Verifica e Validazione del Software

Testing Object Oriented

Ingegneria del Software 2 Testing Object Oriented

Riferimenti

e JTan Sommerville, Ingegneria del Software,
capitoli 22-23-24 (piu dettagliato sui processi)

e Pressman, Principi di Ingegneria del Software, 5°
edizione, Capitoli 15-16

e Ghezzi, Jazazeri, Mandrioli, Ingegneria del
Software, 2° edizione, Capitolo 6 (piu dettagliato
sulle tecniche)

Ingegneria del Software 2 Testing Object Oriented 2

o "Object-oriented
programming iIs an
exceptionally bad idea that
could only have been
invented in California.”

- Edsger Dijkstra

Ingegneria del Software 2 Testing Object Oriented

Impatto delle caratteristiche OO sul Testing

Caratteristiche degli oggetti di cui tener conto in fase di
testing

— Stato

— Ereditarieta

— Polimorfismo e binding dinamico

— Genericita

— Eccezioni

— Concorrenza

Ingegneria del Software 2 Testing Object Oriented

1- Stato ed Information Hiding

e Componente base: Classe = struttura dati + insieme di
operazioni
— oggetti sono istanze di classi

— la verifica del risultato del test non e legata solo all'output, ma anche
allo stato,definito dalla struttura dati

e La ‘opacita’ dello stato (v. incapsulamento ed information
hiding) rende piu difficile la costruzione di infrastruttura e
oracoli

— e sufficiente osservare le relazioni tra input e output?
— lo stato di un oggetto puo essere inaccessibile

— lo stato “privato” puo essere osservato solo utilizzando metodi
pubbilici della classe (e quindi affidandosi a codice sotto test)

* In pratica, per testare metodi privati di una classe dobbiamo scrivere
metodi di test all’interno della classe stessa

Ingegneria del Software 2 Testing Object Oriented

2- Ereditarieta

e Test ed Ereditarieta
— |'ereditarieta e una relazione fondamentale tra classi

— nelle relazioni di ereditarieta alcune operazioni restano invariate
nella sotto-classe, altre sono ridefinite, altre aggiunte (o
eliminate)

\

Ci si puo “fidare” delle proprieta ereditate?

— L'ereditarieta produce una forma di accoppiamento tra la classe
figlia e la classe padre, che dovrebbe essere oggetto di testing
di integrazione

— Non €, in generale, corretto riusare i test di un metodo di una
classe padre qualora esso sia stato ridefinito da una classe
figlia

Ingegneria del Software 2 Testing Object Oriented 6

3- Polimorfismo e Binding Dinamico

Un riferimento (variabile) puo denotare oggetti
appartenenti a diverse classi di una gerarchia di
ereditarieta (polimorfismo), ovvero il tipo dinamico e il
tipo statico dell’'oggetto possono essere differenti

— piu implementazioni di una stessa operazione

— il codice effettivamente eseguito e identificato a run-time, in
base alla classe di appartenenza dell'oggetto (binding
dinamico)

Ingegneria del Software 2 Testing Object Oriented

Polimorfismo e problemi per il testing

o I| test strutturale puo diventare non praticabile:

— Come definire la copertura in uninvocazione su un oggetto
polimorfico?

— Come creare test per “coprire” tutte le possibili chiamate di un
metodo in presenza di binding dinamico?

— Come gestire i parametri polimorfici?

Ingegneria del Software 2 Testing Object Oriented

Problemi della generazione di codice a run-time

e Il problema del binding dinamico rientra nella categoria di problemi
legati alla generazione di codice a run-time, comprendente anche:
— utilizzo di puntatori
— Utilizzo di puntatori a funzione
— Generazione dinamica di codice
— istanziazione dinamica di classi e oggetti (tramite la riflessione) ...

e In tutti questi casi, in pratica, € come se non conoscessimo
completamente il codice sorgente a tempo di progettazione dei casi di
test, quindi non possiamo mai pensare di affrontare perfettamente
problemi di copertura

— Caso estremo: nelle applicazioni Web, il codice lato server genera a
tempo di esecuzione delle pagine Web (lato client) comprendenti al
loro interno anche codice interpretabile (Javascript)

* Non ha senso parlare di copertura nel testing white box del lato client!

Ingegneria del Software 2 Testing Object Oriented

Polimorfismo e Binding Dinamico: esempio

Shape

Triangle Pentagon

void foo (Shape polygon)e Quale implementazione
{ di area viene

effettivamente eseguita?
size =
polygon.area () ;

}

Ingegneria del Software 2 Testing Object Oriented 10

4- Test e Genericita

e I moduli generici sono presenti nella maggior parte dei
linguaggi OO (template in C++, <class> in Java)

— la genericita € un concetto chiave per la costruzione di librerie
di componenti ri-usabili

e |Le classi parametriche devono essere instanziate per
poter essere testate

— Bisognerebbe prevedere test per ogni possibile istanziazione
della classe parametrica (test esaustivo???)

e Quali ipotesi dover fare sui parametri?
— Servono classi “fidate” da utilizzare come parametri

e Quale metodologia seguire quando si testa un
componente generico che e ri-usato?

— Non esistono tecniche o approcci maturi in letteratura

Ingegneria del Software 2 Testing Object Oriented

11

5- Gestione delle Eccezioni

Le eccezioni modificano il flusso di controllo in maniera
imprevedibile

— Agendo come interruzioni, possono causare un salto da una
qualsiasi istruzione del try verso le istruzioni del catch

Il CFG, in presenza di gestione delle eccezioni, e inefficace.

E’ necessario introdurre ulteriori metodi per generare
casi di test e ulteriori metriche di copertura per valutare
I'effettiva copertura di tutte le eccezioni

— copertura ottimale: sollevare tutte le possibili eccezioni in tutti i punti
del codice in cui & possibile farlo (pud non essere praticabile)

— copertura minima: sollevare almeno una volta ogni eccezione

Ingegneria del Software 2 Testing Object Oriented 12

6- Concorrenza

e Problema principale: non-determinismo
— risultati non-deterministici
— esecuzione non-deterministica

e (Casi di test composti solo da valori di Input/Output sono poco
significativi

I casi di test potrebbero essere descritti dai valori di Input/output
e dagli istanti di arrivo dei dati in input e dei risultati in output

— L'istante di arrivo dellinput € pero un valore reale, che ammetterebbe
un numero illimitato di valori possibili, per cui bisognerebbe trovare
delle classi di equivalenza

— Le classi di equivalenza degli istanti di arrivo individuano condizioni di
sincronizzazione tra gli input

Ingegneria del Software 2 Testing Object Oriented 13

Esempio di test di concorrenza

e Nel noto problema dei produttori e dei consumatori nel
caso con un solo buffer, 1 produttore P e 1 consumatore
C alcuni casi di test significativi potrebbero essere:
— Precondizione: buffer vuoto

— TC1: P scrive 'a’ all'istante t1; C legge a t2>t1. Output atteso:
letto ‘a’. Postcondizione: buffer vuoto

— TC2: Clegge a t1; P scrive ‘a’ a t2>t1. Output atteso: nessuna
lettura. Postcondizione: 'a’ nel buffer

— TC3: P scrive 'a’ a t1; P scrive 'b” a t2>t1. Output atteso:
nessuno. Postcondizione: ‘b’ nel buffer

Ingegneria del Software 2 Testing Object Oriented 14

Utilizzo di Java Path Finder

e Java Path Finder puo essere utilizzato per
risolvere problemi di concorrenza

e Esso ha, infatti, un motore di analisi del codice in
grado di
— riconoscere possibili problemi di concorrenza
» Deadlock, Race conditions, Attese indefinite ...

— Scatenare combinazioni di chiamate con
tempificazioni diverse, allo scopo di ricreare |
comportamenti possibili

Ingegneria del Software 2 Testing Object Oriented 15

Java Path Finder Tutorial

e Scaricare Java Path Finder Core e Java Path Finder Symbolic
direttamente dal repository

— http://babelfish.arc.nasa.gov/hg/jpf/ipf-core

— http://babelfish.arc.nasa.gov/hg/jpf/ipf-symbc

e Attraverso Mercurial
— https://www.mercurial-scm.org/downloads

e Oppure direttamente dal materiale didattico

e Creare una cartella (windows)
— C:\Users\<NomeUtente>\.jpf

Ingegneria del Software 2 Testing Object Oriented

16

http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-symbc
https://www.mercurial-scm.org/downloads

Java Path Finder Tutorial

e Nella cartella creata scrivere un file site.properties con i

percorsi di copia di jpf-core e jpf-symbc:

JPF site configuration

jpf-core = C:/jpf-core

extensions+=,${jpf-core}

symbc extension

jpf-symbc = C:/jpf-symbc

extensions+=,${jpf-symbc}

e Aggiungere ad eclipse il plug-in di Java Path Finder che si
trova all'indirizzo:
— http://babelfish.arc.nasa.qgov/trac/ipf/raw-attachment/wiki/projects/eclipse-ipf/update

e A questo punto, in Eclipse, € possibile trovare sul tasto destro di ogni

script jpf il comando Verify ... che scatena I'esecuzione di Java Path
Finder

Ingegneria del Software 2 Testing Object Oriented 17

http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/eclipse-jpf/update

Esempio: Deadlock tra Filosofi

public class DeadlockDetection_Filosofi {
static class Forchetta {}
static class Filosofo extends Thread {

Forchetta forchettaSinistra;
Forchetta forchettaDestra;

public Filosofo(Forchetta forchettaSinistra, Forchetta forchettaDestra) {
this.forchettaSinistra = forchettaSinistra;
this.forchettaDestra = forchettaDestra;

by

@Override
public void run() {
synchronized (forchettaSinistra) {
synchronized (forchettaDestra) {}

by

public static void main(String[] args) {
int nFilosofi = Integer.parselnt(args[0]);

Forchetta[] forchette = new Forchetta[nFilosofi];
for (inti = 0; i < nFilosofi; i++) {
forchette[i] = new Forchetta();

b
for (inti = 0; i < nFilosofi; i++) {

Filosofo p = new Filosofo(forchette[i], forchette[(i + 1)
% nFilosofi]);

p.start();

b

b

b

Ingegneria del Software 2 Testing Object Oriented

18

Script jpf

target=DeadlockDetection_Filosofi
classpath=${config_path}/bin

search.class = .search.heuristic.BFSHeuristic
Input per il programma

target.args = 3

— search.heuristic.BFSHeuristic rappresenta

I'euristica con la quale si cerca di scatenare tutte
le combinazioni tra i tempi

— Target.args rappresenta il numero dei filosofi
(che in questo caso € il parametro del main)

Ingegneria del Software 2 Testing Object Oriented 19

Output: deadlock trovato

== (ror 1

gov.nasa.jpf.vm.NotDeadlockedProperty

deadlock encountered:
thread DeadlockDetection_Filosofi$Filosofo:{id:1,name:Thread-1,status:BLOCKED, priority:5,isDaemon:false,lockCount:0,suspendCount:0}
thread DeadlockDetection_Filosofi$Filosofo:{id:2,name:Thread-2,status:BLOCKED, priority:5,isDaemon:false,lockCount:0,suspendCount:0}
thread DeadlockDetection_Filosofi$Filosofo:{id:3,name:Thread-3,status:BLOCKED, priority:5,isDaemon:false,lockCount:0,suspendCount:0}

== gnapshot #1

thread DeadlockDetection_Filosofi$Filosofo:{id:1,name:Thread-1,status:BLOCKED, priority:5,isDaemon:false,lockCount:0,suspendCount: 0}
owned locks:DeadlockDetection_Filosofi$Forchetta@164
blocked on: DeadlockDetection_Filosofi$Forchetta@165
call stack:

at DeadlockDetection_Filosofi$Filosofo.run(DeadlockDetection Filosofi.java:44)

thread DeadlockDetection_Filosofi$Filosofo:{id:2,name:Thread-2,status:BLOCKED, priority:5,isDaemon:false,lockCount:0,suspendCount:0}
owned locks:DeadlockDetection_Filosofi$Forchetta@165
blocked on: DeadlockDetection_Filosofi$Forchetta@166
call stack:

at DeadlockDetection_Filosofi$Filosofo.run(DeadlockDetection Filosofi.java:44)

thread DeadlockDetection_Filosofi$Filosofo:{id:3,name:Thread-3,status:BLOCKED, priority:5,isDaemon:false,lockCount:0,suspendCount:0}
owned locks:DeadlockDetection_Filosofi$Forchetta@166
blocked on: DeadlockDetection_Filosofi$Forchetta@164
call stack:

at DeadlockDetection_Filosofi$Filosofo.run(DeadlockDetection Filosofi.java:44)

Ingegneria del Software 2 Testing Object Oriented

20

Altri esempi

e A disposizione nel materiale didattico:

— Wait indefinito (causato da accesso errato ad un
monitor): DeadlockDetection_Wait

— Race condition nell’utilizzo di variabili : Race
Condition Detection

Ingegneria del Software 2 Testing Object Oriented

21

Appendice

Ingegneria del Software 2

Testing Object Oriented

22

