Android Testing

Porfirio Tramontana — Android Testing



Android Testing: generalita

Un’applicazione Android in senso lato e
composta di un lato client e di una o piu
tipologie di risorse lato server

Web Applications, Web Services, Risorse REST ...

Ci si limitera allo studio delle problematiche del
testing della parte client, la cosiddetta app

Una app Android e sostanzialmente
un’applicazione interattiva sottoposta a:

Eventi utente (eventi touch, segnali da sensori)
Eventi di sistema (interruzioni, segnali broadcast)

Porfirio Tramontana — Android Testing 2



Android Testing: generalita

E’' necessario definire, adattandoli all’'ambiente Android:

test models, per rappresentare le tipologie di elementi e interazioni da
considerare e procare;

testing levels, che specifichino i diversi punti di vista e obiettivi rispetto
ai quali viene progettato il testing;

test strategies, che definiscono obiettivi, euristiche e algoritmi da
seguire nella progettazione dei casi di test;

testing processes, che definiscono le modalita di esecuzione dei processi
per il testing delle applicazioni Android;

testing tools, strumenti a supporto delle attivita di testing, in particolare
a supporto della loro automazione

Porfirio Tramontana — Android Testing 3



Gerarchia dei test

I test di unita sono i pii numerosi ma i piu
semplici

Essi possono essere eseqguiti su di un PC, senza alcun
emulatore o dispositivo reale

I test di integrazione considerano parti dell’dpp,
eventualmente togliendo dipendenze da servizi

Sono eseguiti su di un emulatore Fidelty A
Maintengnce D
I test di sistema sono avviati da interfaccia

Generalmente eseqguiti su dispositivo reale, eventualntente p— I
disponibile in remoto

Porfirio Tramontana — Android Testing



Unit testing

Il testing di unita di un’applicazione Android riguarda singoli
metodi/classi scritti in Java

Puo essere realizzato utilizzando Junit

I test possono essere esequiti avendo a disposizione un’‘istanza della
macchina virtuale che interpreta Java

. In passato era sufficiente una macchina Java, ora invece c’e una macchina
equivalente (OpenJDK)

I test sono eseguiti sulla macchina di sviluppo, senza bisogno di un
emulatore o di un dispositivo reale

 In questo modo, i test possono essere eseguiti molto velocemente e con
ridotto utilizzo di risorse

Per realizzare test in isolamento, puo essere necessario fare ricorso
a mock

https://developer.android.com/training/testing/unit-testing/local-unit-tests.html

Porfirio Tramontana — Android Testing



Esempio di unit testing

public class MezzoUtility ({
private Double costoIntero=0.0;
private Boolean setCircaIntero=false;

private Boolean setCircaResidente=false; . . . ,
public void calcolaCosto(String n,String p) {

private Double costoResidente=0.0; )
if (n.contentEquals ("Traghetto Caremar")

&& p.contentEquals ("Pozzuoli")) {

@Test costoIntero=10.0;

public void MezzoTestl () { setSetCircalntero (true) ;
costoIntero=0.0; setCostoResidente (2.40) ;
setSetCircaIntero(false) ; return;
setSetCircaResidente (false) ; }

setCostoResidente (0.0) ;
calcolaCosto("Traghetto Caremar", "Pozzuoli") ;

assertEquals (10.0, costoIntero);

assertTrue (setCircaIntero) ; Ne"a Stessa CIasse del
assertFalse (setCircaResidente) ; COdlce da teStare

assertEquals (2.40, costoResidente);

Porfirio Tramontana — Android Testing



Altro esempio

package test;

import com.porfirio.orariprocida2011.MezzoUtility;

import org.junit.Test; In una classe di test
import static org.junit.Assert.assertEquals; se pa rata
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

Run MezzoUtilityUnitTest

P BB =z e
’f. (=% MezzoUtilityUnitTest (test) D:\android-studio\jre\bin\java ...

:\android-studio\jre\bin\java -Didea.launcher.port=7546 -Didea.launcher.bin.path=D:\android-studio\bin -Didea.junit.sm runne
L Frocess finished with exit code U

) 1 test passed — 3ms

Build Wariants

public class MezzoUtilityUnitTest {

(=

@Test

public void MezzoUnitTest1(){ "

double costoIntero=0.0; >

bOOIean SetCircaInter0=false; (;.3: Find = » 4Run 2 TODO & & Android Monitor [ 0: Messages [ Terminal

boolean setCircaResidente=false;

double costoResidente=0.0; = b\ =
' Come si puo osservare, |

MezzoUtility mu = new MezzoUtility(); test sono eseguiti da una

mu.calcolaCosto("Traghetto Caremar","Pozzuoli"); . . . .

assertEquals(10.0, mu.getCostoIntero(), 0.01); virtual machine java (]re)

assertTrue(mu.getSetCircalntero()); CI a SSi ca

assertFalse(mu.getSetCircaResidente());
assertEquals(2.40, mu.getCostoResidente(),0.01);

Y

Porfirio Tramontana — Android Testing



Testing di sistema (GUI testing)

E’ possibile utilizzare un framework come Junit per le applicazioni
Android (in particolare per le Activity)?

Problema: una sola activity puo accedere attivamente all'interfaccia
utente.

Soluzione: un framework di testing che esegua la activity sotto testing
come sua parte, utilizzando funzionalita di instrumentazione per
poterla monitorare

In questo modo, e possibile pensare di testare una Activity scrivendo dei
classici Android JUnit Test Cases, nell’lambito, pero, di un project
separato

Questi test sono denominato Instrumentation Tests poiché in pratica
I'applicazione sotto test & «instrumentata» dalla presenza del
progetto di test

Porfirio Tramontana — Android Testing 8



Android Test Architecture

process

---—--4 Test Tools

Application package

A

t

InstrumentationTestRUnner

i

--=--1 MonkeyRunner

Test package

——=

Test case classes Mock objects

Instrumentation JUnit

Porfirio Tramontana — Android Testing



Android GUI Testing

- E’ possibile sfruttare le librerie
InstrumentationTestRunner per realizzare
test eseguibili che guidino direttamente la
GUI di un‘applicazione Android

* Diversi strumenti e librerie sono stati
realizzati nel tempo per consentire una
piu semplice scrittura ed esecuzione di tali
test:

Robotium
Android Espresso

Porfirio Tramontana — Android Testing



Robotium

Robotium € un framework a supporto del testing di
unita delle Activity che estende e potenzia Junit.
In particolare:

e piu semplice scrivere test che riguardano piu
Activity, Dialog, Toast, Menu e Context Menu.

E’ migliorata la leggibilita dei test case

I test case sono meno dipendenti dalla
variabilita dei tempi di esecuzione

Robotium € un progetto open source la cui prima
versione e stata rilasciata a gennaio 2010

Porfirio Tramontana — Android Testing 11


http://code.google.com/p/robotium/

Caratteristiche di Robotium

Il funzionamento di Robotium e tutto basato
sull’utilizzo di un oggetto denominato SOLO

Solo solo = new Solo(getInstrumentation() ,getActivity())

Tramite l'oggetto solo e possibile interrogare e
modificare i widget della UI, eventualmente
anche senza conoscerne l'identificativo

Particolarmente utile nei test di accettazione

Ad esempio, € possibile selezionare I'insieme dei widget
visibili oppure e possibile selezionare un widget in base al
testo che mostra

Porfirio Tramontana — Android Testing 12



Esempi

public void testTextView () {

String resourceString = new
String(solo.getString(com.porfirio.orariprocida20l11.R.string.mezzo)

) ;
TextView mTextViewl=solo.getText (1) ;

assertEquals (resourceString, (String)mTextViewl.getText ()) ;

public void testButtonRobotium() {
TextView mTxtOrario=solo.getText (3) ;

String initial=new String(mTxtOrario.getText() .toString())
solo.clickOnButton ("<<");

solo.clickOnButton (">>") ;
assertEquals (mTxtOrario.getText () .toString() ,initial);

Porfirio Tramontana — Android Testing 13



Android Testing Support Library

- Android Testing Support Library (ATSL) e il nome
complessivo sotto il quale sono riuniti alcune librerie

e strumenti a supporto del testing di applicazioni
Android, tra cui

Il supporto per Junit
la libreria Android Espresso
La libreria Robolectric

Porfirio Tramontana — Android Testing



Android Espresso

Android Espresso e una libreria analoga a Robotium,
sviluppata da Google e rilasciata nel 2014

Anch’essa consente di scrivere test Junit eseguibili
tramite I'esecutore AndroidJUnitRunner che esegue

Il progetto sotto test «instrumentato» dalle classi di
test

Porfirio Tramontana — Android Testing



Android Espresso

Con Android Espresso e possibile:

« guidare l'esecuzione di eventi direttamente su oggetti della GUI
. button.perform(click());

« Riferire un oggetto della GUI tramite onView

« I metodi with* utilizzati insieme ad allOf consentono di individuare un oggetto a partire da una sua
caratteristica (ad esempio withText)

ViewInteraction button = onView(allOf(withld(android.R.id.buttonl), withText("OK"), isDisplayed()));

- Eseguire asserzione su proprieta degli elementi dell'interfaccia

textView.check(matches(withText("Aliscafo Caremar - Pozzuoli - Procida - 08:50 ")));

 Piu recentemente sono state aggiunte funzioni
per interagire con gli Intent e con widget complessi come le WebView
Per eseguire test di accessibilita

Per eseguire test multiprocesso

https://developer.android.com/training/testing/espresso/cheat-sheet.html

Porfirio Tramontana — Android Testing


https://developer.android.com/training/testing/espresso/index.html

Strumenti di Capture & Replay

Esistono alcuni strumenti che supportano il Capture & Replay di

casi di test per applicazioni Android e la loro traduzione in test
Junit

Espresso Test Recorder (gratuito, integrato con Android Studio, utilizzabile
per versioni di Android da Kit Kat in poi)

TestDroid (a pagamento, per ADT, genera test che utilizzano Robotium)
http://testdroid.com/products

Robotium Recorder (gratuito per i primi 5 test generati, sia per ADT che per
Android Studio, fa parte del progetto Robotium)

Porfirio Tramontana — Android Testing


http://robotium.com/products/robotium-recorder

Espresso Test Recorder

+ Per utilizzare Espresso Test Recorder e

sufficiente:
» Scegliere I'opzione Record Espresso Test e indicare una
macchina reale o virtuale

« Eseguire una sequenza di eventi sull’interfaccia della
macchina Android (il pannello mostrera un riassunto di

tale sequenza)

« Aggiungere una o piu asserzioni

» [o strumento ... aiutera il tester a riconoscere e definire elementi
dell’interfaccia rispetto ai quali basare le asserzioni

« I Test generati sono test Android Espresso

Porfirio Tramontana — Android Testing



Esempio: registrazione eventi

-

File Edit View Mavigate Code Analyze Refactor Build Run Tools VCS

Android Emulator - test19:5354 —
M Utilityl
=tk |ty: Tap Button with text OK
®
- Tap Spinner with 1D spnNave
o A
i Hydrofoils (Aliscafi) Tap CheckedTextView with text Hydrofoils (Aliscafi)

©

1'
Asofl4;100f31.r'10 l il

Aliscafo SNAV - Procida - Napoli ©
Beverello - 14:15 70,

Aliscafo Caremar - Ischia Porto -
E Procida - 14:30

0]
}
Aliscafo Caremar - Napoli Beverello - Q
Procida - 14:45
<l]
O
O

Aliscafo Caremar - Procida - Napoli
Beverello - 14:55

§ Aliscafo Caremar - Procida - Ischia

Porto - 15:30 Add Assertion
E ra 20
F Aliscafo SNAV - Napoli Beverello -
: . C i
Procida - 16:20 o porr 8
com.porfirig
2011
ocalhost: 372y
i C | Hel
@ 3:Find P> 4 Run . 5:Debug =% TODO & Android Manitor | m _ —

Porfirio Tramontana — Android Testing



Esempio: aggiunta asserzione

¥ Record Your Test

Tap Button with text OK

Tap Spinner with |D spnNave

Tap CheckedTextView with text Hydrofoils (Aliscafi)
Tap Spinner with |D spnPortoPartenza

Tap CheckedTextView with text Pozzuoli

Aliscafo Caremar - Pozzuoli - Procida
-08:50

Edit assertion

androickid/text] n
text is n

Aliscafo Carernar - Pozzucli - Procida - 08:50

Save and Add Another Save Assertion Cancel

0K Cancel Help

Porfirio Tramontana — Android Testing



Esempio: codice generato (estratti)

@LargeTest
@RunWith(AndroidJUnit4.class)
public class OrariProcida2011ActivityTest2 {

@Rule
public ActivityTestRule<OrariProcida2011Activity> mActivityTestRule = new
ActivityTestRule<>(OrariProcida2011Activity.class);

@Test
public void orariProcida2011ActivityTest2() {
ViewlInteraction button = onViemw(
allofl withIcd(android.R.id. button1), withText("OK"), isDisplayed)));
button.perform( click());

ViewInteraction spinner = onView(
allOf withId(R.id.spnNave),
withParent{ withId(R.id./inearLayoutl)),
isDisplayed()));
spinner.perform(click());

ViewInteraction textView = onViem(
allof withIcdandroid.R.id. text1), withText("Aliscafo Caremar - Pozzuoli - Procida - 08:50 "),
childAtPosition(
allof withId(R.id./istMezzi),
childAtPosition(
IsInstanceOf.<View>instanceOf{android.widget.LinearLayout.class),

4)),
0),

isDisplayed)));
textView.check(matches( withText("Aliscafo Caremar - Pozzuoli - Procida - 08:50 ")));

Porfirio Tramontana — Android Testing



Robolectric

Con Junit e possibile eseguire test di unita «rapidi» con una virtual
machine locale anziché con ART solo per casi di test del tutto
indipendenti da elementi specifici di Android

I casi di test di sistema o della GUI scritti con Android Espresso sono
invece eseguibili solo su emulatori o dispositivi reali

Una soluzione alternativa per I'esecuzione di casi di test di unita senza
utilizzare emulatori o device e rappresentata dal framework
Robolectric

In pratica Robolectric mette a disposizione implementazioni alternative (mock) di alcune versioni
(quasi complete) del framework Android

Scegliendo Robolectric come esecutore di test Junit, questi test verranno eseguiti in un ambiente
mock che, in particolare, fa uso di una macchina virtuale locale anziché di emulatori o dispositivi

https://www.programcreek.com/java-api-examples/index.php?class=org.robolectric.util.ActivityController&method=get

Porfirio Tramontana — Android Testing


http://robolectric.org/
http://www.vogella.com/tutorials/Robolectric/article.html

Robolectric: esempio

Un test Robolectric «appare» quasi identico ad un test Android
Junit:
QRunWith (RobolectricTestRunner.class)

public class MyActivityTest {

@Test
public void clickingButton_shouldChangeResultsViewText () throws Exception ({

MyActivity activity = Robolectric.setupActivity (MyActivity.class)

Button button = (Button) activity.findViewById(R.id.button) ;

TextView results = (TextView) activity.findViewById(R.id.results);

button.performClick() ;

assertThat (results.getText () .toString()) .isEqualTo ("Robolectric Rocks!") ;

Porfirio Tramontana — Android Testing



Robolectric: esempio

» Questo codice viene pero eseguito su di una
macchina virtuale non Android, che in qualche
modo sostituisce automaticamente con mock
tutte le classi necessarie all’'esecuzione del

test

« In questo caso la classe MyActivity (che estende Activity del
framework) sotto test, Button e TextView

« Non c’e quindi bisogno di utilizzare o implementare classi Mock
specifiche

Porfirio Tramontana — Android Testing



Confronto tra Robolectric e Espresso

Consideriamo una applicazione
semplicissima, con un testo e un pulsante.
Premendo il pulsante, cambia il testo

’gl com.example.activity.DeckardActivity

I®! com.example.activity.DeckardActivity

Button
Button

Porfirio Tramontana — Android Testing



Test registrato con Android Espresso Test Recorder
(estratto)

@LargeTest
QRunWith (AndroidJdUnitd.class)
public class DeckardEspressoRecorderTest ({

@Rule

public
ActivityTestRule<DeckardActivity>
mActivityTestRule = new
ActivityTestRule<> (DeckardActivity.clas
s) ;

@Test

public void deckardActivityTest() {
ViewInteraction textView = onView (

allOof (withId(R.id. text),

withText ("Hello Espresso!"),

childAtPosition (

allOf (withId(R.id.content layout),

childAtPosition (

withId (android.R.id.content),

isDisplayed())) ;

0)), 1),

textView.check (matches (withText ("Hello
Espresso!")));

ViewInteraction button =

onView (allOf (withId(R.id.button) ,withTe
xt ("Button"), childAtPosition

(allOf (withId(R.id.content layout),
childAtPosition(withId (android.R.id.con
tent), 0)),0), isDisplayed()))

button.perform(click()) ;

ViewInteraction textView2 =
onView (allOf (withId(R.id. text),
withText ("Touched!"),
childAtPosition(allOf (withId(R.id.conte
nt layout),
childAtPosition(withId (android.R.id.con
tent), 0)),1), isDisplayed()))

textView2.check (matches (withText ("Touch
ed!")));
}

Porfirio Tramontana — Android Testing



Test con Robolectric

QRunWith (RobolectricTestRunner.class)
public class DeckardRobolectricTest {

DeckardActivity activity;

@Before

public void setup() {

assertNotNull (shadowOf (RuntimeEnviro
nment.application)) ;

assertTrue (Robolectric.setupActivity
(DeckardActivity.class) != null);

activity =
Robolectric.setupActivity (DeckardAct
ivity.class);

}

@QTest

public void testSomething() {

TextView t = (TextView)
activity.findViewById(R.id. text) ;

assertEquals (t.getText () ,"Hello
Espresso!") ;

}

@Test
public void testButton {

TextView t = (TextView)
activity.findViewById(R.id. text) ;

Button b= (Button)
activity.findViewById(R.id.button) ;

b.performClick () ;

assertEquals (t.getText () ,"Touched!")
; } o}

Porfirio Tramontana — Android Testing



Robolectric vs Espresso

- Robolectric e in grado di eseguire test molto piu
velocemente, e con minori risorse di memoria

- Il funzionamento di Robolectric non e soggetto a
corse critiche

« La fedelta dei test che utilizzano Espresso dipende dall’aggiunta di
rallentamenti (sleep) atti ad evitare di eseguire eventi su widget che

non siano ancora pronti a rispondere

 Robolectric non supporta il testing di sistema

« puo testare soltanto una activity e il passaggio ad una activity
diversa

User Interface Testing



Proposta di progetto d'esame

Progettare una test suite a livello funzionale con
Espresso Test Recorder

« Eventualmente per I'applicazione che si € sviluppata come progetto
Android

Trasformare la test suite in una versione eseguibile
con Robolectric

Confrontare le due test suite in termini di copertura
del codice sorgente

Generalizzare regole di trasformazione dei test da
Robolectric verso Espresso e viceversa

«  Sono disponibili alcuni esempi svolti di test piu complessi equivalenti

Porfirio Tramontana — Android Testing



Ulteriore proposta di progetto d’esame

 Avendo a disposizione test suite sviluppate con
Robotium Recorder, su semplici applicazioni
esistenti, trasformare la test suite in una versione
eseguibile con Robolectric

- Confrontare le due test suite in termini di copertura
del codice sorgente

 Generalizzare regole di trasformazione dei test da
Robolectric verso Robotium e viceversa

«  Sono disponibili alcuni esempi svolti di test piu complessi equivalenti

Porfirio Tramontana — Android Testing



Test di sistema con UIAutomator

- UIAutomator e un insieme di librerie che specializza Android
Espresso mettendo a disposizione metodi che permettono di
testare anche l'interazione dell’applicazione con il resto
dell’'ambiente. Ad esempio, mette a disposizione metodi per
simulare:

« La rotazione del dispositivo (portrait/landscape)
«  L'utilizzo di pulsanti fisici (Back, Home, etc.)
« Interazioni con la barra delle notifiche
« Interazioni tra activity diverse
« Inoltre, consente di prendere uno screenshot della GUI

« In pratica, consente di eseguire una applicazione in parziale
integrazione con il resto del sistema

«  https://developer.android.com/training/testing/ui-automator.htmi

Porfirio Tramontana — Android Testing



Esempio UIAutomator 1/2

private UiDevice mDevice;

@Before
public void startMainActivityFromHomeScreen () {
// Initialize UiDevice instance
mDevice = UiDevice.getInstance (InstrumentationRegistry.getInstrumentation())

// Start from the home screen

mDevice.pressHome () ;

final String launcherPackage = getLauncherPackageName () ;

assertThat (launcherPackage, notNullValue()) ;

mDevice.wait (Until.hasObject (By.pkg(launcherPackage) .depth(0)) ,LAUNCH TIMEOUT) ;

// Launch the blueprint app
Context context = InstrumentationRegistry.getContext();
final Intent intent = context.getPackageManager ()
.getLaunchIntentForPackage ("com.example.android. testing.uiautomator.BasicSample") ;
intent.addFlags (Intent.FLAG ACTIVITY CLEAR TASK) ;

// Clear out any previous instances
context.startActivity(intent) ;
mDevice.wait (Until.hasObject (By.pkg
("com.example.android. testing.uiautomator.BasicSample") .depth(0)), LAUNCH_TIMEOUT) ;

Accede all’activity dell’app dall’esterno, con I'oggetto mDevice

Porfirio Tramontana — Android Testing



Esempio UIAutomator 2/2

@Test
public void testChangeText newActivity() {
// Type text and then press the button.

mDevice. findObject (By.res ("com.example.android. testing.uiautomator.BasicSampl
e", "editTextUserInput")) .setText ("UIAutomator") ;

mDevice. findObject (By.res ("com.example.android. testing.uiautomator.BasicSampl
e", "activityChangeTextBtn")) .click() ;

// Verify the test is displayed in the Ui

UiObject2 changedText =

mDevice.wait (Until. findObject (By.res ("com.example.android. testing.uiautomator
.BasicSample", "show text view")), 500 /* wait 500ms */);

assertThat (changedText.getText (), is(equalTo ("UIAutomator")))

Il click causa un cambiamento di activity e solo successivamente |'asserzione
sull’'oggetto show_text_view della seconda activity

Porfirio Tramontana — Android Testing



Proposta di progetto

- A partire da una applicazione Android esistente (ad
esempio quella sviluppata nell’altro progetto
d’esame), scrivere test con UIAutomator in grado di:

Verificare il funzionamento dell’applicazione in presenza di interazioni
con il dispositivo (rotazione, controlli volume, ...)

Verificare il funzionamento corretto dell’applicazione a seguito di
apertura/chiusura o interruzione dovuta ad altra applicazione (ad
esempio col tasto Home, oppure per una telefonata o altra notifica)

Eseguire test che seguano la corretta esecuzione di una sequenza di
activity

Verificare la corretta interazione dell’app con eventuali altre app o
Service con le quali interagisce

Porfirio Tramontana — Android Testing



Android Device Monitor

Android Device Monitor € uno strumento dell’Android SDK che:
Monitora il comportamento della macchina virtuale
Accesso al file system
Thread in esecuzione
Allocazione della memoria
Log dei messagqi
Utilizzo della rete

Consente I'emulazione (spoofing) di
Variazioni nelle coordinate GPS
Ricezioni di messaggi SMS
Ricezione di telefonate
Si tratta di uno strumento standalone, che puo essere utilizzato per

monitorare sia macchine reali che virtuali, e puo essere utilizzato
anche da Android Studio (menu Tools)

Porfirio Tramontana — Android Testing 35



Android Device Monitor

= DDMS - Prossimita/srdittemy/prossimita/SmulationActivtyjava - Ec - i W | G )
File Edit Run Source Refactor Navigate Search Project Window Help
Hmadl” ‘d B B-0-Ar @ PLAE -GS & [BT0MS) &’ save
= 1)[% Threads | § Allocation Tracker i File Explorer 52 ®BEe| =|+~°=08
| & G O 2 @ ame ize Date ime Permissions Info
|66 0 2|@|a@ 7w Size D Time P Inf
Name (= data 2009-07-01  00:24  drwxrwx--x
4 I@ emulator-5554 Online AVD15.. & anr 2011-06-02 1816  drwxrwxrwx
system_process 589 8600 & app 5 2009-07-01 drvarvace-x
android.process. 689 8601 & 2pp-pn e drwxrwnc-x
com.android.inp 723 8602 = dalvik-1 2011-06-02 drwxrwx--x
comandroidaly; 735 8603 & data 2011-06-02 18:16  drwxrwx--x
android.process. 755 3604 & local 2011-06-02 18:16  drwxrwx--x
com.android.exa 792 8605 & lost+fo 2011-06-02 18:16  drwxrwx---
com.android.pac 4561 8606 (= misc 2011-06-02 1816  drwxrwx--t
com.porfirio 7934 8612 (& propert 2011-06-02 1816  drwx------
= system 2011-06-02 18:16  drwxrwxr-x
(&> tombst 2011-07-29  21:58  drwxr-xr-x
= (= sdcard 1970-01-01  00:00  d---rwxrwx
=
© Emulator Control 32 Bl & system 2000-07-01 00:24  drwar-xr-x
* & app 2009-07-01
Location Controls & bin 2009-07-01
Manual l—l—‘GPX KL [ buildp 1250 2009-07-01 00:
P & etc 2009-07-01 : drwxr-xr-x
i (= fonts 2009-07-01  00:22  drwxr-xr-x
© Sexagesimal (& framew 2009-07-01  00:23  drwxr-xr-x
Longitude -30 & lib 2009-07-01  00:30  drwxr-xr-x
ot % (& lost+fo 2011-06-02 1816  drw-rw-rw-
etiude @ ust 2009-07-01 00:22  drwar-xe-x
&> xbin 2009-07-01  00:26  drwxr-xr-x
=
i LogCat 3\ B Console} VOOP®| +f~=|B~=8
Log
Tine pid tag Hessage -
08-02 08:21:07.609 I 551 DEBUG becf5594 becf55e0 [stack]
08-02 08:21:07.976 T | 589 ActivityManager Process con.porfirio (pid 7838) has died.
08-02 08:21:07.996 I 589 WindowManager WIN DEATH: Window{43650a70 com.porfirio/com.porfiric.analog paused=false}
08-02 08:21:08.046 D 553 Zygote Process 7838 terminated by signal (4)
08-02 08:21:08.066 I 6589 ActivityManager Start proc com.porfirio for activity com.porfirio/.analog: pid=7934 uid=10023 gids={}
08-02 08:21:08.136 I | 7938 jiep received file descriptor 10 from ADB
08-02 08:21:08.216 W 7934 System.err Can't dispatch DDM chunk 4d505251: no handler defined
08-02 08:21:08.446 D 7934 LocationManager Constructor: service = android.location.ILocationManager$Stub$Proxy@43742a90
08-02 08:21:08.556 W 589 InputManagerService Got RemoteException sending setdctive(false) notification to pid 7838 uid 10023
08-02 08:21:17.676 D 589 dalvikvm GC freed 14964 objects ~ 617288 bytes in 247ns gl
08-02 08:21:34.306 D 672 dalvikvm GC freed 9306 objects ~ 523016 bytes in 1llms [E|
Filter:
=
3]

Porfirio Tramontana — Android Testing



Monkey

Monkey e un’utility interna fornita con
I'android SDK, che e in grado di
generare eventi utente pseudocasuali
su una qualsiasi interfaccia,
registrando gli eventuali crash

Monkey gira all'interno del dispositivo; per avviarla
bisogna passare per adb. Ad esempio, da linea

di comando:

adb shell monkey -v -p
com.porfirio.orariprocida2011 30

Porfirio Tramontana — Android Testing 37



Output di Monkey

:Monkey: seed=0 count=30

:AllowPackage: com.porfirio.orariprocida2011
:IncludeCategory: android.intent.category.LAUNCHER
:IncludeCategory: android.intent.category.MONKEY

/| Event percentages:

// 0:15.0%
// 1:10.0%
/] 2:15.0%
// 3:25.0%
// 4:15.0%
// 5:2.0%
// 6:2.0%
/] 7:1.0%
// 8:15.0%
:Switch:

#Intent;action=android.intent.action.MAIN;category=android.intent.category.LAUNCHER;launchFlags=0x10000000;component=com.porfirio.orariprocida2011
/.OrariProcida2011Activity;end

/] Allowing start of Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
cmp=com.porfirio.orariprocida2011/.0OrariProcida2011Activity } in package com.porfirio.orariprocida2011

:Sending Pointer ACTION_MOVE x=-4.0 y=2.0

:Sending Pointer ACTION_UP x=0.0 y=0.0

:Sending Pointer ACTION_DOWN x=47.0 y=122.0

Events injected: 30

:Dropped: keys=0 pointers=0 trackballs=0 flips=0

## Network stats: elapsed time=7766ms (7766ms mobile, 0ms wifi, 0Oms not connecte
d)

// Monkey finished

Porfirio Tramontana — Android Testing 38



Monkeyrunner

Monkeyrunner, a differenza di monkey, € un API che consenta la scrittura di
programmi in grado di controllare un dispositivo Android dall’esterno

Ad esempio & possibile scrivere un programma Python che installa
un’applicazione, esegue casi di test, invia eventi, salva screenshot

Esempio di programma:

from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice
device = MonkeyRunner.waitForConnection ()

device.installPackage ('myproject/bin/MyApplication.apk’")
package = 'com.example.android.myapplication'

activity = 'com.example.android.myapplication.MainActivity'
runComponent = package + '/' + activity

device.startActivity (component=runComponent)

device.press ('KEYCODE MENU', MonkeyDevice.DOWN AND UP)

result = device.takeSnapshot ()

result.writeToFile ('myproject/shotl.png', 'png')

Porfirio Tramontana — Android Testing



Confronti

« I test scritti con Robotium, Espresso, ...
sono scritti in Java e agiscono a livello di
virtual machine

- I test eseguiti da Monkey e quelli scritti
con MonkeyRunner agiscono a livello di
stream degli eventi e sono eseguiti a
livello di shell del sistema operativo
 In alternativa, € possibile interagire direttamente con

lo stream degli eventi utilizzando le primitive
getevent e sendevent

Porfirio Tramontana — Android Testing



Android Ripper

Una alternativa, con piu “intelligenza” di
Monkey e I'Android Ripper sviluppato
all’Universita di Napoli

Navigazione “in ampiezza” o “in profondita”
dell'interfaccia utente di un‘applicazione Android

Esecuzione di eventi su tutti | Widget trovati
Generazione di sequenze di esecuzione
Generazione di casi di test JUnit
Rilevazione automatica di crash
Valutazione della copertura ottenuta (con Emma)

Porfirio Tramontana — Android Testing 41



‘e List Initia/izaﬁa‘ﬁ; 4

SR @ ozen
o~

Post Content X
"k L- Em Dk
‘ ifriee ] a

Cont:

ta The

Tags & Categories

ags (separate tags with commas)

Select Categories

Execute tl Selected categories:

Settings

Status

Abstract t = FGU.

Publish: Immediately Edt

Abstract State;
Update e GIJT Tree Model;

New Tasks ;

e No Content Found

Please enter some post

content or attach a media item. ew 7'a$k$ To The Task

Ml @ e:50em

=

Ml @ es0em

(T testandroidripper ¥ & TR

Ml @ 7:0aem

(T testandroidripper ¥ & TR

Add Account Preferences
Remove Blog About

il @ 7o5en
Start blogging from your

mobile in seconds.
Start a new blog at WordPress.com
Add blog hosted at WordPress.com

Add self-hosted WordPress blog

Ripping
Algorithm

1.
& 2.
@M 700
V testandroidripper ~ £ T3
Pages
About 3'
4.
5.
6.
7.
8.
9.
@ 7010w
U testandroidripper £ TR
About R 10.

This is an example of a page. Unlike
pasts, which are displayed on yaur blog's
front page in the order they're published,
pages are better suited for more
timeless content that you want to be
easily accessible, like your Abaut or
Contact information. Click the Edit link to
make changes ta this page or add

another page

42

Task List Initialization;

while (Task List Is Not
Empty) {

Extract a Task From
The Task List;

Execute the Task;

Abstract the Current
GUI Abstract State;

Update the GUI Tree
Model;

if (GUI Exploration
Criterion) then {

Define New Tasks ;

Add New Tasks To
The Task List;

A sorry!

The application WordPress
(process org.wordpress.
android) has stopped
unexpectedly. Please try again.

Force close

Porfirio Tramontana — Android

Testing




Parametri

 L'esempio precedente mostra:

Navigazione in ampiezza dell’'albero delle interfacce
utente

Estrazione di tutti i widget presenti in ogni
interfaccia

Inserimento di numeri interi casuali nei campi di
testo

Navigazione di tutte le interfacce che abbiano
almeno un widget diverso dalle interfacce gia
visitate

Terminazione della visita al raggiungimento di
foglie tutte corrispondenti a stati gia visitati

Porfirio Tramontana — Android Testing 43



Configurazione

Il Ripper puo essere configurato in base a:
tipo di esplorazione
. Es.: random o sistematica
strategia di navigazione
. Es.: casuale, in ampiezza o in profondita
insieme di widget considerati
. Es.: tutti i widget per i quali sia stato registrato un listener
Valori da inserire nei campi di testo
. Es.: numeri interi casuali o costanti
Criterio di equivalenza tra schermate

. Es.: considerare equivalenti (e non esplorare ulteriormente) interfacce che abbiano
almeno un widget diverso dalle interfacce gia visitate, oppure che abbiano almeno
un listener diverso, oppure che differiscano per almeno un valore in un campo di
input

Criterio di Terminazione

. Ad esempio quando tutte le foglie sono state visitate, oppure al raggiungimento di
una profondita massimo, di un numero di stati prefissato oppure di un tempo
massimo prefissato

Porfirio Tramontana — Android Testing 44



Osservazioni e Problemi

La navigazione sistematica puo essere meno efficace di quella casuale
La navigazione casuale € molto meno efficiente di quella sistematica

Un criterio di equivalenza troppo discriminante (ad esempio che consideri
diverse due schermate che differiscono solo per il valore di un‘etichetta) puo
portare a delle navigazioni indefinitamente lunghe (ad esempio se il valore
dell’'etichetta € l'istante attuale)

Un criterio di equivalenza poco discriminante puo avere scarsa efficacia (scoprire
poche interfacce diverse)

Non tutte le precondizioni possono essere controllate (ad es. il valore di risorse
remote, come in una applicazioni di scommesse, oppure l'orario esatto, in una
applicazione orologio), quindi alcuni test generati potrebbero non essere
ripetibili

Alcuni widget (ad esempio le liste) possono essere composte di un numero di
widget componenti (gli elementi della lista) indefinitamente crescente (in tal
caso sarebbe piu saggio non considerare tutti questi widget, ma solo un
quantitativo limitato di essi, ad esempio i primi tre)

Porfirio Tramontana — Android Testing



Misura della copertura: test di unita

Nel caso di test di unita, la misura della
copertura puo essere ottenuta con gli stessi
strumenti (ad es. Emma) utilizzati per
programmi Java

MezzoUtility 4+ 2% classes, 1% lines covered in package 'com.porfirio.erariprocida2(1’
_ — - e - = Element | Class,% | Method, % | Line, %
- package com.porfiric.orariprocidazoll; |t£.,| € Biglictterie.. 0% (0/2) 0% (0/5) 0% (0/35)
Eseguendo Run N . :ld'.| L BuildCenfig 0% (0/1) 0% (0/1) 0% (0/2)
2] +import ... — .
- ) |T| € Compagnia 0% (0/1) 0% (0/2) 0% (0/8)
Test Wlth : — € ConfigData 0% (/1) 0% (0/2) 0% (0V3)
- . Created by Porfirio on 30/10/5017 E £ DettagliMez... 0% (0/3) 0% (0/13) 0% (0/30)
Coverage in . T R "] % | € FinestraDial.. 0% (0/1) 0% (0/2) 0% (0/12)
- - 12 o € Meteo 0% (0/1) 0% (0/13) 0% (0/124)
And rOId StUdIo 12 G 1o o— mn snsa WB * € MeteoXML... 0% (0/1) 0% (0/6) 0% (0/63)
14 o b‘ Run 'Mezzoltility' Ctrl+Maiusc+F10 s & Mezo 0% (0/1) 0% (0/20) 0% (0/140)
viene misu rata I a 15 4 Debug 'MezzoUility’ =false; 100% (1/1) 55%(5/9) | 25% (26/101)
1& Run 'Mezzolltility' with Coverage € QOrariProcid... 0% (0/15) 056 (0V65) 056 (0/761)
Copertu ra e 17 private Double costoResidente=0.0; for 0% (0/9) 100% (0/0) 0% (0/9)
18 € Segnalazion.. 0% (0/4) 0% (0/14) 0% (0/78)
Visualizzata nel 13 @TEE‘? . € Taxi 0% (0/1) 0% (O/7) 0% (0/14)
20 % public vold MezzoTestl({){ € TaxiDialog 0% (0/2) 0% (0/5) 0% (0/52)
- 21 costoIntero=0.0;
rlquad ro Iaterale 22 setSetlircalnterc (false);
zZ3 setSetlircaResidente (false) ; ]
Cove rage 24 setCostoResidente (0.0) 5 ]
25 calcolaCosto{ n: "Traghetto Caremar", p@ "Poz
2& assertEquals( expected: 10.0, costoIntero);
27 assertTrue(setCircalntero) ;
28 assertFalse(setCircaResidente) ;

Porfirio Tramontana — Android Testing



Misura di copertura: Instrumentation test

- La misura della copertura puo essere
ottenuta con strumenti di terze parti,
come JaCoCo ed Emma

JaCoCo dispone anche di un
I'integrazione in Android Stud

plugin che consente
0

Emma puo essere utilizzato ¢

a linea di comando

Porfirio Tramontana — Android Testing



JaCoCo Tutorial 1/2

Nel file build.gradle bisogna aggiungere :

android { buildTypes { debug { task customJacocoTestReport (type:
testCoverageEnabled = true } } } JacocoReport, dependsOn: 'test') {

apply plugin: 'Jjacoco'

jacoco { toolVersion = reports {

"0.7.7.201606060606"} html .enabled = true

def fileFilter = [ html .destination =

'com/androidjacoco/sample/** /view/** *' "${buildDir}/reports/jacoco"

'**/R.class', '**/R$*.class', }
'**/BuildConfig.*"',

T %% 1 * %! T%% /% * %!
';SS::;§721/; *ﬂ] /*Testx.x', sourceDirectories = files([mainSrc])
def debugTree = fileTree (dir: classDirectories = files([debugTree])
"${buildDir}/intermediates/classes/deb executionData =
ug", excludes: fileFilter) files("${buildDir}/jacoco/testDebugUnitTe

def mainSrc = st.exec")

"${project.projectDir}/src/main/java" }

In questo modo abbiamo incluso il plugin ‘jacoco’, dichiarato le classi che ci interessa coprire,
la posizione dei test, la destinazione dei report e il fatto che i report devono essere generati
a seguito di un’attivita di test

Porfirio Tramontana — Android Testing



JaCoCo Tutorial 2/2

 Per eseguire i test bisogna avviare il task CreateDebugCoverageReport
di Gradle

« da linea di comando o dalla scheda Gradle nella sezione verification di App

Il risultato finira nella sottocartella reports/coverage di build
« Attenzione: il fallimento di uno dei test potrebbe prevenire la misura della copertura

Gradle projects 8- )

o
a + S T T & I B 5
) OrariProcida2011AS [l debughndroidTest = H3 com.porfirio.orariprocida2011 > & OrariProcida2011Activity
- 2;"’:Pr°"d"’mms roet OrariProcida2011Activity
m Tasks Element Missed Instructions~ Cov.+ Missad Branches Cov.+ Missed+ Cxty+ Missed+ Lines+ Missed Methods
I.T;_: android @ onOptionsltemSelected(Menultem) = 0% E= 0% 9 9 27 27 1 1
] @ aggiornalista() [ 653% 53% 22 40 33 85 0 1
[& build o setPortoPartenzal) E 8% === 3% % 17 25 3 0 1
Ca help @ leggiMeteo(boolean) = 7% = 40% 5 6 38 58 0 1
r-E- install @ setSpinner() = 44% E 38% 4 5 7 30 0 1
r—ﬂ- ather @ riempiMezzida\Web( = 88% &= T0% 3 ] 18 82 0 1
- @ readJsonFromUrl{String) | 0% nia 1 1 6 6 1 1
rﬁverlflcatlon @ onCreate{Bundle) = 93% I 25% 2 3 7 59 0 1
LF check @ calcolaDistanza(l ocation. double. double) | 0% nla 1 1 5 5 1 1
ﬁ. connectedAndroidTest @ riempiMezzidalnternalStorage(FilelnputStream) = 90% & B67% 2 4 3 25 0 1
@ readAll(Reader) 0% I 0% 2 2 4 4 1 1

£ connectedCheck
¥ connectedDebugAndroidTest

createDebugCoverageReport
£ deviceAndroidTest
¥ deviceCheck

[ .

Porfirio Tramontana — Android Testing



Emma

Emma e uno strumento di istrumentazione del codice
sorgente che consente di valutare l'effettiva
copertura del codice ottenuta a seguito
dell’esecuzione di un insieme di casi di test

Puo essere eseguito solo da linea di comando, tramite
adb. Ad esempio:

adb shell am instrument -w -e coverage true [Package di
test]/android.test.InstrumentationTestRunner

Genera report e metriche, anche in formato HTML

Porfirio Tramontana — Android Testing 51



Output di EMMA

EMMA Coverage Report (generated Wed Nov 09 20:01:15 CET 2011)

OVERALL COVERAGE SUMMARY

name class, % method, 9% block, % line, %
all classes 52% (14/27) 40% (29/73) 67% ({3159/47486) 51% (275,9/545)

OVERALL STATS SUMMARY

total packages: 1
total executable file=s: 5
total classes: 27
total methods: T3

total executable lines: 545

COVERAGE BREAKDOWN BY PACKAGE

name class, % method, % block, % line, %
com.porfiric.orariprocidaz0ll 52% (14/27) 40% (29/73) 67% ({3159/47486) 51% (275,9/545)

[21ll classes=]

EMME 0.0.0 {(unsupported private build) (C) Vliadimir Roubtsov

Porfirio Tramontana — Android Testing 52



1138
115
120
121
122
123
124
125
126
127
1238
125
130
131
132
133
134
135
1386
137
138
135

Copertura del codice con EMMA

BOverride
public woid onCreate (Bundle =zavedInstanceState) |

super.onCreate (savedInstanceState) ;
Log.d {"AaCTIVITY", "create™) ;
setContentView (B.layout.main) ;

myManager = (LocationManager) getSystemService (LOCATION SERVICE);
criteria = new Criterialf}:

criteria.setPowerRequirement (Criteria.POWER LOW) ;
criteria.setAccuracy (Criteria.ACCURACY COARSE)

BesztProvider = myManager.getBestProvider (criteria, true);

AlertDialog.Builder builder = new AlertDialog.Builder(this):;
builder.=zetMessage ("Gli orari =ono quelli resi noti dalle compagnie di @
SetCancelable (fal=se)
2etPositiveButton ("OKE", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {
dialog.cancel (),
}
Py:

aboutDialog = builder.create()

Porfirio Tramontana — Android Testing 53



Testing sul campo

» Cloud testing
« Alpha Testing
- Beta Testing

Porfirio Tramontana — Android Testing



Cloud Testing: Google Firebase

Firebase e una soluzione cloud acquisita nel 2014 da Google che raccoglie
in sé diversi servizi cloud offerti gratuiti o a pagamento

Firebase puo essere utilizzato direttamente dalla sua interfaccia web

oppure integrato in Android Studio

GROW

DEVELOP

Notifications

Remote Config

App Indexing

Dynamic Links

AdWords

B
E Realtime Database _E:
> Authentication Q

(-
C;‘, Cloud Messaging c’)
Analytics
P storage < Invites
@ Hosting I‘
E/ Test Lab \
ﬂ Crash Reporting A
Q rdviob

https://console.firebase.google.com/u/0/

Porfirio Tramontana — Android Testing



Firebase Test Lab

In particolare Firebase Test Lab consente di
eseguire automaticamente, in ambiente
cloud:

Test scritti con Android Espresso

Test generati automaticamente da uno strumento

chiamato Robo

 Robo cerca di eseguire sistematicamente azioni avendo
osservato i possibili widget sui quali applicarle

Firebase Test Lab genera, screenshot e video delle

esecuzioni fatte, le organizza in una mappa delle

navigazioni, e riporta il logcat con le eccezioni ricevute

Porfirio Tramontana — Android Testing



Firebase Test Lab

« Robo consente di eseguire un test automatico, fissato il livello massimo di profondita, il
tempo di test, e i valori di login e password per eventuali campi di questo tipo

- In alternativa e possibile far partire i propri script di test
« Oppure far partire un test «di gioco» a partire da un Intent scritto appositamente

&« > O | & Sicuro https://console.firebase.google.com/u/0/project/orariprocida2011as/testlab/histories/bh.d1a880c7f7aecsed ¥ @

-" Firebase OrariProcida2011AS Vai alla documentazione

M Project Overview el Test Lab for Android

DEVELOP TEST MODELLI

Authentication
Vuoi eseguire test illimitati? Esegui l'upgrade
& Uno Procida Residente ~ Esegui un Robo test
Esegui un test di strumentazione
Mafrice test Tipo di test Avviata Esecuz

Functions Esegui un ciclo di gioco
Q Matrice #659669 Robo 08/02/17,10:52 4

1 Guida alla scelta
STABILITY

¥ Crash Reporting

@ Performance

User Interface Testing



Output Robo Test

Un test automatico con l'algoritmo Robo
offre diversi output utili:
« Logcat

« Screenshot di tutte le schermate ottenute,
organizzati anche in una mappa delle avvenute
navigazioni e sotto forma di video

« Analisi delle prestazioni (Utilizzo della CPU,
Occupazione di memoria, Utilizzo della rete)

User Interface Testing



Esempio Output Robo

Uno Procida Residente Robo test, Nexus 5, livello / unoprocidaresidente +  Vai ai documenti 2 g
- @ Riuscito [=] 20/11/16,19:27 @) 9min36sec & ltalian .H Verticale VISUALIZZA FILE DI ORIGINE o
M unoprocidareside... te
LOG SCREENSHOT MAPPA ATTIVITA VIDEO

&  Analytics

a%  Authentication

= Database

- =
Py Storage }

® Hosting D
[ TestlLab D

¥ Crash Reporting

B Notifications D

JZ  Remote Config

¢? Dynamic Links i

€1 AdMob

Spark .
Gratuito § 0/mese D
ESEGUI LUPGRADE

Posta in arrive - Mozilla Thunderbird h ) D . - -

Porfirio Tramontana — Android Testing



Risorse per il Cloud Testing

Una rassegna sulle risorse per il cloud testing
e suli rispettivi costi, aggiornati all'inizio del
2017 e riportato in un progetto d’esame
svolto

CloudTesting_Pagliaro.pdf
Un primo confronto tra lI'efficacia di
strumenti di testing client e strumenti cloud

come Robo e Amazon Fuzz e riportato in un
progetto d’esame svolto del 2016

ConfrontoToolTestingAndroid_Losco.pdf

User Interface Testing



Progetto proposto

« Approfondire dal punto di vista
metodologico e dal punto di vista pratico
le principali funzioni di testing messe a
disposizione da Firebase:
 Firebase Test Lab (modalita gioco e Robo)
* Firebase Performance
* Firebase Crash Report
* Firebase Functions

Porfirio Tramontana — Android Testing



Alpha e Beta Testing

Le fasi di Alpha e Beta Testing coinvolgono, rispettivamente,
persone coinvolte nel progetto (non sviluppatori) e potenziali
utenti del sistema da realizzare

La console di pubblicazione
consente di impostare e
valutare attivita di alpha testing e beta testing

p Google Play Console = Versioni dell'app

€ Tutte le applicazioni “’5‘: ProcidaInKayak (i) Pubblicata Pubblicazione standard

BE  Dashboard

Gestisci gli APK dell'app, esamina la cronologia versioni e implementa |'app nelle versioni Produzione, Alpha e Beta. Leggi ulteriori informazioni

Statistiche

4+ Android vitals
-
¢

Gestisci tester Alpha test chiuso
>  Strumenti di sviluppo

Gestione delle versioni A~

Wiy
@ Sostituito dalla versione di produzicne

Dashboard versione

Versioni dellapp Paesi in cui & disponibile la versione Alpha

Porfirio Tramontana — Android Testing


https://play.google.com/apps/publish

Alpha testing

E’ possibile impostare un elenco di tester (qualificandoli con il loro indirizzo gmail/ account

Google), oppure un alpha testing aperto a tutti, oppure aperto ad un gruppo Google
esistente

Una volta impostato I'elenco, basta caricare una versione dell’apk, che rimarra visibile solo a
partire da un link specifico su google play e solo agli utenti abilitati

Gestisci tester Alpha test chiuso

Scegli come esequire il programma di test. Leggi ulteriori informazioni DISATTIVA ALPHA TEST
Scegli un metedo dei test Alpha test chiuso  w
Utenti CREA ELENCO

Dopo aver creato un elenco, puoi riutilizzarlo per il Closed Testing con qualsiasi app pubblicata

AttivaNome elenco Numero di utent

Tester 5 tester Medifica
Canzle per i feedback () porfirio.tramontana@gmail.com
URL di attivazione https://play.google.com/apps/testing/com.porfirio.procidainkayak

Condividi guesto link di attivazione con i tuoi tester.

Porfirio Tramontana — Android Testing



Alpha Testing e Beta Testing

Gli Alpha tester (Beta Tester)
vedranno (collegandosi a
Google Play oppure vedendo un
nuovo aggiornamento dell’app)
le schermate di fianco

I dati ricavati dagli Alpha Tester
contribuiranno a riempire il
Rapporto Pre-Lancio, nel quale
ci sono anche gli esiti di alcuni
test automatici

Le versioni alpha possono
essere «promosse» a beta

La differenza tra alpha e beta e
solo concettuale, ma le opzioni
attive sono le stesse

Le versioni beta possono essere
«promosse>» a versioni di
produzione

Tyl BE17:29

@ https:/play.google.com/apps;  [6]

’ Google Play N - |

gk, ProcidaIn
2 A Kayak

Porfirio Tramontana

Porfirio Tramontana ti ha invitato a
partecipare a un programma di test di una
versione non ancora rilasciata dell'app
Procida In Kayak.

In qualita di tester, riceverai un
aggiornamento che include una versione di
test dell'app Procida In Kayak. Tieni
presente che le versioni di test potrebbero
essere instabili o presentare alcuni bug.

Invia i tuoi feedback a Porfirio Tramontana
utilizzando le sue informazioni di contatto:
porfirio.tramontana@gmail.com.

DIVENTA UN TESTER

yall BE17:30

@ https:/play.google.com/apps/  [6]

Sk, Procida In
L 4 Kayak

dain k,

Porfirio Tramontana

Scarica la versione di test

Se hai gia installato |'app Procida In Kayak
sul tuo dispositivo, a breve riceverai un
aggiornamento con la versione di test. Se
non hai installato |'app Procida In Kayak,
scaricala su Google Play riceverai un
aggiornamento con la versione di test, ma
tieni presente che potrebbero occorrere
alcune ore.

Esci dal programma di test

Puoi uscire dal programma di test in
qualsiasi momento, dopodiché potrai
passare alla versione pubblica dell'app, se
disponibile, disinstallando la versione di
test e installando di nuovo I'app su Google
Play.

Esci dal programma

Porfirio Tramontana — Android Testing



Tracce proposte

Il progetto Android da realizzare e a scelta degli
studenti

Si raccomanda la realizzazione di una app che possa
sfruttare alcune delle peculiarita delle applicazioni
mobili

Sensori, connessioni, servizi, touchscreen, database locale, interazione
con i servizi telefonici ...

Nel caso in cui si realizzi una applicazione distribuita
(ad esempio client/server) ai fini del giudizio verra
tenuta in conto primariamente la complessita e la

qualita del lato client (android)

Porfirio Tramontana — Android Testing 68



Applicazioni possibili

(quest’elenco viene pubblicato a puro titolo di esempio e di possibile ispirazione, ma ogni gruppo
puo scegliere liberamente una applicazione da realizzare)

Ombrello, app che prende in input orario e luogo di partenza e di arrivo, e mezzo di
locomozione in un viaggio/spostamento e cerca di quantificare la probabilita che
sia necessario I'ombrello, interrogando appositi servizi meteo

Luna Rossa, app che, noti dati astronomici sulla posizione relativa di sole, luna e
osservatore, cerchi di indovinare se si verifichera una luna rossa (ad esempio
luna sull’orizzonte ad ovest poco dopo il tramonto del sole)

Controllo Volume, app che controlla il volume della suoneria del telefono in base ad
alcuni fattori ambientali (rumore di fondo, prossimita, illuminazione)

Tombola da Bar, app che consente di organizzare una partita ad un gioco come la
tombola (ma va bene anche un qualsiasi altro gioco con molti giocatori, ad
esempio un quiz o un sorteggio) nel quale ogni giocatore ha un proprio client
Android e, eventualmente, c’e un server (o servizio) per il mantenimento dello
stato della partita

Porfirio Tramontana — Android Testing 69



Applicazioni possibili

Caccia Al Tesoro, estensione dell’esempio visto al corso, con la gestione della
coordinazione tra diversi giocatori che giocano in contemporanea

Campo Minato nel mondo reale, nel quale il client Android piazza delle «mine» in
punti geografici e il giocatore deve correre da un punto all’altro mantenendo
attivo il gps e evitando di avvicinarsi troppo ad alcuna delle «mine»

Pac Man nel mondo reale: scopo del gioco e quello di passare per tutti i punti di
interesse (come le palline di un Pac Man) il piu velocemente possibile
(percorrendo il minor spazio possibile). Questo «gioco>» puo avere anche
connotazione culturale, aiutando il turista a percorrere un centro storico
osservando tutti i punti d'interesse

Silenzio, app che abbassa il volume della suoneria (ed eventualmente attiva la
vibrazione) in corrispondenza del rilevamento di luoghi specifici (ad esempio
una un’aula universitaria) oppure una altra condizione (ad esempio un
determinato orario)

Porfirio Tramontana — Android Testing 70



Applicazioni possibili

Giochi con i sensori, app che chiede all’'utente di risolvere particolari task che hanno
a che fare con i sensori (ad esempio tenere il telefono con una certa inclinazione
data, muoverlo con una certa velocita, portarlo ad una certa distanza da un
ostacolo, allinearlo ad una certa direzione cardinale, etc.)

Giochi di sincronizzazione: come i precedenti, ma nei quali lo scopo dei due
giocatori e quello di effettuare operazioni uguali nello stesso istante. La
sincronizzazione puo essere ottenuta implementando un protocollo peer to peer
tra i client (ad esempio via bluetooth) o anche tramite un server (ad esempio un
http server nel quale salvare semplici dati riguardanti lo stato)

Giochi peer to peer a due giocatori, ad esempio giochi con le carte (sette e mezzo,
briscola), dama, scacchi, tris, etc. La comunicazione puo essere ottenuta
implementando un protocollo peer to peer tra i client (ad esempio via bluetooth)
o anche tramite un server (ad esempio un http server nel quale salvare semplici
dati riguardanti lo stato)

Porfirio Tramontana — Android Testing 71



Appendice

Esecuzione di Android Ripper

Porfirio Tramontana — Android Testing

73



Prerequisiti

Android Ripper has been tested on Windows 10, Linux Ubuntu and Linux Mint.
- Android SDK
- Oracle Java 8
- Use Android SDK Manager to download and install the latest:
Android SDK Tools
Android SDK Platform Tools
Android SDK Build Tools
- Use Android SDK Manager to download and install for each required Android API:
the SDK Platform
the Intel and ARM System Images

-Add to the PATH environment variable the following directories:
PathToAndroidSdk/tools/
PathToAndroidSdk/platform-tools/
PathToAndroidSdk/build-tools/BUILDNUMBER/

(it is variable between different versions of Android SDK)

-Set the following Environment Variables:
JAVA_HOME=PathTolre or PathToldk
ANDROID_HOME=PathToAndroidSdk

Porfirio Tramontana — Android Testing



Configurazione di Android Ripper

Le impostazioni sono tutte contenute in un file di configurazione (ad esempio default. properties).

Ad esempio:

#Name of the avd equipped with an x86 architecture

avd_name_x86 = testing

#Name of the avd equipped with an ARM architecture

avd_name_arm = testingARM

#Port number used to communicate with the avd

avd_port = 5554

#Exploration strategy. Valid strategies: random, systematic

driver=random

#Number of events to be fired (used only for the random strategy)

events=20

#Time between events (milliseconds)

sleep_after_event=1000

#Strategy implemented by the component that schedule the next event to be executed
#For a Random Exploration Strategy the only possible value is "random" (default)
#For a Systematic Exploration Strategy: "breadth", "depth”

scheduler=random

#Random Seed (used only for the random strategy)

#Default = System.currentTimeMillis()

seed=0

Porfirio Tramontana — Android Testing



Esecuzione di Android Ripper

From shell command line:

java -jar AndroidRipper.jar PathToApk
[PathToConfigurationFile]

The default.properties configuration file is used if the last
argument is blank. This file is located in the AndroidRipper
folder.

A shortcut is given by the Android RipperGUI.jar interactive
application

Porfirio Tramontana — Android Testing



Appendice

Strumenti e tecniche “obsolete”
ma ancora potenzialmente utili

Porfirio Tramontana — Android Testing

1



Robotium

Robotium € un framework a supporto del testing di
unita delle Activity che estende e potenzia Junit.
In particolare:

e piu semplice scrivere test che riguardano piu
Activity, Dialog, Toast, Menu e Context Menu.

E’ migliorata la leggibilita dei test case

I test case sono meno dipendenti dalla
variabilita dei tempi di esecuzione

Robotium € un progetto open source la cui prima
versione e stata rilasciata a gennaio 2010

Porfirio Tramontana — Android Testing /8


http://code.google.com/p/robotium/

Caratteristiche di Robotium

Il funzionamento di Robotium e tutto basato
sull’utilizzo di un oggetto denominato SOLO

Solo solo = new Solo(getInstrumentation() ,getActivity())

Tramite l'oggetto solo e possibile interrogare e
modificare i widget della UI, eventualmente
anche senza conoscerne l'identificativo

Particolarmente utile nei test di accettazione

Ad esempio, € possibile selezionare I'insieme dei widget
visibili oppure e possibile selezionare un widget in base al
testo che mostra

Porfirio Tramontana — Android Testing 79



Esempi

public void testTextView () {

String resourceString = new
String(solo.getString(com.porfirio.orariprocida20l11.R.string.mezzo)

) ;
TextView mTextViewl=solo.getText (1) ;

assertEquals (resourceString, (String)mTextViewl.getText ()) ;

public void testButtonRobotium() {
TextView mTxtOrario=solo.getText (3) ;

String initial=new String(mTxtOrario.getText() .toString())
solo.clickOnButton ("<<");

solo.clickOnButton (">>") ;
assertEquals (mTxtOrario.getText () .toString() ,initial);

Porfirio Tramontana — Android Testing 80



Robotium Recorder

Robotium Recorder e disponibile, in versione
gratuita, all’indirizzo:

Anche Robotium Recorder e disponibile
sotto forma di estensione di Eclipse,
scaricabile da:

http://recorder.robotium.com/updates

E’' possibile, pero, catturare (e salvare come
test Junit) solo 5 casi di test

Porfirio Tramontana — Android Testing 81


http://robotium.com/pages/free-trial

Testing del ciclo di vita di un Activity

Per simulare una pausa e resume:

Instrumentation mInstr = this.getInstrumentation() ;
mInstr.callActivityOnPause (mActivity) ;
mInstr.callActivityOnResume (mActivity) ;

Quit

Porfirio Tramontana — Android Testing 82



Testing in isolamento

Per realizzare Unit Testing e necessario limitare al minimo e
controllare le dipendenze dell’unita testata dal resto del
software e dell’'ambiente di esecuzione

La classe IsolatedContext e in grado di riprodurre un contesto di
esecuzione fittizio, da utilizzare tutte le volte che sia necessario,
senza dipendere dal reale stato del sistema

Per emulare gli eventi di sistema si possono utilizzare le classi del
package android.hardware

Per emulare I sensori si possono usare le classi Sensor, SensorEvent,
SensorEventListener e SensorManager, ridefinendole in modo che
generino eventi fittizi

Porfirio Tramontana — Android Testing 83



Esempio Mock

SMC?_RSehcl:Igiver e un Broadcast Receiver che ascolta per la ricezione
I

SMS e una Activity che viene avviata da SMSReceiver in seguito
alla ricezione di un SMS e ne visualizza il testo

MockProvider € una classe che estende Thread e, tramite Intent si
glcll_uara (tramite Intent) in grado di inviare SMS e controllarne il
elivery

SMSMock e una classe che estende SMS, imitandolo. In pratica
definisce e avvia un MockProvider

SMSTesting € una classe di test che, cosi come SMSMock, definisce
e avvia un MockProvider e gli chiede di inviare un messaggio,
come prova

Porfirio Tramontana — Android Testing 84



Class Diagram

SMSTesting istanzia SMSMock e
MockProvider

SMSMock sostituisce il metodo
onCreate di SMSACctivity e,
istanziandosi, avvia
MockProvider e lo dichiara
come gestore degli SMS (al
posto di un reale fornitore)

MockProvider dichiara due Intent
corrispondenti a eventi di Invio
e Consegna del messaggio

SMSTesting chiede a
MockProvider di “inviare” un
messaggio

SMSReceiver riceve i messaggi
fittiziamente inviati da
MockProvider e li gestisce
come se fossero reali

<<Activity >>
SMSACctivity

+onCreate()

1

SMSMock

<<Broadcast Receiver>>

SMSReceiver

+onReceive()

<<Thread>>
MockProvider

+onCreate()

|

SMSTesting

+test()

+sendMessage()

Porfirio Tramontana — Android Testing

85




Codice

public class SmsTesting extends ActivityInstrumentationTestCase2<SMSMock> ({
private SMSMock myActivity;

private MockProvider mymockprov;

@Override

protected void setUp() throws Exception{
super.setUp(),
setActivityInitialTouchMode (false) ;

mymockprov = new MockProvider (SmsManager.getDefault () ,getInstrumentation().getContext())
}

public void testcasel () {mymockprov.invia messaggio (phoneNumber, messaggio) ;}

public class MockProvider extends Thread{
private Context ctx; private SmsManager sms;

private PendingIntent sentPI; private PendingIntent deliveredPI;

@Override
public void run() {
sentPI = PendingIntent.getBroadcast (ctx, 0, new Intent (SENT), 0);,
deliveredPI = PendingIntent.getBroadcast (ctx, 0, new Intent (DELIVERED), 0);
}

public void invia messaggio (String PHNUM, String MEX) {sms.sendTextMessage (PHNUM, null, MEX, sentPTI,
deliveredPI) ;}

Porfirio Tramontana — Android Testing 86



Unit Testing di altri componenti

Per testare il ciclo di vita di un Service si possono utilizzare i metodi
Context.startService e Context. bindService

Il testing di un servizio e piu semplice del testing di una Activity, perche non
dipende da eventi utente e di sistema

Un Broadcast Receiver € molto semplice da testare. Per avviarlo da test si
puo utilizzare il metodo Context.sendBroadcast per simulare l'invio di
un Intent

Un ContentProvider fornisce un’astrazione di accesso ai dati. Deve essere
testato rispetto all’interfaccia di accesso che fornisce

Alcune apposite classi da cui ereditare
ServiceTestCase, ProviderTestCase?

Porfirio Tramontana — Android Testing 87



DDMS

Il DDMS (Dalvik Debug Monitor Server) e uno strumento

dell’Android SDK particolarmente utile in fase di prototyping

Monitora il comportamento della macchina virtuale
Accesso al file system

Thread in esecuzione
Allocazione della memoria
Log dei messaggqi

Consente I'emulazione (spoofing) di
Variazioni nelle coordinate GPS

Ricezioni di messaggi SMS
Ricezione di telefonate

Porfirio Tramontana — Android Testing

88



S

yip

File Edit Run Source Refactor

Navigate Search Project Window Help

| G )

S~ ‘8iBSE  $-0-A-®F-IPIAEN B e e 5 ([ET0oMs )& Java
= 1)[% Threads | § Allocation Tracker i File Explorer 52 ®e =+~ =0
E 3 I B G ] o} [ @ 1| Name Size Date Time Permissions Info
Name = data 2009-07-01  00:24  drwxrwx--x
TE emulator-5554 Online AVD15.. & anr 2011-06-02 1816  drwxrwxrwx
system_process 589 8600 & app 2009-07-01 drvarvace-x
android.process. 689 8601 & app-pri 2011-06-02 drvarwace-x
com.android.inp 723 8602 B tabiksy 2011:06:02 dnamazs
com.android.ala 735 8603 & data 20L1:06:00 Attt
android.process. 755 8604 @ local 2011-06-02 drwarwne-x
com.android.exa 792 8605 & lost+fo Lot - Pl
com.android.pac 4561 8606 (= misc 2011-06-02 1816  drwxrwx--t
com.porfirio 7934 3612 (& propert 2011-06-02 1816  drwx------
= system 2011-06-02 18:16  drwxrwxr-x
(&> tombst 2011-07-29  21:58  drwxr-xr-x
= (= sdcard 1970-01-01  00:00  d---rwxrwx
© Emulator Control 32 Bl & system 2009-07-01 0024  drwxr-xr-x
—— - @ app 2009-07-01  00::
Location Controls & bin 2009-07-01
Wﬁ buildp 1250 2009-07-01 00:
P & etc 2009-07-01 : drwxr-xr-x
e & fonts 2009-07-01 00:22  drwr-xe-x
© Sexagesimal i (& framew 2009-07-01  00:23  drwxr-xr-x
Longitude -30 & lib 2009-07-01  00:30  drwxr-xr-x
Lotiide [ e (& lost+fo 2011-06-02 1816  drw-rw-rw-
& usr 2009-07-01  00:22  drwxr-xr-x
& xbin 2009-07-01 00:26  drwxr-xr-x
1§ LogCat EZ\\_E Console} QOO@@®| +F~=|B~=0O
Log
Tine pid tag Hessage -
08-02 08:21:07.609 I 551 DEBUG becf5594 becfS55e0 [stack]
08-02 08:21:07.976 I 589 ActivityManager Process com.porfirio (pid 7838) has died.
08-02 08:21:07.996 I 589 WindowManager WIN DEATH: Window{43650a70 com.porfirio/com.porfiric.analog paused=false}
08-02 08:21:08.046 D 553 Zygote Process 7838 terminated by signal (4)
08-02 08:21:08.066 I 589 ActivityManager Start proc com.porfirio for activity com.porfirio/.analog: pid=7934 uid=10023 gids={}
08-02 08: I | 7938 jiep received file descriptor 10 from ADB
08-02 08:2 = |2 Systen.err Can't dispatch DDM chunk 4d505251: no handler defined
08-02 08: D 7934 LocationManager Constructor: service android. location. ILocationManager$Stub$Proxy@43742a90
08-02 08:21:08.556 W 589 InputManagerSer Got RemoteEzception sending setictive(false) notification to pid 7838 uid 10023
08-02 08:21:17.676 D 589 dalvikvm GC freed 14964 objects ~ 617288 bytes in 247ms L
08-02 08:21:34.306 D 672 dalvikvm GC freed 9306 objects ~ 523016 bytes in 1llms [E|
Filter:
R

1)

DDMS ¢ un eseguibile nell’Android SDK, ma anche una perspective in Eclipse ADT.

In Android Studio, & chiamato Android Device Monitor (menu Tools)

Porfirio Tramontana — Android Testing



Creazione di un progetto di test in ADT

Da linea di comando si puo scrivere
android create test-project -m <main_path> -n <project_name> -p <test_path>

In Eclipse e sufficiente utilizzare il widget di creazione progetto

= New Android Project _[o] x| < New Android Project _[o] x| < New Android Project =1 £
Create Android Project q ; Select TestTarget Select Build Target
Select project name and type of project Choose a project to test Choose an SDK to target
Project Name: | OrariProcida2011 Test " This project [ Build Target
' Create new project in workspace " An existing Android project: Target Name [ vendor Platform | API... |
" Create project from existing source & MapsGPSMarker ;I [ Android 1.5 Android Open Source Project 15 3
¥ Use default location bj MultiA\arCIock [ Android 1.6 Android Open Source Project 16 4
& [of ocida2011 D Google APIs GoogleInc. 16 4
Location: I C:fUsers/Porfirio/eclipseworkspace/OrariProcida2011 Test Erowsse, =) ProximityAlert D Android 21 Android Open Source Project 21 7
Working set & Radio Android 22 Android Open Source Project 22 g
Al
ReAl
P e bq m [] Geogle APIs Google Inc. 22 g
= 'DG SMSMessagingMock [ Android 231 Android Open Source Project 231 9
i : i - ct... |
Working sets: [My Projects =] el & SMSMessagingMockTest [ Google API: Google Inc. 221 9
= SMSreader [ Android 233 Android Open Source Project 233 10
bg Sp!nnErAEtw\ty [ Android 3.0 Android Open Source Project 30 1
> Spinnerhctivity2 [ Google APIs Google Inc. 30 1
L= SpinnerActivityTest
== Spylocator
1 sveglia button -l

@ < Back Next > Finish Cancel

®

< Back Net> [[ Fmsh | Cance @ < Back wetr  |[ Fmsh | Cance

Porfirio Tramontana — Android Testing

90



Creazione di un progetto di test

Con Android Studio i nuovi progetti sono
configurati per poter eseguire casi di test B3 gradie
scritti (ad esempio) in un package chiamato £ idea

- L] D radie
test oppure in un altro progetto di test, che S

viene affiancato al progetto di sviluppo e P src
aperto nello stesso progetto Android Studio 2 build gradle

I trolly.iml
[3 trollyTest
3 libs
[ src
&} build.gradle
I trollyTest.iml
%} build.gradle
EI gradlew

gt gradlew.bat

¥ TrollyTestWBAS (Ch\Users\Porfi

B import-summary.tdt
I:ﬂ local.properties
O settings.gradle
Il TrollyTestWBAS.iml
il External Libraries
i < Android API10 Platform = |
i1 < Android APT15 Platform > |

Porfirio Tramontana — Android Testing a1



Manifest di un progetto di test

<?xml version="1.0" encoding="utf-8'"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"
package="com.porfirio.orariprocida201l. test"
android:versionCode="1"

android:versionName="1.0" > Controlla I'esecuzione

delle classi del
<uses-sdk android:minSdkVersion="4" /> //f package
<instrumentation /

android:name="android. test.InstrumentationTestRunner"
android:targetPackage="com.porfirio.orariprocida2011" />

<application \

android:icon="@drawable/ic_launcher"
android:label="@string/app name" >
! <uses-library android:name="android.test.runner" />
< tion>

</manifest>

Porfirio Tramontana — Android Testing 92



Creazione di una classe di test (ADT)

= Mew JUnit Test Case =lo] x|
http://developer.android.com/tools/test JUnit Test Case
|ng/te5tlng—ec"pse'html /1y Superclass does not exist. IE

@ Mew JUnit 3 test O MNew JUnit 4 test

Source folder: I OrariProcida2011Testing/src Browse... |

(in AndrOid StUdiO non sono Package: Icom.porﬁrio.orariprocidalﬂll.test Browse... |
ancora presenti appositi
wizard) Name: [ OrariProcida2011 Activity Tests

Superclass: I android test.ActivitylnstrumentationTestCase? < OrariProcida2011 Activity= Browse... |
Which method stubs would you like to create?

http://developer.android.Com/tra | setlpBeforeClass() [T tearDowndfterClass
ining/testing/ui- =l e
testing/espresso- e
testing.html

Do you want to add comments? (Configure templates and default value here

r Generate comments

Class under test: I com.porfiric.crariprocida2dll.OrariProcida2011 Activity i Browse.. !

@ < Back Mext > Finish | Cancel |

Porfirio Tramontana — Android Testing 93



Metodi generati

package com.porfirio.orariprocida201l1l. test;

import com.porfirio.orariprocida201l1l.0OrariProcida201l1Activity;

import android.test.ActivityInstrumentationTestCase2;

public class OrariProcida20l1lActivityTests extends

ActivityInstrumentationTestCase2<OrariProcida2011Activity> {

public OrariProcida201lActivityTests () {

super ("com.porfirio.orariprocida2011", OrariProcida20llActivity.class);

@Override
protected void setUp() throws Exception {
super.setUp () ;

protected void tearDown () throws Exception ({

super. tearDown () ;

[

Porfirio Tramontana — Android Testing

94



Primi test case

public class OrariProcida20l1ActivityTests
extends

ActivityInstrumentationTestCase2<OrariProci
da2011Activity> {

private OrariProcida20l1lActivity mActivity;
private TextView mTextViewl;

private ListView mListView;

@Override
protected void setUp() throws Exception {
super.setUp() ;

Precondizioni: esistenza degli oggetti utilizzati nel test

/

public void testPrJEonditions() {
assertNotNull (mTextViewl) ;
assertNotNull (mListView) ;

]

public void testTextViewl () {

String resourceString = new
String (mActivity.getString(com.porfirio.or
ariprocida20l11.R.string.mezzo)) ;

assertEquals (resourceString, (String)mTextViewl.
getText()) ;

mActivity = this.getActivity() ;

mTextViewl=(TextView)
mActivity. findViewById (R.id. textViewl) ;

mListView =(ListView)
mActivity.findViewById(R.id.listMezzi) ;

/

}

protected void tearDown() thfows Exception
;uper.tearDown();
}
}

/

Oggetti utilizzati nel test

Test sul corretto valore di una casella di testo

Porfirio Tramontana — Android Testing 95




Esecuzione dei test

Da Eclipse Run as Junit Test
Sequenza di esecuzione

(Console)

(idem su Android Studio)

-
Package Explorer (E‘IJ JUnit &3

Finished after 28,374 seconds

o BB | @ B &l -

[2011-11-16 19:33:36 - OrariProcida20l11Testing]
[2011-11-16 19:33:36 - OrariProcida20l11Testing]
[2011-11-16 19:33:36 - OrariProcida20l11Testing]
[2011-11-16 19:33:36 - OrariProcida20l11Testing]

Android Launch!
adb is running normally.
Performing

android. test.InstrumentationTestRunner JUnit launch

[2011-11-16 19:33:36 - OrariProcida20l11Testing]
'emulator-5554' running compatible AVD 'AVD 1 6'
[2011-11-16 19:33:36 - OrariProcida20l11Testing]
device 'emulator-5554'

[2011-11-16 19:33:36 - OrariProcida20l11Testing]
[2011-11-16 19:33:40 - OrariProcida20l11Testing]
[2011-11-16 19:33:40 - OrariProcida2011Testing]
OrariProcida2011

Automatic Target Mode: using existing emulator
Uploading OrariProcida20llTesting.apk onto
Installing OrariProcida20l1Testing.apk. ..

Success!
Project dependency found, installing:

[2011-11-16 19:33:44 - OrariProcida2011l] Application already deployed. No need to reinstall.

[2011-11-16 19:33:44 - OrariProcida2011Testing]

Launching instrumentation

android. test.InstrumentationTestRunner on device emulator-5554

[2011-11-16 19:33:44 - OrariProcida20l11Testing]
[2011-11-16 19:33:48 - OrariProcida20l11Testing]
[2011-11-16 19:33:48 - OrariProcida2011Testing]
[2011-11-16 19:34:23 - OrariProcida2011Testing]

Collecting test information
Sending test information to Eclipse
Running tests...

Test run finished

«

Failure Trace

Runs: 272 B Errors: 0 A Failures: 0

Porfirio Tramont

ana — Android Testing

96



Un test piu complesso

Ese|1s1p_io di test che interagisce con l'interfaccia utente, settando un valore di uno
pinner

public void testListaVuota() {
mActivity.runOnUiThread (
new Runnable () {
public void run() {
mSpnPortoPartenza.setSelection (1) ;
mSpnPortoArrivo.setSelection (1) ;

assertEquals (0, (int)mListView.getCount()) ;
}
}) s

mInstrumentation.waitForIdleSync() ;

Per settare un campo di una oggetto sulla UI, & necessario, in Android, farlo
interagendo nello stesso thread della UI stessa

Per impedire la concorrenza tra eventi dell’'utente reale ed eventi simulati da test
setActivityInitialTouchMode (false) ;

Porfirio Tramontana — Android Testing

97



Istruzioni per l'esercizio di testing
con Robotium Recorder 1/2

La prima parte dell’esercizio si svolge sulla
macchina di test approntata presso il
Laboratorio di Ingegneria del Software

1. Accedere alla macchina (fisicamente o virtualmente)

2. Avviare la macchina virtuale Robotium Recorder (se
non e gia avviata)

3. Avviare Eclipse (se non € gia avviato)

4. Avviare un emulatore chiamato test (Api Level 15)
(se non € gia avviato)

Porfirio Tramontana — Android Testing 98



Istruzioni per l'esercizio di testing
con Robotium Recorder 2/2

5. Per ogni applicazione da testare

1.

Importare il progetto con I'applicazione (se non gia
presente)

Dal menu contestuale scegliere Robotium
Recorder/New Robotium Test

Scegliere l'applicazione e dare un nome al test
Avviare New Robotium Test

Operare sullemulatore interagendo con I'applicazione
sotto test

Al termine delle operazioni, premere Stop Robotium
Test

Premere Save

Porfirio Tramontana — Android Testing 99



Progetto di test e riesecuzione

In questo modo verra cosi creato un progetto di test che potra essere
subito rieseguito e, successivamente, modificato

Per rieseguire il test € necessario azzerare i dati dell’applicazione con Clear Data
dall'applicazione Settings/Apps sul’emulatore

Duplicare il progetto di test prima di modificarlo per poter tenere nota di tutta la
sua evoluzione

E’ possibile calcolare la copertura in maniera completamente analoga al caso
precedente

L’unica differenza consiste nello specificare
android-15 anziché android-10 come target

Per poter continuare il proprio lavoro a casa, € opportuno portare una memoria
usb con almeno 5 GB liberi che conterra la macchina virtuale (in formato
Oracle VM Virtual Box) sulla quale si € condotta la prima parte
dell’esperimento

Porfirio Tramontana — Android Testing 100



Robotium Recorder — un esempio completo

Consideriamo un’applicazione molto semplice come esempio

Simply Do € una semplice applicazione Android che consente di gestire azioni da svolgere,
organizzate in liste.
Dall'interfaccia principale é possibile:
vedere |'elenco di tutte le liste;

aggiungere una nuova lista (semplicemente digitandone il nome e chiedendo di aggiungerla).

Selezionando una lista, é possibile:
visualizzare tutte le azioni all'interno della lista
aggiungere un’azione all'interno della lista (scrivendone il nome)

segnare un‘azione come gia svolta (selezionandola): in questo caso |'azione sara visualizzata in grigio e barrata. E’ possibile segnare
nuovamente un’azione come non ancora svolta selezionandola ulteriormente

Dal menu é inoltre possibile eliminare tutte le azioni gia svolte e ordinare le azioni secondo I'ordine
prestabilito.

E’ possibile personalizzare I'applicazione tramite alcune voci disponibili dal menu (Settings). In
particolare e possibile:

Scegliere I'ordine di visualizzazione delle azioni (prima quelle non ancora effettuate — Active, oppure prima quelle evidenziate — Starred)
Scegliere I'ordine di visualizzazione delle liste (alfabetico oppure lasciarle in ordine di immissione)

Decidere se chiedere conferma ogni volta che si tenta di cancellare le azioni gia effettuate

Effettuare il backup sulla memoria locale

Ripristinare le note salvate in uno dei backup precedenti.

Porfirio Tramontana — Android Testing 101



Robotium Recorder — un esercizio

Testare |'applicazione Simply Do eseguendo un insieme di
esecuzioni

Nell'ambito di Robotium Recorder

Generando automaticamente al termine i corrispondenti test Junit
rieseguibili

Cercando di provare |'applicazione in tutti i modi possibili, sulla base dei
requisiti e delle strategie di progettazione dei casi di test note

Al termine verranno misurate (con Emma) e valutate le coperture
raggiunte, per avere un‘idea dell’efficacia dei test generati

Si cerchi di tenere conto del tempo impiegato per eseguire i vari passi
del processo

Porfirio Tramontana — Android Testing 102



Valutazione dell’efficacia del test

Come confronto rispetto a Simply Do,
consideriamo la copertura che ho ottenuto
10 con una sessione di test durata 8 minuti

EMMA Coverage Report (generated Mon Nov 24 20:54:43 CET 2014)

[2ll classes]

OVERALL COVERAGE SUMMARY

name class, % method, % block, %0 line, %
all classes 98% (44/48) 65% (161/248) 57 (3153/5523) 5% (7038

.........
2, 8/1281)

OVERALL STATS SUMMARY

o ackage
total executakle fil 15
total classes 45
total methods 246
total executakble 1in 1281

Porfirio Tramontana — Android Testing 103



1.

Istruzioni per l'esercizio di testing
con Robotium Recorder e ADT 1/2

Installare Simply Do
scompattando il .zip ed
importandolo come progetto
Eclipse

Creare una macchina virtuale
con le caratteristiche in figura

e avviarla

Registrare una serie di
esecuzioni con Robotium
Recorder sull’'emulatore

@ Edit Android Virtual Device (AVD)

Porfirio Tramontana — Android Testing

AVD Mame: AVD_SimplyDo|
Device: | 4" WVGA (Nexus 5) (480 = 800: hdpi) v
Target: | Android 23.3 - API Level 10 v
CPU/ABE | ARM (armeabi) -|
Keyboard: Hardware keyboard present
Skin: | WVGAB00 -|
Front Camera: Mone
Back Camera: ’None v]
Memory Options: — papg. 512 VM Heap: 32
Internal Storage:
200 MiB

S0 Card:

@ Size: 64

() File: Browse...
Ernulation Options: 5nap5hut ] Use Host GPU

Owverride the existing AVD with the same name



Istruzioni per l'esercizio di testing
con Robotium Recorder 2/2

Far generare automaticamente i test case a
Robotium Recorder

Rieseguire i casi di test per controllare se la
loro esecuzione va a buon fine

Problemi nella riesecuzione potrebbero essere dovuti a click
troppo veloci (Robotium Recorder potrebbe avere
reazioni lente, talvolta: meglio testare con calma)

Eventualmente, € possibile valutare piccoli difetti nel test
generato e ripararli eseguendo il debug del caso di test

Misurare la copertura (vedi istruzioni)

Porfirio Tramontana — Android Testing 105



Misurare la copertura
(dell’esercizio con Robotium)

1) Avviare I'emulatore
2) Disinstallare SimplyDo

3) Spostarsi nella cartella del sorgente della applicazione da testare (\SimplyDo)

Sotto windows, € preferibile che le cartelle non abbiano spazi

4) [percorso di ant\bin]\ant clean

ant puo essere scaricato da http://archive.apache.org/dist/ant/binaries/apache-ant-1.9.4-bin.zip

5) [ Percorso di android | tools]|android update project --path . --target android-10
[Percorso di android|tools] potrebbe essere D:\adt-bundle-windows-x86-20140702\sdk\tools

Per generare il file build.xml necessario ad ant

6) Spostarsi nella cartella del caso di test (\SimplyDoTest)

7) [percorso di ant\bin]\ant clean

Porfirio Tramontana — Android Testing

106



Misurare la copertura

8) [Percorso di android|tools]|android update test-project -p .\ --main ..\SimplyDo
Se SimplyDo si trova in una posizione diversa sul disco al posto di ..\SimplyDo mettere il percorso esatto di
SimplyDo (utilizzato al punto 3)

Per creare un file build.xml per il progetto di test collegandolo a quello dell’applicazione

9) Nella cartella del caso di test eseguire :
[percorso di ant\bin]\ant emma debug install test

10) Al termine del caso di test, nella cartella \SimplyDo\bin saranno disponibili i risultati di
copertura in vari formati (html, xml, txt)

11) Inviarmi il progetto di test con tutti i file di copertura (é sufficiente zippare le due cartelle
SimplyDo e SimplyDoTest)

Porfirio Tramontana — Android Testing 107



TestDroid

TestDroid comprende un insieme di
strumenti che consentono I'automazione
di test di applicazioni Android in ambiente
reale e simulato
TestDroid Enterprise
TestDroid Cloud
TestDroid Privateloud
TestDroid Recorder

http:/ /testdroid.com/

Porfirio Tramontana — Android Testing 111



TestDroid Recorder

TestDroid Recorder e uno strumento, parzialmente di libero
utilizzo, che fornisce funzionalita di capture & replay su Android

Capture: e in grado di osservare esecuzione utente su dispositivo reale o
anche su emulatore

Replay: € in grado di rieseguire le interazioni catturate e anche di
generare codice Junit+Robotium rieseguibile

http://testdroid.com/product/testdroid-recorder#0

TestDroid Recorder e disponibile sotto forma di estensione di
Eclipse/ADT

E’ necessario registrarsi e scrivere e-mail e password all’atto dell’'utilizzo di
TestDroid Recorder in Eclipse

Porfirio Tramontana — Android Testing 112


http://www.testdroid.com/updates/

TestDroid Recorder

Tutorial per l'utilizzo di TestDroid Recorder sono disponibili a:

1. Avviare New dal menu file o dal menu
contestuale dell’app da testare
Scegliere First Recording

2. Se necessario, inserire login e password
di registrazione a TestDroid
Selezionare I'app da testare

@ Your First Recording

[o [O ]

| TESTDROID

(1) Please start with one of the options below: k recorder

Your First Recording

Recorded application

(2) Sample Android Application
(©) Sample HTML Application
@ My Android Project

File: Browse...

Output project

name: Orriprocida2iniTet POFfiri0 Tramontana — Android Testing

) New = [ ]
Select a wizard =
Wizard

|
> [ Genera |

= Android
4 = Android - Testdroid
@ First Recording
1 New Robotium Test
£l New Website Test
Run App Crawler In The Cloud
> =2 C/C++
s = Git
= Java
> = XML
> = Examples

113



http://help.testdroid.com/customer/portal/topics/315855-testdroid-recorder-tutorials/articles

1.

TestDroid Recorder - Tutorial

Dal pannello e possibile
avviare la registrazione
premendo Record
L'applicazione verra
installata e avviata sul
dispositivo o sull’'emulatore
scelto

Utilizzare I'app eseguendo
gli scenari da registrare

Premere Stop

I test verranno generati
all'interno di un apposito
progetto di Test

@ Your First Recording

Recorder

= e

TESTDROID
|g_@é recorder

e . = . =@

=]

@ FRecord

» i

Append Comrman d Add Method Remowe Screens hot  Smart Assert Adjust Sleeps

Pause

4 I3 OrariProcida2011Test

Record > Runat

., testdrowd
@’ cloud

>  Get Results.

Next = Finis

Porfirio Tramontana — Android Testing

114



TestDroid Recorder - Tutorial

> 1= OrariProcida2011
4 122 OrariProcida2011 Test =
. rogetto di test
> [wd robotium-solo-5.01 jar
> (w4 recorder-extensions-5.3.1 jar

8 e o GRRARIALO0--
» @ android.jar - D:\adt-bundle-windows-x86-201310300sdk\platformsiandroic public g ( ception {
; I . try {
4 B\ Android Private Libraries o . solo.waitForActivity ("OrariProcida20l1lActivity™) ;
I Ig robotium-solo-5.0.1 jar - C:h\Users\Porfiric\workspace\OrariProcida2011Tey solo.sleep (21500) ;
> (w9 recorder-extensions-5.3.1.jar - C\Users\Porfiric\workspace OrariProcida2l assertTrue ("Wait for button (text: OK) failed.",
4 B Android Dependencies solo.waitForButton ("OK", 20000));
i Et annotations.jar - D:\adt-bundle-windows-x86-20131030sdk\tools\support solo.clickOnButton ("OK") ;
a [ src solo.sleep(9000) ;
a i} com.porfiric.orariprocida201l test assertTrue ("Wait for spinner (index: 0) failed.",
. [J] OrariProcida2011ActivityTest,java solo.waitForSpinner (0, 20000));
. [§] OrariProcida2011ActivityTest] java solo.pressSpinnerltem (0, 1);
4 [3] OrariProcida2011ActivityTest2 java solo.sleep(6700);
. . . assertTrue (
.0 O;a”pmc'dagqlllhdmtﬂegtz "Wait for button (id: com.porfirio.orariprocida201ll.R.id.button4)
&® launchActivityClass failed."
’
¥ LAUNCHER_ACTIVITY_CLASSNAME solo.waitForButtonById (
B {o} "com.porfirio.orariprocida2011.R.id.buttond", 20000));
o solo solo.clickOnButton ( (Button) solo
& OrariProcida2011 Activity Test2() .findViewById("com.porfirio.orariprocida2011.R.id.buttond"));
@ setlp() : void } catch (AssertionFailedError e) {
@. tearDown() : void solo.fail.( , . . , , o
& testRecarded() : void "com.porflrlo?Ofarlproc1da2011 .test.OrariProcida201l1ActivityTest2.testRe
. 2n gen [Generated Java Files] Z;)].fdediscrifall !
2‘? a_ssets throw e;
> = bin } catch (Exception e) {
» & libs solo.fail(
s B ores "com.porfirio.orariprocidaz201ll.test.OrariProcida201l1ActivityTest2.testRe
/2] AndroidManifest.ml corded_scr_fail",
proguard-project.tdt e);
project.properties throw e;

}
}

Porfirio Tramontana — Android Testing 115



TestDroid Recorder - Approfondimenti

) Vour First Recording =R R
I test generati da TestDroid Recorder £ i («, R
possono essere eseguiti [ ——
automaticamente come qualsiasi altro e . P
test, senza ulteriore supporto di e e e
TestDroid -
Sessioni di Record/Stop ripetute P
consentono di generare piu casi di test o
Ad ogni nuovo test |'applicazione viene reinstallata ol e e
Le istruzioni Sleep nel caso di test P
rispecchiano i reali intervalli di tempo tra o
gli eventi. Possono essere editati sia qui s
che direttamente nel caso di test
: : _ ® e
Tempi troppo brevi potrebbero non consentire al
sistema di evolvere in tempo prima dell’evento
SUCCeSSIVO
116

Porfirio Tramontana — Android Testing




TestDroid Recorder - Approfondimenti

Tramite Append Command e possibile (dopo il recording e prima
della generazione dei casi di test) editare i test aggiungendo
comandi specifici oppure asserzioni sui valori dei campi
visualizzati

Tramite Add Method e possibile dare un nome ai test prima di
registrarli

Tramite Take Screenshot é possibile aggiungere un comando per
salvare una schermata grafica all'interno del test stesso

Smart Assert crea automaticamente asserzioni riguardanti la
maggior parte delle etichette che riesce a trovare nella
schermata a video

Con Adjust Sleeps e possibile variare il tempo di sleep nei test

Porfirio Tramontana — Android Testing 117



TestRecorder — un esempio completo

Consideriamo un’applicazione molto semplice come esempio

Simply Do e una semplice applicazione Android che consente di gestire azioni da svolgere,
organizzate in liste.
Dall’'interfaccia principale e possibile:
vedere I'elenco di tutte le liste;

aggiungere una nuova lista (semplicemente digitandone il nome e chiedendo di aggiungerla).

Selezionando una lista, é possibile:
visualizzare tutte le azioni all'interno della lista
aggiungere un‘azione all'interno della lista (scrivendone il nome)

segnare un‘azione come gia svolta (selezionandola): in questo caso I'azione sara visualizzata in grigio e barrata. E’ possibile segnare
nuovamente un‘azione come non ancora svolta selezionandola ulteriormente

Dal menu é inoltre possibile eliminare tutte le azioni gia svolte e ordinare le azioni secondo I'ordine
prestabilito.

E’ possibile personalizzare I'applicazione tramite alcune voci disponibili dal menu (Settings). In
particolare e possibile:

Scegliere I'ordine di visualizzazione delle azioni (prima quelle non ancora effettuate — Active, oppure prima quelle evidenziate — Starred)
Scegliere I'ordine di visualizzazione delle liste (alfabetico oppure lasciarle in ordine di immissione)
Decidere se chiedere conferma ogni volta che si tenta di cancellare le azioni gia effettuate

Effettuare il backup sulla memoria locale

Ripristinare le note salvate in uno dei backup precedenti. .
Porfirio Tramontana — Android Testing 118



TestRecorder — un esercizio

Testare |'applicazione Simply Do eseguendo un insieme di
esecuzioni

Nell'ambito di TestDroid Recorder

Generando automaticamente al termine i corrispondenti test Junit
rieseguibili

Cercando di provare |'applicazione in tutti i modi possibili, sulla base dei
requisiti e delle strategie di progettazione dei casi di test note

Al termine verranno misurate (con Emma) e valutate le coperture
raggiunte, per avere un‘idea dell’efficacia dei test generati

Si cerchi di tenere conto del tempo impiegato per eseguire i vari passi
del processo

Porfirio Tramontana — Android Testing 119



Valutazione dell’efficacia del test

Come confronto rispetto a Simply Do,
consideriamo la copertura che ho ottenuto
10 con una sessione di test durata 8 minuti

EMMA Coverage Report (generated Mon Nov 24 20:54:43 CET 2014)

[2ll classes]

OVERALL COVERAGE SUMMARY

name class, % method, % block, %0 line, %
all classes 98% (44/48) 65% (161/248) 57 (3153/5523) 5% (7038

.........
2, 8/1281)

OVERALL STATS SUMMARY

o ackage
total executakle fil 15
total classes 45
total methods 246
total executakble 1in 1281

Porfirio Tramontana — Android Testing 120



1.

Istruzioni per l'esercizio di testing
con TestDroid 1/2

Installare Simply Do
scompattando il .zip ed
importandolo come
progetto Eclipse

Creare una macchina

virtuale con le
caratteristiche in figura e

avviarla
Registrare una serie di

esecuzioni con TestDroid

Recorder sull’'emulatore

@ Edit Android Virtual Device (AVD)

Porfirio Tramontana — Android Testing

(el
AVD Mame: AVD_SimplyDo|
Device: | 4" WVGA (Nexus 5) (480 = 800: hdpi) v
Target: | Android 23.3 - API Level 10 v
CPU/ABL | ARM (armeabi) -|
Keyboard: Hardware keyboard present
Skin: | WVGAB00 -|
Front Camera: Mone
Back Camera: ’None v]

Mernory Options:

RAM: 512 VM Heap: 32
Internal Storage:
200 MIE -
S0 Card:
@ Size: @4
() Files Browse...
Emulation Options: [¥] Snapshot ] Use Host GPU

Owverride the existing AVD with the same name



Istruzioni per l'esercizio di testing
con TestDroid 2/2

Far generare automaticamente i test case a
TestDroid Recorder

Rieseguire i casi di test per controllare se la
loro esecuzione va a buon fine

Problemi nella riesecuzione potrebbero essere dovuti a click
troppo veloci (TestDroid Recorder potrebbe avere
reazioni lente, talvolta: meglio testare con calma)

Eventualmente, € possibile valutare piccoli difetti nel test
generato e ripararli eseguendo il debug del caso di test

Misurare la copertura (vedi istruzioni)

Porfirio Tramontana — Android Testing 122



Misurare la copertura
(dell’'esercizio con TestDroid)

0) Se non gia settato settare JAVA_HOME dal pannello di controllo oppure (ad esempio) con

Set JAVA_HOME=c:\Program Files\Java\jdk1.8.0_25
1) Avviare I'emulatore
2) Disinstallare SimplyDo

3) Spostarsi nella cartella del sorgente della applicazione da testare (\SimplyDo)

Sotto windows, € preferibile che le cartelle non abbiano spazi

4) [percorso di ant\bin]\ant clean

ant puo essere scaricato da http://it.apache.contactlab.it//ant/binaries/apache-ant-1.9.4-bin.zip

5) [ Percorso di android | tools]\android update project --path . --target android-10
[ Percorso di android|tools] potrebbe essere D:\adt-bundle-windows-x86-20140702\sdk\tools

Per generare il file build.xml necessario ad ant

6) Spostarsi nella cartella del caso di test (\SimplyDoTest)

7) [percorso di ant\bin]\ant clean

Porfirio Tramontana — Android Testing

123



Misurare la copertura

8) [Percorso di android|tools]\android update test-project -p .\ --main ..\SimplyDo\
Se SimplyDo si trova in una posizione diversa sul disco al posto di ..\SimplyDo mettere il percorso esatto di
SimplyDo (utilizzato al punto 3)

Per creare un file build.xml per il progetto di test collegandolo a quello dell’applicazione

9) Nella cartella del caso di test eseguire :
[percorso di ant\bin]\ant emma debug install test

10) Al termine del caso di test, nella cartella \SimplyDo\bin saranno disponibili i risultati di
copertura in vari formati (html, xml, txt)

11) Inviarmi il progetto di test con tutti i file di copertura (é sufficiente zippare le due cartelle
SimplyDo e SimplyDoTest)

Porfirio Tramontana — Android Testing 124



