
Ingegneria del Software 2 Testing Object Oriented 1

Verifica e Validazione del Software

Testing Object Oriented

Ingegneria del Software 2 Testing Object Oriented 2

Riferimenti

• Ian Sommerville, Ingegneria del Software,
capitoli 22-23-24 (più dettagliato sui processi)

• Pressman, Principi di Ingegneria del Software, 5°
edizione, Capitoli 15-16

• Ghezzi, Jazazeri, Mandrioli, Ingegneria del
Software, 2° edizione, Capitolo 6 (più dettagliato
sulle tecniche)

Ingegneria del Software 2 Testing Object Oriented 3

• "Object-oriented
programming is an
exceptionally bad idea that
could only have been
invented in California."
- Edsger Dijkstra

Ingegneria del Software 2 Testing Object Oriented 4

Impatto delle caratteristiche OO sul Testing

• Caratteristiche degli oggetti di cui tener conto in fase di
testing

– Stato

– Ereditarietà

– Polimorfismo e binding dinamico

– Genericità

– Eccezioni

– Concorrenza

–

Ingegneria del Software 2 Testing Object Oriented 5

1- Stato ed Information Hiding

• Componente base: Classe = struttura dati + insieme di
operazioni
– oggetti sono istanze di classi

– la verifica del risultato del test non è legata solo all’output, ma anche
allo stato,definito dalla struttura dati

• La ‘opacità’ dello stato (v. incapsulamento ed information
hiding) rende più difficile la costruzione di infrastruttura e
oracoli
– è sufficiente osservare le relazioni tra input e output?

– lo stato di un oggetto può essere inaccessibile

– lo stato “privato” può essere osservato solo utilizzando metodi
pubblici della classe (e quindi affidandosi a codice sotto test)
• In pratica, per testare metodi privati di una classe dobbiamo scrivere

metodi di test all’interno della classe stessa

Ingegneria del Software 2 Testing Object Oriented 6

2- Ereditarietà

• Test ed Ereditarietà
– l'ereditarietà è una relazione fondamentale tra classi

– nelle relazioni di ereditarietà alcune operazioni restano invariate
nella sotto-classe, altre sono ridefinite, altre aggiunte (o
eliminate)

• Ci si può “fidare” delle proprietà ereditate?
– L’ereditarietà produce una forma di accoppiamento tra la classe

figlia e la classe padre, che dovrebbe essere oggetto di testing
di integrazione

– Non è, in generale, corretto riusare i test di un metodo di una
classe padre qualora esso sia stato ridefinito da una classe
figlia

Ingegneria del Software 2 Testing Object Oriented 7

3- Polimorfismo e Binding Dinamico

• Un riferimento (variabile) può denotare oggetti
appartenenti a diverse classi di una gerarchia di
ereditarietà (polimorfismo), ovvero il tipo dinamico e il
tipo statico dell’oggetto possono essere differenti

– più implementazioni di una stessa operazione

– il codice effettivamente eseguito è identificato a run-time, in
base alla classe di appartenenza dell’oggetto (binding
dinamico)

Ingegneria del Software 2 Testing Object Oriented 8

Polimorfismo e problemi per il testing

• Il test strutturale può diventare non praticabile:

– Come definire la copertura in un’invocazione su un oggetto
polimorfico?

– Come creare test per “coprire” tutte le possibili chiamate di un
metodo in presenza di binding dinamico?

– Come gestire i parametri polimorfici?

Ingegneria del Software 2 Testing Object Oriented 9

Problemi della generazione di codice a run-time

• Il problema del binding dinamico rientra nella categoria di problemi
legati alla generazione di codice a run-time, comprendente anche:

– utilizzo di puntatori

– Utilizzo di puntatori a funzione

– Generazione dinamica di codice

– istanziazione dinamica di classi e oggetti (tramite la riflessione) …

• In tutti questi casi, in pratica, è come se non conoscessimo
completamente il codice sorgente a tempo di progettazione dei casi di
test, quindi non possiamo mai pensare di affrontare perfettamente
problemi di copertura

– Caso estremo: nelle applicazioni Web, il codice lato server genera a
tempo di esecuzione delle pagine Web (lato client) comprendenti al
loro interno anche codice interpretabile (Javascript)
• Non ha senso parlare di copertura nel testing white box del lato client!

Ingegneria del Software 2 Testing Object Oriented 10

Polimorfismo e Binding Dinamico: esempio

Ingegneria del Software 2 Testing Object Oriented 11

4- Test e Genericità

• I moduli generici sono presenti nella maggior parte dei
linguaggi OO (template in C++, <class> in Java)
– la genericità è un concetto chiave per la costruzione di librerie

di componenti ri-usabili

• Le classi parametriche devono essere instanziate per
poter essere testate
– Bisognerebbe prevedere test per ogni possibile istanziazione

della classe parametrica (test esaustivo???)

• Quali ipotesi dover fare sui parametri?
– Servono classi “fidate” da utilizzare come parametri

• Quale metodologia seguire quando si testa un
componente generico che è ri-usato?
– Non esistono tecniche o approcci maturi in letteratura

Ingegneria del Software 2 Testing Object Oriented 12

5- Gestione delle Eccezioni

• Le eccezioni modificano il flusso di controllo in maniera
imprevedibile

– Agendo come interruzioni, possono causare un salto da una
qualsiasi istruzione del try verso le istruzioni del catch

• Il CFG, in presenza di gestione delle eccezioni, è inefficace.

• E’ necessario introdurre ulteriori metodi per generare
casi di test e ulteriori metriche di copertura per valutare
l’effettiva copertura di tutte le eccezioni
– copertura ottimale: sollevare tutte le possibili eccezioni in tutti i punti

del codice in cui è possibile farlo (può non essere praticabile)

– copertura minima: sollevare almeno una volta ogni eccezione

Ingegneria del Software 2 Testing Object Oriented 13

6- Concorrenza

• Problema principale: non-determinismo

– risultati non-deterministici

– esecuzione non-deterministica

• Casi di test composti solo da valori di Input/Output sono poco
significativi

• I casi di test potrebbero essere descritti dai valori di Input/output
e dagli istanti di arrivo dei dati in input e dei risultati in output

– L’istante di arrivo dell’input è però un valore reale, che ammetterebbe
un numero illimitato di valori possibili, per cui bisognerebbe trovare
delle classi di equivalenza

– Le classi di equivalenza degli istanti di arrivo individuano condizioni di
sincronizzazione tra gli input

Ingegneria del Software 2 Testing Object Oriented 14

Esempio di test di concorrenza

• Nel noto problema dei produttori e dei consumatori nel
caso con un solo buffer, 1 produttore P e 1 consumatore
C alcuni casi di test significativi potrebbero essere:

– Precondizione: buffer vuoto

– TC1: P scrive ‘a’ all’istante t1; C legge a t2>t1. Output atteso:
letto ‘a’. Postcondizione: buffer vuoto

– TC2: C legge a t1; P scrive ‘a’ a t2>t1. Output atteso: nessuna
lettura. Postcondizione: ‘a’ nel buffer

– TC3: P scrive ‘a’ a t1; P scrive ‘b’ a t2>t1. Output atteso:
nessuno. Postcondizione: ‘b’ nel buffer

– …

Ingegneria del Software 2

Utilizzo di Java Path Finder

• Java Path Finder può essere utilizzato per
risolvere problemi di concorrenza

• Esso ha, infatti, un motore di analisi del codice in
grado di

– riconoscere possibili problemi di concorrenza

• Deadlock, Race conditions, Attese indefinite …

– Scatenare combinazioni di chiamate con
tempificazioni diverse, allo scopo di ricreare i
comportamenti possibili

Testing Object Oriented 15

Ingegneria del Software 2

Java Path Finder Tutorial

• Scaricare Java Path Finder Core e Java Path Finder Symbolic
direttamente dal repository

– http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

– http://babelfish.arc.nasa.gov/hg/jpf/jpf-symbc

• Attraverso Mercurial

– https://www.mercurial-scm.org/downloads

• Oppure direttamente dal materiale didattico

• Creare una cartella (windows)

– C:\Users\<NomeUtente>\.jpf

Testing Object Oriented 16

http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-symbc
https://www.mercurial-scm.org/downloads

Ingegneria del Software 2

Java Path Finder Tutorial

• Nella cartella creata scrivere un file site.properties con i
percorsi di copia di jpf-core e jpf-symbc:
JPF site configuration

jpf-core = C:/jpf-core

extensions+=,${jpf-core}

symbc extension

jpf-symbc = C:/jpf-symbc

extensions+=,${jpf-symbc}

• Aggiungere ad eclipse il plug-in di Java Path Finder che si
trova all’indirizzo:
– http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/eclipse-jpf/update

• A questo punto, in Eclipse, è possibile trovare sul tasto destro di ogni
script jpf il comando Verify … che scatena l’esecuzione di Java Path
Finder

Testing Object Oriented 17

http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/eclipse-jpf/update

Ingegneria del Software 2

Esempio: Deadlock tra Filosofi

public class DeadlockDetection_Filosofi {

static class Forchetta {}

static class Filosofo extends Thread {

Forchetta forchettaSinistra;

Forchetta forchettaDestra;

public Filosofo(Forchetta forchettaSinistra, Forchetta forchettaDestra) {

this.forchettaSinistra = forchettaSinistra;

this.forchettaDestra = forchettaDestra;

}

@Override

public void run() {

synchronized (forchettaSinistra) {

synchronized (forchettaDestra) {}

}

}

}

Testing Object Oriented 18

public static void main(String[] args) {

int nFilosofi = Integer.parseInt(args[0]);

Forchetta[] forchette = new Forchetta[nFilosofi];

for (int i = 0; i < nFilosofi; i++) {

forchette[i] = new Forchetta();

}

for (int i = 0; i < nFilosofi; i++) {

Filosofo p = new Filosofo(forchette[i], forchette[(i + 1)

% nFilosofi]);

p.start();

}

}

}

Ingegneria del Software 2

Script jpf

target=DeadlockDetection_Filosofi

classpath=${config_path}/bin

search.class = .search.heuristic.BFSHeuristic

Input per il programma

target.args = 3

Testing Object Oriented 19

– search.heuristic.BFSHeuristic rappresenta
l’euristica con la quale si cerca di scatenare tutte
le combinazioni tra i tempi

– Target.args rappresenta il numero dei filosofi
(che in questo caso è il parametro del main)

Ingegneria del Software 2

Output: deadlock trovato

== error 1

gov.nasa.jpf.vm.NotDeadlockedProperty

deadlock encountered:

thread DeadlockDetection_Filosofi$Filosofo:{id:1,name:Thread-1,status:BLOCKED,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

thread DeadlockDetection_Filosofi$Filosofo:{id:2,name:Thread-2,status:BLOCKED,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

thread DeadlockDetection_Filosofi$Filosofo:{id:3,name:Thread-3,status:BLOCKED,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

== snapshot #1

thread DeadlockDetection_Filosofi$Filosofo:{id:1,name:Thread-1,status:BLOCKED,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

owned locks:DeadlockDetection_Filosofi$Forchetta@164

blocked on: DeadlockDetection_Filosofi$Forchetta@165

call stack:

at DeadlockDetection_Filosofi$Filosofo.run(DeadlockDetection_Filosofi.java:44)

thread DeadlockDetection_Filosofi$Filosofo:{id:2,name:Thread-2,status:BLOCKED,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

owned locks:DeadlockDetection_Filosofi$Forchetta@165

blocked on: DeadlockDetection_Filosofi$Forchetta@166

call stack:

at DeadlockDetection_Filosofi$Filosofo.run(DeadlockDetection_Filosofi.java:44)

thread DeadlockDetection_Filosofi$Filosofo:{id:3,name:Thread-3,status:BLOCKED,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

owned locks:DeadlockDetection_Filosofi$Forchetta@166

blocked on: DeadlockDetection_Filosofi$Forchetta@164

call stack:

at DeadlockDetection_Filosofi$Filosofo.run(DeadlockDetection_Filosofi.java:44)

Testing Object Oriented 20

Ingegneria del Software 2

Altri esempi

• A disposizione nel materiale didattico:

– Wait indefinito (causato da accesso errato ad un
monitor): DeadlockDetection_Wait

– Race condition nell’utilizzo di variabili : Race
Condition Detection

Testing Object Oriented 21

Ingegneria del Software 2 Testing Object Oriented 22

Appendice

