Testing di unita:
Junit

Riferimenti e risorse

Using JUnit in Eclipse, http://www.cs.umanitoba.ca/~eclipse/10-JUnit.pdf
An Introduction to JUnit,
http://www.cs.toronto.edu/~cosmin/TA/2003/csc444h/tut/tut3.pdf

JUnit Testing Utility Tutorial,
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/t
utorials/junit/junit.html

Tools for automated software testing,
Ir=|ttp: [/ /www.elet.polimi.it/upload/picco/Teaching/softeng/slides/test_tools.pd

Introduzione a Test-First Design e JUnit,
http://www.lta.disco.unimib.it/didattica/Progettazione/lucidi/e09-
testing+introJUnit.pdf

JUnit Testing Utility Tutorial,
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/t
utorials/junit/junit.html

Sito ufficiale di JUnit, http://www.junit.org/index.htm
Progetto sourceforge di JUnit, http://junit.sourceforge.net/

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Test di unita

L'Unita per definizione e la parte piu piccola del software che si intende
testare
« Il concetto di Unita coincide con il concetto di modulo utilizzato in progettazione

Unita possono essere:
« Le funzioni
« I metodi
« Le classi
« I package (note le loro interfacce)
« Gli interi sistemi

Il testing di unita puo essere svolto:
- In modalita black box, se & nota solo la specifica dell’'unita (ingressi/uscite/funzione
realizzata)

- In modalita white box se si conosce anche come I'unita € realizzata e si vuole sfruttare
tale conoscenza per valutare anche la correttezza parziale dell’unita

Porfirio Tramontana — Ingegneria del Software 2 - Testing 3

Scrittura dei test di unita

Il testing a livello di unita dei comportamenti di una classe
dovrebbe essere progettato ed eseﬁuito dallo sviluppatore
dIeIIa classe, contemporaneamente allo sviluppo stesso della
classe
— Di questa opinione sono in particolare Erich Gamma e Kent Beck, meglio

conosciuti come gli autori dei Design Pattern e dell'eXtreme
Programming (che verra presentato nella lezione dedicata ai cicli di vita)

Vantaggi:

— Lo sviluppatore conosce esattamente le responsabilita della classe che
ha sviluppato e I risultati che da essa si attende

— Lo sviluppatore conosce esattamente come si accede alla classe, ad

esempio:
« Quali precondizioni devono essere poste prima di poter eseguire un
caso di test;

* Quali postcondizioni sui valori dello stato degli oggetti devono verificarsi

Svantaggi:

— Lo sviluppatore tende a difendere il suo lavoro ... trovera meno errori di
quanto possa fare un tester!

Porfirio Tramontana — Ingegneria del Software 2 - Testing 4

Testing Automation

Se la progettazione dei casi di test é un lavoro duro e difficile, I'esecuzione
dei casi di test e un lavoro noioso e gramo!

L’automatizzazione dell’esecuzione dei casi di test porta innumerevoli
vantaggi:

— Tempo risparmiato (nell’'esecuzione dei test)

— Affidabilita dei test (non c’é rischio di errore umano nell’'esecuzione dei test)

« Si puo migliorare lefficacia a scapito dell’efficienza sfruttando il fatto che
I'esecuzione dei test € poco costosa

— Riuso (parziale) dei test a sequito di modifiche nella classe

Porfirio Tramontana — Ingegneria del Software 2 - Testing 5

Automatizzare test di unita:
Testing basato su main

Scrivere un metodo di prova ("main”) in ogni classe contenente del codice
in grado di testare i suoi comportamenti

— Problemi
« Tale codice verra distribuito anche nel prodotto finale, appesantendolo
« Come strutturare i test case? Come eseguirli complessivamente?

» Se dobbiamo realizzare tanti test, dovremo realizzare tanti main e compilare
includendo, di volta in volta, uno solo di questi main

Cerchiamo un approccio sistematico
— Che possa separare il codice di test da quello della classe
— Che possa supportare la strutturazione dei casi di test in test suite
— Che consenta |'esecuzione complessiva di un’intera test suite
— Che fornisca un output separato dall'output dovuto all’esecuzione della classe

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Famiglia X-Unit

Una soluzione alle problematiche precedenti é data dai framework
della famiglia X-Unit:

— JUnit (Java)

- E il capostipite; fu sviluppato originariamente da Erich Gamma and Kent
Beck

— CppUnit (C++)

— csUnit (C#)

— NUnit (.NET framework)

— HttpUnit (Web Application)

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Junit

JUnit € un framework (in pratica consiste di un archivio .jar
contenente una collezione di classi) che permette la scrittura di
test in maniera ripetibile

e Plug-ins che supportano il processo di scrittura ed esecuzione dei
test JUnit su classi Java sono previsti da alcuni ambienti di

sviluppo
— in particolare mostreremo il funzionamento del plug-in JUnit di Eclipse
— II plug-in aiuta visualmente ad eseguire le funzionalita disponibili da
linea di comando

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Plug-in di Eclipse per JUnit

Eclipse é dotato di plug-ins, di pubblico
dominio, che supportano tutte le
operazioni legate al testing di unita con
Junit, CppUnit, etc.. In particolare, essi
forniscono dei wizard per:

— Creare classi contenenti test cases

— Automatizzare I'esecuzione di tutti i test cases

— Mostrare i risultati dell’esecuzione dei casi di test
— Organizzare i test cases in test suites

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Componenti di un test Junit (versione 3)

Classi di test

 Una classe di test Junit deve estendere
(ereditare da) una classe denominata
TestCase della libreria

Metodi di test

« Ogni metodo di test deve avere un nome che
inizia con la parola test (in minuscolo)

« Possono essere realizzati un numero qualsiasi
di metodi di test

Porfirio Tramontana — Ingegneria del Software 2 - Testing 10

Componenti di un test Junit (versione 3)

Una classe di test, contiene anche:

— Un metodo setup() che viene eseguito prima dell’esecuzione di ogni

test
» Utile per eseguire operazioni preliminari necessarie per poter soddisfare
le precondizioni comuni a piu di un caso di test

— Un metodo teardown() che viene eseguito dopo ogni caso di test

« Utile per eseguire operazioni finali necessarie per poter soddisfare le
precondizioni comuni a piu di un caso di test

- E’ fondamentale rimettere sempre I'applicazione e le
sue risorse nello stato di partenza al termine di ogni
test poiché Junit non garantisce mai in che ordine

verranno eseguiti i test

Porfirio Tramontana — Ingegneria del Software 2 - Testing 11

Funzionamento (in breve) di JUnit

All'interno di Junit esiste almeno un metodo public static,
eseguibile da linea di comando (

All’'avvio di Junit, questo metodo :

- Interroga il programma in cerca di classi di test e metodi in
esse

- Le librerie di reflection presenti nel linguaggio Java rendono possibili queste
interrogazioni

- Ciclicamente esegue:
- Il metodo setup
- Uno dei metodi di test
- Il metodo teardown

- Durante ognuna di queste esecuzioni produce un output
separato con l'esito del test (i risultati delle asserzioni)

Porfirio Tramontana — Ingegneria del Software 2 - Testing

12

Struttura di un metodo di test

Inizializzazione precondizioni

— Limitatamente alle precondizioni tipiche del singolo caso di test, le
altre potrebbero essere nel setup

Inserimento valori di input

— Tramite chiamate a metodi set oppure tramite assegnazione di valori
ad attributi pubblici

Codice di test

— Esecuzione del metodo da testare con gli eventuali parametri relativi
a quel caso di test

Valutazione delle asserzioni

— Controllo di espressioni booleani (asserzioni) che devono risultare
vere se il test da esito positivo, ovvero se i dati di uscita e/o le
postcondizioni riscontrati sono diversi da quelli attesi

Porfirio Tramontana — Ingegneria del Software 2 - Testing 13

Trasformazione di un test in codice JUnit

Precondizioni

— Tramite il metodo setup vengono eseqguite delle operazioni mirante a
far diventare vere le precondizioni. Al termine del metodo vengono
poste delle asserzioni che valutano le precondizioni: se non fossero
verificate, i test non vengono esequiti

Input

— Tramite settaggi diretti di attributi oppure chiamate a metodi set (che

Si suppongono corretti e senza necessita di essere testati)
Test

— Esecuzione del metodo da testare con gli eventuali ulteriori parametri

di input relativi a quel caso di test
Output

— Controllo di espressioni booleane relative alla coincidenza dei valori di

output ottenuti con quelli osservati (asserzioni)
Postcondizioni

— Valutazione di espressioni booleane (asserzioni) relative alle
postcondizioni

Porfirio Tramontana — Ingegneria del Software 2 - Testing 14

Breve Tutorial

Creiamo un nuovo progetto Eclipse,
con un package (calcolatrice)

All'interno di questo package
generiamo una classe Calcolatrice:

package calcolatrice;

public class calcolatrice {
public calcolatrice () {};

public int somma (int a, int b)
{return a+b;}

}

Porfirio Tramontana — Ingegneria del Software 2 - Testing

15

Scrittura dei test

Hierarchy | JUnit ™

LV

=2 calcolatrice
& caloolatricel)
@ sommatink, ink)
+-B, JRE System Library [jrel.5.0_04]
+ E junit.jar - Dy\eclipselpluginsiorg. junit_3.5.1

iy

& Properties for Calcolatrice

type filker bext -

¥

F

Info

Builders

Java Build Path
Java Code Style
Java Campiler
Javadoc Location
Project References

Java Build Path

(2 Source | = Projects B Libraries] % Order and Export |
JARs and dass folders on the build path:

+-=, JRE System Library [jrel.5.0_04]

+ Eu junit.jar - D:Yecipselpluginsiorg. junit_3.8.1 Add JARs. ..

Add Variable. ..
Add Library...
Add Class Folder. ..

Edit...
Remove

Default output Folder:

| Calcolatrice

QK

Browse. .,

Cancel |

Porfirio Tramontana — Ingegneria del Software 2 - Testing

16

Inserimento di JUnit nel progetto

* Nelle proprieta del progetto,
aggiungiamo JUnit.jar tra le it =] | Javapusdpath

Info

& Properties for Calcolatrice

| I b re rl e p reVI Ste n e I 2o Bl etk s, s s e e B g

+- Java Code Style

Euilders 2 Source] 1= Projects B Uibraries | & order and Expart]

]
+1- Java Compiler +-g) junit.jar - Dileclipseipluginsiorg, junit_3.8.1
]

i +-=, JRE Syskem Liby [ire1.5.0_04]
Classpath del progetto e rani

e Add External Jars
Una copia di junitjar
dovrebbe trovarsi tra |

<5 -

add 8RS, ..

i .. |
Add Variable. ..
Add Library...
Add Class Folder. ..

plug-in di Eclipse; In

alternativa la si puo o
scaricare da

Nelle attuali versioni di Eclipse, questo passo non e necessario

Porfirio Tramontana — Ingegneria del Software 2 - Testing

17

http://www.junit.org/

Creazione di una classe test

-
All'interno dello STESSO G—
package della classe da B

testare, creare una nuova 8 caeltri

=1 [J] calcolatrice.java
-3 calcolatrice public o:

classe, scegliendo la & ooz
- - - @ sommaiint, int)
tipologia JUnit Test Case

public i
+|-= JRE System Library [jrel.5.0_04]

Select a wizard

Create a JUnit Test Case

Wizards:

G’ Enum
€ Interface
Ig Java Praject
£ Java Project From Existing &nt Buildfile
B Package
{8 Source Folder
—-[z= Jawa Run/Debug
[J¥ Scrapbock Page
== Jnit
(S Unit Test Case
[E7 TUnit Test Suite
+[=% Java Emitter Templates
+(= Plug-in Development
+[= Simple
+[= Examples

>

[=]

Porfirio Tramontana — Ingegneria del Software 2 - Testing

1.

Generazione della classe dei test

Il Wizard di Eclipse ci
permette di indicare il nome
della classe che si vuole
testare (calcolatrice), |l
nome della classe da
generare (abbiamo usato per
convenzione 1 nome
calcolatriceTest), gli
ulteriori metodi da
aggiungere (abbiamo
selezionato setUp e
tearDown)

& New JUnit Test Case

Junit Test Case

15, Type name is discouraged. By convention, Java type names usually skart with an

 —

uppercase letter
Source folder: | Calcolatrice Browse. ..
Package: | calcolatrice Browse, ..
Mame: | calcolatriceTest
Superclass: | junit. Framewor k. TestCase

Wwhich method stubs would you like bo create?
[public static woid mainString[] args)
- oo =]
v setUp()
W tearDown(y
[constructort)

Class under test: | calcolatrice

Mext = | Einish | Cancel

< Back

3

Browse, ..

o
'S
=
L
]

Porfirio Tramontana — Ingegneria del Software 2 - Testing

19

Scrittura della classe test

* Il Wizard ha generato una classe che
eredita dalla classe TestCase, cuore
della libreria JUnit

* Il metodo setUp() puo essere
completato, accodando tutte quelle
operazioni da effettuare preliminarmente
a qualsiasi test che sara descritto in
guesta classe;

* Il metodo tearDown() conterra il codice
relativo a tutte le operazioni comuni da
effettuare dopo I'esecuzione di ogni test
di questa classe (ad esempio per
ripristinare lo stato della classe prima
dell’esecuzione del prossimo test

package calcolatrice;
import junit.framework.TestCase;

public class calcolatriceTest extends TestCase {
protected void setUp() throws Exception {
super.setUp() ;
}

protected void tearDown () throws Exception {
super. tearDown () ;

}

/* Test method for 'calcolatrice.calcolatrice.somma(int, int)'*/
public void testSomma () {

}

Porfirio Tramontana — Ingegneria del Software 2 - Testing

20

Scrittura di un caso di test

» Scriviamo un metodo testSomma che rappresenti un caso di test
per il metodo Somma;
 Siccome il metodo appartiene ad una classe calcolatriceTest
nello stesso package della classe da testare, il metodo test puo
istanziare oggetti della classe ed accedere ai suoi metodi

public void testSomma () ({

calcolatrice c=new calcolatrice();

int a=5,b=7;

int s=c.somma(a,b);

assertEquals ("Somma non corretta!",12,s);

Il metodo assertEquals verifica se s (valore ottenuto dall’esecuzione del metodo
somma € uguale a 12 (valore atteso); in caso contrario conta questo fatto come una
failure e genera il messaggio di errore indicato

Porfirio Tramontana — Ingegneria del Software 2 - Testing 21

Esempio piu generale

L'asserzione nel Before corrisponde
alla precondizione: se non é
verificata il test non viene eseguito

L'asserzione nell’After corrisponde
alla postcondizione: se non é
verificata, il test ha rilevato un
malfunzionamento

L'asserzione nel Test corrisponde
all’oracolo: se non €& verificata, il test
ha rilevato un malfunzionamento

Da notare che il test viene eseguito
solo se la precondizione € verificata,
mentre I'After & eseguito in ogni
caso.

public class calcolatriceTest {
private Calcolatrice c;

@Before

public void setUp() throws Exception ({
c=new Calcolatrice();
assertNotNull (c) ;

}

QAfter

public void tearDown () throws Exception {
c=null;
assertNull (c) ;

}

@Test
public void testSomma () {
assertEquals ("Somma Sbagliata",12,c.somma(5,7))

}

Porfirio Tramontana — Ingegneria del Software 2 - Testing 22

Asserzioni

Asserzione

— affermazione che puo essere vera o falsa

I risultati attesi sono documentati con delle asserzioni esplicite,
non con delle stampe che comunque richiedono dispendiose
ispezioni visuali dei risultati

Se |'asserzione e

— vera: il test @ andato a buon fine

— falsa: il test e fallito ed il codice testato non si comporta come atteso, quindi
c'e un errore a tempo dinamico

Le asserzioni sono utilizzate sia per verificare gli oracoli che le
postcondizioni

— Le asserzioni potrebbero essere utilizzate anche per verificare le precondizioni: se la
precondizione fallisce, il test non viene proprio eseguito (e viene riportato come fallito)

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Asserzioni

Se una asserzione non e vera il test-case fallisce

— assertNull () : afferma che il suo argomento € nullo
(fallisce se non lo €)

— assertEquals (): afferma che il suo secondo
argormento € equals () al primo argomento, ovvero al
valore atteso

— molte altre varianti

e assertNotNull ()
assertTrue ()

assertFalse ()

assertSame ()

Porfirio Tramontana — Ingegneria del Software 2 - Testing

assertEquals ()

assertEquals (Object expected, Object actual)

Va a buon fine se e solo se expected.equals (actual)
restituisce true

expected € il valore atteso
actual e il valore effettivamente rilevato

assertEquals (String message, Object expected, Object actual)

In questa variante si specifica un messaggio che il runner
stampa in caso di fallimento dell’asserzione: molto utile per
localizzare immediatamente I'asserzione che causa il fallimento
di un test-case ed avere i primi messaggi diagnostici

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Principali asserzioni

static void assertEquals(boolean expected, boolean actual)
— Asserts that two booleans are equal.
static void assertEquals(int expected, int actual)
— Asserts that two ints are equal.
static void assertEquals(java.lang.String expected, java.lang.String actual)
— Asserts that two Strings are equal.
static void assertFalse(boolean condition)
— Asserts that a condition is false.
static void assertTrue(boolean condition)
— Asserts that a condition is true.
static void assertNull(java.lang.Object object)
— Asserts that an object is null.
static void fail()
— Fails a test with no message.
static void fail(java.lang.String message)
— Fails a test with the given message.

Elenco completo disponibile a:
http://junit.sourceforge.net/javadoc_40/org/junit/Assert.html

Porfirio Tramontana — Ingegneria del Software 2 - Testing

26

Esecuzione dei casi di test

Per eseqguire i test, basta
seguire una procedura simile a

quella per eseguire applicazioni

i

Package Explorer | Hierarchy v JUnit 22 1
Finished after 0,016 seconds § %] Eﬂ =
Funs: 1)1 B Errors: O B Failures: 0

BE Failures ‘E: Hierarchey

+-IE[F] calcalatrice, calcolakriceTest

& Run

Create, manage, and run configurations

Create a configuration that will launch a JUnit test,

Configurations:
- 4@ Eclipse Application
4 Edlipse Application
Java Applet
+ Java Application
=-Ju Junit

Ju SimpleFractionTest
Ju SimpleFractionTestz
Ju SimpleFractionTestz
i JUrit Plug-in Test
[F] swT application

=
%

Mew Delete

X]

w

Name; ‘calculatriceTEst

Test |W= Arguments] <}4\} Classpath] =i RE I t'y Source I E Environment 1 =} Comman I

" Run a single test

" Run all tests in the selected project, package or source Folder:

| Calcolatrice

[~ Keep JUrit running after a test run when debugging

i

Search...

Apply. Rewert

Porfirio Tramontana — Ingegneria del Software 2 - Testing

27

Test rilevanti errori ...

public double divisione (int a, int b)
{return a/b;}

Package Explorer | Hierarchy | Diagram Mavigator m =0

public void testDivisione () {

calcolatrice c=new calcolatrice();
int a=15,b=2;

double s=c.divisione(a,b);
assertTrue (s==7.5);

}

In realta il metodo divisione restituisce la
divisione intera ...

Grazie a JUnit possiamo prontamente trovare il

rigo con I'asserzione errata e avviare |l
debugging ...

Quando pensiamo di aver corretto 'errore

rieseguiamo il test ...

Finished after 0,015 seconds &€ 4 % E&} BE -
Runs; 2/2 H Errors: 0 H Failures: 1

EEZ! Failures @'f: Hierarchy

= E?_| calcolatrice, calcolatriceTest
Ef—'—_l testSomnna
g:'—_l testDivisione

= Failure Trace

i’III*

13 junit. Framewark. AssertionFailedError

= at calcolatrice, caloolatriceTest kestDivisionelcalcolatrice Test javai 313
= at sun.reflect, MativeMethodaccessor ImplL invoke0iMative Methad)
= at sun,reflect, MativeMethodaccessor ImplL invoke(Unknown Source)

= at sun.reflect, DelegatingMethodaccessorImplinvoke(Unknown Source)

Porfirio Tramontana — Ingegneria del Software 2 - Testing 28

Raggruppare test cases in test suite

* Ulteriori classi di test possono essere aggiunte in seguito
modificando il codice generato ...

package calcolatrice;

import junit.framework.Test;
import junit.framework.TestSuite;

public class AllTests {
public static Test suite() {
TestSuite suite = new TestSuite ("Test for calcolatrice");
//$JUnit-BEGINS
suite.addTestSuite(calcolatriceTest.class);
//$JUnit-ENDS
return suite;

€ New JUnit Test Suite X

Junit Test Suite

Create a new JUnit Test Suite class For a package

Source Folder: | Calcolatrice Brawse. .,

Package: | calcolatrice Browse. .,

Mame:

Test classes ko include in suite:

© calcolatriceTest Select all

Deselect al

e

1 dlass selected
w'ould wou like to create a method stub For main?
I public static void mainiStringl] args)

r otu <]

< Back, | Finish | Cancel

Porfirio Tramontana — Ingegneria del Software 2 - Testing

29

Limiti di Junit 3

Un metodo di test Junit che si trova in un package di test non puo:
« Accedere a metodi e attributi privati della classe testata

« Sarebbe dovuto essere nella stessa classe da testare
« Accedere a metodi e attributi protected della classe testata

- Dovrebbe ereditare dalla classe da testare ma eredita gia da
TestCase e |'ereditarieta multipla non e consentita

« Accedere a metodi e attributi con visibilita package,

 Sarebbe dovuto essere nello stesso package dell’attributo/metodo
da testare

Puo Accedere a metodi e attributi pubblici

« a patto che il metodo di test non sia nello stesso progetto
dell’attributo/metodo

Junit 4 e stato introdotto per risolvere la maggior

parte di questi problemi e rendere possibile il testing

anche ad un livello white box

Porfirio Tramontana — Ingegneria del Software 2 - Testing 30

JUnit versione 4

La versione 4 del framework sfrutta le Annotazioni,
introdotte con la versione Java 5.0

Il meccanismo delle annotazioni permette di introdurre,
direttamente nel codice, delle meta-informazioni.
— Dichiarazioni circa il codice stesso
— Vagamente simili alle istruzioni per il precompilatore in C
Meccanismo del tutto equivalente a quello utilizzato dal
parser JavaDoc per generare la documentazione.
— Parola chiave preceduta dal carattere @

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Junit 4: differenze con le versioni precedenti

- Cambia il package da importare (org.junit invece di
junit.framework. TestCase)

« Non e piu necessario che le classi di test estendano la classe
TestCase

- Non e obbligatorio aggiungere il prefisso fest ai metodi di test:
questi sono evidenziati invece attraverso I'utilizzo
dell’annotazione @7est

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Annotazioni JUnit 4

E possibile eseguire alcune azioni
— Prima e dopo I'esecuzione di tutti i test di una classe di test
— Prima e dopo l'esecuzione di un singolo test

@BeforeClass marca un metodo statico che viene eseguito prima di tutti i
test contenuti in una classe di test

— Puo essere utilizzata per settare precondizioni comuni a tutti i test

@Before marca un metodo che viene eseguito prima del metodo di test
— Setta precondizioni di quel singolo test

@After marca un metodo che viene eseguito dopo il metodo di test

— Puo essere utilizzata per ripristinare lo stato dell’applicazione dopo I'esecuzione di un
test, per consentire |'esecuzione automatica di un test successivo

@AfterClass marca un metodo statico che viene eseguito dopo tutti i test
contenuti in una classe di test

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Test Suite

 Meccanismo usato per raggruppare logicamente dei
test ed esequirli assieme

« L'annotazione @SuiteClasses raggruppa una lista di
classi, passate come parametro, in una test suite

 L'annotazione @RunWith permette di impostare
diversi esecutori di test

- Fondamentale, ad esempio, per indicare |'utilizzo di Junit 3 0 4
oppure se si vuole implementare dei propri runner

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Breve Tutorial Junit 4

Creiamo un nuovo progetto Eclipse, con un package (Calendario)
All'interno di questo package generiamo una classe calendario:.

package Calendario;

public class Calendario {

public static String calend(int d,

{

if (m<=2)

{

m+ 12;

a——y

}i

int f1 = a

int £f2 = a

int £3 = a ;
(2 *m+ (.0 *
a 1;
1 2 + £f3 + £f4 + £5;

int f4 =
int f5 =
int x = £
int k
int n =

int m,

(m + 1)));

int a)

if (n==1) return "Lunedi";

else if (n==2) return "Martedi";
else if (n==3) return "Mercoledi";
else if (n==4) return "Giovedi";
else if (n==5) return "Venerdi";
else if (n==6) return "Sabato";
else if (n==0) return "Domenica";
else return "Errore";

Porfirio Tramontana

— Ingegneria del Software 2 - Testing

Creiamo una

Classe Source folder: I Calendario/src Browse...
Package: I calendaria Browse...
contenitore
Mame: I CalendarioTest

Generazione classi di test

= Mew JUnit Test Caze
JUnit Test Case

Select the name of the new JUnit test case, You have the options to specify
the class under test and on the next page, to select methods to be tested.

=lo] x|

E

i Mew JUnit 3 test ©* New JUnit 4 test

|
dl test case Superclass: Ija*.-‘a.lang.DhjEn:t

dal wizard

Which method stubs would you like to create?

v setlp() ¥ tearDown()

New J u n it I constructor

Do you want to add comrments? (Configure templates and default value here

TeSt Case [¥ Generate comments

Test Methods

v setlpBeforeClass() v tearDownAfterClass()

Browse,., |

Class under test; I calendario.Calendario

Select methods for which test method stubs should be created.

Available methods:

- D @° main(String(])

....|:|G Ohbje

ct

Browse... |

@ <iack | News |

Finish

Cancel

~— ~ Porfirio Tramontana — Ingegneria del Software 2 - Testing

Codice di test generato (Junit 4)

package calendario;
import static org.junit.Assert.¥*;

import org.junit.After;
import org.junit.AfterClass;
import org.Jjunit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

/**
* Qauthor Porfirio
*
*/

public class CalendarioTest {

@BeforeClass

public static void setUpBeforeClass ()
throws Exception ({

}

@AfterClass

public static void

tearDownAfterClass () throws
Exception {

@Before
public void setUp ()
}

throws Exception {

@After
public void tearDown ()

}

throws Exception {

/**

* Test method for {@link
calendario.Calendario#calend(int,
int) }.

*/

@Test

public void testCalend () {
fail ("Not yet implemented");
}

int,

@Test € un’annotazione per marcare i metodi che si
considerano di Test

Non & (piu) necessario ma & buona norma usare ‘test’ come
prefisso del nome dei metodi di test (obbligatorio in Junit 3)

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Junit 4 Classi di Test

package mioProgetto; I I I
import static org.junit.Assert.*; «— Import dl CI_aSSI ed
annotazioni JUnit

import org.junit.Test;

public class miaClasseIggE;i\\\
nome

@Test
public void testprimaClasseSottoTest() ({

...Codice

assertEquals (valoreAtteso, wvaloreDaEsaminare) ;
} ' i ;
.— Annotazione di metodo come test-case
@Test

public void testsecondaClasseSottoTest () {
..Codice

assertNull (valoreCheDeveEssereNullo) ;
})
Asserzione

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Test unitario in pratica

public void testMetodoDaTestare() {
miaClasse mioOggetto = new miaClasse (“parl", “par2");
assertEquals (“parl", mioOggetto.getNome ()) ;
assertEquals (“par2", mioOggetto.getParametro()) ;

}

mettere un “frammento” del sistema in un stato noto
— il frammento comprende un solo oggetto mioOggetto

inviare una serie di messaggi noti

— nell'esempio solo la costruzione dell'oggetto, in generale ci
potrebbero essere altre invocazioni di metodo sullo stesso
controllare che alla fine il sistema si trovi nello stato
atteso
— tramite le asserzioni si controlla che il nome ed il parametro
del comando siano quelli attesi

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Compilare i Test

Tutto sara semplificato con Eclipse

Nel classpath ci devono essere le librerie di
JUnit (junit-4.4.jar).

Supponiamo che queste siano nella directory
c:\java\lib\

javac -cp ".;c:\java\l\lib\junit-4.4.jar;c:\src" miaClasseTest.java

40

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Eseqguire | test

. Per eseguire dei test e necessario usare una classe
runner che trova ed esegue i test-case

« JUnit 4.x include come Runner
« org.junit.runner.JUnitCore
accetta come argomento una o piu classi di test

$java —-cp ".;c:\java\llib\junit-4.4.jar;c:\src\mioProgetto"
org.junit.runner.JUnitCore mioProgetto.miaClasseTest

JUnit version 4.4

Time: 0,066 Un puntino per ogni test-case andato a buon fine

OK (8 tests)

41

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Your application is a special snowflake

Excuses for
Not Writing Unit Tests

O RLY? @ ThePracticalDev

Test di unita insieme al codice

Riscriviamo alcuni dei test della
calcolatrice allinterno della
classe calcolatrice stessa:

package calcolatrice;

import static org.junit.Assert.*;
import org.junit.After;

import org.junit.Before;

import org.junit.Test;

public class Calcolatrice {

public Calcolatrice(){};

private int somma (int a, int b)

{return a+b;}

@Before
public void setUp() throws Exception {

// non e’ piu’ necessario costruire I'oggetto poichée il test si svolge
nella classe stessa

}

@After

public void tearDown() throws Exception {

h

@Test

public void testSomma() {
int s=somma(3,5);
assertEquals("Errore”,8,s);

}

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Osservazioni

Si e utilizzato, finora, JUnit solo e soltanto per il testing di unita di
singoli metodi

— Puo essere utile anche nel testing black box di sistemi completi
— In seguito vedremo come possa supportare problematiche relative
al testing di integrazione
JUnit supporta il testing ma anche il debugging

— L'utilizzo di molte asserzioni puo, pero, portare ad indicazioni dettagliate sulle
ragioni del successo del test case

— [test case possono essere esequiti uno step alla volta

Si é data per scontata la correttezza del codice delle classi di test ... se
avessimo voluto esserne sicuri al massimo avremmo potuto fare il test
di unita delle classi di test stesse (ma il problema si sarebbe riproposto
ricorsivamente!)

— Il codice delle classi di test € comunque estremamente lineare e ripetitivo: la possibilita
di sbagliare é ridotta!

— La generazione del codice delle classi di test € automatizzabile in alcuni contesti

Porfirio Tramontana — Ingegneria del Software 2 - Testing

Usi possibili di JUnit

Junit puo supportare diversi task di testing:

 Testing di unita black box

« Nel quale i metodi di test vanno a chiamare le unita (metodi o
funzioni) da provare passando parametri e valutando asserzioni
sui risultati ottenuti

 Testing di unita white box

« Nel quale i metodi di test interagiscono con le unita da testare
(metodi, ma anche oggettl) chiamando metodi e valutando
asserzioni sia relative agli output che agli attributi e variabili
modificate durante I'elaborazione

Porfirio Tramontana — Ingegneria del Software 2 - Testing

45

Usi possibili di JUnit

Junit puo supportare diversi task di testing:

« Testing di integrazione

« Nel quale i metodi di test agiscono da driver che sostituiscono gli
altri metodi che chiamano quelli che vogliamo testare

« Testing della GUI

- Nel quale i metodi di test vanno ad emulare le interazioni
dell’'utente col sistema

« Testing di sistema / funzionale

* Nel quale i metodi di test chiamano direttamente l'interfaccia del
sistema

Porfirio Tramontana — Ingegneria del Software 2 - Testing

46

