
User Interface Testing 1

Software Testing

User Interface Testing

User Interface Testing 2

Interfacce utente

• Le interfacce utente possono essere classificate
in tre tipologie fondamentali:
• Interfacce utente a carattere (CUI): sono le classiche

interfacce utilizzate dalle shell dei sistemi operativi. In
esse gli input arrivano tramite uno stream di input

• Interfacce utente form-based: sono utilizzate in alcuni
classici calcolatori IBM e in molti programmi vecchi (ad
esempio il BIOS); sono ad esse analoghe anche le
interfacce delle pagine web, almeno se escludiamo le
interazioni con mouse o altri dispositivi di puntamento.
Nelle interfacce form-based, gli input arrivano tramite
uno stream nel quale ci sono sia caratteri di input che
caratteri speciali (tabulazioni, backspace, tasti
funzione, etc.)

User Interface Testing 3

Interfacce GUI

• Le interfacce utente possono essere classificate
in tre tipologie fondamentali:
• Interfacce utente grafiche (GUI): sono le interfacce più

utilizzate nei PC. In esse gli input arrivano tramite uno
stream di eventi, comprendenti eventi da tastiera (tasti
premuti), eventi da altri dispositivi di puntamento
(mouse, touch pad, touch screen, etc.). Tutti questi
eventi confluiscono in uno stream, nel quale vengono
interpretati e vengono riconosciuti eventi di più alto
livello.

• Ad esempio un doppio click si ottiene da uno stream
di eventi nel quale si notano due coppie di
operazioni di premuta e rilascio del pulsante sinistro
del mouse, avvenute a distanza ravvicinata di tempo
e su pixel ravvicinati sullo schermo

User Interface Testing 4

Sistemi basati sugli eventi

• Le interfacce utente grafiche rappresentano un
caso di sistema ad eventi
– Il sistema è in uno stato stabile fino all’intervenire di un evento

utente, che fa partire un codice di event handling

• Anche un calcolatore, dotato di sistema delle
interruzioni, può essere considerato come un
sistema ad eventi
– Un segnale è in grado di avviare un’interruzione, che viene

successivamente servita

• I moderni sistemi distribuiti a sensori devono
essere considerati sistemi ad eventi
– Ogni dispositivo è in grado sia di ricevere input, che di

elaborarli

User Interface Testing 5

Testing di sistemi interattivi

• Il testing di sistemi interattivi (in particolare di interfacce
utente) viene condotto tipicamente in maniera black box

• Il testing di sistemi interattivi è utilizzato:

• In caso di testing in isolamento del codice relativo
all’interfaccia utente

• In caso di testing di integrazione (con strategia top-
down, ad esempio)

• In caso di testing di sistema: l’interfaccia utente è il
punto d’accesso al sistema

User Interface Testing 6

Testing di sistemi interattivi

• Tipicamente i casi di test sono progettati tenendo in conto
le possibili interazioni che un utente può eseguire
sull’interfaccia utente

– Per poter approcciare il problema del testing è fondamentale la
disponibilità di un modello descrittivo delle interazioni utente-
macchina

– Quali modelli sono utilizzabili per modellare UI?

User Interface Testing 7

Modellazione delle interazioni

• Il modello più comune è un modello di Macchina a stati:

– Gli elementi fondamentali di una UI sono:

• Finestre e relativi Widget, dotati di

– Eventi che possono essere eseguiti dagli utenti

– Campi, che possono essere eventualmente settati

• Si suppone che l’interfaccia utente non esegua alcuna
operazione se non in seguito a sollecitazioni da parte degli
utenti

– Lo “stato” dell’interfaccia utente viene modellato da uno stato di un
automa

– L’esecuzione di eventi sulla UI (es. Click su button…) viene modellata
come ingressi impulsivi che scatenano transizioni nell’automa

– Gli input immessi sono modellati come ingressi a livelli da cui
dipende la transizione che si verifica

User Interface Testing 8

Esempio- modello di FSM per una UI

Logged As Admin

List of Films

Film Information

Click on "Add new film"

Click on "Cancel"

Click on
"Search"

Click on
"Back"

Click on

"film's link"
Click on

"Cancel"

Click on

"Back"

Film Information

+ Search Movie

Click on
"Back"

Click on
"Cancel"

Movie Inserted

Click on

"Insert"

Click on
"OK"

Click on

"film's link"

Click on
"Search"

Search Movie

Film

Information +

list of film

Es.: L’FSM che descrive l’evoluzione di una UI per l’ esecuzione di un Caso d’Uso

User Interface Testing 9

Testing delle interfacce

• Rispetto al modello riportato come esempio vanno
aggiunti:

• Lo stato iniziale, da cui si raggiunge la prima
schermata dell’applicazione

• Lo stato finale, raggiungibile di solito da qualsiasi
altro stato (premendo il pulsante di chiusura
dell’applicazione)

User Interface Testing 10

Testing delle interfacce

• Gli input dei casi di test devono essere indicati sotto
forma di sequenze di valori di input ed eventi da
eseguire.

– A seconda dei criteri di copertura (es. Stati, Eventi, Transizioni,
path…), si progetteranno diversi TC

– Es.: click (add-film),click(search), click(film
link),click(insert), click(OK) è il TC che permette di
eseguire il cammino in rosso (Scenario: Inserimento Film OK)

• Ad una sequenza di valori di input dovrebbe
corrispondere una sequenza di stati visitati e di
output riscontrati.

User Interface Testing 11

Esempio- modello di FSM per una UI

Logged As Admin

List of Films

Film Information

Click on "Add new film"

Click on "Cancel"

Click on
"Search"

Click on
"Back"

Click on

"film's link"
Click on

"Cancel"

Click on

"Back"

Film Information

+ Search Movie

Click on
"Back"

Click on
"Cancel"

Movie Inserted

Click on

"Insert"

Click on
"OK"

Click on

"film's link"

Click on
"Search"

Search Movie

Film

Information +

list of film

Es.: Cammino di esecuzione che esercita un certo scenario del Caso d’Uso

User Interface Testing 12

Analogia

• In analogia con il testing white box, nel quale
cercavamo di effettuare la copertura del grafo ciclico
CFG, qui abbiamo di base gli stessi obiettivi e problemi:
• Coprire tutti i nodi della FSM

• Coprire tutti gli archi della FSM

• Coprire tutti i cammini linearmente indipendenti della FSM

• Coprire tutti i cammini della FSM

• Al raggiungimento automatico di ognuna di queste
coperture corrisponde un problema indecibile

User Interface Testing 13

Ulteriore problema

• Come ottenere un FSM che descriva adeguatamente l’UI
e che possa essere usato per progettare i casi di Test?

• Due possibilità:
– FSM prodotto in fase di sviluppo dell’applicazione (ma può

essere poco aderente all’effettiva implementazione fatta dell’UI)

– FSM ricostruito per Reverse Engineering a partire dalla UI
effettivamente implementata (richiede tecniche di analisi statica
o dinamica)

– Nel caso di Interfacce Dinamicamente Configurabili (es. di
Rich Internet Applications) piuttosto che Statiche, l’analisi
statica non è sufficiente! Necessità di definire tecniche e
strumenti di RE per la generazione (semi-automatica) del
modello.

User Interface Testing 14

Esempio in Java

public JMenu createOptionMenu()

{

JMenu m = new JMenu("Scientifica");

JMenuItem item = new JMenuItem();

class itemListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

try{

op1 = Double.parseDouble(text.getText());

}

catch(NumberFormatException ecc)

{

text.setText("Errore: nessun valore inserito!");

return;

}

operazione = RADICE_QUADRATA;

invio.doClick();

}

}

…

}

Menu generato a run time

Voce di Menu generata a run time

Ascoltatore dichiarato a run time

Codice dell’ascoltatore dichiarato a run time

Non è, in generale, possibile, scrivere metodi di test che si riferiscono a

oggetti, classi e metodi che vengono dichiarati a run-time

User Interface Testing 15

Altra analogia e altro problema

• La FSM ricavata per analisi statica del codice potrebbe non avere tutti gli
elementi della GUI che poi vengono istanziati a tempo di esecuzione

• E’ lo stesso problema che si era riscontrato nel testing di integrazione
per il Call Dependency Graph (grafo delle chiamate), a causa della
possibile presenza di chiamate polimorfe, puntatori a funzione oppure
collegamenti con librerie dinamiche

• Inoltre, nel FSM non dovrebbe essere rappresentata un’interfaccia
staticamente definita (ad esempio una schermata con dei pulsanti), ma
anche il suo stato (ad esempio anche i valori scelti all’interno di un form
e i valori dei testi mostrati a video)

• In questo modo il numero di nodi della FSM è praticamente sempre
illimitato

• Bisogna proporre delle tecniche per limitarlo

User Interface Testing 16

Problema degli stati equivalenti

• Per poter astrarre un modello a stati è necessario
poter decidere quando due stati coincidono
– Siccome qualsiasi valore di qualsiasi variabile può caratterizzare

lo stato, il numero di stati possibili è potenzialmente illimitato

– Per poter implementare dei criteri di equivalenza è necessario
selezionare piccoli sottoinsiemi di informazioni, ma così facendo
si rischia di non considerare informazioni importanti

• Nel nostro caso, una tecnica consiste nel considerare solo
informazioni relative all’interfaccia utente, non allo stato interno
dell’applicazione

• Da un modello FSM è possibile ricavare test suite
che vanno a coprire tutti i nodi o tutti gli archi
– Un oracolo è dato dall’equivalenza dello stato raggiunto in ogni

istante del test con quello descritto dal modello

User Interface Testing 18

Testing White Box di GUI

• Il testing white box (o comunque la
progettazione di classi di test di unità) per
GUI è reso difficile da alcuni fattori:
– Molto spesso le classi della GUI sono istanziate a run-

time, così come i metodi ascoltatori degli eventi

• Molto difficile scrivere dei driver che riescano ad
emulare le stesse esecuzioni del programma originale

– Problemi di concorrenza: i test agiscono in un thread
separato da quello che crea l’interfaccia, per cui
bisogna anche misurarsi con le difficoltà relative alla
tempificazione delle azioni di test

User Interface Testing 19

Java Robot (awt)

• La classe Robot consente l’esecuzione
programmatica di eventi sull’interfaccia utente
(limitatamente ad awt)

– Ha metodi che riproducono le azioni del mouse ed eventi
che riproducono la pressione di tasti

• Documentazione:

http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Robot.html

• Un tutorial: http://forum.codecall.net/java-tutorials/25923-robot-

class.html

http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Robot.html
http://forum.codecall.net/java-tutorials/25923-robot-class.html

User Interface Testing 20

Esempio Java Robot

import java.awt.AWTException;

import java.awt.Robot;

import java.awt.event.InputEvent;

public class MovingMouseDemo {

public static void main(String[] args) {

try {

Robot robot = new Robot();

robot.mouseMove(200, 200);

robot.mousePress(InputEvent.BUTTON1_MASK);

robot.mouseRelease(InputEvent.BUTTON1_MASK);

robot.mouseWheel(-100);

} catch (AWTException e) {

e.printStackTrace();

}

}

}

Il problema principale è quello di poter nominare gli
oggetti dell’interfaccia (ad esempio
InputEvent.BUTTON1_MASK) quando essi sono
dinamicamente generati

User Interface Testing 21

"Twenty percent of all input forms filled out
by people contain bad data."
- Dennis Ritchie, More Programming Pearls:
Confessions of a Coder by Jon Louis Bentley

http://www.softwarequotes.com/showquotes.aspx?id=543&name=Ritchie,Dennis

User Interface Testing 22

Validazione dell’input

• Un tipico problema del testing delle
interfacce utente è la verifica della validità
dei dati di input
– E’ la causa di molti attacchi (exploit) contro le

applicazioni

– Ad esempio, in linguaggi a puntatori, come C,
l’immissione di una stringa troppo lunga in input, in
mancanza di validazione, può portare a sovrascrivere
altri dati o addirittura zone di codice del programma
stesso

– In linguaggi interpretati, come quelli spesso usati per
il web, il problema è ancora più sentito

User Interface Testing 23

Il problema della validazione degli input

➢La validazione dei dati può essere fatta sia sul lato client che sul lato server

➢La validazione sul lato client ha il vantaggio di utilizzare tempo di CPU

della macchina client piuttosto che quello della macchina server

➢La validazione sul lato client può essere però scavalcata da un utente

malintenzionato che vada a sollecitare il server con una richiesta http che

non sia passata per la pagina client: in questo caso il server potrebbe avere

delle anomalie

La soluzione più corretta è quella di porre la validazione sia

sul lato client che sul lato server, in modo da bloccare la

maggior parte delle richieste scorrette sul client

(risparmiando risorse sul server). Solo le richieste fraudolente

verrebbero così bloccate dalla validazione lato server

User Interface Testing 24

Esempio: Cross-Site Scripting

➢Si verifica quando uno script lato client, inserito maliziosamente in un

campo di input, viene eseguito sulla macchina client di un utente ignaro

Sign.html
<form method="post" action="sign.asp">

<textarea name="txtMessage"></textarea>

<input type="submit" value="Sign!">

</form>

Sign.asp
<% Message=request.form("txtMessage")

conn=OpenDBConnection

set rs=server.createobject("Adodb.recordset")

rs.open "Guestbook",conn,1,2,2

rs.Addnew

rs("Message")=Message

rs.update

%>

Guestbook.asp
<% conn=OpenDBConnection

rs=server.createobject("Adodb.recordset")

rs.open "SELECT Message FROM GuestBook" ,

conn,3,3

%>

<table>

<% rs.movefirst

while not(rs.eof)

response.write (rs.fields("Message"))

rs.movenext

wend

%>

</table>

<% rs.close

set rs=nothing

conn.close

set conn=nothing

%>

Message=Server.HtmlEncode(Message)

User Interface Testing

Testing Automation 26

Testing basato su Sessioni Utente

• Tecnica per la generazione automatica di casi di test per il testing
black box partendo dall’analisi delle sessioni utente (User Session),
ovvero delle sequenze dei valori di input immessi e di output
ottenuti in utilizzi reali del software.

In pratica, vengono installati strumenti che siano in grado
di mantenere un log di tutte le interazioni che
avvengono tra gli utenti dell’applicazione da testare e
l’applicazione stessa (fase di Capture)

A partire da tali dati vengono formalizzati casi di test che
replichino le interazioni “catturate” (fase di Replay)

In questo modo è possibile ottenere casi di test che siano rappresentativi
dei reali utilizzi dell’applicazione da parte dei suoi utenti

Il risultato ottenuto (in termini di output e stato) durante
la fase di Capture può essere l’oracolo per i futuri
Replay

Capture & Replay

• Il sistema di Capture consiste in un
ambiente di esecuzione controllato nel
quale il tester «usa» l’applicazione e nel
frattempo le sue interazioni sono
registrate e «tradotte» in un caso di test
rieseguibile

• E’ possibile anche inserire delle asserzioni,
in maniera visuale

User Interface Testing

Limiti e problemi

• Il sistema di Capture registra le interazioni, ma non
lo stato del sistema: le precondizioni devono essere
aggiunte dal tester

• Se il sistema ha delle race conditions, allora i casi di
test generati devono tener conto anche della
tempificazione degli input, altrimenti i test possono
anche essere rieseguiti molto più velocemente
rispetto alla velocità di registrazione

• Se cambia l’interfaccia utente, molti casi di test
potrebbero non essere più eseguibili

User Interface Testing

Window Tester Pro

• Strumento di Capture e Replay per
applicazioni Java con GUI realizzata con
Swing

• Osserva un utente che esegue il programma e lo utilizza
e registra il suo comportamento

• Genera automaticamente codice Junit rieseguibile
replicante le interazioni dell’utente

I test ottenuti possono essere riutilizzati anche senza il supporto di

Window Tester Pro

• Aiuta l’utente nella scrittura di asserzioni

Fornendo i nomi degli oggetti grafici a video

Suggerendo alcuni possibili asserzioni

Metriche Software

Window Tester Pro

• Installabile come plug-in di Eclipse

• http://dl.google.com/eclipse/inst/windowtester/latest/3.6

• http://www.gwtproject.org/versions.html

• Per eseguirlo bisogna:

• Creare un profilo di configurazione nell’ambito di Window
Tester

• Eseguire

• Al termine dell’esecuzione vengono generati i test Junit

Un tutorial completo è disponibile all’indirizzo:

• https://developers.google.com/java-dev-

tools/wintester/html/gettingstarted/swing_sampletest

Metriche Software

http://dl.google.com/eclipse/inst/windowtester/latest/3.6

Creazione Profilo di Esecuzione

Metriche Software

Capture

Metriche Software

Esplorazione visuale degli elementi e suggerimento di
asserzioni

Metriche Software

Generazione automatica di test

package test;

import com.windowtester.runtime.swing.locator.LabeledTextLocator;

import com.windowtester.runtime.swing.UITestCaseSwing;

import com.windowtester.runtime.IUIContext;

import com.windowtester.runtime.swing.locator.JMenuItemLocator;

public class UITest extends UITestCaseSwing {

public UITest() {

super(contactmanager.ContactManagerSwing.class);

}

public void testUI() throws Exception {

IUIContext ui = getUI();

ui.click(new LabeledTextLocator("State: "));

ui.enterText("UK");

ui.assertThat(new LabeledTextLocator("State: ").isVisible());

ui.click(new JMenuItemLocator("File/Exit"));

}

}

Metriche Software

• I test possono essere rieseguiti
come ogni altro test

Alcuni limiti

• I widget sono individuati in
base al nome o all’etichetta
che mostrano a video

• Il programmatore deve
preventivamente evitare di
utilizzare widget senza nome

• Ulteriori asserzioni su altri
elementi devono essere
aggiunte manualmente

• Alcuni elementi ed eventi
non sono «visti» (ad
esempio all’interno di un
File/Open)

• Bisogna trovare metodi alternativi
in quei casi

Metriche Software

public void testUITest2() throws

Exception {

IUIContext ui = getUI();

ui.click(new JButtonLocator("6"));

ui.click(new JButtonLocator("*"));

ui.click(new JButtonLocator("7"));

ui.click(new JButtonLocator("="));

IWidgetReference wref =

(IWidgetReference) ui.click(2, new

JTextComponentLocator(JTextArea.class));

JTextArea textArea = (JTextArea)

wref.getWidget();

assertEquals("42.0",textArea.getText());

}

User Interface Testing 37

Appendice

User Interface Testing 38

UISpec4J

• UISpec4J è una libreria a supporto del testing
funzionale e di unità di applicazioni Java con
interfaccia utente basata su Swing, che fa uso di
Junit

• In pratica, mette a disposizione metodi e oggetti
che consentono di interrogare direttamente gli
elementi dell’interfaccia utente
• UISpec4J funziona senza problemi sulle

versioni Java fino alle 1.6.25

• http://www.uispec4j.org/

http://www.uispec4j.org/

User Interface Testing 39

Test Case in UI Spec

• Una classe di test UISpec va ad estendere la
classe UISpecTestCase
– public class AddressBookTest extends

UISpecTestCase

• Per poter eseguire i test mantenendo un punto di
controllo sull’applicazione sotto test, il metodo
setup conterrà :
– protected void setUp() throws Exception {

setAdapter(new MainClassAdapter(Main.class,

new String[0])); }

– il parametro String[0] rappresenta la linea di comando, in
questo caso vuota, della chiamata dell’applicazione

User Interface Testing 40

Esempio: Calcolatrice (1/2)

package Calcolator;

import org.uispec4j.*

public class TestWhiteBox extends
UISpecTestCase {

private Window main;

protected void setUp() throws
Exception {

setAdapter(new
MainClassAdapter(Starter.class, new
String[0]));

main = getMainWindow();

}

public void testSumOK() throws
Exception{

Button num1 = main.getButton("4");

num1.click();

Button plus = main.getButton("+");

plus.click();

Button num2 = main.getButton("4");

num2.click();

Button equals =
main.getButton("=");

equals.click();

assertEquals("8.0",main.getTextBox
().getText());

}

• La finestra principale è ottenuta col metodo getMainWindow()

• I riferimenti ai Button sono ottenuti con getButton(String) in
base all’etichetta che essi mostrano

• Il riferimento alla TextBox è ottenuto con getTextBox()
approfittando della circostanza che essa è unica, in tale
interfaccia

User Interface Testing 41

Esempio: Calcolatrice (2/2)

package Calcolator;

import org.uispec4j.*

public class TestWhiteBox extends
UISpecTestCase {

private Window main;

protected void setUp() throws
Exception {

setAdapter(new
MainClassAdapter(Starter.class,
new String[0]));

main = getMainWindow();

}

public void testSenoNotOK() throws Exception{

Button numc1 = main.getButton("3");

numc1.click();

Button numc2 = main.getButton(".");

numc2.click();

Button numc3 = main.getButton("1");

numc3.click();

Button numc4 = main.getButton("4");

numc4.click();

MenuItem menu=

main.getMenuBar().getMenu("Scientifica");

menu.click();

MenuItem menu2= menu.getSubMenu("Seno");

menu2.click();

assertEquals("0.0015926529164868282",main.getT

extBox().getText());

• Il riferimento al menu è ottenuto con i metodi
getMenuBar().getMenu(String), dove la String è l’etichetta
visualizzata del Menu

• L’asserzione è una asserzione tra stringhe, per cui
assertEquals è ben posto; se si fosse trattato di un confronto
tra reali si sarebbe dovuto utilizzare un asserzione del tipo:

– AssertTrue (Math.abs(valoreAtteso-valoreOttenuto)<epsilon)

User Interface Testing 42

Esecuzione dei Test Case

• L’esecuzione dei test si ottiene
sfruttando il framework Junit

• Ulteriori metodi possono essere
personalizzati per poter individuare
gli elementi dell’interfaccia in altri
modi

• E’ possibile interagire anche con i
Dialog

• Ulteriori informazioni sono disponibili
nel tutorial all’indirizzo:

http://www.uispec4j.org/tutorial

http://www.uispec4j.org/tutorial

User Interface Testing 43

Considerazioni su UISpec4J

• UISpec4J è uno strumento molto semplice e abbastanza
potente, a supporto del testing di interfacce utente Swing (le
più diffuse) di applicazioni Java interattive

• UISpec4J estende Junit e può essere utilizzato in tutti i
processi nei quali viene utilizzato quest’ultimo

– Progettazione di casi di test da parte dello sviluppatore, per il testing
di unità

– Progettazione di casi di test per il testing funzionale black box

• UISpec4J si presta poco alla generazione automatica di casi
di test, ma è naturalmente sempre utilizzabile per
l’esecuzione automatica e la valutazione automatica
dell’esito dei test

User Interface Testing 44

Considerazioni su UISpec4J

• UISpec4J propone diversi modi per identificare un widget

• Per ID, per titolo, per etichetta visualizzata

• Nonostante tali metodi siano molto utili al tester, potrebbero
non essere sufficienti

• Ad esempio, widget anonimi non possono essere
controllati direttamente

• Un software che curi la sua testabilità dovrebbe sempre
agevolare il testing dei propri componenti permettendone un
agevole indirizzamento

• E’ buona pratica dare sempre nomi statici ai widget

• Sistemi come Android mettono a disposizione meccanismi
basati su XML per obbligare alla dichiarazione statica dei
widget

User Interface Testing 45

Approfondimento: Considerazioni su UISpec4J

@Test

public void testRegolamento() throws Exception {

try{

WindowInterceptor.init(new MainClassTrigger(impiccato.class, new String[0]))

.process(new WindowHandler() {

public Trigger process(Window dialog) {

return dialog.getButton("Leggi il regolamento").triggerClick();

}

})

.process(new WindowHandler() {

public Trigger process(Window dialog) {

msg = dialog.getDescription().contains("Lo scopo di");

assertTrue(msg);

return dialog.getButton("Ok").triggerClick();

}

})

.run();

} catch(org.uispec4j.interception.InterceptionError e) {

if (e.getCause().toString().contains("junit.framework.AssertionFailedError"))

throw new junit.framework.AssertionFailedError(e.getCause().toString());

else throw new java.lang.Exception(e);

}

}

• Per gestire i dialog è
opportuno gestire dei
thread

• Nell’esempio,
l’interazione
successiva con due
dialog avviene tramite
due click su due
pulsanti di due
dialogbox

• Per l’interazione con
un dialog viene
istanziato un oggetto
process

User Interface Testing 46

Approfondimento: Considerazioni su UISpec4J

@Test

public void test1p1() throws Exception {

try{

WindowInterceptor.init(new MainClassTrigger(impiccato.class,
new String[0]))

.process(new WindowHandler() {

public Trigger process(Window dialog) {

return dialog.getButton("Inizia a giocare").triggerClick();

}

})

.process(BasicHandler.init().triggerButtonClick("Un giocatore"))

.process(BasicHandler.init().setText("Foo").triggerButtonClick("OK"))

.process(BasicHandler.init().triggerButtonClick("OK"))

.process(BasicHandler.init().setText("n").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("f").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("o").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("r").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("m").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("a").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("t").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("i").triggerButtonClick("OK"))

.process(BasicHandler.init().setText("c").triggerButtonClick("OK"))

.process(new WindowHandler() {

public Trigger process(Window dialog) {

msg = dialog.containsUIComponent(TextBox.class,
"Complimenti, hai vinto!!!").isTrue();

assertTrue(msg);

return dialog.getButton("Ok").triggerClick();

}

})

.process(BasicHandler.init().triggerButtonClick("Annulla"))

.run();

} catch(org.uispec4j.interception.InterceptionError e) {

if(e.getCause().toString().contains("junit.framework.AssertionFailedErro
r"))

throw new
junit.framework.AssertionFailedError(e.getCause().toString());

else throw new java.lang.Exception(e);

}

}

• In quest’altro esempio, c’è una sequenza di click su button
e inserimento di caratteri in dialog successivi

User Interface Testing 47

FEST

• Un framework alternativo a UISpec4J

• FEST: Fixtures for Easy Software Testing

• https://code.google.com/p/fest/

