Build Automation

Riferimenti

Sommerville, Capitolo 29

http://grokcode.com/538/java-build-systems-a-sad-state-of-affairs/
http://mrbook.org/tutorials/make/
http://ant.apache.org/manual/tutorial-HelloWorldWithAnt.html
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://maven.apache.org/guides/getting-started/
http://www.gradle.org/
http://technologyconversations.com/2014/06/18/build-tools/

Build Automation

Build Automation € l'insieme di attivita legate
all’automatizzazione di alcuni task del ciclo di vita del software

« Compilazione;

 Linking;

« Esecuzione di test;

* Analisi statica

* Deployment;

* Creazione di documentazione;

Per poter automatizzare queste attivita e spesso necessario
scrivere del codice in un linguaggio di scripting (oppure
utilizzare programmi visuali)

* Il codice di build automation e da considerare a pieno titolo
nell'insieme del codice del programmal

Build Automation

- Tramite un efficace codice di Build Automation e
possibile, ad esempio:

» Generare e deployare automaticamente diverse versioni del
programma

» Versioni in lingue diverse
 Versioni con insiemi di feature diverse
« Versioni adatte a diversi sistemi operativi

» Versioni di testing/debugging con alcune parti di codice
sostituite da moduli fittizi

* Reperire automaticamente le risorse necessarie a completare
I'esecuzione del programma

Strumenti di Build Automation

Make

Apache Ant
Apache Maven
Gradle

Visual Build
Jenkins

http://en.wikipedia.org/wiki/List_of_build_automation_software

Shell Script

 La soluzione piu semplice ai problemi di build automation passa per la
scrittura di script di shell

La maggior parte degli strumenti necessari (compilatore, linker)
sono esequibili da linea di comando

Tutte le shell (es. Bash, DOS shell, etc.) forniscono comandi a
sufficienza per la gestione del file system

| linguaggi di shell scripting sono interpretati: se vengono utilizzati
per realizzare elaborazioni complesse, queste ultime sono difficili
da testare

| linguaggi di shell offrono poco supporto alla programmazione
strutturata e nessun supporto alla programmazione a oggetti

| linguaggi di shell non offrono supporto al testing e al debugging
| linguaggi di shell non hanno tipi (salvo alcune eccezioni parziali)

Comandi Shell DOS

Call, per chiamare un altro batch file (.bat)
Start, per avviare un eseguibile, eventualmente in un’altra istanza di shell

Choice, per implementare una sorta di switch

For, per implementare un ciclo for (in un insieme predefinito di valori)
» Forfiles, per implementare un ciclo su di un insieme di files

Goto, salto incondizionato

If, che supporta come condizioni I'identita tra stringhe (==), I'esistenza di un file
(EXIST) e la restituzione di un certo valore di ritorno di errore (ERRORLEVEL)

Set, per le assegnazioni di variabile

Inoltre e possibile utilizzare un costrutto di blocco (rappresentato da parentesi
tonde), che pero puo andare in conflitto con | goto

Tipici comandi di gestione file (copy, xcopy, dir, delete, rename, cd, md, rd, ...)

Le shell di Unix (bash o altre shell) forniscono tipicamente piu feature ma
seguono la stessa filosofia

Esempi shell (Windows)

REM Lettura dei parametri dalla linea di comando
set name=%1
REM setta una variabile in funzione di data e ora

for /f "tokens=1-6 delims=.,:/ " %%a in ("%date% %time%") do set mydatetime=%%c-%%b-
%%a_%%d-%%e-%%f

set seedvalue=!IRANDOM!
REM Esempio di ciclo do-while
set /a cycle=0
:START
set /a cycle+=1
if lcycle!==1 goto END
goto START
‘END
REM Esempio di ciclo for
for /L %%N in (1,1,%seedvalue%) do (
(
echo Number
echo %%N
) >> list.txt

Make

Sotto il nome ‘make’ € possibile raggruppare parecchie utility diffuse sui vari
sistemi Linux o Windows

« La piu nota € GNU Make

E’ distribuita in forma di eseguibile a linea di comando
* Le sue elaborazioni dipendono da un file di scripting nominato makefile

* L'unico parametro, opzionale, &€ un TARGET che rappresenta la label del
punto del makefile da cui comincera I'esecuzione

Il makefile e uno script in un linguaggio dichiarativo, non imperativo, che
permette di specificare come debbano avvenire le operazioni di deployment e
Installazione di un software

Makefile

Uno script makefile € organizzato in regole (rules)
Ogni regola e individuata da:
« un’etichetta (Target) sequita da:
« una lista (opzionale) di componenti da cui la regola dipende
* Un elenco di comandi (commands) di shell collegati a quella regola

targets : prerequisites ; command

Uno script makefile € organizzato in regole (rules)
copia: originale.txt; copy originale.txt copia.txt

10

Esempio Makefile

#Variabili
CC =gcc
CFLAGS =g

all: helloworld

helloworld: helloworld.o
$(CC) $(LDFLAGS) -0 3@ "

helloworld.o: helloworld.c
$(CC) $(CFLAGS) -c -0 $@ $<

clean:
rm -f helloworld helloworld.o

CC e CFLAGS sono variabili

All (target predefinito) per essere
eseguito prevede come prerequisito
I'esistenza del file helloworld: se non
esiste, allora viene eseguito
preventivamente il target omonimo

helloworld ha bisogno che esista
helloworld.o, altrimenti esegue
preventivamente il target chiamato
helloworld.o

$@ € una variabile che rappresenta

il nome del target mentre $< rappresenta
| parametri in ingresso alla chiamata
make

11

Limiti del makefile

Esistono alcune (poche) altre possibilita di implementare strutture di controllo
nelllambito di un makefile

Make dipende dal sistema operativo: con sistemi operativi diversi non e possibile
riutilizzare identicamente gli stessi script (perche dipendono dal linguaggio di
shell) e sono anche necessari diversi porting di make

12

ANT ». g (-\
:PACHE ANT>

Ant e il primo e piu diffuso strumento di build per programmi
Java

Ant e indipendente dalla piattaforma e dal sistema operativo

Puo essere utilizzato anche per elaborazioni piu complesse di
un semplice build

Gli script Ant sono scritti in XML
Ant fornisce ricche “librerie” di task predefiniti
Ant fornisce la possibilita di realizzare task riusabili

Ant puo essere chiamato da linea di comando in modo da poter
essere facilmente integrato in altri programmi

Ant e parte del progetto open source Apache

Ant non necessita di installazione (e sufficiente copiarne i file
ed, eventualmente, settarne il percorso tra i path predefiniti)

13

ANT

La sintassi di ant € praticamente la stessa di make:
« ant [target]

Ant cerca ed esegue il file build.xml che e analogo al makefile di make

Esempio:

<?xml version="1.0"?>

<project name="Hello World Project" default="info">
<target name="info">

<echo>Hello World - Welcome to Apache Ant!</echo>
</target>

</project>

Col tag project si specifica il nome del progetto e il target predefinito (in questo
caso info)

14

Attributes

name

depends

description

unless

Target

Description
The name of the target (Required)
Comma separated list of all targets that this target depends on. (Optional)
A short description of the target. (optional)

Allows the execution of a target based on the trueness of a conditional
attribute. (optional)

Adds the target to the dependency list of the specified Extension Point. An
Extension Point is similar to a target, but it does not have any tasks.
(Optional)

Porfirio Tramontana - Ingegneria del Software 2 — Build Automation

Variabili

Col tag property e possibile definire una variabile e settarne nome (attributo
name) e valore (attributo value)

Per utilizzare il valore e sufficiente scrivere, in un qualsiasi altro punto
{$nomevariabile}

Tipicamente e possibile elencare tutte le property e i loro valori in un file
separato denominato build.properties

16

Comandi

| comandi possono essere scritti sotto forma di tag i cui attributi sono gli attributi
del comando

<target name="build" description="Compile source tree java files">
<mkdir dir="${build.dir}"/>
<javac destdir="${build.dir}" source="1.5" target="1.5">
<src path="${src.dir}"/>
<classpath refid="master-classpath"/>
</javac>
</target>

Numerosi filtri sono disponibili per facilitare la ricerca di file o insiemi di file sui
guali applicare i comandi

 Fileset
e Patternset
* Filterset

17

Limiti di Ant
Nella maggior parte dei casi, gli script ant sono generati automaticamente da

altri programmi, ad esempio da IDE come Eclipse

Gli script ant sono un po limitati in quanto a strutture di controllo e ad altre
possibilita di introdurre comportamenti dinamici

Gli script ant possono indirizzare soltanto file su disco, non risorse remote

18

Maven non € soltanto un tool per la build automation (come Ant) ma:

- “attempt to apply patterns to a project's build infrastructure in order to
promote comprehension and productivity by providing a clear path in the
use of best practices”

- In particolare fu pensato per unificare il modo di sviluppare e organizzare
diversi progetti della famiglia Apache

Non si occupa solo della costruzione, installazione e deployment dei progetti,
ma anche della generazione della documentazione, di metriche, reports e casi di
test

Allo stesso modo di make e ant, puo essere eseguito da linea di comando

Allo stesso modo di ant, legge uno o piu file xml di configurazione

19

Maven

« Uno schema di massima di partenza per il file di configurazione puo essere

generato col comando:
mvn archetype:generate -Dgroupld=com.mycompany.app -Dartifactid=my-app
-DarchetypeArtifactid=maven-archetype-quickstart -DinteractiveMode=false

* Gli unici input necessari e variabili sono il nome dell’applicazione e il
dominio di riferimento degli sviluppatori

 La necessita di indicare sia il nome che il dominio e legata alla
possibilita di poter fornire nomi universali (URI) ai progetti, in modo che

possano essere univocamente reperiti sulla rete
« Inant le risorse necessarie al deployment di un progetto potevano
essere solo locali
- Attenzione: nella maggior parte dei casi maven puo funzionare
solo e soltanto in presenza di connessione ad Internet
* In particolare, avviene per la prima esecuzione di Maven
susseguente la sua installazione

20

Esempio di base:

<project xmIns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-
4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupld>com.mycompany.app</groupld>
<artifactld>my-app</artifactld> .
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>Maven Quick Start Archetype</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

pom.xm|

Pom sta per Project Object
Model

Il tag packaging sta ad indicare
che il risultato eseguibile del
building verra messo in forma di
file compresso jar

version é la versione del
progetto che verra generata da
guesto build. Dovrebbe ricalcare
il numero di release mantenuto
dal cvs

url & il sito del progetto (bisogna
modificare il valore di default
che rappresenta il sito di maven
stesso)

L'unica dipendenza dichiarata
nell’archetipo & quella da Junit
necessario per il testing

21

my—-app

—— pom.

T—— Brco

Albero del file generati

®xml

main

"—— java
T—— =om

te=st

"—— Jjava

T—— =om

myCompany

T—- app
T—— App.java

myCompany

T—- app
"—— AppTest.java

Lo script di esempio puo essere
eseguito con

* mvn compile

Eseguendo maven nella cartella
che contiene pom.xml, viene
generato quest’albero dei file

| file Java sono creati sotto
forma di template da completare

22

Altre modalita di esecuzione di mvn

Per eseguire i test e sufficiente scrivere:
* mvn test

« Test e il valore di un tag scope, che e equivalente al concetto di target
visto in make ed ant

Per creare I'eseguibile (jar):
* mvn package

Altre modalita di esecuzione standard:
* mvn site = genera il sito web di documentazione
* mvn clean - cancella tutti i file generati
* mvn eclipse: eclipse - genera fie di progetto per eclipse

Cosi come in ant, variabili possono essere dichiarate in un file separato
application.properties

23

Dependencies

« E’ possibile dichiarare dependencies da altri progetti non disponibili in locale
<dependencies>

<dependency>
<groupld>com.mycompany.app</groupld>
<artifactld>my-app</artifactld>
<version>1.0-SNAPSHOT</version>
<scope>compile</scope>
</dependency>
</dependencies>

« Come si puo notare, NON viene nominata esattamente I'URL del progetto da cui
dipende cio che dobbiamo costruire, ma il groupld, l'artifactld e la version saranno

sufficienti a maven per reperirlo nel caso esso sia stato correttamente pubblicato
nell’ambito del dominio com.mycompany.app

« Junit faceva eccezione: in assenza della dichiarazione della URL, maven cerca in
locale e sul sito ufficiale del progetto Maven

24

Dependencies

E’ possibile indicare in pom.xml e nel file aggiuntivo
di configurazione settings.xml le modalita di
pubblicazione del nostro progetto in un repository
remoto, allo scopo di renderlo disponibile ad altri

<distributionManagement>
<repository>
<id>mycompany-repository</id>
<name>MyCompany Repository</name>
<url>scp://repository.mycompany.com/repository/maven2</url>
</repository>
</distributionManagement>
</project>
<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">

<servers>
<server>
<id>mycompany-repository</id>
<username>jvanzyl</username>
<!-- Default value is ~/.ssh/id_dsa-->

<privateKey>/path/to/identity</privateKe
y> (default is ~/.ssh/id_dsa)

<passphrase>my_key passphrase</pas
sphrase>

</server>
</servers>

</settings>

25

Maven vs Ant

| maggiori vantaggi di Maven rispetto ad Ant sono:

Possibilita di gestire numerosi aspetti del ciclo di vita dell’applicazione, oltre a
build e deployment

Maggiori librerie e plug-in di utilita
Possibilita di estendere il comportamento tramite plug-in

Maggiore facilita d’'uso (le funzionalita sono sempre utilizzabili tramite
dichiarazione, mentre negli altri erano descritti pit nella forma di comandi
imperativi)

Possibilita di pubblicare progetti per il riuso

Possibilita di includere progetti disponibili in remoto e di collegarli
dinamicamente a tempo di compilazione

Migliore integrazione con gli IDE di sviluppo

26

Gradle o’ gradle

Gradle estende le funzionalita di Ant e Maven
* http://www.gradle.org/

| target sono definiti e legati tra di loro sotto forma di grafo aciclico

Gradle non utilizza XML (che a causa della sua natura gerarchica e meno
flessibile), ma il linguaggio Groovy (simile a JSON)

» Gli script Gradle sono mediamente piu brevi degli equivalenti ant e maven

E’ ampiamente integrato con ant e maven, nel senso che &€ sempre possibile
trasformare da ant e maven verso gradle

Android Studio adotta Gradle come strumento predefinito di build automation
» Particolarmente utile perché le librerie di Android variano molto spesso

27

Gradle o’ gradle

Le dipendenze non sono organizzate semplicemente in forma di elenco, ma in
forma di grafo delle dipendenze, che viene navigato da Gradle

Il file contenente tutte le informazioni sul build di un progetto specifico si chiama
build.gradle

Il file settings.gradle (opzionale) contiene la definizione di moduli di libreria che
POSsono essere utilizzati in piu di un progetto gradle.

Il file gradle.properties (opzionale) contiene un elenco di costanti valide per
I'inizializzazione delle proprieta di uno specifico progetto Gradle.

Un plugin gradle rappresenta un algoritmo di building. Utilizzando diversi plugin si
possono eseguire diverse modalita di building (ad esempio con esecuzione dei
test) e relativamente a diversi linguaggi di programmazione

« Ad esempio il pulgin predefinito di gradle per un’applicazione Android
(com.android.application) definisce piu di 100 diversi task tra loro
interdipendenti, che possono essere chiamati anche singolarmente con

» Gradle nome_del_task

28

