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Introduzione

Ricordiamo che il:

Principio d’Induzione Matematica (PIM)
Sia K ⊆ N.
Se:

(B) 0 ∈ K e

(P) per ogni n ∈ K risulta n+ 1 ∈ K,

allora K = N.

è una delle proprietà/assiomi che individuano l’insieme N dei numeri naturali e
che, come mostrato a lezione, può essere usato in vari modi per dimostrare teoremi
riguardanti tali numeri.

Gli esercizi proposti nella sezione 1 servono a prendere dimestichezza con tale
strumento.
I problemi proposti nella sezione 2, invece, sono un po’ più difficili e servono per
testare la maturità ed il grado di padronanza del materiale.

Nelle sezioni finali sono riportate le soluzioni sia degli esercizi sia dei problemi.
Raccomandiamo comunque allo studioso lettore di leggerle solo dopo aver tentato
(eventualmente più volte) di giungere autonomamente alla soluzione.

1. Esercizi

Esercizio 1: Dimostrare che la disuguaglianza:

(1) 3n ≥ n2

vale per ogni n ∈ N.

Date: 29 dicembre 2017.
1
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Esercizio 2: Mostrare che le uguaglianze:

1 + 2 + 3 + · · ·+ n =
1
2
n (n+ 1)(2)

12 + 22 + 32 + · · ·+ n2 =
1
6
n (n+ 1) (2n+ 1)(3)

13 + 23 + 33 + · · ·+ n3 =
(

1
2
n (n+ 1)

)2

(4)

valgono per ogni n ∈ N− {0}.

Esercizio 3 (Somma di una progressione geometrica): Provare che, comun-
que si fissi il numero q 6= 1, risulta:

(5) 1 + q + q2 + · · ·+ qn =
1− qn+1

1− q
per ogni n ∈ N.

Esercizio 4 (Disuguaglianza di Bernoulli): Mostrare che, per ogni numero
n ∈ N − {0}, comunque si scelgano n numeri reali x1, x2, . . . , xn ≥ −1 aventi lo
stesso segno1 vale la disuguaglianza:

(6) (1 + x1) (1 + x2) · · · (1 + xn) ≥ 1 + x1 + x2 + · · ·+ xn .

Dalla (6) ricavare la classica disuguaglianza di Bernoulli :

(7) (1 + x)n ≥ 1 + n x ,

ove x ≥ −1.
Infine, esibire un controesempio che mostri che la disuguaglianza (6) non vale se gli
x1, . . . , xn non hanno tutti lo stesso segno.

Esercizio 5: Analogamente, mostrare che, per ogni numero n ∈ N−{0}, comun-
que si scelgano n numeri reali 0 ≤ x1, x2, . . . , xn ≤ 1 vale la disuguaglianza:

(8) (1− x1) (1− x2) · · · (1− xn) ≤ 1
1 + x1 + x2 + · · ·+ xn

.

Dalla (8) ricavare la disuguaglianza di tipo Bernoulli :

(9) (1− x)n ≤ 1
1 + n x

,

in cui 0 ≤ x ≤ 1.
Provare, inoltre, che per 0 < x ≤ 1 nella (9) vale sempre la disuguaglianza stretta.

Esercizio 6: Dimostrare che ogni insieme finito e non vuoto di numeri reali2 ha
minimo e massimo.

2. Problemi

Problema 1: Trovare una formula che fornisca il valore del prodotto:

(10)
(

1− 1
4

) (
1− 1

9

) (
1− 1

16

)
· · ·
(

1− 1
(n+ 2)2

)
per ogni n ∈ N e dimostrarne la validità per induzione.

1Cioè o tutti ≥ 0 oppure tutti ≤ 0
2Si ricordi che un insieme X ⊆ R non vuoto è finito se e solo se esistono un numero n ∈ N ed

una biiezione f : {1, . . . , n} → X.
In tal caso, si dice che X ha n elementi e si può usare l’applicazione f per enumerare (cioè elencare
in successione) gli elementi di X, ponendo x1 = f(1), . . . , xn = f(n).
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Problema 2: Siano α, β, d e q numeri reali fissati.
Consideriamo le applicazioni a, b : N→ R definite in maniera ricorsiva3 come segue:{

a(0) = α

a(n+ 1) = a(n) + d , per n ∈ N
(11)

e

{
b(0) = β

b(n+ 1) = q b(n) , per n ∈ N
.(12)

Individuare le leggi di assegnazione esplicite di a e b e dimostrarne la validità usando
il Principio d’Induzione.

Problema 3: Sia a : N→ R la funzione definita in maniera ricorsiva come segue:

(13)

{
a(0) = 1

2

a(n+ 1) = 1
2−a(n) , per n ∈ N

.

1. Dimostrare che le proprietà:

a(n) < 1(14)

a(n) ≥ 1
2

(15)

a(n+ 1) > a(n)(16)

valgono per ogni n ∈ N.

2. Determinare una formula esplicita che fornisca la legge di assegnazione di a e
dimostrarne la validità per induzione.

3 (Per chi ha studiato i limiti di successioni). Senza l’ausilio della formula deter-
minata al punto 2, dimostrare che la successione di termine generale an := a(n) è
convergente e determinarne il limite.

Problema 4 (Algoritmo di Erone): Siano α > 0 ed a : N → R la funzione
definita in maniera ricorsiva come segue:

(17)

{
a(0) = α

a(n+ 1) = 1
2 a(n) + α

2 a(n) , per n ∈ N
.

1. Dimostrare che:

∀n ∈ N, min{1, α} ≤a(n) ≤ max{1, α}(18)

∀n ≥ 2, a(n) ≥
√
α(19)

∀n ≥ 2, a(n+ 1) ≤ a(n)(20)

2 (Per chi ha già studiato i limiti di successioni). Provare che la successione di
termine generale an := a(n) è convergente e calcolarne il limite.

3Si dice che una funzione f avente dominio N è definita in maniera ricorsiva quando, al posto
di specificare la legge di assegnazione n 7→ f(n), vengono assegnati il valore f(0) ed una regola
per calcolare il valore di f(n + 1) a partire da quello di f(n).
È immediato intuire che, una volta assegnati f(0) e la regola che consente di calcolare f(n + 1)

partendo da f(n), rimangono determinati tutti i valori assunti dalla funzione: infatti, da f(0) è
possibile calcolare f(1) = f(0+1); conoscendo f(1) è possibile calcolare f(2) = f(1+1); partendo
da f(2) è possibile calcolare f(3) = f(2 + 1); e così via. . .
Il lettore attento noterà che la possibilità di dare una definizione in maniera ricorsiva si basa sulla
validità del Principio d’Induzione.
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Problema 5: Dimostrare la seguente affermazione:

Principio del Buon Ordinamento: Ogni sottoinsieme non vuoto
contenuto in N è dotato di minimo; in altri termini, se T ⊆ N è 6= ∅,
allora esiste un t′ ∈ N tale che:{

∀t ∈ T, t′ ≤ t

t′ ∈ T .

Problema 6: Quanti sottoinsiemi ha un insieme finito costituito da n elementi?

Problema 7 (di G. Polya4): Si legga con attenzione seguente ragionamento in-
duttivo.

Vogliamo dimostrare che se esiste un gatto nero, allora tutti i gatti sono
neri.
Cominciamo col mostrare che, per ogni numero naturale n ∈ N − {0},
vale la seguente proprietà:

P(n) = “gli insiemi di n gatti che contengono almeno un gatto nero
sono costituiti da tutti gatti neri” .

Facciamo induzione su n.

• Per n = 1, P(1) è evidentemente vera. Ciò costituisce la base del-
l’induzione.

• Per verificare il passo induttivo dobbiamo mostrare che se è vera
P(n) (ipotesi induttiva) allora è vera anche P(n + 1) (tesi indutti-
va), ossia che se tutti gli insiemi di n gatti che contengono almeno
un gatto nero sono costituiti da tutti gatti neri, allora anche gli
insiemi di n + 1 gatti che contengono almeno un gatto nero sono
costituiti da tutti gatti neri.
Sia G un insieme di n + 1 gatti, diciamoli g1, g2, . . . , gn, gn+1, con-
tenente almeno un gatto nero; senza ledere la generalità, possiamo
supporre che g1 sia un gatto nero. I due sottoinsiemi G − {g2} e
G − {g3} sono insiemi di n gatti e contengono g1 che è nero: ne
consegue, per ipotesi induttiva, che gli insiemi G−{g2} e G−{g3}
sono costituiti da tutti gatti neri; ciò implica che i gatti g2, g3, . . . ,
gn+1 sono neri e, poiché g1 pure è nero, tutti i gatti contenuti in G
sono effettivamente neri.

Acquisito ciò, concludiamo che vale quanto affermato all’inizio: infatti,
l’esistenza di almeno un gatto nero è certa (se ne trovano parecchi in
giro!) e ciò consente di applicare la P(n) iterativamente per ogni n e
concludere che tutti i gatti sono neri.

Esso è evidentemente sbagliato, poiché giunge ad una conclusione che ognuno può
smentire (semplicemente esibendo un gatto tigrato).
Dov’è l’errore?

3. Soluzioni degli Esercizi

Soluzione dell’Esercizio 1. Sia K l’insieme dei numeri naturali per cui la (1) è
valida, cioè:

K = {n ∈ N : 3n > n2} ;

4György “George” Pólya (1887 – 1985), matematico ungherese.
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risolvere l’esercizio vuol dire mostrare che K = N.
Usiamo il PIM. Per prima cosa notiamo che 30 = 1 > 0 = 02, cosicché 0 ∈ K;
d’altro canto si ha pure 31 = 3 > 1 = 12 e 32 = 9 > 4 = 22, ergo è anche 1, 2 ∈ K.
Ciò costitusce una buona base per l’induzione.
Per il passo induttivo ci basta mostrare che se n ∈ K, ossia se è soddisfatta l’ipotesi
induttiva 3n > n2, allora è anche n + 1 ∈ K, cioè è vera la tesi induttiva 3n+1 >
(n + 1)2; inoltre, dato che sappiamo già che 0, 1, 2 ∈ K per ispezione diretta,
possiamo limitarci a mostrare che il passo induttivo è valido per n ≥ 2. Abbiamo:

3n+1 = 3n︸︷︷︸
>n2

·3

≥ 3 n2

e, conseguentemente, per acquisire la tesi induttiva basta mostrare che per n ≥ 2
vale la disuguaglianza:

3 n2 > (n+ 1)2 :

infatti, valendo tale disuguaglianza, avremmo 3n+1 ≥ 3n2 ≥ (n+1)2 da cui discende
la tesi (per la proprietà transitiva della relazione ≥). Una semplice manipolazione
algebrica (completamento del quadrato) mostra che:

3 n2 − (n+ 1)2 = 2 n2 − 2 n− 1

= 2
(
n2 − n

)
− 1

= 2
(
n2 − n+

1
4︸ ︷︷ ︸

=(n−1/2)2

−1
4

)
− 1

= 2
(
n− 1

2

)2

− 3
2

;

ma si ha:

n ≥ 2 ⇒ n− 1
2
≥ 2− 1

2
=

3
2

⇒
(
n− 1

2

)2

≥ 9
4

⇒ 2
(
n− 1

2

)2

≥ 2
9
4

=
9
2

⇒ 2
(
n− 1

2

)2

− 3
2
≥ 9

2
− 3

2
= 3

e dunque se n ≥ 2 si ha:

3 n2 − (n+ 1)2 ≥ 3 > 0 ⇒ 3 n2 > (n+ 1)2 ,

come volevamo. �

Soluzione dell’Esercizio 2. Proviamo la (2). Sia K l’insieme degli n ∈ N − {0}
che soddisfano la (2), cioè:

K =
{
n ∈ N : 1 + · · ·+ n =

1
2
n (n+ 1)

}
.

Dimostrare che la (2) è valida per ogni n ∈ N − {0} equivale a far vedere che
K = N− {0}; a tal uopo, usiamo il PIM.
Evidentemente 1 ∈ K e ciò costituisce una buona base per l’induzione.
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Per dimostrare il passo induttivo mostriamo che dall’ipotesi n ∈ K, ossia dal verifi-
carsi che 1+ · · ·+n = 1

2n(n+1), segue che n+1 ∈ K, ovvero che 1+ · · ·+(n+1) =
1
2 (n+ 1)(n+ 2). Abbiamo:

1 + · · ·+ (n+ 1) = 1 + · · ·+ n︸ ︷︷ ︸
=1/2 n (n+1)

+(n+ 1)

=
1
2
n (n+ 1) + (n+ 1)

= (n+ 1)
(n

2
+ 1
)

= (n+ 1)
n+ 2

2

=
1
2

(n+ 1) (n+ 2)

che è quanto chiedevamo. Quindi K = N e la (4) è dimostrata.

Proviamo la (3). Come prima, poniamo:

K =
{
n ∈ N : 12 + · · ·+ n2 =

1
6
n (n+ 1) (2n+ 1)

}
e notiamo che provare la validità di (3) per ogni n ∈ N−{0} equivale a dimostrare
che K = N− {0}, cosa che faremo usando il PIM.
Evidentemente 1 ∈ K e ciò costituisce una buona base per l’induzione.
Per il passo induttivo, mostriamo che da n ∈ K, ossia dall’uguaglianza 12+· · ·+n2 =
1
6n(n + 1)(2n + 1), segue che anche n + 1 ∈ K, cioè che 12 + · · · + (n + 2)2 =
1
6 (n+ 1)(n+ 2)(2n+ 3). Abbiamo:

12 + · · ·+ (n+ 1)2 = 12 + · · ·+ n2︸ ︷︷ ︸
= 1

6 n (n+1) (2n+1)

+(n+ 1)2

=
1
6
n (n+ 1) (2n+ 1) + (n+ 1)2

= (n+ 1)
[
n (2n+ 1)

6
+ (n+ 1)

]
= (n+ 1)

n (2n+ 1) + 6(n+ 1)
6

= (n+ 1)
2n2 + 7n+ 6

6

= (n+ 1)
2n2 + 4n+ 3n+ 6

6

= (n+ 1)
2n(n+ 2) + 3(n+ 2)

6

= (n+ 1)
(n+ 2)(2n+ 3)

6
come volevamo. Perciò K = N− {0} e la (4) è dimostrata.

Proviamo la (4). Come sopra, posto:

K =

{
n ∈ N : 13 + · · ·+ n3 =

(
1
2
n (n+ 1)

)2
}
,

osserviamo che dimostrare valida la (4) per ogni naturale n ≥ 1 è del tutto equiva-
lente a provare che K = N− {0}, cosa che possiamo fare usando il PIM.
Evidentemente 1 ∈ K e questo costituisce una buona base per l’induzione.



SUL PRINCIPIO DI INDUZIONE 7

Per il passo induttivo, proviamo che dall’ipotesi induttiva 13+· · ·+n3 =
(

1
2n(n+ 1)

)2,
ossia da n ∈ K, segue necessariamente la tesi induttiva 13 + · · · + (n + 1)3 =(

1
2 (n+ 1)(n+ 2)

)2, ovvero che n+ 1 ∈ K. Abbiamo:

13 + · · ·+ (n+ 1)3 = 13 + · · ·+ n3︸ ︷︷ ︸
=( 1

2n(n+1))2

+(n+ 1)3

=
(

1
2
n (n+ 1)

)2

+ (n+ 1)3

=
1
4
n2 (n+ 1)2 + (n+ 1)3

= (n+ 1)2
[
n2

4
+ (n+ 1)

]
= (n+ 1)2

n2 + 4n+ 4
4

= (n+ 1)2
(n+ 2)2

4
,

che è quanto volevamo. Pertanto K = N− {0} e la (4) è dimostrata. �

Soluzione dell’Esercizio 3. La (5) è vera per n = 0 ed n = 1, poiché in tal caso
essa si riduce alle identità:

1 =
1− q
1− q

,

1 + q =
1− q2

1− q
;

ciò costituisce una buona base per l’induzione.
Per il passo induttivo, mostriamo che dall’ipotesi induttiva 1 + · · · + qn = 1−qn+1

1−q

segue necessariamente la tesi induttiva 1 + · · ·+ qn+1 = 1−qn+2

1−q . Abbiamo:

1 + · · ·+ qn+1 = 1 + · · ·+ qn︸ ︷︷ ︸
= 1−qn+1

1−q

+qn+1

=
1− qn+1

1− q
+ qn+1

=
1−���qn+1 +���qn+1 − qn+2

1− q

=
1− qn+2

1− q
come volevamo. Pertanto la validità della (5) rimane provata per induzione. �

Soluzione dell’Esercizio 4. Dimostriamo la (6). Dobbiamo far vedere che l’insie-
me:

K =
{
n ∈ N− {0} : ∀x1, · · · , xn ≥ −1 aventi ugual segno,

(1 + x1) · · · (1 + xn) ≥ 1 + x1 + · · ·+ xn

}
coincide con N− {0}; perciò usiamo il PIM.
Evidentemente 1 ∈ K: infatti, per n = 1, comunque si fissi x1 ≥ −1 si ottiene la
disuguaglianza:

1 + x1 ≥ 1 + x1 ,
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la quale è vera (proprietà riflessiva di ≤). Ciò è una buona base per l’induzione.
Il passo induttivo chiede di dimostrare che da n ∈ K, ossia da:

∀x1, · · · , xn ≥ −1 d’ugual segno, (1 + x1) · · · (1 + xn) ≥ 1 + x1 + · · ·+ xn ,

segue necessariamente n+ 1 ∈ K, cioè:

∀x1, · · · , xn+1 ≥ −1 d’ugual segno, (1 + x1) · · · (1 + xn+1) ≥ 1 + x1 + · · ·+ xn+1 .

Fissiamo ad arbitrio n + 1 numeri x1, · · · , xn+1 ≥ −1 d’ugual segno: essendo gli
x1, · · · , xn+1 o tutti ≥ 0 o tutti ≤ 0, il prodotto xn+1 (x1 + · · ·+ xn) è ≥ 0, quindi
usando l’ipotesi induttiva troviamo:

(1 + x1) · · · (1 + xn+1) = (1 + x1) · · · (1 + xn)︸ ︷︷ ︸
≥1+x1+···+xn

(1 + xn+1)

≥ (1 + x1 + · · ·+ xn) (1 + xn+1)

= (1 + x1 + · · ·+ xn) 1 + (1 + x1 + · · ·+ xn) xn+1

= 1 + x1 + · · ·+ xn + xn+1

+ xn+1 (x1 + · · ·+ xn)︸ ︷︷ ︸
≥0

≥ 1 + x1 + · · ·+ xn + xn+1 ;

per la transititvità di ≥ la tesi induttiva segue, e con essa la validità della (6).

Dimostriamo la (7). Fissato n ∈ N, nella (6) possiamo fissare x1 = x2 = · · · = xn =
x ≥ −1 ed ottenere:

(1 + x)n = (1 + x) · · · (1 + x)︸ ︷︷ ︸
n fattori

≥ 1 + x+ · · ·+ x︸ ︷︷ ︸
n addendi

= 1 + n x

che è la disuguaglianza desiderata.5

Troviamo un controesempio. Basta prendere, ad esempio, n = 2, x1 = 1 ed x2 =
−1/2 per ottenere da (6) una disuguaglianza falsa. �

Soluzione dell’Esercizio 5. Dimostriamo la (8). Occorre e basta far vedere che
l’insieme:

K =
{
n ∈ N− {0} : ∀0 ≤ x1, . . . , xn ≤ 1, (1− x1) · · · (1− xn) ≤ 1

1 + x1 + · · ·xn

}
coincide con N− {0}: pertanto useremo il Principio d’Induzione.
Per verificare che 1 ∈ K dobbiamo mostrare che vale la seguente proposizione:

∀0 ≤ x1 ≤ 1, 1− x1 <
1

1 + x1
.

A tal uopo, fissiamo ad arbitrio un numero x1 in modo che soddisfi 0 ≤ x1 ≤ 1: dalle
disuguaglianze appena scritte segue che 0 ≤ x2

1 ≤ 1 e dunque che −1 ≤ −x2
1 ≤ 0,

per cui:
0 ≤ 1− x2

1 ≤ 1 ;
dalla fattorizzazione 1 − x2

1 = (1 − x1)(1 + x1), dalla positività del numero 1 + x1

e dalla compatibilità della relazione d’ordine con il prodotto segue che:

(1− x1)(1 + x1) ≤ 1 ⇒ 1− x1 ≤
1

1 + x1
,

5Il lettore volenteroso potrebbe fornire una dimostrazione della disuguaglianza di Bernoulli
basata anch’essa sul PIM che non sfrutti la (6).
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come volevamo. Stante l’arbitrarietà nella scelta di x1, possiamo ben dire che il
numero n = 1 gode della proprietà che esprime l’appartenenza a K, perciò 1 ∈ K:
ciò costituisce una buona base per l’induzione.
Per mostrare il passo induttivo dobbiamo provare che il verificarsi per n della
proprietà:

∀0 ≤ x1, . . . , xn ≤ 1, (1− x1) · · · (1− xn) ≤ 1
1 + x1 + · · ·+ xn

(ipotesi induttiva) implica il verificarsi per n+ 1 della proprietà:

∀0 ≤ x1, . . . , xn+1 ≤ 1, (1− x1) · · · (1− xn+1) ≤ 1
1 + x1 + · · ·+ xn+1

(tesi induttiva). Fissati ad arbitrio n + 1 numeri x1, . . . , xn+1 soddisfacenti le
disuguaglianze 0 ≤ x1, . . . , xn+1 ≤ 1 abbiamo:

(1− x1) · · · (1− xn+1) = (1− x1) · · · (1− xn)︸ ︷︷ ︸
≤ 1

1+x1+···+xn

(1− xn+1)

≤ 1− xn+1

1 + x1 + · · ·+ xn
,

e ciò importa che basta provare la maggiorazione:
1− xn+1

1 + x1 + · · ·+ xn
≤ 1

1 + x1 + · · ·+ xn + xn+1

per concludere (difatti, se la precedente fosse valida, avremmo (1 − x1) · · · (1 −
xn+1) ≤ 1−xn+1

1+x1+···+xn
≤ 1

1+x1+···+xn+xn+1
, da cui la tesi induttiva per la proprietà

transitiva della disuguaglianza). Ma, tenendo presente che 0 ≤ x1, . . . , xn+1 ≤ 1,
abbiamo:

1 ≥ 1
1 + x1 + · · ·+ xn+1

⇒ xn+1 ≥
xn+1

1 + x1 + · · ·+ xn+1

⇒ −xn+1 ≤ −
xn+1

1 + x1 + · · ·+ xn+1

⇒ 1− xn+1 ≤ 1− xn+1

1 + x1 + · · ·+ xn+1

⇒ 1− xn+1 ≤
1 + x1 + · · ·+ xn +���xn+1 −���xn+1

1 + x1 + · · ·+ xn+1

⇒ 1− xn+1 ≤
1 + x1 + · · ·+ xn

1 + x1 + · · ·+ xn+1

⇒ 1− xn+1

1 + x1 + · · ·+ xn
≤ 1

1 + x1 + · · ·+ xn+1

come volevamo. Pertanto il Principio d’Induzione implica che K = N − {0}, ossia
che la (8) vale per ogni numero naturale n ≥ 1.

Dimostriamo la (9). Facendo nella (8) x1 = · · · = xn = x, con 0 ≤ x ≤ 1, troviamo
che la disuguaglianza:

(1− x)n = (1− x) · · · (1− x)︸ ︷︷ ︸
n volte

≤ 1
1 + x+ · · ·+ x︸ ︷︷ ︸

n addendi

=
1

1− n x

vale per ogni indice n, come era chiesto.

La disuguaglianza è stretta. Il fatto che, per ogni n ∈ N, in (9) valga la disugua-
glianza stretta < non appena si scelga 0 < x < 1 può essere ottenuto più facilmente
modificando la dimostrazione appena data. �
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Soluzione dell’Esercizio 6. Per dimostrare l’asserto basta far vedere che l’insieme:
K := {n ∈ N− {0} : ogni sottoinsieme di R avente

n elementi ha minimo e massimo}
coincide con tutto N− {0} e, per fare ciò, usiamo il PIM.
Innanzitutto, notiamo che 1 ∈ K: infatti, se X è un generico sottoinsieme di R
formato da un unico elemento (cioè se X = {x1} per qualche x1 ∈ R) allora X ha
necessariamente minimo e massimo (perchè minX = x1 = maxX).
Inoltre, osserviamo che la totalità della relazione d’ordine ≤ ci consente di affermare
che anche 2 ∈ K: invero, se X è il generico insieme costituito da due elementi
distinti, ossia se X = {x1, x2}, allora è vera una ed una soltanto delle relazioni
x1 < x2 oppure x2 < x1; nel primo caso abbiamo minX = x1 e maxX = x2,
mentre nel secondo troviamo minX = x2 e maxX = x1; dunque, in ogni caso X è
dotato di minimo e massimo.
Il fatto che 1, 2 ∈ K costituisce una buona base per l’induzione.
Per dimostrare il passo induttivo dobbiamo provare che la condizione n ∈ K implica
n+ 1 ∈ K, ossia che l’ipotesi induttiva:

ogni sottoinsieme di R avente n elementi ha minimo e massimo

implica la tesi induttiva:

ogni sottoinsieme di R avente n+ 1 elementi ha minimo e massimo.

Sia dunque X ⊆ R un insieme contenente n + 1 elementi: in tal caso, possiamo
scrivere X = {x1, x2, . . . , xn+1}, ove x1 = f(1), x2 = f(2), . . . ,xn+1 = f(n + 1)
sono numeri reali tutti distinti ed f : {1, . . . , n + 1} → X è una biiezione (la cui
esistenza segue dalla definizione di insieme finito). Posto:

X ′ := X − {xn+1} = {x1, x2, . . . , xn} ,
possiamo ben dire che X ′ è un insieme finito con n elementi (la biiezione di
{1, . . . , n} in X è la f ′ che assegna f ′(k) = f(k) ad ogni k ∈ {1, . . . , n}) e che
risulta:

X = X ′ ∪ {xn+1} e X ′ ∩ {xn+1} = ∅ .

Per ipotesi induttiva, X ′ è dotato di minimo e di massimo, cosicché esistono due
indici k, k ∈ {1, . . . , n} tali che maxX ′ = xk e minX ′ = xk, cioè tali che:

xk ≤ x1, x2, . . . , xn ≤ xk .
Pertanto, tornando all’insieme X, i casi possibili sono tre:

(1) se xk < xn+1 < xk, allora minX = xk e maxX = xk;

(2) se xn+1 < xk, allora minX = xn+1 e maxX = xk;

(3) se xk < xn+1, allora minX = xk e maxX = xn+1;

da ciò segue che, in ogni caso, X è dotato di minimo e massimo.
Dall’arbitrarietà nella scelta di X tra gli insiemi finiti con n+1 elementi segue che la
tesi induttiva è certamente vera quando tale è l’ipotesi induttiva, perciò K = N. �

4. Soluzioni dei Problemi

Soluzione del Problema 1. Per comodità, chiamiamo P (n) il prodotto in (10), i.e.
poniamo:

P (n) =
(

1− 1
4

) (
1− 1

9

) (
1− 1

16

)
· · ·
(

1− 1
(n+ 2)2

)
.
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Facendo un po’ di conto, troviamo:

P (0) =
(

1− 1
4

)
=

3
4

P (1) =
(

1− 1
4

) (
1− 1

9

)
=

2
3

P (2) =
(

1− 1
4

) (
1− 1

9

) (
1− 1

16

)
=

5
8

P (3) =
(

1− 1
4

) (
1− 1

9

) (
1− 1

16

) (
1− 1

25

)
=

3
5

e la sequenza di valori:

0 7→ 3
4

1 7→ 2
3

2 7→ 5
8

3 7→ 3
5

non sembrerebbe mostrare alcuna regolarità6. . . Tuttavia, riscrivendo i termini di
posto dispari con frazioni non ridotte ai minimi termini:

0 7→ 3
4

1 7→ 4
6

2 7→ 5
8

3 7→ 6
10

ci accorgiamo di una certa regolarità nell’andamento di numeratori e denominatori:
invero, i numeratori 3, 4, 5 e 6 si ricavano dagli indici 0, 1, 2 e 3 sommando 3 (e.g.,
5 = 2 + 3), mentre i denominatori 4, 6, 8 e 10 si ricavano dagli indici 0, 1, 2 e 3
sommandovi 2 e moltiplicando per 2 (e.g., 10 = 2 · (3 + 2)). Pertanto la formula:

(21) P (n) =
n+ 3

2 (n+ 2)

vale per n = 1, 2, 3, 4 e possiamo congetturare che essa sia, in effetti, valida per
ogni n ∈ N.
Mostriamo che la nostra congettura è vera: per fare ciò occorre e basta dimostrare
che l’insieme:

K =
{
n ∈ N : P (n) =

n+ 3
2 (n+ 2)

}
,

costituito da tutti i numeri naturali per cui vale la (21), coincide con N.
Per quanto calcolato all’inizio, abbiamo 0, 1, 2, 3 ∈ K e ciò serve da ottima base per
l’induzione.
Per il passo induttivo, dobbiamo mostrare che l’essere P (n) = n+3

2 (n+2) (ossia n ∈ K)

6Infatti, i numeratori ed i denominatori prima diminuiscono, poi aumentano, poi diminuiscono
di nuovo. . .
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implica l’essere P (n+ 1) = n+4
2 (n+3) (cioè n+ 1 ∈ K). Abbiamo:

P (n+ 1) =
(

1− 1
4

)
· · ·
(

1− 1
(n+ 3)2

)
=
(

1− 1
4

)
· · ·
(

1− 1
(n+ 2)2

) (
1− 1

(n+ 3)2

)
= P (n)︸ ︷︷ ︸

= n+3
2(n+2)

(
1− 1

(n+ 3)2

)

=
���n+ 3

2 (n+ 2)
(n+ 3)2 − 1

(n+ 3)�2

=
1

2 (n+ 2)

(
(n+ 3)− 1

) (
(n+ 3) + 1

)
n+ 3

=
1

2 ����(n+ 2)
����(n+ 2) (n+ 4)

n+ 3

=
n+ 4

2 (n+ 3)

come volevamo. Perciò K = N e la (21) vale come formula per esprimere ogni
prodotto P (n). �

Soluzione del Problema 2. Facendo un po’ di calcoli, dalla (11) segue che:

a(0) = α

a(1) = α+ d

a(2) = α+ 2 d

a(3) = α+ 3 d ;

nei secondi membri notiamo una certa regolarità: infatti, i primi addendi non
cambiano (rimanendo sempre uguali ad α), mentre nei secondi addendi i coefficienti
0, 1, 2 e 3 di d sono uguali agli indici 0, 1, 2 e 3.
Pertanto la formula:

(22) a(n) = α+ n d

è certamente valida per n = 0, 1, 2, 3 e possiamo ragionevolmente congetturare
che essa valga per ogni n ∈ N.
Per provare la nostra congettura occorre e basta provare che l’insieme:

K = {n ∈ N : a(n) = α+ n d}

coincide con tutto N: perciò ragioniamo per induzione.
Chiaramente, il fatto che la (22) valga per n = 0, 1, 2, 3 ci dice che 0, 1, 2, 3 ∈ K:
ciò costituisce una buona base per l’induzione.
Dobbiamo ora mostrare il passo induttivo e cioè che dall’ipotesi a(n) = α + nd
(equivalente a n ∈ K) segue necessariamente a(n + 1) = α + (n + 1) d (ossia
n+ 1 ∈ K). Usando la ricorrenza (11) abbiamo:

a(n+ 1) = a(n)︸ ︷︷ ︸
=α+nd

+d

= α+ n d+ d

= α+ (n+ 1) d

come volevamo. Pertanto K = N e la formula esplicita (22) vale per ogni n.
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Analogamente, con un po’ d’algebra, dalla (12) segue che:

b(0) = β

b(1) = β q

b(2) = β q2

b(3) = β q3 ;

nei secondi membri notiamo una certa regolarità: infatti, mentre i primi fattori
rimangono sempre gli stessi (ed uguali a β), gli esponenti delle potenze di q che
figurano come secondi fattori, cioè q0, q1, q2 e q3, sono uguali agli indici 0, 1, 2 e 3.
Conseguentemente la formula:

(23) b(n) = β qn

vale per n = 0, 1, 2, 3 e possiamo ragionevolmente congetturare che essa valga in
generale per ogni n.
La dimostrazione per induzione della (23) è lasciata al lettore. �

Soluzione del Problema 3. 1. Innanzitutto, calcoliamo i primi valori assunti dalla
funzione a definita dalla ricorrenza (13):

a(0) =
1
2

a(1) =
2
3

a(2) =
3
4

a(3) =
4
5

;

dai conti appena fatti segue che le proprietà espresse dalle (14), (15) e (16) sono
certamente verificate per n = 0, 1, 2, 3; ciò fornisce un’ottima base per l’induzione
per la dimostrazione di tutte e tre tali proprietà.
Rimangono, quindi, da provare i passi induttivi . . .

Cominciamo a provare che dall’ipotesi induttiva a(n) < 1 segue la tesi induttiva
a(n+ 1) < 1. Dato che a(n) < 1 implica 2− a(n) > 1, abbiamo:

a(n+ 1) =
1

2− a(n)︸ ︷︷ ︸
>1

<
1
1

= 1

da cui l’asserto. Pertanto, il Principio d’Induzione garantisce che la (14) vale per
ogni n ∈ N.
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Passiamo adesso a provare che l’ipotesi induttiva a(n) ≥ 1
2 implica la tesi induttiva

a(n+ 1) ≥ 1
2 . Dato che a(n) ≥ 1

2 implica che 2− a(n) ≤ 2− 1
2 = 3

2 , troviamo:

a(n+ 1) =
1

2− a(n)︸ ︷︷ ︸
≤ 3

2

≥ 1
3
2

=
2
3

≥ 1
2

da cui la tesi. Perciò, invocando il Principio d’Induzione concludiamo che la (15) è
valida per tutti i naturali n.

Infine, proviamo che dall’ipotesi induttiva a(n + 1) > a(n) segue la tesi induttiva
a(n + 2) > a(n + 1). Poiché da a(n + 1) > a(n) segue 2 − a(n + 1) < 2 − a(n) e
dalla (15) segue 2− a(n), 2− a(n+ 1) > 0, abbiamo:

a(n+ 2) =
1

2− a(n+ 1)︸ ︷︷ ︸
<2−a(n)

>
1

2− a(n)
= a(n+ 1)

come volevamo. Quindi il PIM assicura la validità della (16) per ogni indice n.

2. Dai calcoli effettuati all’inizio della Soluzione segue che la formula esplicita:

(24) a(n) =
n+ 1
n+ 2

vale per n = 0, 1, 2, 3; pertanto possiamo ragionevolmente congetturare che essa
valga del tutto in generale.
Per provare tale congettura, procediamo per induzione.
Essendo la base dell’induzione già abbondantemente acquisita, passiamo diretta-
mente al passo induttivo, cioè mostriamo che dall’ipotesi induttiva a(n) = n+1

n+2

segue la tesi induttiva a(n+ 1) = n+2
n+3 . Abbiamo:

a(n+ 1) =
1

2− a(n)︸︷︷︸
= n+1

n+2

=
1

2− n+1
n+2

=
n+ 2

2(n+ 2)− n− 1

=
n+ 2
n+ 3

come volevamo; perciò il Principio d’Induzione assicura che il guess a(n) = n+1
n+2

vale per ogni numero n ∈ N.
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3. Notiamo innanzitutto che la (16) assicura che la successione (an) è strettamente
crescente, giacché per ogni indice n ∈ N risulta:

an+1 = a(n+ 1) > a(n) = an ;

conseguentemente, il Criterio di Regolarità delle Successioni Monotòne assicura che
(an) è dotata di limite e che:

lim
n→+∞

an = sup
n∈N

an .

Le (14) e (15), d’altro canto, assicurano che 1
2 ≤ sup

n∈N
an ≤ 1, cosicché l’estremo

superiore di (an) è un numero reale a ∈ [ 12 , 1], quindi:

lim
n→+∞

an = a ∈
[

1
2
, 1
]
.

Per calcolare l’esatto valore del limite a usiamo la ricorrenza (13): ricordato che,
per un notevole risultato della teoria, la successione (an+1) (estratta da (an) soppri-
mendone il primo termine) ha lo stesso carattere e lo stesso limite di (an), possiamo
passare al limite ambo i membri della ricorrenza (13) e trovare:

a = lim
n→+∞

an+1

= lim
n→+∞

1
2− an

=
1

2− a
,

cosicché il numero a è una soluzione dell’equazione fratta a = 1
2−a che appartiene

all’intervallo [ 12 , 1].
L’equazione appena determinata è equivalente all’equazione (a − 1)2 = 0 che ha
come unica soluzione a = 1; dunque:

lim
n→+∞

an = 1 .7

�

Soluzione del Problema 4. 1. La funzione:{
a(0) = α

a(n+ 1) = 1
2 a(n) + α

2 a(n) , per n ∈ N
.

7Al risultato si poteva certamente trovare usando direttamente la legge di assegnazione
determinata al punto 2: infatti, con semplici passaggi avremmo avuto:

lim
n→+∞

an = lim
n→+∞

n

n + 1
= lim

n→+∞

1

1 + 1
n

= 1 .

Perciò il metodo proposto al punto 3 potrebbe sembrare inutilmente complicato. . . Tuttavia, è
bene notare che nella maggior parte dei casi è impossibile determinare esplicitamente la legge
di assegnazione di una successione definita per ricorrenza (cfr. Problema 4 seguente): pertanto
il metodo proposto in 3 rappresenta una valida alternativa che consente di ovviare a questo
inconveniente.
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Innanzitutto, proviamo a calcolare i primi valori assunti dalla funzione a: abbiamo:

a(0) = α

a(1) =
α+ 1

2

a(2) =
α2 + 6α+ 1

4(α+ 1)

a(3) =
α4 + 28α3 + 70α2 + 28α+ 1

16(α+ 1)(α2 + 6α+ 1)

e da ciò notiamo che, pur essendoci alcune regolarità nelle espressioni esplicite di
a(0), . . . , a(3), esse sono di difficile interpretazione.
Dunque non è possibile individuare un’espressione esplicita per la a(n) che risulti
utile nei calcoli.

Proviamo la (18). Chiaramente a(0) = α soddisfa le (18) e ciò costituisce una
buona base per l’induzione.
Verifichiamo il passo induttivo, provando che l’ipotesi induttiva min{1, α} ≤ a(n) ≤
max{1, α} implica la tesi induttiva min{1, α} ≤ a(n+1) ≤ max{1, α}. Supponiamo,
tanto per cominciare, che α ≥ 1; in tal caso si ha min{1, α} = α, max{1, α} = 1,
quindi:

1 ≤ a(n) ≤ α ⇒ 1
α
≤ 1
a(n)

≤ 1

⇒ 1
2α
≤ 1

2a(n)
≤ 1

2

⇒ 1
2
≤ α

2a(n)
≤ α

2

ed anche 1
2 ≤

a(n)
2 ≤ α

2 , da cui, sommando membro a membro, otteniamo:

1 ≤ a(n)
2

+
α

2a(n)︸ ︷︷ ︸
=a(n+1)

≤ α ,

che è la tesi.
Se α < 1 si può ripetere lo stesso ragionamento invertendo le disuguaglianze.

Proviamo la (19). Per n = 1 abbiamo:

a(1)−
√
α =

a(1)
2

+
α

2a(1)
−
√
α

=
α

2
+

α

2α
−
√
α

=
(α−

√
α)2

2α
≥ 0

cosicché a(2) ≥
√
α e ciò costituisce una buona base per l’induzione.

Verifichiamo che la validità della (19) per un certo indice n ≥ 1 implica la validità
della stessa per n+ 1. Abbiamo:

a(n+ 1)−
√
α =

a(n)
2

+
α

2a(n)
−
√
α

=
(a(n)−

√
α)2

2a(n)
≥ 0
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come volevamo.

Proviamo la (20). Per ogni fissato n ∈ N− {0} abbiamo:

a(n+ 1)− a(n) =
a(n)

2
+

α

2a(n)
− a(n)

=
α− a2(n)

2a(n)
;

se n ≥ 1 per la (19) abbiamo a(n) ≥
√
α e ciò implica a(n+ 1)− a(n) ≤ 0, che è la

(20).

2. Per le (18) ed (20), la successione di termine generale an = a(n) è monotòna e
limitata; conseguentemente, il Teorema sulla Regolarità delle Successioni Monotòne
implica che (an) è convergente verso un valore a ∈ R. D’altra parte, le (19) ed il
Teorema della Permanenza del Segno Inverso assicurano che 0 < min{1, α} ≤ a ≤
max{1, α}.
Dato che da (an) si estraggono solo successioni convergenti ed aventi lo stesso limite,
la successione di termine generale (an+1) è anch’essa convergente verso a.
Passando al limite ambo i membri della ricorrenza si trova:

a = lim
n→∞

an+1 = lim
n→∞

an
2

+
α

2an
=
a

2
+

α

2a
cosicché il valore a è una soluzione positiva dell’equazione:

a =
a

2
+

α

2a
⇔ a2 = α

perciò a =
√
α. �

Soluzione del Problema 5. Ragioniamo per assurdo, supponendo che il Principio
del Buon Ordinamento non sia vero, cioè che esista un sottoinsieme non vuoto
T ⊆ N non dotato di minimo.
In tal caso 0 /∈ T , perché altrimenti 0 sarebbe certamente il minimo di T 8; ciò
implica che:

∀t ∈ T, 0 < t

perciò l’insieme dei minoranti “stretti” di T :

K = {n ∈ N : ∀t ∈ T, n < t}
è non vuoto ed, in particolare, 0 ∈ K.
Sia ora n ∈ K e mostriamo che n + 1 ∈ K. Se, per assurdo, non fosse n + 1 ∈ K,
esisterebbe un τ ∈ T tale che n + 1 6< τ e ciò, per il Principio di Tricotomia,
implicherebbe τ ≤ n+ 1; poiché T non è dotato di minimo, esisterebbe certamente
un numero ϑ ∈ T più piccolo di τ , sicché risulta:

ϑ < τ ≤ n+ 1 ⇒ ϑ < n+ 1 ;

d’altro canto, dato che n ∈ K per ipotesi induttiva, si ha n < ϑ e dunque il numero
ϑ soddisferebbe la catena di disuguaglianze:

n < ϑ < n+ 1 ;

ma ciò è assurdo, poiché è ben noto che tra i due numeri naturali consecutivi n ed
n+ 1 non è compreso alcun altro numero naturale!
Conseguentemente, dall’ipotesi induttiva n ∈ K segue necessariamente n + 1 ∈ K
ed il Principio d’Induzione ci consente di affermare che K = N.
Ma ciò è assurdo: infatti, essendo T non vuoto, possiamo scegliere almeno un ele-
mento Θ ∈ T ; dato che K = N si avrebbe Θ ∈ K e dunque Θ < Θ, contro il

8Si ricordi che 0 è il numero naturale più piccolo!
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Principio di Tricotomia!

Ne consegue che, non appena T è un sottoinsieme non vuoto di N, non può in alcun
modo presentarsi l’eventualità che esso sia privo di minimo, e ciò implica la validità
del Principio del Buon Ordinamento. �

Soluzione del Problema 7. Cominciamo ad esaminare la questione partendo da in-
siemi con “pochi” elementi.
Ad esempio, se X è costituito da un solo elemento, cioè se X = {x1}, allora i
sottoinsiemi di X sono:

∅,
{x1}

(25)

dunque |P(X)| = 2.
Se, invece, X è costituito da due elementi, cioè se X = {x1, x2}, allora i sottoinsiemi
di X sono:

∅,
{x1}, {x2},
{x1, x2},

(26)

perciò |P(X)| = 4.
Quando X ha tre elementi, ossia quando X = {x1, x2, x3}, allora i sottoinsiemi di
X sono:

∅,
{x1}, {x2}, {x3},
{x1, x2}, {x1, x3}, {x2, x3},
{x1, x2, x3},

(27)

cosicché |P(X)| = 8.
Infine, quando X ha quattro elementi, cioè quando X = {x1, x2, x3, x4}, allora i
sottoinsiemi di X sono:

∅,
{x1}, {x2}, {x3}, {x4}
{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4},
{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4},
{x1, x2, x3, x4},

(28)

cosicché |P(X)| = 16.
Riassumendo in uno schema quano trovato:

|X| = 1 7→ |P(X)| = 2

|X| = 2 7→ |P(X)| = 4

|X| = 3 7→ |P(X)| = 8

|X| = 4 7→ |P(X)| = 16 ,

ci accorgiamo di una certa regolarità: invero, essendo 2 = 21, 4 = 22, 8 = 23 e
16 = 24, possiamo scrivere |P(X)| = 2|X|. Pertanto, possiamo congetturare che
la relazione:

(29) |P(X)| = 2|X| ,

valida per n = 1, 2, 3, 4, rimanga valida del tutto in generale per ogni n ∈ N− {0}.
Per provare vera la nostra congettura, occorre e basta mostrare che l’insieme:

K := {n ∈ N− {0} : ogni insieme di n elementi ha 2n sottoinsiemi}
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coincide con N− {0}.
Per quanto visto all’inizio, abbiamo 1, 2, 3, 4 ∈ K e ciò costituisce un’ottima base
per l’induzione.
Per acquisire il passo induttivo dobbiamo mostrare che se n ∈ K allora anche
n+ 1 ∈ K, ossia che assunta l’ipotesi induttiva:

ogni insieme di n elementi ha 2n sottoinsiemi

risulta vera anche la tesi induttiva:

ogni insieme di n+ 1 elementi ha 2n+1 sottoinsiemi.

Fissiamo allora un generico insieme finito X avente n + 1 elementi, ossia X =
{x1, x2, . . . , xn+1}; procedendo come nell’Esercizio 6 poniamo:

X ′ := X − {xn+1} = {x1, x2, . . . , xn} ,
di modo che X = X ′ ∪ {xn+1}, X ′ ∩ {xn+1} = ∅ e X ′ è finito ed ha n elementi.
Per ipotesi induttiva X ′ ha esattamente 2n sottoinsiemi e, dato che, X ′ ⊂ X,
tali sottoinsiemi sono anche sottoinsiemi di X; ne consegue che X ha sicuramente
almeno 2n sottoinsiemi.
Tuttavia, è immediato constatare che i sottoinsiemi di X ′ non esauriscono tutti i
sottoinsiemi di X: infatti, nessun sottoinsieme di X ′ contiene xn+1 (che pure è un
elemento di X!).
Pertanto, per completare il conto dei sottoinsiemi di X ci basta trovare quanti sono
i sottoinsiemi di X che contengono l’elemento xn+1 escluso dal computo precedente.
Confrontando la lista (26) con (25), la (27) con (26) e la (28) con (27), possiamo ben
dire che ogni sottoinsieme di X contenente l’elemento xn+1 si può ottenere unendo
ad un opportuno sottoinsieme di X ′ l’insieme {xn+1}: ad esempio, l’insieme {xn+1}
si ottiene mediante l’unione ∅ ∪ {xn+1}, e l’insieme {x1, xn+1} si ottiene come
{x1} ∪ {xn+1}. Conseguentemente, i sottoinsiemi di X che contengono l’elemento
xn+1 sono tanti quanti i sottoinsiemi di X ′, cioè 2n.
Ne viene che il numero di sottoinsiemi di X si ottiene raddoppiando il numero di
sottoinsiemi di X ′, cioè che:

|P(X)| = 2 · |P(X ′)| = 2 · 2n = 2n+1 .

L’arbitrarietà nella scelta di X tra gli insiemi finiti con n + 1 elementi ci assicura
che il ragionamento ora condotto è ripetibile per ogni insieme di tal fatta; pertanto
n+ 1 ∈ K.
Per il PIM abbiamo K = N e ciò conclude la dimostrazione, provando che il guess
(29) è valido del tutto in generale. �

Soluzione del Problema 7. Il ragionamento è minato (irrimediabilmente!) dal se-
guente errore: il passo induttivo nella dimostrazione della proposizione P(n) non
funziona per n = 1. Infatti, la tecnica usata per la dimostrazione non si applica ad
insiemi del tipo G = {g1, g2}, cioè ad insiemi formati da due soli gatti. �
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