
1

Build Automation

2

Riferimenti

• Sommerville, Capitolo 29

• http://grokcode.com/538/java-build-systems-a-sad-state-of-

affairs/

• http://mrbook.org/tutorials/make/

• http://ant.apache.org/manual/tutorial-

HelloWorldWithAnt.html

• http://maven.apache.org/guides/getting-started/maven-in-

five-minutes.html

• http://maven.apache.org/guides/getting-started/

• http://www.gradle.org/

• http://technologyconversations.com/2014/06/18/build-

tools/

http://grokcode.com/538/java-build-systems-a-sad-state-of-affairs/
http://mrbook.org/tutorials/make/
http://ant.apache.org/manual/tutorial-HelloWorldWithAnt.html
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://maven.apache.org/guides/getting-started/
http://www.gradle.org/
http://technologyconversations.com/2014/06/18/build-tools/

3

Build Automation

• Build Automation è l’insieme di attività legate
all’automatizzazione di alcuni task del ciclo di vita del software

• Compilazione;

• Linking;

• Esecuzione di test;

• Analisi statica

• Deployment;

• Creazione di documentazione;

• ...

• Per poter automatizzare queste attività è spesso necessario
scrivere del codice in un linguaggio di scripting (oppure
utilizzare programmi visuali)

• Il codice di build automation è da considerare a pieno titolo
nell’insieme del codice del programma!

4

Build Automation

• Tramite un efficace codice di Build Automation è
possibile, ad esempio:
• Generare e deployare automaticamente diverse versioni del

programma

• Versioni in lingue diverse

• Versioni con insiemi di feature diverse

• Versioni adatte a diversi sistemi operativi

• Versioni di testing/debugging con alcune parti di codice
sostituite da moduli fittizi

• Reperire automaticamente le risorse necessarie a completare
l’esecuzione del programma

5

Strumenti di Build Automation

• Make
• Apache Ant
• Apache Maven
• Gradle
• Visual Build
• Jenkins

• http://en.wikipedia.org/wiki/List_of_build_automation_sof
tware

http://en.wikipedia.org/wiki/List_of_build_automation_software

6

Shell Script

• La soluzione più semplice ai problemi di build automation passa per la
scrittura di script di shell

• La maggior parte degli strumenti necessari (compilatore, linker)
sono eseguibili da linea di comando

• Tutte le shell (es. Bash, DOS shell, etc.) forniscono comandi a
sufficienza per la gestione del file system

• I linguaggi di shell scripting sono interpretati: se vengono utilizzati
per realizzare elaborazioni complesse, queste ultime sono difficili
da testare

• I linguaggi di shell offrono poco supporto alla programmazione
strutturata e nessun supporto alla programmazione a oggetti

• I linguaggi di shell non offrono supporto al testing e al debugging

• I linguaggi di shell non hanno tipi (salvo alcune eccezioni parziali)

7

Comandi Shell DOS

• Call, per chiamare un altro batch file (.bat)

• Start, per avviare un eseguibile, eventualmente in un’altra istanza di shell

• Choice, per implementare una sorta di switch

• For, per implementare un ciclo for (in un insieme predefinito di valori)

• Forfiles, per implementare un ciclo su di un insieme di files

• Goto, salto incondizionato

• If, che supporta come condizioni l’identità tra stringhe (==), l’esistenza di un file
(EXIST) e la restituzione di un certo valore di ritorno di errore (ERRORLEVEL)

• Set, per le assegnazioni di variabile

• Inoltre è possibile utilizzare un costrutto di blocco (rappresentato da parentesi
tonde), che però può andare in conflitto con I goto

• Tipici comandi di gestione file (copy, xcopy, dir, delete, rename, cd, md, rd, …)

• Le shell di Unix (bash o altre shell) forniscono tipicamente più feature ma
seguono la stessa filosofia

8

Esempi shell (Windows)

REM Lettura dei parametri dalla linea di comando

set name=%1

REM setta una variabile in funzione di data e ora

for /f "tokens=1-6 delims=.,:/ " %%a in ("%date% %time%") do set mydatetime=%%c-%%b-
%%a_%%d-%%e-%%f

set seedvalue=!RANDOM!

REM Esempio di ciclo do-while

set /a cycle=0

:START

set /a cycle+=1

if !cycle!==1 goto END

goto START

:END

REM Esempio di ciclo for

for /L %%N in (1,1,%seedvalue%) do (

(

echo Number

echo %%N

) >> list.txt

)

9

Make

• Sotto il nome ‘make’ è possibile raggruppare parecchie utility diffuse sui vari
sistemi Linux o Windows

• La più nota è GNU Make

• E’ distribuita in forma di eseguibile a linea di comando

• Le sue elaborazioni dipendono da un file di scripting nominato makefile

• L’unico parametro, opzionale, è un TARGET che rappresenta la label del
punto del makefile da cui comincerà l’esecuzione

• Il makefile è uno script in un linguaggio dichiarativo, non imperativo, che
permette di specificare come debbano avvenire le operazioni di deployment e
installazione di un software

10

Makefile

• Uno script makefile è organizzato in regole (rules)

• Ogni regola è individuata da:

• un’etichetta (Target) seguita da:

• una lista (opzionale) di componenti da cui la regola dipende

• Un elenco di comandi (commands) di shell collegati a quella regola

targets : prerequisites ; command

• Uno script makefile è organizzato in regole (rules)

copia: originale.txt; copy originale.txt copia.txt

11

Esempio Makefile

#Variabili

CC = gcc

CFLAGS = -g

all: helloworld

helloworld: helloworld.o

$(CC) $(LDFLAGS) -o $@ $^

helloworld.o: helloworld.c

$(CC) $(CFLAGS) -c -o $@ $<

clean:

rm -f helloworld helloworld.o

• CC e CFLAGS sono variabili

• All (target predefinito) per essere
eseguito prevede come prerequisito
l’esistenza del file helloworld: se non
esiste, allora viene eseguito
preventivamente il target omonimo

• helloworld ha bisogno che esista
helloworld.o, altrimenti esegue
preventivamente il target chiamato
helloworld.o

• $@ è una variabile che rappresenta
il nome del target mentre $< rappresenta
i parametri in ingresso alla chiamata
make

12

Limiti dei makefile

• Esistono alcune (poche) altre possibilità di implementare strutture di controllo
nell’ambito di un makefile

• Make dipende dal sistema operativo: con sistemi operativi diversi non è possibile
riutilizzare identicamente gli stessi script (perchè dipendono dal linguaggio di
shell) e sono anche necessari diversi porting di make

13

ANT

• Ant è il primo e più diffuso strumento di build per programmi
Java

• Ant è indipendente dalla piattaforma e dal sistema operativo

• Può essere utilizzato anche per elaborazioni più complesse di
un semplice build

• Gli script Ant sono scritti in XML

• Ant fornisce ricche “librerie” di task predefiniti

• Ant fornisce la possibilità di realizzare task riusabili

• Ant può essere chiamato da linea di comando in modo da poter
essere facilmente integrato in altri programmi

• Ant è parte del progetto open source Apache

• Ant non necessita di installazione (è sufficiente copiarne i file
ed, eventualmente, settarne il percorso tra i path predefiniti)

14

ANT

• La sintassi di ant è praticamente la stessa di make:

• ant [target]

• Ant cerca ed esegue il file build.xml che è analogo al makefile di make

• Esempio:

<?xml version="1.0"?>

<project name="Hello World Project" default="info">

<target name="info">

<echo>Hello World - Welcome to Apache Ant!</echo>

</target>

</project>

• Col tag project si specifica il nome del progetto e il target predefinito (in questo

caso info)

Porfirio Tramontana - Ingegneria del Software 2 – Build Automation

Target

16

Variabili

• Col tag property è possibile definire una variabile e settarne nome (attributo
name) e valore (attributo value)

• Per utilizzare il valore è sufficiente scrivere, in un qualsiasi altro punto
{$nomevariabile}

• Tipicamente è possibile elencare tutte le property e i loro valori in un file
separato denominato build.properties

17

Comandi

• I comandi possono essere scritti sotto forma di tag i cui attributi sono gli attributi
del comando

<target name="build" description="Compile source tree java files">

<mkdir dir="${build.dir}"/>

<javac destdir="${build.dir}" source="1.5" target="1.5">

<src path="${src.dir}"/>

<classpath refid="master-classpath"/>

</javac>

</target>

• Numerosi filtri sono disponibili per facilitare la ricerca di file o insiemi di file sui

quali applicare i comandi

• Fileset

• Patternset

• Filterset

• …

18

Limiti di Ant

• Nella maggior parte dei casi, gli script ant sono generati automaticamente da
altri programmi, ad esempio da IDE come Eclipse

• Gli script ant sono un pò limitati in quanto a strutture di controllo e ad altre
possibilità di introdurre comportamenti dinamici

• Gli script ant possono indirizzare soltanto file su disco, non risorse remote

19

Maven

• Maven non è soltanto un tool per la build automation (come Ant) ma:

• “attempt to apply patterns to a project's build infrastructure in order to
promote comprehension and productivity by providing a clear path in the
use of best practices”

• In particolare fu pensato per unificare il modo di sviluppare e organizzare
diversi progetti della famiglia Apache

• Non si occupa solo della costruzione, installazione e deployment dei progetti,
ma anche della generazione della documentazione, di metriche, reports e casi di
test

• Allo stesso modo di make e ant, può essere eseguito da linea di comando

• Allo stesso modo di ant, legge uno o più file xml di configurazione

20

Maven

• Uno schema di massima di partenza per il file di configurazione può essere
generato col comando:

mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app
-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

• Gli unici input necessari e variabili sono il nome dell’applicazione e il
dominio di riferimento degli sviluppatori

• La necessità di indicare sia il nome che il dominio è legata alla
possibilità di poter fornire nomi universali (URI) ai progetti, in modo che
possano essere univocamente reperiti sulla rete

• In ant le risorse necessarie al deployment di un progetto potevano
essere solo locali

• Attenzione: nella maggior parte dei casi maven può funzionare
solo e soltanto in presenza di connessione ad Internet

• In particolare, avviene per la prima esecuzione di Maven
susseguente la sua installazione

21

Esempio di base: pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-
4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>Maven Quick Start Archetype</name>

<url>http://maven.apache.org</url>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

</dependencies>

</project>

• Pom sta per Project Object
Model

• Il tag packaging sta ad indicare
che il risultato eseguibile del
building verrà messo in forma di
file compresso jar

• version è la versione del
progetto che verrà generata da
questo build. Dovrebbe ricalcare
il numero di release mantenuto
dal cvs

• url è il sito del progetto (bisogna
modificare il valore di default
che rappresenta il sito di maven
stesso)

• L’unica dipendenza dichiarata
nell’archetipo è quella da Junit
necessario per il testing

22

Albero dei file generati

• Lo script di esempio può essere
eseguito con

• mvn compile

• Eseguendo maven nella cartella
che contiene pom.xml, viene
generato quest’albero dei file

• I file Java sono creati sotto
forma di template da completare

23

Altre modalità di esecuzione di mvn

• Per eseguire i test è sufficiente scrivere:

• mvn test

• Test è il valore di un tag scope, che è equivalente al concetto di target
visto in make ed ant

• Per creare l’eseguibile (jar):

• mvn package

• Altre modalità di esecuzione standard:

• mvn site  genera il sito web di documentazione

• mvn clean  cancella tutti i file generati

• mvn eclipse: eclipse  genera fie di progetto per eclipse

• Così come in ant, variabili possono essere dichiarate in un file separato
application.properties

24

Dependencies

• E’ possibile dichiarare dependencies da altri progetti non disponibili in locale

<dependencies>

...

<dependency>

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<version>1.0-SNAPSHOT</version>

<scope>compile</scope>

</dependency>

</dependencies>

• Come si può notare, NON viene nominata esattamente l’URL del progetto da cui
dipende ciò che dobbiamo costruire, ma il groupId, l’artifactId e la version saranno
sufficienti a maven per reperirlo nel caso esso sia stato correttamente pubblicato
nell’ambito del dominio com.mycompany.app

• Junit faceva eccezione: in assenza della dichiarazione della URL, maven cerca in
locale e sul sito ufficiale del progetto Maven

25

Dependencies

• E’ possibile indicare in pom.xml e nel file aggiuntivo
di configurazione settings.xml le modalità di
pubblicazione del nostro progetto in un repository
remoto, allo scopo di renderlo disponibile ad altri

<distributionManagement>

<repository>

<id>mycompany-repository</id>

<name>MyCompany Repository</name>

<url>scp://repository.mycompany.com/repository/maven2</url>

</repository>

</distributionManagement>

</project>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<servers>

<server>

<id>mycompany-repository</id>

<username>jvanzyl</username>

<!-- Default value is ~/.ssh/id_dsa-->

<privateKey>/path/to/identity</privateKe
y> (default is ~/.ssh/id_dsa)

<passphrase>my_key_passphrase</pas
sphrase>

</server>

</servers>

...

</settings>

26

Maven vs Ant

• I maggiori vantaggi di Maven rispetto ad Ant sono:

• Possibilità di gestire numerosi aspetti del ciclo di vita dell’applicazione, oltre a
build e deployment

• Maggiori librerie e plug-in di utilità

• Possibilità di estendere il comportamento tramite plug-in

• Maggiore facilità d’uso (le funzionalità sono sempre utilizzabili tramite
dichiarazione, mentre negli altri erano descritti più nella forma di comandi
imperativi)

• Possibilità di pubblicare progetti per il riuso

• Possibilità di includere progetti disponibili in remoto e di collegarli
dinamicamente a tempo di compilazione

• Migliore integrazione con gli IDE di sviluppo

27

Gradle

• Gradle estende le funzionalità di Ant e Maven

• http://www.gradle.org/

• I target sono definiti e legati tra di loro sotto forma di grafo aciclico

• Gradle non utilizza XML (che a causa della sua natura gerarchica è meno
flessibile), ma il linguaggio Groovy (simile a JSON)

• Gli script Gradle sono mediamente più brevi degli equivalenti ant e maven

• E’ ampiamente integrato con ant e maven, nel senso che è sempre possibile
trasformare da ant e maven verso gradle

• Android Studio adotta Gradle come strumento predefinito di build automation

• Particolarmente utile perchè le librerie di Android variano molto spesso

28

Gradle

• Le dipendenze non sono organizzate semplicemente in forma di elenco, ma in
forma di grafo delle dipendenze, che viene navigato da Gradle

• Il file contenente tutte le informazioni sul build di un progetto specifico si chiama
build.gradle

• Il file settings.gradle (opzionale) contiene la definizione di moduli di libreria che
possono essere utilizzati in più di un progetto gradle.

• Il file gradle.properties (opzionale) contiene un elenco di costanti valide per
l'inizializzazione delle proprietà di uno specifico progetto Gradle.

• Un plugin gradle rappresenta un algoritmo di building. Utilizzando diversi plugin si
possono eseguire diverse modalità di building (ad esempio con esecuzione dei
test) e relativamente a diversi linguaggi di programmazione

• Ad esempio il pulgin predefinito di gradle per un’applicazione Android
(com.android.application) definisce più di 100 diversi task tra loro
interdipendenti, che possono essere chiamati anche singolarmente con

• Gradle nome_del_task

