
Analisi Statica 1

Analisi statica



Analisi Statica 3

Principali tecniche di analisi statica

1. Analisi statica in compilazione

2. Code reading

3. Code inspections or reviews 

4. Walktrough

5. Control flow analysis

6. Data flow analysis

7. Esecuzione simbolica



Analisi Statica 4

1- Analisi statica in compilazione

• I compilatori effettuano una analisi statica del codice per 
verificare che un programma soddisfi particolari 
caratteristiche di correttezza statica, per poter generare il 
codice oggetto.

• Tipiche anomalie identificabili:

– nomi di identificatori non dichiarati, 

– incoerenza tra tipi di dati coinvolti in una istruzione, 

– incoerenza tra parametri formali ed effettivi in chiamate a subroutine,

– codice non raggiungibile dal flusso di controllo



Analisi Statica 5

2 - Code Reading (o Desk Checking)

• E’ effettuata un’attenta lettura individuale del codice per 
individuare errori e/o discrepanze con il progetto.

• Il lettore effettua mentalmente una pseudo-esecuzione del codice 
e processi di astrazione che lo conducono a verificare la 
correttezza del codice rispetto alle specifiche e il rispetto di 
standard adottati.

• Tipici difetti identificabili:

– nomi di identificatori errati, errato innesto di strutture di 
controllo, loop infiniti, inversione di predicati, commenti non 
consistenti con il codice, incorretto accesso ad array o altre 
strutture dati, incoerenza tra tipi di dati coinvolti in una 
istruzione, incoerenza tra parametri formali ed effettivi in 
chiamate a subroutine, inefficienza dell’algoritmo, non 
strutturazione del codice, codice morto, etc.

• L’efficacia di tale tecnica è limitata se chi la esegue è la stessa 
persona che ha scritto il codice.



Analisi Statica 6

3 - Code Inspections (o review)

• Riunioni formali cui partecipa un gruppo di persone 
tra cui almeno una del gruppo di sviluppo, un 
moderatore ed altri esperti.

• Lo sviluppatore legge il codice ad alta voce, linea per 
linea, e i partecipanti fanno commenti e/o 
annotazioni.

• Tipicamente queste riunioni sono preannunciate ai 
partecipanti cui viene fornita la documentazione 
necessaria (codice e relativi documenti) per la 
revisione.

• È una tecnica che riesce ad individuare fra il 30 e il 
70% degli errori nella logica del programma.



Analisi Statica 7

Code Inspection

• L’obiettivo della riunione è scoprire difetti, non 
correggerli. Comunque, spesso l’analisi dei difetti 
effettuata viene discussa e vengono decise le eventuali 
azioni da intraprendere
– accettazione del codice, rigetto, annotazioni su eventuali non 

aderenze a specifiche, indicazioni delle modifiche da apportare

• Il codice è analizzato usando checklist dei tipici errori 
di programmazione, quali:
– Errori di data reference, data declaration, di calcolo, di 

confronto, sul flusso di controllo, di interfaccia, di I/O.

– Le checklist sono generiche (indipendenti dal linguaggio) ma 
possono essere adattate agli specifici linguaggi analizzati.



Analisi Statica 8

Esempio di Checklist per le Ispezioni



Alcuni Strumenti di analisi del codice in ambiente java

• Tra gli strumenti di analisi statica più noti, 
in ambiente Java:

• PMD

• Checkstyle

• Findbugs

• In ambiente Android

• Lint

• Tutti questi strumenti sono disponibili sia standalone, spesso 
integrati in ant, maven o gradle, che come estensioni e plugin 
degli ambienti di sviluppo

9Analisi Statica



Analisi Statica 10

Strumenti per l’analisi statica :

• Checkstyle
• http://checkstyle.sourceforge.net/

• Checkstyle concentra le sue analisi su regole stilistiche 
e di formattazione

• La pagina ufficiale riporta i link a molti plug in esistenti
– Ad esempio in ambiente IntelliJIdea/Android Studio c’è 

CheckstyleIdea

» https://plugins.jetbrains.com/plugin/1065-checkstyle-idea

– Il plug in per Eclipse è all’indirizzo http://eclipse-
cs.sourceforge.net/update

http://checkstyle.sourceforge.net/
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
http://eclipse-cs.sourceforge.net/update


Esempio

• Alcune delle violazioni rilevate da Checkstyle si prestano a 
correzione automatica (ad esempio quelle relative 
all’indentazione) e possono essere corrette automaticamente 
da Checkstyle stesso

Analisi Statica 11



Analisi Statica 12

PMD : Programming Mistake Detector

• PMD analizza anch’esso pratiche di cattiva programmazione, ad esempio:
• Variabili/oggetti non utilizzati

• Blocchi catch vuoti

• Codice duplicato 

• Codice troppo complesso (dal punto di vista della complessità ciclomatica)

• La sua forza consiste nel funzionare in una miriade di diversi 
linguaggi:
• Java, JavaScript, Apex, Visualforce, PLSQL, Apache Velocity, XML, XSL

• C#, Groovy, PHP, Ruby, Fortran, JavaScript, PLSQL, Apache Velocity, 
Scala, Objective C, Matlab, Python, Go, Swift (solo alcune 
funzionalità)

• https://pmd.github.io/
• In Eclipse http://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/

• Un tutorial per l’uso sotto Eclipse: https://www.javatips.net/blog/pmd-in-eclipse-tutorial

https://pmd.github.io/
http://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/


Esempio

• Per utilizzare PMD è necessario specificare un insieme di regole da 
applicare. Alcuni insiemi preconfigurati sono all’indirizzo 
http://pmd.sourceforge.net/pmd-4.3.0/rules/index.html

• PMD può integrarsi nello strumento di sviluppo e mostrare le proprie 
indicazioni già a tempo di sviluppo del codice

Analisi Statica 13

http://pmd.sourceforge.net/pmd-4.3.0/rules/index.html


PMD : Abstract Syntax Tree

• PMD esegue l’analisi statica 
costruendosi un Abstract 
Syntax Tree

• Tramite quest’albero, PMD 
fornisce anche ulteriori 
informazioni di analisi 
statica, quali CFG e 
cammini def-use

• Inoltre è possibile
interrogare tale albero 
come se fosse un XML (con 
Xpath) e creare così nuove 
regole

Analisi Statica 14



Progetto proposto

• Creare nuove regole per la valutazione di aspetti di qualità del 
codice, evetualmente tipici di Android
• Sfruttando l’Abstract Syntax Tree generato automaticamente da PMD

• http://pmd.sourceforge.net/pmd-4.3/xpathruletutorial.html

• Altre risorse: https://pmdapplied.com/

• Valutare tali regole su progetti di esempio o reali per 
controllare la loro effettiva frequenza

Analisi Statica 15

http://pmd.sourceforge.net/pmd-4.3/xpathruletutorial.html
https://pmdapplied.com/


Analisi Statica 16

FindBugs

• Findbugs è uno strumento sviluppato dall’Univeristy of 
Maryland
• Si concentra soprattutto sulla ricerca di pratiche di 

programmazione scorrette che potrebbero essere causa di bug
• Ovviamente essendo uno strumento di analisi statica non può in 

generale dimostrare che si tratti di bug non potendo osservare 
alcun fallimento

• http://findbugs.sourceforge.net/
• Il plug in per Eclipse può essere installato da: 

http://findbugs.cs.umd.edu/eclipse

• Tutorial di utilizzo: 
http://www.vogella.com/tutorials/Findbugs/article.html

http://findbugs.sourceforge.net/
http://findbugs.cs.umd.edu/eclipse


Esempio

• Findbugs fornisce anche una descrizione del 
problema riscontrato e di come possa essere risolto

Analisi Statica 17



Android Lint

• Android Lint è uno strumento di analisi statica di applicazioni 
Android 

• Eseguibile in maniera standalone

• Incluso in gradle

• Eseguibile anche direttamente da Android Studio

• E’ sufficiente eseguire il task Lint nella scheda Gradle, nel gruppo Verification

• Lint cerca potenziali problemi/anomalie come:
• Traduzioni mancanti

• Problemi sul layout

• Risorse / variabili inutilizzate

• Dimensioni degli array incoerenti

• Problemi di internazionalizzazione

• Ad es. Stringhe costanti nel codice, 

• Problemi di accessibilità
• Ad es. elementi grafici senza descrizione testuale

• Problemi di usabilità

• Ad es. Tipo mancante nei campi di input, 

Analisi Statica 19



Android Lint

• Lint cerca potenziali problemi/anomalie come:
• Traduzioni mancanti

• Problemi sul layout

• Risorse / variabili inutilizzate

• Dimensioni degli array incoerenti

• Problemi di internazionalizzazione
• Ad es. Stringhe costanti nel codice, 

• Problemi di accessibilità
• Ad es. elementi grafici senza descrizione testuale

• Problemi di usabilità
• Ad es. Tipo mancante nei campi di input, 

• Pratiche di programmazione che riducono le performance o aumentano il consumo energetico

• Ad es. Variabili con scope troppo ampio

• … (è possibile creare ulteriori controlli)

• Elenco completo dei controlli implementati da Android Lint:
• http://tools.android.com/tips/lint-checks

Analisi Statica 20



Lint

Lint può essere eseguito da Android Studio tramite 
Analyze/Inspect Code …

Oltre ai controlli di Lint vengono eseguiti alcuni altri controlli di 
base sul codice sorgente, simili a quelli di PMD, Findbugs, 
Checkstyle

https://developer.android.com/studio/write/lint.html

21Analisi Statica



Lint

22Analisi Statica



Esempio

23Analisi Statica



Analisi applicazioni Android con Lint

• Un progetto d’esame precedente ha 
studiato i risultati relativi all’analisi di 
circa 800 applicazioni Android con Lint è 
riportato tra i progetti d’esame svolti

• AndroidLInt_DiPaloCarotenutoBuonocore.pdf

Analisi Statica 24



Progetto proposto

• Approfondire l’analisi dei risultati di Lint
su applicazioni esistenti per scoprire trend 
e problemi particolarmente sentiti 
nell’attuale sviluppo Android

Oppure

• Studiare l’opportunità di creare ulteriori
regole Lint applicabili ad Android 

• In particolare, ci sono poche regole che analizzano il
codice dei test Android

Analisi Statica 25



Analisi Statica 26

4 - Walkthrough

• Analisi informale del codice svolta da vari partecipanti i 
quali ‘operano come il computer’: in pratica, si scelgono 
alcuni casi di test e si simula l’esecuzione del codice a 
mano (si attraversa- walkthrough- il codice).

• L’organizzazione della riunione è simile a quella della 
tecnica delle Ispezioni:
– Tra 3 e 5 partecipanti;

– Riunioni brevi (max. 120 minuti);

– Attenzione sulla ricerca dei difetti, piuttosto che sulla 
correzione;

– Attenzione a non criminalizzare il programmatore (autore del 
difetto)!



Analisi Statica 27

5 - Control Flow Analysis

• Il flusso di controllo è esaminato per verificarne la 
correttezza.

• Il codice è rappresentato tramite un grafo, il grafo del 
flusso di controllo (Control flow Graph - CfG), i cui nodi 
rappresentano statement (istruzioni eo predicati) del 
programma e gli archi il passaggio del flusso di 
controllo.

• Il grafo è esaminato per identificare ramificazioni del 
flusso di controllo e verificare l’esistenza di eventuali 
anomalie quali codice irraggiungibile e non 
strutturazione.



Analisi Statica 28

6 - Data flow analysis - statica

• Analisi dell’evoluzione del valore delle variabili durante 
l’esecuzione di un programma, permettendo di rilevare 
anomalie.

• Intrinsecamente è dinamica, ma alcuni aspetti possono 
essere analizzati staticamente. L’analisi statica è legata alle 
operazioni eseguite su una variabile:

• definizione: alla variabile è assegnato un valore 

• uso: il valore della variabile è usato in un’espressione oun 
predicato

• annullamento: al termine di un’istruzione il valore associato alla 
variabile non è più significativo

• Es.: nell’espressione

a:=b+c;
la variabile a è definita mentre b e c sono usate



Analisi Statica 29

Data Flow Analysis

• La definizione (d) di una variabile, così come un annullamento (a),
cancella l’effetto di una precedente definizione della stessa variabile, 
ovvero ad essa è associato il nuovo valore derivante dalla nuova 
definizione (o il valore nullo)

• Una corretta sequenza di operazioni prevede che:
– L’uso (u) di una variabile deve essere sempre preceduto da una definizione 

della stessa variabile senza annullamenti intermedi (Sequenza valida : du)

• Una variabile non definita ha un valore “sporco”

– Una definizione di una variabile deve essere sempre seguita da un uso della 
variabile, prima di un’altra definizione o di un annullamento della stessa 
variabile (Sequenze non valide: dd, da)

• Una doppia definizione è indice del fatto che la prima definizione è 
risultata inutile



Analisi Statica 30

Data Flow Analysis



Analisi Statica 31

Data Flow Analysis-esempio



Analisi Statica 32

Data Flow Analysis- esempio



Analisi Statica 33

Data Flow Analysis con PMD

• PMD è in grado di produrre automaticamente il CFG di un metodo 
e di tracciare tutte le relazioni tra definizione ed uso delle variabili

• Disponibili dalla schema «Vedi Dataflow» di PMD

• In quest’esempio si può 
notare come sia stato 
rilevato che la variabile m 
viene prima azzerata 
(m=0), poi definita in ogni 
ramo, senza che sia mai 
utilizzata

• D’altronde la mancanza di 
questa prima definizione 
sarebbe stata segnalata come 
potenziale problema già dal 
compilatore



Analisi Statica 34

7 - Esecuzione simbolica

• Il programma non è eseguito con i valori effettivi ma con valori 
simbolici dei dati di input.

• L’esecuzione procede come una esecuzione normale ma non sono 
elaborati valori, bensì formule formate dai valori simbolici degli 
input

• Gli output sono formule dei valori simbolici degli input

• L’esecuzione simbolica anche di programmi di modeste dimensioni 
può risultare molto difficile.

• Ciò è dovuto all’esecuzione delle istruzioni condizionali: deve 
essere valutato ciascun caso (vero e falso); in programmi con cicli 
ciò può portare a situazioni difficilmente gestibili.



Analisi Statica 35

Esecuzione simbolica



Analisi Statica 37

Java Path Finder

• Java Path Finder fornisce funzioni per l’esecuzione 
simbolica di metodi di applicazioni Java

• In allegato nel materiale docenti c’è un progetto d’esame 
svolto, che utilizza Java Path Finder per esecuzione simbolica

• JavaPathFinder_Cascella.zip



Analisi Statica 38

Path Conditions

• Nel caso di esecuzioni simboliche con condizioni, alcuni 
statement sono eseguiti solo se gli input soddisfano 
determinate condizioni.

• Una Path Condition (pc), per un determinato 
statement, indica le condizioni che gli input devono 
soddisfare affinchè una esecuzione percorra un 
cammino lungo cui lo statement sia eseguito.

• Una pc è un’espressione Booleana sugli input simbolici 
di un programma.



Analisi Statica 39

Path Condition

All’inizio dell’esecuzione simbolica essa assume il 
valore vero

– (pc := true ).

Per ogni condizione che si incontrerà lungo 
l’esecuzione , pc assumerà differenti valori a seconda 
dei differenti casi relativi ai diversi cammini 
dell’esecuzione.



Analisi Statica 40



Analisi Statica 42
42

Path Condition



Analisi Statica 43

Analisi dell’Execution Tree

• Ogni foglia dello execution tree rappresenta un cammino che sarà 
percorso per certi valori di input

• Le Pc associate a due differenti foglie sono distinte; ciascuna foglia 
dello execution tree rappresenta un cammino che sarà percorso 
per la Pc ad essa associata.

• Non esistono esecuzioni per cui sono vere contemporaneamente 
più Pc (vero solo per programmi sequenziali)

• Feasible Path: un cammino per il quale esiste un insieme di dati 
di ingresso che soddisfa la path condition.

• Unfeasible Path: un cammino per il quale non esiste un insieme 
di dati di ingresso che soddisfa la path condition.

• Se l’output ad ogni foglia è corretto allora il programma è corretto.

• Ma, quanti rami può avere un execution tree?



Analisi Statica 44

DETERMINAZIONE DELLA ESEGUIBILITA’ DI UN 
CAMMINO (Path feasibility)

Davis (1973)

Il problema di stabilire se esiste una soluzione per un 
sistema di diseguaglianze é indecidibile.

• Un cammino é eseguibile se esiste un punto del dominio di 
ingresso che rende soddisfatta la sua path condition (..un 
sistema di diseguaglianze).

• La determinazione della feasibility o della infeasibility di un 
cammino è indecidibile.

NB. se si riesce a dimostrare che ciascun predicato nella path 
condition è dipendente linearmente dalle variabili di ingresso, 
allora il problema è risolubile con algoritmi di 
programmazione lineare.



Analisi Statica 45

Appendice



Analisi Statica 46

Call Directed Graph



Analisi Statica 47

Alberi di Dominanza



Analisi Statica 48

Alberi di Dominanza



Analisi Statica 49



QAPlug

Esiste un plugin denominato QAPlug che integra le analisi di Lint (native in Android) 
con quelle Java-oriented di CheckStyle, PMD, Findbugs 

Al momento (novembre 2017) non funziona su Android Studio 3.0

Analisi Statica 50



Lint (ADT)

Cerca tramite analisi statica nel codice 
Android bad smells appartenenti a 11 
categorie diverse:

– I bad smells sono classificati per gravità:

» Fatal, Error, Warning,Information, Ignore

51Analisi Statica



Lint: esempio

Rispetto all’app Indovina l’Ora del Delitto, 
chiamando Lint (Android Tools/Run Lint) 
vengono segnalati:

52Analisi Statica



Proposte di progetto

Verificare statisticamente l’esistenza di bad smells in applicazioni 
Android open source (come quelle presenti su https://f-
droid.org/), eseguendo automaticamente lint direttamente da 
linea di comando 
(https://developer.android.com/studio/write/lint.html#comma
ndline)

Valutare e provare tecniche per l’implementazione di nuove 
tecniche di refactoring integrate in Android Studio o in Lint

– http://tools.android.com/tips/lint-custom-rules

– http://tools.android.com/tips/lint/writing-a-lint-check

53Analisi Statica

https://f-droid.org/
http://tools.android.com/tips/lint-custom-rules


54

Risorse per il refactoring

Alcune risorse riguardanti il refactoring:

– Esempi pratici di refactoring

• http://ocw.kfupm.edu.sa/user062%5CSWE31601/18_R

efactoring.ppt

– Per divertirsi: un torneo sulla realizzazione di 
strumenti di refactoring

• http://www.metodiagili.it/torneo.html

– Un’azienda che si occupa di reverse engineering di 
codice sorgente, refactoring, etc.

• http://www.semdesigns.com/Products/DMS/DMSToolki

t.html?Home=Refactoring

Analisi Statica



55

CodePro Analytix

• Plug-in multifunzionale per Eclipse offerto da Google
• https://developers.google.com/java-dev-tools/codepro/doc/

• Scaricabile direttamente da:
• http://dl.google.com/eclipse/inst/codepro/latest/3.7

• Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni 
successive

• Tutorial e documentazione accessibili da:
• https://developers.google.com/java-dev-tools/codepro/doc/

Analisi Statica

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7


CodePro Analytix Dead Code Analysis

• CodePro cerca, tramite analisi statica, di 
verificare quale parte del codice non sia 
raggiungibile (codice morto)

• Le indicazioni di CodePro non possono essere 
considerate né complete né sempre valide, a causa 
di possibili utilizzi del codice tramite chiamate 
dinamicamente generate

• Per eseguire l’analisi del Dead Code è 
sufficiente eseguire Find Dead Code nel 
menu contestuale Code Pro Tools

Analisi Statica



Utilizzo di Find Dead Code

• Selezionare (da proprietà del 
progetto/Dead Code Entry 
Point) i punti di accesso 
dell’applicazione (di solito il 
main)

• Avviare Find Dead Code

• Osservare i risultati nella view 
Dead Code
• Le classi/metodi/attributi barrati sono 

inutilizzabili (secondo quest’analisi)

Analisi Statica



Utilizzo di Find Dead Code

• La ricerca del Dead Code non funziona bene in caso di codice generato 
dinamicamente

• Un caso tipico è rappresentato dal codice ascoltatore di eventi utente

• In questo caso, è opportuno considerare le classi che rispondono agli 

ascoltatori come ulteriori Entry Point

• Per conoscere il Dead Code interno ai metodi, può essere opportuno 

segnare ogni metodo come possibile entry point

Analisi Statica


