viene sempre scambiato con il corpo più freddo.

PROBLEMA 8.9

Resistenza termica di una scala (semi)infinita ??

A

B

`, S, σ

Figura 8.6.: La scala semi infinita: tutti i tratti sono sbarre di identiche caratteristiche.

Una scala di lunghezza infinita è costruita come in Figura 8.6 saldando tra loro del-
le sbarre sottili identiche (lunghezza `, sezione S e conducibilità σ). Determinare la
resistenza termica tra l’estremo e quello B.

Soluzione

Dato che la scala è semiinfinita, se rimuoviamo le prime tre sbarre a sinistra ne ottenia-
mo un’altra con la stessa resistenza termica R∞. Di conseguenza possiamo scrivere la
relazione

R∞ = R +
RR∞

R + R∞
+ R

basata sul Diagramma 8.7. In alte parole, la resistenza termica totale della scala si può
ottenere considerando in serie una sbarra, il parallelo tra una sbarra e il resto della scala,
e una terza sbarra. Questa relazione da una equazione di secondo grado per R∞

R2
∞ − 2RR∞ − 2R2 = 0
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=R∞ R∞

R

R

R
Figura 8.7.: La scala semi infinita: tutti i tratti sono sbarre di identiche caratteristiche.

che ha come unica soluzione accettabile (perchè positiva)

R∞ = R
(

1 +
√

3
)
=

`

σS

(
1 +
√

3
)

PROBLEMA 8.10

Temperatura di un conduttura

Una conduttura cilindrica di lunghezza infinita ha raggio interno r1 e raggio esterno
r2 = r1, e conducibilità termica η. Se la sua superficie interna r = r1 è mantenuta alla
temperatura T1 e quella esterna r = r2 alla temperatura T2 < T1, calcolare in condizioni
stazionarie la temperatura T(r) e la potenza W per unità di lunghezza che deve essere
generata per rimanere a regime.

Soluzione

Data la simmetria del problema il calore si propaga radialmente. Possiamo quindi
scrivere la densità di corrente di calore come

J = −η
dT
dr

Inoltre in condizioni stazionarie il calore che attraversa in una unità di tempo una su-
perficie cilindrica con asse coincidente con quello della conduttura non deve dipendere
da r. Quindi considerando un tratto di lunghezza ` dovrà essere

2πrJ` = K

Mettendo insieme le due equazioni precedenti troviamo

K
2πr`

= −η
dT
dr

ed integrando

T(r) = − K
2πη`

log r + C
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Fissiamo le costanti K imponendo le condizioni al contorno:T_

T1 = − K
2πη`

log r1 + C

T2 = − K
2πη`

log r2 + C

da cui

T2 − T1 =
K

2πη`
log
(

r1

r2

)

e quindi

K =
2πη` (T1 − T2)

log
(

r2
r1

)

e
C = T1 +

log r1

log
(

r2
r1

) (T1 − T2)

Otteniamo infine

T(r) = T1 +
log
(

r
r1

)

log
(

r2
r1

) (T2 − T1)

Il calore che attraversa trasversalmente la conduttura per unità di lunghezza è K/`,
ed è anche la potenza che deve essere generata, sempre per unità di lunghezza, per
mantenere le condizioni stazionarie. Quindi

W =
2πη (T1 − T2)

log
(

r2
r1

)
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9.1. CONTATTO TERMICO TRA DUE CORPI

PROBLEMA 9.1

Contatto termico tra due corpi

Due corpi identici hanno una capacità termica dipendente linearmente dalla temperatu-
ra della forma

C(T) = βT

dove β è una costante opportunamente dimensionata. Inizialmente si trovano alle tem-
perature T1 e T2. I due corpi vengono posti in contatto termico. Calcolare la temperatura
finale del sistema complessivo all’equilibrio.

Soluzione

Sia Q il calore trasferito dal corpo 1 al corpo 2. Dato che

dQ = C(T)dT

avremo

Q =

ˆ Tf

T2

βTdT = −
ˆ Tf

T1

βTdT

da cui
β

2

(
T2

f − T2
2

)
+

β

2

(
T2

f − T2
1

)
= 0

Segue che

Tf =

√
T2

1 + T2
2

2

PROBLEMA 9.2

Sciogliere del ghiaccio

Una massa m = 103g di ghiaccio si trova inizialmente ad una temperatura Ti < Tf , dove
Tf è la temperatura di fusione. Quanta acqua a temperatura TA > Tf è necessario aggiun-
gere al sistema per sciogliere completamente il ghiaccio? Si supponga che i calori speci-
fici per unità di massa di acqua e ghiaccio, cA = 4186J kg−1 K−1 e cG = 2090J kg−1 K−1,
siano costanti e si indichi con λ = 333.5× 103J kg−1 il calore latente di fusione.

Soluzione

La temperatura finale del sistema è Tf , e il ghiaccio si deve essere sciolto totalmente. A
quest’ultimo deve quindi essere stato ceduto un calore

Q = λm + mcG
(
Tf − Ti

)
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Questo calore deve essere stato estratto dall’acqua, e quindi

−Q = McA
(
Tf − TA

)

Sommando membro a membro otteniamo

λm + mcG
(
Tf − Ti

)
+ McA

(
Tf − TA

)
= 0

e quindi

M = m
λ + cG

(
Tf − Ti

)

TA − Tf

PROBLEMA 9.3

Adiabaticità e velocità di una trasformazione ? ? ?

P ,V ,T T0

P0

x = A sinωt

R

Figura 9.1.: Il sistema considerato nel problema. Le pareti scure sono impermeabili al
calore.

Il recipiente schematizzato in Figura 9.1 ha le pareti e il pistone impermeabili al calore,
mentre la base ha una resistenza termica R. Viene riempito con n moli di gas perfetto,
e si trova inizialmente in equilibrio con l’ambiente esterno, P = P0 e T = T0 (il pistone
viene lasciato libero di muoversi).

Dal tempo t = 0 si obbliga il pistone a muoversi secondo la legge x = A sin ωt, dove
x è lo spostamento dalla posizione iniziale di equilibrio. Si attende quindi un tempo
sufficientemente lungo, in modo da far perdere al sistema memoria della condizione
iniziale.

Supponendo di poter considerare la temperatura e la pressione del gas uniforme si cal-
coli T(t), e si verifichi che per ω abbastanza grandi la trasformazione si può considerare
adiabatica.

Considerare piccola la variazione relativa di volume.
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Soluzione

Dal primo principio e dall’equazione di stato abbiamo

dQ = ncvdT + nRT
dV
V

(9.3.1)

d’altra parte possiamo anche scrivere

R
dQ
dt

= T0 − T (9.3.2)

e quindi

ncv
dT
dt

+ nRT
d log V

dt
=

1
RT

(T0 − T) . (9.3.3)

Il volume è una funzione nota del tempo,

V = V0 + SA sin ωt (9.3.4)

e possiamo riscrivere l’equazione nella forma

dT
dt

+
1
τ

(
1 +

τR
cv

d log V
dt

)
T =

T0

τ
(9.3.5)

dove abbiamo introdotto τ = ncvRT, che possiamo considerare la scala temporale ca-
ratteristica degli scambi di calore tra gas e ambiente esterno. In effetti tenendo fissato il
volume vediamo che τ e proprio il tempo nel quale una differenza di temperatura tra
esterno e interno si riduce di un fattore e−1.

L’equazione differenziale ottenuta è lineare e del primo ordine, e la sua soluzione si de-
termina con un metodo standard. Moltiplicando membro a membro per un opportuno
fattore integrante

[
dT
dt

+
1
τ

(
1 +

τR
cv

d log V
dt

)
T
]

et/τ+R/cv log V(t) =
T0

τ
et/τ+R/cv log V(t) (9.3.6)

abbiamo
d
dt

[
Tet/τ+R/cv log V

]
=

T0

τ
et/τ+R/cv log V (9.3.7)

e integrando otteniamo

T =
T0

τ
e−t/τ−R/cv log V(t)

ˆ t

0
et′/τ+R/cv log V(t′)dt′+Ce−t/τ−R/cv log V(t)

(9.3.8)

ossia (indicando con ε = AS/V la massima variazione relativa di volume, ε� 1)

T = C
e−t/τ

(1 + ε sin ωt)R/cv
+

T0

τ

e−t/τ

(1 + ε sin ωt)R/cv

ˆ t

0

(
1 + ε sin ωt′

)R/cv et′/τdt′ . (9.3.9)
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Sviluppando al primo ordine in ε, e osservando che a causa delle condizioni iniziali
C = T0, otteniamo

T = T0e−t/τ

(
1− ε

R
cv

sin ωt
)
+

T0

τ
e−t/τ

(
1− ε

R
cv

sin ωt
) ˆ t

0

(
1 + ε

R
cv

sin ωt′
)

et′/τdt′

(9.3.10)
e calcolando l’integrale otteniamo

T = T0

{
1− ε

R
cv

e−t/τ

1 + ω2τ2

[
−ωτ + et/τωτ cos ωt−

(
1 + ω2τ2) sin ωτ (9.3.11)

+et/τω2τ2 sin ωt
]}

(9.3.12)

Per tempi grandi rispetto a τ possiamo eliminare i termini che tendono a zero esponen-
zialmente, e troviamo

T = T0

[
1− ε

R
cv

ωτ

1 + ω2τ2 (cos ωt + ωτ sin ωt)
]

. (9.3.13)

Per ω � τ−1 abbiamo

T ' T0

[
1− ε

R
cv

sin ωt
]

. (9.3.14)

e confrontando con l’andamento del volume

V = V0 (1 + ε sin ωt) (9.3.15)

troviamo che la combinazione VR/cv T è approssimativamente costante

VR/cv T = VR/cv
0 T0 + O

(
ε2)

cioè la trasformazione del gas è adiabatica.

PROBLEMA 9.4

Rendimento di un ciclo di Carnot ?

Calcolare esplicitamente il rendimento di un ciclo di Carnot di un gas perfetto, espri-
mendolo in funzione delle sole temperature della sorgente calda e della sorgente fredda
utilizzate.

Soluzione

Il rendimento è definito dal rapporto tra lavoro e calore assorbito. Calcoliamo il lavoro
fatto in una trasformazione isoterma

LX→Y =

ˆ vY

VX

PdV = nRT
ˆ VY

VX

dV
V

= nRT log
VY

VX
(9.4.1)
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B

C

T1

V

T2

P

D

A

Figura 9.2.: Il ciclo di Carnot rappresentato nel piano P−V per un gas perfetto. Le adia-
batiche sono tratteggiate, le isoterme continue. T1 e T2 sono le temperature
rispettivamente della sorgente calda e fredda.

e in una trasformazione adiabatica, per la quale il prodotto PVγ è costante:

LX→Y =

ˆ VY

VX

PdV = PXVγ
X

ˆ VY

VX

dV
Vγ

=
1

1− γ
PXVγ

X

(
1

Vγ−1
Y

− 1

Vγ−1
X

)

=
1

γ− 1

(
PXVγ

X

Vγ−1
X

− PYVγ
Y

Vγ−1
Y

)
=

1
γ− 1

(PXVX − PYVY) (9.4.2)

Abbiamo utilizzato il fatto che PXVγ
X = PYVγ

Y ., e quindi amente potevamo osservare che
per una trasformazione adiabatica dU = −dL, e quindi

LX→Y = ncv (TX − TY) (9.4.3)

che coincide con l’espressione precedente.
Per quanto riguarda il calore scambiato, sappiamo che è nullo in una trasformazione

adiabatica. In una trasformazione isoterma dal primo principio, e dal fatto che per un
gas perfetto l’energia interna dipende dalla sola temperatura segue, facendo riferimento
alla Figura 9.2,

dQ = dU + dL = cvdT + dL = dL (9.4.4)
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cioè il calore assorbito è uguale al lavoro fatto dal gas. Abbiamo in conclusione

η =
L

QA→B
=

LA→B + LB→C + LC→D + LD→A

LA→B
(9.4.5)

=
nRT1 log VB

VA
+ ncv (T1 − T2) + nRT2 log VD

VC
+ ncv (T2 − T1)

nRT1 log VB
VA

(9.4.6)

= 1 +
T2

T1

log VD/VC

log VB/VA
= 1 +

T2

T1

log VD/VC

log VB/VA
(9.4.7)

ma utilizzando le relazioni

VD = VA
Tα

1
Tα

2
, VC = VB

Tα
1

Tα
2

(9.4.8)

otteniamo semplicemente

η = 1 +
T2

T1

log VA/VB

log VB/VA
= 1− T2

T1
(9.4.9)

PROBLEMA 9.5

Ciclo di Carnot con gas di fotoni ??

La radiazione elettromagnetica può essere descritta dal punto di vista termodinamico
come un gas con energia interna

U = bVT4 (9.5.1)

e pressione

P =
1
3

bT4 (9.5.2)

dove b è una costante. Rappresentare un ciclo di Carnot di questo sistema nel piano
P−V e calcolarne esplicitamente il rendimento in termini delle sole temperature della
sorgente calda e fredda.

Soluzione

Dall’equazione P = 1
3 bT4 segue che una trasformazione isoterma è anche isobara. Per

una trasformazione adiabatica si ha invece

dQ = dU + PdV = 4bVT3dT + bT4dV +
1
3

bT4dV (9.5.3)

=
4
3

bT4dV + 4bVT3dT = 0 (9.5.4)

ossia
1
3

dV
V

+
dT
T

= 0 (9.5.5)
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9.5. CICLO DI CARNOT CON GAS DI FOTONI ??

ed integrando
V1/3T = costante (9.5.6)

che si può riscrivere come una relatione tra P e V:

PV4/3 = costante . (9.5.7)

Un ciclo di Carnot si rappresenta dunque nel piano P−V come in Figura 9.3.

P

V

A B

D

T1

T2
C

Figura 9.3.: Il ciclo di Carnot per il gas di fotoni, rappresentato nel piano P−V.

Calcoliamo adesso il rendimento. Come conseguenza del primo principio, il lavo-
ro fatto nelle trasformazioni adiabatiche è uguale alla variazione dell’energia interna
cambiata di segno:

LB→C = b
(

VBT4
B −VCT4

C

)
= b

(
VBT4

1 −VCT4
2

)
(9.5.8)

LD→A = b
(

VDT4
2 −VAT4

1

)
(9.5.9)

mentre per le trasformazioni isoterme si ha semplicemente

LA→B = PA (VB −VA) =
1
3

bT4
1 (VB −VA) (9.5.10)

LC→D = PC (VD −VC) =
1
3

bT4
2 (VD −VC) . (9.5.11)
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9.6. CICLO BRAYTON ?

Calcoliamo infine il calore assorbito dalla sorgente calda. Diversamente dal caso del
gas perfetto, questo non è uguale al lavoro fatto, poichè l’energia interna dipende dal
volume. Per una isoterma abbiamo

dQ =
4
3

bT4dV (9.5.12)

e quindi

QA→B =
4
3

bT4
1 (VB −VA) . (9.5.13)

Calcoliamo infine il rendimento:

η =
1
3 bT4

1 (VB −VA) + b
(
VBT4

1 −VCT4
2
)
+ 1

3 bT4
2 (VD −VC) + b

(
VDT4

2 −VAT4
1

)

4
3 bT4

1 (VB −VA)

=
T4

1 (VB −VA) + T4
2 (VD −VC)

T4
1 (VB −VA)

= 1 +
T4

2 (VD −VC)

T4
1 (VB −VA)

ed utilizzando
VDT3

2 = VAT3
1 , VCT3

2 = VBT3
1 (9.5.14)

conseguenza dell’Equazione (9.5.6) otteniamo

η = 1 +
T2
(
VAT3

1 −VBT3
1

)

T4
1 (VB −VA)

= 1− T2

T1
(9.5.15)

PROBLEMA 9.6

Ciclo Brayton ?

Un ciclo Brayton è costituito da due adiabatiche e due isobare. In Figura 9.4 è rappre-
sentato nel piano P−V per un gas perfetto. Calcolarne il rendimento.

Soluzione

Il lavoro fatto in una adiabatica è l’opposto della variazione dell’energia interna. Per
l’isobara il lavoro è chiaramente P∆V, ed il calore scambiato è dato da

Q = ncp∆T (9.6.1)

Calcoliamo adesso l’efficienza:

η =
PA (VB −VA) + ncv (TB − TC) + PD (VD −VC) + ncv (TD − TA)

ncp (TB − TA)

=
nR (TB − TA) + ncv (TB − TC) + nR (TD − TC) + ncv (TD − TA)

ncp (TB − TA)

= 1− (TC − TD)

(TB − TA)
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9.7. CICLO DIESEL ?
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Figura 9.4.: Il ciclo Brayton nel piano P−V.

PROBLEMA 9.7

Ciclo Diesel ?
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Figura 9.5.: Il ciclo Diesel rappresentato nel piano P−V.

Il ciclo Diesel è costituito da una serie di trasformazioni in successione, rappresentate
in Figura 9.5 per un gas perfetto:

1. una compressione adiabatica (A-B);

2. raffreddamento a pressione costante (B-C);
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9.8. CICLO ERICSSON ?

3. una espansione adiabatica (C-D);

4. un raffreddamento a volume costante (D-A).

Calcolarne esplicitamente l’efficienza, esprimendola in termini dei rapporti

r = VD/VB, α = VC/VB (9.7.1)

Soluzione

Il calore viene scambiato durante il riscaldamento a pressione costante e durante il
raffreddamento a volume costante. Nel primo caso dQ = cPdT > 0, quindi il calore
viene assorbito. Nel secondo caso viene ceduto, come si verifica da dQ = cVdT. Il calore
assorbito è quindi

Qass = ncP (TC − TB) (9.7.2)

Calcoliamo adesso il lavoro fatto dal gas in tutto il ciclo:

L = LBC + LCD + LAB

= PB (VC −VB)− ncV (TD − TC)− ncV (TB − TA)

Abbiamo quindi

η =
PB (VC −VB) + cV/R (PBVC − PDVD) + cV/R (PAVD − PBVB)

cP/RPB (VC −VB)

=
PB (VC −VB) + cV/R

(
PBVC − PBVγ

C /Vγ−1
D

)
+ cV/R

(
PBVγ

B /Vγ−1
D − PBVB

)

cP/RPB (VC −VB)

=
R (VC −VB) + cV

(
VC −Vγ

C /Vγ−1
D

)
+ cV

(
Vγ

B /Vγ−1
D −VB

)

cP (VC −VB)

=
cP (VC −VB) + cV

(
Vγ

B /Vγ−1
D −Vγ

C /Vγ−1
D

)

cP (VC −VB)

= 1− 1
rγ−1

αγ − 1
γ(α− 1)

.

PROBLEMA 9.8

Ciclo Ericsson ?

Il ciclo Ericsson ideale, rappresentato in Figura 9.6 nel piano P−V per un gas perfetto,
è costituito da due trasformazioni isoterme e due trasformazioni isobare. In linea di
principio se una certa quantità di calore viene assorbita da una sorgente ad una data
temperatura e in seguito restituita alla stessa non se ne deve essere considerato nel
calcolo dell’efficienza (viene “riciclato”). Verificare se questo è possibile in questo caso e
calcolare l’efficienza.
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9.9. CICLO OTTO ?
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Figura 9.6.: Il ciclo Ericsson rappresentato nel piano P−V.

Soluzione

Calcoliamo calore assorbito, variazione di energia interna e lavoro compiuto dal sistema
nelle diverse trasformazioni. Abbiamo la seguente tabella (notare che in conseguenza
del primo principio Q = L + ∆U:

Q L ∆U
A→ B ncP (TB − TA) PB (VB −VA) = nR (TB − TA) ncV (TB − TA)

B→ C nRTB log VC
VB

nRTB log VC
VB

0
C → D ncP (TA − TB) PC (VD −VC) = nR (TA − TB) ncV (TD − TC)

D → A nRTA log VA
VD

nRTA log VA
VD

0

(9.8.1)

Il calore assorbito in C → D può essere completamente riciclato in A → B, per cui
non ne terremo conto nel calcolo dell’efficienza che diviene

η =
nRTB log VC

VB
+ nRTA log VA

VD

nRTA log VA
VD

= 1 +
TB

TA

log PB
PC

log PD
PA

= 1− TB

TA
. (9.8.2)

PROBLEMA 9.9

Ciclo Otto ?

Un ciclo Otto ideale, rappresentato in Figura 9.7 nel piano P−V per un gas perfetto, è
costituito da due adiabatiche e da due isocore. Calcolarne il rendimento ed esprimerlo
in termini del rapporto di compressione α = VD/VC.
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9.9. CICLO OTTO ?
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Figura 9.7.: Il ciclo Otto rappresentato nel piano P−V.

Soluzione

Il sistema compie lavoro solo sulle adiabatiche, e si ottiene

LC→D = UC −UD = ncV (TC − TD) (9.9.1)

LA→B = UA −UB = ncV (TA − TB) (9.9.2)

Il sistema assorbe calore nell’isocora B→ C, e dato che il lavoro è nullo si ottiene

QB→C = UC −UB = ncV (TC − TB) (9.9.3)

In conclusione
η =

LC→D + LA→B

QB→C
= 1− TD − TA

TC − TB
(9.9.4)

Utilizzando la relazione VTγ−1 = costante valida per una adiabatica abbiamo

TD

TC
=

(
VC

VD

)γ−1

= α1−γ (9.9.5)

e
TA

TB
=

(
VB

VA

)γ−1

= α1−γ (9.9.6)

abbiamo

η = 1− α1−γ (TC − TB)

TC − TB
= 1− 1

αγ−1 (9.9.7)
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9.10. CICLO STIRLING ?

PROBLEMA 9.10

Ciclo Stirling ?
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Figura 9.8.: Il ciclo di Stirling rappresentato nel piano P−V.

Un ciclo Stirling ideale, rappresentato in Figura 9.8 nel piano P−V per un gas perfetto,
è formato da due trasformazioni isoterme e da due isocore. Calcolarne il rendimento e
esprimerlo in funzione delle temperature massime e minime accessibili, assumendo che
il calore ceduto nell’isocora D− A venga riutilizzato per riscaldare il sistema nell’isocora
B− C.

Soluzione

Il sistema compie lavoro solo sulle isoterme, e vale

LCD =

ˆ D

C
PdV = nRTC log

VD

VC
(9.10.1)

LAB =

ˆ B

A
PdV = nRTA log

VB

VA
= nRTA log

VC

VD
. (9.10.2)

Il sistema assorbe calore nella trasformazione B → C e C → D, e lo cede nella trasfor-
mazione D → A, quindi

QBC = UC −UB = ncV (TC − TA) (9.10.3)

QCD = LCD (9.10.4)
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9.11. DIFFERENZIALE ESATTO ? ? ?

QDA = ncV (TA − TC) = −QBC . (9.10.5)

Notare che il calore assorbito e ceduto nelle due isocore si compensano, e quindi ha senso
tenere conto del solo calore assorbito QCD nella valutazione dell’efficienza. Abbiamo
quindi

η =
LAB + LCD

QCD
=

nR (TC − TA) log VD
VC

nRTC log VD
VC

= 1− TA

TC
. (9.10.6)

PROBLEMA 9.11

Differenziale esatto ? ? ?

Date n moli di gas perfetto, verificare esplicitamente che dQ non è un differenziale esatto.
Trovare se possibile una funzione A(T, V) tale che A(T, V)dQ sia un differenziale esatto.
É possibile trovare una soluzione indipendente dalla natura del gas (monoatomico,
biatomico etc.)?

Soluzione

Scegliendo come variabili indipendenti V e T possiamo scrivere il primo principio nella
forma

dQ = α(V, T)dT + β(V, T)dV = ncvdT +
nRT

V
dV (9.11.1)

e se esistesse una funzione Q(V, T) di cui dQ è il differenziale sarebbe

α =

(
∂Q
∂T

)

V
, β =

(
∂Q
∂V

)

T
(9.11.2)

e quindi (
∂β

∂T

)

V
=

(
∂α

∂V

)

T
(9.11.3)

ma questo non è vero come si mostra direttamente:

(
∂β

∂T

)

V
=

(
∂

∂T
nRT

V

)

V
=

nR
V

(9.11.4)
(

∂α

∂V

)

T
=

(
∂

∂V
ncv

)

T
= 0 (9.11.5)

Supponiamo adesso che per una opportuna funzione sia il differenziale di una funzione
X. Allora

dX = AncvdT + A
nRT

V
dV (9.11.6)
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9.11. DIFFERENZIALE ESATTO ? ? ?

e ripetendo il ragionamento precedente le due derivate
(

∂

∂T
nRT

V
A
)

V
=

nR
V

A +
nRT

V

(
∂A
∂T

)

V
(9.11.7)

(
∂

∂V
ncv A

)

T
= ncv

(
∂A
∂V

)

T
(9.11.8)

dovranno essere uguali. Dobbiamo quindi trovare la soluzione di

cv

R
V
(

∂A
∂V

)

T
= A + T

(
∂A
∂T

)

V
(9.11.9)

che si può anche scrivere, ponendo x = R/cv log V e y = log T
(

∂A
∂x

)

y
−
(

∂A
∂y

)

x
= A (9.11.10)

Cambiamo ancora variabili. Se poniamo

u = x + y (9.11.11)
v = x− y (9.11.12)

otteniamo

∂

∂x
=

∂

∂u
+

∂

∂v
(9.11.13)

∂

∂y
=

∂

∂u
− ∂

∂v
(9.11.14)

e quindi

2
(

∂A
∂v

)

u
= A (9.11.15)

che si integra direttamente,

A = k(u)ev/2 = f (u) exp
1
2

(
R
cv

log V − log T
)
= f

(
VR/cv T

)
V

R
2cv T−

1
2 (9.11.16)

dove f è una funzione arbitraria. Notare che VR/cv T rimane costante in una trasforma-
zione adiabatica. La funzione A dipende dalla natura del gas tramite il calore specifico
cv. Scegliendo f (x) = k/

√
x abbiamo A = kT−1, cioè

dX = k
dQ
T

(9.11.17)

è un differenziale esatto per qualsiasi gas perfetto.
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9.12. CALORE SPECIFICO GAS PERFETTO ??

PROBLEMA 9.12

Calore specifico gas perfetto ??

Calcolare il calore specifico molare cα di un gas perfetto in funzione di cV . Esso è definito
come

cα =
1
n

(
dQ
dT

)

PVα

(9.12.1)

cioè come rapporto tra calore fornito e aumento di temperatura, a PVα costante, per
mole. Discutere i casi α = 0, α = 1 e α = cP/cV . É necessario che sia sempre cα > 0?

Soluzione

Dal primo principio abbiamo per una mole di gas

dQ = cVdT + PdV (9.12.2)

Inoltre, se PVα è costante lo è anche TVα−1 da cui

VdT + (α− 1)TdV = 0 (9.12.3)

e quindi

dQ =

[
cV +

RT
V

V
(1− α) T

]
dT (9.12.4)

da cui
cα = cV +

R
1− α

. (9.12.5)

Per α = 0 la pressione è costante, e infatti cα = cV + R = cP. Per α = 1 abbiamo una
trasformazione isoterma, e cα diverge (la temperatura non può aumentare qualunque
sia il calore fornito). Per α = cP/cV abbiamo una trasformazione adiabatica, e si verifica
che cα = 0. In questo caso infatti non l’aumento di temperatura non viene causato dal
calore fornito, che è nullo, ma dal lavoro fatto sul sistema.

Il calore specifico cα può anche essere negativo, è sufficiente che 1 < α < cP/cV .

PROBLEMA 9.13

Trasformazione ciclica irreversibile ??

Su n moli di gas perfetto si esegue una trasformazione ciclica tra tre stati termodinamici
A, B e C come segue:

◦ Partendo da A, si cede reversibilmente calore mantenendo il gas a volume costante,
fino ad arrivare a B.

◦ Il gas subisce adesso una espansione isoterma, anche essa reversibile, che lo porta
nello stato C.
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9.13. TRASFORMAZIONE CICLICA IRREVERSIBILE ??

◦ A questo punto il gas viene messo in contatto con un bagno termico ad una tempe-
ratura TA non nota. La trasformazione irreversibile che segue avviene abbastanza
lentamente da poter considerare istante per istante ben definito lo stato termodi-
namico del gas, che viene mantenuto a pressione costante. Quando si raggiunge
nuovamente l’equilibrio termico il gas si trova nuovamente in A.

P

V

A C

B

Figura 9.9.: Il ciclo considerato nel problema. La linea tratteggiata identifica la
trasformazione irreversibile.

Si conosce la temperatura TB, e il calore QBC assorbito dal gas durante la trasformazione
isoterma. Si vuole calcolare:

1. La variazione di entropia del gas ∆Sg
BC tra B e C.

2. La temperatura TA.

3. Il lavoro LCA + LAB fatto dal gas tra C e B.

4. La variazione di entropia dell’universo dopo una trasformazione ciclica completa.
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9.13. TRASFORMAZIONE CICLICA IRREVERSIBILE ??

Soluzione

1. La trasformazione isoterma è reversibile, e conosciamo il calore assorbito dal gas,
quindi

∆Sg
BC =

ˆ C

B

dQ
T

=
1

TB

ˆ C

B
dQ =

QBC

TB
(9.13.1)

2. Dato che la trasformazione è ciclica, e che l’entropia è una funzione di stato,
sappiamo che l’entropia del gas non può cambiare in un ciclo. Possiamo quindi
scrivere

∆Sg = ∆Sg
AB + ∆Sg

BC + ∆Sg
CA = 0 (9.13.2)

ma

∆Sg
AB = ncv log

TB

TA
(9.13.3)

∆Sg
BC =

QBC

TB
(9.13.4)

∆Sg
CA = ncp log

TA

TB
(9.13.5)

Notare che non è necessario calcolare alcun integrale di Clausius, ma solo utilizza-
re ancora una volta il fatto che l’entropia è una funzione di stato. Allora

n(cp − cv) log
TA

TB
+

QBC

TB
= 0 (9.13.6)

da cui segue

TA = TBe−
QBC
nRTB (9.13.7)

3. Dal primo principio abbiamo

QCA + QAB = ∆UCB + LCA + LAB (9.13.8)

e inoltre ∆UCB = 0 dato che l’energia interna di un gas perfetto dipende solo dalla
temperatura e TC = TB. Possiamo scrivere

QAB = ncv (TB − TA) (9.13.9)
QCA = ncP (TA − TC) (9.13.10)

Nel secondo caso osserviamo che, nonostante la trasformazione C → A sia irrever-
sibile, lo stato termodinamico del gas è per ipotesi ben definito istante per istante e
quindi è lecito applicare a quest’ultimo la legge dei gas perfetti e il primo principio.
Otteniamo quindi

LCA + LAB = nR(TA − TC) (9.13.11)

Alternativamente si poteva osservare che LAB = 0 e calcolare direttamente

LCA =

ˆ A

C
PdV = PAVA − PCVC = nR (TA − TC) (9.13.12)

ottenendo lo stesso risultato.
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9.14. SISTEMA TERMODINAMICO A TRE CORPI ? ? ?

4. Osserviamo che durante le trasformazione A→ B e l’entropia dell’universo non
cambia, dato che le trasformazioni sono reversibili. Resta da calcolare la variazione
di entropia nella trasformazione C → A. Abbiamo

∆S = ∆SCA = ∆Sg
CA + ∆Ss

CA (9.13.13)

dove ∆Sg
CA è la variazione di entropia del gas e ∆Ss

CA quella del bagno termi-
co. Dato che, come abbiamo detto, lo stato termodinamico del gas è ben definito
possiamo scrivere

∆Sg
CA =

ˆ A

C

dQ
T

=

ˆ A

C

ncpdT
T

= ncP log
TA

TB
(9.13.14)

Per quanto riguarda la sorgente, da essa è estratto il calore ceduto al gas

QCA = ncp (TA − TB) (9.13.15)

e quindi

∆SS
CA = ncP

TB − TA

TA
(9.13.16)

Abbiamo in conclusione

∆S = ncP log
TA

TB
+ ncP

TB − TA

TA
(9.13.17)

Mostriamo che ∆S ≥ 0. Consideriamo ∆S una funzione di TA a fissato TB. Per
TA = TB si trova ∆S = 0. Inoltre

d
dTA

∆S = ncp
1

TA
− ncP

TB

T2
A
=

ncP

TA

(
1− TB

TA

)
(9.13.18)

e quindi la funzione è crescente per TA > TB e decrescente per TA < TB. Il valore
∆S = 0 in TA = TB è quindi un minimo.

PROBLEMA 9.14

Sistema termodinamico a tre corpi ? ? ?

Si considerino tre corpi di capacità termica C indipendente dalla temperatura, che si
trovano all’inizio alle temperature T1i, T2i e T3i. Calcolare la massima temperatura a cui
è possibile portare uno dei tre corpi senza fare lavoro sul sistema dall’esterno.

Soluzione

Se consideriamo una generica trasformazione termodinamica agente sul sistema, in essa
verranno cedute delle quantità di calore Q1, Q2 e Q3 a ciascuno dei tre corpi.
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9.14. SISTEMA TERMODINAMICO A TRE CORPI ? ? ?

Per la conservazione dell’energia dovrà essere

Q1 + Q2 + Q3 = 0 (9.14.1)

da cui, dette T1 f , T2 f e T3 f le temperature finali avremo

T1 f + T2 f + T3 f = T1i + T2i + T3i (9.14.2)

Se nel corso della trasformazione si ha una variazione di entropia totale ∆S avremo
inoltre

∆S = C log
T1 f

T1i
+ C log

T2 f

T2i
+ C log

T3 f

T3i
(9.14.3)

ossia
T1 f T2 f T3 f = T1iT2iT3ie

∆S
C (9.14.4)

Osserviamo adesso che nella configurazione finale i due corpi più freddi dovranno
avere la stessa temperatura T−. Se così non fosse sarebbe possibile ottenere lavoro da
essi, e usarlo per innalzare ulteriormente la temperatura del corpo più caldo. Porremo
quindi

T+ = T1 f (9.14.5)
T− = T2 f = T3 f (9.14.6)

Notare che abbiamo stabilito che alla fine il corpo più caldo sarà il primo. Siamo liberi
di farlo, perchè le Equazioni (9.14.2) e (9.14.4) sono simmetriche rispetto ai tre corpi.
Questo dipende dal fatto che le tre capacità termiche sono uguali. Riscriviamo quindi le
Equazioni (9.14.2) e (9.14.4) nella forma

T+ + 2T− = T1i + T2i + T3i (9.14.7)

T+T2
− = T1iT2iT3ie

∆S
C (9.14.8)

Studiamo graficamente le soluzioni di questo sistema nel piano T+ − T−.
I grafici delle due relazioni sono rappresentate in Figura 9.10. All’aumentare dell’en-

tropia ∆S prodotta la retta rimane fissa, mentre il secondo grafico (del tipo y = k/x2) si
sposta verso l’alto.

Le uniche intersezioni fisicamente accettabili sono nel primo quadrante, perchè T− >
0. Delle due, quella indicata con A nel grafico corrisponde alla massima temperatura
raggiungibileTMAX

+ . Vediamo che TMAX
+ diminuisce all’aumentare di ∆S. Il caso migliore

corrisponde quindi a ∆S = 0.
Il calcolo esplicito di TMAX

+ si può ottenere ricavando T− dalla (9.14.7) e sostituendo
nella (9.14.8). Si ottiene un’equazione di terzo grado

T+ (T+ − T1i + T2i + T3i)
2 = 4T1iT2iT3ie

∆S
C (9.14.9)

Concludiamo con alcune osservazioni:
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T
+

T−

A

B

Figura 9.10.: Soluzione grafica del sistema (9.14.7)-(9.14.8). La retta corrisponde al-
la (9.14.7), la curva continua alla (9.14.8) per ∆S = 0. Infine la curva
tratteggiata corrisponde alla (9.14.8) per un valore ∆S > 0.

◦ Una procedura possibile per portare il sistema nello stato A è la seguente:

1. supponiamo che il corpo 2 e il corpo 3 siano inizialmente i più freddi. Utiliz-
zando una macchina termica reversibile si ricava lavoro L dalla loro differen-
za di temperatura.

2. adesso il corpo 2 e il corpo 3 hanno la stessa temperatura. Possiamo quindi
metterli in contatto in modo reversibile e considerarli da quel momento come
un corpo unico di capacità termica 2C

3. utilizzando nuovamente una macchina termica reversibile si sfrutta tutto il
lavoro L ottenuto in precedenza per pompare calore dal corpo 2+3 al corpo 1

◦ Per ∆S abbastanza grande non si hanno più intersezioni. Questo corrisponde a
produzioni di entropia non realizzabili.
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◦ L’intersezione B corrisponde alla situazione in cui la temperatura T− comune a
due corpi raggiunge il massimo valore possibile.

◦ La massima produzione di entropia corrisponde al caso in cui le intersezioni A e
coincidono.

PROBLEMA 9.15

Lavoro da un termos di caffè ??

Un termos, che possiamo schematizzare come un contenitore completamente imper-
meabile al calore, contiene del caffè caldo a una temperatura T0. Il termos non è comple-
tamente pieno: schematizzeremo il contenuto come una miscela di liquido e di n moli
di gas perfetto. Inoltre indicheremo con C la capacità termica a volume costante della
lattina, che considereremo indipendente dalla temperatura, e trascureremo la variazione
del volume del liquido con la temperatura. La pressione del gas è inizialmente P0.

Consideriamo l’ambiente esterno come un sistema termodinamico molto grande, con
temperatura TA < T0 e pressione PA < P0 fissata. Vogliamo calcolare il lavoro massimo
che possiamo ricavare dal sistema.

Soluzione

TA, PA

TL, PL, VL

Figura 9.11.: La lattina nell’ambiente esterno. La temperatura e la pressione ambientali,
TA e PA, si possono considerare fissate.

Indichiamo con il suffisso L le quantità che si riferiscono alla lattina, e con il suffisso
A quelle che si riferiscono all’ambiente. Dato che il volume del liquido non cambia,
indicheremo con VL il volume del solo gas perfetto. Applicando il primo principio alla
lattina abbiamo

dQL = dUL + PLdVL
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Qui dQL è il calore fornito alla lattina e dUL la variazione della sua energia interna.
Analogamente per l’ambiente abbiamo

dQA = dUA − PAdVL

dove si è usato il fatto che dVA = −dVL. Scriviamo la variazione dell’entropia totale
come somma delle variazioni di entropia della lattina e dell’ambiente, cioè

dS =
dQL

TL
+

dQA

TA

Infine per la conservazione dell’energia il lavoro utile che possiamo estrarre dal sistema
deve essere dato da

dW = −dUA − dUL

Eliminando le variazioni di calore dalle equazioni precedenti rimaniamo con

dS =
dUL + PLdVL

TL
+

dUA − PAdVL

TA

Ricaviamo dUA ed abbiamo infine

dW =

(
TA

TL
− 1
)

dUL +

(
TA

TL
PL − PA

)
dVL − TAdS

Notiamo anzitutto l’ultimo termine: dato che l’entropia di tutto il sistema (lattina e
ambiente) non può diminure, dS ≥ 0. Verifichiamo subito che per ottenere la massima
quantità di lavoro utile si deve procedere in maniera reversibile, dS = 0. Per l’ener-
gia della lattina possiamo scrivere inoltre considerando una trasformazione a volume
costante

dQL = dUL = CdTL

e quindi, usando anche la legge dei gas perfetti,

dW = C
(

TA

TL
− 1
)

dTL +

(
nRTA

VL
− PA

)
dVL − TAdS

Possiamo integrare direttamente questa ultima espressione su una data trasformazione
reversibile, ottenendo

Wmax = C
(

TA log
Tf

T0
− Tf + T0

)
+

(
nRTA log

Vf

V0
− PAVf + PAV0

)

dove abbiamo indicato con Vf e Tf il volume e la temperatura finale della lattina. Il
massimo di Wmax corrisponderà a

∂Wmax

∂Tf
= 0

∂Wmax

∂Vf
= 0
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ma dall’espressione di Wmax vediamo subito che deve essere

∂Wmax

∂Tf
= C

(
TA

Tf
− 1
)
= 0

∂Wmax

∂Vf
=

nRTA

Vf
− PA =

TA

Tf
Pf − PA = 0

Quindi lo stato finale della lattina sarà Tf = TA e Pf = PA. Come è intuitivo, temperatu-
ra e pressione devono coincidere con quella dell’ambiente. Inserendo nell’espressione
precedente otteniamo il risultato finale

Wmax = (C + nR) TA log
TA

T0
− C (TA − T0) + nRTA log

P0

PA
− PA

(
Vf −V0

)

con Vf = nRTA/PA. Notiamo che possiamo interpretare

−CTA log TL − CTL − nRTA log VL + PAVL = −TASL −UL + PAVL

come lavoro utile che è possibile estrarre dalla lattina.

PROBLEMA 9.16

Lavoro da un termos di caffè II ??

Calcolare nuovamente il lavoro massimo estraibile dal sistema descritto
nel problema precedente, questa volta però utilizzando una trasformazione
concreta del sistema. Le operazioni possibili sono due: muovere il pistone
che chiude il termos in maniera controllata e mettere il contenuto in contatto
termico con l’ambiente.

Soluzione

Dato che sappiamo di dover operare in modo reversibile per massimizzare il lavoro
utile estratto, non possiamo porre immediatamente in contatto il contenuto del termos
con l’ambiente: si avrebbe un passaggio spontaneo di calore e quindi un aumento di
entropia del sistema.

Per prima cosa quindi eseguiamo un’espansione adiabatica reversibile, durante la
quale il gas all’interno del termos compie un lavoro positivo e l’ambiente negativo. Il
lavoro utile estratto sarà

dW = (PL − PA) dVL = −dUL − PAdVL

dove si è approfittato del fatto che l’espansione è adiabatica per esprimere il risultato
nella seconda forma. Notare che fino a quando PL > PA (cioè fino a quando la pressione
all’interno del termos è maggiore di quella dell’ambiente) il bilancio totale è positivo.
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PL

VL

PL = PA

PLVL = nRTA

P0, V0

P1, V1

P2, V2

Figura 9.12.: La trasformazione utilizzata nel piano PL, VL. L’espansione adiabatica
iniziale è rappresentata dalla curva blu, l’isoterma in verde.

Noi procederemo però fino a quando TL = TA. Dato che l’espansione è adiabatica
avremo

dUL + PLdVL = 0

cioè
CdTL +

nRTL

VL
dVL = 0

da cui, integrando,
C log TL + nR log VL = costante

oppure

VLT
C

nR
L = costante

e quindi il volume finale dell’espansione sarà dato da

V1 = V0

(
T0

TA

) C
nR

Il lavoro utile estratto durante questa fase di espansione sarà quindi

W1 = C (T0 − TA)− PA (V1 −V0)

Adesso che la temperatura del contenuto del termos è identica a quella esterna possiamo
mettere in contatto termico i due sottosistemi, e ricavare ulteriore lavoro con una trasfor-
mazione isoterma. Ancora una volta otteremo lavoro utile fino a quando la pressione
del gas all’interno del termos diverrà uguale a quella dell’ambiente, quindi

W2 =

ˆ V2

V1

(PL − PA) dVL
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Calcoliamo il volume corrispondente alla pressione interna PA. Dato che abbiamo a che
fare con una trasformazione isoterma sarà

PAV2 = P1V1 = nRTA

e quindi

W2 =

ˆ nRTA
PA

V1

(PL − PA) dVL

=

ˆ nRTA
PA

V1

nRTA

VL
dVL − PA

(
nRTA

PA
−V1

)

= nRTA log
nRTA

PAV1
− PA

(
nRTA

PA
−V1

)

Sommando otteniamo

W = W1 + W2 = C (T0 − TA)− PA (V1 −V0) + nRTA log
nRTA

PAV1
− PA

(
nRTA

PA
−V1

)

= C (T0 − TA) + PA (V0 −V2) + (C + nR) TA log
TA

T0
+ nRTA log

P0

PA

che è lo stesso risultato ottenuto nell’esercizio precedente.
La trasformazione seguita rappresentata in Figura 9.12. Notare che il lavoro utile è

l’area compresa tra la curva e la retta PL = PA, dato che è necessario sottrarre il lavoro
negativo dell’ambiente. In particolare nell’espansione adiabatica iniziale si ottiene lavo-
ro utile fino a quando PL > PA (area azzurra) e si perde successivamente (area gialla).
L’espansione adiabatica termina quanto TL = TA. A questo punto si procede su un’i-
soterma fino a raggiungere la pressione ambientale. Nel caso in figura in cui P1 < PA
si tratta di una compressione (un esercizio consigliato è disegnare il grafico nel caso
P1 > PA). Si guadagna lavoro utile, più di quello che serve a compensare quello giallo
perso precedentemente. Il lavoro utile totale è la somma dell’area azzurra e di quella
grigia.

PROBLEMA 9.17

Lavoro da un termos di caffè III ??

Il sistema è ancora quello precedente, ma cambiamo ancora le regole del gioco. Possiamo
solo trasferire calore dal termos all’ambiente mediante una macchina termica ciclica, o
lasciare il pistone libero di muoversi.

Soluzione

Dobbiamo portare la pressione e la temperatura del termos agli stessi valori dell’am-
biente. Utilizzeremo una macchina termica reversibile per trasferire calore dal termos
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Q1 Q2

W

TL, PL, VL

TA, PA, VA

PL

VL

PL = PA

PLVL = nRTA

0

1 2

0

12

Figura 9.13.: La trasformazione rappresentata nel piano PL,VL. Si tratta di una isocora
(pistone bloccato) seguita da un’isobara (pistone libero). I colori rosso e
verde si riferiscono a due diverse condizioni iniziali.

all’ambiente esterno. La macchina lavora come schematizzato in Figura 9.13. Dato che
dobbiamo lavorare in maniera reversibile per prima cosa lasceremo il pistone fissato, ed
estrarremo calore fino a quando la pressione del gas sarà uguale a quella ambientale.
Avremo quindi una trasformazione reversibile a volume costante nella quale

Q1 = −C (T1 − T0) = −C
(

PAV0

nR
− P0V0

nR

)

e
∆S = C log

T1

T0
+

Q2

TA
= 0

dato che l’entropia non deve cambiare. Il lavoro ottenuto in questa prima fase sarà

W1 = Q1 −Q2 =
CV0

nR
(P0 − PA) + CTA log

T1

T0

Adesso possiamo liberare il pistone e far raggiungere al gas la temperatura finale. A
seconda delle condizioni iniziali per fare questo dovremo estrarre ancora calore (caso
rappresentato in rosso nella figura) o aggiungerlo (caso rappresentato in verde). Avremo
comunque

Q1 = − (C + nR) (TA − T1)

e
∆S = (C + nR) log

TA

T1
+

Q2

TA
= 0

che danno una seconda frazione di lavoro utile uguale a

W2 = Q1 −Q2 = − (C + nR) (TA − T1) + (C + nR) TA log
TA

T1
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Il totale

W = W1 + W2 = C (T0 − TA) + (C + nR) TA log
TA

T0
+ PA (V0 −V2) + nRTA log

P0

PA

coincide ancora una volta coi risultati ottenuti precedentemente.

PROBLEMA 9.18

Lavoro estraibile da un sistema chiuso ??

T1 T2n n

Figura 9.14.: Il sistema descritto nel testo. Il setto intermedio è scorrevole, le pareti
impermeabili al calore.

Il recipiente in Figura 9.14, impermeabile al calore, è diviso in due scomparti da un
setto scorrevole. Anche il setto è impermeabile al calore. Inizialmente nei due scomparti
si trovano n moli di un gas perfetto monoatomico alle temperature e T2 > T1. Si conosce
il volume totale del recipiente V.

1. Determinare i volumi iniziali occupati dai due gas.

2. Se si permette al calore di passare spontaneamente attraverso il setto, quanto vale
la temperatura finale di equilibrio del sistema? Di quanto è cambiata l’entropia?

3. Considerando nuovamente la situazione iniziale, e un setto impermeabile, deter-
minare il massimo lavoro che è possibile estrarre dal sistema.

Soluzione

Domanda 1 Dato che il pistone è scorrevole, i due setti sono in equilibrio meccanico e
quindi alla stessa pressione. Abbiamo quindi le tre equazioni

V1 + V2 = V
PV1 = nRT1

PV2 = nRT2
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che permettodo di determinare P, V1 e V2. Sostituendo i volumi nella prima otteniamo
la pressione

P = nR
T1 + T2

V

e quindi

V1 =
T1

T1 + T2
V

V2 =
T2

T1 + T2
V

Domanda 2 Dato che il contenitore è isolato l’energia interna non cambia. Di conse-
guenza, detta Tf la temperatura finale dovrà essere

ncV T1 + ncV T2 = 2ncV Tf

da cui

Tf =
T1 + T2

2

In questo stato il volume di ciascun setto è la metà del totale, come segue dalle espres-
sioni ottenute alla domanda precedente. Quindi la variazione di entropia sarà

∆S = ∆S1 + ∆S2 = ncV log
Tf

T1
+ nR log

1
2 V
V1

+ ncV log
Tf

T2
+ nR log

1
2 V
V2

= ncV log
T2

f

T1T2
+ nR log

V2

4V1V2

= ncV log
(T1 + T2)

2

4T1T2
+ nR log

(T1 + T2)
2

4T1T2

= 2ncP log
T1 + T2

2
√

T1T2

Questo risultato si poteva derivare più rapidamente osservando che se il calore viene
scambiato molto lentamente possiamo considerare i gas nei due scomparti istante per
istante all’equilibrio, ad una pressione costante. Quindi possiano utilizzare per ciascuno
di essi

dS =
dQ
T

= ncP
dT
T

cioè

∆S = ncP

ˆ Tf

T1

dT
T

+ ncP

ˆ Tf

T2

dT
T
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Domanda 3 Il massimo lavoro estraibile si ottiene operando in modo reversibile sul
sistema. Supponendo di estrarre una quantità di calore Q2 dal setto più caldo e di
fornirne Q1 a quello freddo avremo infine ottenuto un lavoro utile

W = Q2 −Q1

D’altra parte dal primo principio abbiamo

Q2 = −ncV
(
Tf − T2

)
− PdV2

Q1 = ncV
(
Tf − T1

)
+ PdV1

e quindi sottraendo membro a membro

Q2 −Q1 = W = ncV
(
T1 + T2 − 2Tf

)
− P (dV1 + dV2)

Dato che il volume totale non cambia dV1 + dV2 = dV = 0, e quindi

W = ncV
(
T1 + T2 − 2Tf

)

Resta da determinare la temperatura finale. Dato che lavoriamo in modo reversibile la
variazione di entropia è nulla. Quindi

∆S = ncV log
Tf

T1
+ nR log

V
2V1

+ ncV log
Tf

T2
+ nR log

V
2V2

= ncV log
T2

f

T1T2
+ nR log

V2

4V1V1

= ncV log
T2

f

T1T2
+ nR log

(T1 + T2)
2

4T1T2
= 0

da cui

Tf =

[
2
√

T1T2

T1 + T2

]R/cV √
T1T2

Sostituendo otteniamo il risultato finale che possiamo scrivere nella forma

W = ncV (T1 + T2)

[
1−

(
2
√

T1T2

T1 + T2

)γ
]

dalla quale si vede immediatamente che , dato che è sempre

T1 + T2

2
≥
√

T1T2
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PROBLEMA 9.19

Massima potenza di un ciclo di Carnot ? ? ?

Si vuole ricavare lavoro da una trasformazione ciclica che usa come sorgenti due bagni
termici di temperatura TL e TH > TL. La trasformazione consiste in un ciclo di Carnot
in cui le temperature T1 e T2 delle isoterme sono intermedie a quelle delle sorgenti:

TL < T1 < T2 < TH (9.19.1)

Quando il sistema è alla temperatura T1 è in contatto con la sorgente alla temperatura
TL mediante una resistenza termica RT. Analogamente quando è alla temperatura T2
è in contatto con la sorgente alla temperatura TH, sempre tramite la stessa resistenza
termica.

Si vogliono determinare le temperature di lavoro T1 e T2 in modo da massimizza-
re la potenza utile, considerando trascurabile il tempo necessario ad eseguire le tra-
sformazioni adiabatiche. Calcolare per le temperature T1 e T2 ottimali l’efficienza del
ciclo.

Soluzione

Consideriamo le varie fasi del ciclo di Carnot:

1. Compressione isoterma alla temperatura T1, a contatto con la sorgente a tempe-
ratura TL. Il sistema riceve un calore Q1 = T1∆S1 (negativo) dalla sorgente a
temperatura TL. Affinchè questo avvenga è necessario un tempo τ1 determinato
dalla

Q1 = − 1
RT

(T1 − TL) τ1 (9.19.2)

2. Compressione adiabatica dalla temperatura T1 alla temperatura T2. Non si hanno
scambi di calore e, come detto in precedenza, il tempo necessario è trascurabile.

3. Espansione isoterma alla temperatura T2, a contatto con la sorgente a temperatura
TH. Il sistema riceve un calore Q2 = T2∆S2 dalla sorgente a temperatura TH. Il
tempo τ2 necessario alla trasformazione sarà determinato da

Q2 =
1

RT
(TH − T2) τ2

4. Espansione adiabatica dalla temperatura T2 alla temperatura T1. Non si hanno
scambi di calore ed anche questa volta il tempo necessario è trascurabile.

Il lavoro complessivo fatto dal sistema vale per il primo principio

L = Q1 + Q2 = T1∆S1 + T2∆S2 (9.19.3)
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e quindi la potenza sarà

PW =
L

τ1 + τ2
=

Q1 + Q2
RT Q1
TL−T1

+ RT Q2
TH−T2

(9.19.4)

Dato che dopo un ciclo il sistema torna nello stato iniziale, e che durante le adiabatiche
non varia la propria entropia, dovrà essere ∆S1 + ∆S2 = 0. Di conseguenza

PW =
1

RT

T2 − T1
T1

T1−TL
+ T2

TH−T2

=
1

RT

(T1 − T2) (T2 − TH) (T1 − TL)

T1TH − T2TL
(9.19.5)

che si può riscrivere nella forma

PW =
1

RT

(1− x) (1− y) (TLx− THy)
x− y

(9.19.6)

introducendo le variabili x = T1/TL e y = T2/TH. Derivando abbiamo

∂PW

∂x
=

(1− y)
[
TH (1− y) + TL

(
2xy− y− x2)]

(x− y)2

∂PW

∂y
=

(1− x)
[
TL (1− x) + TH

(
2xy− x− y2)]

(x− y)2

I valori x = 1 e y = 1 che annullano le espressioni precedenti non sono accettabili,
perchè corrispondono a PW = 0 (minimi). Il massimo sarà quindi determinato dalle
soluzioni contemporanee di

TH

TL
y (1− y) +

(
2xy− y− x2) = 0

TL

TH
x (1− x) +

(
2xy− x− y2) = 0

Le soluzioni chiaramente dipendono solo dal rapporto TL/TH. Risolvendo il sistema si
trovano le soluzioni

(x, y) = (0, 0)
(x, y) = (1, 1)

(x, y) =

(
1
2
− 1

2

√
TH

TL
,

1
2
− 1

2

√
TL

TH

)

(x, y) =

(
1
2
+

1
2

√
TH

TL
,

1
2
+

1
2

√
TL

TH

)
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Solo l’ultima soddisfa le condizioni TL < T1 < T2 < TH. Abbiamo quindi

T1 =
1
2

(
TL +

√
TLTH

)

T2 =
1
2

(
TH +

√
TLTH

)

che corrispondono ad una potenza

PW =

(
TH + TL − 2

√
THTL

4RT

)
(9.19.7)

e ad una efficienza

η = 1−
√

TL

TH
=

1− TL
TH

1 +
√

TL
TH

(9.19.8)

Notare che l’efficienza non dipende da RT.

PROBLEMA 9.20

Trasferimento di calore tra un corpo e un bagno termico ?? S

T2

C, λ

T1

Figura 9.15.: Il corpo (a sinistra) e il bagno termico (a destra) considerati nell’esercizio.

Un contenitore riempito con una miscela al 50% in massa di ghiaccio ed acqua viene
posto in contatto con un bagno termico di temperatura T2 = 300 K mediante una barra
di rame (conducibilità termica σ = 391 W/(m K)), lunghezza ` = 10−1 m e sezione
S = 10−4 m2. Il calore latente di fusione del ghiaccio è λ = 335× 103 J/kg, il calore
specifico dell’acqua c = 4.18× 103 J/(kg K) e la massa totale della miscela M = 1 kg. Si
trascuri la capacità termica della barra e si considerino isolanti le pareti del contenitore
e della barra.

1. Calcolare la temperatura e la variazione di entropia del contenitore in funzione
del tempo.
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2. Calcolare la variazione finale di entropia dell’universo.

3. Se al posto del contatto termico si utilizza una macchina termica reversibile quale
è il massimo lavoro utile estraibile dal sistema?

Soluzione1

Domanda 1

Il passaggio di calore avviene per conduzione, e possiamo scrivere per il calore ceduto
alla miscela per unità di tempo

Q̇ =
σS
`

(T2 − T)

In una prima fase questo calore serve a sciogliere il ghiaccio, la temperatura della miscela
rimane quindi quella di fusione del ghiaccio T0 e possiamo scrivere per la massa di
ghiaccio sciolto m(t)

λṁ = Q̇ =
σS
`

(T2 − T0)

da cui
λm(t) = Q(t) =

σS
`

(T2 − T0) t

La temperatura resta quindi costante e l’entropia aumenta linearmente

∆SR(t) =
Q(t)

T0
=

σS
`

(
T2

T0
− 1
)

t

Quando m(t) = M/2 tutto il ghiaccio si è sciolto. Questo avviene per

t = t1 =
λ`M

2σS (T2 − T0)

Da questo momento vale

cMṪ = Q̇ =
σS
`

(T2 − T)

L’equazione

Ṫ =
σS

c`M
(T2 − T)

si integra immediatamente:
ˆ T(t)

T0

dT′

(T2 − T′)
=

ˆ t

t1

σS
c`M

dt

da cui

log
T(t)− T2

T0 − T2
= − σS

c`M
(t− t1)

1Secondo esercizio scritto 31 gennaio 2007
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e quindi

T(t) = T2 + (T0 − T2) exp
[
− σS

c`M
(t− t1)

]

Per l’entropia avremo

ṠR =
1
T

Q̇ = cM
Ṫ
T

= cM
d
dt

log T

da cui

∆SR(t) = ∆SR(t1) + cM log
T(t)
T0

Domanda 2

La variazione di entropia finale del contenitore vale

lim
t→∞

∆SR(t) =
σS
`

(
T2

T0
− 1
)

t1 + cM log
T2

T0

=
λM
2T0

+ cM log
T2

T0

Invece l’entropia del bagno termico è variata di

∆SB = −Q
T2

dove Q è il calore totale ceduto al recipiente (e estratto dal bagno). Abbiamo quindi

∆SB = − 1
T2

[
λM

2
+ cM (T2 − T0)

]

In conclusione

∆S = ∆SR + ∆SB =
λM

2

(
1
T0
− 1

T2

)
+ cM

[
log

T2

T0
−
(

1− T0

T2

)]

Domanda 3

Detto Q1 il calore ceduto al recipiente e Q2 quello estratto dal bagno termico abbiamo
dal primo principio che il lavoro estratto W vale

W = Q2 −Q1

Dato che la temperatura finale del recipiente deve essere T2 avremo

Q1 =
Mλ

2
+ cM (T2 − T0)

Per estrarre la massima quantità di lavoro possibile si deve operare in modo reversibile,
quindi

∆S = ∆SR + ∆SB = 0
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ma

∆S =
λM
2T0

+ cM log
T2

T0
− Q2

T2

da cui

Q2 =
T2

T0

λM
2

+ cMT2 log
T2

T0

Otteniamo infine

W =

(
T2

T0
− 1
)

λM
2

+ cM
[

T2 log
T2

T0
− (T2 − T0)

]

PROBLEMA 9.21

Tre modi per sciogliere una massa di ghiaccio ?? S

d

h

Figura 9.16.: I due recipienti con ghiaccio all’interno.

Si considerino due recipienti cilindrici identici di sezione S. In entrambi si trova una
massa m di ghiaccio alla temperatura di fusione. Nel primo recipiente il ghiaccio è
distribuito sul fondo in uno strato di spessore d, nel secondo ha la forma di un cilindro
di altezza h� d disposto verticalmente.

1. Si calcoli in entrambi i casi il calore che è necessario fornire al ghiaccio per scio-
glierlo completamente.

2. Con una piccola spinta si fa cadere il cilindro del secondo recipiente, e si osserva
che il ghiaccio si scioglie completamente senza apporto di calore. Calcolare la
minima altezza h per la quale questo puó accadere, e la variazione di entropia del
sistema.

3. Calcolare il massimo lavoro ottenibile utilizzando il secondo recipiente come
sorgente fredda, avendo a disposizione un bagno termico a 300K.
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Soluzione2

Domanda 1

Dalla conservazione dell’energia segue che

Q = λm + ∆Ug

dove Q è il calore fornito e ∆Ug la variazione di energia potenziale gravitazionale, λ il
calore latente di fusione. Trascurando la variazione di volume nella transizione di fase
possiamo scrivere

Q1 = λm

Q2 = λm +
1
2

mg (d− h) ' λm− 1
2

mgh

dato che nel primo caso l’altezza del centro di massa del sistema è invariata, mentre nel
secondo passa da h/2 a d/2.

Domanda 2

Dalla formula trovata in precedenza abbiamo che Q2 = 0 quando

h =
2λ

g

Per calcolare la variazione di entropia consideriamo una trasformazione reversibile
nella quale il ghiaccio viene prima coricato sul fondo del recipiente, e quindi sciolto
fornendo una opportuna quantità di caloreStandard una sorgente di temperatura di
poco superiore alla temperatura di fusione. Nella prima fase l’entropia non cambia,
nella seconda si ha

∆S =

ˆ
dQ
Tf

=
λm
Tf

Domanda 3

Possiamo prima adagiare la sbarra sul fondo del recipiente, ottenendo un lavoro utile
W1 = mgh/2. A questo punto utilizziamo una macchina reversibile tra la sorgente calda
e quella fredda. La variazione di entropia complessiva deve essere nulla, da cui

λm
Tf

+ C log
T300

Tf
=

Qass

T300

e d’altra parte
λm + C

(
T300 − Tf

)
= Qced .

2Secondo esercizio compitino 30 maggio 2007
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Otteniamo infine

W2 = Qass −Qced = λm
(

T300

Tf
− 1
)
+ CT300 log

T300

Tf
− C

(
T300 − Tf

)

e quindi

W = W1 + W2 =
mgh

2
+ λm

(
T300

Tf
− 1
)
+ CT300 log

T300

Tf
− C

(
T300 − Tf

)
.

PROBLEMA 9.22

Trasformazione termodinamica con attrito ?? S

Una macchina termica è costituita da un cilindro di sezione S munito di pistone, con-
tenente n moli di un gas perfetto. Tra cilindro e pistone si ha attrito statico e dinamico,
con |Fstat| ≤ |Fdyn| = F0, dove F0 è una costante assegnata. L’energia dissipata per attrito
passa interamente all’interno del contenitore.

1. In assenza di attrito determinare il lavoro necessario, in una lenta compressione
adiabatica, per dimezzare il volume del gas partendo da V = V0 e T = T0.

2. Stessa domanda in presenza di attrito. Determinare anche la variazione di entropia
del gas.

3. Discutere l’efficienza che è possibile ottenere utilizzando la macchina termica de-
scritta per ottenere lavoro avendo a disposizione due bagni termici di temperature
T1 e T2 > T1, mediante cicli di Carnot.

Può essere utile il seguente risultato. L’integrale generale di una equazione del tipo

y′ +
a
x

y = b

con a e b costanti è dato da
y =

A
xa +

b
a + 1

x

dove A è una costante di integrazione.

Soluzione3

Esercizio 1

In assenza di attrito abbiamo a che fare con una compressione adiabatica, per la quale

PVγ = P0Vγ
0 = nRT0Vγ−1

0

3Secondo esercizio scritto 19 giugno 2007
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Abbiamo quindi

W = −
ˆ 1

2 V0

V0

PdV = −nRT0Vγ−1
0

ˆ 1
2 V0

V0

dV
Vγ

da cui

W = nRT0Vγ−1
0

1
γ− 1

[
1

(V0/2)γ−1 −
1

Vγ−1
0

]
= ncvT0

(
2γ−1 − 1

)

Esercizio 2

In presenza di attrito il lavoro fatto sul sistema è dato da

dW = −PextdV

dove la pressione esterna è legata a quella del gas dalla relazione

Pext = P + P∗

dove abbiamo posto per semplicità P∗ = F0/S. Abbiamo inoltre

0 = dU + PextdV

e quindi

ncvdT = −
(

nRT
V

+ P∗
)

dV

Otteniamo una equazione differenziale del tipo descritto nel testo, con y = T, x = V,
a = R/cv = γ− 1 e b = −F0/(ncvS). Otteniamo infine

T =
A

Vγ−1 −
P∗

ncvγ
V

In termini delle condizioni iniziali

T =

(
T0 +

P∗V0

ncvγ

)(
V0

V

)γ−1

− P∗V0

ncvγ

(
V
V0

)

Possiamo adesso calcolare il lavoro:

W =

ˆ V0

αV0

(
nRT

V
+ P∗

)
dV

= V0

ˆ 1

α

(
nR
V0

T(u) + P∗
)

du

dove u = V/V0 e α è il rapporto tra volume finale e iniziale (α = 1/2 nel caso con-
siderato). Sostituendo l’espressione ottenute precedentemente per la temperatura si
ottiene

W = V0

ˆ 1

α

[(
P0 +

R
cvγ

P∗
)

1
uγ−1 +

1
γ

P∗u
]

du
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e quindi

W = V0

[
1

γ− 2

(
P0 +

R
cvγ

P∗
)(

1
αγ−2 − 1

)
+

1
2γ

P∗
(
1− α2)

]

Per calcolare la variazione dell’entropia possiamo semplicemente usare la formula

S = ncv log T + nR log V + C

valida per qualsiasi gas perfetto. Dato che l’entropia è una funzione di stato abbiamo

∆S = ncv log
[(

1 +
P∗

P0

γ− 1
γ

)
1

αγ−1 −
P∗

P0

γ− 1
γ

α

]
+ nR log α

che si può anche scrivere

∆S = ncv log
[(

1 +
P∗

P0

γ− 1
γ

)
− P∗

P0

γ− 1
γ

αγ

]

Notare che ∆S→ 0 se il rapporto tra la pressione iniziale del gas e P∗ tende a zero.

Esercizio 3

L’efficienza è minore di quella di una macchina reversibile ideale. Questo si può mostra-
re scrivendo

Q2 −Q1 = W

dove Q2 è il calore assorbito dalla macchina in un ciclo, Q1 quello ceduto e W il lavoro
prodotto. Per quanto riguarda l’entropia prodotta in un ciclo abbiamo

∆S =
Q1

T1
− Q2

T2

e segue che

η =
W
Q2

=
Q2 −Q1

Q2
= 1− T1

T2
− T1∆S

Q2

L’efficienza è vicina a quella ideale quando la trasformazione è reversibile.
Calcoliamo il lavoro utile estratto in un ciclo. Per la compressione adiabatica possia-

mo utilizzare la formula ricavata all’esercizio precedente. Per l’espansione adiabatica
dobbiamo tenere conto del fatto che la forza di attrito cambia segno, essendo sempre
opposta al movimento del pistone. Quindi

WD→A =
1

γ− 2
VDPD

[(
VA

VD

)γ−2

− 1

]


1 +


γ− 1

γ
− γ− 2

2γ

1−
(

VA
VD

)2

1−
(

VA
VD

)γ−2



(

P∗

PD

)



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WB→C =
1

γ− 2
VBPB

[(
VC

VB

)γ−2

− 1

]


1−


γ− 1

γ
− γ− 2

2γ

1−
(

VC
VB

)2

1−
(

VC
VB

)γ−2



(

P∗

PB

)




il lavoro sulle isoterme si calcola direttamente:

WA→B =

ˆ VB

VA

(P− P∗) dV = nRT2 log
VB

VA
− P∗(VB −VA)

WC→D =

ˆ VD

VC

(P + P∗) dV = nRT1 log
VD

VC
+ P∗(VD −VC)

Per quanto riguarda il calore assorbito dalla sorgente calda, dato che esso viene estratto
durante una trasformazione isoterma avremo Q2 = WA→B. L’efficienza sarà dunque

η =
W
Q2

=
WA→B + WB→C + WC→D + WD→A

WA→B

Le formule precedenti si discostano da quelle in presenza di attrito per correzioni che
saranno trascurabili quando P � P∗. Segue che sarà possibile ottenere una efficienza
arbitrariamente vicina al caso irreversibile lavorando a pressioni del gas elevate.

PROBLEMA 9.23

Effetto della capacità termica di un recipiente ? S

Sul fondo di un cilindro di sezione S munito di un pistone mobile e impermeabile al
calore si trova uno strato di materiale di capacità termica C1. Nella parte superiore si
trovano n moli di un gas perfetto monoatomico. Inizialmente il sistema è all’equilibrio
termodinamico, con pressione e temperatura P0 e T0 note.

1. Si raddoppia molto lentamente la pressione. Calcolare la nuova temperatura.

2. Partendo dalla stessa condizione iniziale si raddoppia istantaneamente la forza
applicata al pistone. Calcolare anche in questo caso la temperatura nello stato
finale di equilibrio.

3. Calcolare la variazione di entropia del sistema e dell’universo nei due casi prece-
denti.

Soluzione4

Problema 1

Dal primo principio abbiamo, considerando che non si hanno scambi di calore con
l’esterno,

0 = dU + pdV (9.23.1)

4Secondo problema scritto 21 gennaio 2009
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Figura 9.17.: Il cilindro contente del materiale di capacità termica non nulla.

ma l’energia interna del sistema si può scrivere come la somma di quella del gas e del
materiale, quindi

dU =
3
2

nRdT + C1dT (9.23.2)

e quindi (
3
2

nR + C1

)
dT +

nRT
V

dV = 0 (9.23.3)

che può essere integrata direttamente:
(

3
2

nR + C1

)
log T + nR log V = K (9.23.4)

ossia
T(

3
2 nR+C1)VnR = costante (9.23.5)

oppure, usando la legge dei gas perfetti,

TP−η = costante (9.23.6)

con
η =

nR
5
2 nR + C1

(9.23.7)
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Da questo segue subito che

Tf = T0

(
Pf

P0

)η

= T02η (9.23.8)

Problema 2

In questo caso non abbiamo a che fare con una trasformazione reversibile, quello che
possiamo dire è che l’aumento dell’energia interna sarà dato dal lavoro fatto sul sistema:

− 2P0
(
Vf −V0

)
= ∆U =

(
3
2

nR + C1

) (
Tf − T0

)
(9.23.9)

ma d’altra parte negli stati iniziale e finale di equilibrio

P0V0 = nRT0 (9.23.10)

2P0Vf = nRTf (9.23.11)

e sostituendo

− nR
(
Tf − 2T0

)
=

(
3
2

nR + C1

) (
Tf − T0

)
(9.23.12)

ossia

Tf =
7
2 nR + C1
5
2 nR + C1

T0 . (9.23.13)

Problema 3

Nel primo caso la trasformazione è reversibile, quindi l’entropia dell’universo non cam-
bia. Ma neppure si hanno scambi di calore con il sistema, quindi anche l’entropia di
quest’ultimo non varia.

Nel secondo caso la trasformazione è irreversibile. La variazione di entropia del siste-
ma si trova calcolando la differenza tra l’entropia dello stato di equilibrio finale e quella
dello stato di equilibrio iniziale. Dato che

dS =
dQ
T

=

(
3
2

nR + C1

)
dT
T

+
nR
V

dV (9.23.14)

possiamo scrivere

∆S =

(
3
2

nR + C1

)
log

Tf

T0
+ nR log

Vf

V0
=

(
5
2

nR + C1

)
log

Tf

T0
+ nR log

P0

Pf
(9.23.15)

e quindi

∆S =

(
5
2

nR + C1

)
log

7
2 nR + C1
5
2 nR + C1

− nR log 2 . (9.23.16)

Questa sarà anche la variazione di entropia dell’universo.
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PROBLEMA 9.24

Acqua e ghiaccio a pressione costante ?? S

P ,V ,T

M

Figura 9.18.: Il recipiente impermeabile al calore considerato nell’esercizio.

Il recipiente in Figura 9.18 è chiuso da un setto scorrevole S . Recipiente e setto sono
impermeabili al calore, ed il setto ha massa trascurabile. Il volume interno è ulterior-
mente diviso in due parti da una parete rigida, che permette invece il contatto termico
tra le due parti. Nella parte inferiore si trova una massa M di ghiaccio a 0 ◦C, in quel-
la superiore n moli di un gas perfetto. L’esterno del recipiente si trova a pressione
atmosferica.

1. Determinare il volume V del gas nella condizione iniziale.

2. Si comprime adesso il setto superiore fino a portare la temperatura del gas a 20 ◦C
in modo reversibile. Determinare la dipendenza della pressione del gas dal suo
volume per questa trasformazione, e rappresentarla su un grafico. Di quanto è
variata l’entropia del sistema?

3. Supponendo di utilizzare il sistema come sorgente fredda, e che l’ambiente esterno
possa essere considerato un bagno termico a temperatura T = 20 ◦C, trasferendo
calore mediante una macchina termica, determinare il massimo lavoro estraibile.
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Soluzione5

Domanda 1

Dato che il gas è in equilibrio termico con il ghiaccio deve essere

PatmV0 = nRT0 (9.24.1)

dove T0 = 0 ◦C, da cui

V = V0 =
nRT0

Patm
(9.24.2)

Domanda 2

Finchè del ghiaccio è presente, la temperatura del sistema è fissata a T0. Quindi

P =
nRT0

V
(9.24.3)

Dal primo principio segue che

δQ = 0 = λdm + PdV (9.24.4)

dove dm è la massa di ghiaccio che si scioglie e λ il calore latente di fusione. Segue che

nRT0
dV
V

+ λdm (9.24.5)

e quindi quando tutto il ghiaccio si è sciolto il volume è diventato

V1 = V0 exp
(
− λM

nRT0

)
(9.24.6)

Da questo momento in poi vale

δQ = 0 = (C + ncV) dT + PdV (9.24.7)

dove C è la capacità termica dell’acqua. Abbiamo quindi

(C + ncV)

ˆ T

T0

dT
T

+

ˆ V

V1

nR
dV
V

= 0 (9.24.8)

ossia
(C + ncV) log

T
T0

+ nR log
V
V1

= 0 (9.24.9)

che si può esprimere nella forma

VnRTC+ncV = cost (9.24.10)

5Secondo problema scritto 11 novembre 2008
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oppure
PVβ = cost (9.24.11)

dove
β =

cP + C/n
cV + C/n

(9.24.12)

Quindi la trasformazione si rappresenta come una isoterma per V1 < V < V0, e come
una adiabatica con un esponente modificato per Vf < V < V1. Il volume finale si ottiene
dalla (9.24.10):

Vf = V1

(
T0

Tf

) C+ncV
nR

(9.24.13)

con Tf = 20 ◦C.
Dato che il sistema non scambia calore con l’esterno la sua variazione di entropia è

nulla.

Domanda 3

Sia δQ1 il calore assorbito dall’ambiente e δQ2 quello ceduto al sistema. Chiaramente
W = Q1 −Q2. Fino a quando è presente del ghiaccio le temperature sono fissate, e dato
che l’entropia totale non varia deve essere

Q2

T0
=

Q1

Tf
(9.24.14)

e d’altra parte Q2 = λM, quindi

W =

(
Tf

T0
− 1
)

λM (9.24.15)

sarà il lavoro prodotto in questa prima fase.
Appena tutto il ghiaccio si è sciolto deve essere

δQ2 = (C + ncV) dT + PdV (9.24.16)

dS = (C + ncV)
dT
T

+
P
T

dV − δQ1

Tf
= 0 (9.24.17)

Integrando la seconda relazione otteniamo, tenendo conto che la pressione è costante

Q1 = Tf (C + ncV + nR) log
Tf

T0
(9.24.18)

e dalla prima
Q2 = (C + ncV + nR)

(
Tf − T0

)
(9.24.19)

da cui otteniamo il risultato finale

W =

(
Tf

T0
− 1
)

λM + (C + ncP)

[
Tf log

Tf

T0
−
(
Tf − T0

)]
(9.24.20)
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PROBLEMA 9.25

Cilindro con gas e molla non lineare ?? S

ℓ

Figura 9.19.: Il cilindro contenente il gas. Il setto mobile è collegato al fondo con una
molla non lineare.

Nel cilindro di sezione S in figura sono contenute n moli di un gas perfetto monoa-
tomico, e la molla che collega il setto mobile al fondo ha lunghezza a riposo nulla ed
esercita una forza di richiamo di modulo

F = k`α (9.25.1)

dove ` è l’allungamento. Inizialmente il sistema è all’equilibrio, ad una temperatura T0,
e all’esterno del cilindro c’è il vuoto.

Determinare la legge che lega la pressione del gas al suo volume.

1. Si fornisce al sistema una quantità di calore dQ. Determinare la capacità termica.

2. Calcolare il massimo lavoro che è possibile estrarre dal sistema avendo a disposi-
zione un bagno termico di temperatura TB < T0.

Soluzione6

Domanda 1

La pressione del gas deve equilibrare la forza che la molla applica al pistone, quindi

P =
F
S
=

k`α

S
=

k
S1+α

Vα . (9.25.2)

Domanda 2

Abbiamo

dQ = dU = ncVdT + k`αd` (9.25.3)

= ncVdT +
k

S1+α
VαdV (9.25.4)

6Primo problema compitino 28 maggio 2008
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d’altra parte

P =
nRT

V
=

k
S1+α

Vα (9.25.5)

cioè

V = S
(

nRT
k

)1/(1+α)

(9.25.6)

e

dV =
nRS

k(1 + α)

(
nRT

k

)−α/(1+α)

dT (9.25.7)

Sostituendo otteniamo

dQ = CdT =

[
ncV +

k
S1+α

Sα

(
nRT

k

)α/(1+α) nRS
k(1 + α)

(
nRT

k

)−α/(1+α)
]

dT (9.25.8)

quindi

C = ncV + n
R

(1 + α)
(9.25.9)

Domanda 3

Ponendo uguale a zero la variazione di entropia del sistema abbiamo

∆S =
Q2

TB
+ ncv log

TB

T0
+ nR log

(
TB

T0

)1/(1+α)

= 0 (9.25.10)

da cui

Q2 = nTB

(
cv +

R
1 + α

)
log

T0

TB
(9.25.11)

D’altra parte

Q1 = −
ˆ TB

T0

CdT = n
(

cV +
R

(1 + α)

)
(T0 − TB) (9.25.12)

e quindi

W = Q1 −Q2 = n
(

cV +
R

(1 + α)

) [
(T0 − TB)− TB log

T0

TB

]
(9.25.13)

PROBLEMA 9.26

Congelamento di una provetta ??

Una lunga provetta è riempita di un certo liquido di densità ρL e calore latente di fusione
λ noti. Si osserva che ad una certa temperatura T0 tutto il liquido al di sotto di una certa
altezza si è solidificato. Si abbassa adesso la temperatura, portandola a T1 = T0 − ∆T,
e si osserva che la superficie di separazione tra solido e liquido è salita di un tratto
`. Ignorando l’espansione termica dei materiali calcolare la densità ρS del solido in
funzione di ρL, λ, T0, ` e ∆T.
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Soluzione

`

ρS ρS

h1

h2

ρL

ρL

Figura 9.20.: La provetta prima (a sinistra) e dopo (a destra) l’abbassamento della
temperatura. La parte solida è rappresentata in grigio, quella liquida in
rosa.

La situazione prima e dopo l’abbassamento di temperatura è rappresentata in Figu-
ra 9.20. Scendendo lungo la provetta la pressione aumenta in accordo con la legge di
Stevino. La separazione tra fase liquida e fase solida sarà quindi ad una altezza corri-
spondente alla pressione Pf del punto di fusione ad una data temperatura. Indicando
con h(T) l’altezza della colonna di liquido per una generica temperatura T avremo

Pf (T) = ρLgh(T)

Prendendo la derivata rispetto alla temperatura ed utilizzando l’equazione di Clapeyron
abbiamo

dPf

dT
=

λ

T
(

ρ−1
L − ρ−1

S

) = ρLg
dh
dT

(9.26.1)

che si può integrare direttamente ottenendo

ρLg [h (T1)− h (T0)] =
λ(

ρ−1
L − ρ−1

S

) log
(

T1

T0

)

Per la conservazione della massa deve essere

ρLh (T0) = ρLh (T1) + ρS`

e sostituendo ρL∆h nell’equazione precedente otteniamo

ρS = ρL

[
1− λ

g`
log
(

T1

T0

)]

= ρL

[
1− λ

g`
log
(

1− ∆T
T0

)]
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PROBLEMA 9.27

Calori specifici di un gas di Van der Waals ? ? ?

Un gas di Van der Waals è descritto dall’equazione di stato
(

P +
n2a
V2

)
(V − nb) = nRT

Calcolare la differenza cP − cV tra il calore specifico molare a pressione costante e quello
a volume costante.

Soluzione

L’equazione di stato per il gas di Van der Waals è una relazione tra P, V e T che permette
di calcolare la derivata parziale di una rispetto all’altra, calcolata mantenendo la terza
costante. Dal primo principio della termodinamica abbiamo

dQ = dU + PdV

che dovremo valutare rispettivamente a volume e pressione costante. Il termine pdV non
pone particolari problemi, ma dobbiamo avere informazioni sull’energia interna. Per
ottenerle possiamo scegliere come variabili indipendenti T e V, e scrivere il differenziale
dell’entropia nella forma

dS =
dQ
T

=
1
T

(
∂U
∂T

)

V
dT +

[
1
T

(
∂U
∂V

)

T
+

P
T

]
dV

Imponendo che dS sia un differenziale esatto troviamo la relazione

∂

∂V

[
1
T

(
∂U
∂T

)

V

]
=

∂

∂T

[
1
T

(
∂U
∂V

)

T
+

P
T

]

e sviluppando otteniamo (
∂U
∂V

)

T
= T

∂P
∂T
− P (9.27.1)

Riscriviamo adesso l’equazione di stato nella forma

P =
nRT

V − nb
− n2a

V2 (9.27.2)

che permette di calcolare facilmente i termini da inserire al membro destro della (9.27.1):

(
∂U
∂V

)

T
= T

(
nR

V − nb

)
− nRT

V − nb
+

n2a
V2

=
n2a
V2
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Integrando in V troviamo che deve essere

U(T, V) = −n2a
V

+ f (T)

dove f (T) è una funzione arbitraria della sola temperatura. Troviamo subito che a
volume costante

dQ =

(
∂U
∂T

)

V
dT = ncVdT

mentre a pressione costante

dQ =

(
∂U
∂T

)

V
dT +

[(
∂U
∂V

)

T
+ P

]
dV

= ncVdT +

[
an2

V2 +
nRT

V − nb
− an2

V2

]
dV

= ncVdT +
nRT

V − nb

(
∂V
∂T

)

P
dT

e quindi

cP − cV =
RT

V − nb

(
∂V
∂T

)

P

Resta da calcolare la derivata parziale. Differenziando la (9.27.2) a pressione costante
troviamo

0 =
nR

V − nb
dT +

(
2n2a
V3 −

nRT

(V − nb)2

)
dV

che permette di ottenere

(
∂V
∂T

)

P
=

nR
V − nb

(
nRT

(V − nb)2 −
2n2a
V3

)−1

=
1
T

(
1

V − nb
− V − nb

nRT
2n2a
V3

)−1

=
RV3 (V − nb)

RTV3 − 2an(V − nb)2

da cui il risultato finale

cP − cV = R
1

1− 2an
RTV3 (V − nb)2

(9.27.3)
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PROBLEMA 9.28

Raffreddare un corpo, scaldarne un altro ?? S

Standardi di capacità termica costante C sono inizialmente ad una temperatura Ti, e
sono collegati mediante una macchina termica ciclica. Si vuole raffreddare il primo dei
due corpi ad una temperatura finale T1 < Ti, e si trova che per farlo è necessario fare un
lavoro W.

1. Supponendo di conoscere W calcolare la temperatura T2 del secondo corpo.

2. Supponendo che la macchina termica sia reversibile, calcolare W = WR.

3. Se in realtà il lavoro necessario è W = kWR, dove k è una costante data, calcolare
la variazione di entropia del sistema. Può accadere che k < 1?

Soluzione7

Domanda 1 Se Q1 è il calore estratto dal primo corpo, e Q2 quello fornito al secondo,
dal primo principio abbiamo

Q2 −Q1 = W

ma d’altra parte

Q2 = C (T2 − Ti)

Q1 = −C (T1 − Ti)

e quindi
W = C (T1 + T2 − 2Ti)

da cui

T2 =
W
C

+ 2Ti − T1 (9.28.1)

Domanda 2 Se la macchina è reversibile l’entropia del sistema non è cambiata. Que-
st’ultima si scrive come

dS = −dQ1

T1
+

dQ2

T2

ed integrando

∆S =

ˆ T1

Ti

CdT′

T′
+

ˆ T2

Ti

CdT′

T′

= C log
T1T2

T2
i

(9.28.2)

7Secondo esercizio scritto Fisica I del 10 settembre 2010.
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Quindi

T2 =
T2

i
T1

e

WR = CTi

(
T1

Ti
+

Ti

T1
− 2
)
≡ CTi

(
x +

1
x
− 2
)

(9.28.3)

con x = T1/Ti.

Domanda 3 Mettendo insieme l’Equazione (9.28.1) e l’Equazione (9.28.2) otteniamo

x
(

kWR

CTi
+ 2− x

)
= e∆S/C

ossia
(k− 1) (x− 1)2 = e∆S/C − 1

Dato che ∆S ≥ 0, segue che k ≥ 1. Infine

∆S = C log
[
1 + (k− 1) (x− 1)2

]

PROBLEMA 9.29

Recipiente a due scomparti ?? S

m

mg

n1, cv1

n2, cv2

Figura 9.21.: Il recipiente con due scomparti considerato nell’esercizio.

Il recipiente in Figura 9.21 di sezione S è diviso in due parti da due setti scorrevoli di
massa m. I due volumi sono occupati ciascuno da una mole di un gas perfetto monoa-
tomico. Il setto superiore è impermeabile al calore, ed il sistema si trova inizialmente
all’equilibrio (la pressione esterna è trascurabile) con entrambi i gas ad una temperatura
T0.

1. Determinare pressioni e volumi dei due gas nello stato iniziale.
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2. Adesso anche il setto intermedio diviene impermeabile al calore, e si agisce re-
versibilmente su quello superiore fino a raddoppiare la pressione del gas nello
scomparto superiore. Calcolare le nuove temperature dei due gas e dire di quanto
è variata l’entropia del sistema.

3. Si permette adesso il passaggio di calore attraverso il setto intermedio, mante-
nendo bloccato quello superiore. Determinare la temperatura finale, e dire se è
maggiore o minore di T0. C’è stata variazione di entropia?

Soluzione8

Problema 1

Imponendo l’equilibrio meccanico abbiamo

P10 =
2mg

S
P20 =

mg
S

e dalla legge dei gas perfetti otteniamo

V1 =
RT0

P10
=

RT0S
2mg

V2 =
RT0

P20
=

RT0S
mg

Problema 2

La trasformazione dei due gas è adiabatica, quindi l’entropia non cambia. Per quanto
riguarda le temperature abbiamo (cv = 3/2R, , γ = cp/cV = 5/3)

T1P
1−γ

γ

1 = T0P
1−γ

γ

10

T2P
1−γ

γ

2 = T0P
1−γ

γ

20

Sappiamo che P2 = 2mg/S e P1 = 3mg/S? quindi

T1 = T0

(
2
3

) 1−γ
γ

= T0

(
3
2

)2/5

' 1.18 T0

T2 = T0

(
1
2

) 1−γ
γ

= T022/5 ' 1.32 T0

8Secondo esercizio scritto Fisica 1 dell’8 febbrario 2012
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Problema 3

L’energia del sistema

E = cv (T1 + T2) + mg
V1

S
si conserva perchè durante l’evoluzione del sistema non ci sono forze esterne che fanno
lavoro su di esso. Inoltre il volume totale Vtot = V1 + V2 non cambia. Abbiamo quindi

2cvTf + mg
V1 f

S
= cvT0

(
2
3

) 1−γ
γ

+ cvT0

(
1
2

) 1−γ
γ

+
R
3

T0

(
2
3

) 1−γ
γ

= kRT0

dove per brevità abbiamo posto

kR = cv

(
2
3

) 1−γ
γ

+ cv

(
1
2

) 1−γ
γ

+
R
3

(
2
3

) 1−γ
γ

= R

[(
1

γ− 1
+

1
3

)(
2
3

) 1−γ
γ

+
1

γ− 1

(
1
2

) 1−γ
γ

]

' 4.13 R

Dall’equilibrio meccanico tra i due scomparti otteniamo

RTf

V1 f
=

RTf(
Vtot −V1 f

) + mg
S

da cui (
Vtot − 2V1 f

)
Tf =

mg
RS

V1 f
(
Vtot −V1 f

)

Sostituendo il volume ricavato dalla prima equazione

V1 f =
SR
mg

(
kT0 − 3Tf

)

otteniamo un’equazione di secondo grado in Tf

R
(

Vtot −
2S
mg

kRT0 +
4S
mg

cvTf

)
Tf =

(
kRT0 − 2cvTf

) (
Vtot −

S
mg

kRT0 + 2
S

mg
cvTf

)

Ricordando che

Vtot =
3
2

RT0S
mg

possiamo riscrivere quest’ultima come

30
(

Tf

T0

)2

− 4(4k− 3)
Tf

T0
+ k(2k− 3) = 0
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che ha le due soluzioni
Tf 1 = 0.6 T0, Tf 2 = 1.20 T0

Solo la seconda è però accettabile, dato che la prima corrisponde ad un volume

Vf 1 =
SR
mg

(
kT0 − 3Tf

)
' 2.3

RS
mg

T0

maggiore di quello totale a disposizione. Dato che la trasformazione del sistema è
irreversibile, ci aspettiamo un aumento di entropia.

PROBLEMA 9.30

Massimo riscaldamento e raffreddamento ??

Due corpi di identica capacità termica C, indipendente dalla temperatura, si trovano
inizialmente alle temperature T1 e T2 differenti da quella T0 dell’ambiente circostante,
che può essere considerato un bagno termico. Calcolare

◦ il massimo aumento di entropia possibile per l’universo

◦ la massima temperatura a cui è possibile portare uno dei due corpi a scelta

◦ la minima temperatura a cui è possibile portare uno dei due corpi a scelta

Soluzione

Indichiamo con Q0 il calore assorbito dall’ambiente e con Q1 e Q2 quelli assorbiti dai
due corpi in una trasformazione arbitraria. Dal primo principio segue che dovrà essere

Q0 + Q1 + Q2 = 0 (9.30.1)

La massima produzione di entropia si avrà con una trasformazione spontanea che por-
ta l’universo in uno stato di equilibrio complessivo, con tutti e tre i corpi alla stessa
temperatura T0 dell’ambiente. Per essa avremo

dS = dS0 + dS1 + dS2 =
dQ0

T0
+

dQ1

T1
+

dQ2

T2
(9.30.2)

e quindi

dS =
1
T0

(−dQ1 − dQ2) +
dQ1

T1
+

dQ2

T2
(9.30.3)

Dato che per ciascun corpo dQ = CdT questo si può anche scrivere nella forma

dS = − C
T0

(dT1 + dT2) + C
dT1

T1
+ C

dT2

T2
(9.30.4)
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ed integrando

∆S = C log
T2

0
T1T2

− C
T0

(2T0 − T1 − T2) (9.30.5)

Per determinare la massima e la minima temperatura a cui è possibile portare uno dei
due corpi consideriamo nuovamente la (9.30.4). Nella situazione finale uno dei due
corpi (supponiamo si tratti di quello ad una temperatura iniziale T2) sarà in equilibrio
con l’ambiente. Allora

∆S = − C
T0

(
T′1 − T1 + T0 − T2

)
+ C log

T′1
T1

+ C log
T0

T2
(9.30.6)

e quindi

log
T′1
T1
− T′1

T0
=

∆S
C
− log

T0

T2
+

(
1− T2 + T1

T0

)
(9.30.7)

che possiamo scrivere nella forma più simmetrica

log
T′1
T0
− T′1

T0
= 1 +

∆S
C
− log

T2
0

T1T2
− T2 + T1

T0
(9.30.8)

Figura 9.22.: La funzione f (x) = log x− x

La funzione f (x) = log x − x (vedere Figura (9.22)) ha un unico massimo in con
f (x) = −1. Inoltre

lim
x→+∞

f (x) = lim
x→0+

f (x) = −∞ (9.30.9)

Segue che sia il massimo che il minimo rapporto T′1/T0 si ha per ∆S = 0, cioè nel caso
di una trasformazione reversibile. Le relative temperature massime e minime saranno
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quindi le due soluzioni dell’equazione

log
T′1
T0
− T′1

T0
= 1− log

T2
0

T1T2
− T2 + T1

T0
(9.30.10)

Notare che la massima produzione di entropia determinata precedentemente corrispon-
de a T′1 = T0.

PROBLEMA 9.31

Lavoro estraibile da due corpi: studio grafico ??

Due corpi di capacità termica costante C si trovano inizialmente alle temperature T1 e
T2. Mediante una certa trasformazione termodinamica che non coinvolge altri sistemi
termodinamici le temperature vengono portate ai valori finali rispettivamente T1 f e T2 f .
Nel corso della trasformazione il sistema complessivo varia la sua entropia di ∆S e viene
estratto un lavoro utile W.

Rappresentare nel piano T1 f , il luogo dei punti accessibili per un fissato valore di ∆S.
Sempre sullo stesso diagramma rappresentare il luogo dei punti che corrispondono ad
un fissato valore di W. Discutere i casi particolari che corrispondono al massimo lavoro
estraibile ed a W = 0.

Soluzione

La variazione di entropia dei due corpi durante la trasformazione è data da

∆S1 = C log
T1 f

T1

∆S2 = C log
T2 f

T2

di conseguenza

∆S = C log
T1 f T2 f

T1T2

da cui troviamo l’equazione che determina il luogo dei punti accessibili nel piano T1 f ,
T2 f :

T1 f T2 f = T1T2e∆S/C

Si tratta di un’iperbole equilatera che passa per il punto corrispondente alla temperatura
iniziale nel caso ∆S = 0. Alcune iperboli sono rappresentate in Figura 9.23.

Per quanto riguarda i punti che corrispondono a un dato lavoro estratto W, detti Q1
e Q2 i calori ceduti ai due corpi durante la trasformazione, abbiamo

Q1 = C
(
T1 f − T1

)

Q2 = C
(
T2 f − T2

)
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e per la conservazione dell’energia deve essere W + Q1 + Q2 = 0 da cui troviamo

W = C
(
T1 + T2 − T1 f − T2 f

)

Si tratta quindi di una retta parallela alla bisettrice del secondo e quarto quadrante, che
intercetta l’asse T1 f = 0 in T2 f = T1 + T2 −W/C,

T2 f = −T1 f + T1 + T2 −
W
C

Alcune di queste rette sono pure indicate in Figura 9.23. Gli stati finali possibili devono
in ogni caso corrispondere a ∆S ≥ 0, che corrisponde alla regione gialla in figura.

Ad esempio quando W = 0 sono accessibili tutti i punti della retta blu tratteggiata
nella regione gialla. Se anche ∆S = 0 le temperature finali saranno quelle iniziali, oppure
scambiate tra di loro, invece la massima produzione di entropia corrisponde a

T1 f = T2 f =
T1 + T2

2

che è indicato in Figura 9.23 da un quadrato. Questo è ciò che si ottiene mettendo
direttamente i corpi in contatto tra di loro e attendendo l’equilibrio.

All’aumentare di W la retta si sposta verso il basso: il massimo valore W = WMAX
corrisponde alla retta tangente all’iperbole, cioè a

T1 f = T2 f =
√

T1T2

e
WMAX = C

(
T1 + T2 − 2

√
T1T2

)
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T2f

T1f

∆S > 0

∆S = 0

W = WMAX
W = 0

(T1, T2)

T1f = T2f = T1+T2
2

(T2, T1)

Figura 9.23.: Il piano corrispondente alle temperature finali T1 f , T2 f dei due corpi. Si è
scelto T1 = 400 e T2 = 100. L’iperbole rossa unita corrisponde alle tem-
perature finali accessibili in una trasformazione reversibile (∆S = 0). Per
una trasformazione qualsiasi ∆S ≥ 0 e le temperature finali accessibili si
trovano nella regione in giallo. Le rette blu corrispondono alle temperature
finali accessibili per un dato lavoro estratto W.
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9.32. ADIABATICA DI UN ELASTICO ??

PROBLEMA 9.32

Adiabatica di un elastico ??

Un elastico può essere descritto a livello macroscopico dalla sua energia interna U,
dalla lunghezza `, dalla temperatura T e dalla tensione τ. Supporremo che sia possibile
scrivere l’energia interna nella forma

U = k`T (9.32.1)

e che valga
τ = γT

(
`− `

)
(9.32.2)

dove k, ` e γ sono costanti positive opportunamente dimensionate. Determinare la
forma di una trasformazione adiabatica reversibile (per ` > `) e rappresentarla nei
piani τ − `, T − ` e T − S.

Soluzione

Dalla primo principio della termodinamica abbiamo che

dQ = dU + dL

Nel caso in questione il lavoro fatto dall’elastico si scrive

dL = −τd`

dato che la forza applicata dall’elastico ad un suo estremo vale τ in modulo (per ` > `)
ed è diretta in verso opposto allo spostamento. Quindi

dQ = k`dT − γT
(
`− `

)
d`

da cui troviamo il differenziale dell’entropia

dS =
dQ
T

= k`
dT
T
− γ

(
`− `

)
d`

Questa espressione si può immediatamente integrare, ottenendo

S = k` log T − γ

2

(
`− `

)2
+ C

dove C è una costante di integrazione. Ma in un’adiabatica reversibile l’entropia resta co-
stante, per cui la trasformazione nel piano T− S si rappresenta come una retta verticale.
Inoltre deve essere

T = T exp

[
γ`

2k

(
`

`
− 1
)2
]

(9.32.3)
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T/T

`/`

Figura 9.24.: La dipendenza della temperatura dalla lunghezza dell’elastico, per una tra-
sformazione adiabatica reversibile (Eq. (9.32.3)). La temperatura è misurata
in unità T, e la lunghezza dell’elastico in unità della lunghezza a riposo
`. Si è scelto γ`/(2k) = 1 per la curva continua e γ`/(2k) = 2 per quella
tratteggiata.

dove T è una costante arbitraria che si può interpretare come temperatura dell’elastico
alla lunghezza di riposo. Questa è la legge che lega T a ` rappresentata in Figura (9.24).

Scegliendo di misurare la temperatura in unità T e la lunghezza in unità ` la curva
è completamente caratterizzata dal parametro adimensionale Π = γ`/(2k). Come si
vede l’elastico allungato si riscalda, tanto più rapidamente quanto più Π è grande.

Veniamo alla dipendenza della tensione dall’allungamento. Usando l’Equazione (9.32.2)
si può anche scrivere

τ = 2kT
γ`

2k

(
`

`
− 1
)

exp

[
γ`

2k

(
`

`
− 1
)2
]

che è rappresentata nel piano τ − ` in Figura 9.25
Anche in questo caso se misuriamo la tensione in unità 2kT e la lunghezza in unità ` la

curva è completamente caratterizzata dal parametro Π. L’area sotto la curva cambiata di
segno rappresenta il lavoro fatto dall’elastico durante la trasformazione, in unità 2kT`.
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τ/(2kT )

`/`

Figura 9.25.: La dipendenza della tensione dalla lunghezza dell’elastico, per una tra-
sformazione adiabatica reversibile (Eq. (9.32.3)). La tensione è misurata in
unità 2kT, e la lunghezza dell’elastico in unità della lunghezza a riposo `.
Si è scelto γ`/(2k) = 1 per la curva continua e γ`/(2k) = 2 per quella
tratteggiata.

PROBLEMA 9.33

Stati accessibili ??

Due corpi hanno la stessa capacità termica C dipendente linearmente dalla temperatura,
C = bT, e si trovano inizialmente alla stessa temperatura T0,. Si dispone inoltre di
un bagno termico di temperatura TB. Si possono eseguire sul sistema trasformazioni
termodinamiche arbitrarie, reversibili o irreversibili, facendo anche uso di macchine
termiche. Gli scambi di calore devono però avvenire solo tra le tre parti (i due corpi e il
bagno termico). Inoltre non si dispone inizialmente di lavoro utile da impiegare, anche
se è possibile volendo estrarlo dal sistema, conservarlo e/o impiegarlo nuovamente.

Determinare nel piano T1-T2 la regione accessibile per il sistema partendo dallo stato
iniziale. Localizzare in tale regione

◦ lo stato iniziale

◦ lo stato di massima entropia
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◦ lo stato di massima e minima temperatura per uno dei due corpi, scelto arbitraria-
mente.

Soluzione

T1

T2T2 = TB

T1 = TB

B1 = (TB, TMAX)

R =
√
2|TB − T0|

O = (TB, TB)

A = (T0, T0)

C1 = (TB, TMIN)

C2 = (TMIN , TB) B2 = (TMAX , TB)

Figura 9.26.: L’insieme degli stati accessibili nel piano T1-T2. Si tratta di una circonferen-
za con centro nello stato accessibile di massima entropia T1 = T2 = TB e
raggio R =

√
2 |TB − T0|.

Indichiamo con Q1, Q2 e QB il calore ceduto rispettivamente ai due corpi e al bagno
termico durante le trasformazioni. Dal primo principio abbiamo

Q1 + Q2 + QB + W = 0

dove W è il lavoro utile prodotto. Inoltre

Q1 =

ˆ T1

T0

kTdT = b
(

T2
1

2
− T2

0
2

)

Q2 =

ˆ T2

T0

kTdT = b
(

T2
2

2
− T2

0
2

)
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L’entropia prodotta sarà

∆S =
QB

TB
+

ˆ
dQ1

T1
+

ˆ
dQ2

T2

=
QB

TB
+

ˆ T1

T0

bTdT
T

+

ˆ T2

T0

bTdT
T

=
QB

TB
+ b (T1 + T2 − 2T0)

e quindi

∆S = − 1
TB

(W + Q1 + Q2) + b (T1 + T2 − 2T0)

ossia
b (T1 + T2 − 2T0)−

b
2TB

(
T2

1 + T2
2 − 2T2

0
)
= ∆S +

W
TB

Affinchè lo stato sia accessibile dovrà essere ∆S ≥ 0 (per non violare il secondo principio
della termodinamica) e W ≥ 0 (non abbiamo a disposizione lavoro utile da fare sul
sistema). La regione accessibile sarà dunque

2TB (T1 + T2 − 2T0)−
(
T2

1 + T2
2 − 2T2

0
)
≥ 0

che possiamo riscrivere nella forma

(T1 − TB)
2 + (T2 − TB)

2 ≤ 2 (TB − T0)
2

Si tratta quindi della circonferenza con centro in (T1, T2) = (TB, TB) e raggio
√

2 |TB − T0|
rappresentata in Figura 9.26.

Nello stato iniziale abbiamo T1 = T2 = T0, si tratta quindi del punto indicato con A.
Nello stato di massima entropia T1 = T2 = TB: si tratta quindi del centro O della

circonferenza.
Lo stato di massima temperatura per uno dei due corpi corrisponde a B1 (T1 = TMAX

e T2 = TB) oppure a B2 (T1 = TB e T2 = TMAX) a seconda del corpo scelto. In entrambi i
casi

TMAX = TB +
√

2 |TB − T0|
Analogamente lo stato di minima temperatura per uno dei due corpi corrisponde a C1
(T1 = TMIN e T2 = TB) oppure a B2 (T1 = TB e T2 = TMIN), con

TMIN = TB −
√

2 |TB − T0|

PROBLEMA 9.34

Riscaldamento massimo di un corpo ??

Un corpo ha una capacità termica C e si trova inizialmente ad una temperatura T0,. Si
dispone inoltre di un bagno termico di temperatura TB. Si possono eseguire sul sistema
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trasformazioni termodinamiche arbitrarie, reversibili o irreversibili, facendo anche uso
di macchine termiche. Gli scambi di calore devono però avvenire solo tra le due parti
(i due corpi e il bagno termico). Inoltre non si dispone inizialmente di lavoro utile da
impiegare, anche se è possibile volendo estrarlo dal sistema, conservarlo e/o impiegarlo
nuovamente.

Determinare la massima temperatura raggiungibile dal corpo, discutendo i casi T0 <
Tb e T0 > Tb.

Soluzione

Prima di eseguire calcoli dettagliati consideriamo qualitativamente la situazione. Sup-
poniamo che inizialmente T0 > Tb. Chiaramente non sarà possibile riscaldare ulterior-
mente il corpo, dato che se questo fosse possibile allora esisterebbe una trasformazione
termodinamica capace unicamente di trasferire calore da un corpo più freddo ad uno
più caldo. Se T0 < Tb potremmo anzitutto pensare di mettere in contatto bagno termico
e corpo, portando quest’ultimo alla temperatura Tb. In realtà è possibile fare meglio:
inizialmente si può trasferire reversibilmente del calore dal bagno al corpo, ottenendo
del lavoro utile. Avremo a questo punto portato nuovamente il corpo a Tb, e potremo uti-
lizzare il lavoro ottenuto per spostare ulteriormente calore dal bagno al corpo ottenendo
una temperatura finale Tf > Tb. Veniamo adesso ad una analisi dettagliata.

Durante le trasformazioni verrà ceduto complessivamente un calore Qc al corpo, e Qb
al bagno termico. Al termine disporremo eventualmente di un lavoro estratto W. Dal
primo principio abbiamo

Qc + Qb + W = 0 (9.34.1)

Inoltre possiamo scrivere

Qc =

ˆ Tf

T0

CdT = C
(
Tf − T0

)
(9.34.2)

L’aumento di entropia del sistema sarà dato da

∆S =

ˆ
dQc

T
+

ˆ
dQb

Tb

dove il primo termine rappresenta la variazione di entropia del corpo e il secondo quella
del bagno termico. Da dQc = CdT otteniamo

∆S =

ˆ Tf

T0

C
T

dT +
Qb

Tb

= C log
Tf

T0
+

Qb

Tb

e di conseguenza

Qb = Tb∆S− CTb log
Tf

T0
(9.34.3)
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Sostituendo la (9.34.2) e la (9.34.3) nella (9.34.1) otteniamo

Tf

Tb
− log

Tf

Tb
=

T0

Tb
− log

T0

Tb
− W

CTb
− ∆S

C

che possiamo riscrivere nella forma

F
(

Tf

Tb

)
= F

(
T0

Tb

)
− W

CTb
− ∆S

C
(9.34.4)

con F(x) = x− log x. Ci interessano i valori di Tf che verificano l’espressione precedente.
F(x) ha un unico minimo in x = 1, cioè per Tf = Tb (vedere Figura 9.27). Al variare
della costante al secondo membro avremo quindi due soluzioni oppure nessuna. Se le
soluzioni esistono, la maggiore tra le due crescerà al crescere del valore del membro
destro. Quindi la temperatura maggiore si otterrà per W = 0 e ∆S = 0. In questo caso
l’equazione diviene

Tf

Tb
− log

Tf

Tb
=

T0

Tb
− log

T0

Tb

ed una soluzione è chiaramente Tf = T0.

Tf = Tb Tf = TmaxTf = Tmin Tf/Tb

Figura 9.27.: La funzione F(Tf /Tb) (in blu) confrontata con un possibile valore della
costante F(T0/Tb) −W/(CTb) − ∆S/C a secondo membro nell’Equazio-
ne (9.34.4) (in rosso). Come discusso nel testo, la funzione ha un minimo
per Tf = Tb. Se la costante è abbastanza grande si hanno due intersezioni,
che corrispondono alle possibili temperature massime e minime finali del
corpo.

Possiamo concludere che se T0 < Tb la seconda soluzione corrisponderà ad un valore
Tf > Tb, e quindi in questo caso è possibile portare la temperatura del corpo ad un
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valore maggiore di quello del bagno termico. Se invece T0 > Tb la seconda soluzione
darà Tf < Tb < T0. In questo caso non sarà possibile aumentare la temperatura del
corpo. Entrambe le possibilità confermano la discussione qualitativa iniziale.
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PROBLEMA 9.35

Dummy

628 versione del 5 ottobre 2016


	I Basi
	1 Analisi dimensionale
	1.1 Periodo di un pendolo *
	1.2 Studio sperimentale del periodo del pendolo *
	1.3 Pendolo sulla luna *
	1.4 Caduta da una calotta semisferica *

	2 Vettori
	2.1 Triplo prodotto vettoriale *
	2.2 Matrice di rotazione ***
	2.3 Il prodotto vettoriale come operatore *


	II Meccanica
	3 Cinematica
	3.1 Profondità di un pozzo **
	3.2 Lunghezza di una traiettoria **
	3.3 Raggiungere un oggetto che accelera **
	3.4 Moto periodico in un piano a velocità nota **
	3.5 Vertici di un poligono ***
	3.6 Farfalle kamikaze ***
	3.7 Raggiungere una boa ***
	3.8 Preda e predatore **
	3.9 Otto volante **
	3.10 Moto nel piano: accerazione e velocità noti in modulo. ** S
	3.11 Una traiettoria in coordinate polari * S
	3.12 Caduta di una moneta ** S
	3.13 Lancette dell'orologio *
	3.14 Il problema dello spazzaneve **
	3.15 Rotolamento puro e traiettorie **
	3.16 Salto in lungo **
	3.17 Moto accelerato nel piano s-v *
	3.18 Moto circolare uniforme in coordinate polari ``fuori centro'' *

	4 Statica
	4.1 Pila di mattoni
	4.2 Equilibrio ed energia potenziale **
	4.3 Asta vincolata ad una circonferenza **
	4.4 Catenaria **

	5 Dinamica punto materiale
	5.1 Doppio piano inclinato *
	5.2 Moto su una spirale **
	5.3 Moto viscoso **
	5.4 Un problema inverso *
	5.5 Moto periodico **
	5.6 Attraversamento di una buca **
	5.7 Moto su una guida con attrito *
	5.8 Moto su un anello con attrito **
	5.9 Oscillatore con attrito **
	5.10 Asta incernierata **
	5.11 Disco rotante **
	5.12 Oscillatore armonico forzato **
	5.13 Oscillazioni isocrone ***
	5.14 Catena che cade **
	5.15 Carrucola **
	5.16 Carrucola II **
	5.17 Carrucola III **
	5.18 Oscillatore e forza F=t **
	5.19 Oscillatore e forza F=t2 **
	5.20 Doppio piano inclinato con attrito *
	5.21 Carrucola e pedana mobile **
	5.22 Catena chiusa di masse **
	5.23 Caduta quasi libera *
	5.24 Pedana mobile **
	5.25 Urto massa-pedana **
	5.26 Filo che si avvolge **
	5.27 Molle in serie e in parallelo *
	5.28 Oscillatore con massa appoggiata **
	5.29 Carrucola e moto relativo **
	5.30 Urto tra una massa e un sistema composto **
	5.31 Urto anelastico con sistema composito **
	5.32 Massima compressione **
	5.33 Sbarra vincolata **
	5.34 Urto multiplo **
	5.35 Moto su una guida parabolica **
	5.36 Oscillatore forzato con attrito ***
	5.37 Caduta da un dirupo **
	5.38 Diffusione da una buca **
	5.39 Molla e attrito *
	5.40 Carrucola con attrito ***
	5.41 Oscillatori accoppiati ***
	5.42 Oscillatore **
	5.43 Molla con massa non trascurabile. Analisi approssimata. ***
	5.44 Oscillazione in una guida parabolica **
	5.45 Oscillazioni di un manubrio **
	5.46 Moto libero in coordinate generali **
	5.47 Lancio di un proiettile da una pedana mobile **
	5.48 Giro della morte su guida mobile **
	5.49 Sistema oscillante **
	5.50 Pendolo in regime di alta energia ***
	5.51 Pendolo doppio ***
	5.52 Urto non istantaneo tra una massa e un sistema composto ***
	5.53 Molle multiple **
	5.54 Orbite circolari su un cono *
	5.55 Catena di oscillatori ***
	5.56 Pendolo mobile **
	5.57 Pendolo sospeso ***
	5.58 Superare una pedana *
	5.59 Urti e attrito ***
	5.60 Campo di forze I *
	5.61 Campo di forze II *
	5.62 Campo di forze III **
	5.63 Moto in un campo centrale I **
	5.64 Moto in un campo centrale II **
	5.65 Periodo del pendolo ***
	5.66 Oscillazioni forzate ***
	5.67 Slitta verticale **
	5.68 Pendolo sferico **
	5.69 Pendolo sferico piccolo momento angolare **
	5.70 Pendolo sferico grande momento angolare **
	5.71 Cambiamento parametri orbita **
	5.72 Precessione di un'orbita ***
	5.73 Uscire da una bottiglia **
	5.74 Moto su un toro ***
	5.75 Pendolo nello spazio delle fasi **
	5.76 Moto su una guida ellittica **
	5.77 Macchina di Atwood: effetti della massa del filo ***
	5.78 Pendolo invertito **
	5.79 Urto con un piano inclinato **
	5.80 Urto di un manubrio **
	5.81 Il grande attrattore ***
	5.82 Razzo in un campo gravitazionale costante **
	5.83 Razzo vincolato **
	5.84 Razzo a più stadi **
	5.85 Forze di marea **
	5.86 Massima forza di marea ***
	5.87 Pendolo non ideale **
	5.88 Moto di una scodella **
	5.89 Urto contro una sfera ***
	5.90 Perturbazione di un oscillatore armonico ***
	5.91 Pendolo modificato ***
	5.92 Accelerazione massima su disco rotante **
	5.93 Caduta in un fossato **
	5.94 Piccole oscillazioni I **
	5.95 Materia oscura **
	5.96 Urti istantanei e attrito **
	5.97 Attrito e paradossi ***
	5.98 Moto in un campo centrale III ***
	5.99 Orbita nel sistema rotante **
	5.100 Il problema di Keplero **
	5.101 Oscillatore forzato e transiente **
	5.102 Piccole perturbazioni di un'orbita circolare ***
	5.103 Oscillatore bidimensionale forzato **
	5.104 Caduta su una scodella **
	5.105 Problema di Keplero: costanti del moto ***
	5.106 Sistema solare su un cono **
	5.107 Pendolo urtato da un proiettile **
	5.108 Moto su superficie di rotazione **
	5.109 Cambio di orbita **
	5.110 Formica su un giradischi **
	5.111 Urto con una massa vincolata elasticamente **
	5.112 Urto tra una particella e un pendolo **
	5.113 Caduta di una struttura **
	5.114 Un pendolo su un blocco mobile **
	5.115 Urto con un cuneo mobile **
	5.116 Doppia cerniera mobile **
	5.117 Massa su guida circolare e molla **
	5.118 Modello di urto non istantaneo **
	5.119 Carrucola su cuneo **
	5.120 Massa su guida circolare e molla II **
	5.121 Orbita di un satellite **
	5.122 Nibiru ** S
	5.123 Un pendolo in un ascensore ** S
	5.124 Urto contro un corpo composito ** S
	5.125 Un problema inverso in campo centrale ** S
	5.126 Cilindro spinto in discesa ***
	5.127 Masse e molla: identificare un errore **
	5.128 Proiettile con attrito viscoso: traiettoria **
	5.129 Carrello con massa scorrevole **
	5.130 Carrello triangolare **
	5.131 Sistema a tre corpi: energia nel sistema del centro di massa *
	5.132 Nastro trasportatore **
	5.133 Propulsione a reazione ``istantanea'' **
	5.134 Perdita di energia di un oscillatore **
	5.135 Energia di un oscillatore forzato a regime **
	5.136 Risposta alla risonanza e fattore di qualità **
	5.137 Forzante periodica per t>0 **
	5.138 Fermare un oscillatore**
	5.139 Molla con massa distribuita I **
	5.140 Molla con massa distribuita II **
	5.141 Molla con massa distribuita III ****
	5.142 Molecola triangolare ***
	5.143 Pendolo inclinato **
	5.144 Orbita circolare perturbata **
	5.145 Pallina in caduta su guida circolare **
	5.146 Moto circolare in un sistema rotante **
	5.147 Manubrio in orbita ***
	5.148 Manubrio in orbita: piccole perturbazioni **
	5.149 Moto su un cono in presenza di gravità ***
	5.150 Manubrio in orbita: piccole perturbazioni II **
	5.151 Monopolo I ***
	5.152 Monopolo II **
	5.153 Isocrona di Bernoulli **
	5.154 Oscillazioni in un potenziale**
	5.155 Sezione d'urto di diffusione da una buca di potenziale sferica**
	5.156 Lavatrice viaggiatrice **

	6 Dinamica del corpo rigido
	6.1 Tensore di inerzia di un cubo I *
	6.2 Tensore di inerzia di un cubo II **
	6.3 Tensore di inerzia e rotazioni ***
	6.4 Tensore di inerzia e traslazioni ***
	6.5 Teorema di Steiner **
	6.6 Cilindro su un piano inclinato*
	6.7 Carrucola **
	6.8 JoJo **
	6.9 Campo di velocità di un corpo rigido **
	6.10 Tensore di inerzia di un parallelepipedo **
	6.11 Tensore di inerzia di una lamina rettangolare **
	6.12 Tensore di inerzia di una lamina **
	6.13 Disuguaglianze tra elementi del tensore di inerzia **
	6.14 Tensore di inerzia di una distribuzione lineare di massa **
	6.15 Cilindro lanciato su un piano **
	6.16 Sbarra su rulli rotanti **
	6.17 Tensore di inerzia di una sfera **
	6.18 Energia di un sistema di corpi rigidi **
	6.19 Cilindro su piano inclinato **
	6.20 Sistema di carrucole e corpi rigidi **
	6.21 Sistema di carrucole **
	6.22 Contatto tra corpi rigidi **
	6.23 Momento di inerzia e proiezioni I **
	6.24 Momento di inerzia e proiezioni II **
	6.25 Tensore di inerzia corpo composto **
	6.26 Trottola simmetrica ***
	6.27 Scontro tra cubetti di ghiaccio **
	6.28 Moto su una sbarra rotante **
	6.29 Piccole oscillazioni di metà cilindro ***
	6.30 Piccole oscillazioni metà cilindro, niente attrito **
	6.31 Centro di massa metà cilindro **
	6.32 Giro della morte per una sfera **
	6.33 Campo di velocità di una moneta ***
	6.34 Trottola ``bloccata'' nel piano **
	6.35 Trottola simmetrica: discussione delle soluzioni ***
	6.36 Caduta di un manubrio **
	6.37 Scambio di momento angolare **
	6.38 Rotolamento puro di un cono **
	6.39 Un carrello in discesa **
	6.40 Oscillazioni forzate di un'asta **
	6.41 Distacco di una bacchetta rotante **
	6.42 Un altro giro della morte **
	6.43 Sbarra in guida circolare, vincolo bilatero **
	6.44 Urto con un'asta sul fondo di una scodella **
	6.45 Oscillatore con carrucole e corpi rigidi **
	6.46 Ancora sulla caduta di un manubrio **
	6.47 Caduta di due aste incernierate **
	6.48 Pendolo fisico con contrappeso **
	6.49 Un carretto in discesa **
	6.50 Caduta di una torre ***
	6.51 Cilindro vincolato ad una molla ** S
	6.52 Urto tra un triangolo e un quadrato **
	6.53 Cilindro vincolato ad una molla sul bordo **
	6.54 Centro di massa e momento di inerzia di un triangolo **
	6.55 Urto con una sbarra incastrata **
	6.56 Urto anelastico contro un pendolo fisico **
	6.57 Tre cilindri in equilibrio **
	6.58 Sistema di punti materiali equivalenti ad una sfera ***
	6.59 Tiro al piattello **
	6.60 Cilindro in caduta su un piano inclinato **
	6.61 Distacco da una calotta sferica **
	6.62 Piccole oscillazioni di un cilindro parabolico ***
	6.63 Caduta di una ruota esagonale lungo un pendio ***
	6.64 Urto tra una massa e un sistema con cilindro rotante **
	6.65 Urto di un settore cilindrico **
	6.66 Energia persa e rotolamento puro **
	6.67 Urto tra un cilindro e un parallelepipedo **
	6.68 Matita che scivola lungo un piano inclinato **
	6.69 Piccole oscillazioni di anelli ***

	7 Dinamica dei fluidi
	7.1 Ventosa **
	7.2 Secchio rotante **
	7.3 Tubo piegato **
	7.4 Equilibrio di un cilindro immerso in un liquido ***
	7.5 Campo di velocità I **
	7.6 Recipiente conico forato **
	7.7 Svuotamento di un serbatoio **
	7.8 Traslocare un acquario **
	7.9 Diavoletto di Cartesio **
	7.10 Estrazione di una provetta **
	7.11 Estrazione di una provetta, considerazioni energetiche. **
	7.12 Tempo di svuotamento di un contenitore *
	7.13 La misura di Compton della velocità di rotazione terrestre***


	III Termodinamica
	8 Trasmissione del calore
	8.1 Sfera radiante **
	8.2 Sbarra conducibilità variabile **
	8.3 Tre corpi in contatto termico **
	8.4 Sbarra conduttrice **
	8.5 Equazione del calore unidimensionale **
	8.6 Fluttuazione di temperatura su una sbarra **
	8.7 Una soluzione particolare dell'equazione del calore unidimensionale ***
	8.8 Temperatura a regime di una sbarra radioattiva **
	8.9 Resistenza termica di una scala (semi)infinita **
	8.10 Temperatura di un conduttura

	9 Trasformazioni termodinamiche
	9.1 Contatto termico tra due corpi
	9.2 Sciogliere del ghiaccio
	9.3 Adiabaticità e velocità di una trasformazione ***
	9.4 Rendimento di un ciclo di Carnot *
	9.5 Ciclo di Carnot con gas di fotoni **
	9.6 Ciclo Brayton *
	9.7 Ciclo Diesel *
	9.8 Ciclo Ericsson *
	9.9 Ciclo Otto *
	9.10 Ciclo Stirling *
	9.11 Differenziale esatto ***
	9.12 Calore specifico gas perfetto **
	9.13 Trasformazione ciclica irreversibile **
	9.14 Sistema termodinamico a tre corpi ***
	9.15 Lavoro da un termos di caffè **
	9.16 Lavoro da un termos di caffè II **
	9.17 Lavoro da un termos di caffè III **
	9.18 Lavoro estraibile da un sistema chiuso **
	9.19 Massima potenza di un ciclo di Carnot ***
	9.20 Trasferimento di calore tra un corpo e un bagno termico ** S
	9.21 Tre modi per sciogliere una massa di ghiaccio ** S
	9.22 Trasformazione termodinamica con attrito ** S
	9.23 Effetto della capacità termica di un recipiente * S
	9.24 Acqua e ghiaccio a pressione costante ** S
	9.25 Cilindro con gas e molla non lineare ** S
	9.26 Congelamento di una provetta **
	9.27 Calori specifici di un gas di Van der Waals ***
	9.28 Raffreddare un corpo, scaldarne un altro ** S
	9.29 Recipiente a due scomparti ** S
	9.30 Massimo riscaldamento e raffreddamento **
	9.31 Lavoro estraibile da due corpi: studio grafico **
	9.32 Adiabatica di un elastico **
	9.33 Stati accessibili **
	9.34 Riscaldamento massimo di un corpo **
	9.35 Dummy



