
Integration Testing 1

Software Testing

Integration Testing

Integration Testing 2

Testing «in isolamento»

Il testing di unità potrebbe essere applicato
soltanto a parti di software
completamente staccate:
- dal resto del software

(altre classi, librerie, …)

- da altri software

(sistema operativo, …)

- da altre risorse

(database, file, rete, …)

Integration Testing 3

Limiti dello Unit Test

Non si può testare un modulo in isolamento
se:

– comunica con il database

– comunica in rete

– comunica con altri moduli non ancora testati

– modifica database/file o altre fonti di dati

– non può essere lanciato in parallelo ad altri test

– …

Soluzioni per testare un modulo «in isolamento»

Due soluzioni concettuali possibili:

1) Supporre la correttezza di tutti i moduli
chiamati dal modulo sotto test e la
validità di tutte le risorse da esso
accedute

2) Sostituire tutti i moduli chiamati e le
risorse accedute con versioni fittizie,
semplificate, la cui correttezza può essere
imposta per costruzione

Integration Testing

Soluzioni per testare un modulo «in isolamento»

1) La prima soluzione è quella adottata:

• nelle strategie di testing di integrazione bottom-up

2) La seconda soluzione viene adottata:

• nelle strategie top-down;

• Nelle tecniche di testing con driver e stub, fake o
mock

• …

Integration Testing

Integration Testing 6

Testing di un modulo “non terminale”:
soluzione con driver e stub

Per testare un modulo non terminale, è
necessario costruire due tipologie di moduli:

Moduli guida (driver)
– invocano l’unità sotto test, inviandole opportuni

valori, relativi al test case

Moduli fittizi (stub)
– sono invocati dall’unità sotto test;
– emulano il funzionamento della funzione chiamata

rispetto al caso di test richiesto (tenendo conto delle
specifiche della funzione chiamata)

• Quando la funzione chiamata viene realizzata e
testata, si sostituisce lo stub con la funzione stessa

Modulo

guida

Unità

sotto test

Modulo

fittizio

Integration Testing 7

Stub e Driver

I moduli testati hanno bisogno di essere
chiamati (dai Driver)

I moduli chiamati devono essere sostituiti
da altri (Stub)

A

D ′ E ′

main driver

modulo testato

stubs

Integration Testing 8

Driver

• Un modulo driver deve sostituire in tutto e per
tutto il/i moduli chiamanti il modulo da testare

– Un metodo TestCase sotto Junit può implementare un driver

• Il modulo driver deve:

– Settare tutti i valori delle risorse e fonti dati utilizzate dal
modulo da testare

– In linguaggi object oriented, costruire l’oggetto il cui metodo è
sotto test

– Avviare il metodo da testare

Integration Testing 9

Stub

• Uno stub è una funzione fittizia la cui correttezza è
vera per ipotesi
– Esempio, se stiamo testando una funzione prod_scal(v1,v2)

che richiama una funzione prodotto(a,b) ma non abbiamo
ancora realizzato tale funzione

– Nel metodo driver scriviamo il codice per eseguire alcuni casi di
test

• Ad esempio chiamiamo prod_scal([2,4],[4,7])

– Il metodo stub potrà essere scritto così:
int prodotto (int a, int b){

if (a==2 && b==4) return 8;

if (a==4 && b==7) return 28;

}

– La correttezza di questo metodo stub è data per ipotesi
– Ovviamente per poter impostare tale testing, bisognerà avere

precise informazioni sul comportamento interno richiesto al
modulo da testare

Integration Testing 10

Stub

• Il termine Stub è utilizzato, più genericamente,
per indicare un metodo fittizio, non ancora
implementato o la cui implementazione sia,
volutamente, incompleta
– Spesso gli stub vengono messi nel codice semplicemente come

promemoria dei metodi ancora da realizzare oppure per
consentire la compilazione del codice prima possibile

– Lo stub ha il compito di riprodurre il comportamento del
modulo che sostituisce unicamente nei casi di test previsti dai
driver realizzati

– Lo stub può essere scritto sulla base di una conoscenza ‘black
box’ del modulo da emulare

• Gli stub consentono di testare un modulo prima che i moduli da
cui esso dipenda sono stati realizzati

Integration Testing 11

Stub

• Uno Stub può sostituire efficacemente una
funzione
• Ad ogni caso di test deve corrispondere una diversa istanza

dello stub (oppure un ramo diverso dello stub)

• Uno Stub non sostituisce efficacemente una
classe
• Non può gestire lo stato (valori degli attributi) di una classe tra

due chiamate dello stub

• Non può gestire il testing di una sequenza di interazioni

Integration Testing 12

Dipendenze

• Come si fa a sapere da quali moduli
dipende l’esecuzione di un dato modulo da
testare?

– Il grafo delle dipendenze (Dependency Graph) è un
grafo i cui moduli rappresentano moduli
(eventualmente classi, metodi, package) e i cui archi,
orientati, rappresentano relazioni di dipendenza tra i
moduli (ad esempio causate dall’esistenza di
chiamate di metodo, utilizzo di oggetti, utilizzo di
attributi)

Integration Testing 13

Dependency graph evaluation

• Il grafo delle dipendenze può essere
parzialmente (totalmente in alcuni casi
particolari) ricavato dall’analisi del codice
sorgente dell’applicazione

• Parecchie estensioni eclipse sono in grado
di valutare il dependency graph
– stan4j

– Eclipse Metrics

– jDepend

– eDepend

Integration Testing 14

stan4j

• Strumento molto più potente per la
valutazione di dependency graph e altre
metriche
– Free solo per utilizzi su sistemi di limitate dimensioni

– Un tutorial sul suo utilizzo è all’indirizzo:
http://stan4j.com/

– Scaricabile da: http://stan4j.com/general/download.html

– Estensione eclipse:
– http://update.stan4j.com/ide

• Disegna il grafo delle dipendenze anche a
livello più dettagliato, delle classi e dei
metodi

http://stan4j.com/
http://stan4j.com/general/download.html

Integration Testing 15

Testing dell’integrazione di due moduli

• Una volta testate tutte le unità, è necessario
procedere al testing di integrazione per valutare
se esse funzionano correttamente nel loro
complesso

– Se a chiama b, e sia a che b hanno superato i test di unità, non
è detto che l’insieme di a e b soddisfi tutti i test previsti di a

• Possibili problemi potrebbero essere legati, ad esempio, a
combinazioni negli input di b che chi ha testato b non ha previsto
ma che possono comparire come possibili valori di chiamata in a

– Per testare a e b (con a che chiama b) potrebbe essere
sufficiente utilizzare i test progettati per a

• In pratica, si sostituisce, nei test progettati per a, il vero modulo b
al posto del suo stub (o mock)

Integration Testing 16

Strategie per il testing di integrazione

• Il testing di integrazione consiste nel
considerare insiemi via via più grandi di
moduli, fino ad ottenere l’insieme
completo

• In che modo decidiamo l’ordine di
integrazione?

– Due strategie “estreme”: top-down e bottom-up

Integration Testing 17

Testing d’integrazione bottom-up

• Si parte dai moduli che non hanno dipendenze
(nodi senza archi uscenti nel grafo delle
dipendenze)

• Si integra ognuno di questi moduli con uno di
quelli che lo chiama e si testa la coppia

• Si ridisegna il grafo delle dipendenze avendo
sostituito i due moduli integrati con un unico
modulo

• Si ripete iterativamente il procedimento fino ad
ottenere un grafo con un unico nodo
– Questo procedimento vale in assenza di cicli nel grafo.

Integration Testing 18

Testing d’integrazione top-down

• Si parte dai moduli che non dipendono da alcun
altro modulo (nodi senza archi entranti nel grafo
delle dipendenze)

• Si integra ognuno di questi moduli con uno di
quelli chiamati e si testa la coppia

• Si ridisegna il grafo delle dipendenze avendo
sostituito i due moduli integrati con un unico
modulo

• Si ripete iterativamente il procedimento fino ad
ottenere un grafo con un unico nodo
– Questo procedimento vale in assenza di cicli nel grafo.

Risoluzione dei cicli

Possibile tecnica:

- «Aprire» i cicli utilizzando degli stub

- Ad esempio, in presenza di un ciclo a->b->c->a

- si sdoppia il modulo a creando un aStub

- Si integrano i moduli come a->b->c->aStub (non ciclico)

- Si sostituisce a ad aStub testando tutto il ciclo

Integration Testing

Integration Testing 20

Strategie d’integrazione

• E’abbastanza semplice la scelta di una strategia
precisa per software progettato a livelli (layer)

• Spesso si utilizzano tecniche miste (sandwich)
nel quale strategie top-down e bottom-up sono
alternate

• Altre strategie portano a integrare prima i metodi
più fortemente accoppiati, in modo da ridurre il
più velocemente possibile la complessità del
grafo delle dipendenze

• Spesso la strategia d’integrazione dipende anche
dalla gerarchia aziendale e dall’organizzazione
delle risorse umane

Integration Testing 21

Strategie per il testing di integrazione

stub stub stub

UI Lay er

stub stub stub

UI Lay er

Functional lay er

UI Lay er

Functional lay er

Database
layer

Network
layer

Functional lay er

Database
layer

Network
layer

driver driverdriver

Database
layer

Network
layer

driver driverdriver

stub stub stub

UI Lay er

Top-down testing Bottom-up testing Sandwich tes ting

Database
layer

Network
layer

driver driverdriver

Fully
integrated

system

Integration Testing 22

Esempio di testing di integrazione con JUnit

• Consideriamo un’unica classe
Calendario con i seguenti metodi:

– main legge da linea di comando giorno,
mese (stringa) e anno

– giornoDellaSettimana converte il mese in
input in un intero, controlla se la data è
valida e eventualmente chiama calend

– valida controlla se la data è valida

– calend calcola il giorno della settimana
(numerico)

– convert converte in stringa il giorno della
settimana risultante

Grafo ricavato

automaticamente

con STAN4J

Codice esempio: giornoDellaSettimana

public static String giornoDellaSettimana(int d, String ms, int a)

{

int m=0;

if (ms.equals("gennaio"))

m=1;

else if (ms.equals("febbraio"))

m=2;

else if (ms.equals("marzo"))

m=3;

else if (ms.equals("aprile"))

m=4;

else if (ms.equals("maggio"))

m=5;

else if (ms.equals("giugno"))

m=6;

else if (ms.equals("luglio"))

m=7;

Integration Testing

else if (ms.equals("agosto"))

m=8;

else if (ms.equals("settembre"))

m=9;

else if (ms.equals("ottobre"))

m=10;

else if (ms.equals("novembre"))

m=11;

else if (ms.equals("dicembre"))

m=12;

if ((m>0) && valida(d,m,a))

return calend(d,m,a);

else

return "Errore";

}

Codice esempio: valida

public static boolean valida(int d, int m, int a) {

if (d<1 || d>31 || m==0 || a<=1582)

return false;

Boolean bisestile= (a%4==0);

if (bisestile && a%100==0 && a%400!=0)

bisestile=false;

if ((m==2 && d>29)||(m==2 && d==29 &&
!bisestile))

return false;

if ((m==4 || m==6 || m==9 || m==11) && d>30)

return false;

return true;

}

Integration Testing

Codice esempio: calend

public static String calend(int d, int m, int a)

{

if (m<=2)

{

m = m + 12;

a--;

};

int f1 = a / 4;

int f2 = a / 100;

int f3 = a / 400;

int f4 = (int) (2 * m + (.6 * (m + 1)));

int f5 = a + d + 1;

int x = f1 - f2 + f3 + f4 + f5;

int k = x / 7;

int n = x - k * 7;

return convert(n);

}

Integration Testing

Codice esempio: convert

public static String convert(int n) {

if (n==1)

return "Lunedi";

else if (n==2)

return "Martedi";

else if (n==3)

return "Mercoledi";

else if (n==4)

return "Giovedi";

else if (n==5)

return "Venerdi";

else if (n==6)

return "Sabato";

else if (n==0)

return "Domenica";

else return "Errore";

}

Integration Testing

Codice esempio: main

public static String main(String[] args) {

if (args.length==3){

int giorno=Integer.parseInt(args[0]);

String mese=args[1];

int anno=Integer.parseInt(args[2]);

String giornoDS=new String(giornoDellaSettimana(giorno,mese,anno));

System.out.println(giornoDS);

return giornoDS;

}

else

return "";

}

Integration Testing

Integration Testing 28

Esempio di testing bottom-up 1/2

• Cominciamo testando convert
@Test

public void testConvert1() {

assertEquals("Domenica",Calendario.convert(0));

}

…

• Continuiamo con calend
@Test

public void testCalend1() {

assertEquals("Domenica",Calendario.calend(24
, 4, 2011));

}

…

• Poi valida:
@Test

public void testValida1() {

assertTrue(Calendario.valida(24, 4, 2011));

}

…

Integration Testing 29

Esempio di testing bottom-up 2/2

• Poi giornoDellaSettimana:
@Test

public void testGiornoDellaSettimana1() {

assertEquals("Domenica",Calendario.giornoDellaSettimana(24,
"aprile", 2011));

}

…

• Infine il test del main:
@Test

public void testMain1() {

String a[]=new String[3];

a[0]="24";

a[1]="aprile";

a[2]="2011";

assertEquals("Domenica",Calendario.main(a));

}

…

Integration Testing 30

Esempio di testing top-down 1/2

• Per testare la classe main da sola,
vediamo che è necessario solo uno stub
per giornoDellaSettimana
public static String giornoDellaSettimana(int

d, String ms, int a){

//STUB

if (d==24 && ms.equals("aprile") && a==2011)

return "Domenica"; //TC1

else if (d==32 && ms.equals("aprile") &&

a==2011) return ""; //TC2

return "";

}

• Possiamo, poi, eseguire gli stessi test
progettati per il main nel bottom-up

Integration Testing 31

Esempio di testing top-down 2/2

• Per testare la classe giornoDellaSettimana sono necessari stub sia per calend
che per valida

public static boolean valida(int d, int m, int
a) {

//STUB

if (d==24 && m==4 && a==2011) return true;

else if (d==29 && m==2 && a==2012) return true;

else if (d==32 && m==4 && a==2011) return
false;

return false;

}

public static String calend(int d, int m, int
a){

// STUB

if (d==24 && m==4 && a==2011) return
"Domenica";

else if (d==32 && m==4 && a==2011) return
"Errore";

else return "";

}

• A questo punto riusiamo i test di calend, e così via

Integration Testing 32

Altri casi di test

• Se, ad esempio, la classe calend fosse
stata la prima ad essere realizzata

– Ad esempio per ragioni di prototipazione,
poiché è l’unica classe con complessità
derivanti dalle conoscenze di astronomia

sarebbero necessari:

• Un driver che si comporti come
giornoDellaSettimana

– Può essere il metodo di test JUnit che
pensammo nelle strategie top-down e bottom-
up

• Uno stub che imiti convert nei casi
previsti dal driver

– Può essere lo stub che pensammo nel testing
bottom-up

Limiti e problemi della tecnica con stub e driver

• Difficile applicazione nell’object oriented

• Uno stub può sostituire con facilità solo un metodo combinatorio
(senza stato)

• Se il metodo legge o modifica attributi della classe bisognerà realizzare

ulteriori metodi stub (o reali) che svolgano queste operazioni

• Ogni caso di test ha bisogno di uno stub diverso

• Gli stub sostituiscono i metodi, quindi prima di
eseguire ogni test dovremmo rinominare il metodo di
stub (per fargli sostituire il metodo originale) e
ricompilare

• Scarsa automazione dei test

Integration Testing

Limiti e problemi della tecnica con stub e driver

• I driver possono anche essere realizzati come casi di
test Junit, ma gli stub sembrano essere dei pezzi di
codice fastidiosi che devono essere utilizzati /
ignorati all’esecuzione di ogni test

• Quali soluzioni possiamo ottenere per non essere
costretti a gestire questi stub espliciti?

• Possiamo implementare un caso di test interamente in un codice di un metodo di test Junit?

Integration Testing

Integration Testing 35

Test Doubles

Mock objects

Test Doubles

In generale, un test double è una implementazione
alternativa e sostitutiva di una interfaccia o di
una classe che non potrebbe essere utilizzata in
un test perché:

• Troppo lenta

• Non (ancora) disponibile

• Dipendente da qualcos’altro che non è (ancora) disponibile

• Troppo difficile da istanziare e configurare per un test

• Solo nel caso particolare di una funzione, un suo test double può
essere uno stub

Integration Testing

Integration Testing 37

Tassonomia: Mock Object, Fake, e Stub

Tratto da: Test Driven - Practical TDD and Acceptance TDD

for Java Developers (Lasse Koskela)- Manning Ed. 2008

Integration Testing 38

Mock-Objects

• Una precisa emulazione del comportamento delle classi
non ancora implementate è ottenibile con i mock object

• Un mock object è una simulazione di un oggetto reale.

• Implementa l’interfaccia dell’oggetto da simulare ed ha il
suo stesso comportamento.

• Possono fornire una risposta pre-impostata.

• Possono verificare se l’oggetto che li usa lo fa
correttamente.

• Utilissimi per testare unità senza legarsi ad oggetti
esterni.

Integration Testing 39

Differenze fra Stub e Mock

I Mock-Objects non sono Stub! [Fowler]
– http://martinfowler.com/articles/mocksArentStubs.html

In genere lo stub è molto più semplice di un Mock-Object
– Gli stub forniscono risposte preconfezionate (con valori prefissati) a

chiamate fatte durante il test, senza rispondere di solito a nulla che
sia al di fuori di ciò che è previsto per il test.

I mock hanno implementazioni più sofisticate che
consentono di verificare il comportamento dell’unità
testata (e non solo lo stato)
– verificando ad esempio le collaborazioni avute con altri oggetti ed il

relativo ordine di esecuzione
– Possono contenere asserzioni, riguardanti aspetti utili al debugging
– Mock già realizzati saranno fondamentali nei test che coinvolgono

classi di libreria

http://martinfowler.com/articles/mocksArentStubs.html

Integration Testing 40

Testing di Classi con Mock

Es.: La classe Client (da testare) usa i metodi di
Helper

Ma la classe Helper non può essere usata perché:

– Non è ancora disponibile

– Vogliamo controllare direttamente ciò che Helper restituisce a
Client

Vogliamo costruire un Test Double di Helper

Client Helper

ClientMethod() HelperMethod()

Integration Testing 41

La soluzione usando i Mock-Object

Si estrae l’Interfaccia IHelper…

Client <<interface>>

IHelper
ClientMethod()

Helper

Integration Testing 42

La soluzione usando i Mock-Object

Il MockObject implementa l’Interfaccia IHelper

Client <<interface>>

IHelper
ClientMethod()

Helper MockHelper

Integration Testing 43

Un esempio di semplice Mock

public class MockHelper implements IHelper

{

public MockHelper ()

{

}

public Object helperMethod(Object aParameter)

{

Object result = null;

if (! aParameter.toString().equals("expected")

{

throw new IllegalArgumentException(
"Unexpected parameter: " + aParameter.toString());

}

result = new String("reply");

return result;

}

}

Utilizzo di MockHelper

Una classe di test che testi la classe Client
utilizzando MockHelper anziché mock
dovrà:

• Istanziare un oggetto di MockHelper

• Passarlo al costruttore di Client o ad un
metodo setHelper di Client

In questo modo, la classe Helper originale
potrà in futuro essere integrata senza la
necessità di modificare o distruggere
alcunché

Integration Testing

Esempio: classe di test

Integration Testing

• Per rendere eseguibile questo complesso caso di test funzionale è stato
sufficiente scrivere PricingServiceTestDouble anziché PricingService

• Da notare che la sostituzione tra oggetto reale e suo doppione avviene solo e soltanto nel caso di test, non
nell’originale PricingService

public class OrderProcessorTest {

@Test

public void testOrderProcessorWithMockObject() throws Exception {

float initialBalance = 100.0f;

float listPrice = 30.0f;

float discount = 10.0f;

float expectedBalance = (initialBalance - (listPrice * (1 - discount/100)));

Customer customer = new Customer(initialBalance);

Product product = new Product("TDD in Action", listPrice);

OrderProcessor processor = new OrderProcessor();

PricingService service = new PricingServiceTestDouble(discount);

processor.setPricingService(service);

processor.process(new Order(customer, product));

assertEquals(expectedBalance, customer.getBalance(), 0.001f);

}

}

Esempio (con sola estensione anziché Interface)

Doppione della classe Pricing Service:

• Estende la classe che deve sostituire

• Ridefinisce i metodi di cui abbiamo bisogno per eseguire i nostri test

• In questo caso consente di accedere all’attributo discount

• Il metodo reale getDiscountPercentage avrebbe letto il valore dal database

public class PricingServiceTestDouble extends PricingService {

private float discount;

public PricingServiceTestDouble(float discount) {

this.discount = discount;

}

public float getDiscountPercentage(Customer c, Product p) {

return discount;

}

}

Integration Testing

Confronti

• Il vantaggio della soluzione con interface
è la perfetta sostituibilità della classe
reale con quella mock

• La soluzione con estensione, viceversa,
può essere utile quando si vuole sostituire
solo alcuni metodi, utilizzando i rimanenti
dalla classe originale (nell’ipotesi che già
esista)

Integration Testing

Integration Testing 48

Sviluppo di Mock

• In genere i Mock sono in grado di fare
controlli sul comportamento dell’oggetto
testato e sulle sue interazioni con altri
oggetti.

• Lo sviluppo di Mock Objects è supportata
da diversi frameworks, o librerie (come
JMock o EasyMock in Java).

– Spesso sono disponibili librerie di mock già pronti
corrispondenti ad oggetti di libreria

49

EasyMock

É un Framework per creare mock objects a
run time.

Usa le Java reflection per creare una classe
mock object che implementa una certa
interfaccia.

É un progetto open source project ospitato
su SourceForge:

http://www.easymock.org

Esempio: class Portfolio

package esempioeasymock;

import java.util.ArrayList;

import java.util.List;

public class Portfolio {

private String name;

private StockMarket stockMarket;

private List<Stock> stocks = new
ArrayList<Stock>();

public Double getTotalValue() {

Double value =0.0;

for (Stock stock : this.stocks) {

value += (stockMarket.getPrice(stock.getName()) *
stock.getQuantity());

}

return value;

}

Integration Testing

public String getName() {return name;}

public void setName(String name) {this.name = name;}

public List<Stock> getStocks() {return stocks;}

public void setStocks(List<Stock> stocks)
{ this.stocks = stocks; }

public void addStock(Stock stock) { stocks.add(stock);}

public StockMarket getStockMarket()
{return stockMarket;}

public void setStockMarket(StockMarket stockMarket)
{this.stockMarket = stockMarket;}

}

Classe Portfolio:
Gestisce un insieme di azioni (Stock) ed è in grado di
calcolarne il valore totale sommando i singoli valori

Esempio: classe Stock e interface StockMarket

package esempioeasymock;

public class Stock {

private String name;

private int quantity;

public Stock(String name, int quantity) {

this.name = name;

this.quantity = quantity;

}

public String getName() {return name;}

public void setName(String name)

{this.name = name;}

public int getQuantity() {return quantity;}

public void setQuantity(int quantity)

{this.quantity = quantity;}

}

Integration Testing

package esempioeasymock;

public interface StockMarket {

public Double getPrice(String stockName);

}

• Stock rappresenta un azione.

• StockMarket è un’interfaccia della
quale non è (ancora) disponibile
alcuna implementazione

• Vogliamo testare i principali metodi
di Portfolio sostituendo a
StockMarket (che non esiste ancora)
un mock creato con EasyMock

Esempio: testPortfolio

package esempioeasymotests;

import junit.framework.TestCase;

import org.easymock.EasyMock;

import org.junit.Before;

import org.junit.Test;

import esempioeasymock.*

public class PortfolioTest extends TestCase {

private Portfolio portfolio;

private StockMarket marketMock;

@Before

public void setUp() {

portfolio = new Portfolio();

portfolio.setName("Veera's portfol");

marketMock =
EasyMock.createMock(StockMarket.class);

portfolio.setStockMarket(marketMock);

}

Integration Testing

@Test

public void testGetTotalValue() {

EasyMock.expect(marketMock.getPrice("EBAY")).and
Return(42.00);

EasyMock.replay(marketMock);

Stock ebayStock = new Stock("EBAY", 2);

portfolio.addStock(ebayStock);

assertEquals(84.00, portfolio.getTotalValue());

}

}

• marketMock è una istanza di un’implementazione
mock di StockMarket creata a run-time da EasyMock

• Con il metodo EasyMock.expect viene dichiarato uno
stub del comportamento di getPrice, intendendo che
quando getPrice verrà chiamato con parametro di
valore pari a «EBAY» dovrà essere restituito il valore
42 (metodo andReturn)

• Con il metodo replay vengono creati effettivamente i
metodi stub le cui caratteristiche sono state
dichiarate con gli expect

• Il resto del metodo di test è identico a quello che
sarebbe stato se non fosse esistito alcun Mock

Lessons learned

• EasyMock.createMock(classe)

• ha in input una classe (eventualmente anche
un’interfaccia) e fornisce in output un oggetto di una
classe mock relativa a quella classe (interfaccia)

• EasyMock.expect(oggettomock.metodo(para
metro)).andReturn(valore);

• Genera un metodo sull’oggetto mock indicato che, se
chiamato con quel parametro restituirà il valore indicato
in andReturn

• EasyMock.replay(marketMock);
• Rende operativi i metodi dichiarati con le chiamate expect

Integration Testing

Integration Testing 55

Appendice

Esempio di testing di interazioni con JDBC
Classe di cui vogliamo creare un Test Double

import javax.sql.*;

import java.sql.*;

import java.util.*;

public class JdbcPersonDao implements PersonDao {

private DataSource datasource;

public void setDatasource(DataSource datasource) {

this.datasource = datasource;

}

public List<Person> findByLastname(String lastname) {

try {

Connection conn = datasource.getConnection();

String sql = "SELECT * FROM people WHERE last_name = ?";

PreparedStatement stmt = conn.prepareStatement(sql);

stmt.setString(1, lastname);

ResultSet rset = stmt.executeQuery();

List<Person> people = new ArrayList<Person>();

Integration Testing

while (rset.next()) {

String firstName = rset.getString("first_name");

String lastName = rset.getString("last_name");

people.add(new Person(firstName, lastName));

}

rset.close();

stmt.close();

conn.close();

return people;

} catch (SQLException e) {throw new RuntimeException(e);}

}

// Other PersonDao methods not shown

}

• PersonDao è la classe Model che modella l’entità Persona

• JdbcPersonDao è la classe che implementa la
connessione ad un database JDBC e, in particolare, il
metodo findByLastName

Esempio di test JDBC 1/2

import static org.junit.Assert.*;

import static org.easymock.EasyMock.*;

import com.mockobjects.sql.*;

import org.junit.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

public class JdbcPersonDaoTest {

@Test

public void testFindByLastname() throws Exception {

//Crea i mock e li collega

DataSource datasource = createMock(DataSource.class);

Connection connection = createMock(Connection.class);

expect(datasource.getConnection()).andReturn(connection);

String sql = "SELECT * FROM people WHERE last_name = ?";

PreparedStatement stmt
=createMock(PreparedStatement.class);

expect(connection.prepareStatement(sql)).andReturn(stmt);

stmt.setString(1, "Smith");

Integration Testing

//Crea un mock del risultato

MockMultiRowResultSet resultset =new
MockMultiRowResultSet();

String[] columns = new String[] { "first_name", "last_name" };

resultset.setupColumnNames(columns);

List<Person> smiths = createListOfPeopleWithLastname("Smith");

resultset.setupRows(asResultSetArray(smiths));

expect(stmt.executeQuery()).andReturn(resultset);

resultset.setExpectedCloseCalls(1);

stmt.close();

connection.close();

replay(datasource, connection, stmt);

Esempio di test JDBC 2/2

//testa il metodo dao.findByLastname di JdbcPersonDao

JdbcPersonDao dao = new JdbcPersonDao();

dao.setDatasource(datasource);

List<Person> people = dao.findByLastname("Smith");

assertEquals(smiths, people);

verify(datasource, connection, stmt);

resultset.verify();

}

Integration Testing

private List<Person> createListOfPeopleWithLastname(String lastName) {

//genera la lista di risultati attesi

List<Person> expected = new ArrayList<Person>();

expected.add(new Person("Alice", lastName));

expected.add(new Person("Billy", lastName));

expected.add(new Person("Clark", lastName));

return expected;

}

private Object[][] asResultSetArray(List<Person> people) {

//Trasforma la lista in ResultSet

Object[][] array = new Object[people.size()][2];

for (int i = 0; i < array.length; i++) {

Person person = people.get(i);

array[i] = new Object[] {

person.getFirstName(),

person.getLastName() };

}

return array;

}

}

Lessons learned

• Datasource, Connection e PrepareStatement sono tutti oggetti
mock con metodi stub che servono a collegare tra loro gli
oggetti

• Anche il risultato della query è un oggetto di una classe
importata da com.mockobjects.sql (MockMultiRowResultSet)
che imita il risultato di una query

• Il metodo replay (statico di EasyMock) può avere come
parametri più di un oggetto su cui vengono resi esecutivi i
metodi stub dichiarati con expect

• Il metodo verify (statico di EasyMock) verifica che tutti gli
oggetti mock nominati come parametri siano stati
correttamente generati (non siano null) e chiamati

Integration Testing

Hibernate

• Hibernate è un framework (API) che consente di inserire un ulteriore livello di virtualizzazione tra il software (Model nel
caso MVC) e il database

• JDBC ad esempio consentiva la virtualizzazione del livello di accesso al database tramite una API che consentiva di
interrogare tramite query SQL il database

• Hibernate invece consente di poter agire sui dati anche in forma di astrazioni Object Oriented

• Hibernate implementa un linguaggio di query specifico: Hibernate Query Language (HQL)

• Hibernate fornisce tre astrazioni fondamentali:

• SessionFactory, che fornisce una façade della sorgente dati;

• Session, che corrisponde ad una connection di JDBC, tramite la quale è possibile fare operazioni CRUD sui dati;

• Query, che consente di fare query più complesse

Integration Testing

Esempio di test per Hibernate

import static org.easymock.EasyMock.*;

import static org.junit.Assert.*;

import org.junit.*;

import java.util.*;

import org.hibernate.*;

import org.hibernate.classic.Session;

public class HibernatePersonDaoTest {

private SessionFactory factory;

private Session session;

private Query query;

@Before

public void setUp() {

//Crea mock per factory, session, query

factory = createMock(SessionFactory.class);

session = createMock(Session.class);

query = createMock(Query.class);

}

Integration Testing

@Test

public void testFindByLastname() throws Exception {

String hql = "from Person p where p.lastname = :lastname";

String name = "Smith";

List<Person> theSmiths = new ArrayList<Person>();

theSmiths.add(new Person("Alice", name));

theSmiths.add(new Person("Billy", name));

theSmiths.add(new Person("Clark", name));

// Definisci esiti per ciò che necessita per la creazione di una query

expect(factory.getCurrentSession()).andReturn(session);

expect(session.createQuery(hql)).andReturn(query);

expect(query.setParameter("lastname",name)).andReturn(query);

expect(query.list()).andReturn(theSmiths);

replay(factory, session, query);

//Chiama il metodo da testare (dao.findByLastName) verificando che il risultato

//sia lo stesso ottenibile con i mock

HibernatePersonDao dao = new HibernatePersonDao();

dao.setSessionFactory(factory);

assertEquals(theSmiths, dao.findByLastname(name));

verify(factory, session, query);

}

}

Si suppone che esista già una classe

HibernatePersonDao creata da Hibernate per

virtualizzare l’accesso ai dati dell’ oggetto Person

Lessons Learned

• Con hibernate è possibile generare oggetti sui quali è possibile
eseguire chiamate analoghe a quelle che si possono fare su di
un API di accesso a database (ad esempio JDBC), ma che in
realtà vengono assolte da oggetti, senza coinvolgimento di
alcun dato persistente

• Sono stati creati (col metodo expect) metodi stub di oggetti
mock corrispondenti alle classi di hibernate SessionFactory,
Session e Query

• Viene infine testato il metodo findByLastName col supporto
degli stub e dei mock degli oggetti hibernate

• In pratica, nel caso di test sono stati virtualizzati gli oggetti virtuali!

Integration Testing

Ricapitolando Easy Mock

• Le principali features di Easy Mock sono :

• Creazione dinamica di una classe mock:

• oggettomock = createMock(classe)

• Definizione dinamica di uno stub:

• expect(oggettomock.metododicuicrearestub.andRetur

n(valoredaritornare)

• Messa in funzione di tutti i mock e stub definiti:

• Replay(oggettomock1, oggettomock2, …)

• Verifica (asserzione) dell’avvenuto corretto utilizzo
degli oggetti mock:

• Verify (oggettomock1, oggettomock2, …)

Ulteriori considerazioni

• Bisogna creare mock corrispondenti a tutti quegli
oggetti è metodi da cui il metodo da testare dipende
direttamente

• E’ necessario conoscere nel dettaglio il dependency graph (o
ricavarne la parte di interesse dall’analisi del codice del metodo da
testare)

• Se non creiamo il corretto mock di una classe/metodo dipendente:

• Se non è stato ancora implementato, non possiamo compilare il test

dobbiamo introdurre nuovi mock

• Se è stato già implementato, utilizziamo l’originale

• Se l’originale è stato già testato OK

• Se l’originale non è stato già testato  l’esito positivo di un test può dipendere sia

da un difetto del metodo da testare che da un difetto del metodo originale

erroneamente utilizzato al posto di un suo mock

Integration Testing

Integration Testing 65

Eclipse Metrics

• Eclipse Metrics è una estensione di eclipse
che verrà utilizzata anche per calcolare
automaticamente metriche relative al
codice sorgente

– Un tutorial completo sul suo utilizzo è all’indirizzo
http://metrics.sourceforge.net/

– La home page del progetto, open source, è
all’indirizzo http://sourceforge.net/projects/metrics/

http://metrics.sourceforge.net/
http://sourceforge.net/projects/metrics/

Integration Testing 66

Eclipse Metrics

• Nell’ambito del testing di integrazione
Eclipse metrics consente di:

– Disegnare il grafo delle dipendenze di un progetto a
partire dal suo codice sorgente

– Ottenere un ordine topologico dei package, da quelli
indipendenti a quelli con maggiore dipendenza

– Limite: non fornisce indicazioni (nel dependency
graph), a livello di classi e metodi

