Manutenzione e Reverse Engineering

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Riferimenti

« Sommerville, Ingegneria del Software, 8a ed.,
Capitolo 21

Ulteriori Letture Raccomandate

« Grady Booch, Nine Things you can do with old software, IEEE
Software, Sept/Oct 2008

« Canfora, Di Penta “Frontiers of Reverse Engineering:
a Conceptual Model”, FOSMO08 — IEEE Comp. Soc. 2008

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

La Manutenzione del software- generalita

* Qualsiasi software, dopo il rilascio della prima release, avra
bisogno di essere modificato.

« | sistemi software sono, per loro natura, sistemi evolutivi che
cambiano durante la loro vita.

 Cio deriva dal fatto che, durante la vita del sistema, le
caratteristiche che lo definiscono cambiano, cambiando sia le
esigenze di chi usa il software, sia dellambiente del mondo
reale in cui il sistema opera.
— Piu | requisiti del sistema sono instabili, o specificano un problema

In maniera incompleta ed approssimativa, piu il sistema avra
bisogno di cambiare.

* L’evoluzione di un software € dunque inevitabile!

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Motivazioni per il cambiamento

« Errori possono essere individuati e devono essere
corretti;

* |l dominio del software puo evolvere;
* Nuovi requisiti possono emergere dopo il rilascio;

« Nuove tecnologie hardware e software possono
affermarsi nel frattempo;

 Puo essere necessario migliorare la qualita del software
(ad esempio I'affidabilita o le performance).

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

L'importanza dell’'evoluzione

* Le organizzazioni proprietarie hanno fatto grossi
Investimenti per | loro sistemi software, che sono
risorse critiche!

* Per preservare il valore di tali risorse, | sistemi
devono necessariamente cambiare ed evolvere.

« La manutenzione € un’attivita costosa e la maggior
parte del budget speso per il software e in genere
speso per la sua manutenzione, piuttosto che per |l
suo sviluppo.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

| costl della manutenzione

« Un tipico progetto di sviluppo software mediamente
dura tra 1 e 2 anni, mentre...

« La durata del periodo di manutenzione puo variare

tra5e 6 anni[1]

— Piu della meta dei costi di un progetto software sono spesi
per la manutenzione

— Recenti survey riportano la regola dell’ 80-20, ossia 80% di
sforzo speso per la manutenzione e 20% per lo sviluppo.

« [1] Parikh and Zvegintzov, Tutorial on Software Maintenance, |IEEE,
1993

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Evoluzione o Declino?

Fino a che punto si puo continuare a far evolvere un sistema

software?

Quando si deve decidere di gettare il vecchio sistema e

sostituirlo con uno nuovo?

Alcune domande da porsi:

Il costo di manutenzione e troppo alto?

L’affidabilita del sistema € inaccettabile?

Non si riesce piu ad adattare il software in tempi accettabili?
Le prestazioni sono inaccettabili?

Le funzionalita del sistema sono poco utili?

Ci sono altri sistemi che fanno lo stesso lavoro meglio, piu
velocemente ed economicamente?

Il costo di manutenzione dell’lhardware e diventato tale da
giustificare la sostituzione con nuovo hardware?

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Leggi dell'evoluzione del software

* Proposte da Lehman e Belady a partire dal 1976, in
seguito a studi empirici basati inizialmente
sull’osservazione dell’evoluzione di 4 versioni successive
di un S.O. IBM

— Modifiche continue

— Complessita crescente
— Evoluzione dei grandi sistemi leggi iniziali
— Stabilita organizzativa
— Conservazione della familiarita —

— Crescita continua
— Qualita deteriorata >Ieggi pill recenti
— Sistema feedback

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 10

Le Leggi di Lehman (1974)

. Modifiche continue

*1925 72010

— Un sistema deve necessariamente cambiare, o diventera
progressivamente inutile.

« Complessita crescente

— Quando un sistema viene modificato, la sua struttura si
deteriora: per evitare cio bisogna investire sulla
manutenzione preventiva.

* Evoluzione dei grandi sistemi

— | grandi sistemi hanno una loro dinamica che e caratterizzata
da comportamenti e trends regolari che possono essere
usati per fare predizioni: in particolare, la dimensione, |l
tempo fra due release successive, il numero di errori rilevati
Sono approssimativamente invarianti per ogni release.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 11

Le Leggi di Lehman (1978-1991-1996)

« Stabilita organizzativa

— Raggiunto lo stato ‘saturo’, non ci possono essere variazioni
significative nella produttivita dello staff

 Conservazione della familiarita

— Le modifiche incrementali per ogni release sono
approssimativamente costanti

 Crescita continua

— Le funzionalita offerte dai sistemi devono crescere
continuamente, per la soddisfazione degli utenti

* Qualita deteriorata

— La qualita dei sistemi si deteriora se non si interviene con
adattamenti ai nuovi ambienti operativi

e Sistema feedback

— | processi evolutivi incorporano sistemi di feedback utili al
miglioramento dei prodotti

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 12

Tipl di Manutenzione del software

Classificazione degli interventi di manutenzione

— Manutenzione correttiva
» Modifiche per correggere difetti

— Manutenzione adattativa

» Modifiche per adattare il software a cambiamenti del’ambiente operativo
(hardware, software di base, interfacce, organizzazione, legislazione, ecc.)

— Manutenzione perfettiva o evolutiva

» Estensione dei requisiti funzionali, o migliorie di requisiti non funzionali in risposta
a richieste dell’utente

— Manutenzione preventiva
» Modifiche che rendono piu semplici le correzioni, gli adattamenti e le migliorie

Manutenzione di emergenza

« Manutenzione correttiva non programmata, necessaria a mantenere il sistema in
funzione

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 14

Distribuzione dello sforzo di
manutenzione [1]

Adattativa
25%

L

Correttiva
21%

Preventiva
4%

Perfettiva
50%

[1] Lientz, Swanson, Problems in application software maintenance, 1981

Communication of the ACM

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

15

Manutenzione “d’'urgenza”

* |n alcuni casi le richieste di manutenzione devono
essere soddisfatte rapidamente:
— Se un difetto serio deve essere riparato;

— Se modifiche dell’ambiente operativo causano effetti
collaterali imprevisti sull’operativita del sistema;

— Se e necessario 'adeguamento urgente a seguito di
cambiamenti imprevisti (es. Ambiente o mercato)

* In questo caso, le fasi di analisi e progetto della
modifica potrebbero non essere esequite,
Implementando direttamente il cambiamento.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

16

Processo di riparazione d’'urgenza
(quick- fix model)

Vecchio sistema Nuovo sistema
requisiti requisiti
progetto progetto
codice » codice
test test

- Con tale approccio, la qualita complessiva del software si ridurra.
- Utile pianificare interventi di aggiornamento della documentazione

e/o di miglioramento della qualita del software.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 17

Problemi della manutenzione

* In gran parte dipendono dalla mancanza di controllo e
disciplina nelle fasi di analisi e progetto del Ciclo di Vita
del Software

* Alcuni fattori tecnici:

difficolta nel comprendere un programma scritto da altri
mancanza di documentazione completa/ consistente
software non progettato per modifiche future

difficolta nel tradurre una richiesta di modifica di
funzionamento del sistema in una modifica del software

valutazione dell'impatto di ciascuna modifica sull’intero
sistema

la necessita di ritestare il sistema dopo le modifiche
la gestione della configurazione del software

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 18

Fattori di Costo della manutenzione

« Stabilita del team
— | costi di manutenzione si riducono se lo stesso staff si occupa
della manutenzione per lungo tempo
 Responsabilita contrattuale

— Sviluppo e manutenzione sono talvolta appaltati ad aziende
diverse, cosicche chi sviluppa non ha interesse a semplificare il
lavoro di chi effettuera la manutenzione

« Capacita dello staff
— Chi si occupa della manutenzione potrebbe non avere lo stesso
livello di esperienza e pratica di chi lo ha sviluppato
« Eta e struttura del programma

— Gli interventi di manutenzione tendono a far deteriorare la
qualita del software e quindi a rendere piu difficili tutti gli
interventi di manutenzione necessari

« v. anche G. Visaggio, “Aging of a legacy system: symptoms and
remedies”, Journal of Software Maintenance, Wiley

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 19

Il processo di evoluzione del software

Identificazione del
Problema/ Richiesta
di modifica

v

Analisi

" dell'impatto

—

Acceptance
Nuova : .
Testing
Release

Regression/

Pianificazione
della Release’

SystemTesting

Implementazione

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

26

Gli interventi per ‘Ringiovanire’ il software

« Sono finalizzati a migliorare la manutenibilita di un
software ormai deteriorato dagli interventi di
manutenzione subiti.

« Diverse tipi di intervento possibili:

« Ridocumentazione

* Restructuring (o Refactoring)
* Reengineering

* Reverse Engineering

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

28

Reengineering

It IS the examination and alteration of a subject system
to reconstitute it in a new form and the subsequent
Implementation of the new form [Chikofsky and Cross]

La reingegnerizzazione (reengineering) & un’attivita di re-
Implementazione di un sistema software svolta per migliorare
la manutenibilita di un software esistente.

Essa pud comprendere:

— Ridocumentazione, Ristrutturazione, Refactoring e
riscrittura di parte del software (o anche di tutto) senza
modificare I'insieme di funzionalita che esso realizza

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 29

Obiettivi del Reengineering

« Modularizzazione del sistema

— Suddivisione di un sistema monolitico in parti da riusare
separatamente

* Miglioramento delle Performance
— Migliorare le prestazioni di un sistema esistente

* Migrazione (o Porting) verso altre Piattaforme

— Necessita di localizzare | componenti dipendenti dalla
piattaforma

« Estrazione del progetto
— Per migliorare maintainability, portability, etc.

« Migrazione verso una nuova Tecnologia

— quali nuove caratteristiche di un linguaggio, standards,
librerie, etc.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 30

Ridocumentazione

« Consiste in una analisi statica del codice sorgente (attraverso
appositi strumenti) al fine di produrre documentazione del
sistema. Si analizzano:

— usi delle variabili, chiamate fra componenti, path del flusso di
controllo, dimensioni dei componenti, parametri di chiamate, .. Per
capire cosa fa il codice e come lo fa.

« Gli output di una attivita di ridocumentazione possono essere:

— grafi delle chiamate,tabelle delle interfacce delle funzioni, dizionari
dati, diagrammi del data-flow o control-flow, pseudo-codice, cross-
reference fra componenti o variabili

— Tali output si possono usare per verificare se il software ha bisogno
di ristrutturazione.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 33

Ridocumentazione

« Un approccio diverso alla ridocumentazione puo
passare per I'analisi dinamica

— Si eseguono scenari dei casi d’'uso dell’applicazione

« Per analisi dinamica si possono ottenere:
— Modelli dell’interfaccia utente
— Modelli dell’interazione tra i componenti

— Documentazione per l'utente finale
o Tutorial, ...

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 34

Standard di documentazione del codice

« Tra gli innumerevoli standard di documentazione
esistenti, verra presentato Javadoc

— ldeato per Java

— Affiancato da un tool (javadoc) in grado di generare
manualistica a partire dall’analisi della documentazione
presente nel codice sorgente

— Generalizzabile a qualsiasi altro linguaggio

« Come tool generante, oltre a javadoc, verranno
mostrate le potenzialita di Doxygen

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 35

.
*
*

¥ o K % R Ok K % ¥ ¥ ¥ ¥ ¥

*.

Esempio Javadoc

Inizio commento per Javadoc
URL diventera un link nella

/ documentazione HTML
Feturnz an Image object that can then be painted on =CTEsh

The url argument must specify an abs=olute {@linl UREL}. The namns .

argument is a specifier that 1z relative to the url argument . Breve riassunto dello
<p> «—Nuova linea nellHTML risultante scopo e dei parametri
Thi= method always returns immediately. whether or not the \

image exi=t=. When thi= applet attempt=s to draw the image on del metodo
the screen. the data will be loaded. The graphics primitives (Description BlOCk)
that drawv the image will incrementally paint on the screen.

@param wurl an absolute UEL giving the base location of the image e .
@param name the location of the image. relatiwve to the url argument Parametri

Areturn the image at the specified URL

@z=e Inmge ¥——————__ Riferimento Valore di ritorno

public Image getImage(URL url. String nams) o

try |

return getInageinew UEL{url, name)); €———— COdice del mEtOdO

} catch (MalformedURLExzception =) {
return null;

¥

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

36

HTML risultante

getimage

public Image getImage(URL url.
String namns)

Feturns an Image ohject that can then be painted on the screen. The url argument must specify an absolute TEL The name argument is a specifier
that is relative to the ur 1 argument.

This method akways returns immediately, whether or not the image exists. When this applet attempts to draw the image on the screen, the data will be
loaded. The graphics primitives that draw the image will incrementally paint on the screen.

Parameters:
url - an absalute UREL giving the hase lacation ofthe image

name - the location of the image, relative to the ur 1l argument

Returns:
the image atthe specified URL

See Also:
Inage

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 37

Principali Tag Javadoc

@author name-text

@deprecated deprecated-text

{@code text}

{@docRoot}

@exception class-name description
{@inheritDoc}

{@link package.class#member label}
{@linkplain package.class#member label}
{@literal text}

@param parameter-name description
@return description

@see reference

@serial field-description | include | exclude
@serialField field-name field-type field-description
@serialData data-description

@since since-text

@throws class-name description
{@value package.class#field}

@version version-text

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 38

« La documentazione di riferimento del “linguaggio” javadoc e dei
modi di utilizzo del tool corrispondente e disponibile all’indirizzo:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/javadoc.html#tags

« Esistono strumenti in grado di valutare la completezza della
documentazione

— Checkdoc della Sun: http://java.sun.com/j2se/javadoc/doccheck/

« Il tool javadoc, richiamabile da linea di comando, genera un
insieme di file in puro HTML (con l'utilizzo di frames), altamente
navigabili

— Non e prevista, viceversa, la generazione di un unico
documento, che possa costituire lo scheletro di un manuale
utente

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 39

JAuUtoDocC

« JAutoDoc e uno strumento,
Integrato in Eclipse, che
genera automaticamente
scheletri di configurazione,
da completare

 E’in grado anche di riparare
documentazioni incomplete

) Preferences

| | trpe Filter text

General

Ang

Help
InstallUpdate

@ lava

Appeanance

+ Build Path

» Code Style

+ Compiler

+ Debug

» Editar

¢+ Installed JREs

4 Mutodac

Temnplates

Jirit
Praperties Files Editer

Maven

Plug-n Development

Run/Debug

Tearn

XML

JAutades

Maode

@ Cormplete existing lovadoc

Keep existing Javadoc

Feplace exdsting livadoc

Options.

[¥] Add TaDa for auto-generated Javadac
[#] Create comment from dlement name

(] Single bne field compnent

[Use Eclipse cormment formatter
116, 5] etter from field comment

First sentence only

Replace existing [5G Sjetter

|l Include subpackages

Wisiblity

|¥] Pulblic
| Package
[¥] Pratected

[¥] Prevate

File Header

Filter

[#] Comment Types

o Camrment Fields

¥ Comrment Methods
(7116, Shester anly
(7] Evehudie [G,5]etter

[7] Replace mitting header

L Muls comement hesder

Tag Order Package Javadoc

| Ede. | et Templte.

Replacements for comment from element name:

Shartout
add
bauild
create
edit

gt

hias

init

is

s
peint
remice
st

Replacement
Adds the
Builds the
Crestes the
Edits. the
Gets the
Chieclcs for
Inits the
Checles if is
Paried the
Prints the
Rermowes the
Sets the

Import All. _. Export L. |

ok]|

Scepe

Method
Method
Method
Kethod
Method
Kethod
Method
Method
Method
Method
Methad
Methad

|1 Use package-infojava

Replace
Prefu
Prefe
Prefi
Prefo
Prefo
Prefu
Peefe
Prefix
Preefze
Prefa
Prefu
Peefi

RestoreDefouits | | deply

|
d

[hoe..]|

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

40

http://jautodoc.sourceforge.net/

Doxygen

« Sistema di documentazione utilizzabile per programmi scritti in C++, C,
Java, ed altri

— https://sourceforge.net/projects/doxygen

— Genera documentazione in HTML e anche un manuale di
riferimento completo in RTF (MS-Word), PostScript, PDF, chm o
man Unix, direttamente a partire dalle informazioni reperibili nel
codice sorgente.

— Doxygen estrae i commenti scritti in formato simile a quello di
Javascript e inoltre la struttura dei costrutti principali ricavabili
dall’analisi statica del codice, comprese associazioni, ereditarieta,

— Doxygen genera automaticamente alcuni diagrammi, tra cui grafi
delle dipendenze, diagrammi di ereditarieta, diagrammi di
collaborazione ed altro, secondo il formato DOT

 http://www.research.att.com/sw/tools/graphviz/

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 41

Does it run? Just leave it alone.

i

Writing Code that
Nobody Else Can Read

The Definitive Guide

O RLY? @ThePracticalDev

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

44

Restructuring

« Attivita che trasforma il codice esistente in codice
equivalente dal punto di vista funzionale, ma migliorato
dal punto di vista della sua qualita.

* In genere si esegue In tre passi:

1. Analisi statica del codice per ottenerne una
rappresentazione interna (es. call graph, control-flow
graph...)

2. Semplificazione della rappresentazione interna attraverso
tecniche di trasformazione automatiche.

3. La nuova rappresentazione viene usata per generare una
versione strutturata (migliorata) ed equivalente al codice ﬂ

OrlglnarIO- Allslslls]
Allslsllsl
Allala
Allala

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 45

Refactoring

« Anche I sistemi object-oriented sono soggetti al
deteriorarmento e diventano legacy!

« |l refactoring € un insieme di tecniche usabili per
migliorare il codice ed il design di sistemi object-
oriented.

— Martin Fowler € autore del libro “Refactoring: Improving

the Design of Existing Code” (1999)dove presenta piu
di 70 pattern per eseguire il refactoring.

 Tali tecniche cercano di eliminare | cosiddetti Bad
Smells dal codice.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 46

Esempi di Bad Smells nel codice

Problema (Bad Smell)

Pattern di Refactoring
applicabile

Codice duplicato

Extract Method

Metodi troppo lunghi

Extract Method

Classi troppo grandi

Extract Class, Extract Sub-
Class, Extract Interface

Lunghe liste di parametri di
metodi

Replace parameter with
Method

Cambiamenti divergenti in una

classe (una classe é soggetta a
cambiamenti per tanti motivi)

Extract Class

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

48

Esempi di Tool per il Refactoring

Net Beans Refactoring Eclipse Refactoring

Mvigate Search Project Run FieldAssist
Mmhj Furm Profile Wersioning P——.

Alk+3shift+R.
Rename. .. Chrl+R. Move... Alt-+5hifE+Yy
Move... I Change Method Signature. .. Alt-+5hift+C
Copy...
Safe Delete, . Extract Local Yariable. .. Alb-+5hift-+L
Extract Constant. .,
Inline. .. Alk+shifk+1

Change Method Parameters, ..

Encapsulate Fields, ..

Pull Up. ..

Push Cowr,..

Extract Interface...

Extract Superclass, ..

Use Supertype Where Possible, .,
Mowve Inner bo Outer Level, ..

Introduce Yarisble. ..
Introduce Constant. ..
Introduce Field, ..
Introduce Method. ..

Canverk Anonymous to Inner

Convert Anonyrmous Class bo Mested...

Convert Member Tvpe to Top Lewel
Convert Local Yariable to Field. ..

Extract Superclass. ..
v Extract Interface...
v Use Supertype Where Possible, ..
v Push Down. ..

Pull Up...

Introduce Indirection. ..
Inktroduce Fackory...
Introduce Parameter. ..
Encapsulate Field...

zeneralize Declared Tvpe. ..
Infer Generic Type Arguments. ..

IMigrate AR File...
Create Script...
Apply Scripk, ..
History,..

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

49

Esempi di Refactoring: extract method

« Extract method e et 11 e 1) s 11 wett) ce avs0)

— Seleziona un retarn "Errore";
pezzo di codice

— Imposta nome e
parametri
int f1 = a / 4;

— Sostituisci o = o

int £3 = a / 400;

int f4 = (int) (2 * m + (.& * (m + 1}}}:
int £f5 = a + d + 1;

int x f1 — £2 + £3 + £4 + £5;

int k x S 7;

int n X — k * 7;

if (m==1)
retorn "Lunedi™;

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 50

Esempi di Refactoring: extract method

Method name: I GiornoDellasettimana

Access modifier © public © protected default * private

« Extract method e

. Type I MName Edit...
— Seleziona un n d E—
. . In a p
pezzo di codice int . =
— Imposta nome e
parametri
. . . [T Declare thrown runtime exceptions
— Sostituiscl

[T Generate method comment

[T Replace additional occurrences of statements with rmethod

Method signature preview:
private static int GiornoDellaSettimana(int d, int a, ﬂ
int m) hl

& This name is discouraged. According to convention, names of methods should
start with a lowercase letter.

Preview =] Cancel

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 51

Esempi di Refactoring: extract method

 Extract method

— Seleziona un
pezzo di codice

— Imposta nome e
parametri

— Sostituisci

int n

giornoDellaSettimana(d, a, m);

private static int giornoDellaSettimana (int d,
int a, int m) {
if (m<=2)

o]

+

12;
a / 4;
a / 100;
a / 400;
(int) (2 *m + (.6 * (m + 1)));
a +d+ 1;
fl1 - £2 + £3 + £4 + £5;
x / 7;
x - k * 7;

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 52

Esempi di Refactoring: extract constant

e EXxtract constant: 2 Eitract Constant (=1

_ SeIeZIOna un Constant name: | LUMEDI
valore costante

Access modifier © public T protected default ™+ private

IV Replace all occurrences of the selected expression with references to the constant

—_ Convertl In ™ Qualify constant references with type name
costante (tutte
le sue
Occorrenze) Preview » oK Cancel
if (n==1)

retorn PR -

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 53

Esempi di Refactoring: extract constant

Extract constant:

— Seleziona un
valore costante

— Converti in
costante (tutte
le sue
occorrenze)

private static final String
LUNEDI = "Lunedi";

1f (n==1)

return LUNEDI;

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Esempi di Refactoring: extract local variable

° EXtraCt Iocal = Extract Local Variable o] x|

. . Variable name: | calend

variable: o _

¥ Replace all occurrences of the selected expression with references to the local variable
—_— SeIeZ|Ona ™ Declare the local variable as ‘final

un’espressione
che ha un
ValOre Preview » | oK Cancel

I int anmo=1583;
— Convertl _ | RN " ro, nese, anno) B
I'espressione in

una variabile
(tutte le sue
occorrenze)

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 55

Esempi di Refactoring: extract local variable

e Extract local String calend =
variable: calend(giorno, mese, anno);

— Seleziona System.out.println (calend) ;
un’espressione
che ha un
valore

— Converti
I'espressione in
una variabile
(tutte le sue
occorrenze)

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 56

S ee——————————————————————
Code written by some stranger on the internet is always perfect

Taking on Needless
Dependencies

Fragile Development Guide

(@) RLY? @ThePracticalDev

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 57

CodePro Analytix

e Plug-in multifunzionale per Eclipse offerto da Google

e Scaricabile direttamente da:

e Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

e Tutorial e documentazione accessibili da:
e https://developers.google.com/java-dev-tools/codepro/doc/

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 58

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

CodePro Analytix Dead Code Analysis

« CodePro cerca, tramite analisi statica, di verificare
guale parte del codice non sia raggiungibile (codice
morto)
 Le indicazioni di CodePro non possono essere

considerate né complete né sempre valide, a causa di

possibili utilizzi del codice tramite chiamate
dinamicamente generate

« Per eseguire I'analisi del Dead Code e sufficiente
eseqguire Find Dead Code nel menu contestuale
Code Pro Tools

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Utilizzo di Find Dead Code

6 unused classes, 58 unused methods, 17 unused fields

« Selezionare (da proprieta del
progetto/Dead Code Entry Point) i | % il ™

4 [datatype (contains dead code)

punti di accesso dell’applicazione + [H) Granulorityjova

4 @ Euro.java (contains dead code)

(di SOIitO iI main) 4 @ Euro (contains dead code)

o amount

« Awviare Find Dead Code oo it

.. . . % “Eure(double)
e (Osservare i risultati nella view Dead
Code

 Le classi/metodi/attributi barrati sono
inutilizzabili (secondo quest’analisi)

getValue()
getCent()
getEurc()
addibien(Euro)
subtract(Euro)
multiply(int)
sares(Euro)

o oD o ¢ @

major(Eura)
i g equalle(Eurc)
@ toString()
@ toDoublel)
) @ Calling
s @ Coupledava
s @ Beverageciava
s E gui (contains dead code)
s E} store (contains dead code)

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Utilizzo di Find Dead Code

La ricerca del Dead Code non funziona bene in caso di codice generato
dinamicamente
Un caso tipico e rappresentato dal codice ascoltatore di eventi utente
* In questo caso, e opportuno considerare le classi che rispondono agli
ascoltatori come ulteriori Entry Point

« Per conoscere il Dead Code interno ai metodi, puo essere opportuno
segnare ogni metodo come possibile entry point

Dead Code Entry Points &7 Eve

Select the methods that should be considered as entry points:

a @B sc
4 @£ calendario
@ Calendario

@ Srna\r\(Stru'wg[],]

L] ngmnDeHaSettimana(int, String, int)
@ S\.'alida(u'ﬂ:, int, int)

L] 9caleﬂd(iﬂtr int, int)

@ “convert(int)

OoEoOO

| -imagein list viewer marks implicit entry points

Implicit entry points
[] Consider main methods as entry points
["] Consider test cases as entry points

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Reverse Engineering

« E un’attivitd che consente di ottenere specifiche e informazioni
sul design di un sistema a partire dal suo codice, attraverso
processi di estrazione ed astrazione di informazioni.

« La definizione di Chikofsky and Cross, 1990 [1]:

* Analyzing a subject system

— to identify the system's components and their inter-relationships
and

— to create representations of the system in another form or at a
higher level of abstraction

* A two-steps process
— information extraction
— view abstraction

[1] Chikofsky and Cross, Reverse engineering and design recovery: A taxonomy.
IEEE Software, 1990

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

64

Reverse Engineering Goals

« Reverse engineering tasks are performed to satisfy
reverse engineering goals:

— Change goals: produce a renewed product
 e.g. through migration, modernization, modularization
— Understanding goals: increase the current understanding
of a software product
* Produce high level views by means of an Abstractor
« Can start from source code, but also from binary

« Examples of targets: recovering architectures, design,
traceability links, building metric views

Canfora, Di Penta “Frontiers of Reverse Engineering:
a Conceptual Model”, FOSMO08 — IEEE Comp. Soc. 2008

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 65

Fasi di Estrazione ed Astrazione

 Estrazione

— Analisi del codice o di altri artifatti software, allo scopo di
ottenere informazioni relative al sistema analizzato.

— Particolarmente utili sono quelli strumenti in grado di estrarre
informazioni da un codice sorgente gqualsiasi, nota che sia la
grammatica del linguaggio di programmazione (ad esempio
JavaCC o Antlr)

 Astrazione

— Si esaminano le informazioni estratte e si cercano di astrarre
diagrammi, o viste, ad un piu alto livello di astrazione (es.:
diagrammi di progetto, architetturali, del dominio dei dati)

— | processi di astrazione non sono completamente
automatizzabili poiche necessitano di conoscenza ed
esperienza umana

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

67

Tassonomia degli analizzatort

cd: Analyzers J

Analyzer

ﬁ‘%A

Q

Static Analyzer Dynamic Analyzer Historical Analyzer Hybrid Analyzer
Zﬁ Zr +analyzes +analyzes
Code Analyzer Binary Analyzer Evolution History
+analyzes +analyzes
Source Code Binary File Execution Trace

Ingegneria der Software 2 — Manutenzione € ReVerse Engineering

Static analysis

Source code or other artifacts are
parsed and then a model is built

— Island grammars or code
transformations as alternatives

Relatively fast and cheap ©
Complete ©

Difficult to capture
behavioral/dynamic models

— State machines

— Sequence diagrams

— Detect behavioral patterns
Intrinsic difficulties increasing with
highly dynamic systems ®

— Pointer analysis

— Polymorphism

— Ultra-late binding

Source
code

if (x==0) {
System.out.
println(j);

}
while (y>0)
{

-

Model

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Dynamic analysis

System exercised by means of
— test cases

— realistic usage scenario
Collecting execution traces

— Code instrumentation

— Patching virtual machines
Able to deal with dynamicity ©

Useful to extract dynamic models
©

Code must be compilable ®
The quality of the models built
depends on the data used for
execution ©®

Might be incomplete ®

Might be expensive ®

Real usage Test

scenario cases
Instrumented
source code ﬂﬁlﬂ&
==

o
4 &

;hile(y>0)
{
if (x==0) {
o.f£();

br.write (“£”) ;
} ‘
o.g() ;..

br.write(“g”);

} c Execution
ggfggfggg trace
go up (floor)

msgl i go doy
msg2
.................... >
N Rewmxt 2 !

do/moving to floor
arrived
entry/timer =0

do/increase timer

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

[timer = time-out]/go down (first floor)

Dynamic models

Historical analysis

« Static and dynamic analysis do not capture information
such as:
— How does an artifact change during the time?
— When was it changed?
— Why was it changed?
« New requirements, bug-fixing, refactoring, re-documentation...
— Who changed it?
— What artifacts changed together?

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 71

Problemi indecibili nel Reverse
Engineering

* non e possibile, a partire dal solo codice, astrarre il
progetto dal quale esso e stato prodotto

— non e invece indecidibile il problema di astrarre un
progetto coerente con il codice;

* non e possibile, a partire dal solo programma
oggetto, astrarre il programma sorgente dal quale
esso e stato prodotto

— non e invece indecidibile il problema di astrarre un

programma sorgente che generi il dato programma
oggetto.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

73

Problemi del Reverse Engineering

Il processo di produzione del software e costellato di pozzi nei quali Si
perde parte della conoscenza: non tutta la conoscenza ed esperienza
messa in campo dall'ingegnere del software in una fase di produzione
(ad es. progettazione) viene in qualche forma rappresentata nello
stesso prodotto di fase (progetto) o in quello delle fasi successive (ad
es. codice).

Questo comporta che ai problemi di indecidibilita si aggiungono quelli
dovuti alla perdita di conoscenza che richiedono, per la realizzazione
completa di un’astrazione, I'aggiunta di conoscenza ed esperienza da
parte dellingegnere del software (almeno per ora).

Il Reverse Engineering non e, quindi, un’attivita completamente
automatizzabile!

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 74

Appendice

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

75

Il problema del Legacy Systems

« Un sistema legacy (“ereditato”)

é spesso vecchio (10 anni o piu di vita);
e di grandi dimensioni (centinaia di migliaia di linee di codice)
e scritto in assembler o in un linguaggio di vecchia generazione

e stato probabilmente sviluppato prima che si diffondessero i
moderni principi dell'ingegneria del software

La manutenzione é stata svolta in modo da seguire le modifiche
nei requisiti, aumentando cosi I'entropia (il disordine) del sistema

La manutenzione risulta ormai difficile e costosa
Realizza funzionalita cruciali e irrinunciabili per I'organizzazione

Contiene anni di esperienza accumulata nell’lambito del dominio
specifico del problema

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 76

La gestione del Sistemi Legacy:
due decenni di strategie

Integrazione nel
mondo del

Coyle, IEEE Software 2000 WwWw

Integrazione in

piattaforme OO
attraverso
wrappers

Migrazione
Verso
architetture a
tre livelli

Migrazione
Verso
architetture
client- server a
due livelli

‘80 90 2000

v

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

77

Una recente analisi di strategie proposta
da Grady Booch

G. Booch, Nine things you can do with old software, IEEE
Software, Sept 2008

« Abbandonarlo
— quando il suo valore economico si e esaurito, o lo sforzo
di risviluppo non e eccessivo
* Regalarlo
— Se non serve piu, si puo cederlo a qualche comunita
open-source dove potra ancora tornare utile a qualcuno
 Ignorarlo

— Se e abbastanza stabile, e fa qualcosa di utile, si puo
continuare a usarlo senza pero modificarlo.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 79

Nove cose da poter fare con software
legacy

« Farlo sopravvivere

— Quando I'hnardware su cui gira non € piu supportato (e non si
dispone del codice sorgente per portarlo in nuove piattaforme),
si fa sopravvivere o cercando vecchio hardware da
cannibalizzare, o usando emulatori di piattaforma.

 RIiscriverlo

— Quando la manutenzione e troppo costosa, o il sistema e
troppo fragile, si puo riscriverlo (ma sapendo che ottenere un
sistema funzionalmente equivalente al primo e impossibile, e
che bisognera probabilmente convincere gli utenti ad accettare
gualche cambiamento)

« Farlo fruttare (in qualche modo)

— Cercare parti del sistema da conservare (algoritmi, pattern,
astrazioni...) perché ancora utili, ed usarle come una base di
conoscenza per un nuovo sviluppo

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 80

Nove cose da poter fare con software
legacy

* Wrapping
— Usare tecniche di wrapping per integrarlo in nuove
piattaforme (quali SOA)

 Trasformarlo

— E la strategia piu difficile e va praticata per mantenere il
sistema in condizioni ottimali, se si prevede di continuare ad
usarlo a lungo termine: va dal semplice refactoring, alla
trasformazione architetturale.

* Preservarlo

— Anche il software antico puo avere un valore storico (es.
vecchi sistemi operativi, o videogiochi) e culturale da
preservare (magari in un Museo della Storia dei Computer)

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 81

System quality and business value

High busincss value

A High busincss value

Low quality :)
. High quality
Low business v alue Low business v alue
Low quality High quality
>

System quality

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

83

Legacy system categories

1. Low quality, low business value
— Dovrebbe essere abbandonato

2. Low-quality, high-business value

— Realizza funzionali importante ma e costoso mantenerlo.
Dovrebbe essere reingegnerizzato in modo da rendere le future
(necessarie) operazioni di manutenzione piu agevoli ed efficaci
(cioe finire nel quarto caso)

3. High-quality, low-business value

— Si puo decidere sia di abbandonarlo (in quanto poco
Importante), sia di rimpiazzarlo con COTS (se realizza qualcosa
di generale, indipendente dal dominio specifico) oppure
mantenerlo (dato che i costi di manutenzione saranno limitati)

4. High-quality, high business value
— Su di esso si eseguono le operazioni di manutenzione

 In questo modo, pero, la qualita diventera via via piu bassa, fino a
finire nel secondo caso

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 84

Appendice

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

85

Esempio: generazione automatica di
tutorial di applicazioni Web

. Usquse RIA
 Tre fasi: AEW LE/J

— Web Application Dynamic ‘ li

. RIA
Ana|y|s Dynamic
Analysis
- Genera2|one del Collected Traces
Navigation Graph v
— Generazione della End cdtedrsms | | Model
. R it < neration
User Documentation ep°y senerate
User
Documentation
Generation

v

¢ Y
Introductory Reference
Manual Tutorials I Guide

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 86

Web Application Dynamic Analysis

%elgﬂgni"’ﬁsg My info My Todos Log out
Actions
2 pefresh
Add a new list
Description |
sllow RSS publication? [

Filters
Next 4 days

& pippo21

Assigned to me

Lists

& Did you find a bug? Thanks for submitting it

URL: |http:Happ.ess.ch,fl:udu,fwelcome.action |

User Name: I SoftwareEngineeringGroup |

Trace Name: [TuduExperiment41]

Automatic Suggestion | oFp B Semaphore --

Mew Tr phure [Stop Trace Capture] [Pause Trace Capture]

Interface recorded of the current trace: 2 Suqaqest Me
C1 % 100 C2 % 100 C3 % 100 C4 % 100
Label Current State: [nolist
C1 Suggestlon €2 Suggestion C4 Suggestion
E | TE—| [
Add C1 Suggestion] (Add €2 Suagestion] [add C3 Suagestion | [add C4 Suagestion
Show C1 Suaa.] [_Show C2 Suaa. Show C3 Suaq. Show C4 Suaa.

Label Last Transition: | |

c3 Suggestion

T0% 100 T1C1% 100 T1C2% 100 T1C3% 100 T1C4% 100
T2C1% 100 T2C2% 100 T2C3% 100 T2C4% 100
TO Suggestion
Add T0 Suggestion
T1C1 Suggestion T1C2 Suggestion TIC3 Suggestion T1C4 Suggestion
[NewT | [Wew Transition | [New Transition] [New Transition

[(AddT1C1 Suga. | ((Add T1C2 Suaa. | [Add T1C3 Suaa. | [Add T1C4 Suga.

T2C1 Suggestion T2C2 Suggestion T2C4 Suggestion

[| [ew Transition | [ne tion | [MewTr

[_add 12C1 Suga. | (Add T2C2 Suaa. | [Add T2C3 Suaa. | [Add T2C4 Suaa.

T2C3 Suggestion

- DB connection closed - A
- DB connection open - 3
DOM description completed
Event click handler terminated
click Bubbling phase captured
- DB connection open -

- DR rAnnectinn anen -

' . (] L £ o). AA . .).
Iigeylicria ucl ouliwdlc £ = VialTuleTIZ1IUTIE © REVEIST

Engineering

|
I

Navi

gation Graph Generation

CReRia - Trace Analysis
URL C\Thesis\dat\C1_T0.html

I

Last selected interface: "Reg Form (44)"

wilzleliets

vilte el i

e

Wew uses ragistration

Trans Label

L

Trace Name

| Trace Date

Trace Time
Usemame
AppName
Interface ID

TracelD

Pick Information

Criteria

Stop Picking

4

Trans Criteria Select eriteria first

4

URL Visited
Local Url

+ | Openur
~ | openLaur

Highligths Events
Interface Label Update Label

Visualize Labels? o

Upd Trans Lbl

Show Trace Details

Q
£

Reset Log in Forn)

Start Page [@>Show Welcome

Register New Uger /Cancel Registration Form

New user

Lt [Exception in registration
registration e1 ot

o to Start Page

onfirm registration

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

New user
registration successful

88

og in Exception

Overall Navigation Graph

/ — o = = i i ; R
o T - T N S |Emr— s

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 89

figure7.png

Esempl di scenari di navigazione

Classic Graph Graph view with Screenshots

Vie
’/elect list
add todo - e

éced add }ancel add todo form

Clickab

welect list

add todo /ok

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 90

Esempio di descrizione di uno scenario

Quick Add
In this scenario a logged user can insert a tudu in a selected
list of todos. o

Event Sequences

write todo

select list click on quick add _

- tudu menu (todos)

Y

- tudu menu (todos) tudu menu (it todos) fudu menu {{it todos)

Related Regular Scenarios

Related Exception Scenarios

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

../../wse%202011%20ridocumentazione/tuduDocumentation/advancedadd.html
../../wse%202011%20ridocumentazione/tuduDocumentation/wrongdata.html

Scenario Tutorial example (1/4)

Tutorial: Advanced Add

1 - Interface: tudu menu

c};"_’gg‘yfﬁ My info My Todos Log out

TodaLigis v 23 & mimmo

Actions Welcomel
QRefres_h
B add 2 hewice e (0%)

& Ed

|S._t. ’ Quick Add | Advanced add | Delete completed Todos | Show older Todos

welcome to Tudu Lists! 100 O <8

Filters
Mext 4 days
Assigned to me

Backup & | Restore #

—— * Did vou find a bug? Thanks for submitting it

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 92

Scenario Tutorial example (2/4)

2 - Interface: tudu menu (no tudu)
%J,}-'du Lists Myinfo | My Todos | Logout |

g Things Dene!

Tdaists v 2.3 & mimmo

| Actions newy list
1 Refresh

[53 add a new list

o; Edit current list I

(100%)

Nothing to do!

Backup 8 | Restore #

S * Did you find a bug? Thanks for submitting it

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 93
93

Scenario Tutorial example (3/4)

w,ﬂ.’.d,wﬁ Myinfo | MyTedos Logout |

Tki Lats v, 2.3 & mimmo
Actions ’ ’ new list
(2 Refresh
B il R 1.1
Ider Todos
Description |newtodo
. Priority [1 Due date [0526/2011 o (mm/dd/vyyy)
ilters - :
Next4 days Assigned To | mimmo ~ ;
Assigned to me example of advance
= 1 to do!
0/0)
L0,
L{0/1) N
Restore @
[Submit] [Canel]
. =
SOURCITORGEMNET * Did you find a bug? Thanks for submitting it

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 94

94

Scenario Tutorial example (4/4)

4 - Interface: tudu menu

Tudu Lists | My info My Todos Log out

Getting Things Done?

T Latsv. 2.3 & mimmo

Actions [newrii st
! @ Refresh
(53 add a new list

{(0%)

(Quick Add | Advanced Add | Delete completed Todos | Show older Todos

| @ Delete current list | | —
'new todo 1 05/26/2011 O « .0

| Filters
Mext 4 days
| Assanegitoimi Backup 8 | Restore #

(0/1)
(041)

z * Did you find a bug? Thanks for submitting it

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 95
95

Appendice

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

96

Esempio (d’annata):

Reverse Engineering di applicazioni web

COMPONENTI E

CODICE . RELAZIONI DIRETTE
SORGENTE > d TRA ESSI
APPLICAZIONE
WEB
ANALISI REQUISITI

x—> FUNZIONALE > FUNZIONALI

WEB INTERAZIONI
APPLICATION . DINAMICHE TRA |
INSTALLATA " COMPONENTI

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 97

Analisi statica vs Analisi Dinamica

« L’analisi statica:
— Deve essere effettuata necessariamente sul codice sorgente
» Possibile solo per li sviluppatori dell’applicazione
— Estrae solo un sottoinsieme delle informazioni

 Ad esempio, nei software object oriented non puo estrarre gli oggetti
istanziati dinamicamente (e nemmeno le eventuali classi dichiarate a
tempo di esecuzione)

— Non va a modificare il codice sorgente

« L’analisi dinamica:
— Puo essere effettuata anche dagli utenti dell’applicazione

— Potenzialmente puo estrarre tutte le interazioni che vengono in essere
durante I'esecuzione del software

— Necessita di sonde da inserire nel codice (per esportare dati)
— Non ha una terminazione

» Dovrebbe riferirsi ad un insieme “significativo” di esecuzioni
dell’applicazione

— Ad esempio una test suite che soddisfi un certo criterio di copertura

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 98

Un tool di supporto all’analisi statica:
Flusso dei dati

Astrattore di
primo livello

DataBase

A J
Astrattore di Q
D

- _ secondo livello e lagrammi
Ingegneria del Software 2 — Manutenzione e Reverse Engineerin Ireport

Vista architetturale

Interface
WARE | | :Graphical Visualizer : -
cul G || Dott - J{ RIGI:
Service
Parser
HTML|]| Js | IRF Translator
WA
Source ASP Query Executor
Files
VBS
UML Diagrams
PHP Abstractor
Extractor Z/\ Abstractor
V.
IRF Diagrams
DBR .
Repository
WARE-Tool

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

100

viluppo del tool estratt

Chart ID : Progetto base di dati

Chart Name : Progetto base di dati
Chart Type : UML Class Diagram Pauina ASP
1
[Interfaccial ADODB Recordset
. [Pagina Ciient costruital Linea]
0. Builds -hota L 1
0. ;
Pagina Server| 0.7 i 1> [o interfaccia
Pagina HTML| Pagina Clien Nomefile Id CDONTS Newmail
Nomefile Interna: Yes/No Nota]
Interna N
Altro
Redirect BJ
H 0.~ [Pagina wel 0.~ 1 Frame
- Target
0= 0.~ |Titolo = 2rge Nome 1.
1 H o.~d Id
Id : -~ _|Warning
L Nota
[3
Redirect MJ Redirect BVB
[__ILlinea 2 [Linea Ingicsions
MNota 2 MNota
0..
: Bt Bl VBScript
.
1D liia Inclusione o . Link
Interno: Yes/MNo
YWarning
Nota 1
Tag HTML
~JLinea
MNota
T 1
Ancora
Id
1.~
Frameset
i
S
1 Ancora ad i i
Parametri Form Ancora ad oggetto Ancora a altro indi
Id Id Id
Tipo Tipo
Nome 1 Indirizzo
Nota 1
i Visualizzazione
Download
Esecuzione _— .
= i Oggetto
— D D
Tava class Nomefile Nomefile
D Interno: Yes/MNo Interno: Yes/MNo
Nomiafile \Warning \Warning
Interno: Yes/MNo MNota MNota
VWarning
Nota

ore: Analisi delle informazioni

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

101

Sviluppo del tool estrattore:

Definizione della forma di rappresentazione intermedia

Censimento di tutte le
espressioni del codice sorgente
che devono essere riconosciute:
(tag HTML - comandi Javascript
-comandi VBScript - eventi di
apertura e chiusura file)

Per ognuna di queste espressioni
viene definita la sintassi del tag
corrispondente nella forma di
rappresentazione intermedia

Per ogni tag della forma di
rappresentazione intermedia
viene definita la semantica

<APERTURA>

<NOMEFILE="\index.htm">
</APERTURA>
<TITOLO>

<TITOLO="Giuridea - Forum e Laboratorio
Giuridico">

</TITOLO>
<APERTURA BLOCCO JAVASCRIPT>
<LINEA=22>
</APERTURA BLOCCO JAVASCRIPT>
<CHIUSURA BLOCCO JAVASCRIPT>
<IMMAGINE>
<LINEA=50>
<NOMEFILE="images/title.jpg">
</IMMAGINE>
<ANCORA>
<LINEA=51>
<NOMEFILE="Archivio/Archivio.htm">
</ANCORA>

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

102

Sviluppo del tool estrattore: Implementazione

<FRAMESET

<% / AnalisivVBScript

Statechart
raffigurante

<%/
Analisi
VBScript

= Frameset

<FRAME

= Frame

<0tAnalisiVBScript

<FORM
—}—>W)Z METHOD,ACTION / TrovaValoreParametro
<BaAnalisivVBScript

=
= Parametro form n X
<% / Analisi VBScript
Trova‘aloreParametro

<INPUT, <TEXTAREA, <SELECT
<APPLET

!

<% / AnalisiVBScript

NAME,SRC/TrovaVvaloreParametro

CODE / TrovaValoreParametro

I’automa

Fine file {nput

riconoscitore di tag
HTML

<IMG
SRC / Trova valoreParametro
<% / AnalisivVBScript
<A
] f HREF / TrovaValoreParametro
<% f AnalisiVBScript
y <TITLE >
J |/] Titolo Stringa Titolo
]
N4
<%/ AnalisiVBScript <% / AnalisiVBScript
<(MITLE=
<SCRIPT

LANGUAGE, SRC / TrovaValoreParametro

- = [language!=Javascript]

Script Script non javascript
= [language=Javascript

<% ! AnalisiVBScript % fangusgel=Javasoript]

<.

- Commento

<BODY

e —— T

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

103

Sviluppo del tool estrattore:
Implementazione

@
language ! TrovaValoreParametro, Setta lingua
response.redirect %>
[language=VBScript (—) [Commento]
Redirect Blocco VBScript Cemimarits
CercaParametroVBS 2l ~r
Server.CreateObject

anguage=VBScri
fanguag B Interfaccia
CercaParametroVVBS

response.\Write / PCC=true language=VEBScript

(. spazio|tab / Ignora

| | #lgnora 3 sinistra
LEmoraRip # ¢ lgnoraid

H ’_J, Jocation href H

). spazio, tab / lgnora

o

*, nessun comando conosciuto / LeggiRiga

riga vuota /

Stringa iniziata

Stringa chiusa

Analisi VBSeript </SCRIPT> |Analisi Javaseript]e] Redirect LegiRiga
: ! lgnora a sinistra language=VEBScript ['modula] I_T U U
i - Finché virgoletta=true si ignorano tutti gli . . < ! <%/ Analisi VBSeri <%/ dnaligi | # ¢ lgnora Riga
AL altri comandi ad eccezione di %> h‘ @ S35t AnalisiVE Sorip Bnalisi A e VBScript

Fine File VB Script

[module] [virgoletta aperta riga wuots? B

+, altro caraﬂerg LeggiRiga *
= [Trovata variabile Ja\tascript) [Commento]
Automa riconoscitore di parole Automa riconoscitore di parole
chiave VBScript chiave Javascript

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 104

Tool astrattore

Diagramma delle pagine Diagramma dei gruppi di
pagine correlate

= ==
e\
/ // :;14_‘_4—;_\?::&__ \
.‘.—-"f _</ ;?f_{\i:;%:\:\\‘i-\
D\ ot :
y *é%?;;% Euristiche per il
el e raggruppamento delle
= = pagine
Vame—————=r—c
Redirect *_
‘*Builds*"-
Z
Submit
—

Insert login and password
(Cluster 5)

Validazione dei

gruppi e loro
interpretazione
come casi
, d'uso

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 105

Tool Visualizzatore

Pages and madules of web applcsion

T Bubetinsrepty 55
NT/CresASP[CHAT ASP

Te
T/ CrosF fogor Fagne Sarve

T/ Cresseriega) Pagine Serve

INT)ChosASF LG A5P
T ChsASP 1LEGEIMot ASP

T/ CesASF S acp

5 resa VG raph

I rectm AU grogh

- Creo Dony

e Pt ie

Fagina Sarve
/NT/ChoS®(CHAT Fagina Clent
INT/ChesSPCHA” Pagine Serve
NI/ CreSEL05) Pagna Serve

Padina HTHL
Fagina HThL
Fogina HTH

e | e |

WA components reachable from a
selected component

lax) aloix

Seecind page: SSpmciakeisTes i Pagea HTHL

Hane bkl Ta

= Eventy
G emoussans AL
12nems L%
= orksad 4303 L%
TagMasies
Foms
= Funchons

- MM_ oo magmDefriirel

T p—
T ——"—
I Uss)
[Top———
X ol
Bagas Sarver I
M_prosaraeLse]
Fagma Suver e M spirgPiascnlis]
Pages Server 1)
Bags Server i M smspimgPsieli]
Fagma Suver) Mgl ol
Pagm Server L ks
P Server @ chaied Scrgts
L33
L®%

Page list and information extracted from

aclient page

Chaose subset B [3

+Sub| Sub| 4lns | dns | Mins| +Nod | -Mod ‘ Save | Edit Max
Fleduce nindom

Home Sottoi] Nome [Tipo [-l £
ANT/Mailing. Fom IBy Path |
NT/images: MNT/images/NABLACOM.j Inmagine
NT/ChaibS | MNT/ChathSP/ALEGGLASF Pagina Client costita N e
NT/ChathS | MNTJ/ChatbSPAeggiasp | Pagina Server Subdivision Subdivision
MNT/Chaibs| NT/ChalbSP/Frasimdb | Fis
MNT/Chaibs MNT/ChathSP/CHATMod. Pagina Client costita
NT/Chaib$ | MNTJ/ChalbSP/Appiova s Pagina Server I —
MNT/ChaibS | MNT/ChattSPACHAT ASP Pagina Client castita
MNT/Chaibs MNT/ChathSPAEGGIMod | Pagina Client costita
MNT/Chatbs | NT/ChatbSPACHATMod Pagina Server New Subsst Fiemove
MNT/ChaitS | NT/ChatbSP/CHAT ASP Pagina Server Subset
MNT/Chaiss| MNT/ChathSP/Leggibod.c Pagina Server
NT/ChathS /NT/ChathSP/logoutasp | Pagina Server Subsetinfo
MNT/ChaitS| NT/ChathSPALOGIN.ASF Pegina Server
MNT/ChatsS MT/ChatdSP/sciviasp | Pagina Server Nodes
NT/Chath§ | MNT/ChabSP/Seriviase | Pagina Client costiuita Add selected Femave
T/ Chaits Form nades selected nodes
MNT/Chaibs MNT/ChathSPALOGINASF Pagina Client costita
MNT/Chatds 11 Fam S
NT/Bulletin, MNT/Bulletin/mess.asp | Pagina Client costiita i dababase
NT/Bulletin, NT/Bulltin/mess.asp | Fagina Server
MNT/Bullting MNT/Bulltindinserisciai | Inmagine
b T/IRHI\P}m AT /Rullefin/Rulletin mh | File. ’—I oK |

Definition of sub sets
components

Summary of pages of web application, grouped by

of WA

g [3]

tppe

Type | Mumber| Total LOCs
Built Client Page 15
File: B3
HTML Page 55
Image E7
Java class 1
Server Page 19

Form showing some WA

metrics calculated by

WARE

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

Appendice

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 107

Esempio:
Migrating Interactive Legacy
Systems To Web Services

Porfirio Tramontana
Anna Rita Fasolino

Giovanni Frattolillo

Dipartimento di Informatica e Sistemistica
University of Naples Federico I, Italy

Gerardo Canfora

et
desh Studi RCOST — Research Centre on Software Technology

del Sannio _ _ _
University of Sannio, Benevento, Italy

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 108

Three basic questions ...

1. What to expose as a Web Service?

2. When the migration is convenient?

. G. Lewis, E. Morris and D. Smith have approached this question in the
yesterday tutorial and in the previous talk ...

. S. Tilley, J. Gerdes, T. Hamilton, S. Huang, H. Muller, K. Wong also
outline the challenges inherent in migrating to Web services

3. Which approaches for the migration?

. Sneed and Sneed present a tool supported process to make accessible
selected sections of legacy code as Web Services;

. E. Stroulia, M. EI-Ramly, P. Sorenson propose methods based on the
analysis of screen features and on the tracing of user interactions to
reverse engineering interfaces of an interactive legacy system in order to
support the migration

A specific problem:
the migration of interactive legacy system functionalities toward
Web Services

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 109

Comparing Interaction paradigms...

Form based Interactive Systems Web Services

Users query the system by inputting data and
sending commands, by interacting with the
user interface.

A Client party invokes a service
implemented by a provider party,
using a request message.

The provider processes the request
System answers by producing a response and sends a response message Wwith

screen, containing output values and new the obtained results.
input fields and command buttons

Req |
- E?;D Resp | < py

——

Which approaches for the migration?
Wrapping

110

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

The Wrapper

— The goal of the wrapper is to drive the legacy system during the
execution of each possible interaction scenario associated with
the use case to migrate, by providing it with the needed flow of
data and commands.

— The wrapped legacy system use case is accessible as a Web

Service
Application Server
Web . Wrapper
Servi
Request _:: Legacy System
Web <_ <
Service
Response

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 111

A key requirement of the Wrapper

The wrapper must be reusable for migrating different use cases,
SO...

The wrapper behavior requested for each use case will not be
embedded in the wrapper...

But it will be separately specified for each use case

A key guestion: obtaining for each use case a complete model of
the interaction between the legacy system and the user

A Reverse engineering problem!

Tecniche di Reverse Engineering e ReEngineering 112

Modelling Interactions between User and
Legacy System

s DIMPLE CALCULATOR PROGRAM e
= STMPLE CALCULATOR PROGRAM e Ir“)ut' 3
Choose the operation_ Enter second operand value:
| Input: /
Input: 4

#xx% SIMPLE CALCULATOR PROGRAM wx

wxx STMPLE CALCULATOR PROGRAM ==

Enter first operand value :

Result = B.75

_ Input: Quit
An example: a scenario from the

“Division” use case of a legacy hexx SIMPLE CALCULATOR PROGRAM wx

calculator program @
Goodhye *

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 113

The Model of the Interaction

A Finite State Automaton FSA= (S, T, A, Sin, Sfin)
where:
— S is the set of Interaction States,

— Ais the set of Actions performed by the user when an Interaction
State occurs,

— T s the set of Transitions between states,
— Sin and Sfin are the Initial and Final states of the interaction.

+ First Al Second A2 quit
Operand Operand | — —= Menu
Request Request

Initial State : . : -
Interaction States Transitions Actions Final State
Ingegneria del Software 2 — Manutenzione e Reverse Engineering

A problem

Login Login _(Password
Request - "\ Request —~

What the next State?

Access
Permitted

Access
Denied

4 The next state depends on the internal logic or on the internal state of the legacy
system.

5 Asolution: Non Deterministic Finite State Automata
o a Non Deterministic Finite State Automaton (NFA) is a
finite state machine where for each pair of state and input
symbol there may be several possible next states

Password

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 115

Another Wrapper Requirement

— The wrapper must know the list of the possible Next States of a given State
* Possible successors of Password Request State are Access Permitted and
Access Denied states
— The wrapper must be able to identify the current state on the basis of the
returned screen

« Wrapper must discriminate among Access Permitted screen and Access Denied
screen

Access

Password Permitted

Password \ _* /
Request
\W‘i
Access

Denied

Login
Request

Same Action, but different Transitions!

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 116

Screen Templates

JA description of Legacy Screen 1s needed for the identification: Screen
Templates

A Screen Template is a collection of Fields:
Labels;
Input Fields;
Output Fields;
Each field has a Location on the Screen. Location may be defined as a:
Fixed Location, i.e. coordinates of the field;
Relative Location, i.e. distance from another field.

Initial Cursor Position

Fixed Location
X 1 *
y

1 Field *
Screen Template
< | optional —3

N size
Relative Location *’/

offset x
offset 'y

Location

Label Output Field Input Field
Regular Expression Value Value

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 117

Characterising Interaction States

 An Interaction State is characterised by a
Screen Template and a set of actions to
perform on its fields, causing transitions to
other Interaction States

User ACtionS may be: Screen Template Set Input Field
Set Input Field 1 value
ACtIOI’]S Interaction State 1 1.x User Action < Get Output Field
Get Output Field +o) value
Actions +from Submit

. Transition Command
Submit Command

Actions

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 118

Wrapper Architecture

Application Server
Wrapper
State Screen
. A
: Identifier ~emplate FSA
Legacy Terminal — DésCription -
\dentified l TLegacy Screer] Description
SyStem Emulator Interaction State Current State Document
? Actions Automaton | 1] \/
Legacy Screen q Engine
A
] h 4
Web Service lWeb Service
Request Response

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 119

Terminal Emulator

Legacy |,/ Terminal
System Emulator
? Actions Automaton
Legacy Screen > Engine

* The Terminal Emulator component is
responsible for the dialogue between the
Wrapper and the Legacy System terminal
— Different implementations of the Terminal Emulator

are needed for different Legacy System Terminals
« Stream Oriented terminals;

* Block oriented terminals:
« Web Applications.

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 120

State Identifier

The State |dentifier
component is responsible for State Screen
the identification of the Identifier | el | FSA
Iﬂteraction State reached by l Téi%?é%éi’;f:“’ Description
the Legacy System Document
Automaton -
Engine

— It has to match the current screen of the legacy system with the Screen
Templates associated with potentially reachable Interaction States

— The Screen Templates descriptions are part of the Automaton
Description Document

« Moreover, the State Identifier
— localises Labels
— localises Input Fields
— Localises Output Fields and read their values

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 121

Automaton Engine

- The Automaton Engine is responsible for interpreting the FSA
associated with a given service offered by the legacy system. It:

Sends commands to and receives screens from the Terminal Emulator
Queries the State ldentifier about the identification of the Current

Interaction State

Interprets the request message received from the application server
Builds the response message and sends it to the application server

Manages Automaton Variables (i.e. temporary variables needed to save
intermediate results of the execution of the Automaton)

NOT (Current Interaction State = Final State)

[

Start Activity

do/ Get Request Message

do/ Init Automaton Variables

do/ Start Legacy System

event Legacy Screen Returned/ Get Legacy Screen
do/ Identify Current Interaction State

Interpretation Activity

do/ Get Output Field Values

do/ Set/Update Automaton Variables

do/ Set Input Field Values

do/ Submit Transition Command

event Legacy Screen Returned/ Get Legacy Screen
do/ Identify Current Interaction State

Current Interaction Final Activity
State = Final Statt

/\ do/ Build Response Message @

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 122

Finite State Automaton Description Document

Transition

Request

1
Get

1

Init Action

+from
;* Interaction State

Fixed Location

X
y

+to

. *

|

Submit Command
Action

Command

1 Initial Ci

Relative Location

Location <‘,,7, offset x

offsety
L e

or Position

‘ Screen Template

Label
Regular Expression

.
Field ‘
<>—‘*

*

1

Get Output
Field Action

Get Output Field ‘

*

Input Field ‘

Response

Set/Update Automaton
Variable Action

Expression

1
Buiild

Build Response Action

1 Set/U

*

pdate Get

1

Set Input Field
Action

Expression

Automaton Description
Document UML model

<automa>
<automa-states>

<state id="go_to_header" type="automa"
screen="PineGoToHeaderScreen">

<description>State
</description>
<layout>
<location x="1" y="2"/>
<size width="8" height="2"/>
</layout>
<actions>
<set-fields-action>
<field ref="prompt">
<data ref="/root/header"/>
</field>
</set-fields-action>
</actions>
<next-states>
<next-state ref="bad_header">
</next-state>
<next-state ref="header">
</next-state>
</next-states>
</state>

<screen id="GoToHeader">
<size width="80" height="25"/>
<simple-field id="GoToHeaderld" optional="false"
input="false">
<fixed-location>
<point x="0" y="22"/>
</fixed-location>
<content pattern="Message number to jump to"
length="25"/>
</simple-field>
<simple-field id="prompt" optional="true"
input="true">
<fixed-location>
<point x="25" y="22"/>
</fixed-location>
<content pattern="" length="5"/>
<focus order="1">
<advance-key id="ENTER"/>
</focus>
</simple-field>
<caret-location>
<fixed-location>
<point x="28" y="22"/>
</fixed-location>
</caret-location>
</screen>

</automa-states>
</automa>

An excerpt of an Automaton
Description Document

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

123

A Case study

* A migration case study has been carried out
according to a process Iincluding the following
phases:

— ldentification, I.e. reverse engineering of the
Interaction model,

— Design, i.e. defining the FSA describing the Wrapper
behaviour;

— Implementation, i.e. realisation of the XML FSA
Description Document;

— Web service deploy, I.e. deployment of the wrapper in
the context of an application server;

— Validation, i.e. testing of the scenarios of the migrated
use case

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 124

A Case Study

Legacy system: Pine (ver. 4.64)

— client mail software, that allows a user to read, compose and manage e-mail
messages from an existing message box.

Pine is a form based legacy system based on stream oriented terminals.
— Usually, Pine is accessible via the Telnet protocol.

We submitted to the migration process the Get Message use case that allows
the owner of a mailbox to get the text of a specific e-mail message contained

in a specific mailbox folder.

Use case:

Get Message

Preconditions

None

Input

Login, Password, Folder, Message Number

Output

Date, From, To, cc, Subject, Body, Exception

Postconditions

None

125

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

The Automaton: graphical view

2 Password 4 \ . N 'd;.‘/ = 0N\
Authentication Authentication Men Main
Menu (Ask Login (Ask Password) Menu / 60 To F@ Folder Open
= — e "ipr

EadSsvvuiu

3
Awthentication
Menu (Incorrect

Password)

Folder viess.Numb.

/7 6
Folder Not
Found

A

Bad Message

(Empty Folder
Number

Header

17
Exit Confirm
(Folder Not
Found

<Control>C <enter>

18

/Exit Confirm

(Empty Folder

11

Folder Open
(Bad Message
Number)”/

16
Main Menu (Use
not admitted)

(/Message First
Page
19

y Exit Confirm <snace>
21 (Bad Message <space>
Exit Confirm Number /_/ P
. . \ (User not — . 14
7 different scenarios: 15 Message Mid

Message End || ——
Page

20
- Exit Confirm
1) One Page Message Read ‘z. — (Read Message

2) Two Pages Message Read

3) More than two Pages Message Read
4) Bad Message Number

5) Empty Folder

6) I?]Iéjgr Né)}lg%dSOftware 2 — Manutenzione e Reverse Engineering
7) Incorrect Password

<space> <space}:

The Automaton: a tabular specification

Interactio Interaction State Description Actions Submit Next
n State ID Command State
START Init (Login, Password, Folder, Message Number) 1
1 Authentication Menu (Ask Login) | Set Input Field: Login <Enter> 2
2 Authentication Menu (Ask Set Input Field: Password <Enter> 34
Password)
3 Authentication Menu (Incorrect Set Automaton Variable: Exception = “Incorrect Login and <Control>C | 16
Password) Password”
4 Main Menu g 5
5 Go To Folder Set Input Field: Folder <Enter> 6,7,8
6 Folder Not Found Set Automaton Variable: Exception = “Folder not found” q 17
7 Empty Folder Set Automaton Variable: Exception = “No messages in the folder” q 18
8 Folder Open j 9
9 Go To Message Set Input Field: Message Number <Enter> 10,12
10 Bad Message Number Set Automaton Variable: Exception = “Incorrect Message Number” <Enter> 11
11 Folder Open (Message not found) q 19
12 Header > 13
13 Message First Page Get Output Fields: (Date, From, To, Cc, subject,, Body); <Space> 14,15
Set Automaton Variables: (Output: (Date, From, To, Cc, subject,
Body))
14 Message Mid Page Get Output Field: Body <Space> 14,15
Update Automaton Variable: Body = Body + Output:Body
15 Message End Get Output Field: Body q 20
Update Automaton Variable: Body = Body + Output:Body
16 Main Menu (User not admitted) q 21
17 Exit Confirm (Folder Not Found) y END
18 Exit Confirm (Empty Folder) y END
19 Exit Confirm (No Message) y END
20 Exit Confirm (Read Message) y END
21 Exit Confirm (User not admitted) y END
END Build Response: (Date, From, To, Cc, Subject, Body, Exception)

Ingegneria del Software 2 — Manutenzione e Reverse Engineering

127

Testing Strategy

* A Test Suite comprehending 7 Test Cases had
been selected in order to cover the 7 linear
Independent paths individuated on the FSA

TC# TC Description Interaction State Sequence

1 One Page Message Read S-1-2-4-5-8-9-12-13-15-20-E

2 Two Pages Message Read S-1-2-4-5-6-9-12-13-14-15-20-E

3 More Than Two Pages Message Read S-1-2-4-5-8-9-12-13-14-14-15-16-21-E
4 Bad Message Number S-1-2-4-5-8-9-10-11-19-E

5 Empty Folder S-1-2-4-5-7-18-E

6 Folder Not Found S-1-2-4-5-6-17-E

7 Incorrect Password S-1-2-3-16-17-E

We noticed that all the 7 scenarios of the migrated use
case had been covered by the selected Test Suite

Ingegneria del Software 2 — Manutenzione e Reverse Engineering 128

