
Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II, D.I.E.T.I.

Issue Android
ANALISI TRAMITE TOOL LINT E ARCHITETTURA DEDICATA

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

1

1 Introduzione .. 2

2 Procedure e modalità di misurazione .. 2

2.1 Objects Selection .. 2

2.2 Data Extraction ... 3

2.3 Issue Analysis: Architettura ... 3

2.3.1 Data Source Layer ... 4

2.3.2 Integration Layer ... 8

2.3.3 Knowledge Layer ... 10

2.3.4 Analytics Layer .. 12

3 Casi di studio .. 13

3.1 Analisi delle issue .. 14

3.1.1 Quali sono le issue più frequenti? .. 14

3.1.2 Quali sono le severity più frequenti? .. 16

3.1.3 Quali sono le categorie di Issue più frequenti? .. 19

3.2 Andamento delle Issue negli anni ... 23

3.2.1 Il numero di issue dimininuisce con gli anni? ... 24

3.2.2 Il livello di severity diminuisce con gli anni? ... 25

3.2.3 Ogni anno ha una sua issue di tendenza? ... 28

3.2.4 Esiste un trend nelle issue?... 33

3.3 Età di una applicazione ... 34

3.3.1 Applicazioni più mature presentano meno Issue? ... 34

3.4 Category dell’Applicazione .. 36

3.4.1 Esiste una category con più Issue? ... 36

3.4.2 Esistono Issue peculiari per ogni categoria? ... 38

3.5 File ed Estensione ... 41

3.5.1 Le issue sono concentrate maggiormente in determinati file? .. 41

3.5.2 File diversi presentano issue simili? .. 43

3.5.3 Quali estensioni hanno più issue? .. 45

3.5.4 Esistono issue peculiari per ogni estensione o file? ... 46

3.6 Versione Android SDK ... 49

3.6.1 Qual è la versione SDK con più issue? ... 49

4 Conclusioni e Sviluppi futuri .. 51

5 Appendice .. 52

6 Riferimenti ... 58

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

2

1 Introduzione

Scopo del progetto è trarre informazioni inerenti i difetti più comuni che affliggono le Applicazioni Android.

L’analisi dei difetti è effettuata mediante Lint, tool per l’analisi statica del codice contenuto in Android Studio che
può aiutare ad identificare e correggere problemi legati alla qualità strutturale dell’applicazione, e rilevare poten-
ziali bug, senza doverla eseguire o dover scrivere casi di test.

Ogni problema (issue) riscontrato dal tool è riportato con una descrizione e un livello di severity, in modo da poter
assegnare le opportune priorità ai miglioramenti da apportare. La flessibilità del tool consente di abbassare il li-
vello di priorità di un problema per ignorare le issue che non sono rilevanti per il progetto , o aumentarlo per
sottolineare problemi specifici.

Il tool Lint controlla i file sorgenti del progetto Android per potenziali bug e miglioramenti riguardanti: correttezza,
security, performance, usability, accessibility e internationalization [1]. E’ inoltre possibile scegliere quali check
effettuare e quindi quali Issue analizzare [2] [3].

2 Procedure e modalità di misurazione

Questa sezione è dedicata all’illustrazione delle metodologie adottate per l’analisi, e più in generale al modo in cui
la ricerca è stata condotta, partendo dalla fonte delle Applicazioni, dalla loro analisi per la ricerca delle Issue e la
descrizione dell’Architettura con cui le issue sono state a loro volta analizzate.

2.1 Objects Selection

Sarà ora descritta la sorgente dati da cui sono state ricavate le Applicazioni.

Il campione in esame proviene da F-Droid [4], una repository (in gergo “app store”) per applicazioni Android e
progetti free software nata nel 2010.

Figura 2.1 - Logo repository F-Droid

Le Applicazioni possono essere installate o ne si può scaricare il codice sorgente sia mediante website che client
app, anche senza un account di registrazione.

La repository F-Droid contiene circa 2300 applicazioni (in confronto Google Play Store ne contiene circa 1,43 mi-
lioni) tutte di dominio pubblico e liberamente scaricabili. Il progetto è gestito interamente da volontari e non è
applicato un processo formale di app review se non quello dell’intera comunity.

Per l’analisi non è stata utilizzata l’intera repository ma esclusivamente un campione casuale di 844 applicazioni,
quindi circa il 36%. Non essendo stato condotto uno studio statistico preciso non è possibile affermare quanto dei
risultati presenti in tale analisi rispecchi l’intera popolazione di applicazioni, come ad esempio quelle presenti in
Google Play Store.

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

3

2.2 Data Extraction

Tali applicazioni sono elaborate dal Tool Lint, in Figura 2.2 è mostrato come il tool processi i file sorgente:

Figura 2.2 – Workflow di analisi del codice mediante Lint

INPUT

Gli Application source files corrisponde all’insieme di file che compongono il progetto Android, tra cui file java,
XML, icone e file di configurazione. Il file lint.xml è un file di configurazione in cui l’utente può specificare: gli issue
checks da escludere, i livelli di severity.

ELABORAZIONE

Il Lint Tool esamina i source files e utilizza il file di configurazione lint.xml per effettuare i checks richiesti. Se il
progetto inlude build variants (per creare differenti versioni dell’applicazione da un singolo progetto) è possibile
utilizzare un Gradle Wrapper per invocare Lint per tutte le varianti.

OUTPUT

Il risultato dell’intero processo consiste in una stampa, a video o su file XML, delle Issue dell’Applicazione in input
[1]. Gli output saranno approfonditi nella Sezione 2.3.1 relativa alle fonti dati su cui è stata effettuata l’analisi.
Dalle 844 Applicazioni analizzate sono state ricavate circa 78.000 issue.

2.3 Issue Analysis: Architettura

L’obiettivo della presente sezione è quello di definire l’architettura generale del sistema utilizzato per effettuare
le analisi, partendo da quelle che sono le caratteristiche peculiari di ogni singolo tool utilizzato. Essa segue un
pattern architetturale di tipo multi-layer in cui sono presenti i livelli funzionali di seguito descritti:

 Data Source Layer: contiene le sorgenti dati strutturate le cui informazioni dovranno essere integrate
all’interno del sistema;

 Integration Layer: è costituito da un middleware capace, attraverso l’uso di connettori di tipo “plug and
play”, di interfaccairsi alle sorgenti dati ed estrarne le informazioni di interesse rappresentandole, attra-
verso apposite regole di mapping, in un formato coerente con il modello dei dati;

 Knowledge Layer: è la base di conoscenza del sistema, costituita da uno schema relazionale;

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

4

 Analytics Layer: consiste di una applicazione di data analytics per l’analisi e la presentazione delle infor-
mazioni;

Di seguito una semplice architettura degli strumenti utilizzati:

Figura 2.3 – Architettura della soluzione

Scopo dell’architettura creata è quello di analizzare in modo automatico, o comunque con piccole configurazioni,
le Issue ricavate mediante Tool Lint.

Di seguito un’analisi approfondita di ogni Layer appena descritto.

2.3.1 Data Source Layer

Nella seguente sezione saranno approfondite le sorgenti dati del sistema, che corrispondono all’output del pro-
cesso di analisi del Tool Lint. Tali sorgenti sono caratterizzate da due tipi di file XML con due strutture differenti:
file fdroid e file lint.

Figura 2.4 - Data Source Layer

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

5

2.3.1.1 File Fdroid

Il File F-Droid è un unico file, a fronte delle centinaia di file lint.xml, contenente informazioni relative alla Reposi-
tory F-Droid da cui sono ricavete le applicazioni Andoid. Le informazioni riguardano le circa 2.000 applicazioni della
Repository e sono così strutturate:

Blocco codice 2.1 - Struttura file fdroid.xml

Lo scheletro della gerarchia XML riguarda quindi le informazioni di:

 application: contiene vari campi con informazioni sulla singola applicazione

 package: memorizza informazioni relative ai vari package della singola applicazione, come ad esempio la
versione.

di seguito un estratto più dettagliato del file fdroid, riguardante una singola applicazione:

<fdroid>

 <application id="xxx">

 <package>

 ...

 </package>

 </application>

 <application id="yyy">

 <package>

 ...

 </package>

 </application>

</fdroid>

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

6

Blocco codice 2.2 - Dettaglio struttura file fdroid.xml

saranno analizzate solo le informazioni principali ai fini dell'analisi delle Issue:

Nella sezione principale application troviamo:

 id: id univoco dell'applicazione all'interno della repository F-Droid;

 added: data di aggiunta dell'applicazione alla repository;

<application id="de.j4velin.systemappmover">

 <id>de.j4velin.systemappmover</id>

 <added>2014-10-14</added>

 <lastupdated>2016-10-05</lastupdated>

 <name>/system/app mover</name>

 <summary>Add and remove system apps</summary>

 <icon>de.j4velin.systemappmover.172.png</icon>

 <desc>This app moves apps from and to the /system/app folder, making

them a system app or a user app. [...]

 </desc>

 <license>Apache-2.0</license>

 <categories>System</categories>

 <category>System</category>

 <web></web>

 <source>https://github.com/j4velin/SystemAppMover</source>

 <tracker>https://github.com/j4velin/SystemAppMover/issues</tracker>

 <marketversion>1.7.2</marketversion>

 <marketvercode>172</marketvercode>

 <requirements>root</requirements>

 <package>

 <version>1.7.2</version>

 <versioncode>172</versioncode>

 <apkname>de.j4velin.systemappmover_172.apk</apkname>

 <srcname>de.j4velin.systemappmover_172_src.tar.gz</srcname>

 <hash type="sha256">aebc378ef4a621b45f7362ab6b9[...]</hash>

 <size>1152636</size>

 <sdkver>7</sdkver>

 <targetSdkVersion>21</targetSdkVersion>

 <added>2016-10-05</added>

 <sig>59146dacaabff24fe6a051092235e78d</sig>

 <permissions>ACCESS_SUPERUSER</permissions>

 </package>

 <package>

 ...

 </package>

 <package>

 ...

 </package>

</application>f

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

7

 lastupdated: data di ultimo aggiornamento dell'applicazione;

 category: categoria a cui appartiene l'applicazione;

Nella sottosezione package ritroviamo invece:

 size: grandezza dello specifico package dell'applicazione;

 sdkver: versione del Software Development Kit utilizzato per scrivere l'applicazione;

 added: data di aggiunta del package. La data di aggiunta dell'ultimo package corrisponde al campo lastu-
pdated della sezione application;

 permission: permessi richiesti dall'applicaizione al sistema operativo Android.

2.3.1.2 File Lint

Per ogni applicazione della Repository è stato prodotto, mediante Tool Lint, un file lint con i risultati del Testing.
La struttura di base è la seguente:

Blocco codice 2.3 - Struttura file lint-report.xml

Le informazioni contenute nei vari campi riguardano:

 issue: informazioni relative al difetto trovato

 location: dove si è manifestato quel particolare difetto

Entrando nel dettaglio si mostra di seguito l’estrato di un’unica issue

<issues format="4" by="lint 25.2.4">

 <issue>

 <location>

 </issue>

 <issue>

 <location>

 <location>

 </issue>

</issues>

Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo

8

Blocco codice 2.4 - Dettaglio struttura file lint-report.xml

Lo schema della sezione principale "issue":

 id: nome dell'issue;

 severity: livello di severity dell'issue. Si ricorda che tale livello può essere modificato dall'utente;

 category: categoria dell’issue;

 prioriy: priorità di intervento;

 explanation: motivo probabile per cui si è verificata l'issue;

Scendendo nella gerarchia troviamo la sottosezione "location":

 file: file dell'intero progetto in cui si è riscontrata la issue.

2.3.2 Integration Layer

Il livello Integration si occupa della migrazione da file XML a entità di tipo relazionale, svolgendo quindi le basilari
funzioni ETL.

Figura 2.5 - Integration Layer

In particolare automatizza il processo di data extraction dalle differenti data source e di data load all’interno del
Layer Knowledge.

Come mostrato in Figura 2.5 è composto da due moduli software, lib e interfaccia:

 interfaccia: un’interfaccia testuale che consente di accedere alle funzioni di lib in modo rapido e ordinato.

<issue

 id="WrongViewCast"

 severity="Fatal"

 message="Unexpected cast to `ProgressBar`: layout tag was `SeekBar`"

 category="Correctness"

 priority="9"

 summary="Mismatched view type"

 explanation="Keeps track of the view types associated with ids and if it

finds a usage of the id in the Java code it ensures that it is treated as the

same type."

 errorLine1=" ProgressBar pbar = ((ProgressBar) findView-

ById(R.id.FREQ_input));"

 errorLine2="

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"> 

 <location 

  file="src\us\achromaticmetaphor\imcktg\ConfirmContacts.java" 

  line="196" 

  column="24"/> 

</issue> 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

9 

 

 lib: si connette con il livello Data Storage ed effettua varie operazioni in modo automatico, tra cui l’import 
dei dati ed alcune query di verifica 

Tali moduli costruiscono l’integrità dell’Integration Layer estrapolando le varie informazioni dalla gerarchia XML e 
traducendole in dati in formato SQL. 

Per maggiori dettagli è possibile fare riferimento alla documentazione all’interno del modulo lib (consegnato con 
la documentazione). 

2.3.2.1 Requisiti 

Per la scrittura di entrambi i moduli stati utilizzati i seguenti software e librerie: 

 Linguaggio di programmazione: Python version 2.7.13 

 Ambiente di sviluppo: Notepad++ 

 Librerie aggiuntive non presenti nella distribuzione standard di Python: 
o Menu-2.0 
o prettytable-0.7.2 
o tqdm-master 
o pymysql 
o xml.etree.ElementTree 

2.3.2.2 Utilizzo 

All’interno del file “lib.py” sono indicati i vari input da modificare per una corretta esecuzione, per la maggiore si 
tratta di impostazioni tipo: nome utente, password del database e percorsi di catelle in cui reperire e salvare i dati. 
Una volta modificate le impostazioni è possibile interagire semplicemente lanciando “menu.py” da terminale (o 
con doppio click). 

L’interfaccia, molto minimale, è composta da un Menu principale e due Sottomenu, uno per importare ed elimi-
nare i dati dal database e uno per effettuare query in maniera automatica: 

 

Figura 2.6 - Menu principale 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

10 

 

 

Figura 2.7 - Sottomenu per importare i dati 

 

Figura 2.8 - Sottomenu Query 

Le Query, dopo essere state mostrate a video, possono essere stampate in formato CSV per analisi future.  

Nota: l’intera analisi è demandata all’Analytics Layer, quindi sono state create esclusivamente due query a puro 
scopo di esempio. 

Nel caso di errori per la scrittura su un file di testo è presente una possibile soluzione nella documentazione in-
terna al modulo “lib.py”, nella funzione “Query”. L’errore indicato riguarda i permessi richiesti dal Database MySQL 
per accedere a determinati percorsi. 

Si consiglia di memorizzare il file fdorid in una cartella separata dai file lint, altrimeni il programma importerà il 
file fdroid in modo errato. Inoltre si consiglia di eliminare (o spostare) i file lint dalla cartella una volta importati, 
in quanto non esiste alcun controllo sui file già presenti all’interno del database, quindi un import errato porte-
rebbe a dei duplicati e quindi ad analisi errate. 

2.3.3 Knowledge Layer 

Il Knowledge Layer si occupa dello storage dei dati. Consiste di un Database MySQL. 

 

 

Figura 2.9 - Knowledge Layer 

Di seguito la struttura del Database e gli Schemi delle Tabelle: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

11 

 

 

Di seguito le Relazioni tra le Tabelle 

 

Figura 2.11 - Relazioni tra tabelle 

La gestione è ovviamente rimandata al DBMS e l’import è effettuato mediante Integration Layer. Per motivi di 
ottimizzazione non sono presenti vincoli di Foreign Key, quindi le relazioni sono create ai livelli più alti dell’Archi-
tettura, in particolare nell’Analytics Layer. 

2.3.3.1 Requisiti 

Per il Database e la creazione degli Schemi sono state utilizzate le seguenti risorse: 

 MySQL Community 5.7.17.0 

 Schemi ER o Dump file 

Per ricreare gli schemi è possibile importare il file EER Schema (consegnato con l’elaborato) all’interno del MySQL 
Workbench (File/Open Model). Aperto il file è possibile importare lo schema all’interno del Database (Data-
base/Forward Engineer). 

Figura 2.10 - ER Schema 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

12 

 

Per comodità è stato fornito anche un file, “Dump_20170430.sql” contenente una copia dell’intero database 
(strutture e dati) ed è possibile importarlo direttamente dal MySQL Workbench (Selezionare l’istanza del server 
dal pannello MySQL Connection, selezionare il menu Server/Data Import). 

2.3.3.2 Utilizzo 

Il Layer ETL ed i relativi moduli presuppongono che esistano gli Schemi tra le tabelle e che ovviamente il server 
MySQL sia attivo. 

Per attivare il server bisogna lanciare il seguente comando da Prompt dei comandi in modalità Amministratore: 
"C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --defaults-file="C:\ProgramData\MySQL\MySQL Server 
5.7\my.ini" --datadir="C:\ProgramData\MySQL\MySQL Server 5.7\Data" --console 

Nota: “defaults-file” e “datadir” sono comandi per indicare manualmente il percorso dei file di impostazione, 
spesso non è necessario utilizzarli. 

Non è necessario accedere direttamente al Database ma se si volesse accedere al Knowledge Layer, evitando l’in-
terazione con l’Integration Layer, è possibile avviare la tradizionale interfaccia MySQL aprendo un normale Prompt 
dei comandi eseguendo il comando: "C:\Program Files\MySQL\MySQL Workbench 6.3 CE\mysql" -u root -p 

Si fa notare che root è l’user di default creato per questa specifica istanza. 

2.3.4 Analytics Layer 

All’Analytics Layer è demandata l’intera analisi. A tale scopo è stato utilizzato il software di Business Intelligence 
Microsoft Power BI: 

 

Figura 2.12 - Analytics Layer 

Tale layer si occupa di collegarsi al Layer Data Storage e ricavare in automatico le informazioni per poter creare e 
aggiornare in real time i vari report. 

Si sottolinea che non è necessario effettuare query di alcun tipo sul Database, le Tabelle sono importate con le 
relative Relazioni (se esistono, altrimenti sarà PowerBI a crearle) in modo automatico e i vari report sono realizzati 
“trascinando” le colonne all’interno dei grafici. 

2.3.4.1 Requisiti 

Per il Layer è necessaria la seguente risorsa: 

 Microsoft PowerBI 

Per ulteriori informazioni fare riferimento al sito ufficiale [5]. 

2.3.4.2 Utilizzo 

Per creare nuovi report si deve inannzitutto collegare il Layer Data Storage (che sia MySQL o qualuque altra fonte 
di dati) a PowerBI (Home/Recupera Dati/Altro/Database/Database MySQL) inserendo semplicemente i dati per la 
connessione. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

13 

 

In caso di problemi con le credenziali del Database si può risovlere impostandole manualmetne: File/Opzioni e 
Impostazioni/Impostazioni origine dati/Origine dati nel file corrente/Modifica autorizzazioni/Credenziali Modi-
fica/passare da Windows a Database e inserire le credenziali. 

Terminata l’impostazine della Sorgente Dati, PowerBI si occuperà di collegarsi al Database ed importare le tabelle 
richieste per poter effettuare le varie analisi. 

Per alcune analisi più specifiche è stato necessario normalizzare i dati. Tale processo non è immediato in PowerBI, 
si è dovuta quindi creare una nuova “Misura” come di seguito riportato: 

 

Figura 2.13 - PowerBI nuova misura 

 

Figura 2.14 - PowerBI nuova misura, dettaglio 

La nuova misura, chiamata “Norm per App” (Normalizzazizone per numero di Applicazioni) non fa altro che “con-
tare il numero di issue e dividerlo per il numero di applicazioni ralazionate a quella issue”. Può essere considerata 
come una colonna che viene creata dinamicamente al momento dell’utilizzo. 

3 Casi di studio 
 

Si ricorda che il soggetto dell’analisi sono le Issue delle applicazioni android e in questa sezione saranno descritti i 
vari casi di studio analizzati specificando obiettivi, metriche e risultati. 

Per descrivere le metriche, e più in generale per fare riferimento ad un attributo, si utilizzerà la notazione “nome 
tabella”.”nome attributo”: es. issue.id per riferirsi all’attributo id della tabella issue. 

Di seguito gli obiettivi di ogni analisi: 

 Analisi delle issue: sarà effettuata una presentazione generale delle issue; 

 Andamento delle Issue negli anni: si entrerà nel merito del trend temporale delle issue; 

 Età di una applicazione: si terrà conto dell’andamento delle issue in base alla “maturità” di una applica-
zione; 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

14 

 

 Category: si analizzeranno le issue considerando le varie categorie di applicazioni; 

 File ed Estensione: si analizzerà “il luogo” in cui è stata rilevata la issue, ovvero il file del progetto Android; 

 Versione Android SDK: analisi rivolta alle issue relazionate al framework Android SDK utilizzato per il pro-
getto Android. 

3.1 Analisi delle issue 

Primo obiettivo dell’analisi è creare un quadro generale delle Issue, descrivendone la frequenza delle occorrenze, 
la categoria e la gravità, così come sono state riscontrate nelle applicazioni analizzate. 

Dall’analisi sottostante è possibile ricavare alcune semplici informazioni: 

 

Figura 3.1 – Report: Issue più frequenti 

E’ possibile affermare che: 

dalle 844 applicazioni analizzate sono state riscontrate circa 78.050 
issue, in media un centinaio di issue ad applicazione. 

Entrando nel merito dell’analisi è possibile chiedersi: 

3.1.1 Quali sono le issue più frequenti? 

La prima informazione da apprendere riguarda proprio il numero totale di Issue raccolte e la loro caratterizza-
zione. 

3.1.1.1 Metrica 

Si terrà in considerazione semplicemente il numero totale di issue riscontrate all’interno delle varie applicazioni. 
Per ricavare il numero di issue è necessario fare riferimento ad un unico attributo: 

 Numero di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato 
in Blocco codice 2.4. L’analisi corrisponde ad un semplice “group by and count”. 

 Risultati più elaborati, come il numero di applicaizoni in cui è presente l’issue, sono stati ricavati tramite relazione 
con la tabella application.  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

15 

 

 

3.1.1.2 Analisi 

L’analisi farà riferimento al Report delle ssue più frequenti, si considerino quindi dei dettagli di Figura 3.1: 

 

Figura 3.2 - Dettaglio Figura 3.1 

 

L’istogramma orizzontale in figura sopra, mostra la classifica, ordinata per numero di occorrenze, delle Issue più 
frequenti. La tabella sottostante, invece, evidenzia le stesse informazioni ricavabili dall’istrogramma ma presenta 
più dettagli, tra cui: severity, numero di applicazioni e spiegazione dell’issue in questione.  

 

 

Figura 3.3 - Dettaglio Figura 3.1 

 

A valle dell’analisi si può quindi affermare che 

l’issue in assoluto con più occorrenze è UnusedResources con 20.874 
issue in 622 applicazioni. Quindi circa il 27% delle issue appartengono 
a questa tipologia e circa il 74% delle applicazioni analizzate presen-

tano questo difetto. 

Seguono in classifica: 

 RtlHardoded con 7.055 occorrenze per 305 applicaizoni, circa il 9% delle issue totali, di gran lunga infe-
riore al primo; 

 MissingTranslation con 5.469 per 145 applicaizoni. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

16 

 

Si nota quindi l'enorme distacco tra la prima e la seconda issue più frequenti. 

Per approfondimenti sulle tipologie di issue si faccia riferimento alla Tabella 5.1. 

3.1.1.3 Conclusioni 

Da una prima e semplice analisi è evidente che la maggioranza delle applicazioni sono affette da problemi che 
tendono a causare un sovradimensionamento dell’applicazione (UnusedResource) e altri problemi che riguar-
dano la visualizzazione del testo (RtlHardcoded) e la mancata traduzione di alcune stringhe in varie lingue (Mis-
singTranslation). 

3.1.2 Quali sono le severity più frequenti? 

Altra informazione interessante riguarda la Severity delle varie Issue raccolte. 

3.1.2.1 Metrica 

La metrica utilizzata in questo caso è la stessa della Sezione 3.1.1.1, si differenziano per l’applicazione del filtro 
Severity, in modo da visualizzare esclusivamente le issue più frequenti del tipo di interesse per l’analisi. 

3.1.2.2 Analisi 

L’analisi è stata condotta allo stesso modo per tutte le Severity, si ritiene necessaria una introduzione esplicativa 
del Report generale: 

Il Report, molto simile a quello mostrato in Figura 3.1, mostra esclusivamente le Issue appartenenti ad un deter-
minato tipo di Severity: ad esempio nell’immagine sottostante sono evidenziate solamente le Issue di tipo War-
ning, in giallo nell’istrogramma orizzontale. Il grafico ad anello, sulla destra, mostra la quantità della specifica Se-
verity verificatasi negli anni (analisi che sarà approfondita nella Sezione 3.2) e immediatamente sotto sono mo-
strati due valori che rappresentano: il numero di issue appartententi a quella Severity; il numero di applicazioni 
che presentano almeno una issue di quel tipo di Severity. Infine è mostrata la tabella con le informazioni supple-
mentari per l’analisi. 

Di seguito le analisi: 

 

Figura 3.4 - Report: Severity Warning 

 

L’analisi mostra che l’unica differenza con la Figura 3.1 è nell’assenza di MissingTraslation dalla classifica, che è 
principalmente di tipo Fatal ed Error, quindi probabilmente si trova più in basso e non è visualizzabile nell’imma-
gine. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

17 

 

Data la somiglianza con un’analisi già effettuata non si approfondirà la descrizione delle issue. Si ritengono, invece, 
rilevanti gli indici statistici di seguito riportati: 

E’ possibile riscontrare che circa 68.540 issue appartengono alla seve-
rity Warning, ovvero circa l’88% del totale delle issue. Inoltre 817 delle 

applicazioni analizzate presentano questo tipo di severity, ovvero il 
97%.  

Questa informazione fa concludere che 27 applicazioni (3%) contengono esclusivametne severity di tipo Error, 
Fatal o Information. 

La prossima severity analizzata è Error: 

 

Figura 3.5 - Report: Severity Error 

La Severity Error riguarda 3.255 issue (4%) e 628 applicazioni (74%), valori di gran lunga inferiori alla Severity di 
tipo Warning, almeno per quanto riguarda il numero di Issue. 

A differenza dei Warning, in questo caso è interessante entrare nel dettaglio delle singole issue, guardando l’isto-
gramma orizzontale (in alto a sinistra) si può riscontrare che: 

L’Error più comune è NewApi con 521 issue (16% degli Error e 0,6% 
delle issue totali) presenti in 73 applicazioni, seguito da MissingPrefix 

con 456 issue in 129 applicazioni e LongLogTag con 308 issue in 15 ap-
plicazioni. 

Si nota una incongruenza tra istogramma orizzontale e tabella (in basso), probabilmente dovuta al fatto che alcune 
Issue hanno Explanation diversa, quindi sono raggruppate in modo diverso. 

Il prossimo Report riguarderà le Severity di tipo Fatal: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

18 

 

 

Figura 3.6 - Report: Severity Fatal 

Si riscontra, sorprendentemente, un significativo aumento nel numero di Issue di tipo Fatal rispetto alle Issue di 
tipo Error, sono infatti circa il doppio, localizzate però in un minor numero di applicazioni.  

La Severity di tipo Fatal in assoluto con più occorrenze è MisingTrans-
lation con 5.469 issue ovvero l’88% di tutti i Fatal e il 7% di tutte le is-
sue. In classifica si trovano anche DuplicateIds con 262 occorrenze ed 

ExtraTranslation con 230 occorrenze. 

L’ultima Severity da analizzare riguarda le issue di tipo Information 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

19 

 

 

Figura 3.7 - Report: Severity Information 

Le uniche due issue presenti in questa categoria sono TypographyQuotes e MissingTranslation che probabilmente 
è presente in quanto alcune di queste issue non sono propriamente dei Fatal, sarebbe interessante visualizzare 
l’applicazione in esame e vedere il comportamento di tali linee di codice. 

3.1.2.3 Conclusioni 

A valle dell’analisi è possibile affermare che le Severity più frequenti sono quelle di tipo Warning, seguite da Fatal, 
Error ed Information. In particolare: 

 I Warning corrispondono praticametne alle issue viste nella sezione 3.1.1 riguardanti le Issue più fre-
quenti; 

 Error, essendo in netta minoranza, non sono presenti nella sezione 3.1.1, infatti si ritrovano issue inerenti 
possibili malfunzionamenti su versioni di android non più supportate dalle API all’interno dell’applicazione 
(NewApi) o difetti di visualizzazione a causa di mancati namespace utilizzati per gli attributi (MissingPre-
fix).; 

 I Fatal, invece, riguardano possibili crash dell’applicazione, in particolare problemi di traduzione con strin-
ghe non tradotte in altre lingue (MissingTraslation) o addirittura stringhe tradotte ma non presenti nella 
lingua originale (ExtraTranslation) che se visualizzate nelle altre lingue causerebbero un crash, in quanto 
non esiste fisicamente la linea di codice a esse collegata, oppure id non univoci per l’identificazione delle 
view che provocano ambiguità nelle chiamate (DuplicateIds). 

3.1.3 Quali sono le categorie di Issue più frequenti? 

Il tool Lint suddivide le Issue per Category, tale suddivisione consente di riassumere la tipologia dell’issue identi-
ficandola, ad esempio, come una problematica di Prestazione, piùttosto che di Correttezza o Sicurezza. 

Obiettivo dell’analisi è apprendere quali siano le Categorie di Issue più frequenti all’interno delle applicazioni 
Android. 

3.1.3.1 Metrica 

In questo caso è stata utilizzata una metrica molto simile a quella già vista in per 3.1.1.1. Per ricavare il numero di 
issue e la categoria si è fatto riferimento ai seguenti dati: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

20 

 

 Categoria delle issue: informazione presente nel dato issue.category, ricavato dal file lint-report.xml 
come mostrato in Blocco codice 2.4. 

 Numero di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato 
in Blocco codice 2.4. L’analisi corrisponde ad un semplice “group by and count”. 

 Risultati più elaborati, come il numero di applicaizoni in cui è presente l’issue, sono stati ricavati tramite relazione 
con la tabella application.  

3.1.3.2 Analisi 

Come mostrato dalla Figura sottostante, la tipologia di Report resta fondamentalmente la stessa per questa 
prima parte dei casi di studio. 

 

Figura 3.8 - Report: Category 

Dalla figura è possibile apprendere che 

la Categoria di issue più diffusa è Performance con 25.967 issue (33%), 
seguita da Correctness con 13.070 issue (17%) e da Correctness: Mes-

sages (10%) 

quindi le Applicazioni Android soffrono principalmente di problemi legati alla mancata ottimizzazione del codice 
o problemi di correttezza legati alla particolare programmazione. 

L’anlisi entrerà ora nel merito delle Categoria di Issue più diffuse per degli approfondimenti. I Report mostrati di 
seguito sono ricavati dal Report in Figura 3.8 applicando i filtri appropriati ai dati. 

Il primo dettaglio fa riferimento alle Issue di tipo Performance: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

21 

 

 

Figura 3.9 - Report: Category Performance 

In figura è possibile riscontrare i calssigi oggetti visivi utilizzati fino ad ora: l’istogramma mostra la quantità di 
issue di tipo Performance presenti nel datasset, mentre dalla tabella è possibile ricavare utleriorio approfondi-
menti. 

A valle dell’analisi si può affermare che 

le issue più diffuse della Categoria Performance sono: UnusedResour-
ces con 20.874 issue (27%), UseValueOf  con 1.132 issue (1,4%), 

Overdraw con 825 issue (1%), ObsoleteLayoutParam con 716 issue 
(0,9%) 

inoltre è interessante notare che sono coinvolte 696 applicazioni, pari all’82%! Quindi la maggior parte delle Ap-
plicazioni analizzate soffre di problemi legati alle Performance. Per approfondimenti sul tipo di Issue è possibile 
fare riferimento alla Tabella 5.1. 

Si entrerà ora nel merito delle Issue di tipo Correctness, 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

22 

 

 

Figura 3.10 - Report: Category Correctness 

Dall’analisi soprastante è possibile ricavare alcune informazioni, 

le issue più diffuse della Categoria Correctness sono: UnusedAttribute 
con 2.028 issue (3%), InflateParams con 1.004 issue (1,3%), DefaultLo-

cale con 980 issue (1,2%) 

e anche in questo caso le applicazioni coinvolte sono tantissime, pari al 97%! 

Di seguito le issue di tipo Correctness:Messages, ovvero una sottocategoria di Issue del tipo Correctness. 

 

Figura 3.11 - Report: Category Correctness:Messages 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

23 

 

dalla figura è possibile dedurre che  

le issue più diffuse della Categoria Correctness:Messages sono: Mis-
singTranslation con 6.037 issue (8%), Typos con 367 issue (0,5%), Lo-

gNotTimber con 323 issue (0,4%). 

In questo caso il numero di applicazioni è di gran lunga ridotto, pari circa a 300, ma bisogna sottolineare ce si 
tratta pur sempre di una categoria di Correctness e che, volendo sommare i valori alla categoria principale, si 
potrebbe addirittura superare la tipologia Performance. 

L’ultima analisi riguarda la Category Usability, riferita principalmente all’esperienza dell’utente: 

 

 

Figura 3.12 - Report: Usability:Icons 

Come mostrato nell’analisi 

le issue più diffuse della Categoria Usability:icons sono:IconLocation 
con 3.879 issue (5%), IconDipSize con 911 issue (1,2%), IconDuplicate-

sConfig con 843 issue (1%) 

 

3.1.3.3 Conclusioni 

La Categoria di Issue in assoluto più diffusa è Performance, il che singifica che molte applicazioni (più dell’80%) 
possono ulteriormente essere ottimizzate. 

3.2 Andamento delle Issue negli anni 

Mostrato il quadro generale delle tipologie di Issue raccolte, è ora di interesse apprendere l’andamento, se esiste, 
delle Issue nei vari anni.  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

24 

 

3.2.1 Il numero di issue dimininuisce con gli anni? 

La prima domanda che ci si pone è se i tool di testing siano davvero utilizzati per rendere le applicazioni più 
stabili. Ci si aspetta quindi che le applicazioni più recenti abbiano un numero di issue inferiore rispetto alle appli-
cazioni degli anni passati o che ci sia almeno un trend di decrescita del numero di issue. 

3.2.1.1 Metrica 

Per effettuare un confronto tra gli anni è necessario normalizzare il totale delle issue per le applicazioni rilasciate 
in quell’anno. 

Per ricavare tali informazioni è necessario fare riferimento a più tabelle, in particolare: 

 Anno di rilascio del package: informazione presente nel dato application.lastupdate, ricavato dal file 
fdroid.xml come mostrano in Blocco codice 2.2. Si precisa che è possibile ricavare i dati da applica-
tion.lastupdate e non da package.added perché nell’analisi sono state considerate solo le ultime versioni 
delle applicazioni, quindi application.lastupdate = package.added; 

 Tipo di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato in 
Blocco codice 2.4. 

Per un esempio pratico di come sia stata effettuata la normalizzazione è possibile fare riferimento alla Figura 
2.14. 

Altre informazioni di contorno possono essere comunque ricavate dalla tabella issue, come la spiegazione della 
issue e il livello di severity. 

3.2.1.2 Analisi 

Le analisi sono presentate in una forma simile a quelle viste finora, si differenziano gli istogrammi sulla sinistra 
che rappresentano l’andamento delle issue negli anni (sopra) e l’andamento delle severity negli anni (sotto). Su 
tali dati si baserà l’intera analisi. 

 

Figura 3.13 – Report: Issue per Anno 

Facendo riferimento alla figura sopra è possibile analizzare nel dettaglio il trend delle difettosità negli anni.  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

25 

 

 

Figura 3.14 - Dettaglio Figura 3.13 

Il grafico ad anello, un dettaglio della Figura 3.13, evidenzia che poco meno della metà delle applicazioni della 
Repository F-Droid sono state aggiornate al 2016, le restanti presentano aggiornamenti più datati.  

Tale informazione non è però significativa ai fini di un confronto, il dato delle Issue va infatti normalizzato per 
nuemro di applicaizoni rilasciate per il particolare anno di riferimento. Così facendo si ricava la seguente informa-
zione: 

 

Figura 3.15 - Dettaglio  Figura 3.13 

L’istogramma mostra l’andamento delle issue nei vari anni ed è possibile affermare che 

i dati non mostrano un trend generico, è solo possibile affermare che 
fino al 2014 si assisteva ad una diminuzione sostanziale delle difetto-
sità in rapporto al numero di applicazioni rilasciate. Trend che invece 

è andato ad aumentare negli ultimi due anni dell’analisi. 

3.2.1.3 Conclusioni 

In conclusione non è possibile affermare che le issue diminuiscano con gli anni, anzi ultimamente si assiste ad un 
trend di crescita.  

L’analisi non consente però di sostenere delle ipotesi significative riguardo la natura dell’attuale tendenza, proba-
bilmete entrando nel merito di ogni anno sarà possibile capire quali issue ne sono la causa, in ogni caso non si può 
“incolpare” né gli strumenti di testing (diventati più precisi) né i programmatori che potrebbero ignorarli delibe-
ratamente (diventati più pigri). 

3.2.2 Il livello di severity diminuisce con gli anni? 

Si entrerà ora nel merito delle Severity delle Issue, in particolare si vuole appredere se le maggiori issue che si 
presentano negli ultimi anni abbiano un livello più basso di severity: ci sono più issue ma almeno sono meno gravi? 

3.2.2.1 Metrica 

In aggiunta alle metriche della Sezione 3.2.1.1 ritroviamo la seguente informazione: 

 Severity delle issue: informazione presente nel dato issue.severity, ricavato dal file lint-report.xml come 
mostrato in Blocco codice 2.4 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

26 

 

3.2.2.2 Analisi 

Il numero e il tipo di Severity sono state già trattate nella Sezione 3.1.2, in questa sezione sarà evidenziato esclu-
sivamente il confronto negli anni. 

Le seuenti analisi sono state ricavate dallo stesso report di Figura 3.13, in particolare dall’istogramma immediata-
mente sopra la tabella, utilizzando il Filtro Severity in modo da visualizzare solo ed esclusivamente una categoria 
di Severity. 

Effettuando pirma un confronto generale è possible ricavare alcune informazioni e già in parte rispodnere alla 
domanda posta: 

 

Figura 3.16 - Dettaglio Figura 3.13 

Prima di tutto è possibile evidenziare che 

la Severity di tipo Warning è sempre la più diffusa  

ed è proprio quella che tende a polarizzare l’andamento complessivo del trend della Sezione 3.2.1. Dall’analisi si 
può notare che non solo i Warning aumentano, si ha una stessa corrispondenza nell’aumento delle Severity di tipo 
Error e Fatal, ciò porta ad affermare che   

con l’avanzare degli anni non solo ci sono più issue ma la loro gravità 
aumenta!   

Nelle successive analisi si entrerà nel merito di ogni Severity. 

La prima severity analizzata è Error: 

 

Figura 3.17 - Dettaglio Figura 3.13 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

27 

 

Per la Severity Error è possibile riscontrare un trend pressappoco cre-
scente, 

in contrasto con il trend complessivo evidenziato nella Sezione 3.2.1 che mostrava una crescita delle Issue solo 
dall’anno 2014 in poi. 

L’analisi successiva mostra invece il trend delle Issue di tipo Fatal:  

 

Figura 3.18 - Dettaglio Figura 3.13 

Questa categoria di Issue, proprio come il trend generale presentato nella Sezione 3.2.1, dimostra un andamento 
crescente dall’anno 2014 in poi, quindi 

La Severity Fatal presenta un trend crescente dal 2014 in poi 

Sotto sono mostrate le issue della categoria Information. Per tale categoria è possibile notare che sono esclusiva-
mente 2 le applicaizoni coinvolte per un totale di 68 Issue. L’anomalia dell’analisi non consente di pervenire a 
precise conclusioni. 

 

Figura 3.19 - Dettaglio Figura 3.13 

Per l’ultima categoria di Severity saranno analizzate le issue di tipo Warning che sono senza dubbio le più frequenti: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

28 

 

 

Figura 3.20 - Dettaglio Figura 3.13 

Essendo le applicazioni con maggiore influenza, presentano lo stesso andamento generale presentato nella Se-
zione 3.2.1 e anche per tale categoria è possibile affermare che 

la Severity Warning presenta un trend crescente con origine nell’anno 
2014 

3.2.2.3 Conclusioni 

Trend diversi per ogni tipo di Severity rendono impossibile generalizzare le conclusioni, ognuna presenta un an-
damento preciso ma riducendo l’intervallo di analisi tra il 2014 e il 2016 è possibile affermare che il trend di Error, 
Fatal e Warning è in crescita, anche se con velocità differenti, è quindi possibile affermare che il livello di Severity 
non diminuisce con gli anni. 

3.2.3 Ogni anno ha una sua issue di tendenza? 

In questa sezione si apprenderà se ogni anno ha una sua particolare issue di tendenza. 

L’analisi si discosta parecchio da quella effettuata nella Sezione 3.1.1 dove si è concentrata maggiore attenzione 
sulle issue più frequenti in assoluto, mentre nella sezione attuale si farà riferimento a quelle più frequenti divise 
nei vari anni. 

3.2.3.1 Metrica 

La metrica utilizzata coincide con quella illustrata nella Sezione 3.2.1.1, le informazioni saranno però presentate 
in modo differente e con diverse finalità di analisi. 

Si sottolinea che, a differenza dello studio nella Sezione 3.2.1.1, in questo caso non è necessario il passo di nor-
malizzazione perché il confronto non è tra anni diversi, bensì nello stesso anno. Si vuole infatti stilare una classi-
fica, anno per anno e apprendere le issue con più occorrenze. 

3.2.3.2 Analisi 

Considerando la Figura 3.13 ed estranendone il dettaglio di seguito mostrato è possibile anticipare un’analisi ge-
nerica, introducendo il quadro generale della situazione: 

 

Figura 3.21 – Dettaglio Figura 3.13 

 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

29 

 

La figura sopra mostra le Issue raggruppate per tipo, issue (id) in tabella, e divise per Anno di rilascio del package. 
Ordinandole per Conteggio decrescente è possibile ricavare l’informaizone relativa alle issue più frequenti. 

Si fa notare che, a differenza della Figura 3.1, nella Figura 3.21 le varie issue sono ulteriormente divise per Anno, 
quindi non rappresentano la stessa informazione. 

Entrando nel merito dell’analisi si deduce che  

la Issue più frequente in assoluto è UnusedResources con 11.043 oc-
correnze solo nell’anno 2016 (14% di tutte le issue), inoltre anche nel 

2015, 2014 e 2013, resta sempre in testa. 

Quindi è possibile affermare che la Issue più frequente in ogni anno è UnusedResources, anche senza approfon-
dimenti. 

In ogni caso tale difettosità è catalogata come “warning” e come da didascalia “rende le applicaizoni più grandi e 
ne rallenta la costruzione”, quindi non è una Issue pericolosa, al contrario di MissingTranslation, l’unica issue della 
classifica ad essere catalogata come “Fatal”, questo significa che ha una priorità di intervento maggiore. 

 

Per un’analisi completa si entrerà ora nel dettaglio di ogni singolo anno: 

Di seguito si analizzano le Issue appartenenti alle Applicazioni rilasciate nell’Anno 2012: 

 

Figura 3.22 – Report: Anno 2012 

L’esigua quantità di applicazioni dell’Anno 2012, appena 2, non consente di effettuare analisi sulle Issue ma po-
trebbe essere utilie per analisi selle singole applicazioni.  

Entrando nel merito delle Issue, si nota che  

l’issue più diffusa nel 2012 è ContentDescription con 49 occorrenze 
(circa il 16%), 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

30 

 

tutte concentrate esclusivamente in una delle due applicazioni e come da didascalia “mancata descrizione testuale 
per contenuti visivi come ImageView e ImageButton”. A giudicare dall’elevato numero, possiamo dedurre che il 
creatore dell’app abbia completametne omesso di descrivere alcuni oggetti visivi.  

Al secondo posto troviamo SpUsage con 40 istanze e al terzo UnusedResource con 39 che rappresentano in ordine 
“resize del testo in base alla dimensione e alla densità di pixels del dispositivo” e “risorse non utilizzate che rallen-
tano l’applicazione”. 

E’ già stata evidenziata la presenza di poche app risalenti al 2012 ma tale mancanza sottolinea che  

delle circa 800 applicazioni analizzate della Repository F-Droid la quasi 
totalità è stata aggiornata almeno nel 2013, quindi è possibile affer-

mare di essere in presenza di una Repository alquanto attiva.  

Inoltre trovandoci nella situazione di sole due app in fase di analisi si può effettuare uno studio specifico ed affer-
mare che sicuramente l’applicazione con id “apps.babcaretimer” non è stata adeguatamente ottimizzata né per 
essere utilizzata su dispositivi con diversa risoluzione né per ottimizzazione di prestazioni (date le varie risorse non 
utilizzate). 

Si passerà ora all’analisi dell’anno 2013: 

 

Figura 3.23 – Report: Anno 2013 

Nel 2013 c’è stato un aumento di app aggiornate, si passa infatti dalle 2 Applicazioni del 2012 alle 66 del 2013, ed 
ovviamente ad un incremento sostanziale delle Difettosità, anche se, come si nota dalla Top 10 mostrata in Figura 
3.23,  

nel 2013 restano in testa Issue molto simili al 2012: UnusedResources 
(circa 30%), MissingTranslation (circa 12%) e RtlHardcoded (circa 6%). 

Avendo un maggior nuemro di applicazioni è possibile notare Issue non presenti nel 2012, come: TypographyElli-
spsis, UnusedAttribute, IconLocation e PxUsage. Tali Issue sono però presenti in Tabella 5.1, quindi fanno parte 
delle issue più frequenti. Si faccia riferimento alla suddetta tabella per approfondimenti. 

L’analisi sucessiva riguarderà l’anno 2014: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

31 

 

 

 

Figura 3.24 – Report: Anno 2014 

Con l’andare avanti degli anni si riscontrano più applicazioni aggiornate e ovviamente più issue, nonostante questo 
aumento il 2014 vede una classifica poco dissimile al 2013, 

al primo posto c’è sempre UnusedResources (20%), seguito da RtlHar-
dcoded (13%) e HardcodedText (6%). 

MissingTranslation, come già evidenziato in precedenza, risulta sia in quarta che nona posizione, a causa della sua 
natura duale di Warning e Fatal a seconda del contesto. 

Il prossimo Report riguarderà l’anno 2015: 

 

 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

32 

 

 

Figura 3.25 – Report: Anno 2015 

Il 2015 offre in classifica: UnusedResources (25%), MissingTranslation 
(8%), HardcodedText (7%). 

Infine l’anno 2016: 

 

Figura 3.26 – Report: Anno 2016 

L’analisi consente di apprendere che  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

33 

 

nel 2016 le issue più diffuse sono state: UnusedResources (30%), 
RtlHardcoded (10%), IconLocation (7%) 

3.2.3.3 Conclusioni 

Purtroppo non è possibile riscontrare tendenze diverse nei vari anni, anzi, esistono in generale issue più frequenti 
come UnusedResource, MissingTranslation e RtlHardcoded che dominano l’intero periodo in esame. 

E’ però possibile affermare, data la quasi totalità di Warning in ogni anno, che le issue “prioritarie” sono quasi 
sempre risolte per prime, lasciando trascurate ottimizzazioni minori. 

3.2.4 Esiste un trend nelle issue? 

è interessante notare se con il tempo ci sono difettosità che scompaiono, magari diventano problematiche note e 
i tool di testing aiutano i programmatori ad evitarle. 

Verranno cosiderate esculicamente le Top 10 dei vari anni. 

3.2.4.1 Metrica 

Si farà riferimento alla metrica utilizzata nella Sezione 3.2.3.1 e fondamentalmente alle stesse informazioni, cam-
bierà il modo di presentarle per ottenere un riscontro immediato di quanto appreso. 

3.2.4.2 Analisi 

Di seguito una tabella riepilogativa per il confronto tra gli anni. Ogni icona rappresenta se la Issue, rispetto 
all’anno precedente, ha subito o meno variazioni di posizione in classifica. Scopo dell’analisi è scoprire Issue che 
entrano o escono dalle classifiche, quindi issue prive di icona: 

 

Figura 3.27 - Trend nelle Issue 

La prima evidenza è che 

dal 2013 in poi non ci sono nuove entrate in classifica, 

infatti si riscontrano esclusivamente cambi di posizione. L’unica calssifica che evidenzia delle entrate è quella del 
2013, ma tale fenomeno è dovuto all’esigua quantità di informazioni ricavate per l’anno 2012, in cui mancavano 
molte tipologie di Issue.   

3.2.4.3 Conclusioni 

Scopo dell’analisi era di riscontrare variazioni delle tipologie di issue nelle varie classifiche annuali, l’analisi ha di 
contro dimostrato che tale variazione non esiste, in quanto le Top 10 sono dominate dalle stesse tipologie di issue, 
semplicemetne con frequnze diverse e quindi in posizioni diverse. 

E’ inoltre possibile notare che negli ultimi due anni si assiste alla medesima Top 3. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

34 

 

3.3 Età di una applicazione 

Terminata l’analisi per Anno di aggiornamento di un’applicaizone si vuole ora spostare l’attenzione su obiettivi 
differenti. In questa sezione si definirà, in modo del tutto fantasioso, l’età di una applicazione e si cercheranno 
delle relazioni con il numero di issue. 

3.3.1 Applicazioni più mature presentano meno Issue? 

Proprio come per un essere umano, che più matura meno errori commette (o almeno così dovrebbe essere), ci si 
aspetta che applicaioni più “mature”, quindi in età più avanzata rispetto ad altre, abbiano un numero minore di 
issue. 

3.3.1.1 Metrica 

La metrica utilizata fa riferimento a ciò che è stata chiamata “età di una applicazione”, definita come la diffe-
renza tra l’anno del suo ultimo aggiornamento e l’anno del suo inserimento nella Repository F-Droid. Volendo 
indicare il dato di riferimento: 

 Data di upload nella repository: informazione presente nel dato application.added, ricavato dal file 
fdroid.xml come mostrato in Blocco codice 2.2. 

 Data di ultimo aggiornamento: informazione presente nel dato application.lastupdated, ricavato dal file 
fdroid.xmo come mostrato in Blocco codice 2.2. 

E’ possibile quindi definire l’età di una applicazione come mostrato di seguito: 

𝐸𝑡à = 𝑑𝑎𝑡𝑎 𝑢𝑙𝑡𝑖𝑚𝑜 𝑎𝑔𝑔𝑖𝑜𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑜 − 𝑑𝑎𝑡𝑎 𝑢𝑝𝑙𝑜𝑎𝑑 

La misura è stata crata come “nuova colonna” all’interno dell’Analytics Layer, non sono quindi stati modificati i 
dati originali presenti nel Knowledge Layer. 

Creata tale misura è quindi possibile effettuare nuove analisi, come di seguito riportato. 

3.3.1.2 Analisi 

Di seguito è mostrato un grafico dell’andamento delle issue rispetto all’età di una applicazione: 

 

Figura 3.28 - Report: Età delle applicazioni 

Sull’asse delle ascisse è presente l’Età delle applicazioni (in giorni), sulle ordinate il numero di issue. E’ evidente 
che  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

35 

 

applicazioni più mature presentano meno issue rispetto ad applica-
zioni più giovani. 

Di seguito è stato effettuato uno “zoom”, andando ad analizzare prettametne le applicazioni con al massimo un 
anno di età: 

 

Figura 3.29 – Dettaglio Figura 3.28 

E’ possibile osservare che  

le applicaizoni nel loro primo anno di vita, presentano un trend netta-
mente decrescente nel numero di issue, 

c’è infatti una discesa di circa 20 punti. 

Una informazione “secondaria” che è possibile ricavare dall’analisi è che 

720 app su 844 (85,3%) hanno meno di un anno di vita, 

ciò attesta che la repository è composta da applicazioni molto giovani, cioè che sono state aggiornate entro un 
anno dal loro rilascio. 

L’immagine sottostante, invece, mostra tutte le applicaizoni con più di un anno di vita, fino ad arrivare a 2000 
giorni circa, quindi a 5 anni e mezzo: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

36 

 

 

Figura 3.30 - Dettaglio Figura 3.28 

Le applicazioni con più di 1 anno di vita dimostrano comunque un 
trend decrescente, anche se meno marcato delle compagne più gio-

vani. 

3.3.1.3 Conclusioni 

E’ possibile concludere, a valle delle analisi effettuate, che applicazioni più mature presentano una tendenza ad 
avere un numero minore di Issue, quindi, supponendo che i programatori abbiano utilizzato tool di testing o i 
feedback della community, si può affermare che il testing serve! 

3.4 Category dell’Applicazione 

Altro obiettivo interessante è comprendere che legame ci sia tra le issue e la categoria a cui appartiene un’appli-
cazione, cercando di capire sia se esistano categorie con più alto rischio di issue, sia se ci siano issue particolari 
per una determinata categoria. 

3.4.1 Esiste una category con più Issue? 

E’ opportuno chiedersi se esistono categorie di applicazioni maggiormente soggette a presentare un qualche 
tipo di problematica. 

3.4.1.1 Metrica 

Per effettuare un confronto tra categorie diverse è necessario normalizzare il totale delle issue per le applicai-
zoni appartenenti a quella categoria. 

Per ricavare tali informazioni è necessario fare riferimento a più tabelle, in particolare: 

 Categoria dell’applicazione: informazione presente nel dato application.category, ricavato dal file 
fdroid.xml come mostrano in Blocco codice 2.2. 

 Tipo di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato in 
Blocco codice 2.4. 

Per un esempio pratico di come sia stata effettuata la normalizzazione è possibile fare riferimento alla Figura 
2.14. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

37 

 

Si fa notare che la metrica è simile a quella utilizzata nella Sezione 3.2.1.1, la differenza è fatta nel Layer Analy-
tics in cui le issue sono raggruppate per category e non per anno, rendendo la misura adattabile al contesto. 

Altre informazioni di contorno possono essere comunque ricavate dalla tabella issue, come la spiegazione della 
issue e il livello di severity. 

3.4.1.2 Analisi 

Di seguito l’analisi effettuata: 

 

Figura 3.31 – Report: Category 

Dall’intero Report è possibile estrarre varie informazioni, come l’immagine seguente: 

 

Figura 3.32 – Dettaglio Figura 3.31 

Dal dettaglio sopra si apprende che la maggior parte delle applicazioni appartengono alle category: Multimedia, 
System, Internet, Games. Tali informazioni sono però assolute, quindi non rappresentano un confronto valido per 
trarre delle conclusioni appropriate. 

Si faccia riferiemento all’analisi sottostante per il confronto: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

38 

 

 

Figura 3.33 – Dettaglio  Figura 3.31 

Le informazioni provengono dai dati normalizzati, è quindi evidente che  

la category con più issue è Money, seguita da Writing e, a pari merito, 
Games e Theming. 

3.4.1.3 Conclusioni 

Si può semplicemente concludere che si, esiste una category con più Issue ed è Money. 

Nella Sezione successiva saranno analizzate nel dettaglio le category e si potranno trarre conclusioni più specifiche. 

3.4.2 Esistono Issue peculiari per ogni categoria? 

Si vuole ora entrare nello specifico delle category con più issue, cercando apprendere se ci siano issue specifiche 
per alucne category piuttosto che per altre. Per tale analisi ci si limiterà alla Top 3 delle category che presentano 
più Issue. 

3.4.2.1 Metrica 

La metrica utilizzata è la stessa della Sezione 3.4.1.1, sono però stati applicati dei filtri all’interno del Report in 
modo da rappresentare le informazioni nel formato più consono all’analisi. 

3.4.2.2 Analisi 

La prima analisi riguarda la category Money: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

39 

 

 

Figura 3.34 - Report: Category Money 

La category  

Money presenta 2.278 issue di cui 2.208 Warning (97%), 49 Error (2%) 
e 21 Fatal (0,9%) per 11 applicazioni. 

Di cui le issue più frequenti sono:  

RtlHardcoded con 585 occorrenze (26%), UnusedResources con 357 
(16%), 

le altre, meno frequenti, sono IconLocation, HardcodedText e ContentDescription. Volendo trarre una conclu-
sione specifica è possibile affermare che la maggior parte delle issue riguardano problemi di layout sui vari dispo-
sitivi; risorse non utilizzate e quindi mancata ottimizzazione; problemi di risoluzione delle icone. 

La seguente analisi riguarda invece la categoria Writing: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

40 

 

 

Figura 3.35 - Report: Category Writing 

Writing mostra un totale di 4.243 issue di cui 3.993 Warning (94%), 
129 Error (3%), 95 Fatal (2%) per un totale di 29 applicazioni coin-

volte. 

In tale categoria si evidenziano le problematiche del tipo 

UnusedResource con 1.601 occorrenze (38%), IconDuplicatesConfig 
con 498 (12%), IcondDipSize con 298 (7%), 

In particolare le issue IconDuplicatesConfig e IconDipSie sono riscontrare per la prima volta in tutte le analisi 
svolte. Tali Issue riguardano problemi con le icone, rispettivamente: icone utilizzate erroneamente, icone con den-
sità diverse. Entrambi i problemi riguardano aspetti di Usability dell’applicazione. 

L’ultima analisi riguarda la categoria Games: 

 

 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

41 

 

 

Figura 3.36 - Report: Category Games 

La category 

Games mostra un totale di 10.098 (13%) issue di cui 9.421 Warning 
(93%), 472 Fatal (5%), 205 Error (2%) distribuite in 87 applicazioni 

La catgory è caratterizzata dalle issue di tipo: 

UnusedResources (25%), ContentDescription (10%), HardcodedText 
(8%), 

Games è quindi caratterizzata da problematiche di performance, accessibilità nel caso un’immagine non venga 
visualizzata correttametne e temi riguardanti i campi testuali. 

 

3.4.2.3 Conclusioni 

La maggior parte delle Issue riguardano comunque problemi di ottimizzazione e usabilità dell’applicazione ma, 

a valle dell’analisi è possibile affermare che, eccetto per UnusedResource, dierse category presentano delle ti-
pologie peculiari di issue. 

3.5 File ed Estensione 
Un’altra analisi di interesse riguarda il luogo in cui si è verificata l’Issue, ovvero il file dell’intero progetto dell’ap-
plicazione Android in cui è presente il difetto. 

3.5.1 Le issue sono concentrate maggiormente in determinati file? 

Dato che un file è presente nel Knowledge Layer se e solo se ha almeno una issue al suo interno, si vuole com-
prendere sia quali file occorrono più spesso, sia se le issue sono concentrate maggiormente in alcuni file. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

42 

 

3.5.1.1 Metrica 

Per effettuare un confronto tra file diversi non è necessario normalizzare per tipologia di file, anzi risulta dan-
noso in quanto ogni progetto android potrebbe avere file denominati in modo diverso, inoltre si pone il solo 
obiettivo di verificare i file con più issue, quindi in ogni caso non sarebbe necessaria. 

Per ricavare le informazioni utili per l’analisi è necessario fare riferimento a più tabelle, in particolare: 

 File in cui è stata rilevata la issue: informazione presente nel dato location.file2, ricavato dal file lint-
report.xml come mostrato in Blocco codice 2.4. Il dato è stato inoltre modificato all’interno del Layer 
Analytics per ricavare dall’intero percorso il solo nome del file. 

 Tipo di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato in 
Blocco codice 2.4. 

3.5.1.2 Analisi 

Di seguito è mostrato il report principale dell’analisi, da cui saranno ricavati i vari dettagi: 

 

Figura 3.37 – Report: File ed Estensioni 

E’ evidente, nell’analisi generale sopra riportata, che il numero di issue e il numero di applicaizoni non è coe-
rente con il resto delle analisi. La discordanza è causata dal filtro utilizzato per rendere i grafici comparabili. 

 

Consideriamo un dettaglio di Figura 3.37: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

43 

 

 

Figura 3.38 – Dettaglio Figura 3.37: (a) Numero di file, (b) Numero di issue per file 

Dalla Figura 3.38 (a) si riscontra che  

i file che occorrono più spesso sono: strings.xml, stamps.xml e An-
droidManifest.xml. 

Tale informazione indica solo che sono i file più frequenti, non quelli con più issue. 

Volendo invece contare il numero di issue per ogni file ritroviamo una classifica leggermetne diversa, infatti 

le issue sono maggiormente concentrate in: strings.xml, AndroidMani-
fest.xml, colors.xml, build.gradle, main.xml 

3.5.1.3 Conclusioni 

Non è possibile entrare nel merito di ogni file in quanto dipendono dal nome assegnatogli dal programmatore 
ma è possibile affermare che la maggior parte degli errori sono localizzati nel file strings.xml. 

L’analisi ha portato alla luce che la maggior parte degli errori rilevati dal tool Lint sono localizzati nei file con 
estensione XML, tale analisi sarà approfondita nella Sezione 3.5.3.  

3.5.2 File diversi presentano issue simili? 

Bisogna precisare che il nome di un file dipende dalla “fantasia” del programmatore, quindi si analizzeranno 
esclusivamente i file “standard” di un generico progetto Android ed in particolare i file “AndroidManifest.xml” e 
“strings.xml”, mentre nella Sezione 3.5.3 sarà approfondita la trattazione del file “build.gradle” in quanto unico 
file con tale estensione. 

3.5.2.1 Metrica 

La metrica utilizzata fa riferimento alla Sezione 3.5.1.1, l’unica differenza è l’utilizzo del filtro per la selezione dei 
dati correlati ai file “AndroidManifest.xml” e “strings.xml”. 

3.5.2.2 Analisi 

La prima analisi di riferimento sarà quella sul file “strings.xml”: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

44 

 

 

Figura 3.39 - Report: File strings.xml 

Dall’analisi è possibile apprendere che 

il file strings.xml presenta issue in 579 applicazioni (69%) con un totale 
di 15.695 issue (20%). 

Volendo entrare nel merito delle singole issue del file si afferma che 

il file strings.xml presenta come issue più popolari: UnusedResources 
con 6.842 issue (9%), MissingTranslation con 5.464 issue (7%), Typo-

graphyEllipsis con 1.613 issue (2%) 

Per approfondimenti sulle tipologie di issue è possibile fare riferimento alla Tabella 5.1. 

La seguente figura mostra le informazioni relative al file “AndroidManifest.xml”: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

45 

 

 

Figura 3.40 - Report: File AndroidManifest.xml 

Dall’analisi è possibile apprendere che 

il file AndroidManifest.xml presenta degli arrori in 751 applicazioni 
(89%) con un totale di 2.511 issue (3%). 

Volendo entrare nel merito delle singole issue del file si afferma che 

le tipologie di issue maggiormente presenti file AndroidManifest.xml 
sono: GoogleAppIndexingWarning con 635 issue (0,8%), UnusedAttri-
bute con 492 issue (0,6%), OldTargetApi con 405 issue (0,5%), Allow-

Backup con 334 issue (0,4%) 

Per approfondimenti sulle tipologie di issue è possibile fare riferimento alla Tabella 5.1. 

3.5.2.3 Conclusioni 

Rispondendo precisamene alla domanda si afferma che, si, file diversi presentano issue simili. Si precisa però 
che l’analisi è limitata ai file di tipo XML perché sono i file più comuni rilevati al momento, qiundi è ovvio che in 
file diversi, ma con la stessa estensione, possano esserci issue simili. 

Nella Sezione 3.5.4 sarà appunto svolta una indagine mirata alle issue presenti nelle varie estensioni dei file.  

3.5.3 Quali estensioni hanno più issue? 

L’analisi della sezione precedente ha evidenziato che i file che occorrono più spesso hanno estensione XML. 
L’obiettivo di questa sezione è invece quello di studiare i file raggruppati per estensione e apprendere in che tipo 
di file siano principalmente concentrate le issue. 

3.5.3.1 Metrica 

Per confrontare le varie estensioni è necessario effettuare un passo di normalizzare per il numero di file apparte-
nenti a quel tipo di estensione, in particoalre le informazioni sono ricavabili da: 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

46 

 

 Estensione del file: informazione presente nel dato location.estensione, ricavato dal file lint-report.xml 
come mostrato in Blocco codice 2.4. Il dato è stato inoltre modificato all’interno del Layer Analytics per 
ricavare dall’intero percorso il solo l’estensione del file. 

 Tipo di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato in 
Blocco codice 2.4. Tale dato va normalizzato per estensione, a tal fine è stata creata la misura “Norm per 
Estensione”, come mostrato nell’immagine sottostante 

 

Si fa notare che la normalizzazione è stata effettuata al contraro in quanto l’Analytics Layer tendeva ad approssi-
mare i valori, troppo piccoli, a zero rendendo l’analisi impossibile. 

E’ ovvio immaginare che il numero di estensioni sia abbastanza elevato, per questo è stato applicato un filtro in 
modo da considerare solo le estensioni più frequenti. 

3.5.3.2 Analisi 

Di seguito un dettaglio di Figura 3.37: 

 

Figura 3.41 – Dettaglio Figura 3.37, Estensioni con più issue 

L’analisi evidenzia, a valle della normalizzazione per numero di file, che  

i file con più issue sono quelli con estensione XML, PNG, JPG e Java, 

L’analisi seguente entrerà nel merito di ogni file per evidenziare issue peculiari. 

3.5.3.3 Conclusioni 

I file con più issue sono quelli con estensione XML, PNG, JPG e Java. 

3.5.4 Esistono issue peculiari per ogni estensione o file? 

Appresa che esiste una sostanziale differenza nel numero di issue presenti in ogni estensione, si vuole ora com-
prendere che tipo di issue partecipano ad ogni tipologia di file e se ci sono o meno degli elementi in comune. 

3.5.4.1 Metrica 

La metrica utilizzata rispecchia quella evidenziata nella Sezione 3.5.3.1, l’unica differenza st nel filtro applicato 
nell’Analytics Layer. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

47 

 

Le percentuali di “file”, “issue” e “applicazioni” saranno mostrate rispetto ai totali mostrati in Figura 3.37, men-
tre la percentuale di dettaglio delle singole tipologie di issue sarà mostrato in relazione al totale in Figura 3.1. 

3.5.4.2 Analisi 

Le analisi di seguito si concentrano esclusivamente sulle estensioni più interessanti, tra cui: XML, PNG, JPG, Java, 
Gradle. 

Nella prima analisi sarà studiata l’estensione XML: 

 

Figura 3.42 - Report: Estensione XML 

La figura sopra sottolinea che 

i file con estensione XML sono 4.724 (29%) e presentano 53.157 (70%) 
issue appartenenti a 802 (95%) applicazioni 

Le tipologie di issue più comuni in tali file sono 

UnusedResources 14.072 (18%), RtlHardcoded 8.167 (10%), Missing-
Translation 6.211 (8%), HardcodedText 3.859 (5%) 

in pratica si tratta delle issue più frequenti dell’intero caso di studio. Si evidenzia che le proporizoni sono calco-
late rispetto alla stessa tipologia di issue e non rispetto al totale delle issue. 

 

Figura 3.43 - Report: Estensione PNG 

L’analisi evidenzia che 

i file con estensione PNG sono 8.856 (29%) e presentano 12.790 (17%) 
issue appartenenti a 488 (60%) applicazioni 

Le tipologie di issue più comuni in tali file sono 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

48 

 

UnusedResources 6.361 (8%), IconLocation 3.842 (5%), IconDipSize 
909 (1,16%), IconDuplicatesConfig 841 (1,07%), IconDuplicates 552 

(0,7%) 

Si riscontrano tipologie interessanti di issue, non evidenziate da altre analisi: IconDipSize, IconDuplicatesConfig, 
IconDuplicates. Per approfondimenti fare riferimento alla Tabella 5.1. 

 

La prossima analisi ha come scopo approfondire l’estensione JPG: 

 

Figura 3.44 - Report: Estensione JPG 

Si apprende che 

i file con estensione JPG sono 63 (0,38%) e presentano 76 (0,1%) issue 
appartenenti a 27 (3,3%) applicazioni 

Le tipologie di issue più comuni in tali file sono 

IconLocation e UnusedResources, rispettivamente con 35 e 30 occor-
renze 

Da tali pochi dati si può desumere che in alcuni casi si utilizzano come icone dei file con estensioneJPG anziché 
PNG. Inoltre si apprende che, nonostante siano poche le applicazioni ad avere questi file, sono comunque moltis-
simi gli errori commessi nell’utilizzarli. 

 

Le prossime due analisi si concentreranno su due tipologie particolari di file: Java e Gradle. 

 

Figura 3.45 - Report: Estensione Java 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

49 

 

Per quanto riguarda la prima estensione possiamo dire che 

i file con estensione Java sono 2.487 (15%) e presentano 8.456 (11%) 
issue appartenenti a 574 (70%) applicazioni 

Le tipologie di issue più comuni in tali file sono 

UseValueOf 1.132 (1,4%), InflateParams 1.004 (1,3%), DefaultLocale 
981 (1,2%), SetTextl18n 886 (1,1%), InlinedApi 805 (1%) 

L’estensione di tipo Gradle, invece, presenta le seguenti caratteristiche: 

 

Figura 3.46 - Report: Estensione Gradle 

c’è un unico tipo di file con estensione Gradle, ovviamente si fa riferi-
mento al file “build.gradle” 

che presenta 1.278 (1,6%) issue appartenenti a 384 (47%) applicazioni 

Le tipologie di issue più comuni in tali file sono 

GradleDependency 881 (1%), OldTargetApi 332 (0,4%), GradleDyna-
micVersion 46 (0,06%) 

L’analisi ha ovviamente portato alla luce tipologie di issue non presenti in altre casistiche. Per approfondimenti 
fare riferimento alla Tabella 5.1. 

 

3.5.4.3 Conclusioni 

In conclusione è possibile affermare sia che esistono Issue comuni a più estensioni (es. UnusedResource) sia Is-
sue specifiche per ogni tipologia di estensione, come era ovvio immaginare. 

3.6 Versione Android SDK 

3.6.1 Qual è la versione SDK con più issue? 

L’attuale obiettivo dell’analisi è apprendere se esiste una Versione SDK di Android che presenta più issue rispetto 
alle altre. 

3.6.1.1 Metrica 

Per effettuare un confronto tra SDK diverse è necessario normalizzare per numero di applicaizioni sviluppate con 
quella precisa SDK. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

50 

 

Per ricavare le informazioni utili ai fini dell’analisi è necessario fare riferimento a più tabelle, in particolare: 

 SDK utilizzata per sviluppare l’applicazione: informazione presente nel dato package.targetSdkVersion, 
ricavato dal file lint-report.xml come mostrato in Blocco codice 2.4. Il dato è stato inoltre modificato 
all’interno del Layer Analytics per ricavare dall’intero percorso il solo nome del file. 

 Tipo di issue: informazione presente nel dato issue.id, ricavato dal file lint-report.xml come mostrato in 
Blocco codice 2.4. 

3.6.1.2 Analisi 

Di seguito l’analisi effettuata: 

 

Figura 3.47 - Report: Versione SDK 

Volendo entrare nel dettaglio possiamo immediatamente constatare che 

l’SDK con più issue è la 4, seguita dalla 9 e dalla 11. 

Mentre, volendo valutare la “popolarità” di una SDK è possibile affermare che 

l’SDK più utilizzata è la 23 con cui sono state sviluppate 139 applica-
zioni (16%). 

E’ interessante notare come l’SDK 23 sia la quarta SDK con più issue. 

3.6.1.3 Conclusioni 

Effettivamente è possibile affermare che l’SDK Versione 4 è quella che presenta il maggior numero di issue. 

  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

51 

 

4 Conclusioni e Sviluppi futuri 
In conclusione è possibile affermare che tramite Lint è possibile ottenere una conoscenza concreta delle proble-
matiche del framework Android SDK e degli errori più comuni commessi dai programmatori. 

Inoltre sono stati riscontrati failure comuni a più applicazioni e a più versioni del framework che possono essere 
risolti grazie all’aiuto dello strumento Lint. 

 

Per quanto riguarda gli sviluppi futuri del progetto, un primo intervento da effettuare consiste nell’aggiornare le 
analisi con tutte le applicazioni della Repository F-Droid e magari estendere le considerazioni a diverse repository. 

  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

52 

 

5 Appendice 

Si elencheranno di seguito le Issue incontrate nel corso delle varie analisi, indicando Severity ed Explanation: 

Issue Severity Explanation 

AllowBackup Warning 
The allowBackup attribute determi-
nes if an application's data can be 
backed up and restored. 

ContentDescription Warning 

Non-textual widgets like Image-
Views and ImageButtons should use 
the `contentDescription` attribute to 
specify a textual description of the 
widget such that screen readers and 
other accessibility tools can adequa-
tely describe the user interface. 

DefaultLocale 
 

Warning 

Calling `String#toLowerCase()` or 
`#toUpperCase()` *without speci-
fying an explicit locale* is a common 
source of bugs. The reason for that 
is that those methods will use the 
current locale on the user's device, 
and even though the code appears 
to work correctly when you are de-
veloping the app, it will fail in some 
locales. For example, in the Turkish 
locale, the uppercase replacement 
for `i` is *not* `I`. 

DuplicateIds Fatal 
Within a layout, id's should be uni-
que since otherwise `findViewById()` 
can return an unexpected view 

GoogleAppIndexingWarning Warning 

Adds URLs to get your app into the 
Google index, to get installs and 
traffic to your app from Google 
Search. 

GradleDependency Warning 

This detector looks for usages of li-
braries where the version you are 
using is not the current stable re-
lease. Using older versions is fine, 
and there are cases where you deli-
berately want to stick with an older 
version. However, you may simply 
not be aware that a more recent 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

53 

 

version is available, and that is what 
this lint check helps find. 

GradleDependency Warning 

This detector looks for usages of li-
braries where the version you are 
using is not the current stable re-
lease. Using older versions is fine, 
and there are cases where you deli-
berately want to stick with an older 
version. However, you may simply 
not be aware that a more recent 
version is available, and that is what 
this lint check helps find. 

GradleDynamicVersion Warning 

Using `+` in dependencies lets you 
automatically pick up the latest avai-
lable version rather than a specific, 
named version. However, this is not 
recommended; your builds are not 
repeatable; you may have tested 
with a slightly different version than 
what the build server used. (Using a 
dynamic version as the major ver-
sion number is more problematic 
than using it in the minor version 
position.) 

HardcodedText Warning 

Hardcoding text attributes directly 
in layout files is bad for several rea-
sons. […] In Android Studio and 
Eclipse there are quickfixes to auto-
matically extract this hardcoded 
string into a resource lookup. 

IconDipSize Warning 

Checks the all icons which are provi-
ded in multiple densities, all com-
pute to roughly the same density-in-
dependent pixel (`dip`) size. This cat-
ches errors where images are either 
placed in the wrong folder, or icons 
are changed to new sizes but some 
folders are forgotten. 

IconDuplicates Warning 

If an icon is repeated under different 
names, you can consolidate and just 
use one of the icons and delete the 
others to make your application 
smaller. However, duplicated icons 
usually are not intentional and can 
sometimes point to icons that were 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

54 

 

accidentally overwritten or acciden-
tally not updated. 

IconDuplicatesConfig Warning 

If an icon is provided under different 
configuration parameters such as 
`drawable-hdpi` or `-v11`, they 
should typically be different. This 
detector catches cases where the 
same icon is provided in different 
configuration folder which is usually 
not intentional. 

IconLocation Warning 

The res/drawable folder is intended 
for density-independent graphics 
such as shapes defined in XML. For 
bitmaps, move it to `drawable-mdpi` 
and consider providing higher and 
lower resolution versions in `drawa-
ble-ldpi`, `drawable-hdpi` and `dra-
wable-xhdpi`. If the icon *really* is 
density independent (for example a 
solid color) you can place it in `dra-
wable-nodpi`. 

InflateParams Warning 

When inflating a layout, avoid pas-
sing in null as the parent view, since 
otherwise any layout parameters on 
the root of the inflated layout will 
be ignored. 

InflateParams Warning 

When inflating a layout, avoid pas-
sing in null as the parent view, since 
otherwise any layout parameters on 
the root of the inflated layout will 
be ignored. 

InlinedApi 
 

Warning 

This check scans through all the An-
droid API field references in the ap-
plication and flags certain constants, 
such as static final integers and 
Strings, which were introduced in la-
ter versions. These will actually be 
copied into the class files rather 
than being referenced, which means 
that the value is available even 
when running on older devices. In 
some cases that's fine, and in other 
cases it can result in a runtime crash 
or incorrect behavior. 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

55 

 

MissingTranslation Fatal 

If an application has more than one 
locale, then all the strings declared 
in one language should also be 
translated in all other languages. 

ObsoleteLayoutParam Warning 

The given layout_param is not defi-
ned for the given layout, meaning it 
has no effect. This usually happens 
when you change the parent layout 
or move view code around without 
updating the layout params. This will 
cause useless attribute processing at 
runtime, and is misleading for 
others reading the layout so the pa-
rameter should be removed. 

OldTargetApi Warning 

When your application runs on a 
version of Android that is more re-
cent than your `targetSdkVersion` 
specifies that it has been tested 
with, various compatibility modes 
kick in. This ensures that your appli-
cation continues to work, but it may 
look out of place. For example, if the 
`targetSdkVersion` is less than 14, 
your app may get an option button 
in the UI. 

OldTargetApi Warning 

When your application runs on a 
version of Android that is more re-
cent than your `targetSdkVersion` 
specifies that it has been tested 
with, various compatibility modes 
kick in. This ensures that your appli-
cation continues to work, but it may 
look out of place. For example, if the 
`targetSdkVersion` is less than 14, 
your app may get an option button 
in the UI. 

 

To fix this issue, set the `targe-
tSdkVersion` to the highest available 
value. Then test your app to make 
sure everything works correctly. 

Overdraw Warning 

If you set a background drawable on 
a root view, then you should use a 
custom theme where the theme 
background is null. Otherwise, the 
theme background will be painted 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

56 

 

first, only to have your custom back-
ground completely cover it; this is 
called ""overdraw". 

PxUsage Warning 

For performance reasons and to 
keep the code simpler, the Android 
system uses pixels as the standard 
unit for expressing dimension or 
coordinate values. That means that 
the dimensions of a view are always 
expressed in the code using pixels, 
but always based on the current 
screen density. 

RtlHardcoded Warning 

Using `Gravity#LEFT` and `Gra-
vity#RIGHT` can lead to problems 
when a layout is rendered in locales 
where text flows from right to left. 
Use `Gravity#START` and `Gra-
vity#END` instead. Similarly, in XML 
`gravity` and `layout_gravity` attri-
butes, use `start` rather than `left` 

SetTextI18n 
 

Warning 

When calling `TextView#setText` 

* Never call `Number#toString()` to 
format numbers; it will not handle 
fraction separators and locale-speci-
fic digits properly. Consider using 
`String#format` with proper format 
specifications (`%d` or `%f`) instead. 

* Do not pass a string literal (e.g. 
""Hello"") to display text. Hardcoded 
text can not be properly translated 
to other languages. Consider using 
Android resource strings instead. 

* Do not build messages by concate-
nating text chunks. Such messages 
can not be properly translated. 

TypographyEllipsis Warning 

You can replace the string ""..."" 
with a dedicated ellipsis character, 
ellipsis character (…, &#8230;). This 
can help make the text more rea-
dable. 

UnusedAttribute Warning This check finds attributes set in 
XML files that were introduced in a 



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

57 

 

version newer than the oldest ver-
sion targeted by your application 
(with the `minSdkVersion` attribute) 

UnusedResources Warning 
Unused resources make applications 
larger and slow down builds 

UseValueOf Warning 

You should not call the constructor 
for wrapper classes directly, such 
as`new Integer(42)`. Instead, call the 
`valueOf` factory method, such as 
`Integer.valueOf(42)`. This will typi-
cally use less memory because com-
mon integers such as 0 and 1 will 
share a single instance. 

Tabella 5.1 - Issue più frequenti 

  



Issue Android di Buonocore Salvatore, Carotenuto Gennaro, Di Palo Arcangelo 

 

58 

 

6 Riferimenti 
 

[1]  «Intro Android Lint,» [Online]. Available: https://developer.android.com/studio/write/lint.html#overview. 

[2]  «Android studio project,» [Online]. Available: http://tools.android.com/tips/lint. 

[3]  «Android studio project, lint check completi,» [Online]. Available: http://tools.android.com/tips/lint-checks. 

[4]  «F-Droid,» [Online]. Available: https://f-droid.org/. 

[5]  «PowerBI,» [Online]. Available: https://powerbi.microsoft.com/it-it/. 

 

 


	1 Introduzione
	2 Procedure e modalità di misurazione
	2.1 Objects Selection
	2.2 Data Extraction
	2.3 Issue Analysis: Architettura
	2.3.1 Data Source Layer
	2.3.1.1 File Fdroid
	2.3.1.2 File Lint

	2.3.2 Integration Layer
	2.3.2.1 Requisiti
	2.3.2.2 Utilizzo

	2.3.3 Knowledge Layer
	2.3.3.1 Requisiti
	2.3.3.2 Utilizzo

	2.3.4 Analytics Layer
	2.3.4.1 Requisiti
	2.3.4.2 Utilizzo



	3 Casi di studio
	3.1 Analisi delle issue
	3.1.1 Quali sono le issue più frequenti?
	3.1.1.1 Metrica
	3.1.1.2 Analisi
	3.1.1.3 Conclusioni

	3.1.2 Quali sono le severity più frequenti?
	3.1.2.1 Metrica
	3.1.2.2 Analisi
	3.1.2.3 Conclusioni

	3.1.3 Quali sono le categorie di Issue più frequenti?
	3.1.3.1 Metrica
	3.1.3.2 Analisi
	3.1.3.3 Conclusioni


	3.2 Andamento delle Issue negli anni
	3.2.1 Il numero di issue dimininuisce con gli anni?
	3.2.1.1 Metrica
	3.2.1.2 Analisi
	3.2.1.3 Conclusioni

	3.2.2 Il livello di severity diminuisce con gli anni?
	3.2.2.1 Metrica
	3.2.2.2 Analisi
	3.2.2.3 Conclusioni

	3.2.3 Ogni anno ha una sua issue di tendenza?
	3.2.3.1 Metrica
	3.2.3.2 Analisi
	3.2.3.3 Conclusioni

	3.2.4 Esiste un trend nelle issue?
	3.2.4.1 Metrica
	3.2.4.2 Analisi
	3.2.4.3 Conclusioni


	3.3 Età di una applicazione
	3.3.1 Applicazioni più mature presentano meno Issue?
	3.3.1.1 Metrica
	3.3.1.2 Analisi
	3.3.1.3 Conclusioni


	3.4 Category dell’Applicazione
	3.4.1 Esiste una category con più Issue?
	3.4.1.1 Metrica
	3.4.1.2 Analisi
	3.4.1.3 Conclusioni

	3.4.2 Esistono Issue peculiari per ogni categoria?
	3.4.2.1 Metrica
	3.4.2.2 Analisi
	3.4.2.3 Conclusioni


	3.5 File ed Estensione
	3.5.1 Le issue sono concentrate maggiormente in determinati file?
	3.5.1.1 Metrica
	3.5.1.2 Analisi
	3.5.1.3 Conclusioni

	3.5.2 File diversi presentano issue simili?
	3.5.2.1 Metrica
	3.5.2.2 Analisi
	3.5.2.3 Conclusioni

	3.5.3 Quali estensioni hanno più issue?
	3.5.3.1 Metrica
	3.5.3.2 Analisi
	3.5.3.3 Conclusioni

	3.5.4 Esistono issue peculiari per ogni estensione o file?
	3.5.4.1 Metrica
	3.5.4.2 Analisi
	3.5.4.3 Conclusioni


	3.6 Versione Android SDK
	3.6.1 Qual è la versione SDK con più issue?
	3.6.1.1 Metrica
	3.6.1.2 Analisi
	3.6.1.3 Conclusioni



	4 Conclusioni e Sviluppi futuri
	5 Appendice
	6 Riferimenti

