
Porfirio Tramontana – Android Testing 1

Android Testing

Porfirio Tramontana – Android Testing 2

Android Testing: generalità

Un’applicazione Android in senso lato è
composta di un lato client e di una o più
tipologie di risorse lato server
Web Applications, Web Services, Risorse REST …

Ci si limiterà allo studio delle problematiche del
testing della parte client, la cosiddetta app

Una app Android è sostanzialmente
un’applicazione interattiva sottoposta a:
Eventi utente (eventi touch, segnali da sensori)

Eventi di sistema (interruzioni, segnali broadcast)

Porfirio Tramontana – Android Testing 3

Android Testing: generalità

E’ necessario definire, adattandoli all’ambiente Android:

test models, per rappresentare le tipologie di elementi e interazioni da
considerare e procare;

testing levels, che specifichino i diversi punti di vista e obiettivi rispetto
ai quali viene progettato il testing;

test strategies, che definiscono obiettivi, euristiche e algoritmi da
seguire nella progettazione dei casi di test;

testing processes, che definiscono le modalità di esecuzione dei processi
per il testing delle applicazioni Android;

testing tools, strumenti a supporto delle attività di testing, in particolare
a supporto della loro automazione

Gerarchia dei test

• I test di unità sono i più numerosi ma i più
semplici

• Essi possono essere eseguiti su di un PC, senza alcun
emulatore o dispositivo reale

• I test di integrazione considerano parti dell’app,
eventualmente togliendo dipendenze da servizi

• Sono eseguiti su di un emulatore

• I test di sistema sono avviati da interfaccia
utente

• Generalmente eseguiti su dispositivo reale, eventualmente
disponibile in remoto

Porfirio Tramontana – Android Testing

Unit testing

• Il testing di unità di un’applicazione Android riguarda singoli
metodi/classi scritti in Java

• Può essere realizzato utilizzando Junit

• I test possono essere eseguiti avendo a disposizione un’istanza della
macchina virtuale che interpreta Java

• In passato era sufficiente una macchina Java, ora invece c’è una macchina

equivalente (OpenJDK)

• I test sono eseguiti sulla macchina di sviluppo, senza bisogno di un
emulatore o di un dispositivo reale

• In questo modo, i test possono essere eseguiti molto velocemente e con

ridotto utilizzo di risorse

• Per realizzare test in isolamento, può essere necessario fare ricorso
a mock

• https://developer.android.com/training/testing/unit-testing/local-unit-tests.html

Porfirio Tramontana – Android Testing

Esempio di unit testing

public class MezzoUtility {

private Double costoIntero=0.0;

private Boolean setCircaIntero=false;

private Boolean setCircaResidente=false;

private Double costoResidente=0.0;

@Test

public void MezzoTest1(){

costoIntero=0.0;

setSetCircaIntero(false);

setSetCircaResidente(false);

setCostoResidente(0.0);

calcolaCosto("Traghetto Caremar","Pozzuoli");

assertEquals(10.0, costoIntero);

assertTrue(setCircaIntero);

assertFalse(setCircaResidente);

assertEquals(2.40, costoResidente);

}

public void calcolaCosto(String n,String p) {

if (n.contentEquals("Traghetto Caremar")

&& p.contentEquals("Pozzuoli")){

costoIntero=10.0;

setSetCircaIntero(true);

setCostoResidente(2.40);

return;

}

Nella stessa classe del
codice da testare

Porfirio Tramontana – Android Testing

Altro esempio

package test;

import com.porfirio.orariprocida2011.MezzoUtility;

import org.junit.Test;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

public class MezzoUtilityUnitTest {

@Test
public void MezzoUnitTest1(){

double costoIntero=0.0;
boolean setCircaIntero=false;
boolean setCircaResidente=false;
double costoResidente=0.0;

MezzoUtility mu = new MezzoUtility();
mu.calcolaCosto("Traghetto Caremar","Pozzuoli");
assertEquals(10.0, mu.getCostoIntero(), 0.01);
assertTrue(mu.getSetCircaIntero());
assertFalse(mu.getSetCircaResidente());
assertEquals(2.40, mu.getCostoResidente(),0.01);

}
}

In una classe di test
separata

Come si può osservare, i
test sono eseguiti da una
virtual machine java (jre)

classica

Porfirio Tramontana – Android Testing

8

Testing di sistema (GUI testing)

E’ possibile utilizzare un framework come Junit per le applicazioni
Android (in particolare per le Activity)?

Problema: una sola activity può accedere attivamente all’interfaccia
utente.

Soluzione: un framework di testing che esegua la activity sotto testing
come sua parte, utilizzando funzionalità di instrumentazione per
poterla monitorare

In questo modo, è possibile pensare di testare una Activity scrivendo dei
classici Android JUnit Test Cases, nell’ambito, però, di un project
separato

Questi test sono denominato Instrumentation Tests poiché in pratica
l’applicazione sotto test è «instrumentata» dalla presenza del
progetto di test

Porfirio Tramontana – Android Testing

9

Android Test Architecture

Porfirio Tramontana – Android Testing

Android GUI Testing

• E’ possibile sfruttare le librerie
InstrumentationTestRunner per realizzare
test eseguibili che guidino direttamente la
GUI di un’applicazione Android

• Diversi strumenti e librerie sono stati
realizzati nel tempo per consentire una
più semplice scrittura ed esecuzione di tali
test:

• Robotium

• Android Espresso

Porfirio Tramontana – Android Testing

11

Robotium

Robotium è un framework a supporto del testing di
unità delle Activity che estende e potenzia Junit.
In particolare:
è più semplice scrivere test che riguardano più

Activity, Dialog, Toast, Menu e Context Menu.

E’ migliorata la leggibilità dei test case

I test case sono meno dipendenti dalla
variabilità dei tempi di esecuzione

Robotium è un progetto open source la cui prima
versione è stata rilasciata a gennaio 2010
http://code.google.com/p/robotium/

Porfirio Tramontana – Android Testing

http://code.google.com/p/robotium/

12

Caratteristiche di Robotium

Il funzionamento di Robotium è tutto basato
sull’utilizzo di un oggetto denominato SOLO
Solo solo = new Solo(getInstrumentation(),getActivity());

Tramite l’oggetto solo è possibile interrogare e
modificare i widget della UI, eventualmente
anche senza conoscerne l’identificativo
Particolarmente utile nei test di accettazione

Ad esempio, è possibile selezionare l’insieme dei widget
visibili oppure è possibile selezionare un widget in base al
testo che mostra

Porfirio Tramontana – Android Testing

13

Esempi

public void testTextView(){

String resourceString = new
String(solo.getString(com.porfirio.orariprocida2011.R.string.mezzo)
);

TextView mTextView1=solo.getText(1);

assertEquals(resourceString,(String)mTextView1.getText());

}

public void testButtonRobotium(){

TextView mTxtOrario=solo.getText(3);

String initial=new String(mTxtOrario.getText().toString());

solo.clickOnButton("<<");

solo.clickOnButton(">>");

assertEquals(mTxtOrario.getText().toString(),initial);

}

Porfirio Tramontana – Android Testing

Android Testing Support Library

• Android Testing Support Library (ATSL) è il nome
complessivo sotto il quale sono riuniti alcune librerie
e strumenti a supporto del testing di applicazioni
Android, tra cui

• Il supporto per Junit

• la libreria Android Espresso

• La libreria Robolectric

Porfirio Tramontana – Android Testing

Android Espresso

• Android Espresso è una libreria analoga a Robotium,
sviluppata da Google e rilasciata nel 2014

• Anch’essa consente di scrivere test Junit eseguibili
tramite l’esecutore AndroidJUnitRunner che esegue
il progetto sotto test «instrumentato» dalle classi di
test

Porfirio Tramontana – Android Testing

Android Espresso

Con Android Espresso è possibile:

• guidare l’esecuzione di eventi direttamente su oggetti della GUI

• button.perform(click());

• Riferire un oggetto della GUI tramite onView

• I metodi with* utilizzati insieme ad allOf consentono di individuare un oggetto a partire da una sua
caratteristica (ad esempio withText)

• ViewInteraction button = onView(allOf(withId(android.R.id.button1), withText("OK"), isDisplayed()));

• Eseguire asserzione su proprietà degli elementi dell’interfaccia

• textView.check(matches(withText("Aliscafo Caremar - Pozzuoli - Procida - 08:50 ")));

• Più recentemente sono state aggiunte funzioni

• per interagire con gli Intent e con widget complessi come le WebView

• Per eseguire test di accessibilità

• Per eseguire test multiprocesso

https://developer.android.com/training/testing/espresso/index.html

https://developer.android.com/training/testing/espresso/cheat-sheet.html

Porfirio Tramontana – Android Testing

https://developer.android.com/training/testing/espresso/index.html

Strumenti di Capture & Replay

• Esistono alcuni strumenti che supportano il Capture & Replay di
casi di test per applicazioni Android e la loro traduzione in test
Junit

• Espresso Test Recorder (gratuito, integrato con Android Studio, utilizzabile
per versioni di Android da Kit Kat in poi)

• TestDroid (a pagamento, per ADT, genera test che utilizzano Robotium)
http://testdroid.com/products

• Robotium Recorder (gratuito per i primi 5 test generati, sia per ADT che per
Android Studio, fa parte del progetto Robotium)
http://robotium.com/products/robotium-recorder

Porfirio Tramontana – Android Testing

http://robotium.com/products/robotium-recorder

Espresso Test Recorder

• Per utilizzare Espresso Test Recorder è
sufficiente:

• Scegliere l’opzione Record Espresso Test e indicare una
macchina reale o virtuale

• Eseguire una sequenza di eventi sull’interfaccia della
macchina Android (il pannello mostrerà un riassunto di
tale sequenza)

• Aggiungere una o più asserzioni

• Lo strumento … aiuterà il tester a riconoscere e definire elementi

dell’interfaccia rispetto ai quali basare le asserzioni

• I Test generati sono test Android Espresso

Porfirio Tramontana – Android Testing

Esempio: registrazione eventi

Porfirio Tramontana – Android Testing

Esempio: aggiunta asserzione

Porfirio Tramontana – Android Testing

Esempio: codice generato (estratti)

@LargeTest
@RunWith(AndroidJUnit4.class)
public class OrariProcida2011ActivityTest2 {

@Rule
public ActivityTestRule<OrariProcida2011Activity> mActivityTestRule = new

ActivityTestRule<>(OrariProcida2011Activity.class);

@Test
public void orariProcida2011ActivityTest2() {

ViewInteraction button = onView(
allOf(withId(android.R.id.button1), withText("OK"), isDisplayed()));

button.perform(click());

ViewInteraction spinner = onView(
allOf(withId(R.id.spnNave),

withParent(withId(R.id.linearLayout1)),
isDisplayed()));

spinner.perform(click());

ViewInteraction textView = onView(
allOf(withId(android.R.id.text1), withText("Aliscafo Caremar - Pozzuoli - Procida - 08:50 "),

childAtPosition(
allOf(withId(R.id.listMezzi),

childAtPosition(
IsInstanceOf.<View>instanceOf(android.widget.LinearLayout.class),
4)),

0),
isDisplayed()));

textView.check(matches(withText("Aliscafo Caremar - Pozzuoli - Procida - 08:50 ")));

Porfirio Tramontana – Android Testing

Robolectric

• Con Junit è possibile eseguire test di unità «rapidi» con una virtual
machine locale anziché con ART solo per casi di test del tutto
indipendenti da elementi specifici di Android

• I casi di test di sistema o della GUI scritti con Android Espresso sono
invece eseguibili solo su emulatori o dispositivi reali

• Una soluzione alternativa per l’esecuzione di casi di test di unità senza
utilizzare emulatori o device è rappresentata dal framework
Robolectric

• In pratica Robolectric mette a disposizione implementazioni alternative (mock) di alcune versioni
(quasi complete) del framework Android

• Scegliendo Robolectric come esecutore di test Junit, questi test verranno eseguiti in un ambiente
mock che, in particolare, fa uso di una macchina virtuale locale anziché di emulatori o dispositivi

• http://robolectric.org/

• www.vogella.com/tutorials/Robolectric/article.html

• https://www.programcreek.com/java-api-examples/index.php?class=org.robolectric.util.ActivityController&method=get

Porfirio Tramontana – Android Testing

http://robolectric.org/
http://www.vogella.com/tutorials/Robolectric/article.html

Robolectric: esempio

Un test Robolectric «appare» quasi identico ad un test Android
Junit:

@RunWith(RobolectricTestRunner.class)

public class MyActivityTest {

@Test

public void clickingButton_shouldChangeResultsViewText() throws Exception {

MyActivity activity = Robolectric.setupActivity(MyActivity.class);

Button button = (Button) activity.findViewById(R.id.button);

TextView results = (TextView) activity.findViewById(R.id.results);

button.performClick();

assertThat(results.getText().toString()).isEqualTo("Robolectric Rocks!");

}

}

Porfirio Tramontana – Android Testing

Robolectric: esempio

• Questo codice viene però eseguito su di una
macchina virtuale non Android, che in qualche
modo sostituisce automaticamente con mock
tutte le classi necessarie all’esecuzione del
test
• In questo caso la classe MyActivity (che estende Activity del

framework) sotto test, Button e TextView

• Non c’è quindi bisogno di utilizzare o implementare classi Mock
specifiche

Porfirio Tramontana – Android Testing

Confronto tra Robolectric e Espresso

• Consideriamo una applicazione
semplicissima, con un testo e un pulsante.
Premendo il pulsante, cambia il testo

Porfirio Tramontana – Android Testing

Test registrato con Android Espresso Test Recorder
(estratto)

@LargeTest

@RunWith(AndroidJUnit4.class)

public class DeckardEspressoRecorderTest {

@Rule

public

ActivityTestRule<DeckardActivity>

mActivityTestRule = new

ActivityTestRule<>(DeckardActivity.clas

s);

@Test

public void deckardActivityTest() {

ViewInteraction textView = onView(

allOf(withId(R.id.text),

withText("Hello Espresso!"),

childAtPosition(

allOf(withId(R.id.content_layout),

childAtPosition(

withId(android.R.id.content), 0)), 1),

isDisplayed()));

textView.check(matches(withText("Hello

Espresso!")));

ViewInteraction button =

onView(allOf(withId(R.id.button),withTe

xt("Button"), childAtPosition

(allOf(withId(R.id.content_layout),

childAtPosition(withId(android.R.id.con

tent), 0)),0), isDisplayed()));

button.perform(click());

ViewInteraction textView2 =

onView(allOf(withId(R.id.text),

withText("Touched!"),

childAtPosition(allOf(withId(R.id.conte

nt_layout),

childAtPosition(withId(android.R.id.con

tent), 0)),1), isDisplayed()));

textView2.check(matches(withText("Touch

ed!")));

}

Porfirio Tramontana – Android Testing

Test con Robolectric

@RunWith(RobolectricTestRunner.class)

public class DeckardRobolectricTest {

DeckardActivity activity;

@Before

public void setup(){

assertNotNull(shadowOf(RuntimeEnviro

nment.application));

assertTrue(Robolectric.setupActivity

(DeckardActivity.class) != null);

activity =

Robolectric.setupActivity(DeckardAct

ivity.class);

}

@Test

public void testSomething() {

TextView t = (TextView)

activity.findViewById(R.id.text);

assertEquals(t.getText(),"Hello

Espresso!");

}

@Test

public void testButton {

TextView t = (TextView)

activity.findViewById(R.id.text);

Button b=(Button)

activity.findViewById(R.id.button);

b.performClick();

assertEquals(t.getText(),"Touched!")

; } }

Porfirio Tramontana – Android Testing

Robolectric vs Espresso

• Robolectric è in grado di eseguire test molto più
velocemente, e con minori risorse di memoria

• Il funzionamento di Robolectric non è soggetto a
corse critiche

• La fedeltà dei test che utilizzano Espresso dipende dall’aggiunta di
rallentamenti (sleep) atti ad evitare di eseguire eventi su widget che
non siano ancora pronti a rispondere

• Robolectric non supporta il testing di sistema

• può testare soltanto una activity e il passaggio ad una activity
diversa

User Interface Testing

Proposta di progetto d’esame

• Progettare una test suite a livello funzionale con
Espresso Test Recorder

• Eventualmente per l’applicazione che si è sviluppata come progetto
Android

• Trasformare la test suite in una versione eseguibile
con Robolectric

• Confrontare le due test suite in termini di copertura
del codice sorgente

• Generalizzare regole di trasformazione dei test da
Robolectric verso Espresso e viceversa

• Sono disponibili alcuni esempi svolti di test più complessi equivalenti

Porfirio Tramontana – Android Testing

Ulteriore proposta di progetto d’esame

• Avendo a disposizione test suite sviluppate con
Robotium Recorder, su semplici applicazioni
esistenti, trasformare la test suite in una versione
eseguibile con Robolectric

• Confrontare le due test suite in termini di copertura
del codice sorgente

• Generalizzare regole di trasformazione dei test da
Robolectric verso Robotium e viceversa

• Sono disponibili alcuni esempi svolti di test più complessi equivalenti

Porfirio Tramontana – Android Testing

Test di sistema con UIAutomator

• UIAutomator è un insieme di librerie che specializza Android
Espresso mettendo a disposizione metodi che permettono di
testare anche l’interazione dell’applicazione con il resto
dell’ambiente. Ad esempio, mette a disposizione metodi per
simulare:

• La rotazione del dispositivo (portrait/landscape)

• L’utilizzo di pulsanti fisici (Back, Home, etc.)

• Interazioni con la barra delle notifiche

• Interazioni tra activity diverse

• Inoltre, consente di prendere uno screenshot della GUI

• In pratica, consente di eseguire una applicazione in parziale
integrazione con il resto del sistema

• https://developer.android.com/training/testing/ui-automator.html

Porfirio Tramontana – Android Testing

Esempio UIAutomator 1/2

private UiDevice mDevice;

@Before

public void startMainActivityFromHomeScreen() {

// Initialize UiDevice instance

mDevice = UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());

// Start from the home screen

mDevice.pressHome();

final String launcherPackage = getLauncherPackageName();

assertThat(launcherPackage, notNullValue());

mDevice.wait(Until.hasObject(By.pkg(launcherPackage).depth(0)),LAUNCH_TIMEOUT);

// Launch the blueprint app

Context context = InstrumentationRegistry.getContext();

final Intent intent = context.getPackageManager()

.getLaunchIntentForPackage("com.example.android.testing.uiautomator.BasicSample");

intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);

// Clear out any previous instances

context.startActivity(intent);

mDevice.wait(Until.hasObject(By.pkg

("com.example.android.testing.uiautomator.BasicSample").depth(0)), LAUNCH_TIMEOUT);

}

Accede all’activity dell’app dall’esterno, con l’oggetto mDevice

Porfirio Tramontana – Android Testing

Esempio UIAutomator 2/2

@Test

public void testChangeText_newActivity() {

// Type text and then press the button.

mDevice.findObject(By.res("com.example.android.testing.uiautomator.BasicSampl

e", "editTextUserInput")).setText("UIAutomator");

mDevice.findObject(By.res("com.example.android.testing.uiautomator.BasicSampl

e", "activityChangeTextBtn")).click();

// Verify the test is displayed in the Ui

UiObject2 changedText =

mDevice.wait(Until.findObject(By.res("com.example.android.testing.uiautomator

.BasicSample", "show_text_view")), 500 /* wait 500ms */);

assertThat(changedText.getText(), is(equalTo("UIAutomator")));

}

Il click causa un cambiamento di activity e solo successivamente l’asserzione
sull’oggetto show_text_view della seconda activity

Porfirio Tramontana – Android Testing

Proposta di progetto

• A partire da una applicazione Android esistente (ad
esempio quella sviluppata nell’altro progetto
d’esame), scrivere test con UIAutomator in grado di:

• Verificare il funzionamento dell’applicazione in presenza di interazioni
con il dispositivo (rotazione, controlli volume, …)

• Verificare il funzionamento corretto dell’applicazione a seguito di
apertura/chiusura o interruzione dovuta ad altra applicazione (ad
esempio col tasto Home, oppure per una telefonata o altra notifica)

• Eseguire test che seguano la corretta esecuzione di una sequenza di
activity

• Verificare la corretta interazione dell’app con eventuali altre app o
Service con le quali interagisce

Porfirio Tramontana – Android Testing

35

Android Device Monitor

Android Device Monitor è uno strumento dell’Android SDK che:

Monitora il comportamento della macchina virtuale

Accesso al file system

Thread in esecuzione

Allocazione della memoria

Log dei messaggi

Utilizzo della rete

Consente l’emulazione (spoofing) di

Variazioni nelle coordinate GPS

Ricezioni di messaggi SMS

Ricezione di telefonate

Si tratta di uno strumento standalone, che può essere utilizzato per

monitorare sia macchine reali che virtuali, e può essere utilizzato

anche da Android Studio (menu Tools)
Porfirio Tramontana – Android Testing

36

Android Device Monitor

Porfirio Tramontana – Android Testing

37

Monkey

Monkey è un’utility interna fornita con
l’android SDK, che è in grado di
generare eventi utente pseudocasuali
su una qualsiasi interfaccia,
registrando gli eventuali crash

Monkey gira all’interno del dispositivo; per avviarla
bisogna passare per adb. Ad esempio, da linea
di comando:

adb shell monkey –v -p

com.porfirio.orariprocida2011 30

Porfirio Tramontana – Android Testing

38

Output di Monkey

:Monkey: seed=0 count=30

:AllowPackage: com.porfirio.orariprocida2011

:IncludeCategory: android.intent.category.LAUNCHER

:IncludeCategory: android.intent.category.MONKEY

// Event percentages:

// 0: 15.0%

// 1: 10.0%

// 2: 15.0%

// 3: 25.0%

// 4: 15.0%

// 5: 2.0%

// 6: 2.0%

// 7: 1.0%

// 8: 15.0%

:Switch:
#Intent;action=android.intent.action.MAIN;category=android.intent.category.LAUNCHER;launchFlags=0x10000000;component=com.porfirio.orariprocida2011
/.OrariProcida2011Activity;end

// Allowing start of Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
cmp=com.porfirio.orariprocida2011/.OrariProcida2011Activity } in package com.porfirio.orariprocida2011

:Sending Pointer ACTION_MOVE x=-4.0 y=2.0

:Sending Pointer ACTION_UP x=0.0 y=0.0

:Sending Pointer ACTION_DOWN x=47.0 y=122.0

Events injected: 30

:Dropped: keys=0 pointers=0 trackballs=0 flips=0

Network stats: elapsed time=7766ms (7766ms mobile, 0ms wifi, 0ms not connecte

d)

// Monkey finished

Porfirio Tramontana – Android Testing

39

Monkeyrunner

Monkeyrunner, a differenza di monkey, è un API che consenta la scrittura di
programmi in grado di controllare un dispositivo Android dall’esterno

Ad esempio è possibile scrivere un programma Python che installa
un’applicazione, esegue casi di test, invia eventi, salva screenshot

Esempio di programma:
from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice
device = MonkeyRunner.waitForConnection()
device.installPackage('myproject/bin/MyApplication.apk')
package = 'com.example.android.myapplication'
activity = 'com.example.android.myapplication.MainActivity'
runComponent = package + '/' + activity
device.startActivity(component=runComponent)
device.press('KEYCODE_MENU', MonkeyDevice.DOWN_AND_UP)
result = device.takeSnapshot()

result.writeToFile('myproject/shot1.png','png')

Porfirio Tramontana – Android Testing

Confronti

• I test scritti con Robotium, Espresso, …
sono scritti in Java e agiscono a livello di
virtual machine

• I test eseguiti da Monkey e quelli scritti
con MonkeyRunner agiscono a livello di
stream degli eventi e sono eseguiti a
livello di shell del sistema operativo

• In alternativa, è possibile interagire direttamente con
lo stream degli eventi utilizzando le primitive
getevent e sendevent

Porfirio Tramontana – Android Testing

41

Android Ripper

Una alternativa, con più “intelligenza” di
Monkey è l’Android Ripper sviluppato
all’Università di Napoli

Navigazione “in ampiezza” o “in profondità”
dell’interfaccia utente di un’applicazione Android

Esecuzione di eventi su tutti i Widget trovati

Generazione di sequenze di esecuzione

Generazione di casi di test JUnit

Rilevazione automatica di crash

Valutazione della copertura ottenuta (con Emma)

Porfirio Tramontana – Android Testing

1. Task List Initialization;

2. while (Task List Is Not Empty) {

3. Extract a Task From The Task
List;

4. Execute the Task;

5. Abstract the Current GUI
Abstract State;

6. Update the GUI Tree Model;

7. if (GUI Exploration Criterion)
then {

8. Define New Tasks ;

9. Add New Tasks To The Task
List;

10. }

11. }

42

Rotate

Press MenuClick Refresh
Click

New

Post

Click Pages

Click About
Click Add

Account

≡
≡

Click

Edit

Crash

…

…

Click Save

……

Ripping
Algorithm

1. Task List Initialization;

2. while (Task List Is Not
Empty) {

3. Extract a Task From
The Task List;

4. Execute the Task;

5. Abstract the Current
GUI Abstract State;

6. Update the GUI Tree
Model;

7. if (GUI Exploration
Criterion) then {

8. Define New Tasks ;

9. Add New Tasks To
The Task List;

10. }

11. }

Porfirio Tramontana – Android Testing

43

Parametri

• L’esempio precedente mostra:

• Navigazione in ampiezza dell’albero delle interfacce
utente

• Estrazione di tutti i widget presenti in ogni
interfaccia

• Inserimento di numeri interi casuali nei campi di
testo

• Navigazione di tutte le interfacce che abbiano
almeno un widget diverso dalle interfacce già
visitate

• Terminazione della visita al raggiungimento di
foglie tutte corrispondenti a stati già visitati

Porfirio Tramontana – Android Testing

44

Configurazione

• Il Ripper può essere configurato in base a:

• tipo di esplorazione

• Es.: random o sistematica

• strategia di navigazione

• Es.: casuale, in ampiezza o in profondità

• insieme di widget considerati

• Es.: tutti i widget per i quali sia stato registrato un listener

• Valori da inserire nei campi di testo

• Es.: numeri interi casuali o costanti

• Criterio di equivalenza tra schermate

• Es.: considerare equivalenti (e non esplorare ulteriormente) interfacce che abbiano

almeno un widget diverso dalle interfacce già visitate, oppure che abbiano almeno

un listener diverso, oppure che differiscano per almeno un valore in un campo di

input

• Criterio di Terminazione

• Ad esempio quando tutte le foglie sono state visitate, oppure al raggiungimento di

una profondità massimo, di un numero di stati prefissato oppure di un tempo

massimo prefissato

Porfirio Tramontana – Android Testing

Osservazioni e Problemi

• La navigazione sistematica può essere meno efficace di quella casuale

• La navigazione casuale è molto meno efficiente di quella sistematica

• Un criterio di equivalenza troppo discriminante (ad esempio che consideri
diverse due schermate che differiscono solo per il valore di un’etichetta) può
portare a delle navigazioni indefinitamente lunghe (ad esempio se il valore
dell’etichetta è l’istante attuale)

• Un criterio di equivalenza poco discriminante può avere scarsa efficacia (scoprire
poche interfacce diverse)

• Non tutte le precondizioni possono essere controllate (ad es. il valore di risorse
remote, come in una applicazioni di scommesse, oppure l’orario esatto, in una
applicazione orologio), quindi alcuni test generati potrebbero non essere
ripetibili

• Alcuni widget (ad esempio le liste) possono essere composte di un numero di
widget componenti (gli elementi della lista) indefinitamente crescente (in tal
caso sarebbe più saggio non considerare tutti questi widget, ma solo un
quantitativo limitato di essi, ad esempio i primi tre)

Porfirio Tramontana – Android Testing

Misura della copertura: test di unità

• Nel caso di test di unità, la misura della
copertura può essere ottenuta con gli stessi
strumenti (ad es. Emma) utilizzati per
programmi Java

• Eseguendo Run
Test With
Coverage in
Android Studio,
viene misurata la
copertura e
visualizzata nel
riquadro laterale
Coverage

Porfirio Tramontana – Android Testing

Misura di copertura: Instrumentation test

• La misura della copertura può essere
ottenuta con strumenti di terze parti,
come JaCoCo ed Emma

• JaCoCo dispone anche di un plugin che consente
l’integrazione in Android Studio

• Emma può essere utilizzato da linea di comando

Porfirio Tramontana – Android Testing

JaCoCo Tutorial 1/2

android { buildTypes { debug {

testCoverageEnabled = true } } }

apply plugin: 'jacoco'

jacoco { toolVersion =

"0.7.7.201606060606"}

def fileFilter = [

'com/androidjacoco/sample/**/view/**.*',

'**/R.class', '**/R$*.class',

'**/BuildConfig.*',

'**/Manifest*.*', '**/*Test*.*',

'android/**/*.*']

def debugTree = fileTree(dir:

"${buildDir}/intermediates/classes/deb

ug", excludes: fileFilter)

def mainSrc =

"${project.projectDir}/src/main/java"

task customJacocoTestReport(type:

JacocoReport, dependsOn: 'test') {

reports {

html.enabled = true

html.destination =

"${buildDir}/reports/jacoco"

}

sourceDirectories = files([mainSrc])

classDirectories = files([debugTree])

executionData =

files("${buildDir}/jacoco/testDebugUnitTe

st.exec")

}

Nel file build.gradle bisogna aggiungere :

In questo modo abbiamo incluso il plugin ‘jacoco’, dichiarato le classi che ci interessa coprire,
la posizione dei test, la destinazione dei report e il fatto che i report devono essere generati
a seguito di un’attività di test

Porfirio Tramontana – Android Testing

JaCoCo Tutorial 2/2

• Per eseguire i test bisogna avviare il task CreateDebugCoverageReport
di Gradle

• da linea di comando o dalla scheda Gradle nella sezione verification di App

• Il risultato finirà nella sottocartella reports/coverage di build

• Attenzione: il fallimento di uno dei test potrebbe prevenire la misura della copertura

Porfirio Tramontana – Android Testing

51

Emma

Emma è uno strumento di istrumentazione del codice
sorgente che consente di valutare l’effettiva
copertura del codice ottenuta a seguito
dell’esecuzione di un insieme di casi di test

Può essere eseguito solo da linea di comando, tramite
adb. Ad esempio:

adb shell am instrument -w -e coverage true [Package di
test]/android.test.InstrumentationTestRunner

Genera report e metriche, anche in formato HTML

Porfirio Tramontana – Android Testing

52

Output di EMMA

Porfirio Tramontana – Android Testing

53

Copertura del codice con EMMA

Porfirio Tramontana – Android Testing

Testing sul campo

• Cloud testing

• Alpha Testing

• Beta Testing

Porfirio Tramontana – Android Testing

Cloud Testing: Google Firebase

Firebase è una soluzione cloud acquisita nel 2014 da Google che raccoglie
in sé diversi servizi cloud offerti gratuiti o a pagamento

Firebase può essere utilizzato direttamente dalla sua interfaccia web
oppure integrato in Android Studio

https://console.firebase.google.com/u/0/

Porfirio Tramontana – Android Testing

Firebase Test Lab

• In particolare Firebase Test Lab consente di
eseguire automaticamente, in ambiente
cloud:

• Test scritti con Android Espresso

• Test generati automaticamente da uno strumento
chiamato Robo

• Robo cerca di eseguire sistematicamente azioni avendo

osservato i possibili widget sui quali applicarle

• Firebase Test Lab genera, screenshot e video delle
esecuzioni fatte, le organizza in una mappa delle
navigazioni, e riporta il logcat con le eccezioni ricevute

Porfirio Tramontana – Android Testing

Firebase Test Lab

• Robo consente di eseguire un test automatico, fissato il livello massimo di profondità, il
tempo di test, e i valori di login e password per eventuali campi di questo tipo

• In alternativa è possibile far partire i propri script di test

• Oppure far partire un test «di gioco» a partire da un Intent scritto appositamente

User Interface Testing

Output Robo Test

• Un test automatico con l’algoritmo Robo
offre diversi output utili:

• Logcat

• Screenshot di tutte le schermate ottenute,
organizzati anche in una mappa delle avvenute
navigazioni e sotto forma di video

• Analisi delle prestazioni (Utilizzo della CPU,
Occupazione di memoria, Utilizzo della rete)

User Interface Testing

Esempio Output Robo

Porfirio Tramontana – Android Testing

Risorse per il Cloud Testing

• Una rassegna sulle risorse per il cloud testing
e sui rispettivi costi, aggiornati all’inizio del
2017 è riportato in un progetto d’esame
svolto

• CloudTesting_Pagliaro.pdf

• Un primo confronto tra l’efficacia di
strumenti di testing client e strumenti cloud
come Robo e Amazon Fuzz è riportato in un
progetto d’esame svolto del 2016

• ConfrontoToolTestingAndroid_Losco.pdf

User Interface Testing

Progetto proposto

• Approfondire dal punto di vista
metodologico e dal punto di vista pratico
le principali funzioni di testing messe a
disposizione da Firebase:

• Firebase Test Lab (modalità gioco e Robo)

• Firebase Performance

• Firebase Crash Report

• Firebase Functions

Porfirio Tramontana – Android Testing

Alpha e Beta Testing

• Le fasi di Alpha e Beta Testing coinvolgono, rispettivamente,
persone coinvolte nel progetto (non sviluppatori) e potenziali
utenti del sistema da realizzare

• La console di pubblicazione
https://play.google.com/apps/publish consente di impostare e
valutare attività di alpha testing e beta testing

Porfirio Tramontana – Android Testing

https://play.google.com/apps/publish

Alpha testing

E’ possibile impostare un elenco di tester (qualificandoli con il loro indirizzo gmail/ account
Google), oppure un alpha testing aperto a tutti, oppure aperto ad un gruppo Google
esistente

Una volta impostato l’elenco, basta caricare una versione dell’apk, che rimarrà visibile solo a
partire da un link specifico su google play e solo agli utenti abilitati

Porfirio Tramontana – Android Testing

Alpha Testing e Beta Testing

• Gli Alpha tester (Beta Tester)
vedranno (collegandosi a
Google Play oppure vedendo un
nuovo aggiornamento dell’app)
le schermate di fianco

• I dati ricavati dagli Alpha Tester
contribuiranno a riempire il
Rapporto Pre-Lancio, nel quale
ci sono anche gli esiti di alcuni
test automatici

• Le versioni alpha possono
essere «promosse» a beta

• La differenza tra alpha e beta è
solo concettuale, ma le opzioni
attive sono le stesse

• Le versioni beta possono essere
«promosse» a versioni di
produzione

Porfirio Tramontana – Android Testing

Tracce proposte

Il progetto Android da realizzare è a scelta degli
studenti

Si raccomanda la realizzazione di una app che possa
sfruttare alcune delle peculiarità delle applicazioni
mobili

Sensori, connessioni, servizi, touchscreen, database locale, interazione
con i servizi telefonici …

Nel caso in cui si realizzi una applicazione distribuita
(ad esempio client/server) ai fini del giudizio verrà
tenuta in conto primariamente la complessità e la

qualità del lato client (android)

68Porfirio Tramontana – Android Testing

Applicazioni possibili

(quest’elenco viene pubblicato a puro titolo di esempio e di possibile ispirazione, ma ogni gruppo
può scegliere liberamente una applicazione da realizzare)

Ombrello, app che prende in input orario e luogo di partenza e di arrivo, e mezzo di
locomozione in un viaggio/spostamento e cerca di quantificare la probabilità che
sia necessario l’ombrello, interrogando appositi servizi meteo

Luna Rossa, app che, noti dati astronomici sulla posizione relativa di sole, luna e
osservatore, cerchi di indovinare se si verificherà una luna rossa (ad esempio
luna sull’orizzonte ad ovest poco dopo il tramonto del sole)

Controllo Volume, app che controlla il volume della suoneria del telefono in base ad
alcuni fattori ambientali (rumore di fondo, prossimità, illuminazione)

Tombola da Bar, app che consente di organizzare una partita ad un gioco come la
tombola (ma va bene anche un qualsiasi altro gioco con molti giocatori, ad
esempio un quiz o un sorteggio) nel quale ogni giocatore ha un proprio client
Android e, eventualmente, c’è un server (o servizio) per il mantenimento dello
stato della partita

69Porfirio Tramontana – Android Testing

Applicazioni possibili

Caccia Al Tesoro, estensione dell’esempio visto al corso, con la gestione della
coordinazione tra diversi giocatori che giocano in contemporanea

Campo Minato nel mondo reale, nel quale il client Android piazza delle «mine» in
punti geografici e il giocatore deve correre da un punto all’altro mantenendo
attivo il gps e evitando di avvicinarsi troppo ad alcuna delle «mine»

Pac Man nel mondo reale: scopo del gioco è quello di passare per tutti i punti di
interesse (come le palline di un Pac Man) il più velocemente possibile
(percorrendo il minor spazio possibile). Questo «gioco» può avere anche
connotazione culturale, aiutando il turista a percorrere un centro storico
osservando tutti i punti d’interesse

Silenzio, app che abbassa il volume della suoneria (ed eventualmente attiva la
vibrazione) in corrispondenza del rilevamento di luoghi specifici (ad esempio
una un’aula universitaria) oppure una altra condizione (ad esempio un
determinato orario)

70Porfirio Tramontana – Android Testing

Applicazioni possibili

Giochi con i sensori, app che chiede all’utente di risolvere particolari task che hanno
a che fare con i sensori (ad esempio tenere il telefono con una certa inclinazione
data, muoverlo con una certa velocità, portarlo ad una certa distanza da un
ostacolo, allinearlo ad una certa direzione cardinale, etc.)

Giochi di sincronizzazione: come i precedenti, ma nei quali lo scopo dei due
giocatori è quello di effettuare operazioni uguali nello stesso istante. La
sincronizzazione può essere ottenuta implementando un protocollo peer to peer
tra i client (ad esempio via bluetooth) o anche tramite un server (ad esempio un
http server nel quale salvare semplici dati riguardanti lo stato)

Giochi peer to peer a due giocatori, ad esempio giochi con le carte (sette e mezzo,
briscola), dama, scacchi, tris, etc. La comunicazione può essere ottenuta
implementando un protocollo peer to peer tra i client (ad esempio via bluetooth)
o anche tramite un server (ad esempio un http server nel quale salvare semplici
dati riguardanti lo stato)

71Porfirio Tramontana – Android Testing

73

Appendice

Esecuzione di Android Ripper

Porfirio Tramontana – Android Testing

Prerequisiti

Android Ripper has been tested on Windows 10, Linux Ubuntu and Linux Mint.

- Android SDK

- Oracle Java 8

- Use Android SDK Manager to download and install the latest:

Android SDK Tools

Android SDK Platform Tools

Android SDK Build Tools

- Use Android SDK Manager to download and install for each required Android API:

the SDK Platform

the Intel and ARM System Images

-Add to the PATH environment variable the following directories:

PathToAndroidSdk/tools/

PathToAndroidSdk/platform-tools/

PathToAndroidSdk/build-tools/BUILDNUMBER/

(it is variable between different versions of Android SDK)

-Set the following Environment Variables:

JAVA_HOME=PathToJre or PathToJdk

ANDROID_HOME=PathToAndroidSdk

Porfirio Tramontana – Android Testing

Configurazione di Android Ripper

Le impostazioni sono tutte contenute in un file di configurazione (ad esempio default. properties).

Ad esempio:

#Name of the avd equipped with an x86 architecture

avd_name_x86 = testing

#Name of the avd equipped with an ARM architecture

avd_name_arm = testingARM

#Port number used to communicate with the avd

avd_port = 5554

#Exploration strategy. Valid strategies: random, systematic

driver=random

#Number of events to be fired (used only for the random strategy)

events=20

#Time between events (milliseconds)

sleep_after_event=1000

#Strategy implemented by the component that schedule the next event to be executed

#For a Random Exploration Strategy the only possible value is "random" (default)

#For a Systematic Exploration Strategy: "breadth", "depth"

scheduler=random

#Random Seed (used only for the random strategy)

#Default = System.currentTimeMillis()

seed=0

Porfirio Tramontana – Android Testing

Esecuzione di Android Ripper

From shell command line:

java -jar AndroidRipper.jar PathToApk
[PathToConfigurationFile]

The default.properties configuration file is used if the last
argument is blank. This file is located in the AndroidRipper
folder.

A shortcut is given by the Android RipperGUI.jar interactive
application

Porfirio Tramontana – Android Testing

77

Appendice

Strumenti e tecniche “obsolete”
ma ancora potenzialmente utili

Porfirio Tramontana – Android Testing

78

Robotium

Robotium è un framework a supporto del testing di
unità delle Activity che estende e potenzia Junit.
In particolare:
è più semplice scrivere test che riguardano più

Activity, Dialog, Toast, Menu e Context Menu.

E’ migliorata la leggibilità dei test case

I test case sono meno dipendenti dalla
variabilità dei tempi di esecuzione

Robotium è un progetto open source la cui prima
versione è stata rilasciata a gennaio 2010
http://code.google.com/p/robotium/

Porfirio Tramontana – Android Testing

http://code.google.com/p/robotium/

79

Caratteristiche di Robotium

Il funzionamento di Robotium è tutto basato
sull’utilizzo di un oggetto denominato SOLO
Solo solo = new Solo(getInstrumentation(),getActivity());

Tramite l’oggetto solo è possibile interrogare e
modificare i widget della UI, eventualmente
anche senza conoscerne l’identificativo
Particolarmente utile nei test di accettazione

Ad esempio, è possibile selezionare l’insieme dei widget
visibili oppure è possibile selezionare un widget in base al
testo che mostra

Porfirio Tramontana – Android Testing

80

Esempi

public void testTextView(){

String resourceString = new
String(solo.getString(com.porfirio.orariprocida2011.R.string.mezzo)
);

TextView mTextView1=solo.getText(1);

assertEquals(resourceString,(String)mTextView1.getText());

}

public void testButtonRobotium(){

TextView mTxtOrario=solo.getText(3);

String initial=new String(mTxtOrario.getText().toString());

solo.clickOnButton("<<");

solo.clickOnButton(">>");

assertEquals(mTxtOrario.getText().toString(),initial);

}

Porfirio Tramontana – Android Testing

Robotium Recorder

Robotium Recorder è disponibile, in versione
gratuita, all’indirizzo:

http://robotium.com/pages/free-trial

Anche Robotium Recorder è disponibile
sotto forma di estensione di Eclipse,
scaricabile da:

http://recorder.robotium.com/updates

E’ possibile, però, catturare (e salvare come
test Junit) solo 5 casi di test

81Porfirio Tramontana – Android Testing

http://robotium.com/pages/free-trial

82

Testing del ciclo di vita di un Activity

Per simulare una pausa e resume:
Instrumentation mInstr = this.getInstrumentation();

mInstr.callActivityOnPause(mActivity);

mInstr.callActivityOnResume(mActivity);

Porfirio Tramontana – Android Testing

83

Testing in isolamento

Per realizzare Unit Testing è necessario limitare al minimo e
controllare le dipendenze dell’unità testata dal resto del
software e dell’ambiente di esecuzione

La classe IsolatedContext è in grado di riprodurre un contesto di
esecuzione fittizio, da utilizzare tutte le volte che sia necessario,
senza dipendere dal reale stato del sistema

Per emulare gli eventi di sistema si possono utilizzare le classi del
package android.hardware

Per emulare I sensori si possono usare le classi Sensor, SensorEvent,
SensorEventListener e SensorManager, ridefinendole in modo che
generino eventi fittizi

Porfirio Tramontana – Android Testing

84

Esempio Mock

SMSReceiver è un Broadcast Receiver che ascolta per la ricezione
di SMS

SMS è una Activity che viene avviata da SMSReceiver in seguito
alla ricezione di un SMS e ne visualizza il testo

MockProvider è una classe che estende Thread e, tramite Intent si
dichiara (tramite Intent) in grado di inviare SMS e controllarne il
delivery

SMSMock è una classe che estende SMS, imitandolo. In pratica
definisce e avvia un MockProvider

SMSTesting è una classe di test che, così come SMSMock, definisce
e avvia un MockProvider e gli chiede di inviare un messaggio,
come prova

Porfirio Tramontana – Android Testing

85

Class Diagram

SMSTesting istanzia SMSMock e
MockProvider

SMSMock sostituisce il metodo
onCreate di SMSActivity e,
istanziandosi, avvia
MockProvider e lo dichiara
come gestore degli SMS (al
posto di un reale fornitore)

MockProvider dichiara due Intent
corrispondenti a eventi di Invio
e Consegna del messaggio

SMSTesting chiede a
MockProvider di “inviare” un
messaggio

SMSReceiver riceve i messaggi
fittiziamente inviati da
MockProvider e li gestisce
come se fossero reali

SMSReceiver
<<Broadcast Receiver>>

+onReceive()

SMSActivity
<<Activity>>

+onCreate()

MockProvider
<<Thread>>

+sendMessage()

SMSMock

+onCreate()

SMSTesting

+test()

1
1

Porfirio Tramontana – Android Testing

86

Codice
...

public class SmsTesting extends ActivityInstrumentationTestCase2<SMSMock> {

private SMSMock myActivity;

private MockProvider mymockprov;

...

@Override

protected void setUp() throws Exception{

super.setUp();

setActivityInitialTouchMode(false);

mymockprov = new MockProvider(SmsManager.getDefault(),getInstrumentation().getContext());

}

public void testcase1(){mymockprov.invia_messaggio(phoneNumber,messaggio);}

...

public class MockProvider extends Thread{

private Context ctx; private SmsManager sms;

private PendingIntent sentPI; private PendingIntent deliveredPI;

...

@Override

public void run() {

sentPI = PendingIntent.getBroadcast(ctx, 0, new Intent(SENT), 0);

deliveredPI = PendingIntent.getBroadcast(ctx, 0, new Intent(DELIVERED), 0);

}

public void invia_messaggio(String PHNUM, String MEX){sms.sendTextMessage(PHNUM, null,MEX, sentPI,
deliveredPI);}

}

Porfirio Tramontana – Android Testing

87

Unit Testing di altri componenti

Per testare il ciclo di vita di un Service si possono utilizzare i metodi
Context.startService e Context.bindService

Il testing di un servizio è più semplice del testing di una Activity, perchè non
dipende da eventi utente e di sistema

Un Broadcast Receiver è molto semplice da testare. Per avviarlo da test si
può utilizzare il metodo Context.sendBroadcast per simulare l’invio di
un Intent

Un ContentProvider fornisce un’astrazione di accesso ai dati. Deve essere
testato rispetto all’interfaccia di accesso che fornisce

Alcune apposite classi da cui ereditare

ServiceTestCase, ProviderTestCase2

Porfirio Tramontana – Android Testing

88

DDMS

Il DDMS (Dalvik Debug Monitor Server) è uno strumento
dell’Android SDK particolarmente utile in fase di prototyping

Monitora il comportamento della macchina virtuale

Accesso al file system

Thread in esecuzione

Allocazione della memoria

Log dei messaggi

Consente l’emulazione (spoofing) di

Variazioni nelle coordinate GPS

Ricezioni di messaggi SMS

Ricezione di telefonate

Porfirio Tramontana – Android Testing

89

DDMS

DDMS è un eseguibile nell’Android SDK, ma anche una perspective in Eclipse ADT.

In Android Studio, è chiamato Android Device Monitor (menu Tools)

Porfirio Tramontana – Android Testing

90

Creazione di un progetto di test in ADT

Da linea di comando si può scrivere

android create test-project -m <main_path> -n <project_name> -p <test_path>

In Eclipse è sufficiente utilizzare il widget di creazione progetto

Porfirio Tramontana – Android Testing

91

Creazione di un progetto di test

Con Android Studio i nuovi progetti sono
configurati per poter eseguire casi di test
scritti (ad esempio) in un package chiamato
test oppure in un altro progetto di test, che
viene affiancato al progetto di sviluppo e
aperto nello stesso progetto Android Studio

Porfirio Tramontana – Android Testing

92

Manifest di un progetto di test

<?xml version="1.0" encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

package="com.porfirio.orariprocida2011.test"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk android:minSdkVersion="4" />

<instrumentation

android:name="android.test.InstrumentationTestRunner"

android:targetPackage="com.porfirio.orariprocida2011" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<uses-library android:name="android.test.runner" />

</application>

</manifest>

Controlla l’esecuzione
delle classi del
package

Porfirio Tramontana – Android Testing

93

Creazione di una classe di test (ADT)

http://developer.android.com/tools/test
ing/testing_eclipse.html

(in Android Studio non sono
ancora presenti appositi
wizard)

http://developer.android.com/tra
ining/testing/ui-
testing/espresso-
testing.html

Porfirio Tramontana – Android Testing

94

Metodi generati

package com.porfirio.orariprocida2011.test;

import com.porfirio.orariprocida2011.OrariProcida2011Activity;

import android.test.ActivityInstrumentationTestCase2;

public class OrariProcida2011ActivityTests extends

ActivityInstrumentationTestCase2<OrariProcida2011Activity> {

public OrariProcida2011ActivityTests() {

super("com.porfirio.orariprocida2011", OrariProcida2011Activity.class);

}

@Override

protected void setUp() throws Exception {

super.setUp();

}

protected void tearDown() throws Exception {

super.tearDown();

}

}

Porfirio Tramontana – Android Testing

95

Primi test case

…

public class OrariProcida2011ActivityTests
extends

ActivityInstrumentationTestCase2<OrariProci
da2011Activity> {

private OrariProcida2011Activity mActivity;

private TextView mTextView1;

private ListView mListView;

@Override

protected void setUp() throws Exception {

super.setUp();

mActivity = this.getActivity();

mTextView1=(TextView)
mActivity.findViewById(R.id.textView1);

mListView =(ListView)
mActivity.findViewById(R.id.listMezzi);

}

public void testPreconditions() {

assertNotNull(mTextView1);

assertNotNull(mListView);

}

public void testTextView1(){

String resourceString = new

String(mActivity.getString(com.porfirio.or

ariprocida2011.R.string.mezzo));

assertEquals(resourceString,(String)mTextView1.

getText());

}

protected void tearDown() throws Exception

{

super.tearDown();

}

}

Oggetti utilizzati nel test

Precondizioni: esistenza degli oggetti utilizzati nel test

Test sul corretto valore di una casella di testo

Porfirio Tramontana – Android Testing

96

Esecuzione dei test

Da Eclipse Run as Junit Test

Sequenza di esecuzione
(Console)

(idem su Android Studio)
[2011-11-16 19:33:36 - OrariProcida2011Testing] ------------------------------

[2011-11-16 19:33:36 - OrariProcida2011Testing] Android Launch!

[2011-11-16 19:33:36 - OrariProcida2011Testing] adb is running normally.

[2011-11-16 19:33:36 - OrariProcida2011Testing] Performing

android.test.InstrumentationTestRunner JUnit launch

[2011-11-16 19:33:36 - OrariProcida2011Testing] Automatic Target Mode: using existing emulator

'emulator-5554' running compatible AVD 'AVD_1_6'

[2011-11-16 19:33:36 - OrariProcida2011Testing] Uploading OrariProcida2011Testing.apk onto

device 'emulator-5554'

[2011-11-16 19:33:36 - OrariProcida2011Testing] Installing OrariProcida2011Testing.apk...

[2011-11-16 19:33:40 - OrariProcida2011Testing] Success!

[2011-11-16 19:33:40 - OrariProcida2011Testing] Project dependency found, installing:

OrariProcida2011

[2011-11-16 19:33:44 - OrariProcida2011] Application already deployed. No need to reinstall.

[2011-11-16 19:33:44 - OrariProcida2011Testing] Launching instrumentation

android.test.InstrumentationTestRunner on device emulator-5554

[2011-11-16 19:33:44 - OrariProcida2011Testing] Collecting test information

[2011-11-16 19:33:48 - OrariProcida2011Testing] Sending test information to Eclipse

[2011-11-16 19:33:48 - OrariProcida2011Testing] Running tests...

[2011-11-16 19:34:23 - OrariProcida2011Testing] Test run finished

Porfirio Tramontana – Android Testing

97

Un test più complesso

Esempio di test che interagisce con l’interfaccia utente, settando un valore di uno
Spinner

public void testListaVuota(){

mActivity.runOnUiThread(

new Runnable() {

public void run() {

mSpnPortoPartenza.setSelection(1);

mSpnPortoArrivo.setSelection(1);

assertEquals(0,(int)mListView.getCount());

}

});

mInstrumentation.waitForIdleSync();

}

Per settare un campo di una oggetto sulla UI, è necessario, in Android, farlo
interagendo nello stesso thread della UI stessa

Per impedire la concorrenza tra eventi dell’utente reale ed eventi simulati da test

setActivityInitialTouchMode(false);

Porfirio Tramontana – Android Testing

Istruzioni per l’esercizio di testing
con Robotium Recorder 1/2

La prima parte dell’esercizio si svolge sulla
macchina di test approntata presso il
Laboratorio di Ingegneria del Software

1. Accedere alla macchina (fisicamente o virtualmente)

2. Avviare la macchina virtuale Robotium Recorder (se
non è già avviata)

3. Avviare Eclipse (se non è già avviato)

4. Avviare un emulatore chiamato test (Api Level 15)
(se non è già avviato)

98Porfirio Tramontana – Android Testing

Istruzioni per l’esercizio di testing
con Robotium Recorder 2/2

5. Per ogni applicazione da testare

1. Importare il progetto con l’applicazione (se non già

presente)

2. Dal menu contestuale scegliere Robotium

Recorder/New Robotium Test

3. Scegliere l’applicazione e dare un nome al test

4. Avviare New Robotium Test

5. Operare sull’emulatore interagendo con l’applicazione

sotto test

6. Al termine delle operazioni, premere Stop Robotium

Test

7. Premere Save
99Porfirio Tramontana – Android Testing

Progetto di test e riesecuzione

In questo modo verrà così creato un progetto di test che potrà essere
subito rieseguito e, successivamente, modificato

Per rieseguire il test è necessario azzerare i dati dell’applicazione con Clear Data
dall’applicazione Settings/Apps sul’emulatore

Duplicare il progetto di test prima di modificarlo per poter tenere nota di tutta la
sua evoluzione

E’ possibile calcolare la copertura in maniera completamente analoga al caso
precedente

L’unica differenza consiste nello specificare
android-15 anziché android-10 come target

Per poter continuare il proprio lavoro a casa, è opportuno portare una memoria
usb con almeno 5 GB liberi che conterrà la macchina virtuale (in formato
Oracle VM Virtual Box) sulla quale si è condotta la prima parte
dell’esperimento

100Porfirio Tramontana – Android Testing

Robotium Recorder – un esempio completo

Consideriamo un’applicazione molto semplice come esempio

Simply Do è una semplice applicazione Android che consente di gestire azioni da svolgere,
organizzate in liste.

Dall’interfaccia principale è possibile:

vedere l’elenco di tutte le liste;

aggiungere una nuova lista (semplicemente digitandone il nome e chiedendo di aggiungerla).

Selezionando una lista, è possibile:

visualizzare tutte le azioni all’interno della lista

aggiungere un’azione all’interno della lista (scrivendone il nome)

segnare un’azione come già svolta (selezionandola): in questo caso l’azione sarà visualizzata in grigio e barrata. E’ possibile segnare
nuovamente un’azione come non ancora svolta selezionandola ulteriormente

Dal menu è inoltre possibile eliminare tutte le azioni già svolte e ordinare le azioni secondo l’ordine
prestabilito.

E’ possibile personalizzare l’applicazione tramite alcune voci disponibili dal menu (Settings). In
particolare è possibile:

Scegliere l’ordine di visualizzazione delle azioni (prima quelle non ancora effettuate – Active, oppure prima quelle evidenziate – Starred)

Scegliere l’ordine di visualizzazione delle liste (alfabetico oppure lasciarle in ordine di immissione)

Decidere se chiedere conferma ogni volta che si tenta di cancellare le azioni già effettuate

Effettuare il backup sulla memoria locale

Ripristinare le note salvate in uno dei backup precedenti.

101Porfirio Tramontana – Android Testing

Robotium Recorder – un esercizio

Testare l’applicazione Simply Do eseguendo un insieme di
esecuzioni

Nell’ambito di Robotium Recorder

Generando automaticamente al termine i corrispondenti test Junit
rieseguibili

Cercando di provare l’applicazione in tutti i modi possibili, sulla base dei
requisiti e delle strategie di progettazione dei casi di test note

Al termine verranno misurate (con Emma) e valutate le coperture
raggiunte, per avere un’idea dell’efficacia dei test generati

Si cerchi di tenere conto del tempo impiegato per eseguire i vari passi
del processo

102Porfirio Tramontana – Android Testing

Valutazione dell’efficacia del test

Come confronto rispetto a Simply Do,
consideriamo la copertura che ho ottenuto
io con una sessione di test durata 8 minuti

103Porfirio Tramontana – Android Testing

Istruzioni per l’esercizio di testing
con Robotium Recorder e ADT 1/2

1. Installare Simply Do
scompattando il .zip ed
importandolo come progetto
Eclipse

2. Creare una macchina virtuale
con le caratteristiche in figura
e avviarla

3. Registrare una serie di
esecuzioni con Robotium
Recorder sull’emulatore

104Porfirio Tramontana – Android Testing

Istruzioni per l’esercizio di testing
con Robotium Recorder 2/2

Far generare automaticamente i test case a
Robotium Recorder

Rieseguire i casi di test per controllare se la
loro esecuzione va a buon fine

Problemi nella riesecuzione potrebbero essere dovuti a click
troppo veloci (Robotium Recorder potrebbe avere
reazioni lente, talvolta: meglio testare con calma)

Eventualmente, è possibile valutare piccoli difetti nel test
generato e ripararli eseguendo il debug del caso di test

Misurare la copertura (vedi istruzioni)

105Porfirio Tramontana – Android Testing

Misurare la copertura
(dell’esercizio con Robotium)

1) Avviare l'emulatore

2) Disinstallare SimplyDo

3) Spostarsi nella cartella del sorgente della applicazione da testare (\SimplyDo)

Sotto windows, è preferibile che le cartelle non abbiano spazi

4) [percorso di ant\bin]\ant clean

ant può essere scaricato da http://archive.apache.org/dist/ant/binaries/apache-ant-1.9.4-bin.zip

5) [Percorso di android\tools]\android update project --path . --target android-10

[Percorso di android\tools] potrebbe essere D:\adt-bundle-windows-x86-20140702\sdk\tools

Per generare il file build.xml necessario ad ant

6) Spostarsi nella cartella del caso di test (\SimplyDoTest)

7) [percorso di ant\bin]\ant clean

106Porfirio Tramontana – Android Testing

Misurare la copertura

8) [Percorso di android\tools]\android update test-project -p .\ --main ..\SimplyDo
Se SimplyDo si trova in una posizione diversa sul disco al posto di ..\SimplyDo mettere il percorso esatto di

SimplyDo (utilizzato al punto 3)

Per creare un file build.xml per il progetto di test collegandolo a quello dell’applicazione

9) Nella cartella del caso di test eseguire :

[percorso di ant\bin]\ant emma debug install test

10) Al termine del caso di test, nella cartella \SimplyDo\bin saranno disponibili i risultati di
copertura in vari formati (html, xml, txt)

11) Inviarmi il progetto di test con tutti i file di copertura (è sufficiente zippare le due cartelle
SimplyDo e SimplyDoTest)

107Porfirio Tramontana – Android Testing

TestDroid

TestDroid comprende un insieme di
strumenti che consentono l’automazione
di test di applicazioni Android in ambiente
reale e simulato

TestDroid Enterprise

TestDroid Cloud

TestDroid Privateloud

TestDroid Recorder

http://testdroid.com/
111Porfirio Tramontana – Android Testing

TestDroid Recorder

TestDroid Recorder è uno strumento, parzialmente di libero
utilizzo, che fornisce funzionalità di capture & replay su Android

Capture: è in grado di osservare esecuzione utente su dispositivo reale o
anche su emulatore

Replay: è in grado di rieseguire le interazioni catturate e anche di
generare codice Junit+Robotium rieseguibile

http://testdroid.com/product/testdroid-recorder#0

TestDroid Recorder è disponibile sotto forma di estensione di
Eclipse/ADT

http://www.testdroid.com/updates/

E’ necessario registrarsi e scrivere e-mail e password all’atto dell’utilizzo di

TestDroid Recorder in Eclipse

112Porfirio Tramontana – Android Testing

http://www.testdroid.com/updates/

TestDroid Recorder

Tutorial per l’utilizzo di TestDroid Recorder sono disponibili a:

http://help.testdroid.com/customer/portal/topics/315855-testdroid-recorder-
tutorials/articles

1. Avviare New dal menu file o dal menu
contestuale dell’app da testare
Scegliere First Recording

2. Se necessario, inserire login e password
di registrazione a TestDroid
Selezionare l’app da testare

113Porfirio Tramontana – Android Testing

http://help.testdroid.com/customer/portal/topics/315855-testdroid-recorder-tutorials/articles

TestDroid Recorder - Tutorial

1. Dal pannello è possibile
avviare la registrazione
premendo Record
L’applicazione verrà
installata e avviata sul
dispositivo o sull’emulatore
scelto

2. Utilizzare l’app eseguendo
gli scenari da registrare

3. Premere Stop
I test verranno generati
all’interno di un apposito
progetto di Test

114Porfirio Tramontana – Android Testing

TestDroid Recorder - Tutorial

Progetto di test
generato

115

…

public void testRecorded() throws Exception {

try {

solo.waitForActivity("OrariProcida2011Activity");

solo.sleep(21500);

assertTrue("Wait for button (text: OK) failed.",

solo.waitForButton("OK", 20000));

solo.clickOnButton("OK");

solo.sleep(9000);

assertTrue("Wait for spinner (index: 0) failed.",

solo.waitForSpinner(0, 20000));

solo.pressSpinnerItem(0, 1);

solo.sleep(6700);

assertTrue(

"Wait for button (id: com.porfirio.orariprocida2011.R.id.button4)

failed.",

solo.waitForButtonById(

"com.porfirio.orariprocida2011.R.id.button4", 20000));

solo.clickOnButton((Button) solo

.findViewById("com.porfirio.orariprocida2011.R.id.button4"));

} catch (AssertionFailedError e) {

solo.fail(

"com.porfirio.orariprocida2011.test.OrariProcida2011ActivityTest2.testRe

corded_scr_fail",

e);

throw e;

} catch (Exception e) {

solo.fail(

"com.porfirio.orariprocida2011.test.OrariProcida2011ActivityTest2.testRe

corded_scr_fail",

e);

throw e;

}

}

…

Porfirio Tramontana – Android Testing

TestDroid Recorder - Approfondimenti

I test generati da TestDroid Recorder
possono essere eseguiti
automaticamente come qualsiasi altro
test, senza ulteriore supporto di
TestDroid

Sessioni di Record/Stop ripetute
consentono di generare più casi di test

Ad ogni nuovo test l’applicazione viene reinstallata

Le istruzioni Sleep nel caso di test
rispecchiano i reali intervalli di tempo tra
gli eventi. Possono essere editati sia qui
che direttamente nel caso di test

Tempi troppo brevi potrebbero non consentire al
sistema di evolvere in tempo prima dell’evento
successivo

116Porfirio Tramontana – Android Testing

TestDroid Recorder - Approfondimenti

Tramite Append Command è possibile (dopo il recording e prima
della generazione dei casi di test) editare i test aggiungendo
comandi specifici oppure asserzioni sui valori dei campi
visualizzati

Tramite Add Method è possibile dare un nome ai test prima di
registrarli

Tramite Take Screenshot è possibile aggiungere un comando per
salvare una schermata grafica all’interno del test stesso

Smart Assert crea automaticamente asserzioni riguardanti la
maggior parte delle etichette che riesce a trovare nella
schermata a video

Con Adjust Sleeps è possibile variare il tempo di sleep nei test

117Porfirio Tramontana – Android Testing

TestRecorder – un esempio completo

Consideriamo un’applicazione molto semplice come esempio

Simply Do è una semplice applicazione Android che consente di gestire azioni da svolgere,
organizzate in liste.

Dall’interfaccia principale è possibile:

vedere l’elenco di tutte le liste;

aggiungere una nuova lista (semplicemente digitandone il nome e chiedendo di aggiungerla).

Selezionando una lista, è possibile:

visualizzare tutte le azioni all’interno della lista

aggiungere un’azione all’interno della lista (scrivendone il nome)

segnare un’azione come già svolta (selezionandola): in questo caso l’azione sarà visualizzata in grigio e barrata. E’ possibile segnare
nuovamente un’azione come non ancora svolta selezionandola ulteriormente

Dal menu è inoltre possibile eliminare tutte le azioni già svolte e ordinare le azioni secondo l’ordine
prestabilito.

E’ possibile personalizzare l’applicazione tramite alcune voci disponibili dal menu (Settings). In
particolare è possibile:

Scegliere l’ordine di visualizzazione delle azioni (prima quelle non ancora effettuate – Active, oppure prima quelle evidenziate – Starred)

Scegliere l’ordine di visualizzazione delle liste (alfabetico oppure lasciarle in ordine di immissione)

Decidere se chiedere conferma ogni volta che si tenta di cancellare le azioni già effettuate

Effettuare il backup sulla memoria locale

Ripristinare le note salvate in uno dei backup precedenti.
118Porfirio Tramontana – Android Testing

TestRecorder – un esercizio

Testare l’applicazione Simply Do eseguendo un insieme di
esecuzioni

Nell’ambito di TestDroid Recorder

Generando automaticamente al termine i corrispondenti test Junit
rieseguibili

Cercando di provare l’applicazione in tutti i modi possibili, sulla base dei
requisiti e delle strategie di progettazione dei casi di test note

Al termine verranno misurate (con Emma) e valutate le coperture
raggiunte, per avere un’idea dell’efficacia dei test generati

Si cerchi di tenere conto del tempo impiegato per eseguire i vari passi
del processo

119Porfirio Tramontana – Android Testing

Valutazione dell’efficacia del test

Come confronto rispetto a Simply Do,
consideriamo la copertura che ho ottenuto
io con una sessione di test durata 8 minuti

120Porfirio Tramontana – Android Testing

Istruzioni per l’esercizio di testing
con TestDroid 1/2

1. Installare Simply Do
scompattando il .zip ed
importandolo come
progetto Eclipse

2. Creare una macchina
virtuale con le
caratteristiche in figura e
avviarla

3. Registrare una serie di
esecuzioni con TestDroid
Recorder sull’emulatore

121Porfirio Tramontana – Android Testing

Istruzioni per l’esercizio di testing
con TestDroid 2/2

Far generare automaticamente i test case a
TestDroid Recorder

Rieseguire i casi di test per controllare se la
loro esecuzione va a buon fine

Problemi nella riesecuzione potrebbero essere dovuti a click
troppo veloci (TestDroid Recorder potrebbe avere
reazioni lente, talvolta: meglio testare con calma)

Eventualmente, è possibile valutare piccoli difetti nel test
generato e ripararli eseguendo il debug del caso di test

Misurare la copertura (vedi istruzioni)

122Porfirio Tramontana – Android Testing

Misurare la copertura
(dell’esercizio con TestDroid)

0) Se non già settato settare JAVA_HOME dal pannello di controllo oppure (ad esempio) con

Set JAVA_HOME=c:\Program Files\Java\jdk1.8.0_25

1) Avviare l'emulatore

2) Disinstallare SimplyDo

3) Spostarsi nella cartella del sorgente della applicazione da testare (\SimplyDo)

Sotto windows, è preferibile che le cartelle non abbiano spazi

4) [percorso di ant\bin]\ant clean

ant può essere scaricato da http://it.apache.contactlab.it//ant/binaries/apache-ant-1.9.4-bin.zip

5) [Percorso di android\tools]\android update project --path . --target android-10

[Percorso di android\tools] potrebbe essere D:\adt-bundle-windows-x86-20140702\sdk\tools

Per generare il file build.xml necessario ad ant

6) Spostarsi nella cartella del caso di test (\SimplyDoTest)

7) [percorso di ant\bin]\ant clean

123Porfirio Tramontana – Android Testing

Misurare la copertura

8) [Percorso di android\tools]\android update test-project -p .\ --main ..\SimplyDo\
Se SimplyDo si trova in una posizione diversa sul disco al posto di ..\SimplyDo mettere il percorso esatto di

SimplyDo (utilizzato al punto 3)

Per creare un file build.xml per il progetto di test collegandolo a quello dell’applicazione

9) Nella cartella del caso di test eseguire :

[percorso di ant\bin]\ant emma debug install test

10) Al termine del caso di test, nella cartella \SimplyDo\bin saranno disponibili i risultati di
copertura in vari formati (html, xml, txt)

11) Inviarmi il progetto di test con tutti i file di copertura (è sufficiente zippare le due cartelle
SimplyDo e SimplyDoTest)

124Porfirio Tramontana – Android Testing

