
Debugging 1

Debugging



Debugging 2

"Debugging is twice as hard as writing the 
code in the first place. Therefore, if you 
write the code as cleverly as possible, you 
are, by definition, not smart enough to 
debug it."
- Brian Wilson Kernighan

http://www.softwarequotes.com/showquotes.aspx?id=575&name=Kernighan,Brian


Debugging 3

Debugging

• Attività di ricerca e correzione dei difetti che sono causa 
di malfunzionamenti.

• É l’attività consequenziale all’esecuzione di un test che 
ha avuto successo e ha scoperto un malfunzionamento. 
Comprende due fasi:

– Ricerca del difetto

– Correzione del difetto

• Il debugging è ben lungi dall’essere stato formalizzato

– Metodologie e tecniche di debugging rappresentano soprattutto 
un elemento dell’esperienza del programmatore/tester



Debugging 4

Difficoltà del debugging

1. Il sintomo e la causa possono essere lontani.
2. Il sintomo può scomparire solo temporaneamente (a 

seguito di correzione di altro errore)
3. Il sintomo può non essere causato da errori specifici 

ma intrinseci all’ambiente di esecuzione (es.: errori di 
arrotondamento)

4. Può dipendere da errori di temporizzazione e non di 
elaborazione.

5. Può essere difficile riprodurre le condizioni di partenza
6. Il sintomo può essere intermittente.
7. Un solo difetto può causare più malfunzionamenti e un 

solo malfunzionamento può essere causato dall’azione 
combinata di più di un difetto



Debugging 5

Localizzazione dei difetti

• Ridurre la distanza tra difetto e malfunzionamento

– Mantenendo un’immagine dello stato del processo in 
esecuzione in corrispondenza dell’esecuzione di specifiche 
istruzioni

• Watch point e variabili di watch

– Un watch, in generale, è una semplice istruzione che inoltra il 

valore di una variabile verso un canale di output

» L’inserimento di un watch (sonda) è un’operazione invasiva nel codice: 

anche nel watch potrebbe annidarsi un difetto

» In particolare l’inserimento di sonde potrebbe modificare sensibilmente il 

comportamento di un software concorrente

• Asserzioni, espressioni booleane dipendenti da uno o più valori di 

variabili legate allo stato dell’esecuzione



Debugging 6



Debugging 7

Metodologie per il Debugging

• Forza Bruta

• Backtracking

• Eliminazione delle cause



Debugging 8

“Forza Bruta”

• Il modo più inefficace per fare debugging. Diversi 
approcci possibili:
– Usare storage dump (stampe dello stato della memoria in 

esadecimale o ottale…)

– Disseminare il codice di sonde per catturare quante più 
informazioni possibili e valutarle, in cerca di indizi

– Usare qualche strumento di debugging automatico (che 
permette di analizzare l’esecuzione del programma 
inserendo punti di break, osservazione di variabili, etc..)

• Largamente inefficace perché può produrre eccessive 
informazioni da comprendere

• Ricorrervi solo quando altre tecniche hanno fallito!



Debugging 9

Debugging per BackTracking

• Si cerca di ripercorrere il codice “all’indietro” a partire 
dal punto dove si è verificato il malfunzionamento 
(istruzione di output oppure eccezione)

• Analogamente alla tecnica delle Path Condition, diventa 
via via più difficile procedere all’indietro all’allargarsi del 
campo di possibilità.



Debugging 10

Eliminazione delle cause

• Prima di tutto, si individua la tipologia dei dati 
che fanno fallire il programma 

• Poi si cerca di formulare un’ipotesi sulla 
possibile causa del difetto, proponendo dati in 
ingresso in grado di far avvenire il 
malfunzionamento, poi si cerca di controllare la 
validità di tale ipotesi



Debugging 11

Automatizzazione del debugging

• Il debugging è un’attività estremamente intuitiva, che 
però deve essere operata nell’ambito dell’ambiente di 
sviluppo e di esecuzione del codice

• Strumenti a supporto del debugging sono quindi 
convenientemente integrati nelle piattaforme di sviluppo 
(IDE), in modo da poter accedere ai dati del 
programma, anche durante la sua esecuzione, senza 
essere invasivi rispetto al codice

– In assenza di ambienti di sviluppo, l’inserimento di codice di 
debugging invasivo rimane l’unica alternativa



Debugging 12

Funzionalità di debugging

• Inserimento break point
• Tramite Eclipse è possibile accedere a delle “Breakpoint 

properties”
• Breakpoint condizionali: 

– Breakpoint che si attivano solo quando si passa in una certa riga e si
verifica una certa condizione

• Breakpoint dipendenti dallo Hit Count: 
– Breakpoint che si attivano solo dopo un certo numero di passaggi su

quella riga di codice

• Esecuzione passo passo del codice
– Entrando o meno all’interno dei metodi chiamati
– Uscendo da un metodo verso il chiamante



Debugging 13

Funzionalità di debugging

• Valutazione (watch) del valore delle variabili, mentre
l’esecuzione è in stato di interruzione
– Nei linguaggi interpretati (tra cui anche Java), è possibile anche fornire la 

possibilità di modificare in fase di esecuzione il valore di variabili, 
semplificando notevolmente il problema della ricerca di casi di test in grado di 
replicare il malfunzionamento.

• In questo modo possiamo testare anche cammini infeasible

• Inserimento Watchpoint
• Un Watchpoint si inserisce similmente ad un breakpoint

• Non si riferisce ad una riga di codice eseguibile, ma ad un attributo di 
una classe

• Con I watchpoint si può eseguire il debugging:
• fino a che quell’attributo non raggiunge un determinato valore ;

• oppure fino a che l’attributo non è stato acceduto in lettura;

• Oppure fino a che l’attributo non è stato modificato

• Oppure fino a che l’attributo non è stato modificato un certo numero di volte

• …



Debugging 14

Funzionalità di debugging

• Similmente a breakpoint e watchpoint:
• Breakpoint per le eccezioni;
• Breakpoint per il caricamento di classi;
• Breakpoint per un metodo;

• Ulteriori approfondimenti ed esempi:
• http://www.vogella.com/articles/EclipseDebugging/article.html

http://www.vogella.com/articles/EclipseDebugging/article.html


Debugging 15


