Software Testing

Integration Testing

Integration Testing

Testing «in isolamento»

Il testing di unita potrebbe essere applicato
soltanto a parti di software

completamente staccate:

- dal resto del software

(altre classi, librerie, ...)
- da altri software

(sistema operativo, ...)
- da altre risorse

(database, file, rete, ...)

Integration Testing 2

Limiti dello Unit Test

Non si puo testare un modulo in isolamento
se:

— comunica con il database

— comunica in rete

— comunica con altri moduli non ancora testati

— modifica database/file o altre fonti di dati

— non puo essere lanciato in parallelo ad altri test

Integration Testing 3

Soluzioni per testare un modulo «in isolamento»

Due soluzioni concettuali possibili:

1) Supporre la correttezza di tutti i moduli
chiamati dal modulo sotto test e la
validita di tutte le risorse da esso
accedute

2) Sostituire tutti i moduli chiamati e le
risorse accedute con versioni fittizie,
semplificate, la cui correttezza puo essere
Imposta per costruzione

Integration Testing

Soluzioni per testare un modulo «in isolamento»

1) La prima soluzione e quella adottata:
* nelle strategie di testing di integrazione bottom-up

2) La seconda soluzione viene adottata:
« nelle strategie fop-down;

* Nelle tecniche di testing con driver e stub, fake o
mock

Integration Testing

Testing di un modulo “non terminale”;
soluzione con driver e stub

Per testare un modulo non terminale, € |Modulo

necessario costruire due tipologie di moduli: guida
Moduli guida (driver) .
— invocano l'unita sotto test, inviandole opportdni Unita
valori, relativi al test case sotto test
S Modulo
Moduli fittizi (stub) fittizio

— sono invocati dall’'unita sotto test;

— emulano il funzionamento della funzione chiamata
rispetto al caso di test richiesto (tenendo conto delle
specifiche della funzione chiamata)

* Quando la funzione chiamata viene realizzata e
testata, si sostituisce lo stub con la funzione stessa

Integration Testing 6

Stub e Driver

I moduli testati hanno bisogno di essere
chiamati (dai Driver)

I moduli chiamati devono essere sostituiti
da altri (Stub)

* ~—— driver
} ~——— modulo testato

D" E’ «—— stubs

Integration Testing 7

Driver

e Un modulo driver deve sostituire in tutto e per
tutto il/1i moduli chiamanti il modulo da testare

— Un metodo TestCase sotto Junit puo implementare un driver

e Il modulo driver deve:

— Settare tutti i valori delle risorse e fonti dati utilizzate dal
modulo da testare

— In linguaggi object oriented, costruire I'oggetto il cui metodo e
sotto test

— Avviare il metodo da testare

Integration Testing 8

Stub

e Uno stub e una funzione fittizia la cui correttezza e
vera per ipotesi
— Esempio, se stiamo testando una funzione prod scal(vi,vZ2)

che richiama una funzione prodotto(a,b) ma non abbiamo
ancora realizzato tale funzione

— Nel metodo driver scriviamo il codice per eseguire alcuni casi di
test
« Ad esempio chiamiamo prod_scal([2,4],[4,7])
— Il metodo stub potra essere scritto cosi:
int prodotto (int a, int b){
if (a==2 && b==4) return 8;
if (a==4 && b==7) return 28;
}
— La correttezza di questo metodo stub & data per ipotesi
— Ovviamente per poter impostare tale testing, bisognera avere

precise informazioni sul comportamento interno richiesto al
modulo da testare

Integration Testing 9

Stub

o Il termine Stub e utilizzato, piu genericamente,
per indicare un metodo fittizio, non ancora
implementato o la cui implementazione sia,
volutamente, incompleta

— Spesso gli stub vengono messi nel codice semplicemente come

promemoria dei metodi ancora da realizzare oppure per
consentire la compilazione del codice prima possibile

— Lo stub ha il compito di riprodurre il comportamento del

modulo che sostituisce unicamente nei casi di test previsti dai
driver realizzati

— Lo stub puo essere scritto sulla base di una conoscenza ‘black
box’ del modulo da emulare

 GIli stub consentono di testare un modulo prima che i moduli da
cui esso dipenda sono stati realizzati

Integration Testing 10

Stub

e Uno Stub puo sostituire efficacemente una
funzione

e Ad ogni caso di test deve corrispondere una diversa istanza
dello stub (oppure un ramo diverso dello stub)

e Uno Stub non sostituisce efficacemente una
classe

e Non puo gestire lo stato (valori degli attributi) di una classe tra
due chiamate dello stub

e Non puo gestire il testing di una sequenza di interazioni

Integration Testing 11

Dipendenze

e Come si fa a sapere da quali moduli

dipende |'esecuzione di un dato modulo da
testare?

— 1/ grafo delle dipendenze (Dependency Graph) e un
grafo i/ cui moauli rappresentano moduli
(eventualmente classi, metodi, package) e i cui archi,
orientati, rappresentano relazioni di dipendenza tra i
moauli (ad esempio causate dall’esistenza di

chiamate di metodo, utilizzo di oggetti, utilizzo di
attributir)

Integration Testing 12

Dependency graph evaluation

o Il grafo delle dipendenze puo essere
parzialmente (totalmente in alcuni casi
particolari) ricavato dall’analisi del codice
sorgente dell’applicazione

* Parecchie estensioni eclipse sono in grado
di valutare il dependency graph

— stan4j

— Eclipse Metrics
— jDepend

— eDepend

Integration Testing 13

stan4j =STAN

Structure Analysis for Java

e Strumento molto piu potente per la
valutazione di dependency graph e altre
metriche
— Free solo per utilizzi su sistemi di limitate dimensioni
— Un tutorial sul suo utilizzo e all'indirizzo:

— Scaricabile da:

— Estensione eclipse:
— http://update.stan4j.com/ide

e Disegna il grafo delle dipendenze anche a
livello piu dettagliato, delle classi e dei
metodi

Integration Testing 14

http://stan4j.com/
http://stan4j.com/general/download.html

Testing dell'integrazione di due moduli

e Una volta testate tutte le unita, € necessario
procedere al testing di integrazione per valutare
se esse funzionano correttamente nel loro

complesso

— Se a chiama b, e sia a che b hanno superato i test di unita, non
e detto che l'insieme di a e b soddisfi tutti i test previsti di a

» Possibili problemi potrebbero essere legati, ad esempio, a
combinazioni negli input di b che chi ha testato b non ha previsto
ma che possono comparire come possibili valori di chiamata in a

— Per testare a e b (con a che chiama b) potrebbe essere

sufficiente utilizzare i test progettati per a

* In pratica, si sostituisce, nei test progettati per a, il vero modulo b
al posto del suo stub (o mock)

Integration Testing 15

Strategie per il testing di integrazione

e Il testing di integrazione consiste nel
considerare insiemi via via piu grandi di
moduli, fino ad ottenere I'insieme
completo

e In che modo decidiamo l'ordine di
integrazione?

— Due strategie “estreme”: top-down e bottom-up

Integration Testing

16

Testing d'integrazione bottom-up

e S| parte dai moduli che non hanno dipendenze
nodi senza archi uscenti nel grafo delle
ipendenze)

e Si integra ognuno di questi moduli con uno di
quelli che lo chiama e si testa la coppia

e Siridisegna il grafo delle dipendenze avendo
sos::litrito I due moduli integrati con un unico
modulo

e Si ripete iterativamente il procedimento fino ad
ottenere un grafo con un unico nodo

— Questo procedimento vale in assenza di cicli nel grafo.

Integration Testing 17

Testing d'integrazione top-down

Si parte dai moduli che non dipendono da alcun
altro modulo (nodi senza archi entranti nel grafo
delle dipendenze)

Si integra ognuno di questi moduli con uno di
quelli chiamati e si testa la coppia

Si ridisegna il grafo delle dipendenze avendo
sos::litrito I due moduli integrati con un unico
modulo

Si ripete iterativamente il procedimento fino ad
ottenere un grafo con un unico nodo

— Questo procedimento vale in assenza di cicli nel grafo.

Integration Testing 18

Risoluzione dei cicli

Possibile tecnica:

- «Aprire» i cicli utilizzando degli stub

- Ad esempio, in presenza di un ciclo a->b->c->a
- si sdoppia il modulo a creando un aStub
- Sl integrano i moduli come a->b->c->aStub (non ciclico)
- Si sostituisce a ad aStub testando tutto il ciclo

Integration Testing

Strategie d'integrazione

E'abbastanza semplice la scelta di una strategia
precisa per software progettato a livelli (layer)

Spesso si utilizzano tecniche miste (sandwich)
nel quale strategie top-down e bottom-up sono
alternate

Altre strategie portano a integrare prima i metodi
piu fortemente accoppiati, in modo da ridurre il
piu velocemente possibile la complessita del
grafo delle dipendenze

Spesso la strategia d’'integrazione dipende anche
dalla gerarchia aziendale e dall’'organizzazione
delle risorse umane

Integration Testing 20

Strategie per il testing di integrazione

Top-down testing Bottom-up testing Sandwich testing
Idri\\el'rl Idr\il'\erl Isllti\erl
¢UI ley er\b Database||Network ¢U| I‘fy er\b
[Stub] [stub] [stub] layer layer [Stub] [stub] [stub]

[UlLayer | [driver| [driver] [drier] [driver] [driver] [driver]
J v v v v v v v Vv
[Functional Tay er] FFunctional lay er| Database|[Network
NV v v ¢ layer layer
[stub] [stub] |stub] Database||Network

layer layer
[UllLayer |
VR K’

Fully [Functional layer]|

integrated —%—%
sygem Database]|Network

layer layer

Integration Testing 21

Esempio di testing di integrazione con JUnit

B calendario
(3 Calendaric
&0 @ main(.)

e Consideriamo un’unica classe
Calendario con i seguenti metodi:

1

v
& giornoDellaSettimanal...)

1 1
J s

— main legge da linea di comando giorno,
mese (stringa) e anno

— giornoDellaSettimana converte il mese in
input in un intero, controlla se la data e
valida e eventualmente chiama calend

— valida controlla se la data e valida

Gscalgnd{...:l Gsva?ida{...]
1

B cnr:.rert{...]

— calend calcola il giorno della settimana Grafo ricavato
(numerico) automaticamente
con STAN4J

— convert converte in stringa il giorno della
settimana risultante

Integration Testing 22

Codice esempio: giornoDellaSettimana

public static String giornoDellaSettimana(int d, String ms, int a)

{

int m=0;

if (ms.equals("gennaio"))
m=1;

else if (ms.equals("febbraio"))
m=2;

else if (ms.equals("marzo"))
m=3;

else if (ms.equals("aprile™))
m=4,

else if (ms.equals("maggio"))
m=5;

else if (ms.equals("giugno))
m=6;

else if (ms.equals("luglio™))

m=7,;

else if (ms.equals("agosto"))
m=S§;

else if (ms.equals("settembre™))
m=9;

else if (ms.equals("ottobre"))
m=10;

else if (ms.equals("novembre™))
m=11;

else if (ms.equals("dicembre™))
m=12;

if ((m>0) && valida(d,m,a))
return calend(d,m,a);

else

return "Errore”;

}

Integration Testing

Codice esempio: valida

public static boolean valida(int d, int m, inta) {
if (d<1 || d>31 || m==0 || a<=1582)
return false;

Boolean bisestile= (a%4==0);

if (bisestile && a%100==0 && a%400!=0)
bisestile=false;

if ((Im==2 && d>29)| |((m==2 &&Xx d==29 &&
Ibisestile))

return false;
if((m==4 || m==6 || m==9 || m==11) && d>30)
return false;

return true;

Integration Testing

Codice esempio: calend

public static String calend(int d, int m, int a)

{
if (m<=2)

{
m=m+12;
a--;

by

intfl=a/4;

intf2 =a/ 100;

int f3 =a / 400;

int f4 = (int) (2 * m + (.6 * (m + 1)));
intfS=a+d+1;
intx=f1-f2+f3 + f4 + 15;
intk=x/7;

intn=x-k*7;

return convert(n);

}

Integration Testing

Codice esempio: convert

public static String convert(int n) {

if (n==1)

return "Lunedi”;
else if (n==2)
return "Martedi";

else if (n==3)

return "Mercoledi";

else if (n==4)
return "Giovedi";
else if (n==5)
return "Venerdi";
else if (n==6)
return "Sabato";

else if (n==0)

return "Domenica";

else return "Errore";

}

Integration Testing

Codice esempio: main

public static String main(String[] args) {

if (args.length==3){

int giorno=Integer.parselnt(args[0]);

String mese=args[1];

int anno=Integer.parselnt(args(2]);

String giornoDS=new String(giornoDellaSettimana(giorno,mese,anno));
System.out.printin(giornoDS);

return giornoDS;

}

else

return "";

}

Integration Testing

Esempio di testing bottom-up 1/2

e Cominciamo testando convert

@Test

public void testConvertl () ({

assertEquals ("Domenica",Calendario.convert(0));

}

e Continuiamo con calend

@Test

public void testCalendl () ({
assertEquals ("Domenica" ,Calendario.calend (24

, 4, 2011));

e Poi valida:
@Test

public void testValidal() {
assertTrue (Calendario.valida (24, 4, 2011));,

}

3 calendario

® Calendario
&0 @& main(.)

1

& giornocDellaSettimanal...)

\-\.
1
"-\.
!

5

écﬂ;dLJ évﬁdﬂ@
1

B C onvert(...)

Integration Testing

28

Esempio di testing bottom-up 2/2

Poi giornoDellaSettimana:
@Test
public void testGiornoDellaSettimanal () |

assertkEquals ("Domenica'",Calendario.giornoDellaSettimana (24,
"aprile'", 2011));

}

B calendario

(® Calendario
&0 & mainl.)

Infine il test del main:
@Test
public void testMainl () {
String a[]=new Stringl[3];
al0]="24",
all]="aprile";
al2]="2011";,
assertkEquals ("Domenica",Calendario.main (a)),

}

1
& giornoDellaSettimanal...)

K
1
F %

1)

I 4
& calend(..) & valida(..)

1

B co nvert(...)

Integration Testing 29

Esempio di testing top-down 1/2

e Per testare la classe main da sola,
vediamo che e necessario solo uno stub
per giornoDellaSettimana

public static String giornoDellaSettimana (int

B calendario
(® Calendaric
&0 @& main(.)

d, String ms, int a) {
//STUB

if (d==24 && ms.equals ("aprile") && a==2011)
return "Domenica"; //TC1l

else 1if (d==32 && ms.equals("aprile") &&
a==2011) return ""; //TC2

return "";

}

1

& giornoeDellaSettimanal...)

\-\.
1
"-\.
!

5

écﬂQMLJ éVJMﬂJ
1

B convert(...)

e Possiamo, poi, eseguire gli stessi test
progettati per il main nel bottom-up

Integration Testing 30

Esempio di testing top-down 2/2

. Per testare la classe giornoDellaSettimana sono necessari stub sia per calend
che per valida

public static boolean valida (int d, int m, int
a) {

//STUB

if (d==24 && m==4 && a==2011) return true;

else if (d==29 && m==2 && a==2012) return true;

else 1if (d==32 && m==4 && a==2011) return
false;

return false;

}

B calendario

(® Calendario
&0 & mainl.)

1

& giornoDellaSettimanal...)

F
1
i %
Ky

1)

i 4
& calend(..) & valida(..)

1

public static String calend(int d, int m, int
a) {

// STUB

if (d==24 && m==4 && a==2011) return
"Domenica";

else 1if (d==32 && m==4 && a==2011) return
"Errore";

else return "";

}

. A questo punto riusiamo i test di calend, e cosi via

B cO nvert(...)

Integration Testing 31

Altri casi di test

o Se, ad esempio, la classe calend fosse
stata la prima ad essere realizzata
— Ad esempio per ragioni di prototipazione,
poiché e |'unica classe con complessita
derivanti dalle conoscenze di astronomia

sarebbero necessari:
e Un driver che si comporti come
giornoDellaSettimana

— Puo essere il metodo di test JUnit che
pensammo nelle strategie top-down e bottom-
up

e Uno stub che imiti convert nei casi
previsti dal driver

— Puo essere lo stub che pensammo nel testing
bottom-up

B calendario

® Calendario
&0 @ main(.)

1

v
& giornoDellaSettimanal...)

%
1
A
A1
Y

Oscalgnd{...:l osva?ida{...]

5

1

B cnr:.rert{...]

Integration Testing

32

Limiti e problemi della tecnica con stub e driver

- Difficile applicazione nell’'object oriented

« Uno stub puo sostituire con facilita solo un metodo combinatorio
(senza stato)

Se il metodo legge o modifica attributi della classe bisognera realizzare
ulteriori metodi stub (o reali) che svolgano queste operazioni

« Ogni caso di test ha bisogno di uno stub diverso

« @Gli stub sostituiscono i metodi, quindi prima di
eseguire ogni test dovremmo rinominare il metodo di
stub (per fargli sostituire il metodo originale) e
ricompilare

Scarsa automazione dei test

Integration Testing

Limiti e problemi della tecnica con stub e driver

« I driver possono anche essere realizzati come casi di
test Junit, ma gli stub sembrano essere dei pezzi di
codice fastidiosi che devono essere utilizzati /
ignorati all’esecuzione di ogni test

« Quali soluzioni possiamo ottenere per non essere
costretti a gestire questi stub espliciti?

Possiamo implementare un caso di test interamente in un codice di un metodo di test Junit?

Integration Testing

Test Doubles

Mock objects

Integration Testing

35

Test Doubles

In generale, un test double e una implementazione
alternativa e sostitutiva di una interfaccia o di
una classe che non potrebbe essere utilizzata in
un test perché:

« Troppo lenta

* Non (ancora) disponibile

« Dipendente da qualcos’altro che non e (ancora) disponibile

» Troppo difficile da istanziare e configurare per un test

Solo nel caso particolare di una funzione, un suo test double puo
essere uno stub

Integration Testing

Tassonomia: Mock Object, Fake, e Stub

Type of mock

Description

Stubs

Stubs are essentially the simplest possible implementation of a given interface

you can think of. For example, stubs’ methods typically return hardcoded, mean-

ingless values.

Fakes

Fakes are a degree more sophisticated than stubs in that they can be consid-
ered an alternative implementation of the interface. In other words, a fake looks
like a duck and walks like a duck even though it isn't a real duck. In contrast, a
stub only looks like a duck.

Mocks

Mocks can be considered even more sophisticated in terms of their implementa-

tion, because they incorporate assertions for verifying expected collaboration
with other objects during a test. Depending on the implementation of a mock, it

can be set up either to return hardcoded values or to provide a fake implementa-

tion of the logic. Mocks are typically generated dynamically with frameworks and
libraries, such as EasyMock, but they can also be implemented by hand.

Tratto da: Test Driven - Practical TDD and Acceptance TDD
for Java Developers (Lasse Koskela)- Manning Ed. 2008

Integration Testing

37

Mock-Objects

Una precisa emulazione del comportamento delle classi
non ancora implementate e ottenibile con i mock object

Un mock object e una simulazione di un oggetto reale.

Implementa l'interfaccia dell’'oggetto da simulare ed ha il
suo stesso comportamento.

Possono fornire una risposta pre-impostata.

Possono verificare se l'oggetto che li usa lo fa
correttamente.

Utilissimi per testare unita senza legarsi ad oggetti
esterni.

Integration Testing 38

Differenze fra Stub e Mock

I Mock-Objects non sono Stub! [Fowler]

In genere lo stub e molto piu semplice di un Mock-Object

— Gli stub forniscono risposte preconfezionate (con valori prefissati) a
chiamate fatte durante il test, senza rispondere di solito a nulla che
sia al di fuori di cio che e prewsto per il test.

I mock hanno implementazioni piu sofisticate che
consentono di verificare il comportamento dell’'unita
testata (e non solo lo stato)

— verificando ad esempio le collaborazioni avute con altri oggetti ed il
relativo ordine di esecuzione

— Possono contenere asserzioni, riguardanti aspetti utili al debugging

— Mock gia realizzati saranno fondamentali nei test che coinvolgono
classi di libreria

Integration Testing 39

http://martinfowler.com/articles/mocksArentStubs.html

Testing di Classi con Mock

Es.: La classe Client (da testare) usa i metodi di
Helper

Client Helper

ClientMethod() HelperMethod()

Ma la classe Helper non puo essere usata perche:
— Non € ancora disponibile

— Vogliamo controllare direttamente cio che Helper restituisce a
Client

Vogliamo costruire un Test Double di Helper

Integration Testing 40

La soluzione usando i Mock-Object

Si estrae I'Interfaccia IHelper...

Client

ClientMethod()

A 4

<<interface>>
IHelper

-

Helper

Integration Testing

41

La soluzione usando i Mock-Object

Il MockObject implementa I'Interfaccia IHelper

Client

ClientMethod()

A 4

<<interface>>
IHelper

MockHelper

Integration Testing

42

Un esempio di semplice Mock

public class MockHelper implements IHelper

{
public MockHelper ()
{
}

public Object helperMethod(Object aParameter)
{

Object result = null;

if (! aParameter.toString().equals("expected”)

{

throw new IllegalArgumentException(
"Unexpected parameter: " + aParameter.toString());
}

result = new String("reply");
return result;

}
}

Integration Testing

Utilizzo di MockHelper

Una classe di test che testi la classe Client
utilizzando MockHelper anziché mock
dovra:

- Istanziare un oggetto di MockHelper

 Passarlo al costruttore di Client o ad un
metodo setHelper di Client

In questo modo, la classe Helper originale
potra in futuro essere integrata senza la
necessita di modificare o distruggere
alcunché

Integration Testing

Esempio: classe di test

« Per rendere eseguibile questo complesso caso di test funzionale e stato
sufficiente scrivere PricingServiceTestDouble anziché PricingService

» Da notare che la sostituzione tra oggetto reale e suo doppione avviene solo e soltanto nel caso di test, non
nell’originale PricingService

public class OrderProcessorTest {
@Test
public void testOrderProcessorWithMockObject() throws Exception {

float initialBalance = 100.0f;
float listPrice = 30.0f;
float discount = 10.0f;
float expectedBalance = (initialBalance - (listPrice * (1 - discount/100)));
Customer customer = new Customer(initialBalance);
Product product = new Product("TDD in Action", listPrice);
OrderProcessor processor = new OrderProcessor();
PricingService service = new PricingServiceTestDouble(discount);
processor.setPricingService(service);
processor.process(new Order(customer, product));

assertEquals(expectedBalance, customer.getBalance(), 0.001f);

A

Integration Testing

Esempio (con sola estensione anziche Interface)

Doppione della classe Pricing Service:
« Estende la classe che deve sostituire

« Ridefinisce i metodi di cui abbiamo bisogno per eseguire i nostri test
In questo caso consente di accedere all’attributo discount

« Il metodo reale getDiscountPercentage avrebbe letto il valore dal database

public class PricingServiceTestDouble extends PricingService {
private float discount;
public PricingServiceTestDouble(float discount) {
this.discount = discount;
}
public float getDiscountPercentage(Customer ¢, Product p) {

return discount;

Integration Testing

Confronti

- Il vantaggio della soluzione con interface
e la perfetta sostituibilita della classe
reale con quella mock

 La soluzione con estensione, viceversa,
puo essere utile quando si vuole sostituire
solo alcuni metodi, utilizzando 1 rimanenti
dalla classe originale (nell'ipotesi che gia
esista)

Integration Testing

Sviluppo di Mock

e In genere i Mock sono in grado di fare
controlli sul comportamento dell’'oggetto
testato e sulle sue interazioni con altri
oggetti.

e Lo sviluppo di Mock Objects e supportata
da diversi frameworks, o librerie (come
JMock o EasyMock in Java).

— Spesso sono disponibili librerie di mock gia pronti
corrispondenti ad oggetti di libreria

Integration Testing 48

EasyMock EASYMOCK

E un Framework per creare mock objects a
run time.

Usa le Java reflection per creare una classe
mock object che implementa una certa
interfaccia.

E un progetto open source project ospitato
su SourceForge:

http://www.easymock.org

Esempio: class Portfolio

package esempioeasymock;
import java.util.ArrayList;

import java.util.List;

public class Portfolio {
private String name;
private StockMarket stockMarket;

private List<Stock> stocks = new
ArrayList<Stock>();

public Double getTotalValue() {
Double value =0.0;
for (Stock stock : this.stocks) {

public String getName() {return name; }
public void setName(String name) {this.name = name;}
public List<Stock> getStocks() {return stocks;}

public void setStocks(List<Stock> stocks)
{ this.stocks = stocks; }

public void addStock(Stock stock) { stocks.add(stock);}

public StockMarket getStockMarket()
{return stockMarket;}

public void setStockMarket(StockMarket stockMarket)
{this.stockMarket = stockMarket;}

}

value += (stockMarket.getPrice(stock.getName()) *

stock.getQuantity());
b

return value;

}

Classe Portfolio:
Gestisce un insieme di azioni (Stock) ed é in grado di
calcolarne il valore totale sommando i singoli valori

Integration Testing

Esempio: classe Stock e interface StockMarket

package esempioeasymock; package esempioeasymock;

public class Stock { public interface StockMarket {
private String name; public Double getPrice(String stockName);
private int quantity; b

public Stock(String name, int quantity) { - Stock rappresenta un azione.
this.name = name; « StockMarket é un’interfaccia della
this.quantity = quantity; quale non e (ancora) disponibile

} alcuna implementazione

public String getName() {return name;}

public void setName(String name - .
g) « Vogliamo testare i principali metodi

di Portfolio sostituendo a

public int getQuantity() {return quantity;} StockMarket (che non esiste ancora)

public void setQuantity(int quantity) un mock creato con EasyMock
{this.quantity = quantity;}

{this.name = name;}

Integration Testing

Esempio: testPortfolio

package esempioeasymotests;
import junit.framework.TestCase;
import org.easymock.EasyMock;
import org.junit.Before;

import org.junit.Test;

import esempioeasymock.*

public class PortfolioTest extends TestCase {
private Portfolio portfolio;

private StockMarket marketMock;

@Before

public void setUp() {
portfolio = new Portfolio();
portfolio.setName("Veera's portfol");

marketMock =
EasyMock. createMock(StockMarket.class);

portfolio.setStockMarket(marketMock);

@Test
public void testGetTotalValue() {

EasyMock.expect(marketMock.getPrice("EBAY")).and
Return(42.00);

EasyMock. replay(marketMock);

Stock ebayStock = new Stock("EBAY", 2);
portfolio.addStock(ebayStock);
assertEquals(84.00, portfolio.getTotalValue());

marketMock é una istanza di un‘implementazione
mock di StockMarket creata a run-time da EasyMock

Con il metodo EasyMock.expect viene dichiarato uno
stub del comportamento di getPrice, intendendo che
quando getPrice verra chiamato con parametro di
valore pari a «<EBAY>» dovra essere restituito il valore
42 (metodo andReturn)

Con il metodo replay vengono creati effettivamente i
metodi stub le cui caratteristiche sono state
dichiarate con gli expect

Il resto del metodo di test € identico a quello che
sarebbe stato se non fosse esistito alcun Mock

Integration Testing

Lessons learned

« EasyMock.createMock(c/asse)

« ha in input una classe (eventualmente anche
un’interfaccia) e fornisce in output un oggetto di una
classe mock relativa a quella classe (interfaccia)

- EasyMock.expect(oggettomock.metodo(para
metro)).andReturn(valore);

« Genera un metodo sull’'oggetto mock indicato che, se
chiamato con quel parametro restituira il valore indicato
in andReturn

- EasyMock.replay(marketMock);

Rende operativi i metodi dichiarati con le chiamate expect

Integration Testing

Appendice

Integration Testing

55

Esempio di testing di interazioni con JDBC
Classe di cui vogliamo creare un Test Double

import javax.sql.*;
)] while (rset.next()) {
import java.sql.*;
]]] String firstName = rset.getString("first_name");
import java.util.*;

]) String lastName = rset.getString("last_name");
public class JdbcPersonDao implements PersonDao {

people.add(new Person(firstName, lastName));

}

rset.close();

private DataSource datasource;
public void setDatasource(DataSource datasource) {
this.datasource = datasource;

by

public List<Person> findByLastname(String lastname) {
try {

Connection conn = datasource.getConnection();

stmt.close();
conn.close();
return people;

} catch (SQLException e) {throw new RuntimeException(e);}

String sql = "SELECT * FROM people WHERE last_name = ?"; ;

// Other PersonDao methods not shown
PreparedStatement stmt = conn.prepareStatement(sql);

by

stmt.setString(1, lastname);

ResultSet rset = stmt.executeQuery();

)] . PersonDao ¢ la classe Model che modella I'entita Persona
List<Person> people = new ArrayList<Person>();

. JdbcPersonDao ¢ la classe che implementa la
connessione ad un database JDBC g, in particolare, il
metodo findByLastName

Integration Testing

Esempio di test JDBC 1/2

import static org.junit.Assert.*;

import static org.easymock.EasyMock.*;

import com.mockobjects.sql.*;

import org.junit.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

public class JdbcPersonDaoTest {

@Test

public void testFindByLastname() throws Exception {
//Crea i mock e li collega
DataSource datasource = createMock(DataSource.class);
Connection connection = createMock(Connection.class);
expect(datasource.getConnection()).andReturn(connection);
String sql = "SELECT * FROM people WHERE last_name = ?";

PreparedStatement stmt
=createMock(PreparedStatement.class);

expect(connection.prepareStatement(sql)).andReturn(stmt);

stmt.setString(1, "Smith");

//Crea un mock del risultato

MockMultiRowResultSet resultset =new
MockMultiRowResultSet();

String[] columns = new String[] { "first_name", "last_name" };
resultset.setupColumnNames(columns);

List<Person> smiths = createListOfPeopleWithLastname("Smith");
resultset.setupRows(asResultSetArray(smiths));
expect(stmt.executeQuery()).andReturn(resultset);
resultset.setExpectedCloseCalls(1);

stmt.close();

connection.close();

replay(datasource, connection, stmt);

Integration Testing

Esempio di test JDBC 2/2

//testa il metodo dao.findByLastname di JdbcPersonDao private List<Person> createlListOfPeopleWithLastname(String lastName) {
JdbcPersonDao dao = new JdbcPersonDao(); //genera la lista di risultati attesi
dao.setDatasource(datasource); List<Person> expected = new ArrayList<Person>();
List<Person> people = dao.findByLastname("Smith"); expected.add(new Person("Alice", lastName));
assertEquals(smiths, people); expected.add(new Person("Billy", lastName));
verify(datasource, connection, stmt); expected.add(new Person("Clark", lastName));
resultset.verify(); return expected;
¥ by

private Object[][] asResultSetArray(List<Person> people) {
//Trasforma la lista in ResultSet
Object[][] array = new Object[people.size()][2];
for (inti = 0; i < array.length; i++) {
Person person = people.get(i);
array[i] = new Object[] {
person.getFirstName(),
person.getLastName() };

by

return array;

-

Integration Testing ¥

Lessons learned

Datasource, Connection e PrepareStatement sono tutti oggetti
mock con metodi stub che servono a collegare tra loro gli
oggetti

Anche il risultato della query e un oggetto di una classe
importata da com.mockobjects.sql (MockMultiRowResultSet)
che imita il risultato di una query

Il metodo replay (statico di EasyMock) puo avere come
parametri piu di un oggetto su cui vengono resi esecutivi i
metodi stub dichiarati con expect

Il metodo verify (statico di EasyMock) verifica che tutti gli
oggetti mock nominati come parametri siano stati
correttamente generati (non siano null) e chiamati

Integration Testing

Hibernate #)HIBER

Hibernate € un framework (API) che consente di inserire un ulteriore livello di virtualizzazione tra il software (Model nel
caso MVC) e il database

JDBC ad esempio consentiva la virtualizzazione del livello di accesso al database tramite una API che consentiva di
interrogare tramite query SQL il database

Hibernate invece consente di poter agire sui dati anche in forma di astrazioni Object Oriented

« Hibernate implementa un linguaggio di query specifico: Hibernate Query Language (HQL)

 Hibernate fornisce tre astrazioni fondamentali:
« SessionFactory, che fornisce una fagade della sorgente dati;
 Session, che corrisponde ad una connection di JDBC, tramite la quale € possibile fare operazioni CRUD sui dati;
« Query, che consente di fare query piu complesse

Application code SessionFactory

JDBC Connection

creates

uses

creates

Integration Testing

Esempio di test per Hibernate

@Test
import static org.easymock.EasyMock.*;
public void testFindByLastname() throws Exception {

import static org.junit.Assert.*;

String hgl = "from Person p where p.lastname = :lastname";
import org.junit.*;

String name = "Smith";
import java.util.*;

List<Person> theSmiths = new ArrayList<Person>();
import org.hibernate.*;

theSmiths.add(new Person("Alice", name));
import org.hibernate.classic.Session;

theSmiths.add(new Person("Billy", name));
public class HibernatePersonDaoTest {

theSmiths.add(new Person("Clark", name));
private SessionFactory factory;

// Definisci esiti per cio che necessita per la creazione di una query
private Session session;

expect(factory.getCurrentSession()).andReturn(session);
private Query query;

expect(session.createQuery(hgl)).andReturn(query);

expect(query.setParameter("lastname",name)).andReturn(query);
@Before
expect(query.list()).andReturn(theSmiths);
public void setUp() {
replay(factory, session, query);
/ /Crea mock per factory, session, query

factory = createMock(SessionFactory.class);

//Chiama il metodo da testare (dao.findByLastName) verificando che il risultato
session = createMock(Session.class);

//sia lo stesso ottenibile con i mock
query = createMock(Query.class);

HibernatePersonDao dao = new HibernatePersonDao();

}
dao.setSessionFactory(factory);
SI Suppone che eSiSta glé una ClaSSG assertEquals(theSmiths, dao.findByLastname(name));
HibernatePersonDao creata da Hibernate per verify(factory, session, query);
virtualizzare I'accesso ai dati dell’ oggetto Person ¥

W

Integration Testing

Lessons Learned

Con hibernate e possibile generare oggetti sui quali e possibile
eseguire chiamate analoghe a quelle che si possono fare su di
un API di accesso a database (ad esempio JDBC), ma che in
realta vengono assolte da oggetti, senza coinvolgimento di
alcun dato persistente

Sono stati creati (col metodo expect) metodi stub di oggetti
mock corrispondenti alle classi di hibernate SessionFactory,
Session e Query

Viene infine testato il metodo findByLastName col supporto
degli stub e dei mock degli oggetti hibernate

In pratica, nel caso di test sono stati virtualizzati gli oggetti virtuali!

Integration Testing

Ricapitolando Easy Mock

« Le principali features di Easy Mock sono :

 Creazione dinamica di una classe mock:
« oggettomock = createMock(classe)

 Definizione dinamica di uno stub:

e expect(oggettomock.metododicuicrearestub.andRetur
n(valoredaritornare)

« Messa in funzione di tutti i mock e stub definiti:
 Replay(oggettomock1, oggettomock?2, ...)

« Verifica (asserzione) dell’avvenuto corretto utilizzo
degli oggetti mock:

« Verify (oggettomock1, oggettomock2, ...)

Ulteriori considerazioni

Bisogna creare mock corrispondenti a tutti quegli
oggetti e metodi da cui il metodo da testare dipende
direttamente

« E' necessario conoscere nel dettaglio il dependency graph (o
ricavarne la parte di interesse dall’analisi del codice del metodo da
testare)

« Se non creiamo il corretto mock di una classe/metodo dipendente:

. Se non e stato ancora implementato, non possiamo compilare il test
—>dobbiamo introdurre nuovi mock

. Se é stato gia implementato, utilizziamo I'originale
. Se l'originale € stato gia testato >OK

. Se l'originale non ¢é stato gia testato - I'esito positivo di un test pud dipendere sia
da un difetto del metodo da testare che da un difetto del metodo originale
erroneamente utilizzato al posto di un suo mock

Integration Testing

Eclipse Metrics

o Eclipse Metrics e una estensione di eclipse
che verra utilizzata anche per calcolare
automaticamente metriche relative al
codice sorgente

— Un tutorial completo sul suo utilizzo € all'indirizzo

— La home page del progetto, open source, €
all'indirizzo

Integration Testing 65

http://metrics.sourceforge.net/
http://sourceforge.net/projects/metrics/

Eclipse Metrics

 Nell'ambito del testing di integrazione
Eclipse metrics consente di:

— Disegnare il grafo delle dipendenze di un progetto a
partire dal suo codice sorgente

— Ottenere un ordine topologico dei package, da quelli
indipendenti a quelli con maggiore dipendenza

— Limite: non fornisce indicazioni (nel dependency
graph), a livello di classi e metodi

Integration Testing 66

