Verifica e Validazione del Software

Testing White Box

Ingegneria del Software 2 Testing White Box

Riferimenti

e JTan Sommerville, Ingegneria del Software,
capitoli 22-23-24 (piu dettagliato sui processi)

e Pressman, Principi di Ingegneria del Software, 5°
edizione, Capitoli 15-16

e Ghezzi, Jazazeri, Mandrioli, Ingegneria del

Software, 2° edizione, Capitolo 6 (piu dettagliato
sulle tecniche)

Ingegneria del Software 2 Testing White Box

Testing Strutturale (White Box)

e I| Testing White Box e un testing strutturale, poiche
utilizza la struttura interna del programma per ricavare i
dati di test.

e Tramite il testing White Box si possono formulare
criteri di copertura piu precisi di quelli formulabili
con testing Black Box

— Test White Box che hanno successo possono fornire maggiori
indicazioni al debugger sulla posizione dell’errore

Ingegneria del Software 2 Testing White Box

Criteri di Copertura

e Fondate sull’adozione di metodi di Copertura degli
oggetti che compongono la struttura dei programmi:

e /Struzioni — strutture controllo — flusso di controllo -...

e definizione di un insieme di casi di test (input data) in
modo tale che gli oggetti di una definita classe (es.
istruzioni, archi del CFG, predicati, strutture di
controllo, etc.) siano attivati (coperti) almeno una
volta nell'esecuzione dei casi di test

Ingegneria del Software 2 Testing White Box

Criteri di Copertura e relative Misure di Test

Effectiveness
» Criteri di selezione e Criteri di adeguatezza
e Copertura dei comandi . . i
(statement test) n.ro comandi eseguiti/

. . n.ro comandi eseguibili
o Copertura delle decisioni

(branch test) _ _
e Copertura delle condizioni ¢ N-ro archi percorsi/

(condition test) n.ro archi percorribili

e Copertura _dglle_ decisioni e
delle C°“d'z'9“' o e Nn.ro cammini percorsi/

e Copertura dei cammini n.ro cammini percorribili
(path test)

o Copertura dei cammini

indipendenti e n.ro cammini indip.

percorsi/n.ro ciclomatico

Ingegneria del Software 2 Testing White Box

UN MODELLO DI RAPPRESENTAZIONE DEI
PROGRAMMTI: il Control-Flow Graph

e]| grafo del flusso di controllo (Control-Flow Graph) di un programma P:
e CFG (P) = <N, AC, nI, nF>
dove:
<N, AC> e un grafo diretto con archi etichettati,
{nI, nF} < N, N-{nI, nF} = NsU Np
Ns e Np sono insiemi disgiunti di nodi istruzione e nodi predicato;

AC < N-{nF}x N-{nI } x {vero, falso, incond} rappresenta la relazione
flusso di controllo;

nl ed nF sono detti rispettivamente nodo iniziale e nodo finale.

eUn nodo ne Ns U {nI} ha un solo successore immediato e il suo arco uscente e
etichettato con incond.

*Un nodo neNp ha due successori immediati e i suoi archi uscenti sono etichettati
rispettivamente con vero e falso.

Ingegneria del Software 2 Testing White Box

Strutture di controllo e CFG

T i O 1. if 9
(decisione) (decisione
2. { 1 ——) 1 Falso
2. {
3. Blocco } .)
4 } Vero) . } OCCO Vero
2 . " ,
5. else
6. {
:: 7. Blocco?2

P wje

| nodi 2, 4, 6, 8 potevano anche essere omessi, dato che ad essi non corrisponde alcuna
istruzione esecutiva, nel codice eseguibile del programma.

Uno switch puo essere risolto trasformandolo (come fa il compilatore) in una serie di if else
in cascata.

Ingegneria del Software 2 Testing White Box

Strutture di controllo e CFG
O

1
1 | e——
Vero
2
while 2 1. do []
(decisione) 2. {
. { 3. Blocco
3. Blocco 4.) Vero l 3 l
4 J 3 Falso 5. while
(decisione
)
CD
4@
5
@ < Falso

Ingegneria del Software 2 Testing White Box

Ciclo For e CFG

’ 1": cond

1 Vero

:

-

for (init;decisione;cont) Falso

{
Blocco

1"": cont

[3] Falso
@

@<
Il CFG a destra esprime piu precisamente la semantica del ciclo for, cosi come viene trasformato in

codice oggetto da un compilatore C. Infatti ad ogni ciclo for corrisponde un init preventivo, una decisione
all'inizio di ogni ciclo (come in un while) e un codice di continuazione cont (ad esempio i++) da ripetere

prima di ricominciare il ciclo

DSw N

Té@@@

Ingegneria del Software 2 Testing White Box 9

procedure Quadrato;
var X, y, n: integer;

begin
1. read(x);
2. 1fx>0
then begin
3. n:=1;
4, y =1,
5. while x > 1 do
begin
6. n:=n+2;
7. y:=y+n,
8 X:=Xx-1;
end;
9. write(y);
end;
end;

Jn esempio

false

Ingegneria del Software 2

Testing White Box

11

Criteri di copertura

e Copertura dei comandi (statement test)

— Richiede che ogni nodo del CFG venga eseguito
almeno una volta durante il testing;

— e un criterio di copertura debole, che non assicura
la copertura sia del ramo true che false di una
decisione.

Ingegneria del Software 2 Testing White Box

12

Criteri di copertura

o Copertura delle decisioni (branch test)

— Richiede che ciascun arco del CFG sia attraversato
almeno una volta;

* In questo caso ogni decisione e stata sia vera che
falsa in almeno un test case

— un limite e legato alle decisioni in cui piu condizioni
(legate da operatori logici AND ed OR) sono
valutate

Ingegneria del Software 2 Testing White Box 13

Copertura delle condizioni (condition test)

— Ciascuna condizione nei nodi decisione di un CFG

deve essere valutata sia per valori true che false.
— Esempio:

int check (x),;// controlla se un intero e fra 0 e 100
int x;
{ if ((x>=0) && (x<= 200))
check= true,
else check = false,

}

TS={x=5, x=-5 } valuta la decisione sia per valori True che False, ma non
le condizioni

TS1={x= 3, x=-1, x=210} € una Test suite che copre tutte le condizioni
gma non in tutte le combinazioni possibili poiche la combinazione
false,false) non puo essere provata)

TS2={x=-4,x=300} e una Test Suite che copre tutte le condizioni ma non
tutte le decisioni (I'if € sempre falso)

Ingegneria del Software 2 Testing White Box 14

Copertura delle condizioni e decisioni

e (Occorre combinare la copertura delle condizioni in
modo da coprire anche tutte le decisioni.

o Es. if (x>0 && y>0) ...

— TS1={(x=2, y=-1), (x=-1, y=5)} copre le condizioni ma non
le decisioni!

— TS2={(x=2, y=1), (x=-1, y=-55)} copre sia le condizioni
che le decisioni!

_ TSB:{(X=21 y=1)l (X=21 y=-1)l (X=_21 y=1)(X=_11 y=_55)}
copre tutte le combinazioni di tutte le condizioni (quindi
anche tutte le condizioni e tutte le decisioni

Ingegneria del Software 2 Testing White Box 15

Nota a margine

Gli esempi precedenti riguardavano codice sorgente di linguaggi di
alto livello

In realta, il CFG reale e le relative metriche di copertura dovrebbero
essere valutate, per massimizzare la precisione, sul codice macchina
generato dal codice sorgente

— Fa eccezione il caso in cui vogliamo effettuare analisi statica, senza
testing, direttamente di algoritmi, anziche di programmi

— Per conoscere |'esatto codice macchina dobbiamo, pero, conoscere le
caratteristiche della macchina target e del compilatore

« Ad esempio, I'adozione di tecniche di ottimizzazione dei compilatori
POssono portare a variazioni dei CFG

In linguaggi come Java, € anche possibile una soluzione
intermedia, con la copertura a livello di bytecode
In conclusione, la misura di metriche di copertura sul codice di alto

livello rappresenta una approssimazione, non sempre affidabile, delle
analoghe misure sul codice eseguibile

Ingegneria del Software 2 Testing White Box

16

Cammini linearmente indipendenti (McCabe)

e Un cammino e un’esecuzione del modulo dal nodo iniziale
del CFG al nodo finale

e Un cammino si dice indipendente (rispetto ad un insieme di
cammini) se introduce almeno un nuovo insieme di
istruzioni 0 una nuova condizione

— in un CFG un cammino € indipendente se attraversa
almeno un arco non ancora percorso

e L'insieme di tutti i cammini linearmente indipendenti di un
programma forma i cammini di base; tutti gli altri cammini
sono generati da una combinazione lineare di quelli di base.

e Dato un programma, I'insieme dei cammini di base non &
unico.

Ingegneria del Software 2 Testing White Box 17

Numero di cammini linearmente indipendent

e Il numero dei cammini linearmente indipendenti di un
programma € pari al numero ciclomatico di McCabe:

- V(G)=E-N+2
e Dove E: n.rodi archiin G - N: n.rodi nodi in G
-V(G) =P+1

* Dove P: n.ro di predicati in G
— V(G) = n.ro di regioni chiuse in G + 1

e Test case esercitanti i cammini di base garantiscono
I'esecuzione di ciascuna istruzione almeno una volta

e La copertura dei cammini linearmente indipendenti
garantisce la copertura di tutti i cammini se non

consideriamo il numero di volte in cui ogni ciclo puo
essere eseguito

Ingegneria del Software 2 Testing White Box 18

Thomas J. McCabe was borm in Central Falls,
RI, on Movember 28, 1941, He received the
A.B., degree in mathematics from Providence
College, Providence, Rl and the M.S. degree in
mathematics from the University of Connecti-
cut, Storrs, in 1964 and 1966, respectively.

He has been employed since 1966 by the
Department of Defense, National Security
Agency, Ft. Meade, MD in various systems pro-
gramming and programming management posi-

' tions. He also, during a military leave, served as

a Captain in the Army Security Agency engaged in large-scale compiler

implementation and optimization. He has recently been active in soft-

ware engineering and has developed and taught various software related

courses for the Institute for Advanced Technology, the University of
California, and Massachusetts State College System,

Mr, McCabe is 8 member of the American Mathematical Association,

http://www.mccabe.com/

Ingegneria del Software 2

Complessita ciclomatica
del programma e 3

Esempio

V(G)=3 =>3 cammini
indipendenti

cl= 0-1-2-4-5
c2= 0-1-2-3-2-4-5
c3=0-1-5

Ogni nuovo cammino e ottenuto
negando una decisione di un
cammino precedente e coprendo,
quindi, almeno un nuovo arco

Ingegneria del Software 2

Testing White Box

20

Criteri di copertura dei cammini

e Copertura dei cammini (path test)

— spesso gli errori si verificano eseqguendo cammini che includono
particolari sequenze di nodi decisione

— non tutti i cammini esequibili in un CFG possono essere eseguiti
durante il test (un CFG con loop puo avere infiniti cammini
eseqguibili)

e Copertura dei cammini indipendenti

— i si limita ad esequire un /insieme di cammini indipendenti di un
CFG, ossia un insieme di cammini in cui nessun cammino &
completamente contenuto in un altro dellinsieme, ne € la
combinazione di altri cammini dell'insieme

— ciascun cammino dell'insieme presentera almeno un arco non
presente in qualche altro cammino

— il numero di cammini indipendenti coincide con la complessita
ciclomatica del programma

Ingegneria del Software 2 Testing White Box 21

Relazioni tra i criteri di copertura
e | a copertura delle decisioni implica la copertura dei nodi

e |a copertura delle condizioni non sempre implica la
copertura delle decisioni

e |La copertura dei cammini linearmente indipendenti
implica la copertura dei nodi e la copertura delle
decisioni

e La copertura dei cammini € un test ideale ed implica
tutti gli altri

Ingegneria del Software 2 Testing White Box

22

Problemi

E’ possibile riconoscere automaticamente quale cammino
linearmente indipendente viene coperto dall’'esecuzione di un dato
test case

E’" indecidibile il problema di trovare un test case che va a coprire
un dato cammino

— Alcuni cammini possono risultare non percorribili (/infeasible),
ma non €, in generale, possibile sapere se un cammino &
percorrlblle

La copertura dei cammini linearmente indipendenti non garantisce
da errori dovuti, ad esempio, al numero di cicli eseguiti, per i quali
sarebbe necessaria la copertura di tutti i cammini, che pero
rappresenta il testing esaustivo!

— La copertura dei cammini linearmente indipendenti coincide con la
copertura dei cammini in un programma senza cicli o in un
programma in cui ogni ciclo e percorso sempre lo stesso numero di
volte

Ingegneria del Software 2 Testing White Box

EclEmma

« Una estensione Eclipse per valutare la copertura del codice

 Per eclipse:
« Attualmente integrata in alcune versioni (ad esempio Eclipse Oxygen)

Istrumenta I'applicazione solo al tempo della valutazione della
copertura

« FE’in grado di calcolare la copertura complessiva di piu sessioni
« Si basa su Emma, tool open source per la misura della copertura

. Si attiva aprendo l'opzione Coverage as nel menu contestuale dell’applicazione da testare
. | risultati si possono leggere dal menu contestuale (Properties/Coverage) o da apposita
finestra

Ingegneria del Software 2

http://eclemma.org/
http://update.eclemma.org/

EclEmma

« Emma registra tutte le esecuzioni di ogni istruzione
del bytecode

» Associa le istruzioni di bytecode alle corrispondenti
istruzioni nel codice sorgente

* (Genera report della copertura delle righe di codice
sorgente

Il valore di copertura puo essere:

« 1: tutte le istruzioni del corrispondente bytecode sono state
coperte

* Frazionario, compreso tra O e 1: solo una parte delle istruzioni
sono state coperte

* 0:nessuna istruzione del bytecode e stata coperta

Ingegneria del Software 2

EclEmma

 In particolare, puo essere generato un report che
«colora» le righe del codice sorgente:

. In verde: tutto il bytecode coperto
. In giallo: copertura parziale
. In rosso: non coperto

else if [(mes=="settembre")m=9;
elsge if [(mz=="ottobre") m=10;
elze if (ms—"novembre")m=11;
else if [(ms—"dicembre")m=12;

if (d<l || d»31 || m==0 || a<=1582 || a>2016)
return "Errore”;

Boolean bisestile= (a%4==0):

if (bisestile && a%l00=—0 && a%400'=0)
bisestile=fal=se:

if ((m=—=2 && d>29) || (m=—2 && d==29 && 'bisestile))
return "Errore";

if ((m==4 || =6 || m=2 || m==11) && d>30)

Gl Problems @ Javadoc [, Declaration <7 Search [El Console & Progress Juy Generation Results |3J Metries g Recorder [Jj; De:

Calendario_Bug (13-ott-2016 15.50.46)

Element Coverage Covered Instructio.. Missed Instructions Total Instructions
d I 827% 210 a4 254
v [Farc = 827% 210 4 254

~ {1 calendario == 827% 210 44 254
w m CalendaricBug1.java e 827% 210 44 254
G‘;!. CalendaricBugl = 27% 210 44 254

Ingegneria del Software 2

Altri strumenti per la misura della copertura

e Emma () € lo strumento su cui si basa EclIEmma. E’
eseguibile da linea di comando, funziona a livello di JVM senza istrumentazione
del codice sorgente. Tra le funzionalita messe a disposizione a linea di comando,
la possibilita di fondere la copertura ottenuta con due sessioni di esecuzione e la
generazione di un report html con tutto il codice coperto

o Codecover (), vedi Appendice

e E’in grado di fornire informazioni piu dettagliate (ad esempio il numero di volte in cui
una riga € stata esequita, il numero di volte che un ciclo & stato eseguito ed altro)

e (Cobertura (http://cobertura.github.io/cobertura/)

Altri strumenti (per Java):

Nota: spesso i tool di copertura sono incompatibili tra loro, poiché introducono molteplici istrumentazioni

Ingegneria del Software 2 Testing White Box 27

http://emma.sourceforge.net/
http://codecover.org/index.html
http://en.wikipedia.org/wiki/Java_Code_Coverage_Tools

Traccia di tesina di approfondimento teorico/pratico

e Una funzionalita quasi mai messa a disposizione dagli strumenti di misura
della copertura € il conteggio di quante volte sia stata coperta una riga di
codice e da quali test.

e Tale misura puo essere molto utile per valutare la difficolta di copertura delle righe di
codice e la ridondanza dei test

e L'unico strumento che fornisce tale dato € codecover, ma non € aggiornato alle ultime
versioni di Java

e Cercare 0 realizzare strumenti per la misura della copertura che

forniscano anche report sul numero di volte in cui ogni riga e stata

coperta

e La realizzazione puo basarsi anche sul riutilizzo di strumenti esistente come emma e
sull’analisi dettagliata dei loro risultati

e Un primo strumento valutabile e Atlassian Clover

Ingegneria del Software 2 Testing White Box 28

Esercizio

e Per la classe calendar, visualizzare il livello di copertura
ottenuto con i test JUnit progettati in precedenza

e Scrivere ulteriori casi di test in grado di coprire
totalmente, secondo i diversi criteri di copertura studiati,
gli elementi del metodo calend

o Sfruttare, eventualmente, le informazioni di copertura
per trovare i difetti relativi agli eventuali
malfunzionamenti trovati

Ingegneria del Software 2 Testing White Box 29

Testing White box e valori di test

e Per sfruttare al meglio le potenzialita
del testing white box dovremmo
pensare di creare test a partire dal
codice.

e Ad esempio, leggendo il codice del
calendario, i seguenti valori di test
sembrerebbero da provare:
e Giorno: <1, >31, ==29, >29, ==30
e Mese: Gennaio, Febbraio, marzo, aprile,
maggio, giugno, luglio, agosto,
settembre, ottobre, novembre,
dicembre

e Anno: <=1582, >2016, %100==0,
%400==

public static String calend(int d, String ms, int a)
{

int m=0;

if (ms=="Gennaio") m=1;

else if (ms=="Febbraio") m=2;
else if (ms=="marzo") m=3;
else if (ms=="aprile")m=4;

else if (ms=="maggio")m=5;
else if (ms=="giugno")m=6;
else if (ms=="luglio")m=7;

else if (ms=="agosto")m=8;
else if (ms=="settembre")m=9;
else if (ms=="ottobre") m=10;
else if (ms=="novembre")m=11,
else if (ms=="dicembre")m=12;

if (d<1 || d>31 || m==0 || a<=1582 || a>2016)
return "Errore";

Boolean bisestile= (a%4==0);

if (bisestile && a%100==0 && a%400!=0)
bisestile=false;

if (m==2 && d>29)||(m==2 && d==29 && !bisestile))

return "Errore";
if ((m==4]| m==6 || m==9 || m==11) && d>30)
return "Errore";

if (m<=2)

m=m+12;
a-;

intfl=a/4;

intf2=a/ 100;

intf3 =a/400;

intf4=(int) (2*m + (.6 * (m + 1)));
intfs5=a+d+1;

intx =f1-f2+f3+f4+f5;
intk=x1/7;

intn=x-k*7;

if (n==1) return "Lunedi";

else if (n==2) return "Martedi";
else if (n==3) return "Mercoledi";
else if (n==4) return "Giovedi";
else if (n==5) return "Venerdi";
else if (n==6) return "Sabato";
else if (n==0) return "Domenica";
else return "Errore";

}

Ingegneria del Software 2 Testing White Box

30

Considerazioni

e Utilizzando casi di test ottenuti dal codice:

e Si scoprono combinazioni nuove, quali I'importanza degli anni il cui valore
divisibile per 400 e per 4

e Si scoprono combinazioni inutili quali Gennaio e Febbraio scritti erroneamente
con le maiuscole (la mancata copertura del codice avrebbe gia dovuto
condurci a correggere i due bug)

e Non troviamo invece i valori gennaio e febbraio (a causa di
due bug), per cui li proveremmo solo con approccio black
box

e Purtroppo non scopriamo |'importanza del mese di febbraio,
poiché i controlli sono fatti sulla variabile intera m e non
sullinput stringa ms ... dobbiamo trovare il modo di metterli
in relazione

Ingegneria del Software 2 Testing White Box 31

Traccia di tesina di approfondimento teorico/pratico

e Strumenti di analisi statica del codice possono aiutarci a progettare casi
di test white box

e Uno strumento molto potente ed estendibile che supporta I'analisi del
codice con finalita di test white box e Java Path Finder

 http://babelfish.arc.nasa.gov/trac/jpf

e Una possibile tesina consiste nello studiare Java Path Finder, valutarne
estensioni esistenti in grado di supportare il testing white box ed
eventualmente svilupparne altre

Ingegneria del Software 2 Testing White Box 32

Appendice

Ingegneria del Software 2

2\
CodeCover

e CodeCover € un plug-in open source per Eclipse
realizzato dall’'universita di Stoccarda e reperibile
a:

e Consente di valutare metriche di copertura

— CodeCover measures statement, branch, loop, term
coverage (subsumes MC/DC), question mark operator
coverage, and synchronized coverage.

e Scritto per Java e Cobol

e Si puo utilizzare sia in modalita standalone che
sotto Eclipse

Ingegneria del Software 2 Testing White Box 34

http://codecover.org/index.html

CodeCover per Eclipse

e Puo essere installato semplicemente
aggiungendolo come plug-in aggiuntivo
reperibile all’indirizzo:

e Un tutorial d’esempio e reperibile all'indirizzo:

Ingegneria del Software 2 Testing White Box

35

http://update.codecover.org/
http://codecover.org/documentation/tutorials/how_to_complete.html

CodeCover Features

e Puo misurare tanto la copertura per esecuzioni di
un‘applicazione per la quale sia stato attivato
preventivamente il monitoraggio, sia per
esecuzioni di test case scritti con Junit

Mostra molte statistiche riguardanti I'esito dei
casi di test e consente di generare report HTML
con tali risultati

Ingegneria del Software 2 Testing White Box 36

Mini Tutorial per CodeCover 1/5

800

Properties for SimplelavaApp

. type filter text

o Abilitare CodeCover tra resouree

Builders

le proprieta del G

Java Build Path
prog etto b Java Code Style
p Java Compiler
- Java Editor

— Causa l'instrumentazione javadoc Location

Project References

del bYtECOde Refactoring Histor

Run/Debug Sett

 Nel menu contestuale
relativamente ad ogni
package/file, abilitare la
misura

|-:J |

CodeCaover e

E Enable CodeCover
Select the coverage criteria for the project:

El BranchCoverage
E[ConditionCoverage
El LoopCoverage

E[StatementCoverage

MO
= <}==5 =
¥ =2 simplelavaApp
v [src
v {4 org.codecover.simplejavaapp
b [L Simple)avaApp.java
b L org.codecover.simplejavaapp.controller
v i org.codecover.simplejavaapp.model
b [1i AppFile.java
b [L AppModel java
b [L Book.java
b L org.codecover.simplejavaapp.view
b =, JRE System Library [J¥M 1.5.0 (MacOs X Default)
b (= codecover
B = icons
& 3 s ALaID
J

Ingegneria del Software 2 Testing White Box

Mini Tutorial per CodeCover 2/5

)

¢ Ne”e proprleté Create, manage, and run configurations
del profilo di = wn e ostestin)
esecuzione

pr

abilita re = :l =l . | Mame: Simple Java App CodeCover
COdeCOVEF e e © Majn]hlhﬁrgumentsl!i]ul{.v Classpath |5 Sourcelﬂl Environment | = Common EndeCmr]
o C@ECMF HHF”"} ™ Run with CodeCover
& Eclipse Application
- Eil Java Applet
e Abilitare da v D dppicatn
Windows/Show | s
View/Other le | %o amon
varie view di — - -
COd ecover: Filter matched B of 8 items
- TeSt _ @ (Close) (Run)
Sessions
— Coverage

— Correlation

Ingegneria del Software 2 Testing White Box 38

Mini Tutorial per CodeCover 3/5

° Per Conosce re Create, manage, and run configurations @
la copertura

= '.: u = -:{, -
1 S ; Mame: AppControllerTest |Unit 3
ragglunta Con (" type filter text) | | |1_ |ﬁ | |
1 h!Tg!]HF Arguments | % Classpath | = JRE| & Source Environment| T Commaon
’gest case Junit |, e Cotecoer essemen .| @ un s
== App erTest JUnit
e SUffICIente =" Appcﬂﬂtrﬁ'leﬁ&ilJUﬂi[4 Project'_ 5|mp[ejavaﬁmp ': Browse...

Cre a re u n @ Eclipse Application - -
Test class: codecover.simplejavaapp.controller AppControllerTest [Search...

= Java Applet

pro-ﬁ IO di ¥ [T] Java Application

L2] Simple Java App CodeCaover () Run all tests in the selected project, package or source folder:

esecuzione dei | nu Search-
test Sotto & O5GI Framework
CodeCover
M easu rement "1 Keep JUnit running after a test run when debugging

for JUnit ¢ s

Test runner: | JUnit 3 b-!-f

| = Apply Y Revert

Filter matched 10 of 10 items

@) (Close) (Run)
-

Ingegneria del Software 2 Testing White Box 39

Mini Tutorial per Yate —

Report Ceneration

COd ecover 4/5 Choose a template for the coverage result reporting and report destination folder

Export type and destination:

Template: [de;‘release.-freport—templalesfHTML_Reporl_hierarchic.xmﬂ] (Browse... \l

e Per esportare |

risultati in HTML e S ————

ff. - t t. I - Export the coverage results of a test session
- - - Test Session Container: | SimpleJavaApp Nov 5, 2007 3:53:18 PM f :!
I I W I Za rd d I Available Test Sessions:

W livenotificationrun (" Select All)

esportazione in Comsieaal)
File/Export e

2] Export type and destination:
Type: (Report } :1
Destination: /Users/Markus/Desktop/SimplejavaAppReport " Browse)
@ " <Back) f Next >) Finish [Cancel)

Ingegneria del Software 2 Testing White Box 40

Mini Tutorial per CodeCover 5/5
T ReSE o TR

e |a copertura
delle righe del
codice puo
essere vista
anche
direttamente
sul codice

e ROSSO: non
coperta

o Giallo: coperta
parzialmente
(decisione)

e \erde: coperta

private final class AppViewlListener implements ViewListener {

/.0

* (non-Javadoc)
-

. java.lang.String, java.lang.0bject)
./

public void update(ViewEvent viewEvent, String fileld, Object args) {

org.codecover,simplejavaapp.view.AppView.VienlListener#update{org.codecover.simplejavaopp.view.Ap

Tea >

Ingegneria del Software 2

Testing White Box

41

Google codePro Analytix”

CodePro Analytix ®

O

e Plug-in multifunzionale per Eclipse offerto da Google

e Scaricabile direttamente da:

e Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

e Tutorial e documentazione accessibili da:
e https://developers.google.com/java-dev-tools/codepro/doc/

Ingegneria del Software 2 Testing White Box 42

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

Features

« CodePro Analytix offre features relative a:
» Analisi del codice
« (Generazione automatica di casi di test JUnit
 Metriche di qualita del prodotto
» Misura della code coverage
« Costruzione del grafo delle dipendenze

Ingegneria del Software 2 Testing White Box

Code Coverage con CodePro

« CodePro fornisce funzionalita per la misura
automatica della copertura di codice in termine
di righe, blocchi, metodi, classi ottenuta a
seguito dell’esecuzione del main oppure di casi
di test Junit

« CodePro si basa su Emma (cosi come EclEmma)

« E’in grado di generare report dettagliati della
copertura ottenuta

Ingegneria del Software 2 Testing White Box

Utilizzo di Code Coverage CodePro

A Audit Code

1. Dato un progetto, instrumentare il codice @ |2 #scouns..
supporto della misura, scegliendo I'apposita 5o
opzione (Instrument Code) nel menu

Ju Generate Factory Classes

contestuale CodePro Tools e
« L'opzione Uninstrument consente di togliere T frehee epencences
It = #5 Uninstrurnent Code
I'instrumentazione -

% Inskrument Code

2. Eseqguire il progetto normalmente (anche Seolre

. . . Load Solution
tramite casi di test) =
0l fudit Code
« In alcuni casi € necessario eseguire il progetto #3 udit Code Using. .
tramite Ilopzione Run COde Coverage |:ﬁ|CnmputeMetri-:s

|:ﬁ| Campute Metrics Lsing...

3 " Ap ri re Ia VieW d eno m i nata COd ecove rag e Jur Generate Factory Classes

Ju Generate Test Cases
"@ Repair Javadoc

ﬂ #nalyze Dependencies

Ingegneria del Software 2 Testing White Box

a Explore

Utilizzo di Code Coverage CodePro

R e e e
Vengono File Edit Source Refactor Navigate Search Project CodePro Commands Run Window Help
mostrate Ie rﬁ'%‘%‘? ‘ED(J'E"E& GrukrH-G-QrES VBV §7 B e I It R R e Quick Access ﬁ|'¢?lavaEEESTAN %’JavaScnp{ 3. Debug

righe coperte
(verdi), non
coperte (rosse)
, parzialmente
coperte
(gialle).

Nel caso di
righe
corrispondenti
a piu di una
riga del
bytecode, un
numero di |
pari alle
avvenute
coperture e
visualizzato.

plorer gt MUnit 52
SR EE T

Finished after 0,38 seconds

Runs: 192/192 B Errors: 0 B Failures: 1

F EH calendario.testCalendario [Runner JUnit 4] (01755 =
EE testGiomaDellaSettimanal (0,029 <) B
EE testGiornoDellaSettimana2 (0,000 <)
o] testMain2 (0,000 5)
¢E] testMaind (0,001 5)
£ testValidal (0,000 5]
£ testalida2 (0,000 5]
£ testValidad (0,000 5)

o] testValidad (0,000 5]

£ testCalend (0,000 5)

FE] testCalend? (0,068 5)

£ testConvertl (0,000 5)

B! testConvert? (0,000 5) W
£} testConvert3 (0,000 5)

£ testConvertd (0,000 5)

£ testConverts (0,001)

P! testConvertf (0,000 5) z

= Failure Trace

m

JQ org.junit. ComparisonFailure: expected: < [Errore]» but was:<[L
=at calendario.testCalendario.testCalend2(testCalendario java:!

[J] Calendario.java | CalendariclntegrationTesting 5
onTesting b (# src b [calendario } © Calendario b & calend(int, int, it} : String

A Uy TG MR A ST

public static boolean valida(int d, int m, int a) {

if (del || d>31 || m==D || a<=1582)
return false;

Boolean bisestile= (a¥4==0);

if (bisestile && a¥100==0 &2 a%400!=0)
bisestile=false;

if ((m==2 &8 d>29)||(m==2 88 d==29 && !bisestile))
return false;

if ((m==4 || m==6 || m==9 || m==11) &% d>3@)
return false;

return true;

h

// public static boolean yzlida(int d, int m, int a) {
/ //STUB

if (d==24 8% m==4 &% 8==2011) return true;

else if { 9 &% m==2 &% 3==2012) return true;
else if (2 88 m==4 &% 3==2011) return false;
return false;

Bl Console mm Coverage (= Test Sessions & Progress JE] Code Coverage %

=B

m

}

Bt e~ @ k%~ °=0

4 bJ CalendariolntegrationTesting (96.7%)

o Deta\\sl Hi;tory|
4 B calendario (95.7%)
4[] Calendariojava | Classes:
4 O Calendario (9673 Methods: 1/1
@ calend (1000%) Lines: 8/10
OZ convert (100.0%) Blocks: 0B
@ * giomoDellaSettimana (100.0%) Instructions: 65/72

@ ° main (1000%)
@ ¥ yalida 90.3%)

1000% |

800% |

920% |

903% |

Br——— — = —~ —

— —~ M — T _ T avvm T W ——]

EHueBEe | HE 2 & » B o

Ingegneria del Software 2

Testing White Box

Utilizzo di Code Coverage CodePro

« Nella scheda history si puo
vedere I'andamento della
copertura a seguito delle
ultime test suite eseguite

o= al
E’ possibile salvare un | .

report HTML della
copertura

Code Coverage

23710414

23710414 23710414 24710414

Date

- Class
- Method
- Line

- Block
- Instruction

public =tatic boolean wvalida(int 4, int m, int a) {

if (bisestile && a%l00==0 && a%400!=0)

Ingegneria del Software 2

Testing White Box

Avvertenze

» L'instrumentazione di Code Coverage per
CodePro Analytix e di solito incompatibile con
quella di CodeCoverage

 L'instrumentazione e incompatibile con la
funzionalita di Test Case Generation di CodePro

» Per generare test su di un codice instrumentato, va
prima deinstrumentato, poi si possono generare i
test, infine si puo instrumentarlo nuovamente ed

eseqguire i test appena generati

Ingegneria del Software 2 Testing White Box

Eclipse Control Flow Graph Generator

e E’ un‘estensione open source di Eclipse che consente di
disegnare CFG di metodi di applicazioni Java

e Puo essere installato semplicemente aggiungendolo
come plug-in aggiuntivo reperibile all‘indirizzo:

o Per utilizzarlo basta selezionare I'opzione CFG Generator
dal menu contestuale di un qualsiasi metodo

e Siintegra anche con CodeCover

Ingegneria del Software 2 Testing White Box 49

http://eclipsefcg.sourceforge.net/
http://eclipsefcg.sourceforge.net/

Mini Tutorial per CFG Generator

e E’ sufficiente scegliere CFG
Generator/ Build nel menu
contestuale di un metodo

e In alternativa, € anche possibile
generare il CFG da una sessione
di test la cui copertura e stata
salvata con CodeCover

m=m + 12

Flow Chart Generataor

MacCabe results
14-14+2=2
*Satisfied : true

Connections:

14
14

Ingegneria del Software 2 Testing White Box

50

Dr. Garbage (& Dr. Garbage

- Dr. Garbage () €
un’altra suite di strumenti open source per eclipse che sono
in grado di ricostruire il Control Flow Graph

« Per installarlo sotto Eclipse (Mars)
https:/ /sourceforge.net/projects/drgarbagetools/files/eclipse/4.5/stable

Dr. Garbage consente di ricostruire il Control Flow Graph a
tre livelli:

« A livello di source code
« A livello di bytecode
« A livello di blocchi di bytecode

Tutorial completi sono sul sito di Dr. Garbage
« http://www.drgarbage.com/howto/cfgf-tutorial/

Ingegneria del Software 2 Testing White Box

http://www.drgarbage.com/index.html

Dr. Garbage

6. inttent=0;

7. intx=7;

8. int num=0;

9. while ((tent<4)&&(num!=x)) {

10. System.out.printin("Indovina il numero :");
11. num=System.in.read();

12. tent++;

13. If (num>x)

14, System.out.printin("Un po' di menao");
15. else

16. If (Nnum<x)

17. System.out.printin("Un po' di piu™);
18. }

19. if (hnum==x)

20. System.out.printin("Bravo");

21. if (tent==4)

22. System.out.printin("Hai perso!");
23. return O;

Ingegneria del Software 2 Testing White Box

« CFGa
ivello
hytecode
nlocks

Dr. Garbage

false

CFG a
livello
bytecode

Ingegneria del Software 2

Testing White Box

