
1

Testing di unità:
JUnit

Porfirio Tramontana – Ingegneria del Software 2 - Testing 2

Riferimenti e risorse

Using JUnit in Eclipse, http://www.cs.umanitoba.ca/~eclipse/10-JUnit.pdf
An Introduction to JUnit,

http://www.cs.toronto.edu/~cosmin/TA/2003/csc444h/tut/tut3.pdf
JUnit Testing Utility Tutorial,

http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/t
utorials/junit/junit.html

Tools for automated software testing,
http://www.elet.polimi.it/upload/picco/Teaching/softeng/slides/test_tools.pd
f

Introduzione a Test-First Design e JUnit,
http://www.lta.disco.unimib.it/didattica/Progettazione/lucidi/e09-
testing+introJUnit.pdf

JUnit Testing Utility Tutorial,
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/t
utorials/junit/junit.html

Sito ufficiale di JUnit, http://www.junit.org/index.htm
Progetto sourceforge di JUnit, http://junit.sourceforge.net/

Porfirio Tramontana – Ingegneria del Software 2 - Testing 3

Test di unità

• L’Unità per definizione è la parte più piccola del software che si intende
testare

• Il concetto di Unità coincide con il concetto di modulo utilizzato in progettazione

• Unità possono essere:
• Le funzioni
• I metodi

• Le classi
• I package (note le loro interfacce)
• Gli interi sistemi

• Il testing di unità può essere svolto:
• In modalità black box, se è nota solo la specifica dell’unità (ingressi/uscite/funzione

realizzata)

• In modalità white box se si conosce anche come l’unità è realizzata e si vuole sfruttare
tale conoscenza per valutare anche la correttezza parziale dell’unità

Porfirio Tramontana – Ingegneria del Software 2 - Testing 4

Scrittura dei test di unità

Il testing a livello di unità dei comportamenti di una classe
dovrebbe essere progettato ed eseguito dallo sviluppatore
della classe, contemporaneamente allo sviluppo stesso della
classe
– Di questa opinione sono in particolare Erich Gamma e Kent Beck, meglio

conosciuti come gli autori dei Design Pattern e dell’eXtreme
Programming (che verrà presentato nella lezione dedicata ai cicli di vita)

Vantaggi:
– Lo sviluppatore conosce esattamente le responsabilità della classe che

ha sviluppato e I risultati che da essa si attende

– Lo sviluppatore conosce esattamente come si accede alla classe, ad
esempio:

• Quali precondizioni devono essere poste prima di poter eseguire un
caso di test;

• Quali postcondizioni sui valori dello stato degli oggetti devono verificarsi

Svantaggi:
– Lo sviluppatore tende a difendere il suo lavoro … troverà meno errori di

quanto possa fare un tester!

Porfirio Tramontana – Ingegneria del Software 2 - Testing 5

Testing Automation

Se la progettazione dei casi di test é un lavoro duro e difficile, l’esecuzione
dei casi di test é un lavoro noioso e gramo!

L’automatizzazione dell’esecuzione dei casi di test porta innumerevoli
vantaggi:

– Tempo risparmiato (nell’esecuzione dei test)

– Affidabilità dei test (non c’é rischio di errore umano nell’esecuzione dei test)
• Si può migliorare l’efficacia a scapito dell’efficienza sfruttando il fatto che

l’esecuzione dei test è poco costosa

– Riuso (parziale) dei test a seguito di modifiche nella classe

Porfirio Tramontana – Ingegneria del Software 2 - Testing 6

Automatizzare test di unità:
Testing basato su main

Scrivere un metodo di prova (“main”) in ogni classe contenente del codice
in grado di testare i suoi comportamenti

– Problemi
• Tale codice verrà distribuito anche nel prodotto finale, appesantendolo

• Come strutturare i test case? Come eseguirli complessivamente?

• Se dobbiamo realizzare tanti test, dovremo realizzare tanti main e compilare
includendo, di volta in volta, uno solo di questi main

Cerchiamo un approccio sistematico

– Che possa separare il codice di test da quello della classe

– Che possa supportare la strutturazione dei casi di test in test suite

– Che consenta l’esecuzione complessiva di un’intera test suite

– Che fornisca un output separato dall’output dovuto all’esecuzione della classe

Porfirio Tramontana – Ingegneria del Software 2 - Testing 7

Famiglia X-Unit

Una soluzione alle problematiche precedenti é data dai framework
della famiglia X-Unit:

– JUnit (Java)
• È il capostipite; fu sviluppato originariamente da Erich Gamma and Kent

Beck

– CppUnit (C++)

– csUnit (C#)

– NUnit (.NET framework)

– HttpUnit (Web Application)

Porfirio Tramontana – Ingegneria del Software 2 - Testing 8

JUnit

JUnit é un framework (in pratica consiste di un archivio .jar
contenente una collezione di classi) che permette la scrittura di
test in maniera ripetibile

• Plug-ins che supportano il processo di scrittura ed esecuzione dei
test JUnit su classi Java sono previsti da alcuni ambienti di
sviluppo

– in particolare mostreremo il funzionamento del plug-in JUnit di Eclipse

– Il plug-in aiuta visualmente ad eseguire le funzionalità disponibili da
linea di comando

Porfirio Tramontana – Ingegneria del Software 2 - Testing 9

Plug-in di Eclipse per JUnit

Eclipse é dotato di plug-ins, di pubblico
dominio, che supportano tutte le
operazioni legate al testing di unità con
JUnit, CppUnit, etc.. In particolare, essi
forniscono dei wizard per:
– Creare classi contenenti test cases

– Automatizzare l’esecuzione di tutti i test cases

– Mostrare i risultati dell’esecuzione dei casi di test

– Organizzare i test cases in test suites

Porfirio Tramontana – Ingegneria del Software 2 - Testing 10

Componenti di un test Junit (versione 3)

Classi di test

• Una classe di test Junit deve estendere
(ereditare da) una classe denominata
TestCase della libreria

Metodi di test

• Ogni metodo di test deve avere un nome che
inizia con la parola test (in minuscolo)

• Possono essere realizzati un numero qualsiasi
di metodi di test

Porfirio Tramontana – Ingegneria del Software 2 - Testing 11

Componenti di un test Junit (versione 3)

Una classe di test, contiene anche:

– Un metodo setup() che viene eseguito prima dell’esecuzione di ogni
test

• Utile per eseguire operazioni preliminari necessarie per poter soddisfare

le precondizioni comuni a più di un caso di test

– Un metodo teardown() che viene eseguito dopo ogni caso di test

• Utile per eseguire operazioni finali necessarie per poter soddisfare le

precondizioni comuni a più di un caso di test

• E’ fondamentale rimettere sempre l’applicazione e le
sue risorse nello stato di partenza al termine di ogni
test poiché Junit non garantisce mai in che ordine
verranno eseguiti i test

Porfirio Tramontana – Ingegneria del Software 2 - Testing 12

Funzionamento (in breve) di JUnit

All’interno di Junit esiste almeno un metodo public static,
eseguibile da linea di comando (

All’avvio di Junit, questo metodo :

- Interroga il programma in cerca di classi di test e metodi in
esse

- Le librerie di reflection presenti nel linguaggio Java rendono possibili queste
interrogazioni

- Ciclicamente esegue:

- Il metodo setup

- Uno dei metodi di test

- Il metodo teardown

- Durante ognuna di queste esecuzioni produce un output
separato con l’esito del test (i risultati delle asserzioni)

Porfirio Tramontana – Ingegneria del Software 2 - Testing 13

Struttura di un metodo di test

Inizializzazione precondizioni
– Limitatamente alle precondizioni tipiche del singolo caso di test, le

altre potrebbero essere nel setup
Inserimento valori di input

– Tramite chiamate a metodi set oppure tramite assegnazione di valori
ad attributi pubblici

Codice di test
– Esecuzione del metodo da testare con gli eventuali parametri relativi

a quel caso di test
Valutazione delle asserzioni

– Controllo di espressioni booleani (asserzioni) che devono risultare
vere se il test dà esito positivo, ovvero se i dati di uscita e/o le
postcondizioni riscontrati sono diversi da quelli attesi

Porfirio Tramontana – Ingegneria del Software 2 - Testing 14

Trasformazione di un test in codice JUnit

Precondizioni
– Tramite il metodo setup vengono eseguite delle operazioni mirante a

far diventare vere le precondizioni. Al termine del metodo vengono
poste delle asserzioni che valutano le precondizioni: se non fossero
verificate, i test non vengono eseguiti

Input
– Tramite settaggi diretti di attributi oppure chiamate a metodi set (che

si suppongono corretti e senza necessità di essere testati)
Test

– Esecuzione del metodo da testare con gli eventuali ulteriori parametri
di input relativi a quel caso di test

Output
– Controllo di espressioni booleane relative alla coincidenza dei valori di

output ottenuti con quelli osservati (asserzioni)
Postcondizioni

– Valutazione di espressioni booleane (asserzioni) relative alle
postcondizioni

Porfirio Tramontana – Ingegneria del Software 2 - Testing 15

Breve Tutorial

Creiamo un nuovo progetto Eclipse,
con un package (calcolatrice)

All’interno di questo package
generiamo una classe Calcolatrice:

package calcolatrice;

public class calcolatrice {
public calcolatrice(){};

public int somma (int a, int b)
{return a+b;}

}

Porfirio Tramontana – Ingegneria del Software 2 - Testing 16

Scrittura dei test

Porfirio Tramontana – Ingegneria del Software 2 - Testing 17

Inserimento di JUnit nel progetto

• Nelle proprietà del progetto,

aggiungiamo JUnit.jar tra le

librerie previste nel

Classpath del progetto

• Add External Jars …

Una copia di junit.jar

dovrebbe trovarsi tra i

plug-in di Eclipse; in

alternativa la si può

scaricare da

www.junit.org

Nelle attuali versioni di Eclipse, questo passo non è necessario

http://www.junit.org/

Porfirio Tramontana – Ingegneria del Software 2 - Testing 18

Creazione di una classe test

1. All’interno dello STESSO
package della classe da
testare, creare una nuova
classe, scegliendo la
tipologia JUnit Test Case

Porfirio Tramontana – Ingegneria del Software 2 - Testing 19

Generazione della classe dei test

1. Il Wizard di Eclipse ci

permette di indicare il nome

della classe che si vuole

testare (calcolatrice), il

nome della classe da

generare (abbiamo usato per

convenzione il nome

calcolatriceTest), gli

ulteriori metodi da

aggiungere (abbiamo

selezionato setUp e

tearDown)

Porfirio Tramontana – Ingegneria del Software 2 - Testing 20

Scrittura della classe test

package calcolatrice;

import junit.framework.TestCase;

public class calcolatriceTest extends TestCase {

protected void setUp() throws Exception {

super.setUp();

}

protected void tearDown() throws Exception {

super.tearDown();

}

/* Test method for 'calcolatrice.calcolatrice.somma(int, int)'*/

public void testSomma() {

}

}

• Il Wizard ha generato una classe che

eredita dalla classe TestCase, cuore

della libreria JUnit

• Il metodo setUp() può essere

completato, accodando tutte quelle

operazioni da effettuare preliminarmente

a qualsiasi test che sarà descritto in

questa classe;

• Il metodo tearDown() conterrà il codice

relativo a tutte le operazioni comuni da

effettuare dopo l’esecuzione di ogni test

di questa classe (ad esempio per

ripristinare lo stato della classe prima

dell’esecuzione del prossimo test

Porfirio Tramontana – Ingegneria del Software 2 - Testing 21

Scrittura di un caso di test

public void testSomma() {

calcolatrice c=new calcolatrice();

int a=5,b=7;

int s=c.somma(a,b);

assertEquals("Somma non corretta!",12,s);

}

• Scriviamo un metodo testSomma che rappresenti un caso di test

per il metodo Somma;

• Siccome il metodo appartiene ad una classe calcolatriceTest

nello stesso package della classe da testare, il metodo test può

istanziare oggetti della classe ed accedere ai suoi metodi

Il metodo assertEquals verifica se s (valore ottenuto dall’esecuzione del metodo

somma é uguale a 12 (valore atteso); in caso contrario conta questo fatto come una

failure e genera il messaggio di errore indicato

Porfirio Tramontana – Ingegneria del Software 2 - Testing 22

Esempio più generale

public class calcolatriceTest {

private Calcolatrice c;

@Before

public void setUp() throws Exception {

c=new Calcolatrice();

assertNotNull(c);

}

@After

public void tearDown() throws Exception {

c=null;

assertNull(c);

}

@Test

public void testSomma() {

assertEquals("Somma Sbagliata",12,c.somma(5,7));

}

}

L’asserzione nel Before corrisponde

alla precondizione: se non è

verificata il test non viene eseguito

L’asserzione nell’After corrisponde

alla postcondizione: se non è

verificata, il test ha rilevato un

malfunzionamento

L’asserzione nel Test corrisponde

all’oracolo: se non è verificata, il test

ha rilevato un malfunzionamento

Da notare che il test viene eseguito

solo se la precondizione è verificata,

mentre l’After è eseguito in ogni

caso.

Asserzioni

Asserzione

– affermazione che può essere vera o falsa

I risultati attesi sono documentati con delle asserzioni esplicite,
non con delle stampe che comunque richiedono dispendiose
ispezioni visuali dei risultati

Se l’asserzione è

– vera: il test è andato a buon fine

– falsa: il test è fallito ed il codice testato non si comporta come atteso, quindi
c’è un errore a tempo dinamico

Le asserzioni sono utilizzate sia per verificare gli oracoli che le
postcondizioni
– Le asserzioni potrebbero essere utilizzate anche per verificare le precondizioni: se la

precondizione fallisce, il test non viene proprio eseguito (e viene riportato come fallito)

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Asserzioni

Se una asserzione non è vera il test-case fallisce
– assertNull(): afferma che il suo argomento è nullo

(fallisce se non lo è)

– assertEquals(): afferma che il suo secondo
argormento è equals() al primo argomento, ovvero al
valore atteso

– molte altre varianti
• assertNotNull()

• assertTrue()

• assertFalse()

• assertSame()

• …

Porfirio Tramontana – Ingegneria del Software 2 - Testing

assertEquals()

assertEquals(Object expected, Object actual)

Va a buon fine se e solo se expected.equals(actual)

restituisce true

expected è il valore atteso

actual è il valore effettivamente rilevato

assertEquals(String message, Object expected, Object actual)

In questa variante si specifica un messaggio che il runner

stampa in caso di fallimento dell’asserzione: molto utile per

localizzare immediatamente l’asserzione che causa il fallimento

di un test-case ed avere i primi messaggi diagnostici

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Porfirio Tramontana – Ingegneria del Software 2 - Testing 26

Principali asserzioni

static void assertEquals(boolean expected, boolean actual)

– Asserts that two booleans are equal.

static void assertEquals(int expected, int actual)

– Asserts that two ints are equal.

static void assertEquals(java.lang.String expected, java.lang.String actual)

– Asserts that two Strings are equal.

static void assertFalse(boolean condition)

– Asserts that a condition is false.

static void assertTrue(boolean condition)

– Asserts that a condition is true.

static void assertNull(java.lang.Object object)

– Asserts that an object is null.

static void fail()

– Fails a test with no message.

static void fail(java.lang.String message)

– Fails a test with the given message.

…

Elenco completo disponibile a:

http://junit.sourceforge.net/javadoc_40/org/junit/Assert.html

Porfirio Tramontana – Ingegneria del Software 2 - Testing 27

Esecuzione dei casi di test

Per eseguire i test, basta
seguire una procedura simile a
quella per eseguire applicazioni
…

Porfirio Tramontana – Ingegneria del Software 2 - Testing 28

Test rilevanti errori …

public void testDivisione(){

calcolatrice c=new calcolatrice();

int a=15,b=2;

double s=c.divisione(a,b);

assertTrue(s==7.5);

}

public double divisione (int a, int b)

{return a/b;}

In realtà il metodo divisione restituisce la

divisione intera …

Grazie a JUnit possiamo prontamente trovare il

rigo con l’asserzione errata e avviare il

debugging …

Quando pensiamo di aver corretto l’errore

rieseguiamo il test …

Porfirio Tramontana – Ingegneria del Software 2 - Testing 29

Raggruppare test cases in test suite

• Ulteriori classi di test possono essere aggiunte in seguito

modificando il codice generato …

package calcolatrice;

import junit.framework.Test;

import junit.framework.TestSuite;

public class AllTests {

public static Test suite() {

TestSuite suite = new TestSuite("Test for calcolatrice");

//$JUnit-BEGIN$

suite.addTestSuite(calcolatriceTest.class);

//$JUnit-END$

return suite;

}

}

Porfirio Tramontana – Ingegneria del Software 2 - Testing 30

Limiti di Junit 3

• Un metodo di test Junit che si trova in un package di test non può:
• Accedere a metodi e attributi privati della classe testata

• Sarebbe dovuto essere nella stessa classe da testare
• Accedere a metodi e attributi protected della classe testata

• Dovrebbe ereditare dalla classe da testare ma eredita già da
TestCase e l’ereditarietà multipla non è consentita

• Accedere a metodi e attributi con visibilità package,
• Sarebbe dovuto essere nello stesso package dell’attributo/metodo

da testare
• Può Accedere a metodi e attributi pubblici

• a patto che il metodo di test non sia nello stesso progetto
dell’attributo/metodo

• Junit 4 è stato introdotto per risolvere la maggior
parte di questi problemi e rendere possibile il testing
anche ad un livello white box

JUnit versione 4

La versione 4 del framework sfrutta le Annotazioni,
introdotte con la versione Java 5.0

Il meccanismo delle annotazioni permette di introdurre,
direttamente nel codice, delle meta-informazioni.

– Dichiarazioni circa il codice stesso

– Vagamente simili alle istruzioni per il precompilatore in C

Meccanismo del tutto equivalente a quello utilizzato dal
parser JavaDoc per generare la documentazione.

– Parola chiave preceduta dal carattere @

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Junit 4: differenze con le versioni precedenti

• Cambia il package da importare (org.junit invece di
junit.framework.TestCase)

• Non è più necessario che le classi di test estendano la classe
TestCase

• Non è obbligatorio aggiungere il prefisso test ai metodi di test:
questi sono evidenziati invece attraverso l’utilizzo
dell’annotazione @Test

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Annotazioni JUnit 4

È possibile eseguire alcune azioni
– Prima e dopo l’esecuzione di tutti i test di una classe di test

– Prima e dopo l’esecuzione di un singolo test

@BeforeClass marca un metodo statico che viene eseguito prima di tutti i
test contenuti in una classe di test

– Può essere utilizzata per settare precondizioni comuni a tutti i test

@Before marca un metodo che viene eseguito prima del metodo di test
– Setta precondizioni di quel singolo test

@After marca un metodo che viene eseguito dopo il metodo di test
– Può essere utilizzata per ripristinare lo stato dell’applicazione dopo l’esecuzione di un

test, per consentire l’esecuzione automatica di un test successivo

@AfterClass marca un metodo statico che viene eseguito dopo tutti i test
contenuti in una classe di test

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Test Suite

• Meccanismo usato per raggruppare logicamente dei
test ed eseguirli assieme

• L’annotazione @SuiteClasses raggruppa una lista di
classi, passate come parametro, in una test suite

• L’annotazione @RunWith permette di impostare
diversi esecutori di test

• Fondamentale, ad esempio, per indicare l’utilizzo di Junit 3 o 4
oppure se si vuole implementare dei propri runner

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Breve Tutorial Junit 4

Creiamo un nuovo progetto Eclipse, con un package (Calendario)

All’interno di questo package generiamo una classe calendario:

package Calendario;

public class Calendario {

public static String calend(int d, int m, int a)

{

if (m<=2)

{

m = m + 12;

a--;

};

int f1 = a / 4;

int f2 = a / 100;

int f3 = a / 400;

int f4 = (int) (2 * m + (.6 * (m + 1)));

int f5 = a + d + 1;

int x = f1 - f2 + f3 + f4 + f5;

int k = x / 7;

int n = x - k * 7;

if (n==1) return "Lunedi";

else if (n==2) return "Martedi";

else if (n==3) return "Mercoledi";

else if (n==4) return "Giovedi";

else if (n==5) return "Venerdi";

else if (n==6) return "Sabato";

else if (n==0) return "Domenica";

else return "Errore";

}

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Generazione classi di test

Creiamo una
classe
contenitore
di test case
dal wizard
New Junit
Test Case

Selezioniamo
i metodi da
testare

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Codice di test generato (Junit 4)

package calendario;

import static org.junit.Assert.*;

import org.junit.After;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

/**

* @author Porfirio

*

*/

public class CalendarioTest {

@BeforeClass

public static void setUpBeforeClass()
throws Exception {

}

@AfterClass

public static void
tearDownAfterClass() throws
Exception {

}

@Before

public void setUp() throws Exception {

}

@After

public void tearDown() throws Exception {

}

/**

* Test method for {@link

calendario.Calendario#calend(int, int,

int)}.

*/

@Test

public void testCalend() {

fail("Not yet implemented");

}

}

@Test è un’annotazione per marcare i metodi che si
considerano di Test
Non è (più) necessario ma è buona norma usare ‘test’ come
prefisso del nome dei metodi di test (obbligatorio in Junit 3)

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Junit 4 Classi di Test

package mioProgetto;
import static org.junit.Assert.*;
import org.junit.Test;

public class miaClasseTest {

@Test
public void testprimaClasseSottoTest() {
…Codice

assertEquals(valoreAtteso, valoreDaEsaminare);
}

@Test
public void testsecondaClasseSottoTest() {
…Codice

assertNull(valoreCheDeveEssereNullo);
}

…
}

import di classi ed

annotazioni JUnit

Annotazione di metodo come test-case

Asserzione

nome

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Test unitario in pratica

public void testMetodoDaTestare() {

miaClasse mioOggetto = new miaClasse(“par1", “par2");

assertEquals(“par1", mioOggetto.getNome());

assertEquals(“par2", mioOggetto.getParametro());

}

mettere un “frammento” del sistema in un stato noto
– il frammento comprende un solo oggetto mioOggetto

inviare una serie di messaggi noti
– nell’esempio solo la costruzione dell’oggetto, in generale ci

potrebbero essere altre invocazioni di metodo sullo stesso
controllare che alla fine il sistema si trovi nello stato

atteso
– tramite le asserzioni si controlla che il nome ed il parametro

del comando siano quelli attesi

Porfirio Tramontana – Ingegneria del Software 2 - Testing

40

Compilare i Test

Tutto sarà semplificato con Eclipse

Nel classpath ci devono essere le librerie di
JUnit (junit-4.4.jar).

Supponiamo che queste siano nella directory
c:\java\lib\

javac –cp ".;c:\java\lib\junit-4.4.jar;c:\src" miaClasseTest.java

Porfirio Tramontana – Ingegneria del Software 2 - Testing

41

Eseguire i test

$java –cp ".;c:\java\lib\junit-4.4.jar;c:\src\mioProgetto"
org.junit.runner.JUnitCore mioProgetto.miaClasseTest

JUnit version 4.4

........

Time: 0,066

OK (8 tests)

• Per eseguire dei test è necessario usare una classe

runner che trova ed esegue i test-case

• JUnit 4.x include come Runner

• org.junit.runner.JUnitCore

accetta come argomento una o più classi di test

Un puntino per ogni test-case andato a buon fine

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Testing Automation

Test di unità insieme al codice

Riscriviamo alcuni dei test della
calcolatrice all’interno della
classe calcolatrice stessa:

package calcolatrice;

import static org.junit.Assert.*;

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

public class Calcolatrice {

public Calcolatrice(){};

private int somma (int a, int b)

{return a+b;}

Porfirio Tramontana – Ingegneria del Software 2 - Testing

@Before

public void setUp() throws Exception {

// non e’ piu’ necessario costruire l’oggetto poichè il test si svolge
nella classe stessa

}

@After

public void tearDown() throws Exception {

}

@Test

public void testSomma() {

int s=somma(3,5);

assertEquals("Errore",8,s);

}

}

Osservazioni

Si è utilizzato, finora, JUnit solo e soltanto per il testing di unità di
singoli metodi
– Può essere utile anche nel testing black box di sistemi completi

– In seguito vedremo come possa supportare problematiche relative
al testing di integrazione

JUnit supporta il testing ma anche il debugging

– L’utilizzo di molte asserzioni può, però, portare ad indicazioni dettagliate sulle
ragioni del successo del test case

– I test case possono essere eseguiti uno step alla volta

Si é data per scontata la correttezza del codice delle classi di test … se
avessimo voluto esserne sicuri al massimo avremmo potuto fare il test
di unità delle classi di test stesse (ma il problema si sarebbe riproposto
ricorsivamente!)

– Il codice delle classi di test é comunque estremamente lineare e ripetitivo: la possibilità
di sbagliare é ridotta!

– La generazione del codice delle classi di test è automatizzabile in alcuni contesti

Porfirio Tramontana – Ingegneria del Software 2 - Testing

Porfirio Tramontana – Ingegneria del Software 2 - Testing 45

Usi possibili di JUnit

• Junit può supportare diversi task di testing:

• Testing di unità black box
• Nel quale i metodi di test vanno a chiamare le unità (metodi o

funzioni) da provare passando parametri e valutando asserzioni
sui risultati ottenuti

• Testing di unità white box
• Nel quale i metodi di test interagiscono con le unità da testare

(metodi, ma anche oggetti) chiamando metodi e valutando
asserzioni sia relative agli output che agli attributi e variabili
modificate durante l’elaborazione

Porfirio Tramontana – Ingegneria del Software 2 - Testing 46

Usi possibili di JUnit

• Junit può supportare diversi task di testing:

• Testing di integrazione
• Nel quale i metodi di test agiscono da driver che sostituiscono gli

altri metodi che chiamano quelli che vogliamo testare

• Testing della GUI
• Nel quale i metodi di test vanno ad emulare le interazioni

dell’utente col sistema

• Testing di sistema / funzionale
• Nel quale i metodi di test chiamano direttamente l’interfaccia del

sistema

• …

