Software Testing

User Interface Testing

User Interface Testing



Interfacce utente

o Le interfacce utente possono essere classificate
in tre tipologie fondamentali:

o Interfacce utente a carattere (CUI): sono le classiche
interfacce utilizzate dalle shell dei sistemi operativi. In
esse gli input arrivano tramite uno stream di input

o Interfacce utente form-based: sono utilizzate in alcuni
classici calcolatori IBM e in molti programmi vecchi (ad
esempio il BIOS); sono ad esse analoghe anche le
interfacce delle pagine web, almeno se escludiamo le
interazioni con mouse o altri dispositivi di puntamento.
Nelle interfacce form-based, gli input arrivano tramite
uno stream nel quale ci sono sia caratteri di input che
caratteri speciali (tabulazioni, backspace, tasti
funzione, etc.)

User Interface Testing



Interfacce GUI

o Le interfacce utente possono essere classificate
in tre tipologie fondamentali:

o Interfacce utente grafiche (GUI): sono le interfacce piu
utilizzate nei PC. In esse gli input arrivano tramite uno
stream di eventi, comprendenti eventi da tastiera (tasti
premuti), eventi da altri dispositivi di puntamento
(mouse, touch pad, touch screen, etc.). Tutti questi
eventi confluiscono in uno stream, nel quale vengono
interpretati e vengono riconosciuti eventi di piu alto
livello.

e Ad esempio un doppio click si ottiene da uno stream
di eventi nel quale si notano due coppie di
operazioni di premuta e rilascio del pulsante sinistro
del mouse, avvenute a distanza ravvicinata di tempo
e su pixel ravvicinati sullo schermo

User Interface Testing



Sistemi basati sugli eventi

e Le interfacce utente grafiche rappresentano un
caso di sistema ad eventi
— Il sistema € in uno stato stabile fino all'intervenire di un evento
utente, che fa partire un codice di event handling
e Anche un calcolatore, dotato di sistema delle
interruzioni, puo essere considerato come un
sistema ad eventi
— Un segnale € in grado di avviare un’‘interruzione, che viene
successivamente servita
e I moderni sistemi distribuiti a sensori devono
essere considerati sistemi ad eventi
— Ogni dispositivo € in grado sia di ricevere input, che di
elaborarli

User Interface Testing



Testing di sistemi interattivi

o Il testing di sistemi interattivi (in particolare di interfacce
utente) viene condotto tipicamente in maniera black box

o Il testing di sistemi interattivi e utilizzato:

e In caso di testing in isolamento del codice relativo
all’interfaccia utente

e In caso di testing di integrazione (con strategia top-
down, ad esempio)

e In caso di testing di sistema: l'interfaccia utente e il
punto d’accesso al sistema

User Interface Testing



Testing di sistemi interattivi

e Tipicamente i casi di test sono progettati tenendo in conto
le possibili interazioni che un utente puo eseguire
sull’interfaccia utente

— Per poter approcciare il problema del testing e fondamentale la

disponibilita di un modello descrittivo delle interazioni utente-
macchina

— Quali modelli sono utilizzabili per modellare UI?

User Interface Testing



Modellazione delle interazioni

e Il modello piu comune e un modello di Macchina a stati:

— Gli elementi fondamentali di una UI sono:

* Finestre e relativi Widget, dotati di
— Eventi che possono essere eseguiti dagli utenti
— Campi, che possono essere eventualmente settati

e Si suppone che l'interfaccia utente non esegua alcuna
operazione se non in seguito a sollecitazioni da parte degli
utenti

— Lo "stato” dell'interfaccia utente viene modellato da uno stato di un
automa

— L'esecuzione di eventi sulla UI (es. Click su button...) viene modellata
come ingressi impulsivi che scatenano transizioni nell'automa

— Gli input immessi sono modellati come ingressi a livelli da cui
dipende la transizione che si verifica

User Interface Testing



Esempio- modello di FSM per una UI

Cid<cn
didkan"Add renfiiny Seardh Mbvie
Lagged As Achrin dickan

didkan"CGad”

Llsto‘ Hins

didkan
"filnslirk’

ddkm AlmInforretian

Him
INfomation +
list of film

ddkmm

Treat”! didkan
NMbe Irserted
Riminfomration
+ Seardh Mbve

Es.: L'FSM che descrive I’evoluzione di una Ul per I’ esecuzione di un Caso d’Uso

User Interface Testing



Testing delle interfacce

e Rispetto al modello riportato come esempio vanno
aggiunti:
e Lo stato iniziale, da cui si raggiunge la prima
schermata dell’applicazione

e Lo stato finale, raggiungibile di solito da qualsiasi
altro stato (premendo il pulsante di chiusura
dell'applicazione)

User Interface Testing



Testing delle interfacce

e Gli input dei casi di test devono essere indicati sotto
forma di sequenze di valori di input ed eventi da
eseqguire.

— A seconda dei criteri di copertura (es. Stati, Eventi, Transizioni,
path...), si progetteranno diversi TC

— Es.: click (add-film),click(search), click(film
link),click(insert), click(OK) ¢ il TC che permette di
eseqguire il cammino in rosso (Scenario. Inserimento Film OK)

e Ad una sequenza di valori di input dovrebbe
corrispondere una sequenza di stati visitati e di
output riscontrati.

User Interface Testing

10



Esempio- modello di FSM per una UI

- Aickan
Qd@'%’vﬁm Seardh MbJje (Seaat
-
ddkan'"'Gaxd” “ ;
m

\
i “filmslirk didkan
\dickan 1 “filrs lirk’
\ /
\ | 4
Cid(CD\ AlmInforretian Him
b \ ” Informetion +
\ P ” list of film
\ 7

Riminfomration
+ Seardh Mbve

Es.: Cammino di esecuzione che esercita un certo scenario del Caso d’Uso

User Interface Testing



Analogia

e In analogia con il testing white box, nel quale
cercavamo di effettuare la copertura del grafo ciclico

CFG, qui abbiamo di base gli stessi obiettivi e problemi:

o Coprire tutti i nodi della FSM

e Coprire tutti gli archi della FSM

e Coprire tutti i cammini linearmente indipendenti della FSM
e Coprire tutti i cammini della FSM

e Al raggiungimento automatico di ognuna di queste
coperture corrisponde un problema indecibile

User Interface Testing

12



Ulteriore problema

e Come ottenere un FSM che descriva adeguatamente |'UI
e che possa essere usato per progettare i casi di Test?

e Due possibilita:
— FSM prodotto in fase di sviluppo dell'applicazione (ma puo
essere poco aderente all’effettiva implementazione fatta dell’UI)
— FSM ricostruito per Reverse Engineering a partire dalla Ul
effettivamente implementata (richiede tecniche di analisi statica
o dinamica)
— Nel caso di Interfacce Dinamicamente Configurabili (es. di
Rich Internet Applications) piuttosto che Statiche, I'analisi

statica non e sufficiente! Necessita di definire tecniche e
strumenti di RE per la generazione (semi-automatica) del

modello.

User Interface Testing 13



public JMenu createOptionMenu ()

{

JMenu m

Esempio in Java

/ Menu generato a run time

new JMenu ("Scientificam);

JMenultem item = new JMenultem(); «— Voce di Menu generata a run time

class itemListener implements ActionlListener¥——Ascoltatore dichiarato a run time

{

public void actionPerformed (ActionEvent e)

{

/Codice dell'ascoltatore dichiarato a run time

try{

opl = Double.parseDouble (text.getText ())
}
catch (NumberFormatException ecc)

{

text.setText ("Errore: nessun valore inserito!");
return;

}
operazione = RADICE QUADRATA;
invio.doClick () ;

Non &, in generale, possibile, scrivere metodi di test che si riferiscono a
oggetti, classi e metodi che vengono dichiarati a run-time

User Interface Testing 14



Altra analogia e altro problema

La FSM ricavata per analisi statica del codice potrebbe non avere tutti gli
elementi della GUI che poi vengono istanziati a tempo di esecuzione

e E’lo stesso problema che si era riscontrato nel testing di integrazione
per il Call Dependency Graph (grafo delle chiamate), a causa della
possibile presenza di chiamate polimorfe, puntatori a funzione oppure
collegamenti con librerie dinamiche

Inoltre, nel FSM non dovrebbe essere rappresentata un’interfaccia
staticamente definita (ad esempio una schermata con dei pulsanti), ma
anche il suo stato (ad esempio anche i valori scelti all'interno di un form
e i valori dei testi mostrati a video)

e In questo modo il numero di nodi della FSM e praticamente sempre
illimitato
e Bisogna proporre delle tecniche per limitarlo

User Interface Testing 15



Problema degli stati equivalenti

e Per poter astrarre un modello a stati € necessario
poter decidere quando due stati coincidono

— Siccome qualsiasi valore di qualsiasi variabile puo caratterizzare
lo stato, il numero di stati possibili e poten2|almente illimitato

— Per poter implementare dei criteri di equivalenza € necessario
selezionare piccoli sottoinsiemi di informazioni, ma cosi facendo
si rischia di non considerare informazioni |mportant|

. I_\IeI nostro caso, una tec;nlca cor)S|ste nel considerare sollo
informazioni relative all'interfaccia utente, non allo stato interno
dell’applicazione

e Da un modello FSM e possibile ricavare test suite
che vanno a coprire tutti i nodi o tutti gli archi

— Un oracolo e dato dall’equivalenza dello stato raggiunto in ogni
istante del test con quello descritto dal modello

User Interface Testing 16



Testing White Box di GUI

e Il testing white box (0o comunque la
progettazione di classi di test di unita) per
GUI e reso difficile da alcuni fattori:

— Molto spesso le classi della GUI sono istanziate a run-
time, cosi come i metodi ascoltatori degli eventi

» Molto difficile scrivere dei driver che riescano ad
emulare le stesse esecuzioni del programma originale

— Problemi di concorrenza: i test agiscono in un thread
separato da quello che crea l'interfaccia, per cui
bisogna anche misurarsi con le difficolta relative alla
tempificazione delle azioni di test

User Interface Testing 18



Java Robot (awt)

e La classe Robot consente I'esecuzione
programmatica di eventi sull'interfaccia utente
(limitatamente ad awt)

— Ha metodi che riproducono le azioni del mouse ed eventi
che riproducono la pressione di tasti

« Documentazione:

e Un tutorial:

User Interface Testing

19


http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Robot.html
http://forum.codecall.net/java-tutorials/25923-robot-class.html

Esempio Java Robot

import java.awt.AWTException;
import Jjava.awt.Robot;
import java.awt.event.InputEvent;

public class MovingMouseDemo {
public static void main (String[] args) {
try {
Robot robot = new Robot () ;
robot.mouseMove (200, 200);
robot.mousePress (InputEvent.BUTTON1 MASK) ;
robot.mouseRelease (InputEvent .BUTTON1 MASK) ;
robot.mouseWheel (-100) ;
} catch (AWTException e) {
e.printStackTrace () ;
}
}
}

I| problema prmupale e quello di poter nominare gli
oggetti dell'interfaccia (ad esempio
InputEvent.BUTTON1_MASK) quando essi sono
dinamicamente generati

User Interface Testing

20



"Twenty percent of all input forms filled out
by people contain bad data.”
, More Programming Pearls:
Confessions of a Coder by Jon Louis Bentley

User Interface Testing

21


http://www.softwarequotes.com/showquotes.aspx?id=543&name=Ritchie,Dennis

Validazione dell’input

e Un tipico problema del testing delle
interfacce utente e la verifica della validita
dei dati di input
— E’ la causa di molti attacchi (exploit) contro le
applicazioni

— Ad esempio, in linguaggi a puntatori, come C,
I'immissione di una stringa troppo lunga in input, in
mancanza di validazione, puo portare a sovrascrivere

altri dati o addirittura zone di codice del programma
stesso

— In linguaggi interpretati, come quelli spesso usati per
il web, il problema e ancora piu sentito

User Interface Testing 22



|l problema della validazione degli input

»La validazione dei dati puo essere fatta sia sul lato client che sul lato server

»La validazione sul lato client ha il vantaggio di utilizzare tempo di CPU
della macchina client piuttosto che quello della macchina server

»La validazione sul lato client puo essere pero scavalcata da un utente
malintenzionato che vada a sollecitare il server con una richiesta http che
non sia passata per la pagina client: in questo caso il server potrebbe avere
delle anomalie

La soluzione piu corretta e quella di porre la validazione sia
sul lato client che sul lato server, in modo da bloccare la
maggior parte delle richieste scorrette sul client
(risparmiando risorse sul server). Solo le richieste fraudolente
verrebbero cosi bloccate dalla validazione lato server

User Interface Testing

23



Esempio: Cross-Site Scripting

» Si verifica quando uno script lato client, inserito maliziosamente in un
campo di input, viene eseguito sulla macchina client di un utente ignaro

<scriptrdocument.write (document.cookie) </scripts - =ign the Guestboolk]

password=MyPassword, logm=2~A drinistrator, CurrentVersion=IT, LastWVist=20020502+10%3A56% 3417,
ASPRESEIONIDAQTDOQARR=HHEILITAONDNFOFIPLAAATDL

Sign.html

<form method="post" action="sign.asp">

</f

<textarea name="txtMessage"></textarea>
<input type="submit" value="Sign!">
rm>

Message=Server.HtmlEncode(Message)

Sign.asp
<% Message=request.form("txtMessage")
conn=0penDBConnection

set rs=server.createobject ("Adodb.recordset")

rs.open "Guestbook",conn,1,2,2
rs.Addnew

r

s ("Message") =Message

rs.update

o
V

Guestbook.asp
<% conn=0penDBConnection
rs=server.createobject ("Adodb.recordset")
rs.open "SELECT Message FROM GuestBook" ,
conn, 3,3
%>
<table>
<% rs.movefirst
while not(rs.eof)
response.write
rs.movenext
wend
%>
</table>
<% rs.close
set rs=nothing
conn.close
set conn=nothing

(rs.fields ("Message"))

[e)

[

User Interface Testing 24



HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

‘\%W

OH, DEAR - DID HE
BREAK SOMETHING?

IN Awﬁ‘r /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;—— 7

!

~ OH. YES UITTLE
RBOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPRY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

User Interface Testing




Testing basato su Sessioni Utente

e Tecnica per la generazione automatica di casi di test per il testing
black box partendo dall’analisi delle sessioni utente (User Session),
ovvero delle sequenze dei valori di input immessi e di output
ottenuti in utilizzi reali del software.

In Aaratlca vengono installati strumenti che siano in grado
mantenere un /og di tutte le interazioni che
avvengono tra gli utenti dell'applicazione da testare e
I'applicazione stessa (fase di Capture)

A partire da tali dati vengono formallzzatl casi di test che

replichino le interazioni “catturate” (fase di Replay)

In questo modo e possibile ottenere casi di test che siano rappresentativi
dei reali utilizzi dell’applicazione da parte dei suoi utenti

Il risultato ottenuto (in termini di output e stato) durante

la fase di Capture puo essere |'oracolo per i futuri
Replay

Testing Automation 26



Capture & Replay

« Il sistema di Capture consiste in un
ambiente di esecuzione controllato nel
quale il tester «usa» |I'applicazione e nel
frattempo le sue interazioni sono
registrate e «tradotte» in un caso di test
rieseguibile

- E’ possibile anche inserire delle asserzioni,
In maniera visuale

User Interface Testing



Limiti e problemi

Il sistema di Capture registra le interazioni, ma non
lo stato del sistema: le precondizioni devono essere
aggiunte dal tester

Se il sistema ha delle race conditions, allora i casi di
test generati devono tener conto anche della
tempificazione degli input, altrimenti i test possono
anche essere rieseguiti molto piu velocemente
rispetto alla velocita di registrazione

Se cambia l'interfaccia utente, molti casi di test
potrebbero non essere piu eseguibili

User Interface Testing



Window Tester Pro

Strumento di Capture e Replay per
applicazioni Java con GUI realizzata con
Swing

Osserva un utente che esegue il programma e lo utilizza
e registra il suo comportamento

Genera automaticamente codice Junit rieseguibile

replicante le interazioni dell’'utente

| test ottenuti possono essere riutilizzati anche senza il supporto di
Window Tester Pro

Aiuta l'utente nella scrittura di asserzioni
Fornendo i nomi degli oggetti grafici a video
Suggerendo alcuni possibili asserzioni

Metriche Software



Window Tester Pro

e Installabile come plug-in di Eclipse

« http://www.gwtproject.org/versions.html

e Per eseguirlo bisogna:

» Creare un profilo di configurazione nell'ambito di Window
Tester

« Eseqguire

« Al termine dell’'esecuzione vengono generati i test Junit

Un tutorial completo e disponibile all'indirizzo:

https://developers.google.com/java-dev-
tools/wintester/html/gettingstarted/swing_sampletest

Metriche Software


http://dl.google.com/eclipse/inst/windowtester/latest/3.6

Creazione Profilo di Esecuzione

By -

Record As r

"« Open Record Dialog...

Organize Favorites. ..

% Record Configurations @

Create, manage, and run configurations @

REER. | B3¢~ Mame: ContactManagerSwing
|| | ® Main “_69= Arguments] = .IRE] L Classpath] B Sourcﬂ ;-] Environmenq =] Common]
[3] ContactManager = Project
7] DecoratedWindo
31 EclipseStarter ContactManagerSwing Browse...
[3] Eempio_Abstract, | Main class:
7] Esecutore 3
51 Esempio contactmanager.ContactManagerSwing [ﬂ]
7] EsempicCompos [T Include system libraries when searching for a main class
(3] Finestra [T Include inherited mains when searching for a main class
& .loir?ing [7] Stop in main
31 Main (1)
31 Main (2) -
] i 3
) . Apply Revert
Filter matched 24 of 26 items

@ Record I [ Close

Metriche Software




Capture

Recorder

@ mC 4

James,Bond [ % James,Bond recording
Perry,Mason i
SamLittle

First Hame: [James
Last Name: |[Bond

Street:
City:
State: |UK] | zip: |

Home: |[(888)-007-0000 | ﬂﬂiDe:|
Maobile;
Email:

_ Problems @& Javadoc [, Declaration & Conscle Ju, Generation Results k=] Code Coverage Jﬂecarﬂer &3 < ‘% x| é?é%| .‘g *+ Y = F
ContacthManagerSwing at 10/25/14 3:21 PM - 2 events

Text : 'State: ' clicked
'UK' entered

Metriche Software



Esplorazione visuale degli elementi e suggerimento di
asserzioni

| £| Contact Manager E'@
Hel
File =F
- =
James,Bond |[ % James,Bond Recorder
Perry,Mason i C}
w_ :|| First Name: [James ] ® . ‘%
Sam,Little ;;
:|| Last Name: [Bond inspecting
Street:
City:
State: |UK =, LabeledText

Properties
Home: |(§88)-007-0000 Select properties to

Maobile: assert,
Email:

[]isVisible (false)
[]isEnabled (falze)
[ hasFocus (false)

Azzert | | Dismiss

|i|_(. Problems i@ Javadoc @ Declaration [l Conscle Jy, Generation Results B=| Code Coverage @@ Recorder 52 @ i f{| | Fpr ¥ = F
ontactManagerSwing at 10/25/14 2:25 PM - 3 events
Text : 'State: ' clicked

L ™

&7 Asserted Text : 'State: ' isVisible=true

Metriche Software



Generazione automatica di test

© Mew Ul Test L=
Window Tester UI Test
Create a new Window Tester UT test @
Source folder:  ContactManagerSwing/src
Package: test
Mame: UlTest]
Modifiers: @ public (0) package private protected
Superclass: com.windowtester.runtime.swing. UITestCaseSwing Browse...
Create folders automatically if they do not exist
Add build path dependencies automatically
@ [ Fnsh [ concel |
. I test possono essere riesequiti

come ogni altro test

package test;

import com.windowtester.runtime.swing.locator.LabeledTextLocator;
import com.windowtester.runtime.swing.UITestCaseSwing;

import com.windowtester.runtime.IUIContext;

import com.windowtester.runtime.swing.locator.JMenuItemLocator;

public class UITest extends UlITestCaseSwing {
public UITest() {

super (contactmanager.ContactManagerSwing.class) ;

public void testUI() throws Exception {
IUIContext ui = getUI() ;
ui.click (new LabeledTextLocator ("State: "))
ui.enterText ("UK") ;
ui.assertThat (new LabeledTextLocator ("State: ") .isVisible())

ui.click (new JMenultemLocator ("File/Exit")) ;

Metriche Software



Alcuni limiti

I widget sono individuati in
base al nome o all’etichetta
che mostrano a video

« Il programmatore deve
preventivamente evitare di
utilizzare widget senza nome

Ulteriori asserzioni su altri
elementi devono essere
aggiunte manualmente

Alcuni elementi ed eventi
non sono «visti» (ad
esempio all'interno di un
File/Open)

. Bisogna trovare metodi alternativi
in quei casi

public void testUITest2 () throws
Exception {

IUIContext ui = getUI();
uli.click(new JButtonLocator ("6
ul.click(new JButtonLocator ("*
uli.click(new JButtonLocator ("7
ul.click(new JButtonLocator ("=
IWidgetReference wref =
(IWidgetReference) ui.click (2, new
JTextComponentLocator (JTextArea.class)) ;
JTextArea textArea = (JTextArea)
wref.getWidget () ;
assertEquals ("42.0", textArea.getText()),
}

Metriche Software



Appendice

User Interface Testing

37



UISpec4] m

e UISpec4] e una libreria a supporto del testing
funzionale e di unita di applicazioni Java con
interfaccia utente basata su Swing, che fa uso di
Junit

e In pratica, mette a disposizione metodi e oggetti
che consentono di interrogare direttamente gli
elementi dell'interfaccia utente

UISpec4] funziona senza problemi sulle
versioni Java fino alle 1.6.25

User Interface Testing

38


http://www.uispec4j.org/

Test Case in UI Spec

e Una classe di test UISpec va ad estendere la
classe UISpecTestCase

— public class AddressBookTest extends
UISpecTestCase

e Per poter eseguire i test mantenendo un punto di
controllo sull’applicazione sotto test, il metodo

setup conterra :

— protected void setUp() throws Exception ({
setAdapter (new MainClassAdapter (Main.class,
new String[0])), }

— il parametro String[0] rappresenta la linea di comando, in
questo caso vuota, della chiamata dell’applicazione

User Interface Testing

39



Esempio: Calcolatrice (1/2)

package Calcolator;
import org.uispecédj.*

public class TestWhiteBox extends
UISpecTestCase {

private Window main;

protected void setUp () throws
Exception {

setAdapter (new
MainClassAdapter (Starter.class,
Stringl0]));

main = getMainWindow () ;

}

public void testSumOK () throws
Exception/{

Button numl = main.getButton("4");

numl.click();

Button plus = main.getButton ("+");

plus.click();

Button num2 = main.getButton("4");

num?2.click () ;

Button equals =
main.getButton ("=");

equals.click();

assertEquals ("8.0",main.getTextBox
() .getText ());

}

L S=1k  La finestra principale é ottenuta col metodo getMainWindow()
e I riferimenti ai Button sono ottenuti con getButton(String) in

File Scientifica

L= ]

base all’etichetta che essi mostrano

s | 7 e Il riferimento alla TextBox e ottenuto con getTextBox()
approfittando della circostanza che essa € unica, in tale
interfaccia

User Interface Testing 40



Esempio: Calcolatrice (2/2)

package Calcolator;
import org.uispecédj.*

public class TestWhiteBox extends
UISpecTestCase {

private Window main;

protected void setUp () throws
Exception {

setAdapter (new
MainClassAdapter (Starter.class,
new String[0]));

main = getMainWindow () ;

}

public void testSenoNotOK () throws Exception({

Button numcl = main.getButton ("3");

numcl.click () ;

Button numc2 = main.getButton(".");

numc?2.click() ;
Button numc3 = main.getButton("1");
numc3.click () ;

Button numc4 = main.getButton ("4");

numcd.click () ;

Menultem menu=
main.getMenuBar () .getMenu ("Scientifica");

menu.click();
Menultem menu2= menu.getSubMenu ("Seno") ;

menu2.click () ;

£ -10] x| assertEquals ("0.0015926529164868282",main.getT
File | Scientifica | extBox () .getText ());
3.14 | Radice Quadrata e . . . .
0 g e Il riferimento al menu e ottenuto con i metodi
evamento a Potenza . N T
4 | Coseno g_etMe_nuBar().getMenu(Strlng), dove la String e I'etichetta
Seno visualizzata del Menu
8
Tangente e L’asserzione e una asserzione tra stringhe, per cui
"| Log10 assertEquals e ben posto; se si fosse trattato di un confronto
Loge tra reali si sarebbe dovuto utilizzare un asserzione del tipo:
Fattoriale —  AssertTrue (Math.abs(valoreAtteso-valoreOttenuto)<epsilon)

User Interface Testing 41



Esecuzione dei Test Case

L'esecuzione dei test si ottiene
sfruttando il framework Junit

Ulteriori metodi possono essere
personalizzati per poter individuare
gli elementi dell’interfaccia in altri
modi

E’ possibile interagire anche con i
Dialog

Ulteriori informazioni sono disponibili
nel tutorial all’'indirizzo:

Package Explorer [ﬁu JUnit £ =8

Finished after 4,752 seconds =

L4 e® BB QR E -

Runs 42/42 B Errors: 0 B Failure: 12

..... %] testi og10NOtOK (0,149 <) |

----- pe testlogl0ExceptionQK (0,014 <)

..... ¢ testPuntePuntoOK (0,029 5)

----- E testPulsantiValoriMotOK (0,030 =)

----- E,'E'—_| testDoppiaCperazioneOK (0,014 =)
..... pE] testPulsanteResetOK (0,016 <)

----- Elb—'—_l testPulsantiMeltiplicDivisioQ (0,076 =)
----- pE] testMoltiplExceptionQK (0,014 =)

----- E,'E'—_| testhMoltipl OP2ExceptionOK (0,018 =)
----- EF—'—_l testDivisio OP1ExceptionOK (0,009 =)
----- Elb—'—_l testDivisioOP2ExceptionQK (0,023 =)
..... tE] testAboutQK (0,076 5)

..... gl testLogENotOK (0,141 5)
T PO T . ey Y vl W a s 1 I _ILI
3

User Interface Testing

42


http://www.uispec4j.org/tutorial

Considerazioni su UISpec4]

e UISpec4] e uno strumento molto semplice e abbastanza
potente, a supporto del testing di interfacce utente Swing (le
piu diffuse) di applicazioni Java interattive

o UISpecd4] estende Junit e puo essere utilizzato in tutti i
processi nei quali viene utilizzato quest'ultimo

— Progettazione di casi di test da parte dello sviluppatore, per il testing
di unita
— Progettazione di casi di test per il testing funzionale black box

e UISpec4] si presta poco alla generazione automatica di casi
di test, ma e naturalmente sempre utilizzabile per
lI'esecuzione automatica e la valutazione automatica
dell’esito dei test

User Interface Testing 43



Considerazioni su UISpec4]

e UISpec4] propone diversi modi per identificare un widget
e Per ID, per titolo, per etichetta visualizzata

* Nonostante tali metodi siano molto utili al tester, potrebbero
non essere sufficienti

e Ad esempio, widget anonimi non possono essere
controllati direttamente

o Un software che curi la sua testabilita dovrebbe sempre
agevolare il testing dei propri componenti permettendone un
agevole indirizzamento

 E’' buona pratica dare sempre nomi statici ai widget

e Sistemi come Android mettono a disposizione meccanismi
basati su XML per obbligare alla dichiarazione statica dei

widget

User Interface Testing 44



Approfondimento:

e Per gestire i dialog e

opportuno gestire dei
thread

Nell’'esempio,
l'interazione
successiva con due
dialog avviene tramite
due click su due
pulsanti di due
dialogbox

Per l'interazione con
un dialog viene
istanziato un oggetto
process

Considerazioni su UISpec4)]

@Test
public void testRegolamento() throws Exception {
try{
WindowInterceptor.init(new MainClassTrigger(impiccato.class, new String[0]))
.process(new WindowHandler() {
public Trigger process(Window dialog) {
return dialog.getButton("Leggi il regolamento").triggerClick();
b
3
.process(new WindowHandler() {
public Trigger process(Window dialog) {
msg = dialog.getDescription().contains("Lo scopo di");
assertTrue(msg);
return dialog.getButton("Ok").triggerClick();
>
1)
.run();
} catch(org.uispec4j.interception.InterceptionError e) {
if (e.getCause().toString().contains("junit.framework.AssertionFailedError"))
throw new junit.framework.AssertionFailedError(e.getCause().toString());
else throw new java.lang.Exception(e);
}
1

User Interface Testing 45



Approfondimento: Considerazioni su UISpec4]

e In quest’altro esempio, c’e una sequenza di click su button
e inserimento di caratteri in dialog successivi

@Test
public void test1p1() throws Exception {

try{

WindowInterceptor.init(new MainClassTrigger(impiccato.class,
new String[0]))

.process(new WindowHandler() {
public Trigger process(Window dialog) {
return dialog.getButton("Inizia a giocare").triggerClick();
>
})
.process(BasicHandler.init().triggerButtonClick("Un giocatore"))
.process(BasicHandler.init().setText("Foo").triggerButtonClick("OK"))
.process(BasicHandler.init().triggerButtonClick("OK"))
.process(BasicHandler.init().setText("n").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("f").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("o").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("r").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("m").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("a").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("t").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("i").triggerButtonClick("OK"))
.process(BasicHandler.init().setText("c").triggerButtonClick("OK"))

.process(new WindowHandler() {
public Trigger process(Window dialog) {

msg = dialog.containsUIComponent(TextBox.class,
"Complimenti, hai vinto!!!").isTrue();

assertTrue(msg);
return dialog.getButton("Ok").triggerClick();
>

b))
.process(BasicHandler.init().triggerButtonClick("Annulla™))

.run();
} catch(org.uispec4j.interception.InterceptionError e) {

if(e.getCause().toString().contains("junit.framework.AssertionFailedErro

r))
throw new
junit.framework.AssertionFailedError(e.getCause().toString());

else throw new java.lang.Exception(e);

b

User Interface Testing

46



e Un framework alternativo a UISpec4)]
e FEST: Fixtures for Easy Software Testing

e https://code.google.com/p/fest/

User Interface Testing

47



