Verifica e Validazione del Software

Testing Black Box

Ingegneria del Software 2 Testing Black Box

Riferimenti

e JTan Sommerville, Ingegneria del Software,
capitoli 22-23-24 (piu dettagliato sui processi)

e Pressman, Principi di Ingegneria del Software, 5°
edizione, Capitoli 15-16

e Ghezzi, Jazazeri, Mandrioli, Ingegneria del

Software, 2° edizione, Capitolo 6 (piu dettagliato
sulle tecniche)

e http://nvipubs.nist.gov/nistpubs/Legacy/SP/nis
tspecialpublication800-142.pdf

Ingegneria del Software 2 Testing Black Box 2

Due principali Tecniche di Testing

e Testing funzionale :

— Richiede I'analisi degli output generati dal sistema (o da suoi
componenti) in risposta ad input (test cases) definiti sulla
base della sola conoscenza dei requisiti del sistema (o di
suoi componenti)

— Spesso realizzato in modalita Black Box, ovvero senza accedere
In alcun modo alla struttura interna del software

e Testing strutturale

— fondato sulla conoscenza della struttura del software, ed in
Fartlcolare del codice, degli input associati e dell oracolo per
definizione dei casi di prova.

— Necessariamente realizzato accedendo al codice sorgente, quindi
In modalita white box

Ingegneria del Software 2 Testing Black Box

Precisazione

e I due termini:
e Testing Black Box
e Testing White Box

Non individuano da soli alcuna tecnica di testing
specifica, ma solo una famiglia di tecniche di testing

Ad esempio:

« Testing Funzionale Black Box, Testing di unita Black
Box, Testing di integrazione white box, Test di unita
White Box

Sono tecniche di testing specifiche

Ingegneria del Software 2 Testing Black Box

Testing Black Box

e I| punto comune di tutte le tecniche «Black
Box>» e il fatto che il software e acceduto
unicamente attraverso la sua interfaccia, senza
accedere in maniera diretta al codice del
componente da testare (al limite, senza
accedere del tutto al codice)

e Non esiste, quindi, una sola tecnica «Black Box»!

Ingegneria del Software 2 Testing Black Box

Testing Black Box

1. Testing basato sui requisiti
2. Testing basato sugli scenari dei casi d'uso

3. Testing con classi di equivalenza

1. Testing con copertura minima delle classi di equivalenza

2. Testing con copertura delle classi di equivalenza adiacenti

3. Testing con copertura delle n-ple di classi di equivalenza

4. Testing con copertura combinatoria delle classi di equivalenza

4. Testing con classi di equivalenza e valori limite

5. Testing a partire dalle tabelle di decisione

Ingegneria del Software 2 Testing Black Box

Da ISO 29119

Nella colonna di sinistra tecniche
«black box»

Nella colonna centrale «white
box>»

Ingegneria del Software 2

inIS0/IEC/ IEEE 2%11%-4

[Test Design Techndques Presented]

| |
5 pecilication-Based Structure-Based [Ex peerie noe-Based
Technigques Techni ques Technigues
I'cl:.uE 521 [cl:.us_t 53} L [Hauz=5 4}
(7 =) =
|1} Equivalemce Partitioning Statement Testing Error Guess ng
[dause=5.21) (clause 5.31) (dause 541)
\.) ol
|| Classification Tres Method Bramch Testing
[daus=5_22) (clause 5.3 2)
(3 =\ =
|l Boundary Value Analysis Drecision Testing
(daus=5_23) [clause 5.33)
’
s . .
. Syntax Tesding Branch Condition Testing
(damz=5_2.4) (damze 5.34)
o .
Com bvina torial Branch Condition
] TestDesign Techn C oo it Testing
[dause5 25 [cl:.us_e 5.A5)
r 1\ &
. o ; . rdified Condition Decision
L All Combvina tions Testing

(dause=5.253)
S ————————
B —

Pair-Wise Testing
(danse 52 5.4)

Decision Table Testing

Cause- Elfect Graphing
(claus= 5. 2.7)

(clause 5.2.6)

State Trangition Tesing

(clause 5 2)

See nario Testing
(clausz= 5.2 9)

Random Testing
[clause 5.2.10)

Coverage Testing
(clamse 536)

LT

FaN

[kata Flow Testing
(clause 5.3 7)

7

i
|| All-Delinitions Tesling
(clamse 53.7.2)
.
F .
| All-C-Uses Testing
(clam=s 537 3)
b »
g .
] All-P-Uses Testing
(clamse 5.3.7.4)
. 7
r .
| All-Uses Testing
[clause 5.3.7.5)
. 7
I k
| All-IFU-Pat hs Testing
(clam=s 53.7.6)
h F

Figure 2 — The set of test design techniques presented in ISO/IEC/TEEE 29119-4

1- Testing basato sui requisiti

e Il principio della verificabilita dei requisiti afferma
che i requisiti dovrebbero essere testabili, cioe
scritti in modo da poter progettare test che
dimostrino che il requisito e stato soddisfatto.

o Il testing basato sui requisiti € una tecnica di
convalida dove vengono progettati vari test per
ogni requisito.

Ingegneria del Software 2 Testing Black Box

esting basato sugli Use Case

Noto lo Use Case Diagram e la descrizione di
tutti gli scenari dei casi d'uso

- Per ogni scenario si progetta uno o piu test
case che lo eseguano

« Si eseguono manualmente o automaticamente i
test case progettati

- La strategia di testing mira alla copertura dei
casi d’'uso e degli scenari

Ingegneria del Software 2 Testing Black Box

2- Testing delle Partizioni (o delle Classi di
Equivalenza)

e I dati di input ed output possono essere in genere
suddivisi in classi dove tutti i membri di una stessa classe
sono in qualche modo correlati.

e Ognuna delle classi costituisce una classe di equivalenza
(una partizione) ed il programma si comportera
(verosimilmente) nello stesso modo per ciascun membro
della classe.

e I casi di Test dovrebbero essere scelti all'interno di
ciascuna partizione.

Ingegneria del Software 2 Testing Black Box 10

Equivalence partitioning

Ingegneria del Software 2

11

Illustrative example

e In un metodo bisogna inserire la propria data di
nascita, composta di giorno (numerico), mese
(stringa), anno (humerico)

e Il metodo deve riconoscere correttamente tra
date valide (corrispondenti a giorni realmente
esistiti) e date non valide e restituire il giorno
della settimana corrispondente per le date valide

Ingegneria del Software 2

12

Informazioni di dominio

e Fonte:

e In particolare:
e I mesi hanno durate diverse
e Il 29 febbraio esiste solo negli anni bisestili
o GIli anni bisestili sono divisibili per 4, ma non per 100
e Il calendario e entrato in vigore il 15 ottobre 1582

Ingegneria del Software 2 13

https://it.wikipedia.org/wiki/Calendario_gregoriano

Complessita dell’'esempio

* Input:
« Giorno — tipo intero in un intervallo limitato
inferiormente e superiormente
» Mese — stringa in un insieme di 12 valori

« Anno — intero in un intervallo limitato inferiormente

« Qutput
« Validita — booleano

» Giorno della settimana — stringa in un insieme di 7
valori

Ingegneria del Software 2

Partition Testing

o I dati di input ed output possono essere in genere suddivisi in classi
dove tutti i membri di una stessa classe sono in qualche modo
correlati.

e Ognuna delle classi costituisce una classe di equivalenza (una
partizione) ed il programma si comportera (verosimilmente) nello
stesso modo per ciascun membro della classe.

e Matematicamente, una partizione in classi di equivalenza produce
insiemi disgiunti la cui unione e I'insieme totale di partenza. Inoltre
la relazione di equivalenza tra partizioni gode delle proprieta
riflessiva, simmetrica e transitiva

e I casidi Test dovrebbero essere scelti all'interno di ciascuna
partizione.

Ingegneria del Software 2 15

Suddivisione in classi di equivalenza

e Le partizioni sono identificate usando le specifiche
del programma o altra documentazione.

e Una possibile suddivisione e quella in cui la classe di
equivalenza rappresenta un insieme di stati validi o non
validi per una condizione sulle variabili d'ingresso.

Ingegneria del Software 2 16

Ricerca delle classi di equivalenza

e Tecnica base

— Per ogni input si ricava
* Una o piu classi di equivalenza valide, corrispondente allinsieme
di valori considerati validi per quell’input

* Un insieme di classi di equivalenza non valide, una per ogni
condizione di non validita. Ad ognuna di tali condizioni corrisponde
un insieme di valori (classe d’equivalenza non valida)

 La suddivisione in classi valide e non valide puo essere
omessa, trattando tutte le classi allo stesso modo. A volte,
pero, la combinazione di piu classi non valide risulta
Impossibile

Ingegneria del Software 2 17

Casi generali

e Se l'input € un:
— intervallo di valori

* una classe valida per valori interni all’intervallo, una non valida per valori inferiori
al minimo, e una non valida per valori superiori al massimo

— valore specifico

* una classe valida per il valore specificato, una non valida per valori inferiori, e
una non valida per valori superiori

— elemento di un insieme discreto

* una classe valida corrispondente all'insieme (tecnica classica) oppure una
classe valida per ogni elemento dell'insieme (tecnica dettagliata), una non valida
per un elemento non appartenente a tale insieme

— valore booleano
« Come nel caso precedente, ma per un insieme discreto a due valori (true, false)

e In tuttii casi, € bene considerare anche un’ulteriore classe di equivalenza non
valida, corrispondente alla non appartenenza dell’input al tipo atteso

Ingegneria del Software 2 18

Classi valide e non valide

Input:

« Giorno — tipo intero in un intervallo limitato inferiormente
e superiormente

{giorno<0}, {1<giorno<31}, {giorno>31}

 Mese — stringa in un insieme di 12 valori

{mese < {gennaio, febbraio, marzo, aprile, maggio, giugno, luglio,
agosto, settembre, ottobre, novembre, dicembre}}, {mese ¢
{gennaio, febbraio, marzo, aprile, maggio, giugno, luglio, agosto,
settembre, ottobre, novembre, dicembre}}

« Anno — intero in un intervallo limitato inferiormente
{anno<1582}, {anno>=1582}

Ingegneria del Software 2

Classi valide e non valide

 Ulteriori classi corrispondono alla non appartenenza del
valore al tipo

» (ad esempio una stringa per giorno).

* Queste prove sono necessarie in caso di testing di sistemi
senza controllo sul tipo

« Ad esempio aventi uno stream in input, oppure moduli web, oppure
protocolli

* ma non sono necessari nell'ambito di testing di unita
« Il compilatore impedirebbe una chiamata di funzione con tipo errato

Ingegneria del Software 2

Testing strategy 1

e Copertura minima delle classi di equivalenza

e Ogni classe di equivalenza e coperta almeno da un caso di test

e Numero minimo di casi di test pari al numero di classi dell'input con piu
classi di equivalenza

Omettiamo TC4 in caso di unit testing

Test case TC1 TC2 TC3 TC4
Giorno 1 0 35 primo
Mese gennaio brumaio gennaio gennaio
Anno 1980 1492 1980 duemila

Ingegneria del Software 2 21

Copertura minima delle classi di equivalenza

e Le tre classi di equivalenza hanno rispettivamente cardinalita 3, 2, 2
(Omettiamo TC4 in caso di unit testing)
e Il numero di test € pari alla cardinalita massima (3)

e Nell'ipotesi che tutti gli input siano indipendenti e sincroni
e |potesi sempre verificata in unit testing

Test case TC1 TC2 TC3 TC4
Giorno 1 0 35 primo
Mese gennaio brumaio gennaio gennaio
Anno 1980 1492 1980 duemila

Ingegneria del Software 2

Discussione

e E’la tecnica che garantisce la copertura delle classi
di equivalenza con il numero minimo di casi di test

e Massima efficienza

e In caso riesca a trovare un difetto, pero, puo
essere difficile individuarne la causa

e Se TCl1 fallisce e non TC2, il problema puo
essere dato da uno qualsiasi degli input o dalla
loro interazione

Ingegneria del Software 2 23

Testing strategy 2

e Copertura delle classi di equivalenza adiacenti

e Ogni classe di equivalenza e coperta almeno da un caso di test

e Per ogni caso di test ne esiste almeno uno che differisce per una sola
classe di equivalenza

e /I numero di casi di test e nell’ordine del quantitativo totale di classi di
equivalenza

Ingegneria del Software 2

24

Copertura delle classi di equivalenza adiacenti

e Le tre classi di equivalenza hanno cardinalita 3, 2, 2
e Il primo test copre una classe per ogni input
e Gli altri test coprono ciascuno una sola classe non ancora coperta.

e Numero di test = somma delle classi — numero di input +1
e Esempio:
e 34+24+42-3+1=5

Test case TC1 TC2 TC3 TC4 TC5
Giorno 1 0 35 1 1
Mese gennaiogennaio gennaio brumaio gennaio

Anno 1980 1980 1980 1980 1492

Ingegneria del Software 2

Discussione

e Tecnica meno efficiente di quella precedente

e Il numero di casi di test cresce linearmente col numero di input

e La tecnica € ispirata alla teoria sulla distanza di Hamming
e |n questo caso, la test suite scelta ha distanza di Hamming paria 1

e Tecnica piu utile ai fini del debugging

e Se fallisce un solo test, allora ne esiste un altro che differisce per un
solo valore di input che non fallisce: ci sono buone possibilita che il
difetto sia stato scatenato dall’'unico valore differente tra i due test

e Puo avvenire, pero, che il difetto e legato ad un’unica variabile di input
ma non venga selezionata una coppia di casi di test che differisce solo
per quella variabile

e Ad esempio, non esiste una coppia di TC che abbiano in comune 35 e 1492

Ingegneria del Software 2 26

Testing strategy 3

+ Testing combinatoriale 2-way

« Vengono esercitate almeno una volta tutte le coppie di classi di
equivalenza diverse, ma non tutte le triple, quadruple, etc.

+ Il numero di test generati e pari al prodotto delle cardinalita dei due
input aventi piu classi di equivalenza

+ Testing k-way

+ Esercita tutte le k-ple. Il numero di test generati e pari al prodotto
delle cardinalita dei k input aventi piu classi di equivalenza

+ Alcuni tool che realizzano n-way testing:

+ http://www.pairwise.org/tools.asp

Ingegneria del Software 2

27

Copertura 2-way

Per ogni 2-pla di valori, consideriamo un caso di test per ognuno dei valori della
terza variabile

e (1, gennaio) (0, gennaio) (35, gennaio) (1, brumaio) (0, brumaio) (35, brumaio)
e (1,1980) (0, 1980) (35, 1980) (1, 1492) (0,1492) (35, 1492)
e (gennaio, 1980) (brumaio, 1980) (gennaio, 1492) (brumaio, 1492)

Il numero di coppie diverse e pari a 6+6+4 = 16
e Somma dei prodotti di coppie di cardinalita

Ma, a causa delle sovrapposizione, sono sufficienti 6 test diversi per coprire le 16 coppie
e Ogni test potenzialmente copre tre coppie diverse

Test case TC1 TC2 TC3 TCA4 TC5 TC6
Giorno 1 0 35 1 0 35
Mese gennaiogennaio gennaio brumaio brumaio brumaio

Anno 1980 1492 1980 1492 1980 1492

Ingegneria del Software 2 28

Altri esempi

Parameter Values t | # Tests | % of Exhaustive
Operating system | XP, 0S5 X, RHL 2 10 14
Browser IE, Firefox

Protocol IPv4, IPV6 3 18 25
CPU Intel, AMD 4 36 50
DBMS MySQL, Sybase, Oracle = 72 100

e 5 parametri, 3*2*2*2*3=72 combinazioni possibili

e || numero di test t-way cresce esponenzialmente
con't

e t=5 =>tutte le combinazioni possibili

e http://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

Ingegneria del Software 2

Altri esempi

e 9 parametri, 3*3*4*3*5*4*4*5*4=172800
combinazioni possibili

Parameter Name Values # Values
HARDKEYBOARDHIDDEN | NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 5
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT _LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

t | # Tests | % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 15

3] 9168 53

Ingegneria del Software 2

Esempi piu complessi

* Quanti test combinatori?

210=1024 test

2 test per coprire ogni valore
10 test per coprire gli adiacenti
320 test 3-way

r— ~
o BX]
Foot | Character Spacing | Text Effects |
Font: Font style: Size:
Times . ‘Reoular 12
Tines i e s [a
Times New Roman - | Ttalic 9 Cal
o e [02
1 nga ;‘ .; AT { |
(Tw Cen MT))
Fonk color: Underline style: 4 ,
‘ Automatic }VI Snonez —;] Automati
[] strikethrough (] shadow (] small caps
[] Double strikethrough , [[] all caps
[[] Superscript [[] Emboss (7] Hidden
[C] Subscript [J Engrave
o
Pre /
Tines
This is a scalable printer font. The screen image may not match printed output,

Cancel]

l

OK

J |

Ingegneria del Software 2

32

PR T B
Step o Select your favorite size and pizza crust. :’s FOFS ;: y;a» &

Lage Original Cust (]

Step o

Select your favorite pizza toppings from the pull down. Whole toppings cover the entire pizza. First ¥ and second

¥ toppings cover half the pizza. For a regular cheese pizza, do not add toppings.
6x217x21 7 x217x4x3x2x2x5x2
” . i o

I want to add or remove toppings on this pizza ad&:&whole or half pizza. = WAy TOO MUCH TO TEST

bope, WO o,
[Add coppings 1t half 31@ Simplified pizza ordering:

| Add toppings 2nd half (] E 6x4x4x4x4x3x2x2xDx2
= 184,320 possibilities

i Add toppinds whole piniE]

Step e Select your pizza instructions.

I want to add special instructions for this pizza -- light, extra or no sauce; light or no cheese; well done bake

RegularSauce [v| |Normal Cheese [v] |NormalBake v] [Normal Cut vl
Step o Add to order.
Quantity 1

Add To Order Add To Order & Checkout

Ordering Pizza Combinatorially e

Simplified pizza ordering:

6x4x4x4x4x3x2x2xDx2
= 184,320 possibilities

[‘

2-way tests: 32

3-way tests: 150
4-way tests: 570
5-way tests: 2,413

6-way tests: 8,330

Ingegneria del Software 2

Discussione

e |l caso 1-way e incluso con la copertura minima
e Ogni valore e coperto da almeno un test

e |l caso n-way coincide con il test di tutte le combinazioni

e Applicare un test 2-way significa assicurarsi di aver provato
tutte le combinazioni di coppie di valori
e Ad esempio, se {mesi di 30 giorni, mesi di 31 giorni} e {29, 30, 31}

sono due insiemi, con il test 2-way siamo sicuri di testare anche |l
giorno 31 di un mese di 30 giorni

e Se, invece, vogliamo essere sicuri di testare il 29 febbraio di un
anno bisestile, abbiamo bisogno di un testing 3- way

Ingegneria del Software 2 35

Discussione

e || testing t-way e interpretato come il test di problemi che
scaturiscono da una t-pla di valori
e La maggior parte dei difetti dipende da singoli valori, poi da coppie,
triple, etc.

e |l numero di test, al contrario, aumenta quasi esponenzialmente con

laumentare di t
100

e Lasceltadite dettata 0| F—ZA =TT
da un tradeoff tra un 017 h':'r' e Y
lento incremento del S ol 7 — = Browser
numero di difetti 5 50 o
trovato e un veloce g 40

o 30 s A S8 Distributed

Incremento del 20 DB
numero di test 10
generati, D 1 2 3 4 5 6
allaumentare di t Interactions

36

Ingegneria del Software 2

Finding 90% of flaws is pretty good, right?
&

I don't think I
want fo get on
that plane.

90 percent of the flaws."

http://mse.isri.cmu.edu/software-
NIST engineering/documents/faculty-
Standernonal mamae - publications/miranda/kuhnintroductioncombinatorialtesting. pdf

Testing Strategy 4

e Copertura di tutte le combinazioni di classi di equivalenza

e Numero di casi di test pari alla produttoria delle cardinalita dei quantitativi di
classi di equivalenza di ogni classe

e Equivale al caso t-way con t=numero di input

Test case TC1 TC2 TC3 TC4 TC5 TC6
Giorno 1 0 35 1 0 35
Mese gennaiogennaio gennaio brumaio brumaio brumaio
Anno 1980 1980 1980 1980 1980 1980
Test case TCY TC8 TC9 TC10 TC1l1 TC12
Giorno 1 0 35 1 0 35
Mese gennaiogennaio gennaio brumaio brumaio brumaio

Anno 1492 1492 1492 1492 1492 1492

Ingegneria del Software 2

38

Discussione

e I| testing di tutte le combinazioni ¢ il testing «esaustivo»
relativamente alle classi di equivalenza

e Testa qualsiasi difetto che scaturisce da una specifica combinazione di classi di equivalenza

e Il numero di test da eseguire aumenta con la produttoria del numero di classi di
equivalenza

e Adatto per sistemi critici nei quali si privilegi totalmente |'efficacia nei confronti
dell’efficienza

Ingegneria del Software 2 39

Realizzazione con JUnit

e Implementiamo in Juniti test corrispondenti a queste tre
possibili test suite:

e MinimaCopertura.java
o CoperturaAdiacente.java
o CoperturaAdiacenteDettagliata.java

e Si puo notare come alcuni test non siano realizzabili (il codice
Junit non compilerebbe), ad esempio quelli con input testuali
laddove sono richiesti numerici (es. «duemila»)

Valutiamo quanti casi di test trovano problemi

Ingegneria del Software 2 Testing Black Box 40

Generazione automatica di test ﬁ
combinatori

Combinatorial Testing Toel

Uno strumento free per la generazione di test
combinatori e Tobias, dell’'Universita di Grenoble

— A differenza del precedente web based, non ha limitazioni sul numero di classi ma
realizza solo testing all combinations

Per utilizzare Tobias e sufficiente scrivere codice di
test nel quale al posto dei valori € posto, tra
parentesi quadre, |'elenco di valori possibili

— Inviando un file cosi formattato a Tobias, esso generera

test che coprono tutte le combinazioni e inviera il file di
test via posta elettronica (in formato Junit)

Ingegneria del Software 2 41

http://tobias.liglab.fr/

Generazione automatica di test
combinatori

« Uno strumento off-line (in ambiente Microsoft)

« PICT (Pairwise Independent Combinatorial
Testing tool)

« Utilizzabile da linea di comando
« Oppure con un generatore guidato in excel

https://osdn.net/projects/pictmaster/releases/

Ingegneria del Software 2

42

http://download.microsoft.com/download/f/5/5/f55484df-8494-48fa-8dbd-8c6f76cc014b/pict33.msi

Automated test case generation with combinatorial techniques

(Universita de La Mancha)

Strumento web based, di molto semplice utilizzo:
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp

Automated test case generation with combinatorial techniques

Last update: June 2, 2016. There are 538 registered users.

g L sau s ascuean

email

password

Login

Recover password Return to index

HPIease note that the use of some algorithms (All combinations, AETG, Costly pairwise, PROW, Customizable pairwise and Random) with more than 4 sets requires to be registered.

You can get an account signing-in here

Upload table of variables | Scegli file | Nessun file selezionato

See here an example of a variables' file.
It is strongly recommended you read the user's manual

Submit |

Algorithms

Data

® All combinations (exponential cost)
= Each choice (very low cost)

) Antirandom (exponential cost

) Comb (lineal cost

 Genetic

- Costly pairwise (exponential cost)
0 AETG (polynomial cost)

' PROW (polynomial cost)

) Customizable pairwise (exponential cost)
' Bacteriologic

~ Random (lineal cost

Execute I

Add set | Addrow | Clear |

P1 | P2 | P3

[gennaio

[febbraio

[marze

[aprile

[maggio

[giugno

[agosto

[settembre

[nod

|-:Ii-:-en‘|:\ e

|
|
|
|
|
|
[lugtio |
|
|
|
|
|
|

| [prumaio

Expression to generate test cases:

/* This is an example of a template to generate test cases.
* Take a look to the wvariable's file example to learn more.

est

[

public wvoid testSequenceTCHNUMBER()
{ String s = CalendaricBugl.calend(#[P1], "#[P2]", #[P3]) :
assertEquals (s, "Exrrore");

=

Ingegneria del Software 2

43

Output generato

Casi di test coerenti con il formato imposto

/* This is an example of a template to generate test cases.
* Take a look to the variable's file example to learn more. */

@Test
public wvoid testSequencel()
{ 5tring s = CalendaricBugl.calend(-1, “gennaio"”, 1%@8) ; assertEquals{s,"Errocre™);

}

/* This is an example of a template to generate test cases.
* Take a look to the variable's file example to learn more. */

@Test
public woid testSequence2()
{ 5tring s = CalendaricBugl.calend(-1, "agesto", 20@8) ; assertEguals(s,"Errore™);

}

Ingegneria del Software 2 Testing Black Box

44

The Oracle Problem

La generazione automatica di test combinatori non

comprende la definizione di oracoli
« Dovrebbero essere aggiunti a mano, aumentando i costi di test
fino a renderlo impraticabile!

La tecnica ritorna praticabile in alcuni specifici problemi:
 crash testing: I'oracolo (valutabile in maniera totalmente automatica)
consiste nella valutazione della terminazione regolare del

programma
* In realta ci sarebbe da considerare anche il caso di non terminazione ...

« occorrenza di situazioni invarianti di fallimento (ad esempio violazioni
della sicurezza, della privacy, eccessivo uso di memoria, violazioni di
regole di usabilita, etc.)

Ingegneria del Software 2

45

The Oracle Problem

 Model Based Testing
 La descrizione del sistema software in termini di modello consente di testare la

consistenza dei comportamenti previsti dal modello con quelli riscontrati
» Possibilita di generare automaticamente oracoli a partire dalle specifiche

« Regression Testing
« L'oracolo di ogni test automaticamente generato coincide con |l
risultato ottenuto eseguendo lo stesso test su di un altro sistema,
rispetto al quale stiamo valutando la non regressione

« Assertion based Testing
« Si esprimono delle asserzioni all'interno del codice che

coincidono con dei comportamenti attesi
* |l fallimento dell’asserzione e paragonabile ad un crash

Ingegneria del Software 2 46

Tecnica dei valori limite (boundaries)

e Una variante alla tecnica delle classi di equivalenza
consiste nel considerare anche i valori limite
(boundaries)

e In pratica, vengono specializzate delle ulteriori classi di
equwalenza valide e non valide corrispondenti ai valori
limite degli insiemi di validita dei dati

e Si applica efficacemente a sottoinsiemi di insiemi
continui (interi, reali), in particolare ad intervalli

e Sono boundary values anche quei valori per i quali si
suppone possa esserci un comportamento particolare
rispetto a qualche operazione

— Ad esempio il valore zero per un intero che potrebbe rientrare
in una divisione o per un puntatore

Ingegneria del Software 2 47

Casi tipici di boundaries

e Se la condizione sulle variabili d'ingresso specifica:

— intervallo (chiuso) di valori

* Boundary classes: minimo dell’intervallo, massimo dell’intervallo (classi
valide), valore leggermente inferiore al minimo, leggermente superiore
al massimo (classi non valide)

— Unione di intervalli
« Ci sono boundary classes per ogni estremo di ogni sottointervallo

— Valori interi

« Una boundary class, indipendentemente dalle specifiche, e l'insieme
{0}; un’altra, se non altrimenti considerata, € la classe dei numeri
negativi, e cosi via

Boundary Values

1 99 100 101 199 200 201

Equivalence partitioning

Ingegneria del Software 2 48

Esempi di boundary classes

e Per l'input giorno:
« {giorno <<0}: valore inferiore dell’estremo inferiore dell'intervallo
« {0}: valore leggermente inferiore dell’'estremo inferiore dell’intervallo e anche valore nullo
« {1}: estremo inferiore
« {2}: valore leggermente superiore all’'estremo inferiore
« {giorno >>2 && giorno << 27}: valore valido lontano dagli estremi
« {27}: valore leggermente inferiore all’estremo superiore
« {28}: estremo superiore in alcuni casi
« {29}: caso critico noto
« {30}: caso critico noto
« {31}: caso critico noto
« {32}: valore leggermente maggiore dell’'estremo superiore
« {giorno >> 31}: valore superiore all’estremo superiore dell’intervallo

e Per l'input anno
« {giorno << 1582}: valore inferiore dell’estremo inferiore dell’intervallo
« {1581}: valore leggermente inferiore dell’estremo inferiore dellintervallo
« {1582}: estremo inferiore
« {1583}: valore leggermente superiore all’estremo inferiore
« {anno >> 1583}: valore superiore all’estremo superiore

(in grassetto i valori non boundary)

Ingegneria del Software 2

49

Esempi di boundary classes

e Per l'input mese:
« {mese ¢ mesi dell'anno}

« {gennaio}
{febbraio}

« {marzo}

« {aprile}

* {maggio}

- {giugno}

« {luglio}

« {agosto}

« {settembre}
« {ottobre}

« {novembre}
« {dicembre}

In alternativa si potevano considerare le classi:
{mese ¢ mesi dell’'anno}
« {mese con 31 giorni}
{mese con 30 giorni}
« {febbraio}

(in grassetto i valori non boundary)

Ingegneria del Software 2

Esempi di boundary classes

e Le tre classi hanno ora cardinalita (12, 4, 5)

e Copertura minima: 12 casi di test
e Copertura adiacenti: 12 + 4 +5-3 + 1 = 19 casi di test
e Copertura 2-way: 60 casi di test

e Copertura di tutte le combinazioni: 12 * 4 * 5 = 240 casi di test

e Per coprire casi come il 31 aprile e sufficiente il 2-way testing

e Probabilmente non copriamo il 29 febbraio di un anno bisestile, perché non
abbiamo specificato |'esistenza di anni bisestili

Ingegneria del Software 2

o1

Ulteriore suddivisione

e Per l'input anno
« {giorno << 1582}: valore inferiore dell’estremo inferiore dell’intervallo
« {1581}: valore leggermente inferiore dell’estremo inferiore dellintervallo
« {1582}: estremo inferiore
« {1583}: valore leggermente superiore all’estremo inferiore
« {anno >> 1583, divisibile per 4 ma non per 100}: anno bisestile
« {anno >> 1583, divisibile per 400}: anno non bisestile

* Non consideriamo la classe
{anno >> 1583, non divisibile per 4}: anno non bisestile
Perché abbiamo gia un rappresentante (1583)

e Ora le tre classi hanno ora cardinalita (12, 4, 6)

e Copertura minima: 12 casi di test

e Copertura adiacenti: 12 +4 + 6 —3 + 1 = 20 casi di test

e Copertura 2-way: 72 casi di test

e Copertura di tutte le combinazioni: 12 * 4 * 6 = 288 casi di test

* Per coprire il 29 febbraio di un anno bisestile abbiamo bisogno di un
testing 3-ways (all combinations)

Ingegneria del Software 2

52

Decision tables

e |e tabelle di Decisione sono uno strumento per la
specifica black-box di componenti in cui:

— A diverse combinazioni degli ingressi corrispondono
uscite/azioni diverse;

— Le varie combinazioni possono essere rappresentate come
espressioni booleane mutuamente esclusive;

— Il risultato non deve dipendere da precedenti input o output,
né dall'ordine con cui vengono forniti gli input.

e Le Tabelle di Decisione sono primariamente una
tecnica di progettazione, ma risultano utili
anche a supporto del testing

Ingegneria del Software 2

53

Costruzione della Tabella di Decisione

e Le colonne della Tabella rappresentano le
combinazioni degli input a cui corrispondono le
diverse azioni.

e Le righe della tabella riportano i valori delle
variabili di input (nella Sezione Condizioni) e le
azioni eseguibili (nella Sezione Azioni)

e Ogni distinta combinazione degli input viene
chiamata Variante.

Ingegneria del Software 2

54

Esercizio

e Scrivere la tabella di decisione relativa alla
validita di una data che tenga conto dei seguenti
vincoli:

e Aprile, giugno, settembre, novembre hanno 30 giorni

e Febbraio ha 28 giorni negli anni non bisestili, 29
altrimenti

e Sono bisestili tutti gli anni divisibili per 4 e non
divisibili per 100

e Sono bisestili tutti gli anni divisibili per 400

e Il calendario € valido a partire dal 15 ottobre 1582

Ingegneria del Software 2 55

Esempio: Validita della data del giorno

Varianti

Con Giorno
dizioni
Mese
Anno

Azioni Valida

Ingegneria del Software 2

Esempio: Validita della data del giorno

Varianti
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Con Giorno | [1,28] | 29 29 {29,3 31 30 31 Any Any <15 >15 Any <1 >31 Any
dizioni 0}
Mese | Any 2 2 #2 {13, | 2 e{2, | Any | <10 | 10 10 >10 | Any | Any | =
5,7,8, 4,6,9 [1,12]
10,12 11}
b
Anno >158 >158 | >158 | >158 >158 Any Any <158 | 1582 | 1582 | 1582 | 1582 | Any Any Any
2 2 2 2 2 2
Bises | Non
t bises
t
Azioni | Valida | Si Si No Si Si No No No No No Si Si No No No
Ingegneria del Software 2 57

Varianti Esplicite ed Implicite

e Nella tabella, I'operatore logico fra le condizioni e di
And;

e Nell'esempio precedente abbiamo 23 condizioni sugli

input e 15 varianti significative, ma in generale esistono

piu combinazioni possibili.

Quante combinazioni di condizioni sono in generale

possibili?

— Per n condizioni, 2" varianti (ma non tutte sono plausibili)- sono
dette varianti implicite.

— Il numero di varianti esplicite (significative) e in genere
minore!

Ingegneria del Software 2 58

Discussione

e] test possono essere generati automaticamente dalle
tabelle di decisione

e E anche gli oracoli, se abbiamo riempito la riga delle actions

e Ci sono framework che supportano la scrittura di tabelle di decisione, la
generazione, esecuzione e valutazione dei casi di test, specialmente a
supporto di attivita di testing di accettazione

e Fithesse:

Le tabelle di decisione hanno la massima complessita in termini di
sforzo necessario alla loro progettazione ma la massima efficacia
ed efficienza

e Tenuto conto degli ulteriori vincoli definiti, la loro efficacia & pari a quella di
un testing combinatoriale con 8 * 8 * 4 = 256 casi di test

Ingegneria del Software 2 59

http://www.fitnesse.org/

Limiti delle tecniche combinatorie

e Si tratta pur sempre di tecniche Black Box

e Cerchiamo di coprire tutti e soli i comportamenti attesi a partire dalle specifiche, per I'unita sotto
test

e ['estensione verso attivita di testing di componenti piu
complessi non e banale

e Nell'ambito di testing di sistemi interattivi, riveste importanza /ordine di inserimento degli input, per
cui non ¢ piu vero che tutte le combinazioni sono eseguibili

e Nell'ambito di sistemi real time, riveste importanza I'istante di inserimento degli input. Listante pud
essere un valore continuo, che dobbiamo discretizzare in un insieme di classi limitate

o All'aumentare della complessita del sistema sotto test, il
testing combinatorio diventa rapidamente impraticabile,

rendendo necessario il ricorso a tecniche euristiche di
riduzione

¢ Random Testing
e Priority Testing

Ingegneria del Software 2

60

Altro esempio

e Una condizione di validita per un input password
e che la password sia una stringa alfanumerica
di lunghezza compresa fra 6 e 10 caratteri.

e Una classe valida CV1 e quella composta dalle
stringhe di lunghezza fra 6 e 10 caratteri.

e Due classi non valide sono:
e CNV2 che include le stringhe di lunghezza <6
e CNV3 che include le stringhe di lunghezza >10

Ingegneria del Software 2 Testing Black Box 61

Classi di equivalenza dipendenti da precondizioni

e A volte non & possibile determinare staticamente le classi di
equivalenza. Esempio: un sistema accetta password di tipo stringa.
Classi di equivalenza possono essere:

— Classi valide:
« CE1: PASSWORD corrispondente ad un utente che ha diritto d’accesso
— Classi non valide:

 CE2: PASSWORD corrispondente ad un utente che non ha diritto
d’accesso

 CE3: PASSWORD vuota

* Nella descrizione dei casi di test bisogna quindi tener conto di
precondizioni:

Precondizione Input Output Atteso

‘pippo’ ha diritto d'accesso pippo ‘Accesso consentito’

‘pluto’ non ha diritto d’accesso pluto ‘Accesso non consentito™
Stringa vuota ‘Errore’

Ingegneria del Software 2 Testing Black Box 62

Traccia di tesina di approfondimento teorico/pratico

e Studio di algoritmi e strumenti a supporto del testing
combinatoriale

e Confronto di strumenti / tecniche esistenti

o Proposta/realizzazione di uno strumento di testing

combinatoriale
e Nel contesto di testing di interfaccia utente / sistema / unita /...
e (Con tecnica eventuale per la generazione dell’oracolo

e Con eventuale utilizzo di uno strumento per la generazione delle classi di
equivalenza (ad esempio dizionario dei dati)

Ingegneria del Software 2 Testing Black Box

64

Appendice

Ingegneria del Software 2 Testing Black Box

Generazione dei Test

e Nota (dalla fase di progettazione) la Tabella delle Decisioni
possibili strategie per la generazione dei casi di test:
— Test suite che copre di tutte le varianti esplicite
— Test Suite che copre tutte le varianti implicite

* Puntualizzando:
« Le tabelle di decisione sono primariamente una tecnica di progettazione di dettaglio

 Partendo dalle tabelle di decisione € possibile generare automaticamente casi di test
« E’possibile generare i casi di test anche prima di implementare la soluzione

A partire dall’idea delle tabelle di decisione € stata sviluppata la teoria delle Fitness
Table ed in particolare Fitnesse

Ingegneria del Software 2 Testing Black Box

66

Fitnesse @)FitNesse

Fitnesse € un software organizzato in forma di wiki, che fornisce due funzionalita
di base:

e Scrivere test di accettazione (o di unita) in maniera collaborativa
e Tramite tabelle di decisione

e Funziona per programmi java

e Eseguire test in maniera automatica

Fitnesse si puo scaricare come standalone da:
http://www.fitnesse.org/FitNesseDownload
E puo essere eseguito come Web server digitando, ad esempio:
java -jar fithesse-standalone.jar —p 8001

Fitnesse si mostra come un server di pagine wiki, che possono essere
lette ed editate

All'interno di pagine wiki che seguono un template di test possono
essere presenti tabelle di decisione. Indicando un package e un
metodo, e possibile anche eseguire i test

Ingegneria del Software 2 Testing Black Box

67

Fitnesse: esempio

e Esempi presi dalla User Guide di Fitnesse:

o /FitNesse.UserGuide.TwoMinuteExample
e esempio di base

o /FitNesse.UserGuide.WritingAcceptanceTests.FixtureCode

e esempio di base ed accenno ad esempi piu complessi

@Fl-tNesse Test Tools - @FitNesse =S weEbe
[tNesse / UserGuide / TwoMinuteExample = FitNesse / UserGuide / TwoMinuteExample
) d ’ . CI Icca nd O Su TESt X Test Pages: 0 right, 1 wrong, 0 ignored, 0 exceptions Assertions: 5 right, 1 wrong, 0 ignol
A brief example. Read this one second. e g8 T ¢ 3L ehWi
e Viene eseguito un metodo Test System: slim:fitnesse.slim.SlimService
A One-Minute Description ..
del package eg " DeCISIOn A One-Minute Description
An Example FitNesse Test ..]
If you were testing the division function of a calculator applicaticn, you migh b Che prende I n I n DUt d ue An Exa m p |e FI t N esse TeSt
ast) - - H If you were testing the division function of a calculator application, you might like to see some exar
In FitNesse, tests are expressed as tables of input data and expected outp pa ra metrl denom I na.tl 25t
o Division n u merator e de nom I nator In FitNesse, tests are expressed as tables of input data and expected output data. Here is one wi
numerator denominator quotient? . EgBinsaR
10 5 50 (] Che dovre bbe da re I n numerator denominator quetient?
e N e output il parametro e Im
E . denominato quotient G
100 4 33 Py In Verde i test Che hanno 100 4 [25.0] Expected [331

restituito il risultato
atteso, in rosso gli altri

Il test e stato eseguito dal motore Slim che ha riportato il risultato nella stessa web page da cui e stato
chiamato

Ingegneria del Software 2 Testing Black Box 68

Confronto tra classi di equivalenza e tabella delle decisioni

e La tecnica di copertura della tabella delle decisioni puo
essere abbinata ad una tecnica di copertura delle classi di
equivalenza

— La tecnica di copertura delle tabelle di decisione si concentra nel
provare tutte le combinazioni valide

— La tecnica di copertura delle classi di equivalenza si concentra nel
provare le casistiche di dati non validi
* In questo caso potevamo ottenere la stessa efficacia ottenuta con

100000 casi di test combinatori eseguendo non piu di 20 casi di test
— Ma dovevamo avere una conoscenza profonda del problema risolto dall’algoritmo!

Ingegneria del Software 2 Testing Black Box 69

Altro esempio

e Al termine del campionato di calcio di serie A del 2011,
le prime due squadre si qualificano direttamente alla
Champions League, mentre la terza classificata deve
sottoporsi ad uno spareggio: se lo vince si qualifica per

a Champions League, altrimenti per |'Europa League

e |a 4° e la 5° classificata si qualificano automaticamente
per I'Europa League, insieme con la squadra vincitrice
della Coppa Italia, qualora essa sia arrivata 6° o peggio,
altrimenti si qualifica in Europa League la 6° classificata
del campionato

Ingegneria del Software 2 Testing Black Box 70

Un esempio

Varianti
1 2 3 4 5 6 7/

Con Posizione (1°,2°) 3° 3° (4°,5°) 6° >6° >6°
dizioni

Coppa Italia Qualsiasi Qualsiasi | Qualsiasi | Qualsiasi Vincitricee | Vinta Non Vinta

[1°,6°]

Spareggio Qualsiasi Vinto Perso Qualsiasi Qualsiasi Qualsiasi | Qualsiasi

Champions
Azioni | Champions Si Si No No No No No

League

Europa No No Si Si Si Si No

League

Nessuna No No No No No No Si

COppa

Ingegneria del Software 2

Testing Black Box

71

Testing basato su Grafi Causa-Effetto

e [Grafi Causa-Effetto sono un modo alternativo per
rappresentare le relazioni fra condizioni ed azioni di una
Tabella di Decisione.

e [l grafo prevede un nodo per ogni causa (variabile di
decisione) e uno per ogni effetto (azione di output).

Cause ed Effetti si dispongono su linee verticali opposte.

e Alcuni effetti derivano da una singola causa (e sono
direttamente collegati alla relativa causa).

o Altri effetti derivano da combinazioni fra cause

esprimibili mediante espressioni booleane (con operatori

AND, OR e NOT).

Ingegneria del Software 2 Testing Black Box

73

Il Grafo Causa-Effetto per I'esempio precedente

Eta<=25 $25
Eta>=26 $50
0 Incidenti $100
1 Incidenti $200
Tra2 e 4 Inc. A $400
CDN Lettera di avviso
>=5 Incidenti Q ‘ Cancellazione polizza

A =AND, Vv =OR, == NOT

Ingegneria del Software 2 Testing Black Box 74

Grafi Causa- Effetto

e \antaggi:
— rappresentazione grafica ed intuitiva,

— E conveniente sviluppare tale grafo se non si ha gia a
disposizione una tabella di decisione

— E possibile derivare una funzione booleana dal grafo causa-
effetto (che consente di esprimere in maniera compatta tutte le
possibili combinazioni di cause)

— Puo essere usata facilmente per la verifica del comportamento
del software

e Svantaggi

— al crescere della complessita della specifica, il grafo puo
divenire ingestibile

Ingegneria del Software 2 Testing Black Box 75

Generazione dei Test

e Copertura di tutte le possibili combinazioni d'ingresso
— Puo diventare impraticabile, al crescere delle combinazioni

— Una semplificazione: si puo partire dagli effetti e percorrere il
grafo all'indietro cercando alcune combinazioni degli ingressi
che rendono vero l'effetto considerato.

— Non tutte le combinazioni possibili saranno considerate, ma
solo alcune che soddisfano alcune specifiche euristiche.
« Es. combinazione di OR di cause che deve essere vera -> Si
considera una sola causa vera per volta

« AND di cause che deve essere falsa-> si considerano
combinazioni con una sola causa falsa

Ingegneria del Software 2 Testing Black Box

76

