Analisi statica

Analisi Statica

NoOo AL E

Principali tecniche di analisi statica

Analisi statica in compilazione

Cod
Cod

Wa

e reading
e inspections or reviews
ktrough

Control flow analysis
Data flow analysis
Esecuzione simbolica

Analisi Statica

1- Analisi statica in compilazione

e I compilatori effettuano una analisi statica del codice per
verificare che un programma soddisfi particolari
caratteristiche di correttezza statica, per poter generare il
codice oggetto.

e Tipiche anomalie identificabili:
— nomi di identificatori non dichiarati,
— ncoerenza tra tipi di aati coinvolti in una istruzione,
— Incoerenza tra parametri formali ed effettivi in chiamate a subroutine,
— codice non raggiungibile aal flusso di controllo

Analisi Statica

2 - Code Reading (o Desk Checking)

E’ effettuata un’attenta lettura individuale del codice per
individuare errori e/o discrepanze con il progetto.

Il lettore effettua mentalmente una pseudo-esecuzione del codice
e processi di astrazione che lo conducono a verificare la
correttezza del codice rispetto alle specifiche e il rispetto di
standard adottati.

Tipici difetti identificabili:

— nomi di identificatori errati, errato innesto di strutture di
controllo, loop infiniti, inversione di predicati, commenti non
consistenti con il codice, incorretto accesso ad array o altre
strutture dati, incoerenza tra tipi di dati coinvolti in una
istruzione, incoerenza tra parametri formali ed effettivi in
chiamate a subroutine, inefficienza dell’algoritmo, non
strutturazione del codice, codice morto, etc.

L'efficacia di tale tecnica e limitata se chi la esegue € la stessa
persona che ha scritto il codice.

Analisi Statica

3 - Code Inspections (o review)

Riunioni formali cui partecipa un gruppo di persone
tra cul almeno una del gruppo di sviluppo, un
moderatore ed altri esperti.

Lo sviluppatore legge il codice ad alta voce, linea per
linea, e | partecipanti fanno commenti e/o
annotazioni.

Tipicamente gueste riunioni Sono preannunciate al
partecipanti cui viene fornita la documentazione
necessaria (codice e relativi documenti) per la
revisione.

E una tecnica che riesce ad individuare fra il 30 e il
70% degqli errori nella logica del programma.

Analisi Statica

Code Inspection

e |'obiettivo della riunione e scoprire difetti, non
correggerli. Comunque, spesso |'analisi dei difetti
effettuata viene discussa e vengono decise le eventuali
azioni da intraprendere

— accettazione del codice, rigetto, annotazioni su eventuali non
aderenze a specifiche, indicazioni delle modifiche da apportare

e I| codice e analizzato usando checklist dei tipici errori
di programmazione, quali:

— Errori di data reference, data declaration, di calcolo, di
confronto, sul flusso di controllo, di interfaccia, di I/O.

— Le checklist sono generiche (indipendenti dal linguaggio) ma
possono essere adattate agli specifici linguaggi analizzati.

Analisi Statica

Esempio di Checklist per le Ispezioni

Inspection Error Checklist Summary, Part I

Data Declaration

Data Reference

Computation

[

e

6.

9.

10.

1.

. Unset variable used?

. Subscripts within bounds?
. Non integer subscripts?

. Dangling references?

. Correcrt attributes when

aliasingy?
H.ecord and structure attributes
match?

. Computing addresses of bit

strings?
Passing bit-string arguments?

. Based storage attributes correct?

Structure definitions match
across procedures?
Oft-by-one errors in indexing
or subscripting operations?
Are inheritance requirements
met?

e 2

e

6.

. Computations on nonarithmetic

variahles?

. Mixed-mode computations?
. Computations on variables of

different lengths?

. Target size less than size of

assigned value?

. Intermediate result overtlow or

undertlow?
Division by zero?

. Base-2 maccuracies?

. Variable’s walue outside of

meaningful range?

. Operator precedence

understood?

. Integer divisions correct?

2 2

6.

. All variables declared?

. Default attributes understood?
. Arrays and strings initialized

properly?

. Correct lengths, types, and

storage classes assigned?

. Iminalization consistent with

storage class?
Any variables with simalar
names:

Clomparison

Analisi Statica

—

a3 b2

. Comparisons between

inconsistent variables?

. Mixed-mode comparisons?
. Comparison relationships

correct?

. Boolean expressions correct?

. Comparison and Boolean

expressions mixed?

. Comparisons of base-2

fractional values?

. Operator precedence understood?
. Compiler evaluation of Boolean

expressions understood?

Alcuni Strumenti di analisi del codice in ambiente java

e Tra gli strumenti di analisi statica piu noti,
In ambiente Java:
- PMD
* Checkstyle
* Findbugs
e In ambiente Android
o Lint

e Tutti questi strumenti sono disponibili sia standalone, spesso
integrati in ant, maven o gradle, che come estensioni e plugin
degli ambienti di sviluppo

Analisi Statica

Strumenti per l'analisi statica : checksty e

e Checkstyle
o http://checkstyle.sourceforge.net/

» Checkstyle concentra le sue analisi su regole stilistiche
e di formattazione

 La pagina ufficiale riporta i link a molti plug in esistenti

— Ad esempio in ambiente IntelliJidea/Android Studio c’é
Checkstyleldea
» https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
— Il plug in per Eclipse é all’indirizzo http://eclipse-
cs.sourceforge.net/update

Analisi Statica 10

http://checkstyle.sourceforge.net/
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
http://eclipse-cs.sourceforge.net/update

Esempio

Alcune delle violazioni rilevate da Checkstyle si prestano a
correzione automatica (ad esempio quelle relative
all'indentazione) e possono essere corrette automaticamente
da Checkstyle stesso

K e
& 7S public static String main(5tring[] args) {
Q = if (args.length==3){
;';j 9 Multiple markers at this line
_Q 18 - WhitespaceAround: '=" is not fellowed by whitespace, Empty blocks may only be represented as {} when not part
11 of a multi-block statement (4.1.3)
;:] 12 - WhitespaceAround: '=" is not preceded with whitespace.
;';j 13 I - Line contains a tab character.
;:] 14 - 'if' child has incorrect indentation level 24, expected level should be 6.
.’;-.j 15 - Potential violation of Law of Demeter (method chain calls)
;:] 16 - Local vaniable 'giorno’ could be declared final
;’;j 17 return “;
w18 }
19

Analisi Statica

PMD : Programming Mistake Detector

DON'T SHOOT THE MESSENGER
e PMD analizza anch’esso pratiche di cattiva programmazione, ad esempio:
e Variabili/oggetti non utilizzati
e Blocchi catch vuoti
e Codice duplicato
e Codice troppo complesso (dal punto di vista della complessita ciclomatica)

e |La sua forza consiste nel funzionare in una miriade di diversi
linguaggi:
e Java, JavaScript, Apex, Visualforce, PLSQL, Apache Velocity, XML, XSL

e C#, Groovy, PHP, Ruby, Fortran, JavaScript, PLSQL, Apache Velocity,
Scala, Objective C, Matlab, Python, Go, Swift (solo alcune
funzionalita)

e https://pmd.github.io/

e In Eclipse http://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
e Un tutorial per I'uso sotto Eclipse: https://www.javatips.net/blog/pmd-in-eclipse-tutorial

Analisi Statica 12

https://pmd.github.io/
http://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/

Esempio

Per utilizzare PMD e necessario specificare un insieme di regole da
applicare. Alcuni insiemi preconfigurati sono all’indirizzo

http://pmd.sourceforge.net/pmd-4.3.0/rules/index.html

PMD puo integrarsi nello strumento di sviluppo e mostrare le proprie

public static boolean wvalida(int d, int m, int a) {
if (d<1 || d»31 || m==0 || a<=1582)
return false;
Boolean bisestile= (ak4==8);
if (bisestile && a¥188==0 && a%4088!=0)
bisestile=false;
if ((m==2 && d>29)||(m==2 && d==29 && !bisestile))
return false;
Multiple markers at this line
- Avoid using if statements without curly braces
- Avoid unnecessary if..then..else statements when returning booleans

¥

Analisi Statica 13

http://pmd.sourceforge.net/pmd-4.3.0/rules/index.html

PMD : Abstract Syntax Tree

3 Vedi Dataflow CPD View | [7] XPath Designer 3

PMD esegue I'analisi statica
costruendosi un Abstract

Show: () Class (@ Method | calend(int, String, int) : String

w ResultType .«
Syntax Tree vwe
~ ReferenceType
Tramite quest'albero, PMD | | cesomemetipe sting
fornisce anche ulteriori v Formalporameters
- - - - - m w FormalParameter
informazioni di analisi v Type
statica, quali CFG e VariableDecdaratord
cammini def-use v Formaaremeter
) =a_= w ReferenceType
-InOItre e pOSSIbIIe . CIassDrlﬁer‘FaceT*,rpe Strine
interrogare tale albero | Jerablebedaratorld ms
come se fosse un XML (con vTwe
xpath) e creare COSi nuove VariahleDecIatpatand a
w Block
regOIe w BlockStatement
~ LocalVariableDeclaration
v Type

PrimitiveType int

Analisi Statica 14

Progetto proposto

Creare nuove regole per la valutazione di aspetti di qualita del
codice, evetualmente tipici di Android

e Sfruttando I'Abstract Syntax Tree generato automaticamente da PMD

e http://pmd.sourceforge.net/pmd-4.3/xpathruletutorial.html

e Altre risorse: https://pmdapplied.com/

Valutare tali regole su progetti di esempio o reali per
controllare la loro effettiva frequenza

Analisi Statica

15

http://pmd.sourceforge.net/pmd-4.3/xpathruletutorial.html
https://pmdapplied.com/

QERSIT,
-

FindBugs 47@/

~
- Sy
q‘RYLP:é o.M

FindBugs
because it's easy

e Findbugs € uno strumento sviluppato dall'Univeristy of
Maryland
e Si concentra soprattutto sulla ricerca di pratiche di
programmazione scorrette che potrebbero essere causa di bug

« Ovviamente essendo uno strumento di analisi statica non puo in
generale dimostrare che si tratti di bug non potendo osservare
alcun fallimento

» http://findbugs.sourceforge.net/

« Il plug in per Eclipse puo essere installato da:
http://findbugs.cs.umd.edu/eclipse

e Tutorial di utilizzo:
http://www.vogella.com/tutorials/Findbugs/article.html

Analisi Statica 16

http://findbugs.sourceforge.net/
http://findbugs.cs.umd.edu/eclipse

Esempio

 Findbugs fornisce anche una descrizione del
problema riscontrato e di come possa essere risolto

¥ Bug Bxplorer 13 DLF=IDoon = = g 4J] Calendariojava &1 = 08
v 'ij CalendarioWhiteBox_2017 (12) 56 public static String calend(int d, String ms, int a) ~
w 32 Troubling (12) 6 i
v . High confidence (12) : e
. R R 8 if (ms=="gennaio")
~ #% Comparison of String parameter using == or = (12) g me=1 =]

& Comparison of String parameter using == or = in calendario. o) else if (ms=="febbraio")
%‘2 Comparison of String parameter using == or != in calendario. 1 m=23
#2 Comparisen of String parameter using I= in calendario. 2 else if (ms=="marzo"
{2 Comparisen of String parameter usin I= in calendario. N m=3;

X X R . X 4 else if (ms=="aprile")
:&w Comparison of String parameter usin != in calendario. 5 m=d:
45 Comparison of String parameter using != in calendario. 6 else if (ms=="maggioc")
:@w Comparison of String parameter using == or != in calendario. 7 m=5;
{2 Comparisen of String parameter using in calendario. 8 else if (ms=="giugno™)
:&w Comparison of String parameter usin != in calendario. J m=6;

X R R X R @ else if (ms=="luglio")
:éé Comparison of String parameter usin != in calendario. 1 m=7;
:@w Cornparison of String parameter using != in calendario. 2 else if (ms=="agostc")
#2 Comparisen of String parameter using == or != in calendario. 3 m=83

2 alse if fme=="zattemhra”) v

%Buglnfoi@ #|%K§ = =0
Calendario.java: 16
- Mavigation

Comparison of String parameter using == or = in calendario.Calendario.calend(int, String, int)
Actual type String

String constant "maggic”

Value loaded from ms

Bug: Comparison of String parameter using == or != in calendario. Calendario.calend(int, String, int) A

This code compares a Java. lang. String parameter for reference equality using the == or != operators. Requiring callers to pass only
String constants or interned strings to a method 1s unnecessarily fragile, and rarely leads to measurable performance gains. Consider
using the equals (0biect) method instead. v

Analisi Statica 17

Android Lint

e Android Lint e uno strumento di analisi statica di applicazioni
Android

» Esequibile in maniera standalone
 Incluso in gradle

« Esequibile anche direttamente da Android Studio
. E’ sufficiente esegquire il task Lint nella scheda Gradle, nel gruppo Verification

e Lint cerca potenziali problemi/anomalie come:

Traduzioni mancanti
Problemi sul layout
Risorse / variabili inutilizzate
Dimensioni degli array incoerenti
Problemi di internazionalizzazione
Ad es. Stringhe costanti nel codice,
« Problemi di accessibilita
Ad es. elementi grafici senza descrizione testuale

Problemi di usabilita
Ad es. Tipo mancante nei campi di input,

Analisi Statica

Android Lint

Lint cerca potenziali problemi/anomalie come:

Traduzioni mancanti

Problemi sul layout

Risorse / variabili inutilizzate
Dimensioni degli array incoerenti

Problemi di internazionalizzazione
Ad es. Stringhe costanti nel codice,

Problemi di accessibilita
Ad es. elementi grafici senza descrizione testuale

Problemi di usabilita
Ad es. Tipo mancante nei campi di input,

Pratiche di programmazione che riducono le performance o aumentano il consumo energetico
Ad es. Variabili con scope troppo ampio

... (e possibile creare ulteriori controlli)

Elenco completo dei controlli implementati da Android Lint:
http://tools.android.com/tips/lint-checks

Analisi Statica

20

Lint

Lint puo essere eseguito da Android Studio tramite
Analyze/Inspect Code ...

Oltre ai controlli di Lint vengono eseguiti alcuni altri controlli di
base sul codice sorgente, simili a quelli di PMD, Findbugs,
Checkstyle

-, Specify Inspection Scope *

Inspection: | Results for Inspection Profile 'Project Default’ | o 00 0002
¥ 4 MunchLife-masterAS (125 iterns)

© Error (4 items
o Whole project . . Android (7 iterms

O LCustom scope Praoject Files n

Inspection scope »p

A4 2 Constant and Resource Type Mismatches (2 itermns
Ry .
Lekel E.'app 2 iterms

Include test sources Ep [E1 info.bpace.munchlife (2 iterms
£ MunchLifefctivity (2 items
Inspection profile

T
¥

|@' Project Default n ; = 1 8 genderClickListener (1 item
?

m % onCreate (1 item

Android > Lint > Correctness > Messages [iterms
Warning (90 items

m | Cancel] | Help I ! ¥ Typo (21 items

https://developer.android.com/studio/write/lint.html

Analisi Statica 21

® Inspections

Profile: | [E Project Defaultn | Manage -
S Y. %52
Android

Android > Lint > Accessibility

Android > Lint > Correctness

Android > Lint > Correctness > Messages

Android > Lint > Internationalization
Byte arder mark inside files [|
Encoding used in resource files is not UTF-2 .
Hardcoded text .
Overlapping items in Relativelayout
TextView Internaticnalization

Android > Lint > Internationalization > Bidirectic

Android > Lint > Performance

Android > Lint > Security

Android > Lint > Usability

Android > Lint > Usability > lcons

Android > Lint > Usability > Typography

CiC++

General

Google Cloud Endpoints []

Gradle

Groovy

HTML

Internationalization issues

] <] <[<]<[IN] <] <[HN] <] <]IN] < EN/EN/ENN]EN] <] <] | < (<] <] <[< O] <] <]

Java

JSON

Language Injection
Manifest

Pattern Validation
Properties Files

Description
Hardcoded text

Hardeoding text attributes directly in layout files is bad for
several reasons:

*When creating configuration variations (for exarmple for
landscape or portrait)you have to repeat the actual text (and
keep it up to date when making changes)

* The application cannct be translated to other languages by
just adding new translations for existing string resources.

Sewverity: [Warning V] [In All Scopes =

m | Cancel ‘ | Help

Analisi Statica

22

Esempio

. OrariProcida2011AS | (% build.gradle |
Inspection Results of "Project Default’ Profile on Project "OrariProcida2011A5 #- L

9 [rn] Android Lint: Correctness 2 errors 5 warnings

) Android Lint: Internationalization 2 warnings Suppress ~

(=]
Android Lint: Performance ¢ warnings

aIpEID (3 |

'+ 1:Project

T

Unused resources 26 warnings
== colorsaxml

I N colersxml

) try {
warnings fos = openFilefutput({ name "aggiornamentoMeteo.csv", Context.MODE WORLD WRITH
warnings } catch (FileNotFoundException &) |

e o] X

R I

e rowxml T warning +

I@ I 5tructure

e stringsxml 5 warnings

W e »

= stringsaml 3 warnings
[Bstringsxml 5
Android Lint: Security 2 warnings
openFileQutput() or similar call passing MODE_WORLD_WRITEABLE 2 warnings
c OrariProcida201 Activity java 2 warnings

Warnings

& Captures

Using 'MODE_WORLD_WRITEABLE' when creating files can be risky, review carefully
Using 'MODE_WORLD_WRITEABLE' when creating files can be risky, review carefully
Android Lint: Usability ° vwarmings

lcon density-independent size validation 4 warnings

Identical bitmaps across various configurations 2 warnings
= ic_launcher_traghettipng 1 warming
= ic_launcher_traghettipng 1 warming

Image defined in density-independent drawable folder 1 warning

¥ 2: Favorites

Missing density folder 1 warning
Missing support for Firebase App Indexing 1 warning
Class structure 5 warnings
Code style issues 1 warning
Control flow issues & warnings
Data flow issues < warnings
Declaration redundancy 112 warnings

Build Wariants

E]

Analisi Statica 23

Jaaojdxg 8|14 amad [

Analisi applicazioni Android con Lint

e Un progetto d’esame precedente ha
studiato i risultati relativi all’analisi di
circa 800 applicazioni Android con Lint e
riportato tra i1 progetti d’esame svolti

AndroidLInt_DiPaloCarotenutoBuonocore.pdf

Analisi Statica 24

Progetto proposto

- Approfondire I'analisi dei risultati di Lint

su applicazioni esistenti per scoprire trend
e problemi particolarmente sentiti
nell’attuale sviluppo Android

Oppure

 Studiare l'opportunita di creare ulteriori
regole Lint applicabili ad Android

In particolare, ci sono poche regole che analizzano il
codice dei test Android

Analisi Statica 25

4 - Walkthrough

e Analisi informale del codice svolta da vari partecipanti i
quali ‘operano come il computer’: in pratica, si scelgono
alcuni casi di test e si simula I'esecuzione del codice a
mano (si attraversa- walkthrough- il codice).

e |'organizzazione della riunione € simile a quella della
tecnica delle Ispezioni:
— Tra 3 e 5 partecipanti;
— Riunioni brevi (max. 120 minuti);

— Attenzione sulla ricerca dei difetti, piuttosto che sulla
correzione;

— Attenzione a non criminalizzare il programmatore (autore del
difetto)!

Analisi Statica 26

5 - Control Flow Analysis

Il flusso di controllo € esaminato per verificarne la
correttezza.

Il codice e rappresentato tramite un grafo, il grafo del
flusso di controllo (Control flow Graph - CfG), i cui nodi
rappresentano statement (istruzioni eo predicati) del
programma e gli archi il passaggio del flusso di
controllo.

Il grafo € esaminato per identificare ramificazioni del
flusso di controllo e verificare |'esistenza di eventuali
anomalie quali codice irraggiungibile e non
strutturazione.

Analisi Statica

27

6 - Data flow analysis - statica

e Analisi dell’evoluzione del valore delle variabili durante
I'esecuzione di un programma, permettendo di rilevare
anomalie.

e Intrinsecamente & dinamica, ma alcuni aspetti possono
essere analizzati staticamente. L'analisi statica & legata alle
operazioni eseguite su una variabile:

 definizione: alla variabile e assegnato un valore

* uso. il valore della variabile e usato in un‘espressione oun
predicato

 annullamento: al termine di un’istruzione il valore associato alla
variabile non e piu significativo

e Es.: nell’'espressione

a:=b+c;
la variabile a € definita mentre b e ¢ sono usate

Analisi Statica

28

Data Flow Analysis

La definizione (d) di una variabile, cosi come un annullamento (@),
cancella I'effetto di una precedente definizione della stessa variabile,
ovvero ad essa e associato il nuovo valore derivante dalla nuova

definizione (o il valore nullo)

Una corretta sequenza di operazioni prevede che:

— L'uso (u) di una variabile deve essere sempre preceduto da una definizione
della stessa variabile senza annullamenti intermedi (Sequenza valida : du)

» Una variabile non definita ha un valore “sporco”

— Una definizione di una variabile deve essere sempre seguita da un uso della
variabile, prima di un‘altra definizione o di un annullamento della stessa

variabile (Sequenze non valide: dd, da)
« Una doppia definizione ¢ indice del fatto che la prima definizione e
risultata inutile

Analisi Statica

29

Data Flow Analysis

Sequenze di istruzioni sono riconducibili a sequenze di definizioni (d),
usi (a), annullamenii (a) delle vanabili referenziate nei comandi

Procedure swap (x1, x2: real)

var x:real X2 (auu) La sequenza (auu) dix e la
begin 5. sequenza (ddd) di x2 sono
P x2:(ddd) o ,
X2:1=X; indicative di una qualche
x2:=x1; x1: (dud) anomalia
x]=x;
end;
Procedure swap (x1, x2: real)
var ?{:real x- (adu)
begin
x=x2: x2: (dud)
xd:=xl: x1: (dud)
X1 =x;
end:

Analisi Statica

30

Data Flow Analysis-esempio

| program mcd (input, output);
2 var

3 x.v.a.b: integer.

4 begin

5 read (x,v),

6 a:=x;

T a=y

% while a <= b do

9 begin

10 ifa=b

11 then a:=a-b

12 else b:=b-a;

13 end;

14 write (“1] massimo comune divisore €7, a)
15 end.

Analisi Statica

31

Data Flow Analysis- esempio

A clascun nodo del CfG & possibile associare I'insieme delle variabili
definite in esso, quello delle variabili usate e quello delle variabile
annullate.

Modo Var. Var Var.
definite | usate annullate
4 xy.ab
3 XLV
6 a X . o .
7 o v E qummlpﬂsslbﬂ_e
8 a b scrivere |'espressione
10 a. b P(pwx) facendo
H - a,b riferimento a tali insiemi
2 a b
2’ b
14 a

P([1.4,5.6.7.8.10,11,11".8,14,F]:a) = (-a-ddunuduu-) | “*nomaha ..dd...pera
anomalia ...a---u... per b

P([1.4,5.6,7.8.10,11,11°,8,14,F]:h) = {-a---uuu-u--) dovuta ad errore a linea 7

T b=y,

Analisi Statica 32

Data Flow Analysis con PMD

e PMD ¢ in grado di produrre automaticamente il CFG di un metodo
e di tracciare tutte le relazioni tra definizione ed uso delle variabili

e Disponibili dalla schema «Vedi Dataflow» di PMD

e In quest’esempio si puod
notare come sia stato
rilevato che la variabile m
viene prima azzerata
(m=0), poi definita in ogni
ramo, senza che sia mai
utilizzata

e D’altronde la mancanza di
questa prima definizione
sarebbe stata segnalata come
potenziale problema gia dal
compilatore

ﬁ ‘edi Dataflow &3 CPD View [T] XPath Designer

Method: | giormoDellaSettimanal(int, String, int) : String

Line

21

21

23

24

25

26

27

28

29

Graph Mext nodes

67
E 27
59
E a7

10,1
% 77

u(m)

d(m)

d(m)

d(m)

d(m)

dim

Dataflow types

i~ [»DD

Type Ling(s) Variable Method

23, 47 m giornoDellaSet..,
»/ DD 23,45 m giornoDellaSet...
»/ DD 23,43 m giornoDellaSet...
»' DD 234 m giornoDellaSet...
»/ DD 23,39 m giomnoDellaSet...
»/ DD 23,37 m giornoDellaSet...
»/ DD 23,35 m giornoDellaSet...
»/ DD 23,33 m giornoDellaSet...
»/ DD 231 m giornoDellaSet...
»/ DD 23,29 m giornoDellaSet...
¥/ DD 23,27 m giornoDellaSet...
»/ DD 23,25 m giomnoDellaSet...

Analisi Statica

33

/ - Esecuzione simbolica

Il programma non € eseguito con i valori effettivi ma con valori
simbolici dei dati di input.

L'esecuzione procede come una esecuzione normale ma non sono
elaborati valori, bensi formule formate dai valori simbolici degli
input

Gli output sono formule dei valori simbolici degli input

| ‘'esecuzione simbolica anche di programmi di modeste dimensioni
puo risultare molto difficile.

Cio € dovuto all’'esecuzione delle istruzioni condizionali: deve
essere valutato ciascun caso (vero e falso); in programmi con cicli
cio puo portare a situazioni difficilmente gestibili.

Analisi Statica 34

Esecuzione simbolica

1 function product (X,v,Z: integer):
Integer;

2 wvartmpl, tmp2, tmp3: integer;
3 begin
4 tmpl ;= x*y
5 tmp2 ;= y*z
6 tmp3 :=tmpl * tmp2 / v
7 end;
Stm. X y z |tmp1|tmp2 product
1 X Y Z 7 7 7
4 X Y Z XY 7 7
5 X Y Z XY | Y'Z 7
6 X |y | z | xvy | vz]|oenorzy

Analisi Statica

35

Java Path Finder

e Java Path Finder fornisce funzioni per |'esecuzione
simbolica di metodi di applicazioni Java

e In allegato nel materiale docenti c’e un progetto d'esame
svolto, che utilizza Java Path Finder per esecuzione simbolica

« JavaPathFinder_Cascella.zip

Analisi Statica

37

Path Conditions

e Nel caso di esecuzioni simboliche con condizioni, alcuni
statement sono eseguiti solo se gli input soddisfano
determinate condizioni.

e Una Path Condition (pc), per un determinato
statement, indica le condizioni che gli input devono
soddisfare affinché una esecuzione percorra un
cammino lungo cui lo statement sia esequito.

e Una pc e un’espressione Booleana sugli input simbolici
di un programma.

Analisi Statica 38

Path Condition

All'inizio dell’'esecuzione simbolica essa assume il
valore vero

— (pc := true).
Per ogni condizione che si incontrera lungo
I'esecuzione , pc assumera differenti valori a seconda

dei differenti casi relativi ai diversi cammini
dell’esecuzione.

Es.

pec = true
if C then S1 else S2; pci=pc " C [pc per S1]

pe:=pc " (notC) [pc per S52]

Analisi Statica

39

I function max (X,v,Z: integer): integer; Path Condition
2 begin
3 if X <=y then @

4 max =y)

5 else T’“"’.full"ﬂ. False
6 max = X;

7 if max <=z then

8 max = Z;

9 end;

(Quali sono le path condition per eseguire gli statement
4

6
87

Analisi Statica

Path Condition

Execution Tree

Faks

(X==Y) " (Y=>=Z) (=Y (K==E)

(") (")

Ciascuna foglia dello execution tree rappresenta un
cammino che sara percorso per una certa pc

N
No

Analisi Statica

42

Analisi dell’Execution Tree

Ogni foglia dello execution tree rappresenta un cammino che sara
percorso per certi valori di input

Le Pc associate a due differenti foglie sono distinte; ciascuna foglia
dello execution tree rappresenta un cammino che sara percorso
per la Pc ad essa associata.

Non esistono esecuzioni per cui sono vere contemporaneamente
piu Pc (vero solo per programmi sequenziali)

Feasible Path: un cammino per il quale esiste un insieme di dati
di ingresso che soddisfa la path condition.

Unfeasible Path: un cammino per il quale non esiste un insieme
di dati di ingresso che soddisfa la path condition.

Se |'output ad ogni foglia e corretto allora il programma e corretto.
Ma, quanti rami puo avere un execution tree?

Analisi Statica 43

DETERMINAZIONE DELLA ESEGUIBILITA’ DI UN
CAMMINO (Path feasibility)

Davis (1973)

Il problema di stabilire se esiste una soluzione per un
sistema di diseguaglianze ¢ indecidibile.

e Un cammino ¢é eseguibile se esiste un punto del dominio di
ingresso che rende soddisfatta la sua path condition (..un
sistema di diseguaglianze).

e La determinazione della feasibility o della infeasibility di un
cammino e indecidibile.

NB. se si riesce a dimostrare che ciascun predicato nella path
condition e dipendente linearmente dalle variabili di ingresso,
allora il problema e risolubile con algoritmi di
programmazione lineare.

Analisi Statica 44

Appendice

Analisi Statica

45

Call Directed Graph

detinito da: CDG(P)= (PP, E. s)
Dove:

PP é I'insieme de1 sottoprogrammi di P
E ¢ la relazione di chiamata (s W PP) x PP

s € 1l main program.

/@\@

SNG
®

Circuiti € Cappi implicano Ricorsione
Rilevante 1l concetto di cammino

Raggiungibilita K-fold
Raggiungibilita Totale (Chiusura Transitiva)

Analisi Statica

46

Alberi di Dominanza

Dato un GtC(P) o un CDG(P), posto s =nl ovvero s =m, reso
aciclico tale grafo (collassando 1n un unico nodo le sue componenti
connesse, quali capp1 e circuit) s1 ha che:

se px e py sono due nodi 1n un grafo aciclico,
« px domina py se e solo se:
YV u(s.,py), pxe
dove con pi(s.py) si indica un generico cammino da s a py.
« px domina direttamente py se e solo se:
(px<=py) and (px domina py) and (V pz: pz<=px and pz<>py, se pz
domina py allora pz domina px)
Il grato della riduzione riflessiva e transitiva della relazione di
dominanza in CDAG e' un albero.

V1e'un arco (px.py) nell'albero se e solo se px domina direttamente
py. e ¢' € un cammino u(pu.pv) nell'albero se e solo se pu domina pv.

Analisi Statica

47

Alberi di Dominanza

Il nodo s domina tutt1 gli altr1 nodi;
la relazione di dominanza ¢ una relazione d'ordine parziale
(riflessiva, antisimmetrica, transitiva).

e possibile provare che, eccetto s, ogni nodo ha un unico dominatore
diretto.

Analisi Statica 48

Esempio: albero di1 dominanza di un dato call-graph

CALL GRAPH

CALL GRAPH ACICLICO

ALBERO DOMINANZE

Analisi Statica

49

QAPIlug

Esiste un plugin denominato QAPIlug che integra le analisi di Lint (native in Android)

con quelle Java-oriented di CheckStyle, PMD, Findbugs
Al momento (novembre 2017) non funziona su Android Studio 3.0

) (%] |Category: All = |

@ Settings ® Browse Repositories

(@) P (@ qoplug
Appearance & Behavior Q
Keymap
Editor CODE TOOLS
Version Control TOOLS INTEGRATION
Build, Execution, Deployment QAPlug - FindBugs
Languages & Frameworks TOOLS INTEGRATION
Tools QAPlug - Hammurapi
Other Settings TOOLS INTEGRATION

QAPlug - PMD

TOOLS INTEGRATION

Sort by: name ¥

1 months ago

CODE TOOLS
QAPlug

itk 146111 downloads
Updated 07/12/2016 v1.3.12

is an Intellij IDEA plugin to manage code quality which
integrates tools such as PMD, Checkstyle and Findbugs.

Change Notes
Compatibility changes to support IntelliJ IDEA 2016.3
Vendor

SolDevelo

hitp/fwww.soldevelo.com
ort .com

Plugin homepage
hittp:/ .com
Size

6097 K

Analisi Statica

50

Lint (ADT)

Cerca tramite analisi statica nel codice
Android bad smells appartenentia 11
(o l@ diverse:

» Security

. Performance)ad smells sono classificati per gravita:
> Usability: Typography . .

. UsabilityIcons » Fatal, Error, Warning,Information, Ignore

- Usability

» Accessibility

» Internationalization

» Bi-directicnal Text

4 Correctness:Messages
ExtraTranslation & Checks for translations that appear to be unused (no default language string)
MissingTranslation @ Checks for incomplete translations where not all strings are translated

4 Security
HardcodedDebugM & Checks for hardcoded values of android:debuggable in the manifest
PackagedPrivatekey @ Looks for packaged private key files

4 Internationalization
ByteOrderMark & Looks for byte order mark characters in the middle of files
EnforcelUTFE £ Checks that all XML resource files are using UTF-8 as the file encoding

Analisi Statica o1

Lint: esempio

Rispetto all’app Indovina I'Ora del Delitto,
chiamando Lint (Android Tools/Run Lint)

vengono segnalati:

0 errors, 10 warnings
Description

& Manifest should specify a minimum API level with <uses-sdk android:minSdkVersion="?" /> if it really supports all versions of Android setitto1.
& Launcher icons should not fill every pixel of their square region; see the design guide for details

4 i [IBN] Hardcoded string "Ipotizza un orario”, should use @string resource (3 items)

ui [IBMN] Hardcoded string "Ricomincia da cape”, should use @string resource

ui [IIBN] Hardcoded string "Esci”, should use @string resource

Missing the following drawables in drawable-xhdpi: icen.png (found in drawable-mdpi, drawable-hdpi)

Possible overdraw: Root element paints background @drawable/hitchcock with 2 theme that also paints a background (inferred theme is @android:style/Theme)

4 (& The resource R.drawable.icon appears to be unused (3 items)

& The resource Ristring.hello appears to be unused
& The resource R.string.betok appears to be unused

Category
Correctness
Usability:lcons
Internationalization
Internationalization
Internationalization
Usability:lcons
Performance
Performance
Performance
Performance

Location

AndroidManifestxml (IndovinaOraDelitto)
hitchicon.jpg in drawable (IndovinaCraDelitto)
main.xmlk:28 in layout (IndeovinaOraDelitto)
mainxmlk:33 in layout (IndovinaOraDelitto)
mainxmk38 in layout (IndovinaOraDelitto)
IndovinaOraDelitto

main.xmk6 in layout (IndovinaCraDelitto)
icon.png in drawable-hdpi (IndovinaOraDelitto)
strings.xml:5 in values [
strings.xml:7 in values [

dovinaOraDelitto)

ndovinaOraDelitto)

Analisi Statica

52

Proposte di progetto

Verificare statisticamente I'esistenza di bad smells in applicazioni
Android open source (come quelle presenti su https://f-
droid.org/), eseguendo automaticamente lint direttamente da
linea di comando

(https://developer.android.com/studio/write/lint.html#comma
ndline)

Valutare e provare tecniche per I'implementazione di nuove
tecniche di refactoring integrate in Android Studio o in Lint

— http://tools.android.com/tips/lint-custom-rules
— http://tools.android.com/tips/lint/writing-a-lint-check

Analisi Statica 53

https://f-droid.org/
http://tools.android.com/tips/lint-custom-rules

Risorse per il refactoring

Alcune risorse riguardanti il refactoring:

— Esempi pratici di refactoring

* http://ocw.kfupm.edu.sa/user062%5CSWE31601/18 R
efactoring.ppt

— Per divertirsi: un torneo sulla realizzazione di
strumenti di refactoring
* http://www.metodiagili.it/torneo.html
— Un’azienda che si occupa di reverse engineering di
codice sorgente, refactoring, etc.

* http://www.semdesigns.com/Products/DMS/DMSToolki
t.ntml?Home=Refactoring

Analisi Statica o4

CodePro Analytix

e Plug-in multifunzionale per Eclipse offerto da Google
e https://developers.google.com/java-dev-tools/codepro/doc/

e Scaricabile direttamente da:
o http://dl.google.com/eclipse/inst/codepro/latest/3.7

e Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

e Tutorial e documentazione accessibili da:
e https://developers.google.com/java-dev-tools/codepro/doc/

Analisi Statica

55

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

CodePro Analytix Dead Code Analysis

o CodePro cerca, tramite analisi statica, di
verificare quale parte del codice non sia
raggiungibile (codice morto)

« Le indicazioni di CodePro non possono essere
considerate né complete né sempre valide, a causa
di possibili utilizzi del codice tramite chiamate
dinamicamente generate
e Per eseguire I'analisi del Dead Code e
sufficiente eseqguire Find Dead Code nel
menu contestuale Code Pro Tools

Analisi Statica

Utilizzo di Find Dead Code

Selezionare (da proprieta del
progetto/ Dead Code Entry
Point) i punti di accesso
dell’applicazione (di solito il
main)

Avviare Find Dead Code

Osservare i risultati nella view
Dead Code

« Le classi/metodi/attributi barrati sono
inutilizzabili (secondo quest’analisi)

6 unused classes, 58 unused methods, 17 unused fields

F h_—‘f- LaTazza_FULL (contains dead code)
4 Eﬁ src (contains dead code)
4 [datatype (contains dead code)
. @ : ——
4 @ Euro.java (contains dead code)
4 @ Euro (contains dead code)

o gmount
GCELIFDI::I
“Eurs(int, int)
% “Eure(double)
@ getValue()
@ getCent()
@ getEurc()
e g addibien(Euro)
i g subtract(Euro)
@ multiply(int]
i g sares(Euro)
@ major(Eura)
i g equalle(Eurc)
@ toString()
@ toDoublel)

) @ Calling

>] Couplejava

5 @ Beverageciava

s E gui (contains dead code)

Analisi Statica

s E} store (contains dead code)

Utilizzo di Find Dead Code

La ricerca del Dead Code non funziona bene in caso di codice generato
dinamicamente
Un caso tipico € rappresentato dal codice ascoltatore di eventi utente

In questo caso, e opportuno considerare le classi che rispondono agli
ascoltatori come ulteriori Entry Point

Per conoscere il Dead Code interno ai metodi, puo essere opportuno
segnare ogni metodo come possibile entry point

Dead Code Entry Points &7 Eve

Select the methods that should be considered as entry points:
a @B sc

4 @£ calendario
@ Calendario

@ Srna\r\(Stru'wg[],]

L] ngmnDeHaSettimana(int, String, int)
@ S\.'alida(u'ﬂ:, int, int)

L] 9caleﬂd(iﬂtr int, int)

@ “convert(int)

OoEoOO

| -imagein list viewer marks implicit entry points

Implicit entry points
[] Consider main methods as entry points
["] Consider test cases as entry points

Analisi Statica

