Testing

Fondamenti teorici

Ingegneria del Software 2 Testing — Teoria e definizioni

Riferimenti

e Tan Sommerville, Ingegneria del Software,
capitoli 22-23-24 (piu dettagliato sui processi)

e Pressman, Principi di Ingegneria del Software, 5°
edizione, Capitoli 15-16

e Ghezzi, Jazazeri, Mandrioli, Ingegneria del

Software, 2° edizione, Capitolo 6 (piu dettagliato
sulle tecniche)

Ingegneria del Software 2 Testing — Teoria e definizioni

IEEE definitions for testing

IEEE Std.729-1983

e (2) The process of analyzing a software item to detect the
differences between existing and required conditions (that is,
bugs) and to evaluate the features of the software item.

e See also: acceptance testing; benchmark; checkout; component
testing; development testing; dynamic analysis; formal testing;
functional testinE; informal testing; integration testing; interface
testing; loopback testing; mutation testing; operational testing;
performance testing; qualification testing; regression testing;
stress testing; structural testing; system testing; unit testing.

Standard IEEE 610.12-1990 :

e (1) The process of operating a system or component under
specified conditions, observing or recording the results, and
making an evaluation of some aspect of the system or component.

IEEE definitions for testing

Standard IEEE 829-2008:

The testing process provides objective evidence that the
software-based system and its associated products:

a) Satisfy the allocated system requirements

b) Solve the right problem (e.g., correctly model physical laws,
implement business rules, and use the proper system
assumptions)

c) Satisfy its intended use and user needs

testing: (A) An activity in which a system or component is
executed under specified conditions, the results are observed
or recorded, and an evaluation is made of some aspect of
the system or component.
(B) To conduct an activity as in (A).

IEEE definitions for testing

IEEE 29119 - 2013 (only partially released)

Testing: set of activities conducted to facilitate discovery
and/or evaluation of properties of one or more test items.

Testing activities include planning, preparation, execution,
reporting, and management activities, insofar as they are
directed towards testing.

test item: work product that is an object of testing

EXAMPLES: A system, a software item, a requirements
document, a design specification, a user guide.

Verifica e Validazione del Software

o |attivita di Verifica e Validazione (V & V) punta
a mostrare che il software e conforme alle sue
specifiche (Verifica) e soddisfa le aspettative del

cliente (Validazione).
— Verifica: Are we making the product right?

— Validazione: Are we making the right product?

e Due approcci complementari alla verifica:
— Approccio sperimentale (test, o analisi dinamica,
del prodotto)

— Approccio analitico (analisi statica del prodotto e
della sua documentazione, verifica formale)

Ingegneria del Software 2 Testing — Teoria e definizioni

Definizioni

e Errore (umano)

— incomprensione umana nel tentativo di comprendere o risolvere
un problema, o nell’'uso di strumenti

e Difetto (fault o bug)

— Manifestazione nel software di un errore umano, e causa del
fallimento del sistema nell’'eseguire la funzione richiesta

e Malfunzionamento (failure)
— incapacita del software di comportarsi secondo le aspettative o
le specifiche

— un malfunzionamento ha una natura dinamica: accade in un
certo istante di tempo e puo essere osservato solo mediante

esecuzione

Ingegneria del Software 2 Testing — Teoria e definizioni

Un esempio

ERRORE di editing/digitazione

ERRORE
siamo convinti che il raddoppio si calcoli
come X*X

DIFETTO
13 .34 Invece di “+”
MALFUNZIONAMENTO

=> || valore visualizzato e errato

Possibile MALFUNZIONAMENTO in
esecuzione...

(puo verificarsi o meno: dipende
dall’input)

Ingegneria del Software 2

Testing — Teoria e definizioni

errore

Relazione fra Errore, Difetto e

causa

Malfunzionamento

*

Difetto

causa

1..*%

*

|
Malfunzionamen

Ingegneria del Software 2

Testing — Teoria e definizioni

10

T L

94 it

ot Gakom M {/-1—7vo 7.037 gyy oL5
/000 “ sw‘?} "aau‘om / G.087 ¥YC 795 b
137w, (032 HMP ~-me mlrﬁﬁﬂ 70/5725055(-)
@3y PRO > 2. 130yr0YyiS
Comedk 2.03067¢w8

RIS -2 =~ 033 oid Heotb ‘tr‘- "
im S MM Tm ‘T»J)
1/ .>T¢l"+'—<l CO.Sthe : la (Slv\c "-J\eck)
IS 25 Loisted hxu Tw ‘Actjet‘ TES*

Rek(’w\#ﬁo ?c\ n e.‘ I

\Mo’ﬁb in (2 \Qu\

cals.c:w{7 buc‘ chim‘ {ounok-

nrsT actua
réF /o0 an shands].

(Quo

Ingegneria del Software 2 Testing — Teoria e definizioni

Test dei Difetti

e Ha lo scopo di scoprire i difetti di un
programma.

e Approccio usato: scoprire la presenza di difetti
osservando i malfunzionamenti!

e Un test dei difetti Aa successo se porta il
programma a comportarsi in maniera scorretta
(cioe esibisce malfunzionamenti)

e]| testing puo dimostrare la presenza dei difetti.

— Potra dimostrare anche la loro assenza?

Ingegneria del Software 2 Testing — Teoria e definizioni

12

e S—
| "HOW cAN T "HOW CAN I
MAKE (T »" BREAK [T "

5

J ‘
3 ’\\\W"_))
N
X -

They weren't so much different, but they had different goals

Ingegnena del sotware 2 Tasting — Teoria e definizioni

Ulteriori Definizioni

e Test case: caso di prova di un software

— Corrispondente all’esecuzione del software con
una combinazione d dei propri valori in
INgresso

e Test suite: insieme di casi di prova di un
software

Ingegneria del Software 2 Testing — Teoria e definizioni

14

Storia del testing

e Tracce di testing nella preistoria della IS
— con la prima linea di codice €' nato anche il testing ...

— 1
e Neg
fonc

orimi articoli sul testing risalgono al 1949
i anni 70 i primi seri tentativi di fornire dei

amenti teorici ed approcci sistematici

— il sogno del testing esaustivo ...

Le relative impraticabili definizioni ad esempio:

— |'obiettivo del testing e' quello di dimostrare la correttezza dei
programmi

— un test perfetto si ha quando il programma non contiene errori

— Goodenhough and Gerhard "Toward a theory of test data
selection"” IEEE TSE SE-1(2) pp.156-173, 1975

Ingegneria del Software 2 Testing — Teoria e definizioni 15

Storia del testing

e Gli anni 80 eliminano i sogni, consolidano un patrimonio di
riferimento; i risultati acquisiti aprono ad una visione: il testing
come processo complesso dai costi estremamente elevati.

e il testing e’ il processo di esecuzione di un programma con
l'obiettivo di trovare gli errori

— Un test che non rivela errori e’ un test fallito

e |a progettazione, pianificazione ed implementazione del processo
di testing inizia con i primi passi di un qualsiasi processo di
produzione, manutenzione, evoluzione del software

Ingegneria del Software 2 Testing — Teoria e definizioni 16

Storia del testing

e Anni 90

— il testing €' I'analisi e I'esecuzione sotto condizioni controllate dei vari

componenti di un progetto software con l'obiettivo di mettere in
evidenza difetti di qualita

— Tra le molte sfide :
« come abbattere i costi di test (40-60% del costo totale di produzione)
« come approcciare il testing di sistemi object oriented
« come risolvere il testing in manutenzione ed evoluzione
« come aumentare i livelli di automazione dei processi di testing

 Rilevante esigenza di approcci ingegneristici, quantitativi, di
esperimenti controllati di feedback da esperienze ed appllca2|on| in
ambienti reali: tutto cio costituisce anche il presupposto per nuovi
significativi avanzamenti nella composizione del puzzle teorico e

modellistico del testing.

Ingegneria del Software 2 Testing — Teoria e definizioni 17

Fondamenti teorici del testing

Consideriamo un programma P come una
funzione da un insieme di dati D (dominio) in un
insieme di dati R (codominio).

— Il risultato P(d) ottenuto eseguendo P sul dato di
ingresso d, con deD, € corretto se soddisfa le
specifiche, non corretto se diverso dal risultato
previsto dalle specifiche.

e La correttezza di un programma P rispetto ad un
ingresso d e indicata con ok(P,d)

Un programma €& corretto ok(P) < V d €D, ok(P,d)

Ingegneria del Software 2 Testing — Teoria e definizioni 18

Adeguatezza dei test

e Scopo dell'attivita di testing € la rilevazione di malfunzionamenti.

e Una test suite T rileva un malfunzionamento se il programma P
non e corretto per almeno un test case di T.

— T ha successo per un programma P se rileva uno o piu
malfunzionamenti presenti in P,

— viceversa e /nadeguata una test suite T per la quale
esistano dei malfunzionamenti in P che nessun test
case e in grado di rilevare

e Una test suite T e detta /deale se I'assenza di malfunzionamenti
rilevati implica I'assenza di malfunzionamenti

— Cioe se ok(P,)= ok (P)

- Ovvero, se qualsiasi test ulteriore non potra scoprire
malfunzionamenti che non siano stati gia scopertida T

Ingegneria del Software 2 Testing — Teoria e definizioni 19

Problemi indecidibili

e]| settore del testing e' tormentato da problemi
indecidibili
— un problema e' detto indecidibile (irrisolvibile) se €'

possibile dimostrare che non esistono algoritmi che lo
risolvono

* Problema della terminazione della macchina di turing,
teorema della esistenza di funzioni non calcolabili, ...

Stabilire se I'esecuzione di un programma
termina a fronte di un input arbitrario €' un
problema indecidibile

Ingegneria del Software 2 Testing — Teoria e definizioni 20

Altri problemi indecidibili

e Braierd Landerweber 1974

— dati due programmi, il problema di stabilire se essi
calcolano la stessa funzione €' indecidibile

e Enormi conseguenze per il testing:

— dato un programma e supposto noto e disponibile
I'archetipo idealmente corretto di tale programma non
possiamo comunqgue dimostrare I'equivalenza dei due

— Non esiste un algoritmo in grado di stabilire se due
generici cammini del grafo di flusso di controllo di un
programma calcolino la stessa funzione o0 meno (teorema
di equivalenza dei cammini)

Ingegneria del Software 2 Testing — Teoria e definizioni

21

e Dato un generico programma P i seguenti
problemi risultano indecidibili:

Teorema di Weyuker

Esiste almeno un dato di ingresso che causa
|"'esecuzione di un particolare comando?

Esiste un particolare dato di ingresso che causa
I'esecuzione di una particolare condizione (branch)?

Esiste un dato di ingresso che causa l'esecuzione di
un particolare cammino?

E’ possibile trovare almeno un dato di ingresso che
causi I'esecuzione di ogni comando di P?

E’ possibile trovare almeno un dato di ingresso che
causi I'esecuzione di ogni condizione (branch) di P?

E’ possibile trovare almeno un dato di ingresso che
causi I'esecuzione di ogni cammino di P?

Ingegneria del Software 2 Testing — Teoria e definizioni 22

Tesi di Dijkstra

e Tesi di Dijkstra

— Il testing non puo dimostrare I'assenza
di difetti, ma solo la loro presenza

e Non vi e garanzia che se alla n-esima prova un
modulo od un sistema abbia risposto correttamente
(ovvero non sono stati ||3|u riscontrati difetti),
altrettanto possa fare alla (n+1)-esima

e Impossibilita di produrre tutte le possibili
configurazioni di valori di input (test case) in
corrispondenza di tutti i possibili stati interni di un
sistema software

Ingegneria del Software 2 Testing — Teoria e definizioni 23

e "We did about 10,000 tests on it, and it
was working fine until Monday."
- Anonymous - Spokesperson for /-11 after YZ2K-
related failure of their credit card processing on
2001-01-01

Ingegneria del Software 2 Testing — Teoria e definizioni 24

Problemi e Limitazioni

e La correttezza di un programma e un problema
indecidibile!

Problemi:

— non vi e garanzia che se alla n-esima prova un modulo od un
sistema abbia risposto correttamente (ovvero non sono stati
piu riscontrati difetti), altrettanto possa fare alla (n+1)-esima

— Impossibilita di produrre tutte le possibili configurazioni di
valori di input (test case) in corrispondenza di tutti i possibili
stati interni di un sistema software

Ingegneria del Software 2 Testing — Teoria e definizioni 25

Assenza delle proprieta di continuita

e In molti campi dell'ingegneria, il testing € semplificato
dall’esistenza di proprieta di continuita

— Se un ponte resiste ad un carico di 1000 tonnellate, allora
resistera anche a carichi piu leggeri

e Nel campo del software si ha a che fare con sistemi discreti,
per i quali piccole variazioni nei valori d'ingresso possono
portare a risultati scorretti

— Il testing esaustivo (ideale) e condizione necessaria per
poter valutare la correttezza di un programma a partire dal
testing

Ingegneria del Software 2 Testing — Teoria e definizioni

26

Exhaustive testing

e Exhaustive testing consists consists of the execution of all the
possible behaviours of a software system
o If exhaustive testing does not show any failure, the program is correct

e Is it always possible to generate and execute the exhaustive
test suite?

e If the program has no branches and have no inputs, then the
exhaustive test suite exists and is composed of a single test case

e |tis possible to test exhaustively the «Hello, World» program

e What if the program has branches and the program execution depends
on input values?

e What if the program has loops?

Ingegneria del Software 2 27

Dependency on input values

char x;

cin>>x;

In how many ways can be executed this code?

X is a char (with 256 possible values), so the code can be executed in 256
different ways but ...

the >> operator allows the insertion of unlimited input sequences:

abcdeO
giunonooiiouuoiounoinoinoinonoiioio0
‘string causing buffer overflow’

0

Ingegneria del Software 2

28

What if the program

By excluding the loop, the program can be
executed following 5 different paths.

By considering the loop, the program can be
executed following an unlimited number of
paths

By limiting the execution to n loops, the
program can be executed in 5*n ways

The problem of the execution of the exhaustive
test suite needs an exponential time!

T

has branches and loops?

repeat

BO
if R1 then
1f R2 then
if R3 then
El
else
B2
endif
if R4 then
B3
else
B4
endif
else
BS
endif
endif
until R6

Ingegneria del Software 2

29

Amenita sul Testing

da "The Zen of Programming” - Geaffrey James

Thus spoke the master: "Any program, no matter how small, contains bugs”

The novice did not believe the master s words. “"What if the program were so small
that it performed a single function?” he asked.

“Such a program would have no meaning, " said the master, "but if such a one
existed, the operating svstem would fail eventually, producing a bug”.

But the novice was not satisfied. " What if the operating system did not fail?” he
asked.

“There is no operating system that does not fail, " said the master, “but if such a one
existed, the hardware would fail eventually, producing a bug”.

The novice still was not satisfied " What if the hardware did not fail? " he asked.
The master gave a great sigh. " There is no hardware that does not fail,” said the
master, "but if such a one existed, the user would want to do something different,
and this too is a bug.”

A program without bugs would be an absurdity, a nonesuch. If there were a program
without any bugs then the world would cease to exist.

Ingegneria del Software 2 Testing — Teoria e definizioni 32

Testing quality requirements

1. Accuracy

2. Repeatability

3. Fault Localization Ability
4. Effectiveness

5. Efficiency

Ingegneria del Software 2 Testing — Teoria e definizioni 33 33

Testing quality requirements: accuracy

« The success of the execution of a
test case should be evaluated in an
objective way

« In order to design a test case, the
Oracle has to know exactly what
is the expected behavior of the
system under test in response to
the test case

« The Oracle knows the expected
behavior of the software system
for each test case

« The Comparator is able to
compare the oracle expected
behavior and the tested software
behavior and to evaluate if a
failure has occurred

Test cases

Software
to test

Oracle

Compar
ator

Test result

Ingegneria del Software 2

34

Who is the Oracle?

e Human oracle

— He evaluates the success of the test cases on the
basis of the requirements and of his personal
judgement

— For example, in acceptance testing

— Software oracle

— An Oracle is another software having the same behavior of the software to be
tested

— For example, a known version of bubblesort can be used to test a faster quicksort

— A previous version of a software can be the oracle to evaluate the behavior of a
newer software offering the same functionality (regression testing)

— Implicit oracle
— Testing against crashes, the oracle found a failure in each case a crash occurs
— Formal specification oracle

— If the requirements are expressed in a formal way, then the oracle can be
automatically derived from them

Ingegneria del Software 2 35

What is the role of the comparator?

If the oracle provides exact expected values for the output, the comparator has
to evaluate a simple bit comparison

If the oracle is expressed in terms of a set of valid values, the comparator has to
evaluate if the obtained result belongs to this set
e For example, the expected behavior can be expressed as «a positive number», then the comparator
has to evaluate a «greater than» condition
If the oracle is expressed in terms that are not exactly represented by the
computer, then the comparator has to perform an approximate evaluation

o If the expected behavior is the number PI, then the comparator has to compare the difference
between the obtained result and an approximate representation of PI

o If the expected behavior is an image of Naples, the comparator has to compare the output image
with a base of Naples images in order to argue if the image is sufficiently similar to a Naples image

Ingegneria del Software 2 36

Testing quality requirements: accuracy

Testing should be accurate

e The success of the execution of a test case should be evaluated in
an objective way

e Executions involving real numbers may produce an
approximate result

e The set of variables that have to be evaluated could be very
large

e For example, the output of a test could be an image that
have to be interpreted

e The output of the test could be subject to human judgement

e The functional requirements could be expressed in an
ambiguous way

Ingegneria del Software 2

Testing quality requirements: repeatability

o Test cases should be repeatable
e Any experiment must be reproducible under controlled conditions

— Are we always able to control any part of the execution environment?
— We could use a virtual machine to have a controlled environment

— Are we always able to restore the state of the execution environment to
its conditions before the execution of the tests?

— We could save and restore a snapshot of a virtual machine before and after each
test execution

— Does the program execution depend on random values?
— We could use pseudo-random generators and set a seed before starting each test

— Does the program execution depend on races?

— We could force specific sequence of execution by using time and synchronization
functions

Ingegneria del Software 2

Testing quality requirements: fault localization

e Testing should help in fault localization
e To reduce the effort of the following debugging activities

« Many simple test cases are better than few complex test case
in fault localization

« A complex test case has a greater probability to fail due to
more than one fault

Ingegneria del Software 2

Testing Quality Requirements: effectiveness

e The (main) objective of the testing activities is to find the
largest number of faults
e A test suite T1 is more effective than another test suite T2 if it is
able to find more different faults

e But it is not implied that if T1 has more test cases founding faults, it will
find more different faults

e And it is not implied that if T1 finds more failures, it will find more
(different) faults

e An obvious strategy to increase effectiveness is to execute more and
more lest cases ...

Ingegneria del Software 2 40

Testing quality requirements: efficiency

e Any testing activity has an associated effort
o Effort can be expressed in terms of the cost of the execution of the
test suite

o Testing effort can depend on:
e Number of test cases;
e Total complexity of the test cases (e.g. number of executed statements)
e Time needed to execute the test cases

e Cost of the resources (human and machines) needed to execute the
test cases

e A test suite T1 is more efficient than another test suite T2
if it is able to find the same number of different failures
with less effort

Ingegneria del Software 2

41

Effectiveness vs Efficiency

e The basic strategy of increasing the test suite size may
increase the effectiveness but probably reduces the
efficiency

e Usually, effectiveness and efficiency are two opposite
factors:

o If there are important time or cost constraints, efficiency is considered more important
than effectiveness

o In critical systems, effectiveness is more important than efficiency

e In general, the maximization of effectiveness and efficiency is a multi-objective
problem

o Often, test suites manually designed by an expert tester are more
effective and efficient than test suites automatically generated by a
testing tool ...

e But the total effort related to test suite generation and execution may be larger

Ingegneria del Software 2 42

Effectiveness and efficiency measures

o Effectiveness can be measured as:
Number of different faults found / Number of existing faults

o Efficiency can be measured as:

Number of test cases founding faults / Number of executed
test cases

e ... but the Number of existing faults is generally unknown

e ... and the number of executed test cases is not a measure of the
effort related to their execution

e ... and test cases founding all the same fault should not contribute
positively to efficiency

Ingegneria del Software 2

43

Effectiveness and efficiency measures

The proposed measures are not very useful for an absolute evaluation but can be
considered for relative measures

Given two test suites T1 and T2, two possible measures of effectiveness and
efficiency

Relative Effectiveness (T1, T2) = Number of different faults found by T1 / Number of
different faults found by T2

Relative Efficiency (T1, T2) = Number of test cases of T1 founding faults / Number of test
cases of T2 founding faults

Ingegneria del Software 2 44

Approximate measures: code coverage

e The «exact» measures of effectiveness and efficiency depend on the real
presence of faults. If a software has no residual bugs, the effectivess and
efficiency of each test suite are always zero

e But we do not know if there are any bugs, so we cannot avoid testing

e We need approximate measures of effectiveness and efficiency useful in cases there
few or no bugs

e An approximate measure of effectiveness is code coverage:

¢ CovLOC=Number of LOCs covered by at least a test case / Total
number of LOCs

e CovMethod=Number of methods called by at least a test case / Total
number of methods

e CovClass= Number of classes used by at least a test case /Total
number of classes

Ingegneria del Software 2 45

Code coverage ratio

e If a LOC contains a fault and no tests execute it, then the fault SURELY
will not be found

e If a LOC contains a fault and some tests execute it, then it is POSSIBLE
that the fault will cause a failure

e In general, more the quantity of code that we execute, more the «hope»
to found faults

e If two test suites T1 and T2 will found the same number of faults
(possibly 0 faults), and T1 cover more LOCs than T2, we could have a
better confidence in test suite T1

Ingegneria del Software 2 46

Code coverage problems and limitations

e The higher granularity of code coverage is related to executable code,
but the translation of source code in executable code depends also on
the compiler behavior

e For example, the statement:
if (a>b && x>y && f(&x)==5)
is translated with a complex set of executable statements.

e Some compilers translate the expression from left to right, some others from right to
left. Some compilers go to the else branch just when one of the condition is false,
some others evaluate always all the conditions

e The evaluation of code coverage at the level of source code is usually approximated by
considering fractional values of LOC coverage.

e The total amount of LOCs is generally available for compiled code ...
e ... butitis surely not available for interpreted code
e ... what about languages such as Javascript (in particular, AJAX)?

e ... what about languages such as Java that dynamically transform bytecode in
executable code depending on the target machine?

Ingegneria del Software 2 47

Problema della generazione di codice a run-time

e In molti linguaggi € possibile generare codice a tempo di esecuzione

e una pagina server pud generare codice lato client (anche Javascript eseguibile) diverso
in seguito ad ogni diversa esecuzione

e Una shell «esegue» esattamente cio che gli viene immesso come input (che sia un
eseguibile o uno script batch)

e Llistruzione eval (o evaluate) disponibile in molti linguaggi di programmazione
(specialmente in quelli interpretati) consente di eseguire codice «arbitrario» formato a

tempo di esecuzione

e In questi casi non € possibile definire il quantitativo esatto di codice
eseguibile da coprire!

Ingegneria del Software 2 Testing — Teoria e definizioni 48

48

Test case specification

e Minimal set of information able to describe a test case specfication
— ID Number and Description

— Preconditions
» Hypotheses that must be veriified before the test is executed

— Input values
— Expected output values (the «Oracle»)

— Expected Postconditions
« Hypotheses that must be verified after the test is executed

ID Precond Input | Expected | PostCond
Output

Ingegneria del Software 2

Test case execution report

e In addition to the information needed for test case
specification:

e Qutput values

e Result

* Success if preconditions and postconditions are true and output
values are judged equivalent to expected output values

- Failure if preconditions and postconditions are true but output
values are not judged equivalent to expected output values

* Not applicable (N/A) if al least a precondition or a postcondition
IS not true

ID Precond Input | Expected | Output PostCond Result
Output

Ingegneria del Software 2 57

Input and Output

e Input and output can be described as attribue-value
pairs ...

e ...0r by a stream
o For example, they can be represented by a text file

e Input may be described by a sequence of actions

e For example in GUI based applications, input may be
represented by a sequence of user actions

e Input and output may also be described by a set of signals and by the
time of arrival to the system / exit from the system

Ingegneria del Software 2

58

Preconditions and postconditions

e Preconditions and postconditions may be about:

— The existence and state of external services or data
sources

— For example files, databases, services, global variables ...

— The state of the application before/after the test
execution
« For example: the correct authentication, the presence or absence
of such data in the database, the reaching of a specific interface

« Usually, if atest is quite complex, then intermediate conditions
are added to improve the fault localization ability of the test
case

Ingegneria del Software 2

59

Testing Termination Criteria

Due to the Dijkstra theorem, the problem of automatic testing

termination is undecidable

Some common criteria to terminate testing:

Time criteria: tests stop after a fixed time
Cost/Effort criteria: tests stop when a fixed cost or effort is reached

Objective criteria: tests stop when a fixed testing objective is reached

— E.g. a fixed number of bugs is found or a fixed percentage of code coverage is

reached

Statistical criteria: when the temporal frequency of fault discovery goes under a
fixed value

— For example, when no new faults have been found in the last set of n test cases
Saturation criteria: when a set of different testing executions give exactly the
same results

« Applicable, for example, in problems involving randomness

Ingegneria del Software 2 60

Software can be chaotic, but we make it work

Trying Stuff
Until it Works

The Practical Developer

?
O RLY @ThePracticalDev

Ingegneria del Software 2

Tipologie fondamentali di testing

e In base all'obiettivo:
e Testing funzionale
e Testing strutturale

e Quality Assessment (Stress Testing, Security Testing, Performance Testing, ..

e In base all'oggetto del testing
e Testing di sistema
e Testing di integrazione
e Testing di unita
e In base alle informazioni disponibili:
o Testing Black Box
o Testing Grey Box
e Testing White Box

)

Ingegneria del Software 2 Testing — Teoria e definizioni

76

Tipologie fondamentali di testing

e Articolo consigliato:

e Orso, Rothermel, Software Testing: A Research Travelogue (2000-
2014)

e Elenca l'evoluzione temporale delle principali linee di ricerca del
testing tra il 2000 e il 2014

e Risorsa utile per molti dei concetti che verranno visti piu in dettaglio negli
argomenti successivi

Ingegneria del Software 2 Testing — Teoria e definizioni

77

http://www.cc.gatech.edu/~orso/papers/orso.rothermel.ICSE2014-FOSE.pdf

