
Testing Automation 1

Testing Automation

Testing Automation 2

Testing Automation

• È l’insieme delle tecniche e delle tecnologie che
consentono di automatizzare (anche parzialmente)
alcune attività del Processo di Testing.

• Alcune aree di intervento:

– A) Generazione dei Casi di Test

– B) Preparazione ed Esecuzione del Test

– C) Valutazione dell’esito dei casi di test

– Valutazione dell’efficacia potenziale di Test Suite e
tecniche di testing

Testing Automation 3

Tecniche di generazione automatica
dei casi di test

Testing Automation 4

A) Tecniche di Generazione dei casi di test

• Negli approcci al testing presentati finora, si è sempre
considerato il task di Test Case Design come un task
svolto manualmente dal tester

– A causa del numero di casi di test necessari per un testing efficace,
l’operazione di progettazione manuale dei casi di test può essere
molto onerosa

• Tecniche per la generazione automatica dei casi di test
possono ridurre drasticamente i costi e i tempi legati alla
fase di test design

– Può però essere necessaria una fase di valutazione dell’efficacia dei
casi di test e una fase di riduzione dei casi di test ridondanti

Testing Automation 5

Generazione automatica dei casi di test

• I test case possono essere generati
automaticamente (alcuni esempi):

– Dall’analisi della documentazione di analisi (specifica dei
requisiti)

– Dall’analisi della documentazione di progetto (Model
based testing)

– Dall’analisi statica del codice sorgente

– Dall’osservazione di esecuzioni reali dell’applicazione (user
session testing)

– Dalla interazione casuale con l’applicazione (Monkey
testing)

– A partire da altri test precedentemente realizzati

Testing Black Box 6

Conoscenza del tipo dell’input

• Come ricavare automaticamente casi di test a partire dalla conoscenza della
tipologia dei valori di input?

• Conoscenza del tipo dell’input

• Possiamo generare casi di test con valori appartenenti a quel tipo

•Tipo carattere generiamo casi di test con ogni carattere

•Tipo booleano generiamo casi di test con vero e falso

•Tipo casella a discesageneriamo casi di test per ognuno dei valori

•Tipo scelta multiplageneriamo casi di test corrispondenti a tutti gli elementi dell’insieme
delle parti

•Tipo intero dovremmo generare casi di test corrispondenti a tutti i possibili valori interi
rappresentabili …

•Tipo stringa dovremmo generare casi di test corrispondenti a tutte le parole possibili
(almeno di lunghezza pari a quella massima consentita dal campo di input) …

• Problema: per molti tipi, il numero di possibili casi di test da generare è troppo
elevato (rispetto alle risorse da dedicare al testing)

6

Testing Black Box 7

Conoscenza della semantica dell’input

• Se è nota anche la semantica del dato in input è possibile limitare l’insieme dei
valori rilevanti

• Esempi:

• Mese generiamo casi di test corrispondenti ai valori tra 1 e 12

• Velocità generiamo casi di test corrispondenti a numeri>=0

• Giorno generiamo casi di test corrispondenti ai valori tra 1 e 31

• Voto di Laurea  generiamo casi di test corrispondenti ai valori tra 66°
110 e al valore 110 e lode

• Parola italiana generiamo casi di test per ognuna delle parole presenti

su un dizionario italiano

• Problemi:

• anche in questo caso il quantitativo di casi di test può essere in certi casi
troppo elevato

• E’possibile che l’utente ignori la semantica e immetta valori non previsti

7

8

Dizionario dei dati

• Il caso migliore si ha quando, in fase di specifica dei requisiti,
ad ogni dato in input è associato un dizionario dei dati con
tutti i valori che esso può assumere

• Problemi:
• Il dizionario dei dati non è sempre facile da definire

• In un campo di testo libero, l’utente può scrivere qualsiasi valore
• Lo sforzo necessario alla definizione di un dizionario dei dati per ogni input

potrebbe essere superiore a quello che si è deciso di dedicare alle attività di
testing …

• Noti i valori che vogliamo inserire nei campi di input, è poi
possibile utilizzare una delle tecniche di testing
combinatorio note per generare casi di test eseguibili

Testing Automation 8

Model Based Testing

• Generare automaticamente casi di test a partire
da un modello di progetto

• Le tecniche di model based testing spesso sono
mutuate dalle tecniche di model-checking

• Differenza: il model checking è una tecnica di
verifica formale di correttezza, il model based
testing è solo una tecnica di generazione di
casi di test

11Testing Automation 11

Model Based Testing

• Esempi di tecniche Model Based:

• Dato un CFG, cercare di generare casi di test che
coprono suoi cammini

• Dato un FSM, cercare di generare casi di test che
eseguono suoi percorsi

• Dato un workflow diagram di un processo/di un
servizio, cercare di generare casi di test che
eseguono suoi percorsi

• Dato un modello Simulink, cercare di coprire le sue
possibili modalità di esecuzione

• …
12Testing Automation 12

Model Based Testing

• Il caso basilare di Model Based Testing è quando il
«modello» dell’applicazione considerato è il suo stesso codice
sorgente

• Analizzatori statici del codice sorgente possono capire:

• L’architettura in termini di package, classi, metodi (e loro parametri),
attributi

• Qualche informazione riguardo la semantica degli input (ad es. alcuni
valori cui sono sensibili)

• Il control flow graph

• A questo punto, essi possono generare casi di test che
abbiano lo scopo di coprire (potenzialmente) gli elementi del
codice sorgente dell’applicazione (istruzioni, decisioni, etc.)

13Testing Automation 13

Metriche Software 14

CodePro Analytix

• Plug-in multifunzionale per Eclipse offerto da Google
• https://developers.google.com/java-dev-tools/codepro/doc/

• http://googlewebtoolkit.blogspot.it/

• Scaricabile direttamente da:
• http://dl.google.com/eclipse/inst/codepro/latest/3.7

• Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

• Tutorial e documentazione accessibili da:
• https://developers.google.com/java-dev-tools/codepro/doc/

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

Test Case Generation con CodePro Analytix
a partire dal codice sorgente

• CodePro Analytix fornisce uno strumento per
la generazione automatica di test Junit.

• Per eseguirlo è sufficiente scegliere l’opzione
Generate Test Case dal menu contestuale
CodePro Tools

• E’ possibile chiedere di generare test relativi ad un solo
metodo, una sola classe o tutto il progetto

• I test vengono generati in un nuovo progetto
chiamato nomedelprogettoTest

• I test sono immediatamente eseguibili

Metriche Software

Tecniche di test supportate

• Dal menu CodePro/Preferences/Junit è
possibile scegliere diverse modalità di
generazione:

• Junit 3 o 4

• Due tecniche di generazione

• Flow based

• Che genera test tenendo solo conto delle interfacce dei metodi

e delle decisioni

• Heuristic based

• Che tiene anche conto delle condizioni, cercando di eseguire

test che le provino

• Molte altre opzioni di generazione

Metriche Software

Esempio: funzione valida

Funzione valida

public static boolean valida(int d, int

m, int a) {

if (d<1 || d>31 || m==0 || a<=1582)

return false;

Boolean bisestile= (a%4==0);

if (bisestile && a%100==0 && a%400!=0)

bisestile=false;

if ((m==2 && d>29)||(m==2 && d==29 &&

!bisestile))

return false;

if ((m==4 || m==6 || m==9 || m==11) &&

d>30)

return false;

return true;

}

Metriche Software

Unico metodo di test generato in modalità
flow-based

@Test

public void testValida_1()

throws Exception {

int d = 29;

int m = 2;

int a = 1583;

boolean result = Calendario.valida(d, m, a);

// add additional test code here

assertEquals(false, result);

}

Esempio: funzione valida

• La tecnica heuristic based genera automaticamente 30 casi di
test

Metriche Software

@Test

public void testValida_1()

throws Exception {

int d = 0;

int m = 0;

int a = 1582;

boolean result = Calendario.valida(d, m, a);

// add additional test code here

assertEquals(false, result);

}

@Test

public void testValida_3()

throws Exception {

int d = 29;

int m = 2;

int a = 1583;

boolean result = Calendario.valida(d, m, a);

// add additional test code here

assertEquals(false, result);

}

@Test

public void testValida_2()

throws Exception {

int d = 1;

int m = 11;

int a = 1583;

boolean result = Calendario.valida(d, m, a);

// add additional test code here

assertEquals(true, result);

}

@Test

public void testValida_4()

throws Exception {

int d = 30;

int m = 4;

int a = 1583;

boolean result = Calendario.valida(d, m, a);

// add additional test code here

assertEquals(true, result);

}

Cenni ad altre features di Test Generation

• CodePro è in grado di generare
anche Mock secondo il
framework EasyMock

• Funzionalità sperimentale, tipicamente utilizzata
per sostituire classi del package sql

• Test Case Outline consente una
vista veloce di tutti i test case

Metriche Software

• CodePro fornisce anche un Test
Editor che consente di vedere i test
generati in forma tabellare e
apportare automaticamente le
modifiche nel codice

• I colori codificano gli esiti dei test,
asserzione per asserzione

Monkey Testing e Random Testing

• Secondo l’infinite monkey theorem una scimmia che scrive a
macchina battendo tasti a caso in un tempo infinito sarà in grado di
scrivere l’Amleto di Shakespeare.

• Nelle tecniche di Random Testing vengono generate sequenze casuali di
input allo scopo di testare l’applicazione

• Il Monkey Testing è la specializzazione del Random Testing al caso di un
sistema interattivo, nel quale gli input sono eventi

• Non ci sono oracoli dipendenti dai casi test

• Con questa tecnica possono essere trovati soltanto crash oppure possono essere

valutate condizioni invarianti di malfunzionamento
• Esempio: regola di usabilità: ci sono pulsanti che escono fuori dall’area dello schermo

• Anche la lunghezza della sequenza può a sua volta essere scelta casualmente

• Il Monkey testing si applica essenzialmente a problemi di
Robustness Testing

Testing Automation 21

Random Testing

• Il Random Testing ha un’efficienza molto
scarsa

• Non è molto efficiente ma può condurre
alla scoperta di malfunzionamenti che non
vengono trovati da altre strategie di
testing più «intelligenti»

• Viene condotto in maniera totalmente
automatica

Testing Automation 22

Tipologie di Monkey Testing

• Dumb Monkey Testing
• Gli eventi sono generati in maniera totalmente casuale, secondo una distribuzione

uniforme di probabilità

• Brilliant Monkey Testing
• Gli eventi e le sequenze di eventi sono generati secondo una distribuzione di probabilità

specifica (spesso dipendente da osservazioni precedenti della distribuzione degli eventi
di utenti reali)

• Smart Monkey Testing
• Come nel Brilliant Monkey Testing, ma ulteriori euristiche possono essere introdotte per

evitare ad esempio di ripetere eventi o sequenze di eventi già testate

• Esempi (demo) di un tool di Brilliant Monkey Crash testing dell’Università di Valencia

• https://staq.dsic.upv.es/sbauersfeld/Blank.html

• http://thedailycrash.blogspot.de/

Testing Automation 23

https://staq.dsic.upv.es/sbauersfeld/Blank.html
http://thedailycrash.blogspot.de/

Monkey Fuzz

• Un semplice esempio di Monkey in ambiente
windows è Monkey Fuzz

• http://monkeyfuzz.codeplex.com/

• Consente soltanto di generare eventi casuali

• Analizzando i log è possibile capire se si sono
verificati crash

• Attenzione: può causare interazioni non volute con il
sistema

Testing Automation 24

http://monkeyfuzz.codeplex.com/

25

Monkey

Monkey è un’utility interna fornita con
l’android SDK, che è in grado di
generare eventi utente pseudocasuali
su una qualsiasi interfaccia,
registrando gli eventuali crash

– Monkey gira all’interno del dispositivo; per
avviarla bisogna passare per adb. Ad esempio,
da linea di comando:

adb shell monkey –v -p

com.porfirio.orariprocida2011 30

Testing Automation 25

26

Output di Monkey

:Monkey: seed=0 count=30

:AllowPackage: com.porfirio.orariprocida2011

:IncludeCategory: android.intent.category.LAUNCHER

:IncludeCategory: android.intent.category.MONKEY

// Event percentages:

// 0: 15.0%

// 1: 10.0%

// 2: 15.0%

// 3: 25.0%

// 4: 15.0%

// 5: 2.0%

// 6: 2.0%

// 7: 1.0%

// 8: 15.0%

:Switch:
#Intent;action=android.intent.action.MAIN;category=android.intent.category.LAUNCHER;launchFlags=0x10000000
;component=com.porfirio.orariprocida2011/.OrariProcida2011Activity;end

// Allowing start of Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
cmp=com.porfirio.orariprocida2011/.OrariProcida2011Activity } in package com.porfirio.orariprocida2011

:Sending Pointer ACTION_MOVE x=-4.0 y=2.0

:Sending Pointer ACTION_UP x=0.0 y=0.0

:Sending Pointer ACTION_DOWN x=47.0 y=122.0

Events injected: 30

:Dropped: keys=0 pointers=0 trackballs=0 flips=0

Network stats: elapsed time=7766ms (7766ms mobile, 0ms wifi, 0ms not connecte

d)

// Monkey finished

Testing Automation 26

Random GUI Java Tester

• Uno strumento di testing random generato
dal gruppo di Ingegneria del Software della
Università Federico II

• Genera test random consistenti in sequenze
di eventi su interfacce grafiche AWT e Swing

• Le GUI sono analizzate grazie alle proprietà di reflection
e alla libreria FEST

• Può essere eseguito sia da eclipse che standalone, sia da
main che come caso di test, eventualmente integrato con
uno strumento di misura della coverage

• Può essere anche aggiunto come libreria ad un progetto
esistente, con l’aggiunta di un semplice punto d’avvio

Testing Automation 27

Random GUI Java Tester

Testing Automation 28

Package Model

• ExtractedWindow

• Contiene le informazioni relative ai componenti della Window

• Input

• Astrae un Input, destinato ad un componente

• Event

• Astrae un Evento, destinato ad un componente

Testing Automation 29

Package Extractor

• ComponentExtractor

• È la classe che si occupa di recuperare informazioni della Window
mostrata a schermo

• Le informazioni vengono restituite come un’istanza della classe

ExtractedWindow

• ArrayList<Component> contiene un riferimento agli oggetti

Component che costituiscono la Window

• In particolare, distingueremo tra elementi su cui eseguiremo degli

eventi ed eventi sui quali inseriremo anche dei valori in input

• Dopo aver recuperato le informazioni, la classe genera un elenco

di eventi che possono essere scatenati sulla Window

• Tali eventi, insieme ai Component identificati come campi di Input, sono

aggiornati nell’istanza della classe ExtractedWindow

Testing Automation 30

Package Extractor

• Ad esempio, sul campo di testo (Text Field) inseriremo dei valori
(quindi è un Input), mentre sulla CheckBox ci limiteremo a eseguire un
evento, cioè il click (codificato come RIPPER_EVENT_CLICK)

if (component instanceof javax.swing.JTextField) {

Input input = new Input();

input.component = component;

ret.addInput(input);

}

if (component instanceof javax.swing.JCheckBox) {

Event evt = new Event();

evt.component = component;

evt.event = Event.RIPPER_EVENT_CLICK;

ret.addEvent(evt);

}

Testing Automation 31

Package Automation

• RandomRobot

• È la classe che si occupa dell’esecuzione degli eventi e
della valorizzazione dei campi di input

• Le strategie per scegliere quali eventi eseguire e quali
valori (eventualmente casuali) inserire vengono scritte
qui

• L’evento inviato al Robot viene tradotto in interazioni con
la GUI

• Vengono utilizzate le librerie FEST e la classe Robot di Java

• https://github.com/alexruiz/fest-swing-1.x

• https://docs.oracle.com/javase/7/docs/api/java/awt/Robot.html

Testing Automation 32

Package Automation

• Ad esempio:

if (input.component instanceof javax.swing.JTextField) {

JTextComponentFixture fixture = new
JTextComponentFixture(robot, (JTextField)input.component);

fixture.setText(RANDOM.getRandomIntString(100));

}

• Se il componente trovato sulla GUI è un’istanza di un campo di testo
(TextField), allora creiamo un oggetto di interazione con questo
componente (fixture) e su di esso eseguiamo un metodo setText, che ha
come parametro un numero casuale tra 0 e 100

• Questo valore casuale sarà chiaramente il valore messo in input nel campo di testo

• Diverse strategie potrebbero tenere conto di classi di equivalenza, valori limite, etc.

Testing Automation 33

Package TestCase

• RandomRipper

• È un caso di test jUnit

• Contiene il main loop del Java Random Ripper
• Per ogni evento casuale da eseguire, analizza la window

cercando componenti, sceglie un evento da eseguire, vi associa

eventuali inputs e lo esegue (Fire)

for(numeroDiEventi)

extractedWindow = extractor.ExtractWindow()

event = scheduler.getRandomEvent(extractedWindow)

inputs = extractedWindow.getInputs()

if (event != null)

fireRandomEvent(event, inputs)

Testing Automation 34

Caratteristiche del random testing

• Fattori in grado di influenzare l’efficacia del
random testing:

• Numero di eventi provati

• Lunghezza dei casi di test provati
• E’ stato provato che test troppo brevi sono poco efficaci poiché

non riescono a coprire alcune condizioni (ad esempio un

contatore che arriva al valore massimo), mentre test troppo

lunghi rendono poco probabile la copertura di condizioni che si

verificano solo a inizio test (ad esempio codice legato al primo

inserimento di qualche dato)

– http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/Arcuri09e.pdf

• Ampiezza dell’insieme dei possibili valori di input

• …

Testing Automation 35

Terminazione del Random testing

• Quando terminare il random testing?

• La condizione più soddisfacente per terminare il
testing è il raggiungimento della copertura massima
raggiungibile (saturazione)

• Ma potremmo non essere in grado di riconoscerla!

• La copertura a saturazione è l’insieme di tutte le righe di

codice escluse quelle non raggiungibili, che non sono

però note a prio

Testing Automation 36

Due tecniche per determinare la terminazione di un
random testing

• Eseguire n sessioni di test random in
parallelo

• Tecnica 1) Terminare i test quando tutte le sessioni
hanno raggiunto lo stesso identico insieme di
copertura

• Tecnica 2) Terminare i test quando il codice
raggiunto dalla sessione con la maggiore copertura
include il codice raggiunto da ognuna delle altre
sessioni

Testing Automation 37

Sperimentazione

• Queste tecniche sono attualmente
oggetto di sperimentazioni

• Per trovare il valore ottimale del numero di sessioni
(finora risultati soddisfacenti si sono ottenuti con
n>=8)

• Per capire quale codice potrebbe essere coperto ma
non viene coperto al tempo in cui si verifica la
condizione di terminazione

• Esempio: vittoria in un gioco di strategia

• Per capire quale delle due condizioni di terminazione
è più efficiente

Testing Automation 38

Caratteristiche del Random Testing

• Il Random Testing può portare ad esecuzioni diverse da quelle progettate

da un tester, quindi a scoprire nuovi difetti

• Il Random Testing può portare a rieseguire moltissime volte la stessa

esecuzione

• Un Random Testing meno stupido può avere memoria delle esecuzioni precedenti, per

non ripeterle

• Il Random Testing può essere eseguito in parallelo

• I Test Random non hanno oracolo. Possono essere utilizzati solo per:

– Cercare possibili situazioni di crash / eccezioni;

– Verificare la violazione di proprietà invarianti

Testing Automation 39

Proposta di progetto

• Implementare tecniche di testing random
alternative evolvendo lo strumento
Random Ripper

• Valutare la bontà di queste tecniche su di un insieme
preesistente di piccole e medie applicazioni java con
interfaccia grafica

• Eventualmente, reimplementando uno strumento di
random testing con Maveryx

Testing Automation 40

Proposta di progetto

• Implementare uno strumento che possa
eseguire test in parallelo, eventualmente
su più macchine, reali o virtuali e possa
confrontare dinamicamente i risultati di
copertura ottenuti

Testing Automation 41

Proposta di progetto

Trovare e confrontare diverse tecniche di
terminazione del testing random

Testing Automation 42

Risorse sul Random Testing

• Andrea arcuri. Random Testing.

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmat

eriale/INF4290-RandomTesting.pdf

• J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE

Transactions on Software Engineering, 10(4):438–444, 1984.

• S. C. Ntafos. On comparisons of random, partition, and proportional

partition testing. IEEE Transactions on Software Engineering,

27(10):949–960, 2001.

• Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed

automated random testing. In Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation (PLDI

'05). ACM, New York, NY, USA, 213-223. http://cm.bell-

labs.com/who/god/public_psfiles/pldi2005.pdf

Testing Automation 43

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf

Testing Automation 44

Search Based Software Testing

• E’ una branca del software testing nella quale il testing
è visto come un problema di ottimizzazione (analogo a
quelli trattati dalla ricerca operativa), sui quali vengono
applicate tecniche euristiche come ad esempio:

• Algoritmi genetici

• Simulazione della tempra

• Tabu search

• Programmazione lineare

Testing Automation 45

Algoritmi genetici applicati al testing

• Per applicare un algoritmo genetico ad un problema di
testing è necessario:
• Modellare i casi di test (esemplare) in forma di sequenze (gli elementi

vengono detti alleli)

• ad esempio come sequenze di valori di input o come sequenze di eventi

– Proporre operatori di crossover

• Che incrociano due esemplari (casi di test) generando altri due esemplari

– Proporre operatori di mutazione

• Che variando in maniera casuale uno degli alleli, generano un nuovo esemplare

– Proporre una metrica che valuti la bontà di un test case (fitness locale)

• Ad esempio, la quantità di codice che copre oppure la quantità di difetti che trova

– Proporre una metrica che valuti la bontà complessiva di una test suite (fitnell
globale)

• Ad esempio la quantità totale di codice coperta dalla test suite oppure il totale dei

difetti scoperti

Testing Automation 46

Algoritmi genetici applicati al testing

• Gli algoritmi genetici sono iterativi. Data una test suite
iniziale, ad ogni iterazione

• Si creano nuovi test case della test suite effettuando dei crossover

• Vincolo: i nuovi test ottenuti devono essere eseguibili

– Si creano nuovi test modificando valore in input dei test esistenti

– Si valuta la fitness locale di tutti I test

– Si selezionano I test case con la migliore fitness, tali da mantenere lo stesso quantitativo di test
case dell’iterazione precedente

– Si calcola la fitness globale

– Si termina se si è arrivati ad un valore di fitness globale considerato soddisfacente secondo un
criterio prescelto

• Numerose varianti si possono ottenere facendo variare frequenza e tipologia degli
operatori, regole di selezione, misure di fitness, criterio di terminazione, etc.

• L’esperienza mostra come queste tecniche portino, più o meno velocemente, a
scoprire test suite con buoni valori di fitness globale

47

EvoSuite

• EvoSuite è uno strumento per la generazione di test
di unità compatibili con Junit per applicazioni Java

• Può essere scaricato e utilizzato sia in forma
standalone che come plug-in di Eclipse o IntelliJIdea
• Gli autori lo hanno testato su sistemi Linux e Mac, ma affermano che

dovrebbe funzionare anche sotto Windows
• http://www.evosuite.org/downloads/

• EvoSuite è un software prodotto da ricercatori
universitari (inizialmente dell’università di
Birmingham) ma supportato anche da Google

Testing Automation

http://www.evosuite.org/downloads/

EvoSuite in poche parole

• Genera casi di test basandosi su informazioni ottenute tramite
analisi statica (come CodePro, ad esempio)

• Prova questi casi di test valutandone la capacità di coprire il
codice

• Iterativamente, nell’ambito di una tecnica genetica:
• Applica tecniche di mutazione e crossover dei test per generare nuovi casi di test

• Genera mutazioni dei programmi

• Le mutazioni sono generate secondo le regole implementate nel programma muJava

• Valuta la capacità dei casi di test di scoprire i programmi mutanti

• Per scoprire un mutante si confronta l’output ottenuto col mutante con quello ottenuto sul

programma originale

• Ottimizza la test suite ottenuta preferendo i test che sono riusciti

• A coprire più codice

• A coprire codice che non hanno coperto gli altri casi di test

• A scoprire mutanti

Testing Automation 48

Ulteriori caratteristiche

• EvoSuite è una tecnica euristica

• Cerca di generare mutazioni del programma che
somiglino ai possibili errori dei programmatori

• Adotta una tecnica euristica per decidere quando è il
momento di terminare

• EvoSuite è completamente automatica

• EvoSuite genera test Junit completamente
riusabili

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented

software.

Testing Automation

Proposta di progetto

• Studiare approfonditamente le caratteristiche di
EvoSuite

• Dal sito http://www.evosuite.org/

• Provare EvoSuite su programmi diversi da quelli
testati e valutarne criticamente i risultati (ad
esempio confrontandoli con altre tecniche di test)

• Provare ad estendere EvoSuite

• Un tutorial è disponibile all’indirizzo
http://www.evosuite.org/documentation/tutorial-part-4/

• Un precedente progetto a disposizione può rappresentare un valido
punto di partenza per quest’attività

• EstensioneEvosuite_AmalfitanoPacia.rar

Testing Automation 50

http://www.evosuite.org/
http://www.evosuite.org/documentation/tutorial-part-4/

Testing Automation 51

Testing basato su Sessioni Utente

• Idea:
• E se si utilizzassero i reali utilizzatori di un’applicazione (alpha tester o beta

tester) come cavie da osservare per generare casi di test?

• Vincoli:
• L’applicazione deve essere stata già rilasciata

• Vantaggi:
• Lo sforzo per la generazione dei casi di test è molto limitato (supponendo che

gli utilizzatori siano volontari e non facciano parte dell’organizzazione …)
• Reali utilizzatori possono sollecitare il sistema in modi che i progettisti non

avevano immaginato e previsto
• La riesecuzione dei casi di test può essere completamente automatizzata

• Svantaggi:
• Scarsa efficienza (molti test identici tra loro)
• Ridotta efficacia (molti casi limite non vengono testati)

• Non garantiscono contro gli utilizzi maliziosi del software

Testing Automation 52

Problemi legati allo User Session Testing

• Il numero di sessioni da prendere in considerazione al fine di poter
avere un insieme significativo di casi di test può essere molto elevato
– Molte sessioni possono essere identiche o contenere parti simili
– Si possono applicare tecniche di minimizzazione per la riduzione del numero di casi di

test

• Il sistema di logging deve essere in grado di monitorare il più possibile
anche gli elementi legati all’ambiente di esecuzione

• Per poter ottenere esecuzioni significative può essere necessario
raccogliere sessioni per molto tempo
– Per ridurre tale tempo, si possono utilizzare tecniche di ricombinazione (mutazione) dei

test

• Difficoltà nel riprodurre le reali condizioni di utilizzo dell’applicazione
prima del suo rilascio reale

• Può essere difficile riutilizzare i casi di test prodotti, a seguito di un
intervento di manutenzione sul software

Testing Automation 53

Tecniche di riduzione

• Per ridurre la dimensione di una test suite si può
utilizzare una tecnica di minimizzazione basata
sulla copertura
– Si fissa un obiettivo di copertura

• Ad esempio copertura di istruzioni, decisioni, pagine visitate,
scenari di casi d’uso …

– Si valuta il grado di copertura di ogni caso di test
– Si esegue un algoritmo in grado di estrarre il più piccolo

insieme di casi di test che massimizzi la copertura

• E’ una tecnica analoga a quella utilizzata per
trovare l’insieme di implicanti minimo che
coprisse tutti i mintermini di una funzione
booleana

Testing Automation 54

Riduzione dei test cases

Talvolta, si impongono delle tecniche di
riduzione per minimizzare il numero di test
cases

– Esempio: Selezione di un insieme di casi di test per
applicazioni Web che siano in grado di eseguire, almeno
una volta, ogni pagina Web

• Si disegna la matrice di copertura (User Session x Pagine)

Un elemento (I,j)

vale 1 se la

Pagina Pj è

eseguita

nell’ambito della

User Sesson USi

Testing Automation 55

Tecnica di Riduzione

Criterio di essenzialità:
– Una US è essenziale se è l’unica a

coprire una pagina P

Criterio di dominanza per le righe:
– USi è dominata da USj se tutte le

pagine coperte da USi sono coperte
anche da USj

Criterio di dominanza per le colonne:
– Pi domina Pj se Pi è contenuta in tutte

le US contenenti Pj.

Tre criteri:

US6 è essenziale poichè è ll’unica
che contiene P5

US4 è dominata da US5 poichè
tutte le pagine contenute in US4
sono anche contenute in US5

P3 domina P1 e P2 poichè P3 è
contenuta in tutte le sessioni
contenenti P1 e in tutte quelle
contenenti P2

Testing Automation 56

Applicazione della tecnica di riduzione

Le US essenziali sono inserite
nell’insieme ridotto

Insieme ridotto:
US3, US5, US6

Le US dominate sono
eliminate

Le Pagine dominanti sono
eliminate

Le pagine coperte da
US essenziali sono
eliminate Essenzia

li

Dominate

Dominanti

Testing Automation 57

Altre tecniche di riduzione

• Tecniche euristiche basate sulla misura
della somiglianza tra casi di test

• Ipotesi:
• Test “simili” hanno probabilmente lo stesso esito

• Obiettivo:
• Massimizzare la diversità tra i test

• Abbiamo bisogno di una tecnica per misurare la
somiglianza (o la diversità)

Testing Automation 58

Altre tecniche di riduzione

• Esempio:
• Misurare la somiglianza in termini di linee di codice

coperte

Test Case Prioritization

• Le tecniche di riduzione rientrano nella più ampia
famiglia di tecniche di test case prioritization

• Dare un peso (euristico) ai casi di test in modo da selezionare il
sottoinsieme di casi di test che massimizza questo peso

• Obiettivo comune di queste tecniche è sempre una
massimizzazione dell’efficienza a parità (o con una
perdità accettabile) di efficacia

• Slide su test case prioritization
http://www.cs.umd.edu/~atif/Teaching/Fall2004/StudentSlides/xun1.pdf

Testing Automation 59

Test Case Prioritization

• Bisogna trovare delle regole euristiche in
base alle quali misurare l’efficacia
potenziale dei test case

• Si ordinano i test per efficacia potenziale
decrescente

• Si esegue un sottoinsieme di tali test che soddisfi un
criterio di terminazione

Testing Automation 60

Test Case Prioritization

• Esempi di metriche euristiche

• I test case su parti di codice recentemente modificate
sono più efficaci

• I test case che coprono più codice per primi
• La code coverage può essere misurata pesando la diversità di

codice coperto

• I test case più «veloci» per primi

• I test case meno «costosi» per primi

• …

• Euristiche basate sul giudizio di esperti

• Random prioritization

Testing Automation 61

• Il Testing Mutazionale è una tecnica per la
generazione di casi di test.
– A partire da un sottoinsieme di casi di test, si

applicano alcuni operatori di mutazione che
vadano a modificare/incrociare i dati dei test case
esistenti, in modo da ottenere nuovi test case.

– Es. Si cambia il segno degli input, si raddoppiano
i valori di input, si combinano sequenze di input
in nuove sequenze, etc…

Testing Automation 63

Un ulteriore Approccio: il Testing Mutazionale

Testing Automation 64

Testing Mutazionale

• Con tale tecnica si possono ottenere Test Suites

– più piccole (meno test cases)

– con maggiore copertura

– con uno sforzo minore

rispetto a quelle ottenute semplicemente collezionando sessioni
utente

• Bisogna però eliminare tutti i test cases che
risultano inapplicabili.

• Questa tecnica è spesso utilizzata per il testing di
protocolli.

Operatori di mutazione

• Alcuni esempi:

• Modificare l’ordine degli eventi

• Fondere due test

• Creare un nuovo test con la prima parte proveniente
da un test e la seconda da un’altra

• Aggiungere dei tempi d’attesa prima di una certa
operazione del test

• …

Testing Automation 65

Testing Automation 66

Tecniche di esecuzione automatica
dei casi di test

Testing Automation 67

"I am rarely happier than when spending
entire day programming my computer to
perform automatically a task that it would
otherwise take me a good ten seconds to
do by hand."
- Douglas Adams - From "Last Chance to See"

68

Esecuzione automatica dei casi di test

• Si tratta della parte più «meccanica» della testing

automation

• Il completo automatismo si può ottenere scrivendo il codice

di test sotto forma di codice eseguibile

• E’ possibile ricorrere a linguaggi ed ambienti diversi da quello dove è

in esecuzione il software da testare

•Esempio: script di shell che eseguono in maniera batch i software

da testare

•Problemi: valido solo per testing black box, poiché non è

possibile interagire internamente col software testato

• E’ possibile modificare il software sotto test creando punti di

esecuzione alternativi

•Ad esempio ulteriori metodi main

•Problemi: il software testato viene così modificato, con il

rischio di introdurre ulteriori bug e con la difficoltà di rimuovere

il codice di test senza rischiare di dover testare nuovamente il

software dopo questa rimozione

Testing Automation 68

69

Esecuzione automatica dei casi di test

• La soluzione più efficace è quella di scrivere codice con framework come Xunit

• Vantaggi:

• possiamo eseguire sia test black box che white box, monitorando

eventualmente anche lo stato interno del software;

• le classi di test sono separate da quelle originali, cosicchè non c’è alcun

rischio a rimuoverle e non possono influenzare il corretto funzionamento

del software

• Vincolo:

• Il software deve essere scritto in un linguaggio che supporti la reflection

• La maggior parte dei moderni linguaggi object-oriented supportano

la reflection

• C non supporta nativamente la reflection

Testing Automation 69

Testing Automation 70

Tecniche di valutazione automatica
dell’esito dei casi di test

Testing Automation 71

C) Valutazione dell’esito dei casi di test

• Per poter valutare automaticamente l’esito di un caso
di test, esso dovrebbe essere stato oggettivamente
definito e un metodo per la sua valutazione deve
essere disponibile
– Ad esempio, nel caso degli assert in un test Junit

• In alcuni casi particolari, l’esito di un test non ha
bisogno di essere definito, o può essere definito
automaticamente
– Crash o exception testing

– Regression Testing

• Lo stato dell’arte complessivo riguardo il problema
della definizione automatica degli oracoli può essere
trovato in:
• http://mcminn.io/publications/tr3.pdf

http://mcminn.io/publications/tr3.pdf

Testing Automation 72

Crash Testing

• Testare un software in cerca di eccezioni o errori a run-time
che interrompano l’esecuzione

– Non è necessario definire alcun oracolo: esso corrisponde alla
semplice terminazione regolare del caso di test

• Smoke testing

– Una varietà del crash testing, nella quale l’applicazione viene
esplorata e navigata il più possibile, cercando di causare un crash

– Tipicamente, può essere eseguito durante il naturale ciclo di sviluppo
dell’applicazione

• Ad esempio, un ciclo di smoke testing può essere eseguito durante la
notte

• Originariamente utilizzato per il testing di componenti hardware, è molto
diffuso nell’ambito dei cicli di sviluppo agili, nei quali una versione
integrata e testabile del software dovrebbe essere molto spesso
disponibile

Testing Automation 73

Testing di regressione

• Si applica in seguito ad un intervento di manutenzione su di
un software esistente, per il quale esiste già un piano di test

• Un problema: quali test devono essere riprogettati? E quali
test possono essere riusati?

– Sicuramente devono essere riprogettati tutti i casi di test relativi alla
nuova funzionalità implementata (o alla funzionalità modificata)

• Quali altri test dovranno essere rieseguiti?

– Per determinare quali test preesistenti devono essere rieseguiti,
occorre valutare quali altre funzionalità potrebbero essere state
influenzate dalla modifica realizzata, ossia eseguire l’Impact Analysis:

Quale sarà stato l’impatto della modifica sul sistema?

Testing Automation 74

Testing di regressione e Ripple effect

• Dopo un intervento di manutenzione, è probabile che la modifica
effettuata influisca sul resto del sistema, generando nuovi difetti
(è il cosiddetto ripple effect).

– Chi corregge potrebbe non avere una adeguata conoscenza di tutto il
sistema e delle sue connessioni

– Il sistema può regredire (“invecchiare”) verso uno stato più difettoso

• Occorre eseguire il Testing di Regressione

– Particolarmente indicato qualora i testing siano stati definiti in modo
da poter essere rieseguiti automaticamente

Testing Automation 75

Testing Automation 76

Impact Analysis e grafo delle dipendenze

• L’analisi di impatto è la disciplina che permette di conoscere, data una
modifica, quali parti del software possono esserne influenzate (e quindi
devono essere ri-testate)

• Una tecnica semplice per la valutazione dell’impatto è basata sul Grafo
delle Dipendenze

• Data una modifica su di un modulo m
– tutti i moduli m’ che da essi dipendono (per i quali esista un arco m’m)

sono sicuramente impattati dalla modifica di m
– Tutti i moduli m’’ che dipendono da uno qualunque dei moduli m’ saranno a

loro volta impattati, e così via

• I casi di test relativi ai moduli impattati (oppure tutti i moduli, nel caso in
cui non sia stato possibile effettuare impact analysis) devono essere
rieseguiti
– L’oracolo del testing di regressione è fornito dall’esito dei test che si otteneva prima di

eseguire la modifica

Testing Automation 77

Grafo delle dipendenze ed Analisi dell’Impatto

m m’’

m’

<<dependency>> <<dependency>>

Se in fase di progettazione del software, tutte le dipendenze fra artifatti

fossero registrate esplicitamente, si potrebbe facilmente eseguire tale

Analisi di Impatto
[A.R. Fasolino, G. Visaggio “Improving Software Comprehension through

an Automated Dependency Tracer”, IEEE Workshop on Program Comprehension,1999]

m1’’

<<dependency>>

Se m è stato modificato,

occorrerà controllare (e

ritestare) tutti i moduli

che dipendono da m

(direttamente, come m’,

ed indirettamente, come

m’’ e m1’’)

User Interface Testing

Appendice

User Interface Testing 79

Selenium

• Consideriamo il framework Selenium, a supporto del
testing di interfacce utente di applicazioni Web

– http://selenium.openqa.org/

• Selenium offre quattro modalità di utilizzo:

– Selenium IDE

– Selenium Core

– Selenium Remote Control

– Selenium Grid

User Interface Testing 80

Selenium IDE

• Si tratta di un’estensione di un browser che
consente di:
– catturare le interazioni tra un utente e una applicazione web

(fase di Capture)

– “suggerire” asserzioni relative alla presenza di widget
sull’interfaccia utente

– replicare l’esecuzione di casi di test, mantenendo un log degli
esiti dei test (fase di Replay)

• Selenium è dunque usabile per progettare TC anche a
prescindere da un modello formalizzato (es. FSM) della
UI.

• Utile per l’esecuzione di Testing di Accettazione

User Interface Testing 81

Capture

In fase di capture,
Selenium IDE
mantiene un log
delle operazioni
effettuate
dall’utente e delle
asserzioni da egli
proposte

User Interface Testing 82

Replay

In fase di replay,
Selenium IDE esegue
automaticamente test
generati in fase di
capture, mantenendo
statistiche sul numero
di test terminati con
successo e falliti

User Interface Testing 83

Codice generato

In fase di capture, Selenium
IDE genera anche del
codice sorgente (a scelta in
Java, C#, Perl, PHP, Python
o Ruby) che può essere
eseguito
indipendentemente da
Selenium IDE

Il codice generato necessita,
per essere eseguito, di
packages forniti con
Selenium (che formano il
Selenium Core)

User Interface Testing 84

Abbot e Costello

• Abbot e Costello sono un’altra coppia di tool che aiuta nella
programmazione di casi di test per interfacce utente Java (sia AWT
che Swing).

– Abbot è un insieme di librerie a supporto dell’esecuzione dei
test case realizzati

•Abbot può essere utilizzato in maniera analoga a UISpec4J

– Costello è uno strumento interattivo che fornisce feature per
il capture, l’editing, l’esecuzione, la visualizzazione dei
risultati dei test ed altro

http://abbot.sourceforge.net/doc/overview.shtml

http://abbot.sourceforge.net/doc/overview.shtml

User Interface Testing 85

Uno scenario di utilizzo di Costello

• Creazione di un nuovo caso
di test

1. File/New Script:
2. Imposta classe e metodo di

partenza e posizione del jar
3. Cattura/All Actions
4. Esegui un esempio di

esecuzione sull’applicazione
da testare

5. Premi Shift+F1 dopo aver
posizionato il puntatore sul
campo da usare per
l’asserzione

6. Imposta un’asserzione
7. Termina
8. File/Save (in formato XML)

User Interface Testing 86

Uno scenario di utilizzo di Costello

• Esecuzione
di un caso
di test

1. File/New
Script

2. Seleziona
una test
suite

3. Esegui

4. Verifica
l’esito delle
asserzioni

User Interface Testing 87

Utilizzo di Abbot

• Abbot da solo può essere utilizzato in maniera simile ad
UISpec4J, per scrivere test, in particolare anche test di
unità di singoli componenti:

Randoop

• Tecnica per la generazione casuale di casi di test

• A partire da una analisi del codice (limitata in particolare a metodi e loro
parametri)

• I test sono costituiti da sequenze casuali di chiamate di metodi su oggetti

• I test sono generati come script Junit, quindi possono essere rieseguiti

• Il risultato originale del test è codificato come asserzione. Utilizzabili per test
di regressione

• http://mernst.github.io/randoop/

• Può essere utilizzato per generare test per un metodo

• (o per tutti i metodi di una classe o di un package)

• Può essere eseguito standalone oppure tramite eclipse

• Istruzioni per eclipse:
https://rawgit.com/mernst/randoop/master/plugin/doc/index.html

• Può essere utilizzato sia in presenza del codice sorgente che
avendo a disposizione soltanto il bytecode

Testing Automation 88

https://rawgit.com/mernst/randoop/master/plugin/doc/index.html

Parametri di Randoop

Testing Automation 89

Testing Automation 90

Analisi Mutazionale

Testing Automation 91

Analisi Mutazionale

• Un criterio di copertura “ideale” (massima efficacia e
massima efficienza) sarebbe quello di riuscire a coprire
tutti gli elementi difettosi presenti in un’applicazione.
– Se conoscessimo a priori i difetti di una applicazione,

potremmo cercare di costruire una test suite che
massimizzi sia efficacia che efficienza

– Più realisticamente, possiamo confrontare l’efficacia di
diverse test suite tra loro

• Più in generale, è possibile confrontare la capacità
potenziale di rilevazione dei difetti di diverse tecniche di
generazione di casi di test
– L’unico modo per conoscere a priori i difetti di un software

consiste nell’iniettarli appositamente (in un software supposto
corretto, per ipotesi)

Testing Automation 92

Analisi Mutazionale

• Il primo passo consiste nell’immaginare quali
possano essere i possibili errori (fault model)

• E’ necessario proporre un modello degli errori e dei
corrispondenti operatori di mutazione

– Un operatore di mutazione introduce in un programma,
supposto corretto, un difetto (realizzando un’operazione
di fault injection), trasformando il programma originale
in un mutante

Program
Fault

Mutant

Testing Automation 93

• I difetti (fault) sono inseriti automaticamente nei programmi,
ottenendo dei mutanti

• Su ogni mutante generato si vanno ad eseguire i test case della
test suite da valutare
– L’oracolo per l’esecuzione di tali test è dato dall’output che veniva generato

dal programma originale

– Se l’esito del test è positivo (l’output del mutante differisce da quello del
programma originale), allora si dice che il mutante è stato ucciso (killed)

– Altrimenti, il mutante non è stato rivelato dal test, ed è sopravvissuto.
• I mutanti (ad esempio quelli che causano errori in compilazione) sono detti triviali

quando possono essere scoperti da qualunque caso di test. Questi mutanti
vengono subito scartati

– Più mutanti sono uccisi, maggiore fiducia si può avere nella capacità
della Test Suite di scoprire difetti!

Analisi Mutazionale

Testing Automation 94

L’efficacia di una test suite si può misurare come

TER = # killed Mutants / # Mutants

In conclusione:

– Una test suite che riesca a rivelare il maggior numero possibile
di mutanti è da considerarsi più promettente nella rivelazione di
potenziali difetti nell’applicazione

– Una tecnica di generazione generante test suites efficaci
nell’uccisione dei mutanti è da considerarsi più promettente nel
mondo reale

• Nell’ipotesi che i difetti iniettati sono rappresentativi di quelli reali

Analisi Mutazionale

Testing Automation 95

• Difficoltà nella modellazione dei difetti di un sistema software
– Di solito vengono proposti degli operatori di mutazione

• Basandosi sull’esperienza generica di chi propone il testing mutazionale riguardo
le possibili cause di errore

• Basandosi su di un’analisi statistica dei difetti rilevati in altri software

– Gli operatori proposti sono di solito estremamente generici, per poter essere
applicabili ad ogni software, indipendentemente dal linguaggio adottato e
dalle caratteristiche della singola applicazione

• Esempi:
– Operatore che sostituisce un’operazione aritmetica con un’altra

– Operatore che sostituisce un operatore relazionale con un altro

– Operatore che inverte la posizione di due righe di programma, etc.

• Con questi operatori, l’iniezione di difetti può essere svolta automaticamente

• Difetti più complessi, legati alla logica dell’applicazione, devono essere iniettati
manualmente e rimangono significativi solo per quella specifica applicazione

Problemi dell’analisi mutazionale

Testing Automation 96

Problemi dell’analisi mutazionale

• Il numero di possibili difetti è estremamente
elevato, già per un piccolo frammento di software

– Il numero di mutanti generati da un piccolo insieme di
operatori è estremamente elevato

• Per ogni mutante dovrebbero essere eseguiti tutti i casi di test di

una test suite

– L’approccio è possibile solo in presenza di un ambiente per la

testing automation, e anche in questo caso è molto oneroso

– Spesso si decide di applicare gli operatori di mutazione solo “a

campione”

Testing Automation 97

Frequenza degli operatori di mutazione

• Bisogna stabilire anche con quale
frequenza applicare i distinti operatori di
mutazione.

• Due tecniche vengono proposte:
– Tecnica statistica: si osservano le occorrenze di difetti

in applicazioni reali e li si inietta nelle stesse
proporzioni

– Tecnica ‘fair’: si analizza il codice, contando tutte le
opportunità di iniezione delle diverse tipologie di
difetti. I difetti vengono iniettati seguendo queste
proporzioni.

Testing Automation 98

Altri problemi:

– Non tutti i difetti di un sistema software sono legati ad
errori nel codice sorgente

• Si pensi a difetti del tipo di: mancanza di un requisito,

scorretta interpretazione di un requisito, etc.

– Alcuni difetti portano ad errori sintattici e sono già rivelati
dal compilatore

– Non è possibile proporre operatori generali che
riproducano gli errori semantici

Problemi dell’analisi mutazionale

Testing Automation 99

Vantaggi

• L’analisi mutazionale è una tecnica completamente
automatica, che può essere eseguita in batch senza
l’assistenza del tester.

– Occorre però disporre di strumenti automatici per la
generazione dei mutanti, l’esecuzione dei test, la valutazione
dei risultati (…)

• Si rivela utile come banco di prova per il confronto in
ambiente sperimentale tra diverse tecniche di
generazione di test suite, per valutare quale sia in grado
di produrre test in grado di rilevare più difetti.

