Testing Automation

Testing Automation

Testing Automation

e E I'insieme delle tecniche e delle tecnologie che
consentono di automatizzare (anche parzialmente)
alcune attivita del Processo di Testing.

e Alcune aree di intervento:
— A) Generazione dei Casi di Test
— B) Preparazione ed Esecuzione del Test
— C) Valutazione dell’esito dei casi di test

— Valutazione dell’efficacia potenziale di Test Suite e
tecniche di testing

Testing Automation

Tecniche di generazione automatica
dei casi di test

Testing Automation

A) Tecniche di Generazione dei casi di test

e Negli approcci al testing presentati finora, si € sempre
considerato il task di Test Case Design come un task
svolto manualmente dal tester

— A causa del numero di casi di test necessari per un testing efficace,
I'operazione di progettazione manuale dei casi di test puo essere

molto onerosa

e Tecniche per la generazione automatica dei casi di test
possono ridurre drasticamente i costi e i tempi legati alla
fase di test design

— Puo pero essere necessaria una fase di valutazione dell’efficacia dei
casi di test e una fase di riduzione dei casi di test ridondanti

Testing Automation

Generazione automatica dei casi di test

o I test case possono essere generati
automaticamente (alcuni esempi):
— Dall’analisi della documentazione di analisi (specifica dei
requisiti)
— Dall’analisi della documentazione di progetto (Model
based testing)
— Dall’analisi statica del codice sorgente

— Dall’osservazione di esecuzioni reali dell’applicazione (user
session testing)

— Dalla interazione casuale con |'applicazione (Monkey
testing)

— A partire da altri test precedentemente realizzati

Testing Automation

Conoscenza del tipo dell'input

e Come ricavare automaticamente casi di test a partire dalla conoscenza della
tipologia dei valori di input?

e Conoscenza del tipo dell'input
e Possiamo generare casi di test con valori appartenenti a quel tipo
eTipo carattere >generiamo casi di test con ogni carattere
*Tipo booleano ->generiamo casi di test con vero e falso
eTipo casella a discesa—>generiamo casi di test per ognuno dei valori

eTipo scelta multipla=>generiamo casi di test corrispondenti a tutti gli elementi dell'insieme
delle parti

eTipo intero >dovremmo generare casi di test corrispondenti a tutti i possibili valori interi
rappresentabili ...

eTipo stringa ->dovremmo generare casi di test corrispondenti a tutte le parole possibili
(almeno di lunghezza pari a quella massima consentita dal campo di input) ...

e Problema: per molti tipi, il numero di possibili casi di test da generare € troppo
elevato (rispetto alle risorse da dedicare al testing)

Testing Black Box

Conoscenza della semantica dell'input

e Se e nota anche la semantica del dato in input e possibile limitare I'insieme dei
valori rilevanti

e Esempi:
e Mese —>generiamo casi di test corrispondenti ai valoritra 1 e 12
» Velocita > generiamo casi di test corrispondenti a numeri>=0
e Giorno ->generiamo casi di test corrispondenti ai valori tra 1 e 31

e Voto di Laurea = generiamo casi di test corrispondenti ai valori tra 66°
110 e al valore 110 e lode

e Parola italiana ->generiamo casi di test per ognuna delle parole presenti
su un dizionario italiano

e Problemi:

e anche in questo caso il quantitativo di casi di test puo essere in certi casi
troppo elevato

e E'possibile che I'utente ignori la semantica e immetta valori non previsti

Testing Black Box

Dizionario dei dati

o Il caso migliore si ha quando, in fase di specifica dei requisiti,
ad ogni dato in input € associato un dizionario dei dati con
tutti i valori che esso puo assumere

e Problemi:
e Il dizionario dei dati non € sempre facile da definire
e In un campo di testo libero, I'utente puo scrivere qualsiasi valore

Lo sforzo necessario alla definizione di un dizionario dei dati per ogni input
potrebbe essere superiore a quello che si € deciso di dedicare alle attivita di
testing ..

e Noti i valori che vogliamo inserire nei campi di input, e poi
possibile utilizzare una delle tecniche di testing
combinatorio note per generare casi di test eseguibili

Testing Automation

Model Based Testing

e Generare automaticamente casi di test a partire
da un modello di progetto

e Le tecniche di model based testing spesso sono
mutuate dalle tecniche di model-checking

e Differenza: il model checking € una tecnica di
verifica formale di correttezza, il model based
testing € solo una tecnica di generazione di
casi di test

Testing Automation

11

Model Based Testing

e Esempi di tecniche Model Based:

e Dato un CFG, cercare di generare casi di test che
coprono suoi cammini

e Dato un FSM, cercare di generare casi di test che
eseguono SUoi percorsi

e Dato un workflow diagram di un processo/di un
servizio, cercare di generare casi di test che
eseguono suoi percorsi

e Dato un modello Simulink, cercare di coprire le sue
possibili modalita di esecuzione

Testing Automation

12

Model Based Testing

e Il caso basilare di Model Based Testing € quando il
«modello» dell'applicazione considerato € il suo stesso codice
sorgente

e Analizzatori statici del codice sorgente possono capire:

e L‘architettura in termini di package, classi, metodi (e loro parametri),
attributi

e Qualche informazione riguardo la semantica degli input (ad es. alcuni
valori cui sono sensibili)

e Il control flow graph
e A questo punto, essi possono generare casi di test che

abbiano lo scopo di coprire (potenzialmente) gli elementi del
codice sorgente dell’applicazione (istruzioni, decisioni, etc.)

Testing Automation 13

CodePro Analytix

e Plug-in multifunzionale per Eclipse offerto da Google
e https://developers.google.com/java-dev-tools/codepro/doc/
e http://googlewebtoolkit.blogspot.it/

e Scaricabile direttamente da:
o http://dl.google.com/eclipse/inst/codepro/latest/3.7

e Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

e Tutorial e documentazione accessibili da:
e https://developers.google.com/java-dev-tools/codepro/doc/

Metriche Software

14

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

Test Case Generation con CodePro Analytix
a partire dal codice sorgente

CodePro Analytix fornisce uno strumento per

la generazione automatica di test Junit. ijiiiitiii;sm..
Per eseguirlo € sufficiente scegliere I'opzione 4 Compute et
Generate Test Case dal menu contestuale 130 Compute Metrics Using...
CodePro Tools Ju Gonerata Factory Clases
- E’ possibile chiedere di generare test relativi ad un solo 5, Repair Javadoc
metodo, una sola classe o tutto il progetto T2 Anslyze Dependencies
I test vengono generati in un nuovo progetto M Run Code Caverage
chiamato nomedelprogettoTest SHerplre

I test sono immediatamente eseguibili

Metriche Software

Tecniche di test supportate

e Dal menu CodePro/Preferences/Junit e
possibile scegliere diverse modalita di
generazione:

« Junit3o04

* Due tecniche di generazione

* Flow based

Che generatest tenendo solo conto delle interfacce dei metodi
e delle decisioni

« Heuristic based

Che tiene anche conto delle condizioni, cercando di eseguire
test che le provino

» Molte altre opzioni di generazione

Metriche Software

Esempio: funzione valida

Funzione valida Unico metodo di test generato in modalita
flow-based

public static boolean valida(int d, int
m, int a) {

if (d<1 || d>31 || m==0 || a<=1582)

return false;

@Test
public void testValida 1()
throws Exception ({

Boolean bisestile= (a%4==0) ; int d = 29;
if (bisestile && a%100==0 && a%400!=0) int m = 2;
bisestile=false; int a = 1583;
if ((m==2 && d>29) || (m==2 && d==29 &&
'bisestile)) boolean result = Calendario.valida(d, m, a);
return false;
if ((m==4 || m==6 || m==9 || m==11) &s& // add additional test code here
d>30) assertkEquals (false, result);,
return false; }

return true;

Metriche Software

Esempio: funzione valida

e La tecnica heuristic based genera automaticamente 30 casi di

test
QTest

public void testValida 1()
throws Exception {

int d = 0;
intm = 0;
int a = 1582;

boolean result = Calendario.valida(d, m, a);,

// add additional test code here
assertEquals (false, result);,

}

@Test
public void testValida 3()
throws Exception ({

int d = 29;

int m = 2;

int a = 1583;

boolean result = Calendario.valida(d, m, a);,

// add additional test code here
assertEquals (false, result);,

}

@Test
public void testValida 2()
throws Exception ({

intd =1;
int m = 11;
int a = 1583;

boolean result = Calendario

.valida(d, m, a);,

// add additional test code here

assertEquals (true,

}

result) ,

QTest

public void testValida 4()

throws Exception {

int d = 30;
int m = 4;
int a = 1583;
boolean

result = Calendario.valida(d, m, a);

// add additional test code here
assertEquals (true, result);

}

Metriche Software

Cenni ad altre features di Test Generation

CodePro e in grado di generare
anche Mock secondo il

framework EasyMock

Funzionalita sperimentale, tipicamente utilizzata
per sostituire classi del package sql

Test Case Outline consente una
vista veloce di tutti i test case

va.lang.5tring:) [2]
4 |5 testMain_1
4 =9 Inputs
sap pl = new String[]{"42", "0123456789", "42"}
4 9 Results
He- assertEquals("Errore”, result)
4 |5 testMain_2
4 =9 Inputs
sap pll = new String[] {}
4 9 Results
He- assertEquals("”, result)
4 ET: calend(LLI) [18]
4 |5 testCalend_ 1
4 =29 Inputs
wap pll =0
wafp pl =2
sap p2 =0
4 @aas Recnltc

CodePro fornisce anche un Test
Editor che consente di vedere i test
generati in forma tabellare e
apportare automaticamente le
modifiche nel codice

. I colori codificano gli esiti dei test,
asserzione per asserzione

= O
- sampes.abe) verpsa— 1

Arguments | Assertions

o ||

Ly e R P T I N |

Test Method | x | v result | assertTrue
i testabc_1 35 17
2 | testdbc_2 19
3 | testAbc_3 23
4 testabc_4 21
5 25
&

-1
testAbc_7
testabc_3

5
7
5
testAbc_5 7
3
3
2
testabc_9 2

Metriche Software

Monkey Testing e Random Testing

Secondo l'infinite monkey theorem una scimmia che scrive a
macchina battendo tasti a caso in un tempo infinito sara in grado di
scrivere I'Amleto di Shakespeare.

Nelle tecniche di Random Testing vengono generate sequenze casuali di
input allo scopo di testare |'applicazione
« Il Monkey Testing € la specializzazione del Random Testing al caso di un
sistema interattivo, nel quale gli input sono eventi
. Non ci sono oracoli dipendenti dai casi test

. Con guesta tecnica possono essere trovati soltanto crash oppure possono essere
valutate condizioni invarianti di malfunzionamento
Esempio: regola di usabilita: ci sono pulsanti che escono fuori dall’area dello schermo

. Anche la lunghezza della sequenza puo a sua volta essere scelta casualmente

Il Monkey testing si applica essenzialmente a problemi di
Robustness Testing

Testing Automation 21

Random Testing

Il Random Testing ha un’efficienza molto
scarsa

e Non e molto efficiente ma puo condurre
alla scoperta di malfunzionamenti che non
vengono trovati da altre strategie di
testing piu «intelligenti»

 Viene condotto in maniera totalmente
automatica

Testing Automation 22

Tipologie di Monkey Testing

Dumb Monkey Testing

« Gli eventi sono generati in maniera totalmente casuale, secondo una distribuzione
uniforme di probabilita

Brilliant Monkey Testing

- Gli eventi e le sequenze di eventi sono generati secondo una distribuzione di probabilita
specifica (spesso dipendente da osservazioni precedenti della distribuzione degli eventi
di utenti reali)

Smart Monkey Testing

« Come nel Brilliant Monkey Testing, ma ulteriori euristiche possono essere introdotte per
evitare ad esempio di ripetere eventi o sequenze di eventi gia testate

- Esempi (demo) di un tool di Brilliant Monkey Crash testing dell’'Universita di Valencia
» https://staqg.dsic.upv.es/sbauersfeld/Blank.html
» http://thedailycrash.blogspot.de/

Testing Automation 23

https://staq.dsic.upv.es/sbauersfeld/Blank.html
http://thedailycrash.blogspot.de/

Monkey Fuzz

Un semplice esempio di Monkey in ambiente
windows e Monkey Fuzz

http://monkeyfuzz.codeplex.com/

Consente soltanto di generare eventi casuali

Analizzando i log e possibile capire se si sono
verificati crash

« Attenzione: puo causare interazioni non volute con il
sistema

Testing Automation 24

http://monkeyfuzz.codeplex.com/

Monkey

Monkey e un’utility interna fornita con
I'android SDK, che e in grado di
generare eventi utente pseudocasuali
su una qualsiasi interfaccia,
registrando gli eventuali crash
— Monkey gira all'interno del dispositivo; per

avviarla bisogna passare per adb. Ad esempio,

da linea di comando:

adb shell monkey -v -p
com.porfirio.orariprocida2011 30

Testing Automation 25

Output di Monkey

:Monkey: seed=0 count=30

:AllowPackage: com.porfirio.orariprocida2011
:IncludeCategory: android.intent.category.LAUNCHER
:IncludeCategory: android.intent.category.MONKEY
// Event percentages:

// 0:15.0%
// 1:10.0%
// 2:15.0%
/] 3:25.0%
// 4:15.0%
/] 5:2.0%
/] 6:2.0%
/] 7:1.0%
// 8:15.0%
:Switch:

#Intent;action=android.intent.action.MAIN ;category=android.intent.category.LAUNCHER;IaunchFIags:0x10000000
;component=com.porfirio.orariprocida2011/.0OrariProcida2011Activity;en

/] Allowing start of Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER
cmp=com.porfirio.orariprocida2011/.0rariProcida2011Activity } in package com.porfirio.orariprocida2011

:Sending Pointer ACTION_MOVE x=-4.0 y=2.0

:Sending Pointer ACTION_UP x=0.0 y=0.0

:Sending Pointer ACTION_DOWN x=47.0 y=122.0

Events injected: 30

:Dropped: keys=0 pointers=0 trackballs=0 flips=0

Network stats: elapsed time=7766ms (7766ms mobile, 0Oms wifi, Oms not connecte
d)

// Monkey finished

Testing Automation 26

Random GUI Java Tester

e Uno strumento di testing random generato
dal gruppo di Ingegneria del Software della
Universita Federico II

e Genera test random consistenti in sequenze
di eventi su interfacce grafiche AWT e Swing

Le GUI sono analizzate grazie alle proprieta di reflection
e alla libreria FEST

Puo essere eseguito sia da eclipse che standalone, sia da
main che come caso di test, eventualmente integrato con
uno strumento di misura della coverage

Puo essere anche aggiunto come libreria ad un progetto
esistente, con l'aggiunta di un semplice punto d’avvio

Testing Automation 27

Random GUI Java Tester

automation

RandomRobot

extraction

ComponentExtractor

model

Event

Input

ExtractedWind ow

testcase

RandomRipper

Testing Automation

Package Model

model

Event Input

-component : Component -component : Component
-event : int
-parameter : int

ExtractedWindow
-components @ Arraylist<Component=
-inputs : ArrayList=Input=
-outputs @ ArrayList=Outputs=

e ExtractedWindow
« Contiene le informazioni relative ai componenti della Window

e Input
« Astrae un Input, destinato ad un componente
e Event

« Astrae un Evento, destinato ad un componente

Testing Automation

Package Extractor

e ComponentExtractor

E la classe che si occupa di recuperare informazioni della Window

mostrata a schermo

Le informazioni vengono restituite come un’istanza della classe
ExtractedWindow

. ArrayList<Component> contiene un riferimento agli oggetti
Component che costituiscono la Window

In particolare, distingueremo tra elementi su cui eseguiremo degli
eventi ed eventi sui quali inseriremo anche dei valori in input

Dopo aver recuperato le informazioni, la classe genera un elenco
di eventi che possono essere scatenati sulla Window

Tali eventi, insieme ai Component identificati come campi di Input, sono
aggiornati nell’istanza della classe ExtractedWindow

Testing Automation 30

Package Extractor

e Ad esempio, sul campo di testo (Text Field) inseriremo dei valori
(quindi e un Input), mentre sulla CheckBox ci limiteremo a eseguire un
evento, cioe il click (codificato come RIPPER_EVENT_CLICK)

if (component instanceof javax.swing.JTextField) {
Input input = new Input();
input.component = component;
ret.addInput(input);

}

if (component instanceof javax.swing.JCheckBox) {
Event evt = new Event();
evt.component = component;
evt.event = Event.RIPPER_EVENT CLICK;
ret.addEvent(evt);

Testing Automation 31

Package Automation

RandomRobot

E la classe che si occupa dell’'esecuzione degli eventi e
della valorizzazione dei campi di input

» Le strategie per scegliere quali eventi eseguire e quali
valori (eventualmente casuali) inserire vengono scritte

qui
 L’evento inviato al Robot viene tradotto in interazioni con
la GUI

* Vengono utilizzate le librerie FEST e la classe Robot di Java
 https://github.com/alexruiz/fest-swing-1.x
« https://docs.oracle.com/javase/7/docs/api/java/awt/Robot.html

Testing Automation 32

Package Automation

e Ad esempio:

if (input.component instanceof javax.swing.JTextField) {

JTextComponentFixture fixture = new
JTextComponentFixture(robot, (JTextField)input.component);

fixture.setText(RANDOM.getRandomIntString(100));
h

- Se il componente trovato sulla GUI e un’istanza di un campo di testo
(TextField), allora creiamo un oggetto di interazione con questo
componente (fixture) e su di esso eseguiamo un metodo setText, che ha
come parametro un numero casuale tra 0 e 100

Questo valore casuale sara chiaramente il valore messo in input nel campo di testo
Diverse strategie potrebbero tenere conto di classi di equivalenza, valori limite, etc.

Testing Automation 33

Package TestCase

e RandomRipper
- E un caso di test jUnit

« Contiene il main loop del Java Random Ripper

 Per ogni evento casuale da eseguire, analizza la window
cercando componenti, sceglie un evento da eseguire, vi associa
eventuali inputs e lo esegue (Fire)

for(numeroDiEventi)
extractedWindow = extractor.ExtractWindow()
event = scheduler.getRandomEvent(extractedWindow)
inputs = extractedWindow.getInputs()
if (event = null)
fireRandomEvent(event, inputs)

Testing Automation 34

Caratteristiche del random testing

o Fattori in grado di influenzare l'efficacia del
random testing:
 Numero di eventi provati

* Lunghezza dei casi di test provati
« E’stato provato che test troppo brevi sono poco efficaci poiché
non riescono a coprire alcune condizioni (ad esempio un
contatore che arriva al valore massimo), mentre test troppo
lunghi rendono poco probabile la copertura di condizioni che si
verificano solo a inizio test (ad esempio codice legato al primo

Inserimento di qualche dato)
— http:/icrest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/ArcuriO9e.pdf

« Ampiezza dellinsieme dei possibili valori di input

Testing Automation

35

Terminazione del Random testing

e Quando terminare il random testing?

 La condizione piu soddisfacente per terminare il
testing e il raggiungimento della copertura massima
raggiungibile (saturazione)

« Ma potremmo non essere in grado di riconoscerla!

« La copertura a saturazione é I'insieme di tutte le righe di
codice escluse quelle non raggiungibili, che non sono
pero note a prio

Testing Automation

36

Due tecniche per determinare la terminazione di un

random testing

o Eseguire n sessioni di test random in
parallelo

Tecnica 1) Terminare i test quando tutte le sessioni
hanno raggiunto lo stesso identico insieme di
copertura

Tecnica 2) Terminare i test quando il codice
raggiunto dalla sessione con la maggiore copertura
include il codice raggiunto da ognuna delle altre
sessioni

Testing Automation

37

Sperimentazione

e Queste tecniche sono attualmente
oggetto di sperimentazioni
« Per trovare il valore ottimale del humero di sessioni

(finora risultati soddisfacenti si sono ottenuti con
n>=8)

« Per capire quale codice potrebbe essere coperto ma
non viene coperto al tempo in cui si verifica la
condizione di terminazione

« Esempio: vittoria in un gioco di strategia

Per capire quale delle due condizioni di terminazione
e piu efficiente

Testing Automation 38

Caratteristiche del Random Testing

Il Random Testing puo portare ad esecuzioni diverse da quelle progettate
da un tester, quindi a scoprire nuovi difetti

Il Random Testing puo portare a rieseguire moltissime volte la stessa

esecuzione

« Un Random Testing meno stupido puo avere memoria delle esecuzioni precedenti, per
non ripeterle

Il Random Testing puo essere eseguito in parallelo

| Test Random non hanno oracolo. Possono essere utilizzati solo per:

— Cercare possibili situazioni di crash / eccezioni;
— Verificare la violazione di proprieta invarianti

Testing Automation 39

Proposta di progetto

« Implementare tecniche di testing random

alternative evolvendo lo strumento
Random Ripper

 Valutare la bonta di queste tecniche su di un insieme

preesistente di piccole e medie applicazioni java con
interfaccia grafica

« Eventualmente, reimplementando uno strumento di
random testing con Maveryx

Testing Automation 40

Proposta di progetto

e Implementare uno strumento che possa
eseguire test in parallelo, eventualmente
su piu macchine, reali o virtuali e possa
confrontare dinamicamente i risultati di
copertura ottenuti

Testing Automation 41

Proposta di progetto

Trovare e confrontare diverse tecniche di
terminazione del testing random

Testing Automation

42

Risorse sul Random Testing

Andrea arcuri. Random Testing.

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmat
eriale/INF4290-RandomTesting.pdf

J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE
Transactions on Software Engineering, 10(4):438-444, 1984.

S. C. Ntafos. On comparisons of random, partition, and proportional
partition testing. IEEE Transactions on Software Engineering,
27(10):949-960, 2001.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation (PLDI
'05). ACM, New York, NY, USA, 213-223. http://cm.bell-
labs.com/who/god/public_psfiles/pldi2005.pdf

Testing Automation 43

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf

Search Based Software Testing

e E’ una branca del software testing nella quale il testing
e visto come un problema di ottimizzazione (analogo a
quelli trattati dalla ricerca operativa), sui quali vengono
applicate tecniche euristiche come ad esempio:

e Algoritmi genetici

e Simulazione della tempra
e Tabu search

e Programmazione lineare

Testing Automation

44

Algoritmi genetici applicati al testing

e Per applicare un algoritmo genetico ad un problema di

testing e necessario:
e Modellare i casi di test (esemplare) in forma di sequenze (gli elementi
vengono detti alleli)
« ad esempio come sequenze di valori di input o come sequenze di eventi
— Proporre operatori di crossover
» Che incrociano due esemplari (casi di test) generando altri due esemplari
— Proporre operatori di mutazione
« Che variando in maniera casuale uno degli alleli, generano un nuovo esemplare
— Proporre una metrica che valuti la bonta di un test case (fitness locale)
» Ad esempio, la quantita di codice che copre oppure la quantita di difetti che trova

— Proporre una metrica che valuti la bonta complessiva di una test suite (fitnell
globale)

« Ad esempio la quantita totale di codice coperta dalla test suite oppure il totale dei
difetti scoperti

Testing Automation 45

Algoritmi genetici applicati al testing

e Gli algoritmi genetici sono iterativi. Data una test suite
iniziale, ad ogni iterazione

e Si creano nuovi test case della test suite effettuando dei crossover
Vincolo: i nuovi test ottenuti devono essere eseguibili

— Si creano nuovi test modificando valore in input dei test esistenti
— Si valuta la fitness locale di tutti I test

— Si selezionano I test case con la migliore fitness, tali da mantenere lo stesso quantitativo di test
case dell'iterazione precedente

— Si calcola la fitness globale

— Si termina se si € arrivati ad un valore di fitness globale considerato soddisfacente secondo un
criterio prescelto

e Numerose varianti si possono ottenere facendo variare frequenza e tipologia degli
operatori, regole di selezione, misure di fithess, criterio di terminazione, etc.

e |'esperienza mostra come queste tecniche portino, piu 0 meno velocemente, a
scoprire test suite con buoni valori di fitness globale

Testing Automation 46

Evosuite EVaRSUITE

Automatic Test Suite Generation for Java

o EvoSuite e uno strumento per la generazione di test
di unita compatibili con Junit per applicazioni Java

e Puo essere scaricato e utilizzato sia in forma
standalone che come plug-in di Eclipse o IntelliJIdea

e Gli autori lo hanno testato su sistemi Linux e Mac, ma affermano che
dovrebbe funzionare anche sotto Windows

e http://www.evosuite.org/downloads/

o EvoSuite e un software prodotto da ricercatori
universitari (inizialmente dell’'universita di
Birmingham) ma supportato anche da Google

Testing Automation

a7

http://www.evosuite.org/downloads/

EvoSuite in poche parole

Genera casi di test basandosi su informazioni ottenute tramite
analisi statica (come CodePro, ad esempio)

Prova questi casi di test valutandone la capacita di coprire il
codice

Iterativamente, nell’ambito di una tecnica genetica:
Applica tecniche di mutazione e crossover dei test per generare nuovi casi di test
Genera mutazioni dei programmi

. Le mutazioni sono generate secondo le regole implementate nel programma muJava
Valuta la capacita dei casi di test di scoprire i programmi mutanti
. Per scoprire un mutante si confronta I'output ottenuto col mutante con quello ottenuto sul

programma originale
Ottimizza la test suite ottenuta preferendo i test che sono riusciti
. A coprire piu codice
. A coprire codice che non hanno coperto gli altri casi di test
. A scoprire mutanti

Testing Automation

48

Ulteriori caratteristiche

o EvoSuite e una tecnica euristica

» Cerca di generare mutazioni del programma che
somiglino ai possibili errori dei programmatori

 Adotta una tecnica euristica per decidere quando ¢ il
momento di terminare

EvoSuite e completamente automatica

EvoSuite genera test Junit completamente
riusabili

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented
software.

Testing Automation

Proposta di progetto

o Studiare approfonditamente le caratteristiche di
EvoSuite
« Dal sito http://www.evosuite.org/

e Provare EvoSuite su programmi diversi da quelli
testati e valutarne criticamente i risultati (ad
esempio confrontandoli con altre tecniche di test)

e Provare ad estendere EvoSuite

« Un tutorial e disponibile all'indirizzo
http://www.evosuite.org/documentation/tutorial-part-4/
- Un precedente progetto a disposizione puo rappresentare un valido
punto di partenza per quest'attivita
EstensioneEvosuite AmalfitanoPacia.rar

Testing Automation 50

http://www.evosuite.org/
http://www.evosuite.org/documentation/tutorial-part-4/

Testing basato su Sessioni Utente

Idea:

e E se si utilizzassero i reali utilizzatori di un‘applicazione (alpha tester o beta
tester) come cavie da osservare per generare casi di test?

Vincoli:
e L'applicazione deve essere stata gia rilasciata

Vantaggi:

e Lo sforzo per la generazione dei casi di test € molto limitato (supponendo che
gli utilizzatori siano volontari e non facciano parte dell'organizzazione ..

 Reali utilizzatori possono sollecitare il sistema in modi che i progettisti non
avevano immaginato e previsto

e La riesecuzione dei casi di test puo essere completamente automatizzata

Svantaggi:
e Scarsa efficienza (molti test identici tra loro)

e Ridotta efficacia (molti casi limite non vengono testati)
« Non garantiscono contro gli utilizzi maliziosi del software

Testing Automation 51

Problemi legati allo User Session Testing

Il numero di sessioni da prendere in considerazione al fine di poter
avere un insieme significativo di casi di test puo essere molto elevato

— Molte sessioni possono essere identiche o contenere parti simili
— Si possono applicare tecniche di minimizzazione per la riduzione del nhumero di casi di
test
Il sistema di logging deve essere in grado di monitorare il piu possibile
anche gli elementi legati all’'ambiente di esecuzione

Per poter ottenere esecuzioni significative puo essere necessario
raccogliere sessioni per molto tempo

— Per ridurre tale tempo, si possono utilizzare tecniche di ricombinazione (mutazione) dei
test

Difficolta nel riprodurre le reali condizioni di utilizzo dell’applicazione
prima del suo rilascio reale

Puo essere difficile riutilizzare i casi di test prodotti, a seguito di un
intervento di manutenzione sul software

Testing Automation 52

Tecniche di riduzione

e Per ridurre la dimensione di una test suite si puo
utilizzare una tecnica di minimizzazione basata

sulla copertura

— Si fissa un obiettivo di copertura
* Ad esempio copertura di istruzioni, decisioni, pagine visitate,
Sscenari di casi d’'uso ...

— Si valuta il grado di copertura di ogni caso di test

— Si esegue un algoritmo in grado di estrarre il piu piccolo
insieme di casi di test che massimizzi la copertura

e E’ una tecnica analoga a quella utilizzata per
trovare lI'insieme di implicanti minimo che
coprisse tutti i mintermini di una funzione

booleana

Testing Automation

53

Riduzione dei test cases

Talvolta, si impongono delle tecniche di
riduzione per minimizzare il numero di test
cases

— Esempio: Selezione di un insieme di casi di test per
applicazioni Web che siano in grado di eseguire, almeno
una volta, ogni pagina Web

« Sidisegna la matrice di copertura (User Session x Pagine)

Un elemento (1,))
vale 1 se la
Pagina Pj &
eseguita
nell’ambito della
User Sesson USi

Testing Automation o4

Tecnica di Riduzione

Tre criteri:

Criterio di essenzialita:

— Una US e essenziale se e l'unica a
coprire una pagina P

Criterio di dominanza per le righe:

— USi & dominata da USj se tutte le
pagine coperte da USI sono coperte
anche da US;j

US6 e essenziale poiche e Il'unica
che contiene P5

US4 e dominata da US5 poiche
tutte le pagine contenute in US4

Criterio di dominanza per le colonne: sono anche contenute in US5
— Pi domina Pj se Pi e contenuta in tutte
le US contenenti P_]- P3 domina P1 e P2 poiché P3 é
contenuta in tutte le sessioni

contenenti P1 e in tutte quelle
contenenti P2

Testing Automation 95

Applicazione della tecnica di riduzione

Le US essenziali sono inserite Dominanti
nell’'insieme ridotto |—'—'—ﬁ
P P
| (Uss[1 1]

Le pagine coperte da pominate | |

US essenziali sono [Uss)

eliminate [US6]

Le US dominate sono

eliminate

Le Pagine dominanti sono Insieme ridotto:

eliminate US3, US5, US6

Testing Automation

56

Altre tecniche di riduzione

* Tecniche euristiche basate sulla misura
della somiglianza tra casi di test

e Ipotesi:
« Test “simili” hanno probabilmente lo stesso esito

e Obiettivo:

« Massimizzare la diversita tra i test

« Abbiamo bisogno di una tecnica per misurare la
somiglianza (o la diversita)

Testing Automation

S7

Altre tecniche di riduzione

- Esempio:

« Misurare la somiglianza in termini di linee di codice
coperte

AR A 6
ECorrelatiorl 5:;] T EY Q:& E

Test Case: "a23” of the Test Session: "TestSession0”
¥ TestCase: "b1234" of the Test Session: "TestSession0”
¥ TestCase: "c234" of the Test Session: “TestSession0”
Test Case: "a23" of the Test Session: "TestSession0”
Test Case: "f24" of the Test Session: "TestSessiond”
¥ TestCase: "d123" of the Test Session: “TestSession0”
Test Case: "a23” of the Test Session: "TestSession0”
b Test Case: “c234” of the Test Session: "TestSession0”
P Test Case: "d123" of the Test Session: "TestSession0”
b Test Case: "el245" of the Test Session: "TestSession0”
Test Case: "f24" of the Test Session: "TestSession0”

c234 dl23 el245

0% - 33%

33% - 66%

66% - 100%

Testing Automation

Test Case Prioritization

Le tecniche di riduzione rientrano nella piu ampia
famiglia di tecniche di test case prioritization

« Dare un peso (euristico) ai casi di test in modo da selezionare il
sottoinsieme di casi di test che massimizza questo peso

Obiettivo comune di queste tecniche e sempre una
massimizzazione dell’efficienza a parita (o con una
perdita accettabile) di efficacia

Slide su test case prioritization
http://www.cs.umd.edu/ ~atif/Teaching/Fall2004 /StudentSlides/xunl.pdf

Testing Automation

59

Test Case Prioritization

 Bisogna trovare delle regole euristiche in
base alle quali misurare |'efficacia
potenziale dei test case

« Siordinano i test per efficacia potenziale
decrescente

« Si esegue un sottoinsieme di tali test che soddisfi un
criterio di terminazione

Testing Automation

60

Test Case Prioritization

e Esempi di metriche euristiche

« [test case su parti di codice recentemente modificate
sono piu efficaci

I test case che coprono piu codice per primi

« La code coverage puo essere misurata pesando la diversita di
codice coperto

I test case piu «veloci» per primi
I test case meno «costosi» per primi

Euristiche basate sul giudizio di esperti
Random prioritization

Testing Automation

61

Un ulteriore Approccio: il Testing Mutazionale

o I| Testing Mutazionale e una tecnica per la
generazione di casi di test.

— A partire da un sottoinsieme di casi di test, si
applicano alcuni operatori di mutazione che
vadano a modificare/incrociare i dati dei test case
esistenti, in modo da ottenere nuovi test case.

— Es. Si cambla il segno degli input, si raddoppiano
| valori di input, si combinano sequenze di input
INn huove sequenze, etc...

Testing Automation 63

Testing Mutazionale

e Con tale tecnica si possono ottenere Test Suites
— piu piccole (meno test cases)
— con maggiore copertura
— con uno sforzo minore
rispetto a quelle ottenute semplicemente collezionando sessioni

utente

e Bisogna pero eliminare tutti i test cases che

risultano inapplicabiii.

e Questa tecnica e spesso utilizzata per il testing di
protocolli.

Testing Automation 64

Operatori di mutazione

e Alcuni esempi:
« Madificare l'ordine degli eventi
« Fondere due test

« Creare un nuovo test con la prima parte proveniente
da un test e la seconda da un’altra

« Aggiungere dei tempi d’attesa prima di una certa
operazione del test

Testing Automation

65

Tecniche di esecuzione automatica
dei casi di test

Testing Automation

66

"I am rarely happier than when spending
entire day programming my computer to
perform automatically a task that it would
otherwise take me a good ten seconds to
do by hand.”

- Douglas Adams - From "Last Chance to See”

Testing Automation 67

Esecuzione automatica dei casi di test

Si tratta della parte piu «meccanica» della testing
automation

Il completo automatismo si puo ottenere scrivendo il codice
di test sotto forma di codice eseguibile

« FE’ possibile ricorrere a linguaggi ed ambienti diversi da quello dove &
in esecuzione il software da testare

*Esempio: script di shell che eseguono in maniera batch i software
da testare

*Problemi: valido solo per testing black box, poiché non e
possibile interagire internamente col software testato

« E’ possibile modificare il software sotto test creando punti di
esecuzione alternativi

*Ad esempio ulteriori metodi main

*Problemi: il software testato viene cosi modificato, con il
rischio di introdurre ulteriori bug e con la difficolta di rimuovere
il codice di test senzarischiare di dover testare nuovamente il
software dopo questa rimozione

[0)]
(e 0]

Testing Automation

68

Esecuzione automatica dei casi di test

La soluzione piu efficace & quella di scrivere codice con framework come Xunit
« Vantaggi:
* possiamo eseguire sia test black box che white box, monitorando
eventualmente anche lo stato interno del software;

* le classi di test sono separate da quelle originali, cosicché non c’e alcun

rischio a rimuoverle e non possono influenzare il corretto funzionamento
del software

* Vincolo:
* |l software deve essere scritto in un linguaggio che supporti la reflection

» La maggior parte dei moderni linguaggi object-oriented supportano
la reflection

« C non supporta nativamente la reflection

»
©

Testing Automation

69

Tecniche di valutazione automatica
dell’esito dei casi di test

Testing Automation

70

C) Valutazione dell’esito dei casi di test

e Per poter valutare automaticamente l'esito di un caso
di test, esso dovrebbe essere stato oggettivamente
definito e un metodo per la sua valutazione deve
essere disponibile

— Ad esempio, nel caso degli assert in un test Junit

e In alcuni casi particolari, I'esito di un test non ha
bisogno di essere definito, o puo essere definito
automaticamente

— Crash o exception testing
— Regression Testing

e Lo stato dell’arte complessivo riguardo il problema
della definizione automatica degli oracoli puo essere
trovato in:

« http://mcminn.io/publications/tr3.pdf

Testing Automation 71

http://mcminn.io/publications/tr3.pdf

Crash Testing

e Testare un software in cerca di eccezioni o errori a run-time
che interrompano l'esecuzione

— Non e necessario definire alcun oracolo: esso corrisponde alla
semplice terminazione regolare del caso di test

e Smoke testing

— Una varieta del crash testing, nella quale I'applicazione viene
esplorata e navigata il piu possibile, cercando di causare un crash

— Tipicamente, puo essere eseguito durante il naturale ciclo di sviluppo
dell’applicazione

« Ad esempio, un ciclo di smoke testing puo essere eseguito durante la
notte

 QOriginariamente utilizzato per il testing di componenti hardware, € molto
diffuso nelllambito dei cicli di sviluppo agili, nei quali una versione
integrata e testabile del software dovrebbe essere molto spesso
disponibile

Testing Automation

72

Testing di regressione

e Sj applica in seguito ad un intervento di manutenzione su di
un software esistente, per il quale esiste gia un piano di test

e Un problema: quali test devono essere riprogettati? E quali
test possono essere riusati?

— Sicuramente devono essere riprogettati tutti i casi di test relativi alla
nuova funzionalita implementata (o alla funzionalita modificata)

e Quali altri test dovranno essere rieseguiti?

— Per determinare quali test preesistenti devono essere riesequiti,
occorre valutare quali altre funzionalita potrebbero essere state
influenzate dalla modifica realizzata, ossia eseguire I'Tmpact Analysis:

Quale sara stato I'impatto della modifica sul sistema?

Testing Automation

73

Testing di regressione e Ripple effect

e Dopo un intervento di manutenzione, e probabile che la modifica
effettuata influisca sul resto del sistema, generando nuovi difetti
(e il cosiddetto ripple effect).

— Chi corregge potrebbe non avere una adeguata conoscenza di tutto il
sistema e delle sue connessioni

— II sistema puo regredire (“invecchiare”) verso uno stato piu difettoso

e QOccorre eseguire il Testing di Regressione

— Particolarmente indicato qualora i testing siano stati definiti in modo
da poter essere rieseguiti automaticamente

Testing Automation 74

Regression:
"when you fix one bug, you
infroduce several newer bugs."

Testing Automation

75

Impact Analysis e grafo delle dipendenze

L'analisi di im|3atto e la disciplina che permette di conoscere, data una
modifica, quali parti del software possono esserne influenzate (e quindi
devono essere ri-testate)

Una tecnica semplice per la valutazione dell'impatto & basata sul Grafo
delle Dipendenze

Data una modifica su di un modulo m

— tutti i moduli m’ che da essi dipendono (per i quali esista un arco m'->m)
sono sicuramente impattati dalla modifica di m

— Tutti i moduli m” che dipendono da uno qualunque dei moduli m’ saranno a
loro volta impattati, e cosi via

I casi di test relativi ai moduli impattati (oppure tutti i moduli, nel caso in
cui non sia stato possibile effettuare impact analysis) devono essere
rieseguiti
— L'oracolo del testing di regressione & fornito dall’esito dei test che si otteneva prima di
eseguire la modifica

Testing Automation 76

Grafo delle dipendenze ed Analisi dell'Impatto

Se m e stato modificato,
occorrera controllare (e
ritestare) tutti i moduli
che dipendono da m
(direttamente, come m’,

<<d d > -7 ~o ed indirettamente, come

e ~N

e
7

\ ~
Pre <<dépendency>> “~_

@ ©» @

Se in fase di progettazione del software, tutte le dipendenze fra artifatti
fossero registrate esplicitamente, si potrebbe facilmente eseguire tale

Analisi di Impatto
[A.R. Fasolino, G. Visaggio “Improving Software Comprehension through
an Automated Dependency Tracer”, IEEE Workshop on Program Comprehension,1999]

~N

Testing Automation

77

Appendice

User Interface Testing

Selenium

e Consideriamo il framework Selenium, a supporto del
testing di interfacce utente di applicazioni Web

— http://selenium.openga.org/

e Selenium offre quattro modalita di utilizzo:
— Selenium IDE
— Selenium Core
— Selenium Remote Control
— Selenium Grid

User Interface Testing

79

Selenium IDE

e Si tratta di un‘estensione di un browser che
consente di:

— catturare le interazioni tra un utente e una applicazione web
(fase di Capture)

— “suggerire” asserzioni relative alla presenza di widget
sull'interfaccia utente

— replicare I'esecuzione di casi di test, mantenendo un log degli
esiti dei test (fase di Replay)

e Selenium € dunque usabile per progettare TC anche a
prescindere da un modello formalizzato (es. FSM) della
UI.

e Utile per I'esecuzione di Testing di Accettazione

User Interface Testing

80

In fase di capture,
Selenium IDE
mantiene un log
delle operazioni
effettuate
dall’utente e delle
asserzioni da egli
proposte

" J Selenium IDEK

File Modifica Options

e

Base LIRL | http: fflocalbostf

@& Run (O walk (O ostep [| b
| Table || Source |
Command | Target | Walue
open Tbookstore/Default, php
clickAndiw ait Htd[5]/a Fontfinng
clickandyw ait Hinput[@value='"Login' and @type="...
assertTextPresent admin
clickandy ait Hied[2]faffontfimg
assertTitle Book, Store
bvpe name php
clickandiw ait Hinput[@value="Search']
assertElementPresent [fkd[2]fFant
clickandyy ait Hier[14]ied[2] Fontfaffont
assertTextPresent Boak. Detail
Command | C}|
Target | | [Find
Value |
Log | Reference |
clickAndWait(locator)
CGrenerated from clicka(locator)
& ronments:

* locator - an element locator
Clicks o a link, battor, checkbox or radio button, If the click action causes a new page to load (like a
Lirk nsually does), call waitForPageToLoad.

User Interface Testing

In fase di replay,
Selenium IDE esegue
automaticamente test
generati in fase di
capture, mantenendo
statistiche sul numero
di test terminati con
successo e falliti

Replay

© Selenium Functional Test Runner v0.8.2 [1727] - Mozilla Firefox

File Modifica Wisualizza Cronologia Segnalibri | Strumenti | 2

@ - f,_\ - C% oy .’:Q | chrome: fiselenium-ide/contentfselenium) TestRunner. htmi?test=/content fPlayer TestSuite, htmig O|] % |v|GmgIe | ,l

#® Wieh Docenti mPﬂsta 11 Benwenuto in. ..

Test Suite Test Alayer Selenium TestRunner
Flayback open fbookstore/Default.php
dickandwait JfedlS]/affontsimg E"EC“tETEit 53 OO
R A Hinput[@value="Login' 2 =‘ ;% Im
clickandw ait and Btype="submit] Element j/finput[@value="l} Est _—
assertTextPresent admin
clickandw ait Fed[21/a/fontfimg | [Highlight elements
rETitl Book St
?;;; e n::ﬂe ore php Elapsed: 00:01
Test C d
clickandWait Hinput[@value='Search'] lefuiu 4'];:;"52'; 2
assertElementPresent fftd[2]/font 0 failed 0 failed
click&ndWait el 14)/td[2]/fontfa/font incomplete
assertTextPresent Book Detail
Tool
’r “iew DO
< ¥

|>

"3 line

g .2 8
°°kst°re Home Registration Shopping Cart SignIn Admi

| S

Book Detail

Title Web Application Developrnent with PHP 4.0 (with CO-ROM)
Author Tobias Ratschiller, Till Gerken

Catagory Programming

Price 36

Web Application
Development

Plicture B il DHP 4.0

PHF is an open-source Web scripting language that's gaining steam in the development community, especially in the Apache Web server realm. With a
syntax that draws heavily on C, PHP appeals to advanced programmers who are moving to the Web from traditional software development. VWeb Application

Motes Development with PHP 4.0 isn't your run-of-the-mill language tutorial. Authors Ratschiller and Gerken purposely designed its content to appeal to coders who
already are proficient in PHP, but in need of advanced programming technigues and high-level application-development skills. Assuming a strong programming
foundation, this book can be considered a next-level PHP tutorial

Review this book on Amazon.com

Add to Shopping Cart

| Rating | g

Completato é 0.141s E @ Zerror [7 avvisi @ [v] @ 0:21 fﬁ @

User Interface Testing

82

Codice generato

In fase di capture, Selenium

IDE genera anche del
codice sorgente (a scelta in
Java, C#, Perl, PHP, Python
o Ruby) che puo essere
eseqguito
indipendentemente da
Selenium IDE

Il codice generato necessita,

per essere eseguito, di
packages forniti con
Selenium (che formano il
Selenium Core)

3 Selenium IDE * k
File Modifica ©Options 7

Ease URL | http:fflocalhosky

&) Run () walk () Step

lSuurce

package com.example.tests;

import com, thoughbtworks, selenium, *;
import java.util regex, Pattern;

public class MewTest extends SeleneseTestCase
public void testMNew() throws Exception {

selenium, open("/bookstore/Default . php");
selenium. click" fed[5]fa/fontfimg™);
selenium, waitForPageToLoad("30000");
selenium. click{" | finput[@value="Login' and @type="submit']");
selenium, waitForPageToLoad("30000");
assertTruelseleniun. isTextPresent("adrmin™));
selenium, click" ftd[2]{a/fontfimg");
selenium, waitForPageToLoad("30000");
assertEquals("Book Store”, selenium, getTitle());
selenium. type("name", "php™;
seleniurm. click{" | finput[@wvalue="Search']");
selenium, waitForPageToLoad("30000");
assertTruelseleniun . isElementPresentftd[2]/Font"));
selenium, click("{ftr[1 4]/td[2]fFontfafFont™);
selenium, waitForPageToLoad("30000");
assertTruelseleniun. isTextPresent("Book Detail"y);

Log | Reference

clickAndWait(locator)
Cenerated fror clicl(locator)

Eranments:
#* locator - an element locator

link usnally does), call waitForPageToload.

Clicks on a livk, buttor, checkbox or radio button. If the click action canses a new page to load (like a

User Interface Testing

83

Abbot e Costello

o Abbot e Costello sono un‘altra coppia di tool che aiuta nella
programmazione di casi di test per interfacce utente Java (sia AWT
che Swing).

— Abbot e un insieme di librerie a supporto dell’esecuzione dei
test case realizzati

*Abbot puo essere utilizzato in maniera analoga a UlSpec4J

— Costello e uno strumento interattivo che fornisce feature per

il capture, I'editing, I'esecuzione, la visualizzazione dei
risultati dei test ed altro

http://abbot.sourceforge.net/doc/overview.shtml

User Interface Testing 84

http://abbot.sourceforge.net/doc/overview.shtml

Creazione di un nuovo caso

Uno scenario di utilizzo di Costello

di test

el S e

File/New Script:

Imposta classe e metodo di
partenza e posizione del jar

Cattura/All Actions

Esegui un esempio di
esecuzione sull’applicazione
da testare

Premi Shift+F1 dopo aver
posizionato il puntatore sul
campo da usare per
I'asserzione

launch
I.ﬁ.win di Calcolatrice.Starter.main([])

Mome della dasse interessata
ICaI::oIah'i::e.SErter
Metodo

I main
Argomenti

=]
0 -
—l+

Percorso delle dassi

IIib\,ﬁImIah’ice.jar
¥ Thread

Awvio di Calcolatrice. Starter.main{[])

- Sequence {5)

Attendi che ComponentShowing{Calcolatrice Instance){ 13-{2H 345}

assert

[Asserzione di {13{Z}{3}{#}{5}

Mome della dasse interessata

Click(3)
Click(*) Ijavax.swing.JTextnrea
Click(8) Metodo

,) di {THZHEHAHE) [getrext . [
6. Imposta un‘asserzione — L]
7. Termina ronmes s =
8. File/Save (in formato XML) Bro
[~ Inverti [~ Attendi ZI
85

User Interface Testing

Uno scenario di utilizzo di Costello

&% Editor dello script di test (C:\Users\Porfiric\Desktop\Ingegneria del Software 242011\ Tesine\I52_lacomino_Leone_Ruoccotabbot-1.0.2... _ 0] |

-
EseCUZIone File Modifica Test Inserisci Cattura Help

Abbot Suite: Messuna suite di test selezionata Seleziona la suite di test... | Esegui |

di un caso d

Script (C:\Users'Porfirio\Desktop\Ingegneria del Software 212011 Tesine\152_Tacomino_Leone_Ruocco'abbot-1.0, 2\abbotacostello)

1 FY
I t t - testCos + | |assert 1=
Attendi che ComponentShowing(Calcolatrice Instance) {13{2H3H{43{5} IAsserzione di {1HZH 345}
Click(3) _
- Click(.) Mome della dasse interessata
1 FI | e/ N eW Click{1) Ijavax.swing.JTextArea
" Click(4) Metods
- SelectMenultem{Cosena)
Scrl t Asserzione di {1}{Z}{3H4}H{5} |QetText]|
Click({C) Argomenti
> L testSin 5 | |
= :" . testTan I *
2 N SeIeZIOna »" . testlog 10 I del componente
»" . testloge IJTextArea Instance LI
t t > . testFattoriale B —
u n a eS > testRadiceQuadrataException
» . testPotenzaException |-0.999998?31?2?5395
- N . j|
S u Ite b_i EstCosuemplion v || T mvert [~ Attendi =
L tactCinEweantinan —
s I R-iﬁf””"e”ﬁl Properh'esl Attributesl Keys hcﬁonsl

3 E H B Tuttii frame Action Key Action
" Seg u I L[] Frame Swing di default Mo ActionMap available

4, \Verifica
I'esito delle
asserzioni

Reload v Concise

Guasto: abbot.AssertionFailedError: Asserzione di {1}{2}{3}{4}{5} invece era:<11.57357482831207&>

User Interface Testing 86

Utilizzo di Abbot

e Abbot da solo puo essere utilizzato in maniera simile ad
UISpec4], per scrivere test, in particolare anche test di
unita di singoli componenti:

// Suppose MyComponent has a text field and a button...
MyComponent comp = new MyComponent () s

// Display a frame containing the given component
showFrame (comp) 5

JTextField textField = (JTextField)getFinder ().
findi{new ClassMatcher (JTextField.class)) ;
JButton button = (JButton)getFinder () .find(new Matcher () |
public boolean matches (Component <) {
// Bdd as much information as needed to distinguish the component
return ¢ instanceof JButton && ((JButton)c).getText().equals("0OK");

¥
P)i
JTextComponentTester tester = new JTlextComponentTester():
tester.actionEnterText (textField, "This text i1s typed in the text field"™);
tester.actionClick (button) ;
// Perform some tests on the state of your UI or model
assertEquals ("Wrong button tooltip”, "Click here to accept™, button.getToolTipText()):;

User Interface Testing

Randoop &

e Tecnica per la generazione casuale di casi di test

« A partire da una analisi del codice (limitata in particolare a metodi e loro
parametri)

« I test sono costituiti da sequenze casuali di chiamate di metodi su oggetti
« [test sono generati come script Junit, quindi possono essere riesequiti

« Il risultato originale del test e codificato come asserzione. Utilizzabili per test
di regressione

« http://mernst.github.io/randoop/

e Puo essere utilizzato per generare test per un metodo
* (o per tutti i metodi di una classe o di un package)

e Puo essere eseguito standalone oppure tramite eclipse

« Istruzioni per eclipse:
https://rawgit.com/mernst/randoop/master/plugin/doc/index.html

 Puo essere utilizzato sia in presenza del codice sorgente che
avendo a disposizione soltanto il bytecode

Testing Automation 88

https://rawgit.com/mernst/randoop/master/plugin/doc/index.html

Parametri di Randoop

& Mew Randoop Launch Configuration (= '@
Launch Configuration Parameters
Output folder does not exist and will be created on launch R

Output Folder: test

Package Mame: randocop

Class Mame: RandoopTest

Stopping Criterion Stop test generation after:

Randoop has generated 100000000 tests, OR

Randoop has generated tests for 100 seconds
Test Output Parameters
Cutput tests that:
Advanced
Random Seed: 0
Maximurn Test Size: 100
Thread Timeout: 5000
[] Mull Ratio:

Maximum Tests Per File: 500

@ med> | [Finish][Cancel

Testing Automation

Analisi Mutazionale

Testing Automation

90

Analisi Mutazionale

e Un criterio di copertura “ideale” ﬁmas_sima efficacia e
massima efficienza) sarebbe quello di riuscire a coprire
tutti gli elementi difettosi presenti in un‘applicazione.

— Se conoscessimo a priori i difetti di una applicazione,
potremmo cercare di costruire una test suite che
massimizzi sia efficacia che efficienza

— Piu realisticamente, possiamo confrontare l'efficacia di
diverse test suite tra loro
e Piu in generale, & possibile confrontare la capacita |
potenziale di rilevazione dei difetti di diverse tecniche di
generazione di casi di test

— L'unico modo per conoscere a priori i difetti di un software
consiste nell‘iniettarli appositamente (in un software supposto
corretto, per ipotesi)

Testing Automation 91

Analisi Mutazionale

e Il primo passo consiste nell'immaginare quali
possano essere i possibili errori (fault model)

e E’' necessario proporre un modello degli errori e dei
corrispondenti operatori di mutazione

— Un operatore di mutazione introduce in un programma,
supposto corretto, un difetto (realizzando un‘operazione
di fault injection), trasformando il programma originale
in un mutante

Fault

y

A 4

Program Mutant

Testing Automation

Analisi Mutazionale

o I difetti (fault) sono inseriti automaticamente nei programmi,
ottenendo dei mutanti

e Su ogni mutante generato si vanno ad eseguire i test case della
test suite da valutare

L'oracolo per I'esecuzione di tali test € dato dall'output che veniva generato
dal programma originale

Se |'esito del test e positivo (I'output del mutante differisce da quello del
programma originale), allora si dice che il mutante e stato ucciso (4illed)

Altrimenti, il mutante non e stato rivelato dal test, ed e sopravvissuto.

« | mutanti (ad esempio quelli che causano errori in compilazione) sono detti triviali
guando possono essere scoperti da qualunque caso di test. Questi mutanti
vengono subito scartati

Piu mutanti sono uccisi, maggiore fiducia si puo avere nella capacita
della Test Suite di scoprire difetti!

Testing Automation 93

Analisi Mutazionale

L'efficacia di una test suite si puo misurare come
TER = # killed Mutants / # Mutants

In conclusione:

— Una test suite che riesca a rivelare il maggior numero possibile
di mutanti € da considerarsi piu promettente nella rivelazione di
potenziali difetti nell’applicazione

— Una tecnica di generazione generante test suites efficaci
nell’'uccisione dei mutanti &€ da considerarsi piu promettente nel
mondo reale

* Nell'ipotesi che i difetti iniettati sono rappresentativi di quelli reali

Testing Automation 94

Problemi dell’analisi mutazionale

Difficolta nella modellazione dei difetti di un sistema software

— Di solito vengono proposti degli operatori di mutazione

 Basandosi sull’esperienza generica di chi propone il testing mutazionale riguardo
le possibili cause di errore

» Basandosi su di un’analisi statistica dei difetti rilevati in altri software

— Gli operatori proposti sono di solito estremamente generici, per poter essere
applicabili ad ogni software, indipendentemente da Ilnguagglo adottato e
dalle caratteristiche della smgola applicazione

« Esempi:
— Operatore che sostituisce un’operazione aritmetica con un’altra
— Operatore che sostituisce un operatore relazionale con un altro
— Operatore che inverte la posizione di due righe di programma, etc.
» Con questi operatori, l'iniezione di difetti puo essere svolta automaticamente

* Difetti pit complessi, legati alla logica dell'applicazione, devono essere iniettati
manualmente e rimangono significativi solo per quella specifica applicazione

Testing Automation 95

Problemi dell’analisi mutazionale

e Il numero di possibili difetti € estremamente
elevato, gia per un piccolo frammento di software

— Il numero di mutanti generati da un piccolo insieme di
operatori € estremamente elevato
« Per ogni mutante dovrebbero essere esequiti tutti i casi di test di
una test suite

— L’approccio e possibile solo in presenza di un ambiente per la
testing automation, e anche in questo caso € molto oneroso

— Spesso si decide di applicare gli operatori di mutazione solo “a
campione”

Testing Automation 96

Frequenza degli operatori di mutazione

e Bisogna stabilire anche con quale
frequenza applicare i distinti operatori di
mutazione.

e Due tecniche vengono proposte:

— Tecnica statistica: si osservano le occorrenze di difetti
in applicazioni reali e li si inietta nelle stesse
proporzioni

— Tecnica ‘fair”; si analizza il codice, contando tutte le
opportunita di iniezione delle diverse tipologie di
difetti. I difetti vengono iniettati seguendo queste
proporzioni.

Testing Automation 97

Problemi dell’analisi mutazionale

Altri problemi:
— Non tutti i difetti di un sistema software sono legati ad
errori nel codice sorgente

 Si pensi a difetti del tipo di: mancanza di un requisito,
scorretta interpretazione di un requisito, etc.

— Alcuni difetti portano ad errori sintattici e sono gia rivelati
dal compilatore

— Non €& possibile proporre operatori generali che
riproducano gli errori semantici

Testing Automation 98

Vantaggi

e ['analisi mutazionale € una tecnica completamente
automatica, che puo essere eseguita in batch senza
I'assistenza del tester.

— Occorre pero disporre di strumenti automatici per la
generazione dei mutanti, l'esecuzione dei test, la valutazione
dei risultati (...)

e Si rivela utile come banco di prova per il confronto in
ambiente sperimentale tra diverse tecniche di
generazione di test suite, per valutare quale sia in grado
di produrre test in grado di rilevare piu difetti.

Testing Automation 9

