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Broad definitions

The strain measures the change in shape of a small material element. Ratio of lengths,
e.g. before and after the deformation, is used. Hence strains are nondimensional
guantities.

The strain rate is the strain achieved per unit time, and is particularly important in fluid
materials. Dimension is inverse time, typically s~1. The strain rate is related to the velocity
gradient of the flow.

The stress is related to the force per unit area that a small material element exerts by
contact on its surroundings. A simple example is the pressure in a stagnant liquid, where
such a force is the same in all directions (isotropy). More complex is the situation arising
when the material is deformed, and the stress becomes anisotropic. Typical unit is Pa
(Pascal = Newton/m?).




Typical deformations

Shear deformation

d
. h I. Shear strain =y = d/h

Elongational deformation

- L —

Hencky strain = € = In(L/L,)

We are particularly interested in volume-preserving deformations
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If we deform in an arbitrary way a small volume of material, we may consider
the relationship between vector r, connecting any two material points P and Q
before, and vector r linking the same material points after, the deformation.

P/l"'0 P/r'Q

Because of the smallness of the material element, the relationship between r, and
r is linear. A general linear relationship between vectors is described by a tensor.

We write:
r==Ee-r, (1)

where E is the deformation tensor, fully describing how the undeformed element
(to the left in the figure) changes its shape (to the right). It is important to note
that linearity arises from the smallness of the element, not of the deformation.
Arbitrarily large deformations can be considered, as are often encountered in
rubber and rubber-like materials.




Let us use a Cartesian coordinate system. If X, y,, z, are coordinates of a
material point of the body before deformation, and x, y, z those of the
same point after deformation, the three following functions:

X(Xo1yoizo)’ y(XO;yO,ZO); Z(Xoiymzo)
fully describe body deformation.

At any point in the body, we may consider the 9 partial derivatives of
those functions, that we organize in the following matrix 3 x 3:

ox/0x, 0x/dy, 0x/oz,
|Ell=loy/ox, oy /oy, oy/oz, 2)
0z/ox, 0z/dy, 0z/0z,

This is the matrix of tensor E defined in (1), also called “deformation
gradient”.

The determinant of the matrix in (2) gives the volume ratio due to
deformation. Hence, if volume preserving deformations are considered,
the determinant must be unity.




Example 1: shear deformation

' X

e This deformation is described by the following (linear) functions:

[
»

X=Xo+7 Yo
Y=Yo 3)
Z=1,

generating the matrix:
1 » O
El=jo 1 o
0 0 1

(4)

e Notice that the determinant is unity.
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Example 2: Uniaxial elongation

e Linear functions for this deformation are:

X=A4X,
y= 3’0/‘/Z
L= Zo/‘/z
where the stretch ratio A is larger than unity. The deformation matrix is:
A 0 0
E|=|o W7 o ©
0 0 142

e Also here the determinant is unity.
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e All elongational deformations are described by a symmetric tensor E. Then, by a
suitable choice of Cartesian coordinates, the matrix of E has the canonical form:

A, 0 0
IE[=[0 2 o (6)
0 0 4

where A, A,A; = 1 for volume preservation. Hence, some of the A’s will be larger, and
others smaller, than unity.

e If two of the A’s are equal, the deformation is called uniaxial, like the uniaxial stretch of

the previous example. Similarly, one can have a uniaxial compression. In both cases,
there is an axis of symmetry.

e If one A is unity, the deformation is called planar, since in one direction there is no
deformation.

e In the general case, the deformation is called biaxial, because one has to assign the
values of A in two directions, the third being determined by volume conservation.




In terms of Cartesian components, Eqg. (1) defining tensor E can be interpreted as
follows. Imagine that the 3 components of vector r, are written as a column matrix:

rOX

Irol=rey

r

0z

Multiplication row by column of the matrix in Eq. (2) times the matrix of vector r
then gives the matrix of vector r.

If vector r, is taken from the origin, and hence its components coincide with the
coordinates X,, Y,, z, of the vector tip, one can readily verify that multiplication row
by column of, for example, the shear deformation matrix of Eq. (4) times the matrix
of r, indeed gives the components of vector r as reported in Eq. (3).

For future reference, it is worth noting that linear operators on vectors (i.e. tensors)
can be combined to operate in series, i.e. one after the other. For example, two
consecutive deformations E; and E, combine in the single deformation E given by

where the matrix multiplication of E, to E; is rows by columns.




Eqg. (1) defining tensor E also includes particular “deformations” which are in
fact rigid rotations of the element.

However, we can easily recognize a tensor representing a rigid rotation.

Indeed, suppose tensor R is a rigid rotation. We then consider its transpose
RT. (The transpose of a tensor has a matrix where rows and columns have
been interchanged.)

Next we calculate the product R * RT. If, and only if, R is orthogonal, then
such a product generates the unit tensor. Tensors representing rigid
rotations are orthogonal.

For example, let us consider tensor R
representing a rigid rotation by an angle
¢ around the z axis. Its matrix is: 0 0 1

cose —sing O
IR|=[sing  cosp O

cose sing O
HRTH: —sing cosp O
0 0 1

The matrix of the transpose is:

One can readily verify that multiplying these two matrices rows by columns
gives the unit matrix.




Generally deformations include both deformations proper, called pure
deformations, and rigid rotations.

Tensors representing pure deformations are symmetric, i.e. E = ET for
them.

Elongational deformations previously encountered are pure deformations,
and it is immediately verified that the matrix of E is indeed symmetric.

Conversely, for a shear deformation E is not symmetric, which implies that
the deformation is not “pure”, and also incorporates a rotation.

The fact that, generally, deformations also include rotations is unfortunate
because we expect that the stress arising in materials is due to pure
deformations, not to rigid rotations. In other words, we cannot expect to
link the stress to tensor E as such, because E generally contains a rotation
as well.

Fortunately, there exists a theorem stating that any tensor E can be split
in a single way into the product of a symmetric positive-definite tensor
(called U) to an orthogonal one R, i.e.:

E=U°"R (7)




The meaning of Eq. (7) is illustrated, for example, by a shear deformation E

~L

which can be split into a rigid rotation R followed by a pure deformation U:

&DLD

e As said previously, the pure deformation U is a symmetric positive-definite
tensor, positive-definite meaning that all 3 principal values (or eigen-
values) of the tensor are positive numbers (here, the 3 principal stretch
ratios).




As said before, we want to link stress to pure deformation. Hence we need
to eliminate the rigid rotation R from tensor E.

A simple way to obtain such a result is to operate the product:
B=E°ET (8)

Indeed, in view of Eqg. (7), and since the transpose of a product is made
by transposing the factors in reverse order, we obtain:

B=(U*R)*(U°R)T=U*R*RT*UT=U"UT=U"U = U2

In this calculation we have used the property that an orthogonal tensor R
times its transpose gives the unit tensor (disappearing from the product).
We have also used the symmetry of the pure deformation tensor U,
whereby the product with the transpose is equivalent to taking the square.

Quadratic measures of the deformation are named after Cauchy, Green
and Finger. We call B the Finger tensor.




e By way of example, let us calculate tensor B for a shear deformation.

e The matrix of the deformation tensor E is given by Eq. (4), hence in view of
Eqg. (8) the matrix of B is obtained as:

1 ¥ 0[]/l 0 O] [1+y* y O
IB[=|0 1 of|y 1 Ol=|» 1 O ©)
0 0 1/j0 0 1/ |0 0 1

e Notice that B (differently from E) is symmetric, as it should, since it
represents a pure deformation. Obviously, the determinant of B remains
unity.

e Finger tensor B appears very frequently in modeling the rheology of
polymeric systems.




We now move on from strain to strain rate, a quantity which is particularly
useful in flowing systems.

A flow process is just a continuous deformation. Hence the examples of
possible deformations previously considered (shear, uniaxial elongation, etc.)
are readily transformed into the corresponding flows.

Flows are usually represented by velocity fields. Thus, for example, a simple
shear flow between parallel plates is depicted as:

y

X —

»
»

The 3 components of the velocity vector v are in this case:
v, = (V/h)y v, =Vv,= 0
where V is the speed of the moving plate, and h the gap size.
The ratio V/h is the shear rate, usually indicated with the symbol 7/
because it is in fact the time derivative of the shear strain y.




Since the velocity is a vector, the velocity gradient at any point of a velocity
field is the tensor L, the 9 Cartesian components of which are (3 by 3) the
derivatives of v,, v,, v,, with respect to x, y, z.

For example, for the simple shear flow just considered, since the only nonzero
derivative is ov,/ov,, the matrix of L is:

0 7 0
IL=lo o o (10)
0O 0 O

As for all tensors, also L can be seen as a linear operator transforming vectors
into vectors. Specifically, the velocity gradient at a point P associates to the
vector r reaching from P to a neighboring point Q the velocity difference v,-v;
at Q and P, respectively:

Vo—Vp=Ler (11)

The physical dimensions of L are those of inverse time.




e The velocity gradient tensor is generally non-symmetric, as can be seen in
the example of Eq. (10). This is due to the fact that, during flow, a fluid
element is, in the general case, simultaneously strained and rotated.

e We need to distinguish between the rates at which these two effects
occur, which is accomplished by splitting L into the following sum:

L = (L+L")/2 + (L-LT)/2
e Here, the first term is symmetric, representing the strain rate tensor D:

D =(L+L"/2 (12)
e The second term is anti-symmetric, giving the rotation rate or vorticity
tensor W.:
W = (L-LT)/2 (13)

(Anti-symmetry means that WT = - W.)
e In conclusion we write:
L =D + W (14)
having split the velocity gradient into a strain rate and a vorticity.

e For a shear flow, both the strain rate and the vorticity matrices contain the
shear rate divided by 2.




Elongational flows are characterized by the fact that the vorticity is zero.
Hence the velocity gradient L coincides in this case with the strain rate D,
and is a symmetric tensor.

If a tensor is symmetric, it is always possible to orient the Cartesian
coordinates in such a way that the matrix of the tensor is diagonal, meaning
that all non-diagonal terms of the matrix are zero. The coordinate axes then
coincide with the principal directions (or eigen-directions) of the tensor.

The velocity gradient for a general elongational flow can then be written as:

ov,/ox 0 0 & 0 0
L=l 0 av,Joy 0 |=l0 & O (15)
0 0 ov,/oz |0 0 &

The 3 terms on the diagonal are the principal strain rates. Their sum must
be zero for volume conservation (also called “incompressibility”). The sum
of the diagonal elements is called the trace of the tensor, indicated as trL.

As shown in the next example, the principal strain rates are the time
derivatives of the corresponding Hencky strains.




e Let us consider a uniaxial stretching flow in the x direction. Velocity field is:

y )Y V, = £X
X Vx V 8
— |— V,=—=y
y 2
1 é
VZ :—EZ

« The stretch rate in the x direction, called £ , can be related to the velocity V at
the end of the element, and to the element length L, as V/L. Hence:

g_!_idL_dlnL_dIn(L/LO)_dg
L Ldt dt dt dt

showing that a principal strain rate is the time derivative of the corresponding
Hencky strain (previously defined, see the second slide).
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e Because their sum must be zero, some of the principal strain rates are
positive and others negative.

e The case of one positive and two negative ones (equal to one another)
corresponds to filament stretching, like in fiber spinning. In the previous
slide we have called this case uniaxial elongational flow.

e The case of two positive ones (and one negative of course) is encountered
in film blowing, where the film extends in the machine direction as well as
transversally. It is called biaxial elongational flow.

e Finally, we might have that one principal stretch rate is zero, and the
other two are then opposite in sign and equal in magnitude. This case is
encountered in film casting, where because the film adheres to the chill
roll the width of the cast film is essentially fixed, so that the plastic film is
extended only in the machine direction, correspondingly reducing its
thickness. This case is called planar elongational flow.

e One may have noted the similarity with the discussion following Eq. (6).
Indeed there exists a general relationship between the velocity gradient L
and the deformation tensor E, which is considered next.




Let us imagine that, starting from some initial configuration at time t=0,
we deform a material element progressively in time. We can describe such
a process through the tensor function E(t) which, at any time t, relates the
current configuration of the element to the initial one, used as reference.

On the other hand, a continuous deformation is equivalent to a flow, and
hence we can equally well describe the same process through the velocity
gradient L(t), itself a function of time in the general case.

The relationship between the two descriptions can be obtained as follows.
We start from Eq. (1), stating that E transforms vector r, connecting two
material points (P and Q, say) in the reference configuration to vector r
connecting the same points in the current configuration:

r(t) = E(t) o1, (16)
Time differentiating this equation, since dr/dt = v, — v, we get:
Vo — Vp =dE/dter,
In the current configuration, the velocity difference obeys Eq. (11). Hence:
Lor:dE/dtoro
We now use again Eq. (16) to replace r by E « r, finally obtaining:
L « E = dE/dt or, equivalently, L =dE/dt « E-1 (17)



The force per unit area exerted by a material element on the surroundings

(or the other way around) generally depends on how the contact surface is
oriented.

Let us characterize the contact surface by both its extent (the area A) and its
orientation (the unit vector n normal to the surface). The vector An then fully
describes the contact surface.

Indicating with f the force exchanged through the surface An, the
relationship between these vectors is (provided the element is sufficiently
small) a linear one. Hence:

f=TeAnNn
where T is the stress tensor (dimensions of force/square length).
To complete the definition we need to specify that, choosing to orient n, say,
outwards from the element, then f is taken to be the force exerted by the
surroundings upon the element. With such a choice, tractions come out as

positive stresses while compressions are negative, which is the convention
usually adopted in rheology. (Fluid dynamics uses the opposite one.)




The Cartesian components of T are obtained as follows. We take the small material
element to be a cube with edges parallel to the coordinate axes. Then we consider the
3 force vectors acting on the three faces of the cube normal to x, y, z, and divide them
by the face area. For each of these forces per unit area, we consider the 3
components. The total of 9 stresses thus obtained is then organized in the matrix:

Ya T
Txx Txy sz _‘f/;rxy
HTH - TYX TW TYZ TyX Txx
sz sz Tzz X

v

As shown in the figure, the second index in each stress refers to the face of the cube,
the first to the specific component on that face. However, the order of the indices is
not important in most cases because, with the rare exception of materials with internal

torques, torque balance imposes that T; = T;;, I.e., the stress tensor is symmetric.

Stresses with equal indices (along the matrix main diagonal) are normal stresses.
Those with different indices are called tangential or shear stresses.




In a stagnant fluid, the stress tensor is isotropic, i.e., all shear stresses are zero,
and all normal stresses are the same:

-p 0 0 1 0 0
[T|=|0 —p O|=—p|0 1 O (18)
0 0-p |0 0 1

The minus sign in front of the pressure p is due to the sign convention. In tensor
form, the above equation is written as:

T=-pl (18"
where 1 is the unity (or identity) tensor.
Of course, the static pressure p has nothing to do with rheology.

Due to flow or deformation, T becomes anisotropic, and normal stresses generally
become different. In view of incompressibility, rheology only determines such
normal stress differences (like T,,—T,,, say). The absolute level of the normal

stresses is not determined locally, i.e., by the rheology of the element. Rather, it
ultimately depends on conditions at the boundary of the whole body of matter.




Because of the symmetry of a shear flow or deformation, the matrix of the
stress tensor reduces to

T Ty O
IT[=T, T, O (19)
0 0 T,

where it is understood that the x-axis is along the shear direction, and the
y-axis is normal to the shearing surfaces.

The relevant stresses in shear are therefore only 3; precisely:

c = T, = T, = shear stress
N, = T,— Ty, = first (or primary) normal stress difference
N, = T,,—T,, = second normal stress difference

Symmetry also requires that o is an odd function of the shear strain or of
the shear rate, while N, and N, are even functions.

In a steady shear flow, the ratio of ¢ to the shear rate is the viscosity 7.
The ratio of N, or N, to the square of the shear rate is called first or second
normal stress coefficient, vy, or y,.




e We have seen previously that in elongation both the deformation tensor E
and the velocity gradient L are symmetric tensors, and hence by a suitable
choice of coordinates (along the principal directions of those tensors) their
matrices can be made diagonal.

e For symmetry reasons, the stress tensor T will have the same principal
directions as E or L. With that coordinate system, the matrix of T then is:

T, 0 O
|T[=(0 T, 0 (20)
0O 0 T,
e Hence, relevant stresses in elongation are (at most) 2, namely:
N, = T— T,y = first normal stress difference
N, = T,,—T,, = second normal stress difference

e In the uniaxial case, symmetry further reduces the stress state to a single
nonzero normal stress difference.

e In uniaxial elongational flow, the ratio of that normal stress difference to the
stretching rate is called Trouton viscosity.




Constitutive equations of interest to rheology somehow link the stress
tensor T to strain and/or strain rate.

Because of the incompressibility constraint, it is understood that normal
stresses are determined only as differences. In other words, T is obtained
from the constitutive equation only to within an arbitrary isotropic tensor
(i.e., one like that in Eq. 17).

For an amorphous elastic solid, T must be a function only of a pure
deformation tensor, like the Finger tensor B, measured from the stress-
free equilibrium state used as reference.

For the ideal rubber, it can be shown that such a function reduces to a
simple proportionality: T = G B. The factor G is called shear modulus.
Indeed, from Egs. (9) and (19) one finds for the shear stress the simple
proportionality c = G y. Yet the same equations also give N, = G y? (which
has important consequences at large deformations), and N, = 0. Actual
rubber does not depart too much from these predictions.

For a viscous liquid, T must be a function only of the strain rate tensor D.
For many liquids (called Newtonian), this function simply is T = 2nD. For
Newtonian liquids, the Trouton viscosity is 3 times the shear viscosity .

The viscoelastic materials will be considered starting from the 2nd lecture.




