
Ingegneria del Software 2 – Manutenzione e Reverse Engineering 1

Manutenzione e Reverse Engineering

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 2

Riferimenti

• Sommerville, Ingegneria del Software, 8a ed.,

Capitolo 21

Ulteriori Letture Raccomandate
• Grady Booch, Nine Things you can do with old software, IEEE

Software, Sept/Oct 2008

• Canfora, Di Penta “Frontiers of Reverse Engineering:

a Conceptual Model”, FOSM08 – IEEE Comp. Soc. 2008

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 3

La Manutenzione del software- generalità

• Qualsiasi software, dopo il rilascio della prima release, avrà
bisogno di essere modificato.

• I sistemi software sono, per loro natura, sistemi evolutivi che
cambiano durante la loro vita.

• Ciò deriva dal fatto che, durante la vita del sistema, le
caratteristiche che lo definiscono cambiano, cambiando sia le
esigenze di chi usa il software, sia dell’ambiente del mondo
reale in cui il sistema opera.

– Più I requisiti del sistema sono instabili, o specificano un problema
in maniera incompleta ed approssimativa, più il sistema avrà
bisogno di cambiare.

• L’evoluzione di un software è dunque inevitabile!

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 4

Motivazioni per il cambiamento

• Errori possono essere individuati e devono essere

corretti;

• Il dominio del software può evolvere;

• Nuovi requisiti possono emergere dopo il rilascio;

• Nuove tecnologie hardware e software possono

affermarsi nel frattempo;

• Può essere necessario migliorare la qualità del software

(ad esempio l’affidabilità o le performance).

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 5

L’importanza dell’evoluzione

• Le organizzazioni proprietarie hanno fatto grossi

investimenti per I loro sistemi software, che sono

risorse critiche!

• Per preservare il valore di tali risorse, I sistemi

devono necessariamente cambiare ed evolvere.

• La manutenzione è un’attività costosa e la maggior

parte del budget speso per il software è in genere

speso per la sua manutenzione, piuttosto che per il

suo sviluppo.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 6

I costi della manutenzione

• Un tipico progetto di sviluppo software mediamente

dura tra 1 e 2 anni, mentre…

• La durata del periodo di manutenzione può variare

tra 5 e 6 anni [1]

– Più della metà dei costi di un progetto software sono spesi

per la manutenzione

– Recenti survey riportano la regola dell’ 80-20, ossia 80% di

sforzo speso per la manutenzione e 20% per lo sviluppo.

• [1] Parikh and Zvegintzov, Tutorial on Software Maintenance, IEEE,

1993

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 8

Evoluzione o Declino?

• Fino a che punto si può continuare a far evolvere un sistema
software?

• Quando si deve decidere di gettare il vecchio sistema e
sostituirlo con uno nuovo?

• Alcune domande da porsi:

– Il costo di manutenzione è troppo alto?

– L’affidabilità del sistema è inaccettabile?

– Non si riesce più ad adattare il software in tempi accettabili?

– Le prestazioni sono inaccettabili?

– Le funzionalità del sistema sono poco utili?

– Ci sono altri sistemi che fanno lo stesso lavoro meglio, più
velocemente ed economicamente?

– Il costo di manutenzione dell’hardware è diventato tale da
giustificare la sostituzione con nuovo hardware?

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 10

Leggi dell’evoluzione del software

• Proposte da Lehman e Belady a partire dal 1976, in

seguito a studi empirici basati inizialmente

sull’osservazione dell’evoluzione di 4 versioni successive

di un S.O. IBM

– Modifiche continue

– Complessità crescente

– Evoluzione dei grandi sistemi leggi iniziali

– Stabilità organizzativa

– Conservazione della familiarità

– Crescita continua

– Qualità deteriorata leggi più recenti

– Sistema feedback

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 11

Le Leggi di Lehman (1974)

• Modifiche continue
– Un sistema deve necessariamente cambiare, o diventerà

progressivamente inutile.

• Complessità crescente
– Quando un sistema viene modificato, la sua struttura si

deteriora: per evitare ciò bisogna investire sulla
manutenzione preventiva.

• Evoluzione dei grandi sistemi
– I grandi sistemi hanno una loro dinamica che è caratterizzata

da comportamenti e trends regolari che possono essere
usati per fare predizioni: in particolare, la dimensione, il
tempo fra due release successive, il numero di errori rilevati
sono approssimativamente invarianti per ogni release.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 12

Le Leggi di Lehman (1978-1991-1996)

• Stabilità organizzativa

– Raggiunto lo stato ‘saturo’, non ci possono essere variazioni
significative nella produttività dello staff

• Conservazione della familiarità

– Le modifiche incrementali per ogni release sono
approssimativamente costanti

• Crescita continua

– Le funzionalità offerte dai sistemi devono crescere
continuamente, per la soddisfazione degli utenti

• Qualità deteriorata

– La qualità dei sistemi si deteriora se non si interviene con
adattamenti ai nuovi ambienti operativi

• Sistema feedback

– I processi evolutivi incorporano sistemi di feedback utili al
miglioramento dei prodotti

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 14

Tipi di Manutenzione del software

• Classificazione degli interventi di manutenzione

– Manutenzione correttiva
• Modifiche per correggere difetti

– Manutenzione adattativa
• Modifiche per adattare il software a cambiamenti dell’ambiente operativo

(hardware, software di base, interfacce, organizzazione, legislazione, ecc.)

– Manutenzione perfettiva o evolutiva
• Estensione dei requisiti funzionali, o migliorie di requisiti non funzionali in risposta

a richieste dell’utente

– Manutenzione preventiva
• Modifiche che rendono più semplici le correzioni, gli adattamenti e le migliorie

• Manutenzione di emergenza
• Manutenzione correttiva non programmata, necessaria a mantenere il sistema in

funzione

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 15

Distribuzione dello sforzo di

manutenzione [1]

Preventiva

4%

Perfettiva

50%

Adattativa

25%

Correttiva

21%

[1] Lientz, Swanson, Problems in application software maintenance, 1981

Communication of the ACM

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 16

Manutenzione “d’urgenza”

• In alcuni casi le richieste di manutenzione devono
essere soddisfatte rapidamente:
– Se un difetto serio deve essere riparato;

– Se modifiche dell’ambiente operativo causano effetti
collaterali imprevisti sull’operatività del sistema;

– Se è necessario l’adeguamento urgente a seguito di
cambiamenti imprevisti (es. Ambiente o mercato)

• In questo caso, le fasi di analisi e progetto della
modifica potrebbero non essere eseguite,
implementando direttamente il cambiamento.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 17

Processo di riparazione d’urgenza

(quick- fix model)

Vecchio sistema

requisiti

progetto

codice

test

Nuovo sistema

requisiti

progetto

codice

test

- Con tale approccio, la qualità complessiva del software si ridurrà.

- Utile pianificare interventi di aggiornamento della documentazione

e/o di miglioramento della qualità del software.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 18

Problemi della manutenzione

• In gran parte dipendono dalla mancanza di controllo e

disciplina nelle fasi di analisi e progetto del Ciclo di Vita

del Software

• Alcuni fattori tecnici:

– difficoltà nel comprendere un programma scritto da altri

– mancanza di documentazione completa/ consistente

– software non progettato per modifiche future

– difficoltà nel tradurre una richiesta di modifica di

funzionamento del sistema in una modifica del software

– valutazione dell’impatto di ciascuna modifica sull’intero

sistema

– la necessità di ritestare il sistema dopo le modifiche

– la gestione della configurazione del software

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 19

• Stabilità del team

– I costi di manutenzione si riducono se lo stesso staff si occupa
della manutenzione per lungo tempo

• Responsabilità contrattuale

– Sviluppo e manutenzione sono talvolta appaltati ad aziende
diverse, cosicchè chi sviluppa non ha interesse a semplificare il
lavoro di chi effettuerà la manutenzione

• Capacità dello staff

– Chi si occupa della manutenzione potrebbe non avere lo stesso
livello di esperienza e pratica di chi lo ha sviluppato

• Età e struttura del programma

– Gli interventi di manutenzione tendono a far deteriorare la
qualità del software e quindi a rendere più difficili tutti gli
interventi di manutenzione necessari

• v. anche G. Visaggio, “Aging of a legacy system: symptoms and
remedies”, Journal of Software Maintenance, Wiley

Fattori di Costo della manutenzione

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 26

Il processo di evoluzione del software

Regression/

SystemTesting

Acceptance

Testing

Identificazione del

Problema/ Richiesta

di modifica

Analisi

dell’impatto

Pianificazione

della Release

ImplementazioneNuova

Release

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 28

Gli interventi per ‘Ringiovanire’ il software

• Sono finalizzati a migliorare la manutenibilità di un

software ormai deteriorato dagli interventi di

manutenzione subiti.

• Diverse tipi di intervento possibili:

• Ridocumentazione

• Restructuring (o Refactoring)

• Reengineering

• Reverse Engineering

29

Reengineering

• It is the examination and alteration of a subject system
to reconstitute it in a new form and the subsequent
implementation of the new form [Chikofsky and Cross]

• La reingegnerizzazione (reengineering) è un’attività di re-
implementazione di un sistema software svolta per migliorare
la manutenibilità di un software esistente.

• Essa può comprendere:

– Ridocumentazione, Ristrutturazione, Refactoring e
riscrittura di parte del software (o anche di tutto) senza
modificare l’insieme di funzionalità che esso realizza

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

30

Obiettivi del Reengineering

• Modularizzazione del sistema
– Suddivisione di un sistema monolitico in parti da riusare

separatamente

• Miglioramento delle Performance
– Migliorare le prestazioni di un sistema esistente

• Migrazione (o Porting) verso altre Piattaforme
– Necessità di localizzare I componenti dipendenti dalla

piattaforma

• Estrazione del progetto
– Per migliorare maintainability, portability, etc.

• Migrazione verso una nuova Tecnologia
– quali nuove caratteristiche di un linguaggio, standards,

librerie, etc.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

33

Ridocumentazione

• Consiste in una analisi statica del codice sorgente (attraverso

appositi strumenti) al fine di produrre documentazione del

sistema. Si analizzano:

– usi delle variabili, chiamate fra componenti, path del flusso di

controllo, dimensioni dei componenti, parametri di chiamate, .. Per

capire cosa fa il codice e come lo fa.

• Gli output di una attività di ridocumentazione possono essere:

– grafi delle chiamate,tabelle delle interfacce delle funzioni, dizionari

dati, diagrammi del data-flow o control-flow, pseudo-codice, cross-

reference fra componenti o variabili

– Tali output si possono usare per verificare se il software ha bisogno

di ristrutturazione.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

34

Ridocumentazione

• Un approccio diverso alla ridocumentazione può

passare per l’analisi dinamica

– Si eseguono scenari dei casi d’uso dell’applicazione

• Per analisi dinamica si possono ottenere:

– Modelli dell’interfaccia utente

– Modelli dell’interazione tra i componenti

– Documentazione per l’utente finale

• Tutorial, …

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

35

Standard di documentazione del codice

• Tra gli innumerevoli standard di documentazione

esistenti, verrà presentato Javadoc

– Ideato per Java

– Affiancato da un tool (javadoc) in grado di generare

manualistica a partire dall’analisi della documentazione

presente nel codice sorgente

– Generalizzabile a qualsiasi altro linguaggio

• Come tool generante, oltre a javadoc, verranno

mostrate le potenzialità di Doxygen

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

36

Esempio Javadoc
Inizio commento per Javadoc

Breve riassunto dello

scopo e dei parametri

del metodo

(Description Block)

URL diventerà un link nella

documentazione HTML

Nuova linea nell’HTML risultante

Parametri

Valore di ritornoRiferimento

Codice del metodo

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

37

HTML risultante

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

38

Principali Tag Javadoc

@author name-text

@deprecated deprecated-text

{@code text}

{@docRoot}

@exception class-name description

{@inheritDoc}

{@link package.class#member label}

{@linkplain package.class#member label}

{@literal text}

@param parameter-name description

@return description

@see reference

@serial field-description | include | exclude

@serialField field-name field-type field-description

@serialData data-description

@since since-text

@throws class-name description

{@value package.class#field}

@version version-text

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

39

• La documentazione di riferimento del “linguaggio” javadoc e dei
modi di utilizzo del tool corrispondente è disponibile all’indirizzo:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/javadoc.html#tags

• Esistono strumenti in grado di valutare la completezza della
documentazione

– Checkdoc della Sun: http://java.sun.com/j2se/javadoc/doccheck/

• Il tool javadoc, richiamabile da linea di comando, genera un
insieme di file in puro HTML (con l’utilizzo di frames), altamente
navigabili

– Non è prevista, viceversa, la generazione di un unico
documento, che possa costituire lo scheletro di un manuale
utente

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

JAutoDoc

• JAutoDoc è uno strumento,

integrato in Eclipse, che

genera automaticamente

scheletri di configurazione,

da completare
– http://jautodoc.sourceforge.net/

• E’ in grado anche di riparare

documentazioni incomplete

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 40

http://jautodoc.sourceforge.net/

41

Doxygen

• Sistema di documentazione utilizzabile per programmi scritti in C++, C,
Java, ed altri

– https://sourceforge.net/projects/doxygen

– Genera documentazione in HTML e anche un manuale di
riferimento completo in RTF (MS-Word), PostScript, PDF, chm o
man Unix, direttamente a partire dalle informazioni reperibili nel
codice sorgente.

– Doxygen estrae i commenti scritti in formato simile a quello di
Javascript e inoltre la struttura dei costrutti principali ricavabili
dall’analisi statica del codice, comprese associazioni, ereditarietà,
…

– Doxygen genera automaticamente alcuni diagrammi, tra cui grafi
delle dipendenze, diagrammi di ereditarietà, diagrammi di
collaborazione ed altro, secondo il formato DOT

• http://www.research.att.com/sw/tools/graphviz/

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 44

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 45

Allslsllsl

Allala

Allala

Restructuring

• Attività che trasforma il codice esistente in codice
equivalente dal punto di vista funzionale, ma migliorato
dal punto di vista della sua qualità.

• In genere si esegue in tre passi:

1. Analisi statica del codice per ottenerne una
rappresentazione interna (es. call graph, control-flow
graph…)

2. Semplificazione della rappresentazione interna attraverso
tecniche di trasformazione automatiche.

3. La nuova rappresentazione viene usata per generare una
versione strutturata (migliorata) ed equivalente al codice
originario.

Allslsllsl

Allala

Allala

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 46

Refactoring

• Anche i sistemi object-oriented sono soggetti al

deteriorarmento e diventano legacy!

• Il refactoring è un insieme di tecniche usabili per

migliorare il codice ed il design di sistemi object-

oriented.

– Martin Fowler è autore del libro “Refactoring: Improving

the Design of Existing Code” (1999)dove presenta più

di 70 pattern per eseguire il refactoring.

• Tali tecniche cercano di eliminare i cosiddetti Bad

Smells dal codice.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 48

Esempi di Bad Smells nel codice

Problema (Bad Smell) Pattern di Refactoring

applicabile

Codice duplicato Extract Method

Metodi troppo lunghi Extract Method

Classi troppo grandi Extract Class, Extract Sub-

Class, Extract Interface

Lunghe liste di parametri di

metodi

Replace parameter with

Method

Cambiamenti divergenti in una

classe (una classe è soggetta a

cambiamenti per tanti motivi)

Extract Class

… …

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 49

Esempi di Tool per il Refactoring

Net Beans Refactoring Eclipse Refactoring

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 50

Esempi di Refactoring: extract method

• Extract method

– Seleziona un

pezzo di codice

– Imposta nome e

parametri

– Sostituisci

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 51

Esempi di Refactoring: extract method

• Extract method

– Seleziona un

pezzo di codice

– Imposta nome e

parametri

– Sostituisci

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 52

Esempi di Refactoring: extract method

• Extract method

– Seleziona un

pezzo di codice

– Imposta nome e

parametri

– Sostituisci

private static int giornoDellaSettimana(int d,

int a, int m) {

if (m<=2)

{

m = m + 12;

a--;

};

int f1 = a / 4;

int f2 = a / 100;

int f3 = a / 400;

int f4 = (int) (2 * m + (.6 * (m + 1)));

int f5 = a + d + 1;

int x = f1 - f2 + f3 + f4 + f5;

int k = x / 7;

int n = x - k * 7;

return n;

}

int n = giornoDellaSettimana(d, a, m);

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 53

Esempi di Refactoring: extract constant

• Extract constant:

– Seleziona un

valore costante

– Converti in

costante (tutte

le sue

occorrenze)

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 54

Esempi di Refactoring: extract constant

• Extract constant:

– Seleziona un

valore costante

– Converti in

costante (tutte

le sue

occorrenze)

private static final String

LUNEDI = "Lunedi";

…

if (n==1)

return LUNEDI;

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 55

Esempi di Refactoring: extract local variable

• Extract local

variable:

– Seleziona

un’espressione

che ha un

valore

– Converti

l’espressione in

una variabile

(tutte le sue

occorrenze)

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 56

Esempi di Refactoring: extract local variable

• Extract local

variable:

– Seleziona

un’espressione

che ha un

valore

– Converti

l’espressione in

una variabile

(tutte le sue

occorrenze)

String calend =

calend(giorno,mese,anno);

System.out.println(calend);

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 57

58

CodePro Analytix

• Plug-in multifunzionale per Eclipse offerto da Google

• https://developers.google.com/java-dev-tools/codepro/doc/

• Scaricabile direttamente da:

• http://dl.google.com/eclipse/inst/codepro/latest/3.7

• Aggiornato ad Eclipse Indigo; dovrebbe funzionare anche per le versioni
successive

• Tutorial e documentazione accessibili da:
• https://developers.google.com/java-dev-tools/codepro/doc/

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

https://developers.google.com/java-dev-tools/codepro/doc/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

CodePro Analytix Dead Code Analysis

• CodePro cerca, tramite analisi statica, di verificare

quale parte del codice non sia raggiungibile (codice

morto)

• Le indicazioni di CodePro non possono essere

considerate né complete né sempre valide, a causa di

possibili utilizzi del codice tramite chiamate

dinamicamente generate

• Per eseguire l’analisi del Dead Code è sufficiente

eseguire Find Dead Code nel menu contestuale

Code Pro Tools

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Utilizzo di Find Dead Code

• Selezionare (da proprietà del

progetto/Dead Code Entry Point) i

punti di accesso dell’applicazione

(di solito il main)

• Avviare Find Dead Code

• Osservare i risultati nella view Dead

Code

• Le classi/metodi/attributi barrati sono

inutilizzabili (secondo quest’analisi)

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Utilizzo di Find Dead Code

• La ricerca del Dead Code non funziona bene in caso di codice generato

dinamicamente

• Un caso tipico è rappresentato dal codice ascoltatore di eventi utente

• In questo caso, è opportuno considerare le classi che rispondono agli

ascoltatori come ulteriori Entry Point

• Per conoscere il Dead Code interno ai metodi, può essere opportuno

segnare ogni metodo come possibile entry point

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

64

Reverse Engineering

• È un’attività che consente di ottenere specifiche e informazioni

sul design di un sistema a partire dal suo codice, attraverso

processi di estrazione ed astrazione di informazioni.

• La definizione di Chikofsky and Cross, 1990 [1]:

• Analyzing a subject system

– to identify the system's components and their inter-relationships
and

– to create representations of the system in another form or at a
higher level of abstraction

• A two-steps process

– information extraction

– view abstraction

[1] Chikofsky and Cross, Reverse engineering and design recovery: A taxonomy.

IEEE Software,1990

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

65

Reverse Engineering Goals

• Reverse engineering tasks are performed to satisfy

reverse engineering goals:

– Change goals: produce a renewed product

• e.g. through migration, modernization, modularization

– Understanding goals: increase the current understanding

of a software product

• Produce high level views by means of an Abstractor

• Can start from source code, but also from binary

• Examples of targets: recovering architectures, design,

traceability links, building metric views

Canfora, Di Penta “Frontiers of Reverse Engineering:
a Conceptual Model”, FOSM08 – IEEE Comp. Soc. 2008

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

67

Fasi di Estrazione ed Astrazione

• Estrazione
– Analisi del codice o di altri artifatti software, allo scopo di

ottenere informazioni relative al sistema analizzato.

– Particolarmente utili sono quelli strumenti in grado di estrarre
informazioni da un codice sorgente qualsiasi, nota che sia la
grammatica del linguaggio di programmazione (ad esempio
JavaCC o Antlr)

• Astrazione
– Si esaminano le informazioni estratte e si cercano di astrarre

diagrammi, o viste, ad un più alto livello di astrazione (es.:
diagrammi di progetto, architetturali, del dominio dei dati)

– I processi di astrazione non sono completamente
automatizzabili poichè necessitano di conoscenza ed
esperienza umana

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

68

Tassonomia degli analizzatori

Hybrid Analyzer

Binary File

Binary Analyzer Evolution History

Source Code Execution Trace

Code Analyzer

Historical AnalyzerDynamic AnalyzerStatic Analyzer

Analyzer

cd: Analyzers

analyzes+

analyzes+

analyzes+

analyzes+

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

69

Static analysis

• Source code or other artifacts are
parsed and then a model is built
– Island grammars or code

transformations as alternatives
• Relatively fast and cheap ☺
• Complete ☺

• Difficult to capture
behavioral/dynamic models
– State machines
– Sequence diagrams
– Detect behavioral patterns

• Intrinsic difficulties increasing with
highly dynamic systems 

– Pointer analysis
– Polymorphism
– Ultra-late binding

…
if(x==0){
System.out.
println(j);

}
while(y>0)
{

…
}
…

Parser

seq

seq

seq

while

if
… … … … …

Analyzer

Source
code

Parse
tree

ModelAcademicRecord

course_code : String

year : Date

semester : Integer

grade : String

Course

course_code : String

course_name : String

credit_points : Integer

AcademicInCharge

Student

student_id : String

student_name : String

current_fees : Money

0..*0..*

CourseOffering

year : Date

semester : Integer

enrolment_quota : Integer

0..*0..*

0..*

0..1

0..*

0..1

*

* takes

*

*

takes_crsoff

has_stud

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

70

Dynamic analysis
• System exercised by means of

– test cases

– realistic usage scenario
• Collecting execution traces

– Code instrumentation

– Patching virtual machines
• Able to deal with dynamicity ☺

• Useful to extract dynamic models
☺

• Code must be compilable 

• The quality of the models built
depends on the data used for

execution 

• Might be incomplete 

• Might be expensive 
obj1 : Class1 obj2 : Class2

msg1

msg2

obj1 : Class1 obj2 : Class2

msg1

msg2

Return x1, x2, …

Execution

…

while(y>0)

{

if(x==0){

o.f();

br.write(“f”);

}

o.g();…

br.write(“g”);

}

…

Instrumented
source code

Real usage
scenario

Test
cases

f g g f g g f g g g

OnFirstFloor

Idle

entry/timer = 0

do/increase timer

Moving

do/moving to floor

go up (floor)

arrived
go down (floor)

[timer = time-out]/go down (first floor)

go up (floor)

OnFirstFloor

Idle

entry/timer = 0

do/increase timer

Idle

entry/timer = 0

do/increase timer

Moving

do/moving to floor

Moving

do/moving to floor

go up (floor)

arrived
go down (floor)

[timer = time-out]/go down (first floor)

go up (floor)

Analyzer

Execution
trace

Dynamic models
Ingegneria del Software 2 – Manutenzione e Reverse Engineering

71

Historical analysis

• Static and dynamic analysis do not capture information

such as:

– How does an artifact change during the time?

– When was it changed?

– Why was it changed?

• New requirements, bug-fixing, refactoring, re-documentation…

– Who changed it?

– What artifacts changed together?

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

73

Problemi indecibili nel Reverse

Engineering

• non è possibile, a partire dal solo codice, astrarre il

progetto dal quale esso è stato prodotto

– non è invece indecidibile il problema di astrarre un

progetto coerente con il codice;

• non è possibile, a partire dal solo programma

oggetto, astrarre il programma sorgente dal quale

esso è stato prodotto

– non è invece indecidibile il problema di astrarre un

programma sorgente che generi il dato programma

oggetto.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

74

Problemi del Reverse Engineering

• Il processo di produzione del software è costellato di pozzi nei quali si

perde parte della conoscenza: non tutta la conoscenza ed esperienza

messa in campo dall’ingegnere del software in una fase di produzione

(ad es. progettazione) viene in qualche forma rappresentata nello

stesso prodotto di fase (progetto) o in quello delle fasi successive (ad

es. codice).

• Questo comporta che ai problemi di indecidibilità si aggiungono quelli

dovuti alla perdita di conoscenza che richiedono, per la realizzazione

completa di un’astrazione, l’aggiunta di conoscenza ed esperienza da

parte dell’ingegnere del software (almeno per ora).

• Il Reverse Engineering non è, quindi, un’attività completamente

automatizzabile!

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 75

Appendice

76

Il problema dei Legacy Systems

• Un sistema legacy (“ereditato”)

– é spesso vecchio (10 anni o più di vita);

– è di grandi dimensioni (centinaia di migliaia di linee di codice)

– è scritto in assembler o in un linguaggio di vecchia generazione

– è stato probabilmente sviluppato prima che si diffondessero i

moderni principi dell’ingegneria del software

– La manutenzione é stata svolta in modo da seguire le modifiche

nei requisiti, aumentando così l’entropia (il disordine) del sistema

– La manutenzione risulta ormai difficile e costosa

– Realizza funzionalità cruciali e irrinunciabili per l’organizzazione

– Contiene anni di esperienza accumulata nell’ambito del dominio

specifico del problema

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

77

La gestione dei Sistemi Legacy:

due decenni di strategie

‘80 2000‘90

Coyle, IEEE Software 2000

Migrazione

verso

architetture

client- server a

due livelli

Integrazione in

piattaforme OO

attraverso

wrappers

Migrazione

verso

architetture a

tre livelli

Integrazione nel

mondo del

WWW

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

79

Una recente analisi di strategie proposta

da Grady Booch

G. Booch, Nine things you can do with old software, IEEE
Software, Sept 2008

• Abbandonarlo

– quando il suo valore economico si è esaurito, o lo sforzo
di risviluppo non è eccessivo

• Regalarlo

– Se non serve più, si può cederlo a qualche comunità
open-source dove potrà ancora tornare utile a qualcuno

• Ignorarlo

– Se è abbastanza stabile, e fa qualcosa di utile, si può
continuare a usarlo senza però modificarlo.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

80

Nove cose da poter fare con software

legacy

• Farlo sopravvivere
– Quando l’hardware su cui gira non è più supportato (e non si

dispone del codice sorgente per portarlo in nuove piattaforme),
si fa sopravvivere o cercando vecchio hardware da
cannibalizzare, o usando emulatori di piattaforma.

• Riscriverlo
– Quando la manutenzione è troppo costosa, o il sistema è

troppo fragile, si può riscriverlo (ma sapendo che ottenere un
sistema funzionalmente equivalente al primo è impossibile, e
che bisognerà probabilmente convincere gli utenti ad accettare
qualche cambiamento)

• Farlo fruttare (in qualche modo)

– Cercare parti del sistema da conservare (algoritmi, pattern,
astrazioni…) perché ancora utili, ed usarle come una base di
conoscenza per un nuovo sviluppo

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

81

Nove cose da poter fare con software

legacy

• Wrapping

– Usare tecniche di wrapping per integrarlo in nuove

piattaforme (quali SOA)

• Trasformarlo

– È la strategia più difficile e va praticata per mantenere il

sistema in condizioni ottimali, se si prevede di continuare ad

usarlo a lungo termine: va dal semplice refactoring, alla

trasformazione architetturale.

• Preservarlo

– Anche il software antico può avere un valore storico (es.

vecchi sistemi operativi, o videogiochi) e culturale da

preservare (magari in un Museo della Storia dei Computer)

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

83

System quality and business value

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

84

Legacy system categories

1. Low quality, low business value

– Dovrebbe essere abbandonato

2. Low-quality, high-business value

– Realizza funzionali importante ma è costoso mantenerlo.
Dovrebbe essere reingegnerizzato in modo da rendere le future
(necessarie) operazioni di manutenzione più agevoli ed efficaci
(cioè finire nel quarto caso)

3. High-quality, low-business value

– Si può decidere sia di abbandonarlo (in quanto poco
importante), sia di rimpiazzarlo con COTS (se realizza qualcosa
di generale, indipendente dal dominio specifico) oppure
mantenerlo (dato che i costi di manutenzione saranno limitati)

4. High-quality, high business value

– Su di esso si eseguono le operazioni di manutenzione
• In questo modo, però, la qualità diventerà via via più bassa, fino a

finire nel secondo caso

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 85

Appendice

86

Esempio: generazione automatica di

tutorial di applicazioni Web

• Tre fasi:

– Web Application Dynamic

Analyis

– Generazione del

Navigation Graph

– Generazione della End

User Documentation

Analyst

RIA

Dynamic

Analysis

RIA

Navigational

Model

Generation

User

Documentation

Generation

Introductory

Manual

Reference

GuideTutorials

FSMs

Collected Traces

Repository
Edited FSMs

Use Case

Scenarios

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

87

Web Application Dynamic Analysis

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Navigation Graph Generation

88Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Overall Navigation Graph

89Ingegneria del Software 2 – Manutenzione e Reverse Engineering

figure7.png

Esempi di scenari di navigazione

90

Classic Graph

View
Graph view with Screenshots

Clickab

le

nodes

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Related Regular Scenarios

Advanced Add

Related Exception Scenarios

Insertion of Wrong Data

Quick Add

In this scenario a logged user can insert a tudu in a selected

list of todos.

Event Sequences

Esempio di descrizione di uno scenario

91Ingegneria del Software 2 – Manutenzione e Reverse Engineering

../../wse%202011%20ridocumentazione/tuduDocumentation/advancedadd.html
../../wse%202011%20ridocumentazione/tuduDocumentation/wrongdata.html

Scenario Tutorial example (1/4)

92Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Scenario Tutorial example (2/4)

93
93Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Scenario Tutorial example (3/4)

94
94Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Scenario Tutorial example (4/4)

95
95Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 96

Appendice

97

Esempio (d’annata):

Reverse Engineering di applicazioni web

CODICE

SORGENTE

APPLICAZIONE

WEB

WEB

APPLICATION

INSTALLATA

ANALISI

STATICA

ANALISI

DINAMICA

ANALISI

FUNZIONALE

COMPONENTI E

RELAZIONI DIRETTE

TRA ESSI

INTERAZIONI

DINAMICHE TRA I

COMPONENTI

REQUISITI

FUNZIONALI

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

98

Analisi statica vs Analisi Dinamica

• L’analisi statica:
– Deve essere effettuata necessariamente sul codice sorgente

• Possibile solo per li sviluppatori dell’applicazione

– Estrae solo un sottoinsieme delle informazioni
• Ad esempio, nei software object oriented non può estrarre gli oggetti

istanziati dinamicamente (e nemmeno le eventuali classi dichiarate a
tempo di esecuzione)

– Non va a modificare il codice sorgente

• L’analisi dinamica:
– Può essere effettuata anche dagli utenti dell’applicazione

– Potenzialmente può estrarre tutte le interazioni che vengono in essere
durante l’esecuzione del software

– Necessita di sonde da inserire nel codice (per esportare dati)

– Non ha una terminazione
• Dovrebbe riferirsi ad un insieme “significativo” di esecuzioni

dell’applicazione
– Ad esempio una test suite che soddisfi un certo criterio di copertura

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

99

Un tool di supporto all’analisi statica:

Flusso dei dati

EstrattoreApplicazione

Web

Astrattore di

primo livello

DataBase

Astrattore di

secondo livello
Diagrammi

/report

Forma di

rappresentazione

intermedia

FRI

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

100

Extractor Abstractor

Interface

layer

IRF

DBR

Diagrams

Repository

HTML

Parser

s

Service

Layer

WARE-Tool

WA

Source

Files

WARE

GUI

Graphical Visualizer

Dott

y
VCG RIGI

ASP

VBS

PHP

JS

….

IRF Translator

Query Executor

UML Diagrams

Abstractor

Vista architetturale

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

101

Sviluppo del tool estrattore: Analisi delle informazioni

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

102

Sviluppo del tool estrattore:

Definizione della forma di rappresentazione intermedia

<APERTURA>

<NOMEFILE="\index.htm">

</APERTURA>

<TITOLO>

<TITOLO="Giuridea - Forum e Laboratorio
Giuridico">

</TITOLO>

<APERTURA BLOCCO JAVASCRIPT>

<LINEA=22>

</APERTURA BLOCCO JAVASCRIPT>

<CHIUSURA BLOCCO JAVASCRIPT>

<IMMAGINE>

<LINEA=50>

<NOMEFILE="images/title.jpg">

</IMMAGINE>

<ANCORA>

<LINEA=51>

<NOMEFILE="Archivio/Archivio.htm">

</ANCORA>

➢ Censimento di tutte le
espressioni del codice sorgente
che devono essere riconosciute:
(tag HTML - comandi Javascript
-comandi VBScript - eventi di
apertura e chiusura file)

➢ Per ognuna di queste espressioni

viene definita la sintassi del tag

corrispondente nella forma di

rappresentazione intermedia

➢ Per ogni tag della forma di

rappresentazione intermedia

viene definita la semantica

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

103

Sviluppo del tool estrattore: Implementazione

Statechart

raffigurante

l’automa

riconoscitore di tag

HTML

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

104

Sviluppo del tool estrattore:

Implementazione

Automa riconoscitore di parole

chiave VBScript

Automa riconoscitore di parole

chiave Javascript

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

105

Tool astrattore

Diagramma delle pagine

/areadocente.html

/check.asp

Redirect

/check.aspBuilds

/autenticazionedocente.html

Submit

/check.asp /check.asp/check.asp

Submit

Diagramma dei gruppi di

pagine correlate

Euristiche per il

raggruppamento delle

pagine

Validazione dei

gruppi e loro

interpretazione

come casi

d’uso

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Tool Visualizzatore

106

WA components reachable from a

selected component Definition of sub sets of WA

components

Page list and information extracted from

a client page

Form showing some WA

metrics calculated by WARE

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

Ingegneria del Software 2 – Manutenzione e Reverse Engineering 107

Appendice

108

Esempio:

Migrating Interactive Legacy

Systems To Web Services

Porfirio Tramontana

Anna Rita Fasolino

Giovanni Frattolillo
Dipartimento di Informatica e Sistemistica

University of Naples Federico II, Italy

Gerardo Canfora
RCOST – Research Centre on Software Technology

University of Sannio, Benevento, Italy
Ingegneria del Software 2 – Manutenzione e Reverse Engineering

109

Three basic questions …

1. What to expose as a Web Service?

2. When the migration is convenient?

• G. Lewis, E. Morris and D. Smith have approached this question in the
yesterday tutorial and in the previous talk …

• S. Tilley, J. Gerdes, T. Hamilton, S. Huang, H. Muller, K. Wong also
outline the challenges inherent in migrating to Web services

3. Which approaches for the migration?

• Sneed and Sneed present a tool supported process to make accessible
selected sections of legacy code as Web Services;

• E. Stroulia, M. El-Ramly, P. Sorenson propose methods based on the
analysis of screen features and on the tracing of user interactions to
reverse engineering interfaces of an interactive legacy system in order to
support the migration

A specific problem:

the migration of interactive legacy system functionalities toward

Web Services

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

110

Form based Interactive Systems

Users query the system by inputting data and

sending commands, by interacting with the

user interface.

System answers by producing a response

screen, containing output values and new

input fields and command buttons

Web Services

A Client party invokes a service

implemented by a provider party,

using a request message.

The provider processes the request

and sends a response message with

the obtained results.

Comparing Interaction paradigms…

Which approaches for the migration?

Req

Resp

Wrapping

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

The Wrapper

– The goal of the wrapper is to drive the legacy system during the
execution of each possible interaction scenario associated with
the use case to migrate, by providing it with the needed flow of
data and commands.

– The wrapped legacy system use case is accessible as a Web
Service

Legacy System

Wrapper

Application Server

Web

Service

Request

Web

Service

Response

111Ingegneria del Software 2 – Manutenzione e Reverse Engineering

112

A key requirement of the Wrapper

• The wrapper must be reusable for migrating different use cases,
so…

• The wrapper behavior requested for each use case will not be
embedded in the wrapper…

• But it will be separately specified for each use case

• A key question: obtaining for each use case a complete model of
the interaction between the legacy system and the user

• A Reverse engineering problem!

Tecniche di Reverse Engineering e ReEngineering

113

Modelling Interactions between User and

Legacy System

Input: /

Input: 3

Input: 4

Input: Quit
An example: a scenario from the

“Division” use case of a legacy

calculator program

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

114

The Model of the Interaction

• A Finite State Automaton FSA= (S, T, A, Sin, Sfin)
where:
– S is the set of Interaction States,

– A is the set of Actions performed by the user when an Interaction
State occurs,

– T is the set of Transitions between states,

– Sin and Sfin are the Initial and Final states of the interaction.

Result

Second

Operand

Request

Menu
First

Operand

Request

+ A1 A2
Menu

quit

Interaction States Transitions Actions
Initial State Final State

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

115

A problem

What the next State?

Access

Permitted

Access

Denied

Password

Request

Login

Request

Login
Password ?

 The next state depends on the internal logic or on the internal state of the legacy

system.

Password

Password

 A solution: Non Deterministic Finite State Automata

 a Non Deterministic Finite State Automaton (NFA) is a

finite state machine where for each pair of state and input

symbol there may be several possible next states

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

116

Another Wrapper Requirement

– The wrapper must know the list of the possible Next States of a given State
• Possible successors of Password Request State are Access Permitted and

Access Denied states

– The wrapper must be able to identify the current state on the basis of the
returned screen

• Wrapper must discriminate among Access Permitted screen and Access Denied
screen

Access

Permitted

Access

Denied

Password

Request

Login

Request

Login

Password

Same Action, but different Transitions!

Password

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

117

Screen Templates

Fixed Location

x

y

Label

Regular Expression

Output Field

Value

Input Field

Value

Relative Location

offset x

offset y

Field

optional1

*

1

*

Location *1 *1
Screen Template

size

**

1 *1 *

Initial Cursor Position

 A description of Legacy Screen is needed for the identification: Screen

Templates

 A Screen Template is a collection of Fields:

 Labels;

 Input Fields;

 Output Fields;

 Each field has a Location on the Screen. Location may be defined as a:

 Fixed Location, i.e. coordinates of the field;

 Relative Location, i.e. distance from another field.

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

118

Characterising Interaction States

• An Interaction State is characterised by a

Screen Template and a set of actions to

perform on its fields, causing transitions to

other Interaction States

Set Input Field

Value

Get Output Field

Value

Submit

Command

Screen Template

User ActionInteraction State

*

1

*

1

*

*

+from
*

Transi tion

+to

*
1..*1 1..*1

 User Actions may be:

 Set Input Field

Actions

 Get Output Field

Actions

 Submit Command

Actions

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

119

Wrapper Architecture

Legacy

System

Terminal

Emulator

Automaton

Engine

State

Identifier FSA

Description

Document

Wrapper

Web Service

Request

Application Server

Legacy Screen,
Current State

Identified

Interaction State

Actions

Legacy Screen

Screen

Template

Description

Web Service

Response

Legacy

System

Terminal

Emulator

Automaton

Engine

State

Identifier FSA

Description

Document

FSA

Description

Document

Wrapper

Web Service

Request

Application Server

Legacy Screen,
Current State

Identified

Interaction State

Actions

Legacy Screen

Screen

Template

Description

Web Service

Response

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

120

Terminal Emulator

• The Terminal Emulator component is
responsible for the dialogue between the
Wrapper and the Legacy System terminal
– Different implementations of the Terminal Emulator

are needed for different Legacy System Terminals
• Stream Oriented terminals;

• Block oriented terminals;

• Web Applications.

Legacy

System

Terminal

Emulator

Automaton

Engine

Actions

Legacy Screen

Legacy

System

Terminal

Emulator

Automaton

Engine

Actions

Legacy Screen

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

121

State Identifier

– It has to match the current screen of the legacy system with the Screen
Templates associated with potentially reachable Interaction States

– The Screen Templates descriptions are part of the Automaton
Description Document

• Moreover, the State Identifier

– localises Labels

– localises Input Fields

– Localises Output Fields and read their values

Automaton

Engine

State

Identifier FSA

Description

Document

Legacy Screen,
Current State

Screen

Template

Description

Automaton

Engine

State

Identifier FSA

Description

Document

FSA

Description

Document

Legacy Screen,
Current State

Screen

Template

Description

 The State Identifier
component is responsible for
the identification of the
Interaction State reached by
the Legacy System

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

122

Automaton Engine

• The Automaton Engine is responsible for interpreting the FSA
associated with a given service offered by the legacy system. It:
– Sends commands to and receives screens from the Terminal Emulator

– Queries the State Identifier about the identification of the Current
Interaction State

– Interprets the request message received from the application server

– Builds the response message and sends it to the application server

– Manages Automaton Variables (i.e. temporary variables needed to save
intermediate results of the execution of the Automaton)

Final Activity

do/ Build Response Message

Interpretation Activity

do/ Get Output Field Values

do/ Set/Update Automaton Variables

do/ Set Input Field Values

do/ Submit Transition Command

event Legacy Screen Returned/ Get Legacy Screen

do/ Identify Current Interaction State

Current Interaction

State = Final State

NOT (Current Interaction State = Final State)

Start Activity

do/ Get Request Message

do/ Init Automaton Variables

do/ Start Legacy System

event Legacy Screen Returned/ Get Legacy Screen

do/ Identify Current Interaction State

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

123

Finite State Automaton Description Document

Label

Regular Expression

Request

Response

Ini t Action

1

1

1

1

Get

Build Response Action

1

1

1

1

Build

Output Field Input Field

Automaton Variable

*

1

*

1

Set

*1 *1 Get

Relative Location

offset x

offset y

Get Output

Field Action
** **

Get

Set Input Field

Action

Expression

1

*

1

*

Set

*

*

*

*
Get

Set/Update Automaton

Variable Action

Expression

1

*

1

*

Set/Update

Submit Command

Action

Command

Interaction State

*

1

*

1

*

*
+from

*

Transi tion

+to

*

*

1

*

1

*

1

*

1

1

1

1

1

Field

*

1

*

1

Screen Template
**

* 1* 1

Location

1

*

1

*

*

1

*

1

Initial Cursor Posi tion

Fixed Location

x

y

<automa>

<automa-states>

….

<state id="go_to_header" type="automa"

screen="PineGoToHeaderScreen">

<description>State

</description>

<layout>

<location x="1" y="2"/>

<size width="8" height="2"/>

</layout>

<actions>

<set-fields-action>

<field ref="prompt">

<data ref="/root/header"/>

</field>

</set-fields-action>

</actions>

<next-states>

<next-state ref="bad_header">

</next-state>

<next-state ref="header">

</next-state>

</next-states>

</state>

<screen id="GoToHeader">

<size width="80" height="25"/>

<simple-field id="GoToHeaderId" optional="false"

input="false">

<fixed-location>

<point x="0" y="22"/>

</fixed-location>

<content pattern="Message number to jump to"

length="25"/>

</simple-field>

<simple-field id="prompt" optional="true"

input="true">

<fixed-location>

<point x="25" y="22"/>

</fixed-location>

<content pattern="" length="5"/>

<focus order="1">

<advance-key id="ENTER"/>

</focus>

</simple-field>

<caret-location>

<fixed-location>

<point x="28" y="22"/>

</fixed-location>

</caret-location>

</screen>

…

</automa-states>

</automa>Automaton Description

Document UML model
An excerpt of an Automaton

Description Document

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

124

A Case study

• A migration case study has been carried out
according to a process including the following
phases:
– Identification, i.e. reverse engineering of the

interaction model;

– Design, i.e. defining the FSA describing the Wrapper
behaviour;

– Implementation, i.e. realisation of the XML FSA
Description Document;

– Web service deploy, i.e. deployment of the wrapper in
the context of an application server;

– Validation, i.e. testing of the scenarios of the migrated
use case

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

125

A Case Study

• Legacy system: Pine (ver. 4.64)
– client mail software, that allows a user to read, compose and manage e-mail

messages from an existing message box.

• Pine is a form based legacy system based on stream oriented terminals.
– Usually, Pine is accessible via the Telnet protocol.

• We submitted to the migration process the Get Message use case that allows
the owner of a mailbox to get the text of a specific e-mail message contained
in a specific mailbox folder.

Use case: Get Message

Preconditions None

Input Login, Password, Folder, Message Number

Output Date, From, To, cc, Subject, Body, Exception

Postconditions None

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

126

The Automaton: graphical view

Authentication

Menu (Ask Login)

Authentication Menu

(Ask Password)

Authentication

Menu (Incorrect

Password)

Main

Menu
Go To Folder

Folder Not

Found

Empty Folder

Folder Open Go To Message

Bad Message

Number
Header

Folder Open

(Bad Message

Number)

Exit Confirm

(Folder Not

Found)
Exit Confirm

(Empty Folder)

Exit Confirm

(Read Message)

Exit Confirm

(Bad Message

Number)

Message First

Page

Message Mid

Page
Message End

Main Menu (User

not admitted)

Exit Confirm

(User not

admitted)

Login
Password

Password

<Control>C

Folder

Mess.Numb.Mess.Numb.

<space>

<space>

<space><space>

<enter>q

q

q

q

q

y

y

y

y

y

g
j

>

Folder

Folder

1 2

3

4
5

6 7

8 9

12
10

11
13

14
15

16

17

18

19

20

21

7 different scenarios:

1) One Page Message Read

2) Two Pages Message Read

7) Incorrect Password

3) More than two Pages Message Read

4) Bad Message Number

5) Empty Folder

6) Folder Not Found
Ingegneria del Software 2 – Manutenzione e Reverse Engineering

127

The Automaton: a tabular specification

Interactio

n State ID

Interaction State Description Actions Submit

Command

Next

State

START Init (Login, Password, Folder, Message Number) 1

1 Authentication Menu (Ask Login) Set Input Field: Login <Enter> 2

2 Authentication Menu (Ask

Password)

Set Input Field: Password <Enter> 3,4

3 Authentication Menu (Incorrect

Password)

Set Automaton Variable: Exception = “Incorrect Login and

Password”

<Control>C 16

4 Main Menu g 5

5 Go To Folder Set Input Field: Folder <Enter> 6,7,8

6 Folder Not Found Set Automaton Variable: Exception = “Folder not found” q 17

7 Empty Folder Set Automaton Variable: Exception = “No messages in the folder” q 18

8 Folder Open j 9

9 Go To Message Set Input Field: Message Number <Enter> 10,12

10 Bad Message Number Set Automaton Variable: Exception = “Incorrect Message Number” <Enter> 11

11 Folder Open (Message not found) q 19

12 Header > 13

13 Message First Page Get Output Fields: (Date, From, To, Cc, subject,, Body);

Set Automaton Variables: (Output: (Date, From, To, Cc, subject,

Body))

<Space> 14,15

14 Message Mid Page Get Output Field: Body

Update Automaton Variable: Body = Body + Output:Body

<Space> 14,15

15 Message End Get Output Field: Body

Update Automaton Variable: Body = Body + Output:Body

q 20

16 Main Menu (User not admitted) q 21

17 Exit Confirm (Folder Not Found) y END

18 Exit Confirm (Empty Folder) y END

19 Exit Confirm (No Message) y END

20 Exit Confirm (Read Message) y END

21 Exit Confirm (User not admitted) y END

END Build Response: (Date, From, To, Cc, Subject, Body, Exception)

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

128

Testing Strategy

• A Test Suite comprehending 7 Test Cases had

been selected in order to cover the 7 linear

independent paths individuated on the FSA

S-1-2-3-16-17-EIncorrect Password7

S-1-2-4-5-6-17-EFolder Not Found6

S-1-2-4-5-7-18-EEmpty Folder5

S-1-2-4-5-8-9-10-11-19-EBad Message Number4

S-1-2-4-5-8-9-12-13-14-14-15-16-21-EMore Than Two Pages Message Read3

S-1-2-4-5-6-9-12-13-14-15-20-ETwo Pages Message Read2

S-1-2-4-5-8-9-12-13-15-20-EOne Page Message Read1

Interaction State SequenceTC DescriptionTC#

 We noticed that all the 7 scenarios of the migrated use

case had been covered by the selected Test Suite

Ingegneria del Software 2 – Manutenzione e Reverse Engineering

