
Porfirio Tramontana - Android 1

Android

Porfirio Tramontana - Android 2

Letture consigliate

• Android Developer, sito web di

riferimento dei realizzatori di

Android

– http://developer.android.com/index.html

• Massimo Carli, Android 6, guida

per lo sviluppatore, Apogeo

– Disponibili, dagli stessi autore ed

editore, anche altri libri relativi alle

versioni precedenti di Android

http://developer.android.com/index.html

Porfirio Tramontana - Android 5

Cos’è Android?

• Android è un insieme di componenti software, comprendente un

sistema operativo, un middleware e un insieme di applicazioni

basilari

– Android è usualmente utilizzato in smartphones,

tablets, smart watches, dispositivi indossabili ma

potrebbe essere esteso a supportare qualsiasi

dispositivo, ipoteticamente anche un PC

Porfirio Tramontana - Android 6

Breve storia di Android

• 2003: Andy Rubin fonda la Android Inc.

• 2005: Android viene acquisito da Google

• 2007: Viene fondata la Open Handset
Alliance, consorzio comprendente 84
membri tra cui produttori di hardware, di
software e compagnie di
telecomunicazione (oltre a Google
stessa), con lo scopo di realizzare
congiuntamente tutto il necessario per
la diffusione del sistema.

• 2007: viene rilasciato con licenza
Apache l’Android Open Source Project

http://source.android.com/

Porfirio Tramontana - Android 7

Breve storia di Android

• 2007: Android Beta

• 2008: Android 1.0 (eseguibile su
un unico dispositivo, HTC G1)

• 2009: Android 1.5 Cupcake
(prima vera versione supportata
da dispositivi ad ampia
diffusione commerciale

• 2009: Android 1.6 Donut

• 2009: Android 2.0 Éclair

• 2010: Android 2.2 Froyo

• 2010: Android 2.3 Gingerbread

• 2011: Android 3 Honeycomb

• 2011: Android 4 Ice Cream
Sandwich

http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html

http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html
http://blog.o2.co.uk/home/2011/05/android-versions-whats-the-difference.html

Breve storia di Android

2012: Android 4.1/4.2/4.3 Jelly

Bean

2013/14: Android 4.4 Kit Kat

2014: Android 5 Lollipop

Introduzione della nuova

macchina virtuale ART

2015: Android 6 Marshmallow

2016: Android 7 Nougat

2017: Android 8 Oreo

Porfirio Tramontana - Android 8

http://www.cnet.com/news/history-of-android/

Android 7 Nougat

• Supporto per l’apertura di finestre multiple sullo schermo

– Ma solo l’ultima con cui si è interagito è davvero attivo, mentre le

altre sono in pausa

– C’è però il supporto per il drag & drop

• Miglioramento delle performance del compilatore

• Modalità Doze (stand by intelligente) per risparmiare batteria

• Project Svelte, per minimizzare l’utilizzo di memoria delle

app in background

• Riduzione delle comunicazioni quando sta per finire la

disponibilità dal contratto dati

• E molto altro:

 https://developer.android.com/about/versions/nougat/android-7.0.html

 Porfirio Tramontana - Android 9

Android 8 Oreo

• https://developer.android.com/about/versions/ore

o/android-8.0.html

• https://developer.android.com/about/versions/ore

o/android-8.0-changes.html

– Ad esempio:

• Estensione del multiwindow a video in movimento

• Aggiunta di mock per gli intent

• Miglioramento delle prestazioni, dando meno possibilità

alle applicazioni in background (ad esempio

aggiornamenti più radi della posizione)

Porfirio Tramontana - Android 10

https://developer.android.com/about/versions/oreo/android-8.0.html
https://developer.android.com/about/versions/oreo/android-8.0.html
https://developer.android.com/about/versions/oreo/android-8.0.html
https://developer.android.com/about/versions/oreo/android-8.0.html

Porfirio Tramontana - Android 11

Porfirio Tramontana - Android 12

Android Architecture (2011)

Android Architecture (2015)

• https://source.

android.com/d

evices/

Porfirio Tramontana - Android 13

Android

Architecture

(2016)

• https://developer.an

droid.com/guide/pla

tform/index.html

Porfirio Tramontana - Android 14

Porfirio Tramontana - Android 15

Sistema operativo e librerie

• Il sistema operativo sottostante è una distribuzione, opportunamente
ridotta di Linux (kernel 2.6)

• Un certo numero di librerie di base sono state inserite, per supportare
alcune features fondamentali:

Handset layouts

Storage

Connectivity

Messaging

Multiple language support

Web browser

Java support

Media support

Streaming media support

Additional hardware support

Multi-touch

Bluetooth

Video calling

Multitasking

Voice based features

Tethering

Screen capture

Porfirio Tramontana - Android 16

Dalvik Virtual Machine

• All’interno di ogni dispositivo Android è
presenta una virtual machine, denominata
Dalvik

– Dalvik è una macchina virtuale open source
in grado di eseguire bytecode, in maniera
simile alla Java Virtual Machine della Sun

• Il bytecode è denominato dex (Dalvik
executable)

– Dalvik è ottimizzata per macchine dalla
ridotta memoria

– Gestisce i thread, con alcune limitazioni

– Non gestisce le eccezioni

• Ogni applicazione su Android è vista come un
diverso user, con un proprio processo, una
propria zona dati e una propria istanza di Dalvik
virtual machine.

• Dalvik è stata sostituita da ART

Dalvik

Il nome Dalvik deriva dal villaggio
di pescatori Dalvíkurbyggð di cui
la famiglia di Bornstein,
dipendente Google e autore della
VM è originaria.

ART Virtual Machine

• Nuova virtual machine

– In Android 4.4 Kit Kat si affianca alla Dalvik

– A partire da Android 5 Lollipop è l’unica VM

• Art è basata su tecnologia AOT (ahead-of-time)

– Il codice compilato dell’applicazione è direttamente

eseguibile

• Ciò riduce notevolmente i tempi di esecuzione rispetto ad un

compilatore JIT (Just-In-Time) come Dalvik

– Di conseguenza c’è anche un corrispondente risparmio energetico

• Aumenta, invece, il consumo di spazio sulla memoria del

dispositivo

– Salvo eccezioni, è garantita la compatibilità delle

applicazioni (il dex compilato è anche l’input per la ART)

Porfirio Tramontana - Android 17

Porfirio Tramontana - Android 18

Java Framework

• E’ possibile scrivere applicazioni in Java e poi compilarle nel
formato dex eseguibile dalla Dalvik Virtual Machine

• La versione di riferimento è J2SE, non J2ME

• Java non è l’unico possibile linguaggio di
programmazione utilizzabile sotto Android, ma è
largamente il più comune, nonché quello con maggior
supporto software e consigliato dagli stessi
sviluppatori di Android

– E’ possibile realizzare, ad esempio, applicazioni e
componenti in C/C++ con il supporto dell’Android Native
Development Kit (NDK)

• http://developer.android.com/sdk/ndk/overview.html

http://developer.android.com/sdk/ndk/overview.html

Porfirio Tramontana - Android 19

Android SDK

• Android Standard Development Kit è il contenitore di tutti
gli strumenti fondamentali per lo sviluppo di applicazioni
Android in Java

• Scaricabile da:

– http://developer.android.com/sdk/installing.html

• Disponibile per tutti i sistemi operativi più diffusi

• Non ha necessità di installazione

• Comprende:

– Strumenti a supporto dello sviluppo

– Emulatore

– Documentazione

– Esempi

– Strumenti di utilità

Porfirio Tramontana - Android 20

Installazione dei componenti aggiuntivi

• Tramite SDK
Manager è
possibile
scaricare tutti i
componenti
aggiuntivi
necessari
all’esecuzione
delle applicazioni
in tutte le versioni
di Android

• Le applicazioni
Android possono
essere eseguite su
device reali o
emulati

Dispositivi reali vs virtuali

• E’ possibile eseguire applicazioni Android sia su dispositivi reali

che virtuali

– In entrambi i casi l’accesso alla macchina è operato tramite l’utility

ADB (Android Debug Bridge) che consente di installare, eseguire e

monitorare l’esecuzione di app

• L’utilizzo di dispositivi reali consente una esecuzione più fedele e

completa dell’app

• Il deployment di un dispositivo virtuale potrebbe mettere a dura

prova le risorse del PC che lo sta ospitando

• Ma l’utilizzo di emulatori e macchine virtuali consente

l’esecuzione di app Android su di un insieme molto numeroso di

dispositivi diversi

Porfirio Tramontana - Android 23

Esecuzione su dispositivi reali

• E’ possibile su dispositivi connessi via cavo USB

alla macchina fisica che ospita il codice e il

compilatore

– Sul dispositivo Android dovrà essere stato

precedentemente abilitata la modalità Sviluppatore

– La provenienza dal cavo USB è generalmente

considerata sinonimo di consapevolezza dei rischi

relativi al caricamento di applicazioni non garantite da

Google

Porfirio Tramontana - Android 24

Porfirio Tramontana - Android 25

Android Virtual Device

• E’ possibile generare macchine virtuali Android

riproducenti le caratteristiche di una macchina

reale tramite AVD Manager

• Nella interfaccia offerta da Android Studio, la

creazione di una macchina virtuale può essere

effettuata in tre step

Scelta del dispositivo

Porfirio Tramontana - Android 26

Scelta del sistema operativo

Porfirio Tramontana - Android 27

Altre impostazioni AVD

Porfirio Tramontana - Android 28

Porfirio Tramontana - Android 29

Emulatore

Altri Emulatori

• Le prestazioni degli emulatori Android di base

sono talvolta scadenti

– Esistono versioni dell’emulatore Android specializzate

per processori ARM e Intel

• In alcuni PC è necessario abilitare le funzionalità di

virtualizzazione dal BIOS

– Esistono altri emulatori più performanti in specifiche

condizioni:

• GenyMotion (https://www.genymotion.com)

• ManyMo (https://www.manymo.com/)

• BlueStacks (http://www.bluestacks.com/)

• Andy (http://www.andyroid.net/)

Porfirio Tramontana - Android 30

https://www.genymotion.com/
https://www.manymo.com/
http://www.bluestacks.com/

Porfirio Tramontana - Android 31

Alcune utility dell’SDK

• Tutte richiamabili anche direttamente da linea di comando

• emulator
– Avvia un emulatore

• adb - Android Debug Bridge
– Consente la comunicazione con un dispositivo Android, reale o emulato

• adb push / adb pull – trasferisce file verso/dal dispositivo

• adb install – installa un’applicazione

• adb logcat – mostra il log di debug

• adb shell – avvia una shell linux sul dispositivo

• …

• android
– Un file batch dal quale è possibile avviare molte utilityper la gestione dei progetti

android da linea di comando
• android create project \

--target <target_ID> \
--name <your_project_name> \
--path path/to/your/project \
--activity <your_activity_name> \
--package <your_package_namespace>

• … e molte altre (generalmente collocate nella cartella sdk/tools)

Android Studio

• Google ha adattato un altro ambiente di sviluppo (IntelliJ Idea) ad

Android, costruendo un nuovo ambiente denominato Android

Studio (in passato si utilizzavano estensioni di Eclipse)

– http://developer.android.com/sdk/installing/studio.html

Porfirio Tramontana - Android 32

http://developer.android.com/sdk/installing/studio.html

Porfirio Tramontana - Android 33

Processo di build (Dalvik)

Porfirio Tramontana - Android 34

Build (Dalvik)

• Aapt: Android Asset Packaging
Tool

– Legge gli xml e genera
R.java

• Aidl: Android Interface Definition
Language

– Aidl converte interfacce di
servizi .aidl in interfacce Java

• Tutto il codice java è compilato
generando bytecode .class

• Dex converte i .class in file dex
eseguibili da Dalvik (e include
eventuali librerie)

• Apkbuilder comprime e
impacchetta i .dex e le risorse
(grafiche, etc.) in un unico file .apk

• Jarsigner permette di inserire una
firma nel .apk

• Zipalign consente di ottimizzare le
risorse di memoria utilizzata
dall’applicazione in un dispositivo

Build (Dalvik / ART)

• http://www.anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l

Porfirio Tramontana - Android 35

Build con ART

• Nel nuovo ART, il

processo di build è più

flessibile e complesso,

ed è completamente

gestito da script Gradle

• https://developer.android.com/stu

dio/build/index.html

Porfirio Tramontana - Android 36

Porfirio Tramontana - Android 38

Signing

• Ogni applicazione Android ha bisogno di una firma privata, che identifichi
l’autore, per poter essere pubblicata

– La firma serve per garantire fiducia nell’applicazione

– La firma è messa direttamente dall’autore stesso

– La firma può essere generata da tools integrati nell’ambiente, come
Keytool e Jarsigner

• Finchè l’applicazione è in fase di sviluppo e testing, è possibile utilizzare una
modalità di firma debug mode

– In debug mode la firma è costante (ma l’applicazione non può essere
pubblicata)

• Keystore name: "debug.keystore"

• Keystore password: "android"

• Key alias: "androiddebugkey"

• Key password: "android"

• CN: "CN=Android Debug,O=Android,C=US"

– Per passare in release mode è necessaria una firma dell’utente
• Il plug-in ADT Export Wizard è in grado di supportare il processo di signing

• Se si vogliono rilasciare degli aggiornamenti dell’applicazione, è
necessario riutilizzare la stessa firma

Gradle Scripts

• Il processo di building di una applicazione

Android è divenuto, nel tempo, più complesso e

sono stati adottati strumenti via via più flessibili

– Le prime applicazioni Android venivano costruite

direttamente da linea di comando

– Successivamente, molti progetti Android sono stati

costruiti con Ant

– Attualmente, lo strumento consigliato per supportare il

processo di building è Gradle

Porfirio Tramontana - Android 39

Gradle Scripts

• Ogni applicazione Android è dotata di più file

build.gradle e di più di un manifest (uno per

ognuno dei moduli dell’applicazione, ad es.

applicazione principale, servizi, librerie riusabili)

e di un build e di un manifest generali

– In aggiunta ci sono uno o più file settings.properties e

gradle.properties con la dichiarazione e definizione di

variabili o costanti

• Le indicazioni dei vari file build.gradle sono da

pensarsi come cumulative

Porfirio Tramontana - Android 40

Esempio Gradle script (estratto)

apply plugin: 'com.android.application'

android {

 compileSdkVersion 25

 buildToolsVersion "25.0.2"

 defaultConfig {

 applicationId 'com.porfirio.procidainkayak'

 minSdkVersion 16

 targetSdkVersion 25

 versionCode 5

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 multiDexEnabled true

 }

dependencies {

 compile fileTree(include: ['*.jar'], dir: 'libs')

 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {

 exclude group: 'com.android.support', module: 'support-annotations'

 })

 compile 'com.android.support:appcompat-v7:25.3.1'

 compile 'com.google.android.gms:play-services:10.2.6'

 compile 'com.google.firebase:firebase-messaging:9.6.1'

 testCompile 'junit:junit:4.12'

 compile 'javax.annotation:javax.annotation-api:1.2'

 compile 'com.google.android.gms:play-services-analytics:10.2.6'

}

Porfirio Tramontana - Android 41

Porfirio Tramontana - Android 42

Android Manifest

• Tutte le caratteristiche esterne di una

applicazione Android sono strutturate in un file

manifest.xml

• Manifest.xml è un file pubblico, che può essere

letto in chiaro da ogni possibile utente della app
– Si tratta di una pratica molto diffusa, nei framework di nuova

generazione: dichiarare tutte le costanti di configurazione in file xml

statici, che vengono elaborati da qualche metodo del framework, in

maniera trasparente al programmatore

– In passato nel manifest c’erano anche indicazioni per il processo di

build, che ora sono state spostate nei file gradle

– Se l’applicazione ha più moduli componenti, ognuno compilabile

separatamente, ciascuno di essi ha un suo manifest

Porfirio Tramontana - Android 43

Esempio di manifest

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.porfirio.cacciaaltesoro"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <activity android:name=".CacciaAlTesoro"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Accesso a servizi GPS

Nomi delle activity

Comparirà tra le

applicazioni

lanciabili

Icona E’ l’activity di partenza

dell’applicazione

A quale “richiesta”

(intent) risponde

l’applicazione

Porfirio Tramontana - Android 46

Android Market: play.google.com

• Strumento standard fornito da Android per la

pubblicazione e la pubblicizzazione delle applicazioni

• La registrazione è molto semplice e richiede

– Un Account Google

– Una quota di iscrizione di 25$ una tantum

• Nel caso in cui si voglia vendere applicazioni bisogna

fornire poi anche le proprie coordinate bancarie e il

proprio codice fiscale

Porfirio Tramontana - Android 47

Ricerca di un’applicazione sul market

• Android Play Store è disponibile

– come applicazione Web

• https://play.google.com/store

– come applicazione client su tutti i dispositivi Android

• Non disponibile sugli emulatori

– In passato si chiamava Android Market ed era utilizzato

solo per la distribuzione di applicazione. Ora, invece,

contiene anche contenuti multimediali (film, musica, libri,

giornali)

• In alternativa, è possibile distribuire applicazioni

proprie anche in maniera diretta

– Esistono ulteriori market, non approvati da Google

https://play.google.com/store

Porfirio Tramontana - Android 48

Pubblicazione di una applicazione

• Tramite l’applicazione Web

https://play.google.com/apps/publish

Porfirio Tramontana - Android 49

Pubblicazione di una applicazione

• Per pubblicare un’applicazione è necessario

– L’apk firmato

– Almeno 2 screenshots

– Un’icona ad alta risoluzione e un banner

– Titolo e descrizione (per ogni lingua che si vuole supportare)

– Descrizione delle ultime modifiche

– Tipo e categoria

– Classificazione dei contenuti

– Prezzo (se non gratis)

– …

• Sono automaticamente ricavati dal manifest

– Versioni di Android compatibili

– Dispositivi compatibili

– Permessi da richiedere all’utente installatore

Porfirio Tramontana - Android 50

Modelli di business (cenni)

• Applicazione gratuita

– E’ possibile, però, entro certi limiti, lucrare dal servizio svolto
dall’applicazione, ad esempio con e-commerce

• Applicazione con banner pubblicitari

– Ogni scaricamento del banner e, in misura maggiore, ogni click su
esso fornisce ricavi

• I ricavi vengono accreditati periodicamente

• Esistono molti circuiti pubblicitari, tra cui Google Ads

• Applicazione a pagamento

– Google trattiene il 30% del costo, ma accredita velocemente il
ricavato

• Applicazioni con acquisti in-app

– E’ possibile fare acquisti internamente alla app

• Ad esempio, in un gioco è possibile acquistare nuove armi, in whatsapp
è possibile acquistare un prolungamento della licenza

Crash ed eccezioni

Porfirio Tramontana - Android 51

Porfirio Tramontana - Android 52

Application Framework

• Il livello di application framework fornisce un insieme di

classi, interfacce e package tramite i quali è possibile

sviluppare applicazioni. Ad esempio:

– Activity Manager gestisce il ciclo di vita delle activity

– Content providers consente la condivisione delle

informazioni tra diverse applicazioni e servizi

– Telephony Manager gestisce le azioni legate al telefono

– Location Manager gestisce le informazioni legate al GPS

– Notification Manager consente la gestione delle informazioni

visualizzate come alert sulla barra di stato del dispositivo

– …

Porfirio Tramontana - Android 54

Resources

• In Android è ampiamente adottata la

tecnica di catalogare tutte le risorse

(costanti, descrizioni di interfacce,

file grafici, etc.) sotto forma di

Resources

• Le risorse sono elaborate

automaticamente dal framework di

esecuzione tramite l’utility aapt,

creando un file R.java che le

cataloga e le rende accessibili da

codice

Porfirio Tramontana - Android 55

File R

• Il framework di
esecuzione tiene
conto delle
caratteristiche
dell’ambiente di
esecuzione

– Vengono
automaticamente
selezionati, ad
esempio, il layout
e le immagini più
consone alle
dimensioni e alla
risoluzione dello
schermo del
dispositivo target

Porfirio Tramontana - Android 56

Internazionalizzazione

• Un classico utilizzo delle risorse è quello che consente la
realizzazione parallela di diverse versioni di un’applicazione
per diverse lingue

• Tutte le stringhe di testo dell’interfaccia utente devono
essere catalogate in una risorsa strings.xml

• Se vogliamo realizzare una app in inglese, francese, italiano

• Dovrebbe essere creato

– uno strings.xml con le stringhe in italiano nella cartella
res/values-it

– uno strings.xml con le stringhe in francese nella cartella
res/values-fr

– uno strings.xml con le stringhe in inglese nella cartella
res/values-en (o nella cartella di default res/values)

Internazionalizzazione con Android Studio

Porfirio Tramontana - Android 57

Porfirio Tramontana - Android 58

Compatibilità con gli schermi

• Si può utilizzare una soluzione analoga a quella usata per

l’internazionalizzazione

– Diverse cartelle contenenti versioni diverse dei file di layout

– Cartelle etichettate convenzionalmente in base a:

• Dimensione (small-normal-large-xlarge)

• Densità

• Orientamento (land-port)

• Proporzioni

– I nomi delle cartelle si ottengono componendo le etichette.

Ad esempio:

• res/layout-xlarge-land/

Porfirio Tramontana - Android 59

Accesso alle risorse

• Da codice java, tramite il file R. Sono disponibili

funzioni come findViewByid(id), getString(id) …

– ImageView imageView = (ImageView)

findViewById(R.id.myimageview);

• Da file xml (ad esempio da un file di layout è

possibile accedere ad un valore di una string):

– <Button android:text="@string/submit“

Porfirio Tramontana - Android 60

Layout e resources

• Il layout grafico di un’applicazione Android potrebbe essere

gestito completamente tramite codice sorgente, nel quale

fossero istanziati dinamicamente gli oggetti dell’interfaccia

utente, poi settati e utilizzati

• In alternativa, grazie alle funzionalità di Android

Development Toolkit è possibile esprimere in forma

dichiarativa il layout grafico di una Activity in XML

• L’estensione ADT di Eclipse consente, poi, di avere una

preview grafica dell’interfaccia così progettata

Porfirio Tramontana - Android 61

Layout grafico

Porfirio Tramontana - Android 62

Layout grafico

• Ad ogni Activity può essere associato un layout grafico (un

file .xml)

– Anche altri componenti (ad esempio i Customized Dialogs)

possono avere il proprio file di layout

– Anche singoli widget o sezioni di activity possono avere

propri layout

• I layout xml sono gestiti via codice fondamentalmente con

metodi come setContentView

 setContentView(R.layout.main);

• Main è il nome del layout (main.xml)

• Il comando è nel metodo onCreate dell’Activity

Stili e Temi

• Android ci consente di definire e utilizzare un

ulteriore tipo di risorsa che prende il nome di

tema o stile

– ha uno scopo simile a quello dei CSS (Cascading Style

Sheet) per le pagine HTML.

– Uno stile può essere applicato ai componenti

– Un tema può essere assegnato a un’activity oppure a

un’intera applicazione ed è sostanzialmente un

insieme di stili.

Porfirio Tramontana - Android 63

Stili e Temi

• Indicando uno stile, il componente erediterà tutti gli attributi

dello stile

– Tutto ciò che non è definito nell’ambito degli attributi di un

componente è ereditato dal corrispondente stile

• Uno stile eredita obbligatoriamente a sua volta da un tema

genitore

– Tutto ciò che non è definito nell’ambito dello stile è ereditato

dal corrispondente tema

• Nelle prime versioni di Android non c’erano stili e temi: tutti

gli attributi dovevano essere scritti per ogni componente

• Tramite funzionalità di refactoring è possibile estrarre stili

dai componenti

Porfirio Tramontana - Android 64

Esempio Style e Theme

• Fissa quattro proprietà (applicabili ad esempio ad un componente) e ne eredita altri da uno stile

denominato TextAppearance.Medium

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name="CodeFont" parent="@android:style/TextAppearance.Medium">

 <item name="android:layout_width">fill_parent</item>

 <item name="android:layout_height">wrap_content</item>

 <item name="android:textColor">#00FF00</item>

 <item name="android:typeface">monospace</item>

 </style>

</resources>

• Per applicare uno style:

<TextView

 style="@style/CodeFont"

 android:text="@string/hello" />

• Per applicare un theme:

<activity android:theme="@style/CustomTheme">

Porfirio Tramontana - Android 65

Editor di stili e temi in Android Studio

Porfirio Tramontana - Android 66

Porfirio Tramontana - Android 67

Application components: Activity

Activity
• Una activity in Android rappresenta una singola schermata

di una applicazione interattiva
– Da non confondere con il concetto di UML Activity

• Una applicazione può avere diverse activity

• Una sola activity per volta può essere sullo schermo
– A differenza dei sistemi operativi per PC, non è prevista la

possibilità di avere più finestre aperte contemporaneamente

• Al passaggio da una Activity ad un’altra, l’activity esistente
viene messa in pausa

• Una activity è implementata come una classe che eredita
dalla classe Activity della quale poi istanziare un oggetto

Porfirio Tramontana - Android 68

Ciclo di vita di una Activity

Le activity non ‘running’ vanno ad accodarsi in uno stack,

pronte per essere rimesse in foreground sul video del

dispositivo

Porfirio Tramontana - Android 70

Activity
• Per istanziare una activity è necessario dichiarare una classe che la

estenda
– public class myActivity extends Activity

• La classe così creata potrà ridefinire (per override) alcuni metodi di
Activity, tra cui quelli relativi alla gestione del suo ciclo di vita:

• onCreate(Bundle savedInstanceState) - Eseguito al primo avvio dell’activity

• onDestroy() - Eseguito alla chiusura e deallocazione dell’activity

• onPause() - Eseguito quando l’activity smette di essere in primo piano (foreground),
messa in secondo piano da un’altra Activity

• onResume() - Eseguito quando l’Activity ritorna in primo piano (foreground)

• onStop() - Eseguito quando l’Activity viene sostituita da un’altra (ma è ancora
istanziata in memoria)

• onRestart() – Eseguito quando l’Activity viene riavviata

• Il ripristino di una Activity dopo una pausa è reso possibile dalla chiamata,
automatica, a onSaveInstanceState() che utilizza l’oggetto Bundle passato
da onCreate per mantenere le informazioni necessarie al ripristino

Porfirio Tramontana - Android 71

Intent 1/2

• Una activity Android non può indiscriminatamente
chiamare altre activity

– Questo meccanismo esiste sia per ragioni di sicurezza,
sia per favorire il riuso di componenti, che viene mediato
dal sistema

• Col termine Intent si definisce un oggetto
corrispondente ad un messaggio col quale si
richiede l’attivazione di una Activity (o anche un
servizio o un receiver)

– Ad esempio come parametro di startActivity o
startActivityForResult

Porfirio Tramontana - Android 72

Intent 2/2

• Il modo più semplice per avviare da programma un’altra Activity è

con explicit intent:

 Intent intent = new Intent(this, MiaActivity.class);

startActivity(intent);

• Se, invece, vogliamo far partire un’activity che svolga un particolare

compito senza conoscere staticamente la classe che la implementa

(implicit intent):
 Intent intent = new Intent(Intent.ACTION_SEND);

startActivity(intent);

• In questo caso si chiede di avviare una activity che abbia settato il filtro

ACTION_SEND

• Per passare dati da una Activity ad un’altra si può utilizzare il metodo

putExtra di Intent (passaggio per valore)

Cenno ai Fragment

• Android non è un ambiente a finestre

– Si tratta di una scelta progettuale motivata dalla

necessità di poter essere installato con processori

poco performanti, scarsa memoria e schermi video

molto piccoli

• A partire dalle versione 3.0, la diffusione dei

tablet ha portato i progettisti a proporre una

soluzione parziale al problema: i Fragment

• I Fragment somigliano molto ai Frame che

potevano comporre una pagina Web (frameset)

Porfirio Tramontana - Android 73

Cenno ai Fragment

• A differenza di due Activity, due o più fragment

condividono lo stesso spazio di memoria

comune, quindi è possibile per un fragment

leggere e modificare gli elementi degli altri

fragment della stessa activity

• Ogni fragment ha il suo

layout e il suo ciclo di

vita

Porfirio Tramontana - Android 74

Ciclo di vita di un fragment

• Il ciclo di vita di un

Fragment si posiziona

all’interno del ciclo di

vita di una Activity,

avendo ulteriori metodi

suoi propri

Porfirio Tramontana - Android 75

Cenno al Multi-Window

• A partire da Android 7.0, si cerca di supportare

anche finestre multiple sullo schermo

– Ma una sola delle finestre (quella col focus) risulta

running!

– Il ciclo di vita delle activity rimane quindi lo stesso

– Ad ogni resize della window attiva corrisponde una

coppia di pause/restart (così come quando si passa da

portrait a landscape, e viceversa)

https://developer.android.com/guide/topics/ui/multi-

window.html

Porfirio Tramontana - Android 76

Cenno al Multi-Window

• Il programmatore deve esplicitamente dichiarare se

l’applicazione può agire in modalità multi-window, se e

come può essere ridimensionata e se sia supportato il drag

& drop

Porfirio Tramontana - Android 77

Porfirio Tramontana - Android 78

Menu

• Anche i menu possono

essere scritti in XML o

con l’ausilio dello

strumento visuale

• In alternativa,

potrebbero essere

istanziati

dinamicamente

nel codice
• I menu stanno diventando

obsoleti, con le nuove versioni di

Android, sostituiti da pulsanti

espliciti in fragment laterali, come

implementato di default dai layout

consigliati

<?xml version="1.0" encoding="utf-8"?>

<menu

xmlns:android="http://schemas.android.com/apk/res/android

">

<item android:id="@+id/restart"

android:titleCondensed="Restart"

android:title="Restart"

android:orderInCategory="4"></item>

<item android:id="@+id/quit" android:title="Esci"

android:orderInCategory="5"></item>

<item android:visible="true" android:id="@+id/refresh"

android:enabled="true" android:title="Aggiorna"

android:titleCondensed="Aggiorna"

android:orderInCategory="2"></item>

Porfirio Tramontana - Android 80

Event Delegation

• La gestione dei menu in Android è realizzata con il pattern Event
Delegation

• Dal momento che una sola Activity per volta può essere
visualizzata e una Activity può avere un solo menu, il codice
relativo all’handling dei menu è contenuto nell’Activity

• Se fosse esistita una classe menu, sarebbe stato possibile
assegnarle dei metodi evento da ridefinire. Viceversa, esiste:

– un unico metodo onCreateOptionsMenu(Menu menu) dell’activity
che ne crea il menu

– Un unico metodo onOptionsItemSelected(MenuItem item) che
associa a qualsiasi opzione del menu il suo codice di handling

• Questi due metodi hanno funzione di Delegati per la creazione/scelta di
un qualsiasi elemento del menu

Porfirio Tramontana - Android 81

Event Delegation: esempi

//Genera un menu leggendone la composizione nel file R, automaticamente

// generato a partire dalle informazioni in menu.xml

@Override

 public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.menu, menu);

 return true;

 }

// Parte dalla selezione di un item dal menu dell’activity. Tramite il parametro item viene passato

// l’identificatore della voce di menu scelta

public boolean onOptionsItemSelected(MenuItem item) {

 // Handle item selection

 switch (item.getItemId()) {

 case R.id.restart:

 …

 return true;

…

default:

 return super.onOptionsItemSelected(item);

 }

 }

Porfirio Tramontana - Android 82

Dialog

• La gestione delle finestre di dialogo rappresentano un altro
esempio di event delegation

– Un Dialog è una interfaccia modale che va in primo piano rispetto
all’activity cui appartiene, e vi rimane fino a che l’utente non ha
specificato una risposta

• Ad esempio, il messaggio di conferma che si fornisce ad un utente che
sta cercando di uscire dal programma

• In Android non esiste la possibilità di dichiarare i dialog via xml,
per cui devono essere generati dinamicamente

– Il layout di un dialog, personalizzato, però, può essere
realizzato allo stesso modo dell’interfaccia di un activity

• I dialog non sono activity, ma suoi attributi, cui possono essere
agganciati dei gestori degli eventi, la cui delega per l’esecuzione
spetta ancora all’Activity

Porfirio Tramontana - Android 83

Dialog: esempio 1/2

Tutto il codice seguente si pone nella classe che eredita da Activity

// dichiarazione della costante identificativa e dell’oggetto AlertDialog

static final int QUIT_DIALOG_ID = 1;

AlertDialog quitDialog;

// costruzione dell’alertDialog tramite la Factory AlertdIalog.Builder

AlertDialog.Builder builder = new AlertDialog.Builder(this);

 builder.setMessage("Sei sicuro di voler abbandonare?")

 .setCancelable(false)

 .setPositiveButton("Si'", new DialogInterface.OnClickListener() {

 // codice associato al pulsante Si

 public void onClick(DialogInterface dialog, int id) {

 CacciaAlTesoro.this.finish();

 }

 })

 .setNegativeButton("No", new DialogInterface.OnClickListener() {

 // codice associato al pulsante Si

 public void onClick(DialogInterface dialog, int id) {

 dialog.cancel();

 }

 });

 quitDialog = builder.create(); //istanziazione dell’oggetto quiDialog

Porfirio Tramontana - Android 84

Dialog: esempio 2/2

// Override del metodo onCreateDialog di Activity, responsabile della

// visualizzazione in foreground del Dialog

protected Dialog onCreateDialog(int id) {

 switch (id) {

case QUIT_DIALOG_ID:

 return quitDialog;

…

// Chiamata del metodo showDialog, che scatena la visualizzazione del

// Dialog. In questo caso il dialog è legato alla pressione di una voce dal menu

public boolean onOptionsItemSelected(MenuItem item) {

 // Handle item selection

 switch (item.getItemId()) {

 case R.id.quit:

 showDialog(QUIT_DIALOG_ID);

 return true;

Toast

• Il Toast è il modo più semplice e immediato per

mostrare un messaggio sul video del device per

un tempo limitato

– Toast.makeText(getApplicationContext(), "Hello toast!",

Toast.LENGTH_SHORT).show();

• E’ possibile:

– settare il tempo di visualizzazione («breve» o «lungo»)

– Settare il messaggio da visualizzare

– Settare la posizione in cui visualizzarlo

– Specificare il layout del Toast

Porfirio Tramontana - Android 85

Porfirio Tramontana - Android 86

Gestione della persistenza

• Ogni applicazione Android gira in un suo processo, con un
proprio spazio dati e una propria porzione di file system

• Quali opportunità sono messe a disposizione per la gestione di
dati persistenti?

– Persistenza nel tempo tra istanze della stessa app:

• File

• Shared Preferences

• Database SQLite

– Persistenza tra applicazioni diverse

• Content Provider

• Accesso a risorse esterne (ad esempio Web o dischi esterni)

• Firebase

Porfirio Tramontana - Android 87

SharedPreferences

• Una tecnica, basata sui file, per la
memorizzazione di dati basilari
– Create per salvare «preferenze» intese come

informazioni di configurazione, che dovessero
rimanere persistenti tra diversi utilizzi della stessa
app sullo stesso dispositivo

– Basate su file memorizzati nella porzione di file
system dedicata ad una singola app nell’ambito di
un dispositivo

– Dati organizzati come valori scalari

Porfirio Tramontana - Android 88

SharedPreferences

• Esempio di lettura

private SharedPreferences settings;

 settings = getSharedPreferences("RecordFile", 0);

 min = settings.getInt("record", 1000);

• Esempio di scrittura (salva record)

 SharedPreferences.Editor editor = settings.edit();

 editor.putInt("record", min);

 editor.commit();

Porfirio Tramontana - Android 89

Accesso ai file

• Le funzioni di libreria per l’accesso ai file utilizzabili in Android
sono essenzialmente quelle utilizzate in Java

– Ad esempio tramite le classi FileInputStream e FileOutputStream

• Ogni applicazione ha una sua porzione di file system

– Tramite DDMS possiamo esplorare il file system e trovare i file nella cartella
data/data

• In aggiunta, tutte le applicazioni possono scrivere su di una
memoria esterna (ad esempio SD card)

– Per sapere l’indirizzo nel file system della SD card:

• Environment.getExternalStorageDirectory()

Porfirio Tramontana - Android 90

Database SQLite

• Si possono creare veri e propri database all’interno di una app Android
utilizzando il DBMS SQLite

– Scelto per le sue dimensioni molto contenute, meno di 500 kB

• Le funzioni per accedere al database sono nei package

– android.database;

– android.database.sqlite.

• I database SQLite sono memorizzati in file con estensione .db in una

sottocartella database della cartella del file system della app

• SQLite mette a disposizione la maggior parte dei metodi messi a

disposizione da un generico DBMS SQL compatibile

– Ad esempio, è possibile salvare insiemi di query o istruzioni DDL di

SQL in un file con estensione ,sql ed eseguirli con apposite istruzioni

della libreria android.database.sqlite, come execSQL

– Supportati anche i cursori (Cursor)

– Supportata anche la gestione delle transazioni

Porfirio Tramontana - Android 91

Content Provider

• Un Content Provider è un componente che fa da
interfaccia verso una sorgente di dati persistente.

• Un Content Provider consente il disaccoppiamento tra
gestione dei dati e resto dell’applicazione

• Un Content Provider rende possibile la realizzazione
di fonti dati persistenti condivise tra più applicazioni
– Ad esempio la rubrica dei contatti

• Un Content Provider realizza una separazione
concettuale tra fornitore dei dati (Content Provider) e
livello di accesso ai dati

– Spesso i dati cui accede un Content Provider sono
database SQLite

Porfirio Tramontana - Android 92

Content Provider

• Un Content Provider è un componente di una
applicazione dichiarabile in modo analogo a
Activity, Service e Broadcast Receiver

• Attraverso la classe ContentResolver, una
qualsiasi app può accedere ad un content
provider, identificato da una URI

• Nell’implementare un content provider bisogna:
– Descrivere l’elenco di servizi (o dati) forniti (in maniera

analoga a quanto si farebbe con servizi REST)

– Implementare il livello di accesso ai dati in grado di
fornire tali servizi

Porfirio Tramontana - Android 93

Accesso a risorse Web

• Una applicazione Android può accedere in

numerosi modi a risorse remote

• Solo a titolo di esempio:

– Con il widget WebView è possibile aprire all’interno di

una Activity l’equivalente di un browser

– Con il widget MapView è possibile accedere

dall’interno di una Activity alla mappe di Google

– E’ possibile eseguire richieste http, ad esempio verso

servizi Web

• Ad esempio, molti servizi aperti e disponibili sono su

http://www.datiopen.it/it/opendata-per-tematica

Ingegneria del Software 2 – Service Engineering 94

Esempio: riuso di un servizio meteo

• Caso 1) Il servizio meteo è disponibile tramite

richieste http

– In risposta viene restituito un XML

– Bisogna scrivere un analizzatore in grado di leggere

dati da un XML

• SAX, DOM, ...

Ingegneria del Software 2 – Service Engineering 95

Codice SAX (1/2)

try {

 url = new URL("http://www.google.com/ig/api?weather=Procida");

/* Get a SAXParser from the SAXPArserFactory. */

 SAXParserFactory spf = SAXParserFactory.newInstance();

 SAXParser sp = spf.newSAXParser();

/* Get the XMLReader of the SAXParser we created. */

 XMLReader xr = sp.getXMLReader();

/* Create a new ContentHandler and apply it to the XML-Reader*/

 MeteoXMLHandler meteoXMLHandler = new MeteoXMLHandler(this);

 xr.setContentHandler(meteoXMLHandler);

/* Parse the xml-data from our URL. */

 xr.parse(new InputSource(url.openStream()));

/* Parsing has finished. */

} catch (MalformedURLException e) {e.printStackTrace();

} catch (ParserConfigurationException e) {e.printStackTrace();

} catch (SAXException e) {e.printStackTrace();

} catch (IOException e) {e.printStackTrace();

}

Ingegneria del Software 2 – Service Engineering 96

Codice SAX (2/2)
package com.porfirio.orariprocida2011;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

...

public class MeteoXMLHandler extends DefaultHandler{

 StringBuffer buff = null; boolean buffering = false;

@Override

 public void startDocument() throws SAXException { }

@Override

 public void endDocument() throws SAXException { }

@Override

 public void startElement(String uri, String localName, String qName, Attributes attributes) throws SAXException
{

 if (localName.equals("wind_condition")) {

 /** Get attribute value */

 String attr = attributes.getValue("data");

 setMeteo(attr);

 }

 }

@Override

 public void endElement(String uri, String localName, String qName) throws SAXException { }

...

Ingegneria del Software 2 – Service Engineering 97

• Caso 2) Il servizio meteo è disponibile sotto

forma di json raggiungibile via http

– Bisogna scrivere un analizzatore di file json

Ingegneria del Software 2 – Service Engineering 98

Esempio di risposta json

{

 "response":{

 "version":"0.1",

 "features":{

 "conditions":1

 }

 },

 "current_observation":{

 "image":{

 "url":"http://icons-ak.wxug.com/graphics/wu2/logo_130x80.png",

 "title":"Weather Underground",

 },

 "display_location":{

 "full":"San Francisco, CA",

 "city":"San Francisco",

 "state":"CA",

 },

…

Ingegneria del Software 2 – Service Engineering 99

Codice per json

import org.json.JSONException;

import org.json.JSONObject;

import org.json.simple.*;

private void leggiMeteo() {

URL url;

JSONObject jsonObject=null;

try {

jsonObject =
readJsonFromUrl("http://api.wunderground.com/api/7a2bedc35ab44ecb/geolookup/conditions/q/IA/Procida.jso
n");

if (!(jsonObject==null)){

 meteo.setWindKmh((Double) jsonObject.getJSONObject("current_observation").get("wind_kph"));

 Integer windDir=(Integer) jsonObject.getJSONObject("current_observation").get("wind_degrees");

 meteo.setWindDirectionString((String) jsonObject.getJSONObject("current_observation").get("wind_dir"));

 meteo.setWindBeaufort((Double) jsonObject.getJSONObject("current_observation").get("wind_kph"));

} catch (JSONException e) {Log.d("ORARI", "dati meteo non caricati da web");}

Firebase

• Console che raccoglie molti servizi per gli

sviluppatori forniti da Google

Porfirio Tramontana - Android 100

Firebase Database

• Firebase mette a disposizione un database NoSQL (basato su

json) il cui storage è gestito via cloud (Cloud Firestore)

• Firebase consente

– di salvare dati relativi al contesto generale dell’app

• In uno spazio di memorizzazione assegnato all’applicazione

– Identificato dal codice di sicurezza SHA1

– di salvare dati relativi al contesto di ogni utente dell’app

• In uno spazio di memorizzazione assegnato all’utente

In entrambi i casi, si passa attraverso l’autenticazione Google

• Per salvare dati più consistenti, è possibile utilizzare Cloud

Firestore, Storage o Hosting

– Tutti i servizi Firebase sono gratuiti per piccole moli di dati/limitate

prestazioni, poi hanno un prezzo crescente con i requisiti richiesti

• https://firebase.google.com/pricing/

Porfirio Tramontana - Android 101

Scrittura su database

• Tutorial sull’utilizzo di Firebase (in particolare per

autenticazione e database) sono contenuti in Android

Studio e consentono la connessione e istanziazione

guidata di questi strumenti

• A questo punto, per scrivere dati è sufficiente un

codice come questo:
private DatabaseReference mDatabase;

mDatabase = FirebaseDatabase.getInstance().getReference();//connessione

mDatabase.child("users").child(userId).child("username").setValue(name)

;

Scrive un valore name in un attributo “username” figlio di un attributo corrispondente al

valore di userId figlio a sua volta di un attributo “users”

https://firebase.google.com/docs/database/web/read-and-write

Porfirio Tramontana - Android 102

Lettura da database

• I dati precedentemente scritti possono essere letti con un codice

come questo:
myRef.addValueEventListener(new ValueEventListener() {

 @Override

 public void onDataChange(DataSnapshot dataSnapshot) {

 String value = dataSnapshot.getValue(String.class);

 Log.d(TAG, "Value is: " + value);

 }

 @Override

 public void onCancelled(DatabaseError error) {

 Log.w(TAG, "Failed to read value.",error.toException());

 }

});

Con questo codice ad ogni cambiamento del dato online (causato dalla

stessa app o da qualsiasi altro componente ne abbia la possibilità) viene

eseguito il listener che legge il dato e aggiorna il valore locale

Porfirio Tramontana - Android 103

Firebase Console

• Tutti i servizi firebase sono accessibili via Web

tramite una console unificata

– https://console.firebase.google.com/u/0/

Porfirio Tramontana - Android 104

https://console.firebase.google.com/u/0/

Thread in Android

• I Thread in Android seguono le stesse regole di

base dei Thread in Java

– Ad esempio, un Thread può essere creato estendendo

la classe Thread oppure definendo

un’implementazione della classe Runnable e

istanziando un oggetto della classe Thread che la

utilizzi

• Le Activity sono eseguite nell’ambito di un

Thread di base denominato UIThread

Porfirio Tramontana - Android 109

Thread e Task

• Un thread è una successione di operazioni che agiscono su

informazioni che possono essere condivise con altri thread. Un

thread potrebbe essere eseguito per un tempo indefinito (ad

esempio la connessione con una socket)

– L’interfaccia Runnable è utilizzata per i Thread

• Un task è invece una successione di operazioni che prima o poi

si completa e che produce di solito un risultato (ad esempio un

download)

– i task vengono solitamente eseguiti all’interno di particolari

thread.

– L’interfaccia Callable è utilizzata per i task.

Porfirio Tramontana - Android 110

AsyncTask

• I task possono essere eseguiti in Android nell’ambito della classe

AsyncTask

– Metodi principali di cui fare l’override:

• onPreExecute

• onPostExecute

• onCancelled

• onProgressUpdate

• doInBackground

– E’ il metodo principale e viene eseguito in un thread diverso (anonimo) da

quello in cui viene istanziato l’oggetto (a differenza degli altri metodi)

• Il task non può essere messo in pausa ma solo distrutto

(cancelled)

• Il ciclo di vita dell’AsyncTask è comunque legato sempre a quello

dell’Activity che lo ha avviato

Porfirio Tramontana - Android 111

Porfirio Tramontana - Android 112

Services

• I Services sono componenti responsabili di esecuzioni in
background, senza possibilità di interagire con l’interfaccia
utente
– eccetto che tramite il Notification Manager, che consente di scrivere

sulla barra delle notifiche, emettere suoni o vibrazioni

• Più service possono essere eseguiti in concorrenza tra loro
e con una Activity

• Un service è implementato come una classe che eredita
dalla classe Services della quale poi istanziare un oggetto
– Di solito si effettua l’override di due metodi fondamentali:

startService e stopService

– Un service può avviare un Intent (e tramite esso un’Activity)

– Un service può essere avviato tramite un Intent

Servizi «Started»

• Un servizio può essere

avviato in modalità

«Started» da una classe

(«client») che lo istanzia,

richiamando il metodo

startService() e può

controllarlo

– Può anche fermarlo con

StopService

– Il servizio stesso può anche

autofermarsi con stopSelf

 Porfirio Tramontana - Android 113

Servizi «Bounded»

• In aggiunta, un service può essere

collegato ad una classe client tramite il

metodo bindService (noto l’Intent e un

riferimento al servizio avviato)

– Per disconnettersi da un servizio si può

richiamare unbindService

• Un servizio viene distrutto solo se il suo

iniziatore lo stoppa e non c’è più alcun

client ad esso collegato

• Un service è inizialmente pubblico ma è

possibile limitarne la visibilità attraverso un

opportuno attributo in fase di dichiarazione nel

file AndroidManifest.xml.

Porfirio Tramontana - Android 114

Notification Service

• Tramite le notifiche, una qualunque Activity o Service può

interagire con la Notification Area (in alto nel display),

aprendo la quale si accede al Notification Drawer

• Al momento (è stato oggetto di parecchie revisioni, al

variare delle versioni di Android) è possibile gestire

notifiche tramite la classe NotificationCompat.Builder

• E’ possibile associare ad ogni notifica testo, icona ed altre

caratteristiche grafiche e anche un Pending Intent tramite il

quale specificare cosa viene fatto selezionando, ad

esempio, la notifica

Porfirio Tramontana - Android 115

Esempio di Notification

• Esempio: invio di una notifica con testo, icona e

titolo

mNotificationManager = (NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE);

Notification notification = new

NotificationCompat.Builder(this)

.setSmallIcon(R.drawable.ic_launcher)

.setContentText(contentText)

.setContentTitle(contentTitle).build();

mNotificationManager.notify(VERY_SIMPLE_NOTIFICATION,

notification);

Porfirio Tramontana - Android 116

Porfirio Tramontana - Android 117

Broadcast Receiver

• Un Broadcast Receiver è un ascoltatore di eventi di sistema
(Intent), che può partire appena uno di essi arriva

– In analogia con una ISR

• Ad un Broadcast Receiver è associato un piccolo spezzone
di codice che comprende di solito chiamate ad Activity o
Services

– da eseguire in un tempo limite, oltre il quale il sistema
deduce che ci sia stato uno stallo

• Sono dichiarati anch’essi nel Manifest

– Un Broadcast Receiver può anche essere attivato da codice col metodo
Context.sendBroadcast()

Broadcast Receiver

• Per rispondere ad una chiamata in broadcast un

componente deve registrarsi come receiver nel

manifest (oppure tramite chiamata del metodo

registerReceiver)

• Alla chiamata in Broadcast (con sendBroadcast)

tutti i ricevitori registrati vengono avviati

• Se si vuole tener conto di una priorità nelle

chiamate bisogna utilizzare il metodo

sendOrderedBroadcast

– Verranno considerate le priorità definite tramite

l’attributo priority nel manifest

Porfirio Tramontana - Android 118

Porfirio Tramontana - Android 119

Content Provider

• Un Content Provider è un componente che fa da
interfaccia verso una sorgente di dati persistente.

• Un Content Provider consente il disaccoppiamento tra
gestione dei dati e resto dell’applicazione

– In Android sono disponibili librerie per
l’interfacciamento con SQLite, un dbms estremamente
leggero basato su SQL

– Un db SQLite serve unicamente per salvare dati
persistente sulla memoria del dispositivo

– In alternativa, possiamo utilizzare file di testo per
implementare database XML

– L’utilizzo di un Content Provider NON è necessario ma
facilita astrazione, riuso e testing

Servizi di Sistema

• Il sistema Android fornisce classi e servizi per

accedere in lettura e/o comandare un po’ tutti i

sensori a disposizione:

– Power Service

– Vibrator Service

– Alarm Service

– Sensor Service

– Audio Service

– Telephony Service

– Wi-Fi Service

– …

Sensor Service

• Tramite la classe SensorManager è possibile accedere alla

maggior parte dei sensori:
– SensorManager sm = (SensorManager) getSystemService(Context.SENSOR_SERVICE)

• Per conoscere l’insieme dei sensori disponibili:

– getSensorList (type)

• Type può essere:

– TYPE_ACCELEROMETER

– TYPE_GYROSCOPE

– TYPE_LIGHT

– TYPE_MAGNETIC_FIELD

– TYPE_ORIENTATION

– TYPE_PRESSURE

– TYPE_PROXIMITY

– TYPE_TEMPERATURE

– …

Esempio: Sensore di luminosità

• Aggiungiamo un altro TextView sul layout

• In onCreate aggiungiamo:
 txtSensore= (TextView)findViewById(R.id.textView2);

sensorService = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 sensor = sensorService.getDefaultSensor(Sensor.TYPE_LIGHT);

 if (sensor != null) {

 sensorService.registerListener(mySensorEventListener, sensor,

 SensorManager.SENSOR_DELAY_NORMAL);

 }

 }

• In questo modo abbiamo creato un campo di testo e un

servizio di ascolto del sensore luminosità, legato

all’oggetto mySensorEventListener

Oggetto mySensorEventListener

private SensorEventListener mySensorEventListener = new SensorEventListener()

{

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

@Override

public void onSensorChanged(SensorEvent event) {

 float luce = event.values[0];

 txtSensore.setText(Double.toString(luce));

}

 };

• mySensorEventListener è un oggetto di una classe anonima che estende

SensorEventListener ridefinendo OnAccuracyChanged e onSensorChanged

• Quando cambia il valore del sensore lo leggiamo (è in event.values[0]) e lo

visualizziamo in txtSensore

Porfirio Tramontana - Android 124

Gestione del GPS

• E’ possibile conoscere i dati sulla posizione tramite la classe Location

• Nel manifest bisogna dare il permesso all’applicazione di accedere a dati
sulla posizione

– Tale permesso sarà notificato all’utente che installerà l’app, il quale
potrebbe anche decidere di non installarla, se teme per la privacy dei
propri dati

– Si può distinguere tra tre tipologie di dati posizionali:

• FINE LOCATION, a massima precisione (ad esempio GPS)

• COARSE LOCATION, con precisione minore (ad esempio dati
sulla posizione della cella oppure dati provenienti da ripetitori wi-
fi)

• MOCK LOCATION, che forniscono dati fittizi, utili a scopo di
testing

• Tramite getSystemService si può ottenere un oggetto LocationManager

– L’oggetto LocationManager può essere interrogato per ottenere
informazioni sincrone sulla posizione

Porfirio Tramontana - Android 125

Gestione del GPS

• Una Activity può implementare l’interfaccia
LocationListener. In tal caso definirà metodi come:
– startListening (nel quale di solito si registra come ascoltatore di

specifiche informazioni Location)
• private void startListening()

 myManager.requestLocationUpdates(LocationManager.GP
S_PROVIDER, 0, 0, this);

– stopListening

– onLocationChanged (che viene chiamato ogni volta che si osserva
una variazione della location, e quindi consente un aggiornamento
asincrono delle informazioni sulla posizione)

• public void onLocationChanged(Location location) { … }

– Sull’oggetto Location restituito si possono chiamare
metodi come getLongitude e getLatitude

Mappe e Localizzazione

• Ci sono diversi modi per poter accedere a

informazioni geografiche:

– Accesso alla posizione fornita dal GPS o da altro

fornitore di posizione

– Accesso ai dati delle Google Maps

Porfirio Tramontana - Android 127

Accesso alle Google Maps

• Per utilizzare le Google Maps in un’applicazione è necessario

prima abilitarne l’utilizzo lato server

– Dall’indirizzo https://code.google.com/apis/console è possibile

abilitare le Google Maps (o qualsiasi altra API) per un proprio

progetto

• L’utilizzo delle API è soggetto ad alcune limitazioni decise da Google

relative a numero e tipologia di utilizzi

– Il sistema fornisce una API Key avendo ricevuto in input il codice

SHA-1 che identifica l’applicazione richiedente

• In modalità di debugging, un codice può essere trovato eseguendo:

– keytool -list -v -keystore debug.keystore -alias androiddebugkey -storepass

android -keypass android

Porfirio Tramontana - Android 128

https://code.google.com/apis/console

Accesso alle Google Maps

• La API Key va scritta nel manifest
• <meta-data android:name="com.google.android.maps.v2.API_KEY"

android:value="API_KEY"/>

• Inoltre è necessario abilitare obbligatoriamente altri permessi:
– <uses-permissionandroid:name="android.permission.INTERNET"/>

<uses-permissionandroid:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permissionandroid:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission

android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"/>

Porfirio Tramontana - Android 129

Accesso alle Google Maps

• Una vista delle mappe di Google è inseribile all’interno di una

estensione di fragment, detta MapFragment

• E’ possibile visualizzare diversi tipi di mappa

– Normal – Hybrid – Satellite – Terrain

• La mappa può essere «centrata» sulla posizione corrente

semplicemente prendendola dall’oggetto Location

• Esistono ulteriori metodi per zoomare, scrollare, ruotare la mappa,

inserire in essa dei marker, disegnare figure sulla mappa, gestire gli

eventi utente sulla mappa

• E’ possibile ascoltare per eventi relativi all’avvicinamento dell’utente ad

una zona della mappa (Geofence)

Porfirio Tramontana - Android 130

Android e Sicurezza

• Android è un sistema relativamente sicuro poiché

molte caratteristiche di sicurezza sono state

nativamente impiantate già all’interno del sistema

operativo e dell’ambiente di esecuzione

– Android è open source: chiunque può manomettere il

sistema superando queste impostazioni di sicurezza e

rendendolo insicuro.

• Ci riferiamo qui alle caratteristiche dei sistemi Android

originali, con applicazioni realizzati secondo le linee

guida Google (senza le quali non è possibile la

pubblicazione su Android Market)

Porfirio Tramontana - Android 131

Sicurezza in Android

• Android Application Sandbox

– Ogni applicazione viene eseguita in un ambiente

isolato, dotato di proprio spazio dati, codice, e porzione

di file system locale

• Alcune tecniche a livello di sistema operativo

prevengono errori di gestione della memoria

• Le caratteristiche fondamentali del sistema non

possono essere modificate da utenti con

permessi normali né da applicazioni non di

sistema

Porfirio Tramontana - Android 132

Principali problemi di sicurezza

• File memorizzati nella memoria interna di una

applicazione ma con le modalità MODE_WORLD

WRITEABLE o MODE_WORLD_READABLE

potrebbero essere modificati da altri processi

• File creati su memorie esterne (ad esempio SD

Card) sono visibili a chiunque

• Content Provider possono essere resi utilizzabili

a più applicazioni (con l’opzione

android:exported=true): in tal caso non sono

disponibili opzioni per controlllare i diritti

d’accesso applicazione per applicazione

Porfirio Tramontana - Android 133

Principali problemi di sicurezza

• Tramite il sistema dei permessi una applicazione dichiara

tutte le tipologie di feature che utilizzerà: richiedere troppi

permessi semplifica lo sviluppo ma rende l’utente meno

fiducioso

– In particolare, per quanto riguarda i permessi di accesso ai dati

personali dell’utente salvati sul dispositivo

• L’accesso a Internet (ad esempio tramite le WebView) pone

in essere tutti i classici rischi di sicurezza che si hanno

utilizzando ad esempio un browser Web su di un pc (ad

esempio phishing, adware, ecc.)

• Una applicazione che legge SMS ed esegue operazioni in

base ad esso dovrebbe fare attenzione a validarne i

contenuti, poiché non ci può essere sempre fiducia nella

loro provenienza

Porfirio Tramontana - Android 134

Principali problemi di sicurezza

• La Input validation è necessaria in Android come

in ogni altro sistema con interfaccia utente

– Android fornisce alcuni meccanismi per prevenire, ad

esempio, buffer overflows

– E’ il programmatore a dover fare attenzione ad altre

tipologie di vulnerabilità, come ad esempio cross site

scripting su javascript (ad esempio webView) e SQL

injection (ad esempio Content Provider)

Porfirio Tramontana - Android 135

Principali problemi di sicurezza

• Spesso le applicazioni possono collegarsi tramite Intent in

maniera dinamica ad altre applicazioni che si propongono

di riceverli.

– Attenzione alle applicazioni maliziose: una volta installate

potrebbero in maniera semi automatica (una sola

abilitazione dell’utente è necessaria) qualificarsi per poter

interagire con altre applicazioni

– E’ possibile specificare nell’Intent che solo un componente

della stessa applicazione possa rispondere

• Per interazioni mutue tra applicazioni (ad esempio scambio

di messaggi RPC) è consigliato l’utilizzo dei meccanismi

Binder o Messenger che prevedono una mutua

autenticazione tra i componenti dialoganti

Porfirio Tramontana - Android 136

Principali problemi di sicurezza

• Per limitare il problema delle applicazioni con troppi

permessi accettati a tempo di installazione, le più recenti

versioni di Android hanno introdotto la necessità di

garantire permessi all’applicazione a tempo di esecuzione

– In questo modo l’utente è maggiormente consapevole dei permessi

rilasciati e può concederne anche solo una parte

– Il permesso viene memorizzato sul dispositivo e non verrà più

richiesto nelle successive esecuzioni

– Il rilascio di alcuni permessi a tempo di esecuzione è diventato

obbligatorio a partire dalla versione 23 (Marshmallow – 6.0)

• L’elenco dei permessi considerati «pericolosi» che devono

essere rilasciati a tempo di esecuzione si può leggere qui:

https://developer.android.com/guide/topics/permissions/request

ing.html

 Porfirio Tramontana - Android 137

https://developer.android.com/guide/topics/permissions/requesting.html
https://developer.android.com/guide/topics/permissions/requesting.html

Permessi dinamici: esempio

//CONTROLLA IL PERMESSO DI ACCESSO AL GPS (FINE LOCATION)

if (ActivityCompat.checkSelfPermission(MapsActivity.this,

Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

 //RICHIEDE DINAMICAMENTE ACCESSO A GPS E INTERNET

 ActivityCompat.requestPermissions(this, new String[]{

 Manifest.permission.ACCESS_FINE_LOCATION,

 Manifest.permission.INTERNET}, 1);

}

//SE NON SONO STATI DATI I PERMESSI ESCE DALL’APP

if (ActivityCompat.checkSelfPermission(MapsActivity.this,

 Manifest.permission.ACCESS_FINE_LOCATION) !=

 PackageManager.PERMISSION_GRANTED &&

 ActivityCompat.checkSelfPermission(MapsActivity.this,

 Manifest.permission.ACCESS_COARSE_LOCATION) !=

 PackageManager.PERMISSION_GRANTED) {

 System.exit(0);

Porfirio Tramontana - Android 138

Principali problemi di sicurezza

• In teoria le app possono caricare codice a tempo

di esecuzione da fonti diverse all’APK

– Questa pratica è rischiosa, poiché il codice caricato

dinamicamente ha gli stessi diritti d’accesso di quello

statico: un’infiltrazione potrebbe causare l’esecuzione

di codice arbitrario su applicazioni accettate come

sicure

• Le caratteristiche di sicurezza della Dalvik virtual

machine sono essenzialmente simili a quelle di

una JVM

• Le caratteristiche di sicurezza del kernel linux

sono quelle classiche
Porfirio Tramontana - Android 139

Altri progetti di approfondimento

• Legati a componenti nuovi/in via di adozione nel framework

Android:

– Linguaggio Kotlin

– Utilizzo di Firebase

– Estensione dell’ambiente Android Studio

• Tutti questi progetti possono sostituire eventualmente

anche il progetto di sviluppo dell’applicazione Android

– Si può sviluppare una applicazione totalmente di esempio

descrivendo, sfruttando e applicando uno o più degli

strumenti presentati sopra

Porfirio Tramontana - Android 140

Porfirio Tramontana - Android 141

Appendice:

Vecchi Tutorial

Porfirio Tramontana - Android 142

Android ed Eclipse: ADT

• ADT (Android Development Toolkit) è un’estensione

di eclipse totalmente dedicata ad Android

– Scaricabile via Eclipse all’indirizzo https://dl-

ssl.google.com/android/eclipse/
– Scaricabile insieme a tutto l’ambiente Eclipse da:

• Win x86: http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip

Win x64 : http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip

• Integra nell’ambiente di sviluppo Eclipse tutti gli strumenti necessari

allo sviluppo e all’esecuzione di un’applicazione Android

– In particolare, rende possibile l’utilizzo di quasi tutte le utility disponibili a linea di

comando

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20140702.zip

Porfirio Tramontana - Android 143

Features di ADT

• Wizards e viste

Android ADT Bundle

• Dal sito android developer è possibile scaricare Android

ADT Bundle, che comprende ADT e una distribuzione di

Eclipse preconfigurata con Android

– http://developer.android.com/sdk/installing/bundle.html

Porfirio Tramontana - Android 144

http://developer.android.com/sdk/installing/bundle.html

Porfirio Tramontana - Android 146

Tutorial: IndovinaOraDelitto

(versione ADT)

• Si tratta di un progetto molto più piccolo

– Piccolo gioco nel quale bisogna indovinare “l’orario
del delitto” (un orario scelto a caso nelle 24 ore)

• Ad ogni tentativo, il sistema risponde dicendo se
l’orario esatto è precedente o successivo

– Un’unica interfaccia un’unica Activity

– Gestione delle SharedPreferences (per
memorizzare il punteggio migliore)

– Riuso di un componente (widget) per la richiesta
dell’orario

– Visualizzazione di un’immagine di sfondo e di
un’icona

Porfirio Tramontana - Android 147

Crea una nuova Android Application

• Oltre a nome e package
bisogna impostare:

– Versione minima
della SDK

• Più è bassa più la
app sarà compatibile
per dispositivi vecchi

– Versione target della
SDK

• Quella sulla quale
testeremo la app

– Compilatore

• Scegliamo di solito il
più recente

Porfirio Tramontana - Android 148

Impostazione icone

• Dobbiamo creare una
icona per la app

– Dobbiamo creare con
diverse risoluzioni, per
adattarsi alle diverse
possibili dimensioni
dello schermo di un
cellulare o tablet

• Possiamo caricare
l’icona da un qualsiasi
file e darle una forma

Porfirio Tramontana - Android 149

Impostazione prima Activity

• Dobbiamo creare la prima Activity
– Il sistema ci suggerisce alcuni layout possibili

– Successivamente diamo un nome all’Activity e al suo layout

Porfirio Tramontana - Android 150

Codice generato

automaticamente

• MainActivity.java

• File automatici BuildConfig e R (da non
modificare)

• Librerie di sistema da importare

• File png rappresentativi delle icone a diverse
risoluzioni, in diverse cartelle

– I nomi delle cartelle seguono sempre precise convenzioni
e non devono essere modificati

• Xml con la descrizione del layout

• Xml con la descrizione del menu

• Xml che riportano le stringhe di testo costanti
utilizzate nel programma

– Anche le stringhe possono variare con la dimensione
dello schermo. Ad es. su schermo piccolo si possono
utilizzare abbreviazioni

• AndroidManifest.xml

• Altre proprietà del progetto (utili per la
compilazione)

Porfirio Tramontana - Android 151

AndroidManifest.xml

Porfirio Tramontana - Android 152

Editor del layout

Porfirio Tramontana - Android 153

Immagine di sfondo e icona

• Modifichiamo la casella di testo «Hello,
World»

– Scriviamo «Indovina l’ora del delitto»,
scriviamola in rosso su sfondo nero e con
font più grande

• Cerchiamo di definire delle resources, anziché
mettere costanti nel codice xml

• In particolare i colori vanno in un file di colori
della cartella res/values

• Il background può essere editato tramite
Other properties/all By Name/Background nel
menu contestuale

• Mettiamo un’immagine di background
– Dobbiamo prima copiarla in una o più delle

cartelle res/drawable

• Creiamo un pulsante «Ipotizza un
orario»

Porfirio Tramontana - Android 154

Immagine di sfondo e icona

• Creiamo un menu (menu.xml nella cartella menu) con un’unica voce:
esci

– La stringa «Esci» la salviamo come risorsa

Porfirio Tramontana - Android 155

MainActivity.java

• Codice generato automaticamente
package com.example.indovinaprova;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

}

Collegamento dinamico col
layout creato visualmente

(e trasformato dal
framework in codice java e

compilato)

Collegamento dinamico al
menu creato visualmente

(e trasformato dal
framework in codice java e

compilato)

Porfirio Tramontana - Android 156

Codice per il menu e il dialog

corrispondente 1/3

• Vogliamo che sulla voce di menu «esci» si apra un dialog di
conferma e eventualmente venga chiusa la app

– In onCreate

AlertDialog.Builder builder = new AlertDialog.Builder(this);

 builder.setMessage("Sei sicuro di voler uscire?")

 .setCancelable(false)

 .setPositiveButton("Si'", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 MainActivity.this.finish();

 }

 })

 .setNegativeButton("No", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 dialog.cancel();

 }

 });

 quitDialog = builder.create();

AlertDialog.Builder è in
grado di «costruire» un

alert dialog

Metodo collegato al pulsante
«No»

Metodo collegato al
pulsante «SI»

Qui viene davvero creato il
dialog

Porfirio Tramontana - Android 157

Codice per il menu e il dialog

corrispondente 2/3

• Vogliamo che sulla voce di menu «esci» si apra un dialog di
conferma e eventualmente venga chiusa la app

@Override

 public boolean onOptionsItemSelected(MenuItem item) {

 // Handle item selection

 switch (item.getItemId()) {

 case R.id.esci:

 showDialog(QUIT_DIALOG_ID);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

Metodo per collegare i click
sulle voci di menu alle
azioni corrispondenti

Avvio del dialog
QUIT_DIALOG_ID

Porfirio Tramontana - Android

Codice per il menu e il dialog

corrispondente 3/3

• Vogliamo che sulla voce di menu «esci» si apra un dialog di
conferma e eventualmente venga chiusa la app

 @Override

 protected Dialog onCreateDialog(int id) {

 switch (id) {

case QUIT_DIALOG_ID:

 return quitDialog;

 }

 return null;

 };

Metodo che viene chiamato
tramite showDialog e che
abbina ai codici dei dialog
le azioni corrispondenti

Avvio del dialog
QUIT_DIALOG_ID

Porfirio Tramontana - Android 159

Codice per il pulsante e il dialog

corrispondente 1/3

• Vogliamo che sul pulsante «Ipotizza» si avvii un componente che fa
scegliere un orario e venga confrontato con quello da indovinare

– In onCreate

 //pulsante Ipotizza orario

 mPickTime = (Button) findViewById(R.id.ipotizza);

 mPickTime.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 showDialog(TIME_DIALOG_ID);

 }

 });

Abbiniamo al pulsante
chimato ipotizza nel layout
l’oggetto Button mPickTime

Avvio del dialog
TIME_DIALOG_ID

Ascoltatore del pulsante

Porfirio Tramontana - Android 160

Codice per il pulsante e il dialog

corrispondente 2/3

• Vogliamo che sul pulsante «Ipotizza» si avvii un componente che fa
scegliere un orario e venga confrontato con quello da indovinare

 @Override

 protected Dialog onCreateDialog(int id) {

 switch (id) {

 case TIME_DIALOG_ID:

 return new TimePickerDialog(this,mTimeSetListener, mHour, mMinute, true);

 case QUIT_DIALOG_ID:

 return quitDialog;

return null;

 };

}

Aggiungiamo
TIME_DIALOG_ID

Avvio di un TimePickerDialog, oggetto
proveniente da una delle librerie standard

di Android

mTimeSetListener conterrà il codice
collegato al pulsante Imposta

mHour e mMinute sono variabili di output
e conterranno l’ora e minuto scelti

Porfirio Tramontana - Android 161

Codice per il pulsante e il dialog

corrispondente 3/3

• Vogliamo che sul pulsante «Ipotizza» si avvii un componente che fa
scegliere un orario e venga confrontato con quello da indovinare

private TimePickerDialog.OnTimeSetListener mTimeSetListener =

 new TimePickerDialog.OnTimeSetListener() {

 public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

 mHour = hourOfDay;

 mMinute = minute;

 if (mHour<oraOK || (mHour==oraOK && mMinute<minutoOK)) {

 txtStato.setText("Piu' tardi! (finora "+tentativi+" tentativi)");

 tentativi++; }

 else if (mHour>oraOK || (mHour==oraOK && mMinute>minutoOK)) {

 txtStato.setText("Prima! (finora "+tentativi+" tentativi)");

 tentativi++; }

 else if (mHour==oraOK && mMinute==minutoOK)

 txtStato.setText("Hai indovinato in "+tentativi+" tentativi ed e' il miglior risultato

di oggi!"); }

 }

L’ora inserita in
input

Porfirio Tramontana - Android 162

Resto del codice

• Costanti e variabili

 private static final Random RNG = new Random();

private int oraOK;

 private int minutoOK;

private int tentativi=1;

 static final int TIME_DIALOG_ID = 0;

 static final int QUIT_DIALOG_ID = 1;

• In onCreate

txtStato = (TextView)findViewById(R.id.textView1);

 oraOK=RNG.nextInt(24);

 minutoOK=RNG.nextInt(60);

Porfirio Tramontana - Android 163

Esecuzione

Porfirio Tramontana - Android 164

Tutorial: IndovinaOraDelitto

(versione Android Studio)

• Si tratta di un progetto molto più piccolo

– Piccolo gioco nel quale bisogna indovinare “l’orario
del delitto” (un orario scelto a caso nelle 24 ore)

• Ad ogni tentativo, il sistema risponde dicendo se
l’orario esatto è precedente o successivo

– Un’unica interfaccia un’unica Activity

– Gestione delle SharedPreferences (per
memorizzare il punteggio migliore)

– Riuso di un componente (widget) per la richiesta
dell’orario

– Visualizzazione di un’immagine di sfondo e di
un’icona

Porfirio Tramontana - Android 165

Crea una nuova Android Application

• Oltre a nome e package bisogna impostare la versione minima della SDK

• Più è bassa più la app sarà compatibile per dispositivi vecchi

Porfirio Tramontana - Android 166

Impostazione prima Activity

• Dobbiamo creare la prima Activity
– Il sistema ci suggerisce alcuni layout possibili

– Successivamente diamo un nome all’Activity e al suo layout

Porfirio Tramontana - Android 167

Codice generato

automaticamente

• MainActivity.java

• File automatici BuildConfig e R (da non
modificare)

• Librerie di sistema da importare

• File png rappresentativi delle icone a
diverse risoluzioni, in diverse cartelle

– I nomi delle cartelle seguono sempre precise
convenzioni e non devono essere modificati

• Xml con la descrizione del layout

• Xml con la descrizione del menu

• Xml che riportano le stringhe di testo costanti
utilizzate nel programma

– Anche le stringhe possono variare con la dimensione
dello schermo. Ad es. su schermo piccolo si possono
utilizzare abbreviazioni

• AndroidManifest.xml

• Script gradle di compilazione

Porfirio Tramontana - Android 168

AndroidManifest.xml

Porfirio Tramontana - Android 169

Editor del layout

Porfirio Tramontana - Android 170

Immagine di sfondo e icona

• Modifichiamo la casella di testo «Hello,
World»

– Scriviamo «Indovina l’ora del delitto»,
scriviamola in rosso su sfondo nero e con
font più grande

• Cerchiamo di definire delle resources, anziché
mettere costanti nel codice xml

• In particolare i colori vanno in un file di colori
della cartella res/values

• Il background può essere editato tramite
Other properties/all By Name/Background nel
menu contestuale

• Mettiamo un’immagine di background
– Dobbiamo prima copiarla in una o più delle

cartelle res/drawable

• Creiamo un pulsante «Ipotizza un
orario»

Porfirio Tramontana - Android 171

Menu

• Creiamo un menu (menu.xml nella cartella menu) con un’unica voce:
esci

– La stringa «Esci» la salviamo come risorsa

• In Android Studio non c’è un editor grafico per i menu
– Probabilmente perché stanno lentamente andando in disuso

Porfirio Tramontana - Android 172

MainActivity.java

package com.example.indovinaprova;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

}

Collegamento dinamico col
layout creato visualmente

(e trasformato dal
framework in codice java e

compilato)

Collegamento dinamico al
menu creato visualmente

(e trasformato dal
framework in codice java e

compilato)

Porfirio Tramontana - Android 173

Codice per il menu e il dialog

corrispondente 1/3

• Vogliamo che sulla voce di menu «esci» si apra un dialog di
conferma e eventualmente venga chiusa la app

– In onCreate

AlertDialog.Builder builder = new AlertDialog.Builder(this);

 builder.setMessage("Sei sicuro di voler uscire?")

 .setCancelable(false)

 .setPositiveButton("Si'", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 MainActivity.this.finish();

 }

 })

 .setNegativeButton("No", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 dialog.cancel();

 }

 });

 quitDialog = builder.create();

AlertDialog.Builder è in
grado di «costruire» un

alert dialog

Metodo collegato al pulsante
«No»

Metodo collegato al
pulsante «SI»

Qui viene davvero creato il
dialog

Porfirio Tramontana - Android 174

Codice per il menu e il dialog

corrispondente 2/3

• Vogliamo che sulla voce di menu «esci» si apra un dialog di
conferma e eventualmente venga chiusa la app

@Override

 public boolean onOptionsItemSelected(MenuItem item) {

 // Handle item selection

 switch (item.getItemId()) {

 case R.id.esci:

 showDialog(QUIT_DIALOG_ID);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

Metodo per collegare i click
sulle voci di menu alle
azioni corrispondenti

Avvio del dialog
QUIT_DIALOG_ID

Porfirio Tramontana - Android

Codice per il menu e il dialog

corrispondente 3/3

• Vogliamo che sulla voce di menu «esci» si apra un dialog di
conferma e eventualmente venga chiusa la app

 @Override

 protected Dialog onCreateDialog(int id) {

 switch (id) {

case QUIT_DIALOG_ID:

 return quitDialog;

 }

 return null;

 };

Metodo che viene chiamato
tramite showDialog e che
abbina ai codici dei dialog
le azioni corrispondenti

Avvio del dialog
QUIT_DIALOG_ID

Porfirio Tramontana - Android 176

Codice per il pulsante e il dialog

corrispondente 1/3

• Vogliamo che sul pulsante «Ipotizza» si avvii un componente che fa
scegliere un orario e venga confrontato con quello da indovinare

– In onCreate

 //pulsante Ipotizza orario

 mPickTime = (Button) findViewById(R.id.ipotizza);

 mPickTime.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 showDialog(TIME_DIALOG_ID);

 }

 });

Abbiniamo al pulsante
chimato ipotizza nel layout
l’oggetto Button mPickTime

Avvio del dialog
TIME_DIALOG_ID

Ascoltatore del pulsante

Porfirio Tramontana - Android 177

Codice per il pulsante e il dialog

corrispondente 2/3

• Vogliamo che sul pulsante «Ipotizza» si avvii un componente che fa
scegliere un orario e venga confrontato con quello da indovinare

 @Override

 protected Dialog onCreateDialog(int id) {

 switch (id) {

 case TIME_DIALOG_ID:

 return new TimePickerDialog(this,mTimeSetListener, mHour, mMinute, true);

 case QUIT_DIALOG_ID:

 return quitDialog;

return null;

 };

}

Aggiungiamo
TIME_DIALOG_ID

Avvio di un TimePickerDialog, oggetto
proveniente da una delle librerie standard

di Android

mTimeSetListener conterrà il codice
collegato al pulsante Imposta

mHour e mMinute sono variabili di output
e conterranno l’ora e minuto scelti

Porfirio Tramontana - Android 178

Codice per il pulsante e il dialog

corrispondente 3/3

• Vogliamo che sul pulsante «Ipotizza» si avvii un componente che fa
scegliere un orario e venga confrontato con quello da indovinare

private TimePickerDialog.OnTimeSetListener mTimeSetListener =

 new TimePickerDialog.OnTimeSetListener() {

 public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

 mHour = hourOfDay;

 mMinute = minute;

 if (mHour<oraOK || (mHour==oraOK && mMinute<minutoOK)) {

 txtStato.setText("Piu' tardi! (finora "+tentativi+" tentativi)");

 tentativi++; }

 else if (mHour>oraOK || (mHour==oraOK && mMinute>minutoOK)) {

 txtStato.setText("Prima! (finora "+tentativi+" tentativi)");

 tentativi++; }

 else if (mHour==oraOK && mMinute==minutoOK)

 txtStato.setText("Hai indovinato in "+tentativi+" tentativi ed e' il miglior risultato

di oggi!"); }

 }

L’ora inserita in
input

Porfirio Tramontana - Android 179

Resto del codice

• Costanti e variabili

 private static final Random RNG = new Random();

private int oraOK;

 private int minutoOK;

private int tentativi=1;

 static final int TIME_DIALOG_ID = 0;

 static final int QUIT_DIALOG_ID = 1;

• In onCreate

txtStato = (TextView)findViewById(R.id.textView1);

 oraOK=RNG.nextInt(24);

 minutoOK=RNG.nextInt(60);

Porfirio Tramontana - Android 180

Progetto d’esempio: Caccia Al Tesoro

• Sfruttando le capacità di ricezione GPS contenute

in un dispositivo mobile Android, si vuole

realizzare una sorta di Caccia al Tesoro

• Una Caccia al Tesoro si compone di una

sequenza di tappe da completare

– L’obiettivo di ogni tappa è il raggiungimento di un

determinato luogo, che dovrà essere notificato dalle

coordinate GPS lette dal dispositivo stesso

• In pratica il giocatore dovrà recarsi fisicamente nel luogo

richiesto

Porfirio Tramontana - Android 181

Modello delle informazioni

• Il modello delle informazioni è molto semplice:

– Una Caccia è composta di Tappe (3 in questa

versione) e può essere giocata da un unico giocatore

• Bisogna memorizzare il tempo trascorso dall’inizio della

tappa

– Ogni Tappa ha un nome e una coppia di coordinate

dell’obiettivo

– C’è una ovvia relazione di aggregazione tra Caccia e

Tappa

Porfirio Tramontana - Android 182

Modello dell’interfaccia

• L’interfaccia utente consiste di un’unica classe

che estende Activity, CacciaAlTesoro, con 4

campi di testo, definiti staticamente in xml

Porfirio Tramontana - Android 183

Extra features

• Ogni tappa ha un tempo massimo e un punteggio

dipendente dal tempo impiegato

• E’ possibile chiedere degli aiuti, che fanno diminuire il

punteggio. In particolare:

– L’aiuto distanza visualizza la distanza in linea d’aria dal

punto obiettivo

– L’aiuto direzione indica la direzione (rispetto al nord) nella

quale andare per raggiungere, in linea d’aria, l’obiettivo

• Il gioco non si interrompe se un’altra applicazione (ad

esempio il telefono) si attiva

– Il gioco termina solo su esplicita richiesta dell’utente

Porfirio Tramontana - Android 184

Menu

• Un menu definito
staticamente per l’unica
Activity con 4 opzioni
semplici e un sottomenu
per gli aiuti con 4 opzioni

• 9 handler da implementare
(nella classe
CacciaAlTesoro che
estende Activity e fa da
Delegate)

Porfirio Tramontana - Android 185

Suddivisione delle responsabilità

• La classe CacciaAlTesoro estende Activity, gestisce l’interfaccia
utente

– ha la delega per la gestione degli eventi da menu

– Implementa e gestisce i Dialog

– Gestisce gli eventi legati al GPS

– Gestisce il ciclo di vita dell’activity

public class CacciaAlTesoro extends Activity implements
LocationListener

• La classe Caccia implementa l’algoritmo del gioco

– Calcolo del punteggio, gestione del tempo, etc.

• La classe Tappa modella le strutture dati di una singola tappa

– Per semplicità, in questa versione le tappe sono istanziate nel
codice di Caccia

Porfirio Tramontana - Android 186

Gestione del GPS

• La classe Activity implementa
– myManager = (LocationManager) getSystemService(LOCATION_SERVICE);

– myManager.getLastKnownLocation(LocationManager.GPS_PROVIDER)
• Forza una valutazione sincrona della posizione

– private void startListening()

 myManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, this);

– private void stopListening() {
myManager.removeUpdates(this);

– public void onLocationChanged(Location location) { … }
• Parte in maniera asincrona col programma e sincrona con il rilevamento GPS

• La classe android.location.Location fornisce tra l’altro i metodi getLongitude() e
getLatitude()

• Nel Manifest.xml bisogna settare

 <uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

Porfirio Tramontana - Android 187

Gestione di chiusura e riapertura

• Nella classe CacciaAlTesoro

– onCreate istanzia tutti i dialog, inizializza gli attributi e avvia

la Caccia

– onPause salva lo stato della Caccia

– onResume ripristina lo stato della Caccia

– onDestroy distrugge i dati della Caccia e chiude

l’applicazione

• La Caccia prosegue anche se l’applicazione non è visibile

sull’interfaccia sfruttando il fatto che il tempo (di sistema)

continua a scorrere

– L’eventuale tempo scaduto su di una caccia viene in realtà

notificato solo quando l’applicazione è riaperta

Porfirio Tramontana - Android 188

SharedPreferences

• Come memorizzare il punteggio migliore?

• Android ha diversi metodi per gestire la persistenza. Il più
semplice si basa sulle SharedPreferences, simili alle variabili di
sessione delle applicazioni Web

• Esempio di lettura

private SharedPreferences settings;

 settings = getSharedPreferences("RecordFile", 0);

 min = settings.getInt("record", 1000);

• Esempio di scrittura (salva record)

 SharedPreferences.Editor editor = settings.edit();

 editor.putInt("record", min);

 editor.commit();

