
Ingegneria del Software 2 Testing White Box 1

Verifica e Validazione del Software

Testing White Box

Ingegneria del Software 2 Testing White Box 2

Riferimenti

• Ian Sommerville, Ingegneria del Software,
capitoli 22-23-24 (più dettagliato sui processi)

• Pressman, Principi di Ingegneria del Software, 5°
edizione, Capitoli 15-16

• Ghezzi, Jazazeri, Mandrioli, Ingegneria del
Software, 2° edizione, Capitolo 6 (più dettagliato

sulle tecniche)

Ingegneria del Software 2 Testing White Box 3

Testing Strutturale (White Box)

• Il Testing White Box è un testing strutturale, poichè
utilizza la struttura interna del programma per ricavare i
dati di test.

• Tramite il testing White Box si possono formulare
criteri di copertura più precisi di quelli formulabili
con testing Black Box

– Test White Box che hanno successo possono fornire maggiori
indicazioni al debugger sulla posizione dell’errore

Ingegneria del Software 2 Testing White Box 4

Criteri di Copertura

• Fondate sull’adozione di metodi di Copertura degli
oggetti che compongono la struttura dei programmi:

• istruzioni – strutture controllo – flusso di controllo -…

• definizione di un insieme di casi di test (input data) in
modo tale che gli oggetti di una definita classe (es.
istruzioni, archi del CFG, predicati, strutture di
controllo, etc.) siano attivati (coperti) almeno una
volta nell'esecuzione dei casi di test

Ingegneria del Software 2 Testing White Box 5

Criteri di Copertura e relative Misure di Test
Effectiveness

• Criteri di selezione
• Copertura dei comandi

(statement test)

• Copertura delle decisioni
(branch test)

• Copertura delle condizioni
(condition test)

• Copertura delle decisioni e
delle condizioni

• Copertura dei cammini
(path test)

• Copertura dei cammini
indipendenti

• Criteri di adeguatezza

• n.ro comandi eseguiti/
n.ro comandi eseguibili

• n.ro archi percorsi/
n.ro archi percorribili

• n.ro cammini percorsi/
n.ro cammini percorribili

• n.ro cammini indip.
percorsi/n.ro ciclomatico

Ingegneria del Software 2 Testing White Box 6

UN MODELLO DI RAPPRESENTAZIONE DEI
PROGRAMMI: il Control-Flow Graph

• Il grafo del flusso di controllo (Control-Flow Graph) di un programma P:

• CFG (P) = <N, AC, nI, nF>

dove:

<N, AC> è un grafo diretto con archi etichettati,

{nI, nF}  N, N- {nI, nF} = NsNp

Ns e Np sono insiemi disgiunti di nodi istruzione e nodi predicato;

AC N-{nF}N-{nI } {vero, falso, incond} rappresenta la relazione
flusso di controllo;

nI ed nF sono detti rispettivamente nodo iniziale e nodo finale.

•Un nodo nNs{nI} ha un solo successore immediato e il suo arco uscente è
etichettato con incond.

•Un nodo nNp ha due successori immediati e i suoi archi uscenti sono etichettati
rispettivamente con vero e falso.

Ingegneria del Software 2 Testing White Box 7

Strutture di controllo e CFG

1. if

(decisione)

2. {

3. Blocco

4. }

1. if

(decisione

)

2. {

3. Blocco1

4. }

5. else

6. {

7. Blocco2

8. }

I nodi 2, 4, 6, 8 potevano anche essere omessi, dato che ad essi non corrisponde alcuna

istruzione esecutiva, nel codice eseguibile del programma.

Uno switch può essere risolto trasformandolo (come fa il compilatore) in una serie di if else

in cascata.

1

2

3

4

Vero

Falso

1

2

3

4

Vero

6

7

8

Falso

Ingegneria del Software 2 Testing White Box 8

Strutture di controllo e CFG

1. while

(decisione)

2. {

3. Blocco

4. }

1. do

2. {

3. Blocco

4. }

5. while

(decisione

)

1

2

3

4

Vero

Falso

1

2

3

4

5

Falso

Vero

Ingegneria del Software 2 Testing White Box 9

Ciclo For e CFG

1. for (init;decisione;cont)

2. {

3. Blocco

4. }

Il CFG a destra esprime più precisamente la semantica del ciclo for, così come viene trasformato in

codice oggetto da un compilatore C. Infatti ad ogni ciclo for corrisponde un init preventivo, una decisione

all’inizio di ogni ciclo (come in un while) e un codice di continuazione cont (ad esempio i++) da ripetere

prima di ricominciare il ciclo

1

2

3

4

Vero

Falso

1'': cond

2

3

Vero

4

1': init

1''': cont

Falso

Ingegneria del Software 2 Testing White Box 11

procedure Quadrato;
var x, y, n: integer;
begin

1. read(x);
2. if x > 0

then begin
3. n := 1;
4. y := 1;
5. while x > 1 do

begin
6. n := n + 2;
7. y := y + n;
8. x := x - 1;

end;
9. write(y);

end;
end;

I

1

2

3

4

5

6

7

8

9

F

true false

false

true

true false

true false

I

1,2

5

6,7,8

9

F

Un esempio

3,4

Ingegneria del Software 2 Testing White Box 12

• Copertura dei comandi (statement test)

– Richiede che ogni nodo del CFG venga eseguito
almeno una volta durante il testing;

– è un criterio di copertura debole, che non assicura
la copertura sia del ramo true che false di una
decisione.

Criteri di copertura

Ingegneria del Software 2 Testing White Box 13

Criteri di copertura

• Copertura delle decisioni (branch test)

– Richiede che ciascun arco del CFG sia attraversato
almeno una volta;

• In questo caso ogni decisione è stata sia vera che

falsa in almeno un test case

– un limite è legato alle decisioni in cui più condizioni
(legate da operatori logici AND ed OR) sono
valutate

Ingegneria del Software 2 Testing White Box 14

Copertura delle condizioni (condition test)

– Ciascuna condizione nei nodi decisione di un CFG
deve essere valutata sia per valori true che false.

– Esempio:

int check (x);// controlla se un intero è fra 0 e 100

int x;

{ if ((x>=0) && (x<= 200))

check= true;

else check = false;

}

TS={x=5, x=-5 } valuta la decisione sia per valori True che False, ma non
le condizioni

TS1={x= 3, x=-1, x=210} è una Test suite che copre tutte le condizioni
(ma non in tutte le combinazioni possibili poiché la combinazione
(false,false) non può essere provata)

TS2={x=-4;x=300} è una Test Suite che copre tutte le condizioni ma non
tutte le decisioni (l’if è sempre falso)

Ingegneria del Software 2 Testing White Box 15

Copertura delle condizioni e decisioni

• Occorre combinare la copertura delle condizioni in
modo da coprire anche tutte le decisioni.

• Es. if (x>0 && y>0) …

– TS1={(x=2, y=-1), (x=-1, y=5)} copre le condizioni ma non
le decisioni!

– TS2={(x=2, y=1), (x=-1, y=-55)} copre sia le condizioni
che le decisioni!

– TS3={(x=2, y=1), (x=2, y=-1), (x=-2, y=1)(x=-1, y=-55)}
copre tutte le combinazioni di tutte le condizioni (quindi
anche tutte le condizioni e tutte le decisioni

Ingegneria del Software 2 Testing White Box 16

Nota a margine

• Gli esempi precedenti riguardavano codice sorgente di linguaggi di
alto livello

• In realtà, il CFG reale e le relative metriche di copertura dovrebbero
essere valutate, per massimizzare la precisione, sul codice macchina
generato dal codice sorgente

– Fa eccezione il caso in cui vogliamo effettuare analisi statica, senza
testing, direttamente di algoritmi, anziché di programmi

– Per conoscere l’esatto codice macchina dobbiamo, però, conoscere le
caratteristiche della macchina target e del compilatore

• Ad esempio, l’adozione di tecniche di ottimizzazione dei compilatori
possono portare a variazioni dei CFG

• In linguaggi come Java, è anche possibile una soluzione
intermedia, con la copertura a livello di bytecode

• In conclusione, la misura di metriche di copertura sul codice di alto
livello rappresenta una approssimazione, non sempre affidabile, delle
analoghe misure sul codice eseguibile

Ingegneria del Software 2 Testing White Box 17

Cammini linearmente indipendenti (McCabe)

• Un cammino è un’esecuzione del modulo dal nodo iniziale
del CFG al nodo finale

• Un cammino si dice indipendente (rispetto ad un insieme di
cammini) se introduce almeno un nuovo insieme di
istruzioni o una nuova condizione

– in un CFG un cammino è indipendente se attraversa
almeno un arco non ancora percorso

• L’insieme di tutti i cammini linearmente indipendenti di un
programma forma i cammini di base; tutti gli altri cammini
sono generati da una combinazione lineare di quelli di base.

• Dato un programma, l’insieme dei cammini di base non è
unico.

Ingegneria del Software 2 Testing White Box 18

Numero di cammini linearmente indipendenti

• Il numero dei cammini linearmente indipendenti di un
programma è pari al numero ciclomatico di McCabe:
– V(G) = E - N +2

• Dove E: n.ro di archi in G - N: n.ro di nodi in G

– V(G) = P + 1
• Dove P: n.ro di predicati in G

– V(G) = n.ro di regioni chiuse in G + 1

• Test case esercitanti i cammini di base garantiscono
l’esecuzione di ciascuna istruzione almeno una volta

• La copertura dei cammini linearmente indipendenti
garantisce la copertura di tutti i cammini se non
consideriamo il numero di volte in cui ogni ciclo può
essere eseguito

Ingegneria del Software 2 Testing White Box

http://www.mccabe.com/

Ingegneria del Software 2 Testing White Box 20

Esempio

true false

true false

0

1

2

3

4

5

V(G)= 3 =>3 cammini

indipendenti

c1= 0-1-2-4-5

c2= 0-1-2-3-2-4-5

c3= 0-1-5

Ogni nuovo cammino è ottenuto

negando una decisione di un

cammino precedente e coprendo,

quindi, almeno un nuovo arco

Complessità ciclomatica

del programma è 3

Ingegneria del Software 2 Testing White Box 21

Criteri di copertura dei cammini

• Copertura dei cammini (path test)
– spesso gli errori si verificano eseguendo cammini che includono

particolari sequenze di nodi decisione

– non tutti i cammini eseguibili in un CFG possono essere eseguiti
durante il test (un CFG con loop può avere infiniti cammini
eseguibili)

• Copertura dei cammini indipendenti
– ci si limita ad eseguire un insieme di cammini indipendenti di un

CFG, ossia un insieme di cammini in cui nessun cammino è
completamente contenuto in un altro dell’insieme, nè è la
combinazione di altri cammini dell’insieme

– ciascun cammino dell’insieme presenterà almeno un arco non
presente in qualche altro cammino

– il numero di cammini indipendenti coincide con la complessità
ciclomatica del programma

Ingegneria del Software 2 Testing White Box 22

Relazioni tra i criteri di copertura

• La copertura delle decisioni implica la copertura dei nodi

• La copertura delle condizioni non sempre implica la
copertura delle decisioni

• La copertura dei cammini linearmente indipendenti
implica la copertura dei nodi e la copertura delle
decisioni

• La copertura dei cammini è un test ideale ed implica
tutti gli altri

Ingegneria del Software 2 Testing White Box 23

Problemi

• E’ possibile riconoscere automaticamente quale cammino
linearmente indipendente viene coperto dall’esecuzione di un dato
test case

• E’ indecidibile il problema di trovare un test case che va a coprire
un dato cammino

– Alcuni cammini possono risultare non percorribili (infeasible),
ma non è, in generale, possibile sapere se un cammino è
percorribile

• La copertura dei cammini linearmente indipendenti non garantisce
da errori dovuti, ad esempio, al numero di cicli eseguiti, per i quali
sarebbe necessaria la copertura di tutti i cammini, che però
rappresenta il testing esaustivo!

– La copertura dei cammini linearmente indipendenti coincide con la
copertura dei cammini in un programma senza cicli o in un
programma in cui ogni ciclo è percorso sempre lo stesso numero di
volte

Ingegneria del Software 2

EclEmma

• Una estensione Eclipse per valutare la copertura del codice

• http://eclemma.org

• Per eclipse: http://update.eclemma.org/

• Attualmente integrata in alcune versioni (ad esempio Eclipse Oxygen)

• Istrumenta l’applicazione solo al tempo della valutazione della
copertura

• E’ in grado di calcolare la copertura complessiva di più sessioni

• Si basa su Emma, tool open source per la misura della copertura
• Si attiva aprendo l’opzione Coverage as nel menu contestuale dell’applicazione da testare

• I risultati si possono leggere dal menu contestuale (Properties/Coverage) o da apposita

finestra

Testing White Box

http://eclemma.org/
http://update.eclemma.org/

Ingegneria del Software 2

EclEmma

• Emma registra tutte le esecuzioni di ogni istruzione
del bytecode

• Associa le istruzioni di bytecode alle corrispondenti
istruzioni nel codice sorgente

• Genera report della copertura delle righe di codice
sorgente

• Il valore di copertura può essere:

• 1: tutte le istruzioni del corrispondente bytecode sono state

coperte

• Frazionario, compreso tra 0 e 1: solo una parte delle istruzioni

sono state coperte

• 0: nessuna istruzione del bytecode è stata coperta

Testing White Box

Ingegneria del Software 2

EclEmma

• In particolare, può essere generato un report che
«colora» le righe del codice sorgente:

• In verde: tutto il bytecode coperto

• In giallo: copertura parziale

• In rosso: non coperto

Testing White Box

Ingegneria del Software 2 Testing White Box 27

Altri strumenti per la misura della copertura

• Emma (http://emma.sourceforge.net/) è lo strumento su cui si basa EclEmma. E’
eseguibile da linea di comando, funziona a livello di JVM senza istrumentazione
del codice sorgente. Tra le funzionalità messe a disposizione a linea di comando,
la possibilità di fondere la copertura ottenuta con due sessioni di esecuzione e la
generazione di un report html con tutto il codice coperto

• Codecover (http://codecover.org/index.html), vedi Appendice

• E’ in grado di fornire informazioni più dettagliate (ad esempio il numero di volte in cui
una riga è stata eseguita, il numero di volte che un ciclo è stato eseguito ed altro)

• Cobertura (http://cobertura.github.io/cobertura/)

• Altri strumenti (per Java):
http://en.wikipedia.org/wiki/Java_Code_Coverage_Tools

Nota: spesso i tool di copertura sono incompatibili tra loro, poiché introducono molteplici istrumentazioni

http://emma.sourceforge.net/
http://codecover.org/index.html
http://en.wikipedia.org/wiki/Java_Code_Coverage_Tools

Ingegneria del Software 2 Testing White Box 28

Traccia di tesina di approfondimento teorico/pratico

• Una funzionalità quasi mai messa a disposizione dagli strumenti di misura
della copertura è il conteggio di quante volte sia stata coperta una riga di
codice e da quali test.

• Tale misura può essere molto utile per valutare la difficoltà di copertura delle righe di
codice e la ridondanza dei test

• L’unico strumento che fornisce tale dato è codecover, ma non è aggiornato alle ultime
versioni di Java

• Cercare o realizzare strumenti per la misura della copertura che
forniscano anche report sul numero di volte in cui ogni riga è stata
coperta

• La realizzazione può basarsi anche sul riutilizzo di strumenti esistente come emma e
sull’analisi dettagliata dei loro risultati

• Un primo strumento valutabile è Atlassian Clover

Ingegneria del Software 2 Testing White Box 29

Esercizio

• Per la classe calendar, visualizzare il livello di copertura
ottenuto con i test JUnit progettati in precedenza

• Scrivere ulteriori casi di test in grado di coprire
totalmente, secondo i diversi criteri di copertura studiati,
gli elementi del metodo calend

• Sfruttare, eventualmente, le informazioni di copertura
per trovare i difetti relativi agli eventuali
malfunzionamenti trovati

Ingegneria del Software 2 Testing White Box 30

Testing White box e valori di test

• Per sfruttare al meglio le potenzialità
del testing white box dovremmo
pensare di creare test a partire dal
codice.

• Ad esempio, leggendo il codice del
calendario, i seguenti valori di test
sembrerebbero da provare:

• Giorno: <1, >31, ==29, >29, ==30

• Mese: Gennaio, Febbraio, marzo, aprile,
maggio, giugno, luglio, agosto,
settembre, ottobre, novembre,
dicembre

• Anno: <=1582, >2016, %100==0,
%400==0

public static String calend(int d, String ms, int a)

{

int m=0;

if (ms=="Gennaio") m=1;

else if (ms=="Febbraio") m=2;

else if (ms=="marzo") m=3;

else if (ms=="aprile")m=4;

else if (ms=="maggio")m=5;

else if (ms=="giugno")m=6;

else if (ms=="luglio")m=7;

else if (ms=="agosto")m=8;

else if (ms=="settembre")m=9;

else if (ms=="ottobre") m=10;

else if (ms=="novembre")m=11;

else if (ms=="dicembre")m=12;

if (d<1 || d>31 || m==0 || a<=1582 || a>2016)

return "Errore";

Boolean bisestile= (a%4==0);

if (bisestile && a%100==0 && a%400!=0)

bisestile=false;

if ((m==2 && d>29)||(m==2 && d==29 && !bisestile))

return "Errore";

if ((m==4 || m==6 || m==9 || m==11) && d>30)

return "Errore";

if (m<=2)

{

m = m + 12;

a--;

};

int f1 = a / 4;

int f2 = a / 100;

int f3 = a / 400;

int f4 = (int) (2 * m + (.6 * (m + 1)));

int f5 = a + d + 1;

int x = f1 - f2 + f3 + f4 + f5;

int k = x / 7;

int n = x - k * 7;

if (n==1) return "Lunedi";

else if (n==2) return "Martedi";

else if (n==3) return "Mercoledi";

else if (n==4) return "Giovedi";

else if (n==5) return "Venerdi";

else if (n==6) return "Sabato";

else if (n==0) return "Domenica";

else return "Errore";

}

Ingegneria del Software 2 Testing White Box 31

Considerazioni

• Utilizzando casi di test ottenuti dal codice:

• Si scoprono combinazioni nuove, quali l’importanza degli anni il cui valore è
divisibile per 400 e per 4

• Si scoprono combinazioni inutili quali Gennaio e Febbraio scritti erroneamente
con le maiuscole (la mancata copertura del codice avrebbe già dovuto
condurci a correggere i due bug)

• Non troviamo invece i valori gennaio e febbraio (a causa di
due bug), per cui li proveremmo solo con approccio black
box

• Purtroppo non scopriamo l’importanza del mese di febbraio,
poiché i controlli sono fatti sulla variabile intera m e non
sull’input stringa ms … dobbiamo trovare il modo di metterli
in relazione

Ingegneria del Software 2 Testing White Box 32

Traccia di tesina di approfondimento teorico/pratico

• Strumenti di analisi statica del codice possono aiutarci a progettare casi
di test white box

• Uno strumento molto potente ed estendibile che supporta l’analisi del
codice con finalità di test white box è Java Path Finder

• http://babelfish.arc.nasa.gov/trac/jpf

• Una possibile tesina consiste nello studiare Java Path Finder, valutarne
estensioni esistenti in grado di supportare il testing white box ed
eventualmente svilupparne altre

Ingegneria del Software 2 Testing White Box

Appendice

Ingegneria del Software 2 Testing White Box 34

CodeCover

• CodeCover è un plug-in open source per Eclipse
realizzato dall’università di Stoccarda e reperibile
a: http://codecover.org/index.html

• Consente di valutare metriche di copertura
– CodeCover measures statement, branch, loop, term

coverage (subsumes MC/DC), question mark operator
coverage, and synchronized coverage.

• Scritto per Java e Cobol

• Si può utilizzare sia in modalità standalone che
sotto Eclipse

http://codecover.org/index.html

Ingegneria del Software 2 Testing White Box 35

CodeCover per Eclipse

• Può essere installato semplicemente
aggiungendolo come plug-in aggiuntivo
reperibile all’indirizzo:
http://update.codecover.org/

• Un tutorial d’esempio è reperibile all’indirizzo:
http://codecover.org/documentation/tutorials/how_to_complete.html

http://update.codecover.org/
http://codecover.org/documentation/tutorials/how_to_complete.html

Ingegneria del Software 2 Testing White Box 36

CodeCover Features

• Può misurare tanto la copertura per esecuzioni di
un’applicazione per la quale sia stato attivato
preventivamente il monitoraggio, sia per
esecuzioni di test case scritti con Junit

• Mostra molte statistiche riguardanti l’esito dei
casi di test e consente di generare report HTML
con tali risultati

Ingegneria del Software 2 Testing White Box 37

Mini Tutorial per CodeCover 1/5

• Abilitare CodeCover tra
le proprietà del
progetto

– Causa l’instrumentazione
del bytecode

• Nel menu contestuale
relativamente ad ogni
package/file, abilitare la
misura

Ingegneria del Software 2 Testing White Box 38

• Nelle proprietà
del profilo di
esecuzione
abilitare
CodeCover

• Abilitare da
Windows/Show
View/Other le
varie view di
Codecover:
– Test

Sessions
– Coverage
– Correlation
– …

Mini Tutorial per CodeCover 2/5

Ingegneria del Software 2 Testing White Box 39

Mini Tutorial per CodeCover 3/5

• Per conoscere
la copertura
raggiunta con
test case Junit
è sufficiente
creare un
profilo di
esecuzione dei
test sotto
CodeCover
Measurement
for JUnit

Ingegneria del Software 2 Testing White Box 40

Mini Tutorial per
CodeCover 4/5

• Per esportare i
risultati in HTML è
sufficiente utilizzare
il wizard di
esportazione in
File/Export

Ingegneria del Software 2 Testing White Box 41

Mini Tutorial per CodeCover 5/5

• La copertura
delle righe del
codice può
essere vista
anche
direttamente
sul codice

• Rosso: non
coperta

• Giallo: coperta
parzialmente
(decisione)

• Verde: coperta

Ingegneria del Software 2 42

CodePro Analytix

• Plug-in multifunzionale per Eclipse offerto da Google
• https://developers.google.com/java-dev-tools/codepro/doc/

• Scaricabile direttamente da:

• http://dl.google.com/eclipse/inst/codepro/latest/3.7

• Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

• Tutorial e documentazione accessibili da:

• https://developers.google.com/java-dev-tools/codepro/doc/

Testing White Box

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

Ingegneria del Software 2

Features

• CodePro Analytix offre features relative a:

• Analisi del codice

• Generazione automatica di casi di test JUnit

• Metriche di qualità del prodotto

• Misura della code coverage

• Costruzione del grafo delle dipendenze

• …

Testing White Box

Ingegneria del Software 2

Code Coverage con CodePro

• CodePro fornisce funzionalità per la misura
automatica della copertura di codice in termine
di righe, blocchi, metodi, classi ottenuta a
seguito dell’esecuzione del main oppure di casi
di test Junit

• CodePro si basa su Emma (così come EclEmma)

• E’ in grado di generare report dettagliati della
copertura ottenuta

Testing White Box

Ingegneria del Software 2

Utilizzo di Code Coverage CodePro

1. Dato un progetto, instrumentare il codice a
supporto della misura, scegliendo l’apposita
opzione (Instrument Code) nel menu
contestuale CodePro Tools

• L’opzione Uninstrument consente di togliere
l’instrumentazione

2. Eseguire il progetto normalmente (anche
tramite casi di test)

• In alcuni casi è necessario eseguire il progetto
tramite l’opzione Run Code Coverage

3. Aprire la View denominata CodeCoverage

Testing White Box

Ingegneria del Software 2

Utilizzo di Code Coverage CodePro

• Vengono
mostrate le
righe coperte
(verdi), non
coperte (rosse)
, parzialmente
coperte
(gialle).

• Nel caso di
righe
corrispondenti
a più di una
riga del
bytecode, un
numero di |
pari alle
avvenute
coperture è
visualizzato.

Testing White Box

Ingegneria del Software 2

Utilizzo di Code Coverage CodePro

• Nella scheda history si può
vedere l’andamento della
copertura a seguito delle
ultime test suite eseguite

• E’ possibile salvare un
report HTML della
copertura

Testing White Box

Ingegneria del Software 2

Avvertenze

• L’instrumentazione di Code Coverage per
CodePro Analytix è di solito incompatibile con
quella di CodeCoverage

• L’instrumentazione è incompatibile con la
funzionalità di Test Case Generation di CodePro

• Per generare test su di un codice instrumentato, va
prima deinstrumentato, poi si possono generare i
test, infine si può instrumentarlo nuovamente ed
eseguire i test appena generati

http://www.mccabe.com/

Testing White Box

Ingegneria del Software 2 49

Eclipse Control Flow Graph Generator

• http://eclipsefcg.sourceforge.net/

• E’ un’estensione open source di Eclipse che consente di
disegnare CFG di metodi di applicazioni Java

• Può essere installato semplicemente aggiungendolo
come plug-in aggiuntivo reperibile all’indirizzo:
http://eclipsefcg.sourceforge.net/

• Per utilizzarlo basta selezionare l’opzione CFG Generator
dal menu contestuale di un qualsiasi metodo

• Si integra anche con CodeCover

Testing White Box

http://eclipsefcg.sourceforge.net/
http://eclipsefcg.sourceforge.net/

Ingegneria del Software 2 Testing White Box 50

Mini Tutorial per CFG Generator

• E’ sufficiente scegliere CFG
Generator/ Build nel menu
contestuale di un metodo

• In alternativa, è anche possibile
generare il CFG da una sessione
di test la cui copertura è stata
salvata con CodeCover

Ingegneria del Software 2 Testing White Box

Dr. Garbage

• Dr. Garbage (http://www.drgarbage.com/index.html) è
un’altra suite di strumenti open source per eclipse che sono
in grado di ricostruire il Control Flow Graph

• Per installarlo sotto Eclipse (Mars)
https://sourceforge.net/projects/drgarbagetools/files/eclipse/4.5/stable

• Dr. Garbage consente di ricostruire il Control Flow Graph a
tre livelli:

• A livello di source code

• A livello di bytecode

• A livello di blocchi di bytecode

• Tutorial completi sono sul sito di Dr. Garbage

• http://www.drgarbage.com/howto/cfgf-tutorial/

Testing White Box

http://www.drgarbage.com/index.html

Ingegneria del Software 2 Testing White Box

Dr. Garbage

6. int tent=0;

7. int x=7;

8. int num=0;

9. while ((tent<4)&&(num!=x)) {

10. System.out.println("Indovina il numero :");

11. num=System.in.read();

12. tent++;

13. if (num>x)

14. System.out.println("Un po' di meno");

15. else

16. if (num<x)

17. System.out.println("Un po' di piu'");

18. }

19. if (num==x)

20. System.out.println("Bravo");

21. if (tent==4)

22. System.out.println("Hai perso!");

23. return 0;

Testing White Box

Ingegneria del Software 2 Testing White Box

Dr. Garbage

• CFG a
livello
bytecode
blocks

• CFG a
livello
bytecode

Testing White Box

