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INTRODUZIONE

In questi fogli sono proposti alcuni esercizi sul calcolo dei limiti di successione
con gli strumenti visti a lezione. Nelle ultime due sezioni sono presentati alcuni
esercizi “di teoria” ed alcune applicazioni delle successioni a problemi di interesse
fisico, biologico ed ingegneristico.

1. ESERCIZI

Esercizio 1: Utilizzando I'appropriata definizione di limite, dimostrare che val-
gono le seguenti relazioni:

(1)

. 1 ) n? . n+1
i Ny e n2$m1°g< e )“OO
(2)
lim log(n®+1) = + lim e V" =0 I 2n”
1m n = o0 1m = m — =
n—-+o00 8 n—-+4o0o n——4oo n4 + n2 +1
(3)
. 1 . _ . 1
lim e~ =1 Im e —n=—-00 lim —5——=-0c0.
n—-too n——4oo n—+oo cos - — 1

Esercizio 2: Usandoi Teoremi sui Limiti (i.e., Confronto, Carabinieri, Regolarita
delle Successioni Monotone), le regole viste a lezione, i Teoremi sulle Operazioni coi
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Limiti ed i limiti fondamentali delle TABELLE 3 & 4, calcolare i seguenti limiti:

(4)
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lim n? + cos2”

. 1
lim — sinn

n—-+00 n—-+oo n?
5n+42 2n—1
95n=1 —2.372n —3
(5) lim e’ lim tan T -
n—-4o0o n— -—4o0o ST
2 -1 1— 1-—
(6) lim arctan nAyn-1 lim tan ™ 4 cos m
n—-+4o0o0 n—e " n—-o00 2n+1 2n +1
) cos(m —n) i sin &
im ——— im
n—+oo log, |1 — n| n—-+oc logg &
e” n®—n
8 lim — lim ——
(8) n—1>I-ir-loo arctanmn n—l>r-&I-1<>o (2n+1)3
) . 2n3 —n . V8 M4 3.27n
im —— im ————
n—-—4oo 13/714 + 3n n—-+o00 43/16771 +2.4—n
1+ 100n — n? 2
(10) lim log (JF"Qn) lim 5%
n—+00 T —mn n—+0o0
(11) lir_l: V2" 4 n20 11111 V4n — 3n
n—-1+0oo n—-—1+0oo
(12) lim Vn+10—+vn+3 lim /n (Vn+10—+vn+3)
—2n3 2 B
(13) lim o tnEe lim arctane® + arctan T
n—-+00 né —3 n—-+00 —en
—2—n 1 "4+1
(14) lim e 27 lim 0g,(3" + 1)
n——+oo n—-+o00 10g3(2" + 1)
(15) logy n +logy n

n—-+oo loggn + logy, n

Esercizio 3: Calcolare i seguenti limiti individuando gli infiniti d’ordine superio-
re, utilizzando la gerarchia degli infiniti' ed applicando i Teoremi sui Limiti e sulle

1Sj chiama usualmente gerarchia degli infiniti lo schema (gia stabilito a lezione) che riassume
le relazioni di dominanza tra le funzioni elementari che tendono ad infinito per n — +o0, cioé:

log,n <n% <b" <nl <n"

in cui a, b, « € R soddisfano le condizioni a > 0, a # 1, « > 0 e b > 1. Alla precedente si possono
inoltre aggiungere:

n® < nf
" < "

seesolose 0 < a<f3

seesolose 1 <b<c

che riassumono la relazione di dominanza tra coppie di potenze e coppie di esponenziali.



Operazioni coi Limiti:

(16)

lim
n—-+4oo

(17)

lim — -
n—+oo 3 + ﬁn

(18)

nt—2n2+vnt+1

sinn — 3n4

3n +logs n

lim n'%logy (n®>+1)e™
n—-+o0o

(19)
(20)

I n? +7mn+n
im
n—+oo ¥/n —2n? + \/en

ESERCIZI SUI LIMITI

. 1
n—+too p2log™ n
n+e’—47"

li -_—
n oo 41 +e "+ n?
log,(n3 + 2) + log,(n? + 4) + logg(n + 8)
n—+oo logs(n3 — 3) + logg(n? — 9) + logy, (n — 27)

2

n°—e "

: —logy |1 —n|
lim .
n—-+oo 27 4+ nl2 —+ 10g3 ‘2 — ’I’L‘

Esercizio 4: Dopo aver constatato che si presentano in forma indeterminata, cal-

colare i limiti seguenti usando i
sui Limiti:

Limiti Notevoli delle TABELLE 5 & 6 ed i Teoremi

21 lim sin % i 2 sin L
. 2
n—+oo arctan - n—stoo "
log(1 in(el/m — 1 _q
(22) hm Og( . Sln(e )) 1m If
n—-+o00 M —1 z—1 SID(LL' _ 1)
Vi+e2m—1 . ol
(23) e Toga(1 L e 2n) lim —n log
n—+o00 10g2(1 + e72n) it ]
1 12
(24) lim . )
n—+o0 n(cos - — 1) e (201
1
. sin(e™) ~ arctan \/g
(25) Mmoo R p——
1 —cos(—1) Veost=m 43 log(l + %)
(26) n—+oo arcsin n% oo % arctan% Ry
1 m gin? 2
(27) lim (1 + 2) lim Lﬂz
n——4oo n n+oo sin (%)
n 1 1 . 23771 - 1
(28) lim n (1 e ) lim og(1 4 arcsin( ))
n—-4oo n—-+oo sin(\/m _ 1)
1
2e™ 3 ooz
2 li 1+e ™ . 3 z=
(29) nffoo( +e™ ") n:rrlo(cos \B/ﬁ)
(30) lim log(n!) lim n!  (n41)"H
n—+oo nlogn n—-tos (n + 1)! o .
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Esercizio 5: Calcolare o stimare gli ordini di infinito od infinitesimo delle succes-
sioni di termine generale:

(31)  sin— tan 27"
sin — arctan
vn
(32) g — arctann 1 —cos -
(33) log(1 + e"~3V™) log(1 + e'~loem)
" nl 2n)!
31y <" ( 7:;)
n n
arcsin( {/ 2L — 1) n .
35 1 2n"3
(35) N n log (n+ 1) +2n

1 N
(36) logy(1 +2") —log, (14 2™) + logg(1 +2™) (4/cos 2 l)en14 .

2. LIMITI DI SUCCESSIONE

Esercizio 6: Sia (a,) una successione.

1. Provare che se lim a, = +00, allora (a,) & limitata inferiormente e dotata di

n—-+o0o

minimo.

2. Provare che se lim a, = —oo, allora (a,) ¢ limitata superiormente e dotata
n—-+4oo

di massimo.

3. Esibendo due controesempi, mostrare che i risultati precedenti non si invertono;
in altre parole, determinare esplicitamente una successione dotata di minimo [risp.
di massimo] che non diverge positivamente [risp. negativamente].

Esercizio 7: In generale, i teoremi sulle operazioni coi limiti non possono essere
usati per ricavare informazioni sulla non regolaritd di somme, differenze, prodotti

e quozienti di successioni non regolari.
Mostrare cio esibendo qualche controesempio alle seguenti congetture:

(1) se (ay) e (b,) non sono regolari, allora nemmeno (a,, + b,) & regolare;

(2) se (ay) e (b,) non sono regolari, allora nemmeno (a,, — b,) & regolare;

(3) se (an) e (by) non sono regolari, allora nemmeno (a,, - b,) & regolare;

(4) se (an) e (by) non sono regolari e by, # 0, allora nemmeno (3*) ¢ regolare.
Esercizio 8 (Estensioni dei Teoremi sulle Operazioni coi Limiti): Iteo-
remi sulle operazioni coi limiti possono essere estesi in molti modi: alcuni di essi
sono proposti in questo esercizio.

Siano (a,) e (b,) successioni reali.

1. Provare che se (ay,) ¢ limitata inferiormente e lim b, = 400, allora lim a,+
n—-+o0o n—-+oo
b, = +o0.
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2. Mostrare che se (a,,) & limitata superiormente e lim b, = —oco, allora lim a,+
n—-—+o0o n—-+oo

b, = —oc.
3. Dimostrare che se (a,) ha un minorante positivo e lirf by, = +00 [risp. —o0],
n—-rroo

allora lim ay, - b, = 400 [risp. —o0].
n—-4o0o

4. Provare che se (a,) ha un maggiorante negativo e liIJIrl by, = 400 [risp. —o0],
n—-—1+0oo

allora lim ay - b, = —oo [risp. +o0].

n—-+o0o

5. Dimostrare che se (a,) & limitata e se lim b, =0, allora lim a, -b, = 0.

n—+o00 n—+00

Ce . . apn

6. Mostrare che se (a,) ¢ limitata e se lim |b,| = 400, allora lim — =0.
n—-+o0o n—-4oo n
7. Provare che se lim a, = a, allora la successione di termine generale |a,| &
n—-+4oo
regolare ed ha lim |a,| = |al.
n—-+4oo

8. Mostrare che il viceversa del punto 7 non vale; in altri termini, trovare un
controesempio per rendere evidente che, in generale, 1’esistenza del hr_"l_l |ay,| non
n—-1+:oo

implica l'esistenza di lim a,,.

n—-+oo

9. Dimostrare che risulta lim a, =0 se e solo se lim |a,|=0.
n—-+oo

n—-+o0o

Esercizio 9 (Teorema della Permanenza del Segno Generalizzato): Sia (ay)
una successione regolare di numeri reali.

1. Provare che se:

lim a, > «a,
n—-+oo

con a € R, allora esiste un indice v € N tale che:
Yn>v, a, > .
2. Analogamente, mostrare che se:
ngrfoo an < A,

con A € R, allora esiste un indice v € N tale che:
Yn>v, a, < A.

3. I risultati 1 & 2 si invertono con le solite accortezze, cioé indebolendo le disu-
guaglianze che vi figurano.
Enunciare e dimostrare tali teoremi inversi.

Esercizio 10: Siano (a,) e (b,) due successioni tali che:

lim a, =+4+occ= lim b, .
n—-+4oo n—-+4oo

1. Se risulta:
lim 2% —1
n—-+4oo bn ’

é vero che si ha pure:

. ean
lim =17
n=+4oo0 ebn

In caso affermativo, motivare la risposta; altrimenti, esibire qualche controesempio.
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2 Se, viceversa, si ha:

N
lim =1,
n—-+4o0o ebn
é vero che risulta anche:
. Qn
lim —=17?

In caso affermativo, motivare la risposta; altrimenti, esibire qualche controesempio.
Esercizio 11 (Successioni e Topologia): Siano X C R non vuoto e c € R.

1. Provare che ¢ ¢ un punto di accumulazione per X se e solo se esiste una succes-
sione (x,) C X — {c} tale che z,, — c.

2. Mostrare che ¢ ¢ un punto di accumulazione per X da sinistra [risp. da de-
stra]2 se e solo se esiste una successione strettamente crescente [risp. decrescente]
(x,) € X — {c} tale che z,, — c.

3. Mostrare che ¢ é un punto isolato di X se e solo se le uniche successioni (z,,) C X
che convergono verso ¢ sono quelle che godono della proprieta:

dng e N: Vn>ng, z,=c

(le quali vengono chiamate successioni definitivamente costants).

4. Provare che un insieme X non limitato inferiormente [risp. superiormente]
contiene una successione (z,) negativamente divergente [risp. positivamente diver-
gente|.

[Suggerimento: Per costruire la successione () sfruttare opportunamente la de-
finizione di insieme non limitato inferiormente/superiormente.]|

5. Mostrare che se X non ¢é chiuso allora esiste una successione di punti di X
convergente verso un punto ¢ ¢ X.

[Suggerimento: Dato che X non ¢é chiuso, esiste ¢ € R — X che @ di accumulazione
per X; per concludere, usare il punto 1.]

Usualmente, si conviene di dire che un sottoinsieme non vuoto X C R & sequen-
zialmente compatto (o compatto per successioni) se da ogni successione (x,) C X &
possibile estrarre una successione (z,, ) convergente verso un punto ¢ € X.
Adottata tale terminologia, il Teorema di Heine? - Pincherle* - Borel® stabilisce che
un insieme X & compatto (cioé chiuso e limitato) se e solo se esso & sequenzialmente
compatto.

6. Mostrare che la compattezza sequenziale implica la compattezza.

[Suggerimento: Sia X sequenzialmente compatto e, per assurdo, si supponga che X
non sia compatto, cosicché esso o non ¢ limitato o non é chiuso; sfruttare i risultati
4 & 5 per mostrare che cid conduce ad un assurdo.]

25 ricordi che ¢ & detto punto di accumulazione per X da sinistra [risp. destra] se e solo se
esso ¢ di accumulazione per Pinsieme XN| — oo, ¢[ [risp. per XN]e, 4+-o0f].

3Heinrich Eduard Heine (1821 — 1881), matematico tedesco.

4Salvatore Pincherle (1853 — 1936), matematico italiano fondatore dell’UNIONE MATEMATICA
ITALIANA.

5Félix Eduard Justin Emile Borel (1871 — 1956), matematico francese.
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Esercizio 12 (Successioni Monotdne di Numeri Naturali): Sia (nj) unasuc-
cessione di numeri naturali.

1. Provare che se (ny) é strettamente crescente, allora risulta:
VkeN, ny > k.

[Suggerimento: Fare induzione su k.|
2. Esistono successioni di numeri naturali strettamente decrescenti?

Esercizio 13 (Criterio della Radice per Successioni): Sia (a,) una suc-
cessione di numeri reali > 0 tale che:

(37) lim {/an =1 € [0, +00] .

n—-+oo

1. Provare che se [ > 1 allora lim a, = +o0.
n—-+oo

[Suggerimento: Nella definizione di limite per la successione di termine generale
/an si puo scegliere € = I_Tl; in tal modo si vede che (a,) & minorata, da un certo

indice in poi, dai termini di una successione positivamente divergente.]

2. Dimostrare che se 0 <[ < 1 allora lim a, =0.

n—-+o0o

[Suggerimento: Come sopra, ma ponendo ¢ = 1! e maggiorando con una succes-

2
sione infinitesima.|

3. Considerare le tre successioni di termini generali:

n+1 n+1 n?

Ty 1= = Zp = ;
" n? Yn n "Tn+1’

provare che risulta:

lim Yz,= lim Yy,= lim /z,=1

n—-+o0o n—-+oo n—-+o0o

e calcolare i limiti lim =z,, lim y,e lim z,.
n—-+o0o n—-+oo n——+oo

Conforntare i risultati e poi rispondere alla domanda seguente: cosa si puo dire, in
generale, se [ =1 in (37)?

Esercizio 14 (Criterio della Rapporto per Successioni): Sia (a,) unasuc-
cessione di numeri reali > 0 tale che:

(38) lim 2% = e [0, +o00] .

n—+0o0  Ap

1. Provare che se [ > 1 allora lim a, = +o00.

n—-+oo

[Suggerimento: Nella definizione di limite per la successione di termine generale

Ap+1/an si pud scegliere € = Z_Tl; in tal modo si vede che (a,) ¢ minorata, da un
certo indice in poi, dai termini di una successione positivamente divergente. Occor-

re ragionare per ricorrenzal|

2. Dimostrare che se 0 <[ < 1 allora lim a, =0.
n—-+o0o

[Suggerimento: Come sopra, ma ponendo € = 1= e maggiorando con una succes-

2
sione infinitesima. |
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3. Considerare le tre successioni di termini generali:

n+1 n+1 n?

Ty 1= Yn 1= 2y 1= :
n? n n+1’

provare che risulta:

. Tn41 . Yn+1 . Zn+1
lim 22— qim 22 = i 22
n—-+oo Ty n——+oo yn n—-+4oo Zn

=1

e calcolare i limiti lim =z,, lim y,e lim z,.
n—-+4oo n—-+4oo n—-+4oo

Confrontare i risultati ottenuti e poi rispondere alla domanda seguente: cosa si puod
dire, in generale, se [ =1 in (38)7

4. Sfruttando il Criterio del Rapporto ed i Limiti Notevoli di TABELLA 5, dimo-
strare che:

lim — =0
n—+oo ™

. a”

lim — =0
n—+oo n!

. n!

lim — =0

per ogni a > 0ed a > 1.

Esercizio 15 (Successioni Definitivamente Nulle): Si dice che una succes-
sione (a,) & definitivamente nulla se e solo se a partire da un certo indice in poi i
suoi elementi sono tutti nulli, cioé se:

dngeN: Vn>ng, a, =0.

L’insieme delle successioni definitivamente nulle si denota col simbolo ¢go(R).

1. Provare che se (a,), (bn) € R e o, 8 € R, allora le successioni di termini generali
aay, + Bby, ed a, - by, sono definitivamente nulle.

2. Mostrare che coo(R) C co(R), Vinsieme co(R) essendo quello costituito dalle
successioni infinitesime.

3. Fissate (ap),(by) € coo(R), si costruisca la successione (c,) (detta prodotto
secondo Cauchy di (ay,) e (b)) ponendo:

n
Cp = E ag - bn—k .
k=0

Dimostrare che (c,) € coo(R).

4 (Facoltativo). Provare che esiste una biiezione tra l'insieme cpo(R) e I'insieme dei
polinomi a coefficienti reali.

Esercizio 16: Sia (a,) una successione reale.
Per ogni p € N consideriamo la successione estratta da (a,) dagli indici ng := p+k,
i.e. (ap+k).b

6Tale successione si ottiene da (an) considerandone solo i termini da ay in poi, i.e. selezionando
itermini ap, Gp+41,ap+2,Ap4+3,- -+, Aptky---
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Detti Ay, A, € I@, rispettivamente, ’estremo inferiore e l’estremo superiore di
(ap+k), cioe:

Ay, = inf a

D LEN p+k
Ay :==supapyi ,
keN

¢ evidente che se (a,) non ¢ limitata inferiormente [risp. superiormente| allora
Ap = —oo [risp. A, = 4o0] per ogni indice p; d’altra parte, se (a,) ¢ limitata
inferiormente [risp. superiormente| allora A, € R [risp. A, € R| per ogni indice p.

1. Supposto che (a,,) sia limitata inferiormente [risp. superiormente|, mostrare che
la successione di numeri reali (\,) [risp. (A,)] ¢ crescente [risp. decrescente].

[Suggerimento: Per provare che A\, < Ap4q basta notare il sostegno della succes-
sione (ap41+4k) € un sottoinsieme del sostegno di (ap4) € che 'estremo inferiore &

decrescente rispetto all’inclusione’; un ragionamento del tutto analogo mostra che

Ap+1 < Ap-]

2. Supposto che (a,,) sia limitata, provare che entrambe le successioni (\,) e (A,)
sono convergenti.

[Suggerimento: Si noti che risulta A\g < A\, < A, < A per ogni indice p e si sfrutti
il Teorema sulla Regolarita delle Successioni Monotone.]

3. Mostrare che se (\,) e (A,) convergono allo stesso limite a € R, allora anche
(an) converge verso a.

[Suggerimento: Osservare che se n,m > p allora i termini a,, ed a,, sono contenuti
nella successione (ap+x) € che |a, — am| < Ap — Ap; da cid dedurre che (a,,) & una
successione di Cauchy e che converge verso un a € R. Per mostrare che a = a si
tenga presente che a, — A\, < A, — A, e che A, —a, < Ay, — A, e da cid, con un
opportuno passaggio al limite, si deduca che 0 <a —a < 0.]

Osservazione 1 (Minimo e Massimo Limite di una Successione): Gli elementi di
R definiti ponendo:

i —00 , se (an,) non & limitata inferiormente
minlim,, 4o @p =< .
lim, oo A se (a,) & limitata inferiormente
p—+ D
5 +o0 se (ay) non ¢é limitata superiormente
maxlimg, oo ap =< .
lim, 400 Ap , se (ay,) € limitata superiormente

vengono, rispettivamente, detti minimo limite e massimo limite di (a,) e sono
coinvolti nella dimostrazione di alcune questioni (piuttosto fini) di Analisi Reale.
Si dimostra che per ogni successione (a.,, ) estratta da (a,,) e regolare, risulta sempre:

minlim,, 4o @, < lim a,, <minlim, 4 ay
k——+o0

e che esistono successioni (a,,) ed (an, ) estratte da (ay,) tali che:

lim ay, = minlim,_, 4 a,
k—+o00

th_il_l G, = maxlim, .4 Gy, ;
— T 00

"Cio significa che, per ogni A, B C R non vuoti, se A C B allora inf A > inf B.
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cio giustifica il nome delle due quantita, poiché esse sono effettivamente il minimo
ed il massimo tra i limiti possibili per le successioni regolari estratte da (a,).

Inoltre, si prova che una successione (a,) € regolare se e solo se minlim, 1 o a, =
maxlim,,_, ;- a,, e che, in tal caso, il limite di (a,) coincide col comune valore di
minimo e massimo limite. ¢

Esercizio 17 (Dimostrazione di un Limite Notevole): Si vuole dimostrare

che lim /n=1.

n—-+oo

Seguire lo schema seguente:

(1) porre a, := //n = {/y/n ed osservare che a,, > 1 e a2 = n per ogni
N— {07 1};

(2) posto x, := a, — 1, notare che z,, > 0 e che a, = 1 + z,, cosicché:
(1+z,)"=vn
per ogni n € N — {0, 1};

(3) usare la disuguaglianza di Bernoulli, i.e. (14 z)™ > 14 nx con x > —1,
per stabilire che la disuguaglianza:

vn>14nx,
vale per ogni n € N — {0, 1};

(4) dedurne che:
vn-1

Tp <
n
e calcolare il lim x,;
n—-+o00
. . . . 2 9. n
(5) concludere calcolando il lim a, eil lim a; = lim {/n.
n—-—+00 n—-+4oo n—-+oo

Esercizio 18 (Proprietd delle Successioni di Cauchy): Sia (a,) una suc-
cessione di numeri reali che gode della proprieta di Cauchy, cioé tale che:

(C) Ve>0, wveN: Vam>v, |la, —an| <c.

1. Dimostrare direttamente® che (a,) & limitata.

[Suggerimento: Sfruttare la (C) in modo analogo a come si ¢ usata la definizione
di limite nel dimostrare che ogni successione convergente ¢ limitata.|

2. Provare direttamente® che se da (a,) si puo estrarre una successione (a,, ) con-
vergente verso a € R, allora (a,) converge verso a.

[Suggerimento: Bisogna usare il risultato di cui all’'Esercizio 12.]

Esercizio 19 (Alcune Ricorrenze del Primo Ordine Lineari): Sianoa,b,c,a €
R ed a # 0.

8Cioe, usando la (C) e non il noto Teorema che garantisce la convergenza di ogni successione
di Cauchy.

9Cioe, usando la (C) e non i noti risultati sulle successioni estratte e sulla convergenza delle
successioni di Cauchy.
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1. Determinare l’espressione esplicita della successione definita per ricorrenza
ponendo:

aapt1 =ba, ,perognineN
ap = «
e provare che essa converge se e solo se |b| < |a|. Cosa accade negli altri casi?

[Suggerimento: Usando la ricorrenza a ritroso si ha a,y; = gan = (E)Qan,l =

(%)SQn,Q etc. .. Da cui non é difficile indovinare un’espressione esplicita per a.,; ra-

gionando per induzione, dimostrare che l’espressione individuata & corretta.]

2. Determinare 'espressione esplicita della successione definita per ricorrenza
ponendo:

aapy1 =ba,+c ,perognineN
apg = &

e studiare il suo comportamento al limite.

[Suggerimento: Usando la ricorrenza a ritroso si ha a,11 = gan +£= (g)zan_l +

£14+2) = (2)Bap_a+£(14 2+ (2)?) ete... Da cui non ¢ difficile indovinare un’e-
spressione esplicita per a,; ragionando per induzione, dimostrare che 1’espressione
individuata & corretta.]

Esercizio 20: Sia (a,) la successione definita per ricorrenza ponendo:

any1 = a2 , perognin €N
ap = &

con o € R.
1. Provare che se @« = 0 oppure o = 1, la (a,) & costante e calcolarne il limite.
2. Mostrare che se 0 < a < 1 allora risulta:
(i) 0 < a, <1 per ognin € N;
(ii) (an) @ strettamente decrescente;
(iii) ngrfoo an = 0.

[Suggerimento: Per dimostrare (i) & (ii), ragionare per induzione. Per (iii), sfrut-
tare il Teorema sulla Regolarita delle Successioni Monotone, la relazione a, 1 = a2,
il Teorema sulle Successioni Estratte ed 1 Limiti Fondamentali.]

3. Provare che se o > 1 allora si ha:
(i) an, > 1 per ogni n € N;
(ii) (ay) @ strettamente crescente;
(iii) lm a, = +o0.
n—-+4oo

[Suggerimento: Procedere come per il punto 2.
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4. Cosa succede per a < 07

Esercizio 21: Sia (a,) la successione definita per ricorrenza ponendo:

{an_H =a} , perognineN

ayg =
con a € R.
1. Provare che se « =0, « = 1 oppure a = —1, la (a,) & costante e calcolarne il
limite.

2. Mostrare che se 0 < a < 1 allora risulta:
(i) 0 < an <1 per ognin €N;
(ii) (ay) @ strettamente decrescente;

ST —
(iii) LM a 0

[Suggerimento: Per dimostrare (i) & (ii), ragionare per induzione. Per (iii), sfrut-
tare il Teorema sulla Regolarita delle Successioni Monotone, la relazione a, 1 = a3,
il Teorema sulle Successioni Estratte ed i Limiti Fondamentali.]

3. Provare che se o > 1 allora si ha:

(i) an > 1 per ogni n € N;
(ii) (ayn) @ strettamente crescente;

(iii) lm a, = +o0.
n—-+4oo

[Suggerimento: Procedere come per il punto 2.

4. Cosa succede per a < 07

Esercizio 22: Sia (a,) la successione definita per ricorrenza da:
a1 = a% , per ogni n € N
n
apg = &

con o € R — {0}.
1. Provare che (a,) ¢ costante se e solo se & = 2 e calcolarne il limite.
2. Dimostrare che, comunque si scelga « # 0, risulta a, > 0 per ogni indice n > 1.

3. Mostrare che, comunque si scelga a # 0, i termini della successione risultano
alternativamente maggiori e minori di 2.

Per fare cio, posto by := asi € ¢p, := agp41 (di modo che (by) e (¢p,) sono le estratte
da (ay) contenenti i termini di posto pari e quelli di posto dispari), verificare che
le successioni (bx) e (cp) sono definite dalle ricorrenze:

2
{bk;_l,_l:bsk , per ogni k € N o {Ch+1=g , perogni h € N
bOZOZ
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e provare che per ogni coppia di indici A,k € N risulta by, < 2 < ¢ se a < 2 e
cp < 2<bpsea>2.

4. Provare che (a,) non é regolare.
Per fare cid, mostrare che le successioni estratte (by) e (¢p,) hanno limiti diversi per
h,k — +oo ed invocare il Teorema sulle Successioni Estratte.

Esercizio 23: Siano f : R — R una funzione continua, o € R ed (z,) la succes-
sione definita per ricorrenza ponendo:

Cnp1 = f(2) , per ognin €N
Top =« .

1. Provare che se (z,) ¢ convergente, allora il limite ! di (x,) & una soluzione
dell’ equazione dei punti uniti di f:

x = f(x),

cioé risulta I = f(l).

2. Mostrare che se f & crescente, allora (z,) é strettamente crescente se a < f(«),
strettamente decrescente se o > f(«) e costante se a = f(a).
Cosa accade se f é decrescente?

Esercizio 24 (Soluzione Generale di una Ricorrenza Lineare del Secondo
Ordine) : Fissata una successione (u,) e dei numeri «, 3,a,b,c € R con a # 0,
consideriamo la ricorrenza lineare non omogenea del secondo ordine:

aTp4o + bxpiq1 + cxy, =u, , perognin €N
(RL) To=« ;
r1 =0

la quale consente di definire almeno una successione (z,) detta soluzione della ri-
correnza; 1 numeri a, b, ¢ vengono detti coefficienti della ricorrenza, la successione
(up,) termine noto ed i numeri «, 3 condizioni iniziali. Ora ci occuperemo di stabi-
lire alcune proprieta delle ricorrenze lineari del secondo ordine, come 'unicita della
soluzione e la possibilita di una sua rappresentazione esplicita.

1. Dimostrare che la ricorrenza omogenea con condizioni iniziali nulle associata ad
(RL), i.e. il problema:

aTnt2 +bxrpy1 +cxy, =0 |, perognin €N
(RLO) xo=0
r1 = 0

(che ha il termine noto identicamente nullo e nulle anche le condizioni iniziali), ha
come unica soluzione la successione identicamente nulla.

[Suggerimento: Si vede facilmente che la successione identicamente nulla risolve la
(RLO); percid basta provare che se (x,) ¢ una qualsiasi altra soluzione di (RLO)
allora si ha x,, = 0 per ogni indice n. Fare induzione su n, sfruttando la ricorrenza.|

2 [Unicitd della Soluzione di (RL)]. Provare che se (x,) ed (y,) sono due
soluzioni di (RL), allora risulta x,, = y, per ogni indice n.
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[Suggerimento: Mostrare che la successione di termine generale w, = =, — y,
soddisfa la (RLO) e concludere.]

3. Mostrare che comunque si scelgano (Z,,) soluzione di:

axpyo +bxrpy1 +cx, =0 | perognin e N
(39) To =
r =0

e (&) soluzione di:

axnyo +bxry1 +cxy, =u, , perognin €N
(40) o = 0

.1'1:0,

allora la successione di termine generale x,, :== &, + Z,, € una soluzione di (RL).

4. Viceversa, mostrare che per ogni soluzione (z,) di (RL) esistono un’unica solu-
zione (Z,) di (39) ed un’unica soluzione (&,) di (40) tali che x,, = &, + T,, per ogni
indice n.

[Suggerimento: La prima delle due ricorrenze ha unica soluzione (Z,); posto
&n = T, — Ty, provare che (&,) soddisfa la seconda ricorrenza.|

5 [Rappresentazione delle Soluzioni di (RL)]. Confrontando i risultati 2,
3 & 4, dedurre che l'unica soluzione di (RL) si rappresenta sommando 1'unica
soluzione di (39) ed (40).

Esercizio 25 (Ricorrenze Lineari Omogenee del Secondo Ordine): Siano a,
b,c,a, B € R con a # 0 e si consideri la ricorrenza:

a Tpio+baxpyy+cx, =0 ,perognineN
(41) Top =«
r =0

1. Provare che una successione del tipo z,, = A", con A # 0, soddisfa una relazione
del tipo axy, 42+ bxy 41 +cx, = 0 se e solo se A é soluzione dell’equazione di secondo
grado aA? + b\ + ¢ = 0, detta equazione caratteristica.

2. Se il discriminante A = b2 — 4ac dell’equazione caratteristica é positivo, allora
I’equazione ha due soluzioni reali e distinte A\; < Ao.

In tal caso, provare che ogni successione del tipo x,, = C1 AT +C2A%, con C1,Cy € R
arbitrarie, soddisfa la relazione az, 12 + bx,41 + cx, = 0.

3. Se A = 0, allora I'equazione caratteristica ha un’unica soluzione reale A; (di
molteplicita 2).

In tal caso, mostrare che ogni successione del tipo z, = C1A} + CanAl, con
C1,Cs € R arbitrarie, soddisfa la relazione ax,, s + bxy 41 + cx, = 0.

4 (Facoltativo). Se A < 0, allora I’equazione caratteristica ha due soluzioni com-

Ve

A
2‘(1 |. In tal caso, posto:

plesse coniugate \; o = —% +i

c
ri=y/—
a
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e detto ¥ 'unico angolo in | — 7, 7] tale che:

cost = — % \/g
. A
far vedere che ogni successione del tipo x,, := Cyr™ cos(nd) + Cor™ sin(nd) soddisfa
la ricorrenza ax,4s + bry41 + cx, = 0.

5. Provare che in ogni caso, é sempre possibile determinare le costanti C7,Cy € R
in modo che ognuna delle successioni determinate ai punti 2 — 4 soddisfi anche le
condizioni iniziali o = a ed 1 = .

[Suggerimento: Imponendo le condizioni iniziali si ottiene un sistema lineare di
due equazioni nelle incognite C; e Cy; tale sistema ha sempre unica soluzione, in
quanto ¢ di Cramer.]

6. Risolvere esplicitamente:

Tn42 — Tn4l — Tp = 0
IEO:]. ,10

161:1

Tny2 — 2xn+1 +z,=0
o = 2 5
T = -1

Tnt2 + Tpy1 + Tp = 0
,TOZO

1‘1:1

3. APPLICAZIONI

Esercizio 26 (Legge di Raffreddamento di Newton): Supponiamo di avere un
oggetto £ ad una temperatura iniziale Ty = « assegnata, posto in una stanza man-

tenuta a temperatura costantemente uguale a (, e di misurare la temperatura di £

ad intervalli regolari, ricavandone le temperature 71, 15, Tj, etc. ..

La Legge di Raffreddamento di Newton stabilisce che la differenza tra la n+ 1-esima

temperatura misurata di £ e la temperatura n-esima é direttamente proporzionale

alla differenza tra la temperatura n-esima e la temperatura ambiente 3, con la co-

stante di proporzionalita k che dipende unicamente dalle caratteristiche del corpo €.

1. Scrivere la ricorrenza che rappresenta la Legge di Raffreddamento di Newton.
2. Mostrare che se a = ( allora la successione delle temperature di £ € costante.

3. Mostrare che se @ > (e k < 0, allora la successione delle temperature di £ é
strettamente decrescente e calcolarne il limite.

4. Viceversa, provare che se o < 8 e k > 0, allora la successione delle temperature
di £ é strettamente crescente e calcolarne il limite.

1OQuesta ¢ la cosiddetta successione di Fibonacci, che prende il nome da Leonardo Pisano
(1175 ca. — 1235), matematico italiano che introdusse in Europa il sistema di numerazione arabo
tuttora in uso.
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In tal caso, & corretto parlare di raffreddamento?

5 (Facoltativo). I casi presentati ai punti 3 e 4 sono quelli fisicamente interessanti,
ma altre alternative sono possibili. Analizzarle.

In moti casi, avendo a disposizione una piccola quantita di dati parziali (e.g., i primi
due valori della temperatura di £ e la temperatura ambiente, oppure i primi tre
valori della temperatura di &), ¢ possibile scrivere esplicitamente la ricorrenza che
descrive il raffreddamento di £ e determinare le sue temperature future.

In quest’ottica, si risolvano i seguenti problemi:

6. Una tazza di té a temperatura iniziale Ty = 82°C é posta in una stanza a tem-
peratura 27°C; dopo un minuto, la sua temperatura ¢ scesa a 80°C. Quale sara la
temperatura del té dopo 20 minuti?

7. Un bicchiere di Cola a 4°C é dimenticato sul tavolo della cucina, in una giornata
molto calda. Se la temperatura della stanza ¢ di 26°C e dopo 2.5 minuti la sua
temperatura ¢ di 10°C. Dopo quanti minuti la Cola raggiunge la temperatura di
25.5°C?

8. Durante una partita del Napoli, una pinta di birra a temperatura 7°C ¢ lasciata
sul bancone di un pub. Dopo un minuto, la birra é a 11°C e dopo due minuti ¢ a
14°C. Qual ¢ la temperatura del pub?

Esercizio 27 (Decadimento Radioattivo): Il Radio é un elemento radioattivo
che decade con un tasso dello 1% ogni 25 anni: cio significa che la massa rimanente
all’inizio di un periodo di 25 anni ¢ uguale a quella che ce n’era all’inizio dei 25
anni precedenti diminuita dello 1%.

1. Detta My = m la massa di Radio sotto osservazione, scrivere la ricorrenza che
ne descrive il decadimento di 25 anni in 25 anni.

E detto tempo di dimezzamento del Radio il numero totale di anni necessari affinché
decada almeno meta della massa iniziale osservata o, detto altrimenti, il numero
di anni dopo i quali la massa osservata ¢ minore od uguale alla meta della massa
iniziale.

2. Si calcoli il tempo di dimezzamento del Radio.

3. Piu in generale, ogni elemento chimico radioattivo decade con tasso percentuale
k ogni N anni. Se la massa iniziale & My = m, si scriva la ricorrenza che descrive il
decadimento e se ne calcoli il tempo di dimezzamento in termini dei parametri &,
med N.

Esercizio 28 (Evoluzione di Popolazioni): Supponiamo di voler studiare I’e-
voluzione della popolazione di una data specie S, osservandone il numero di indivi-
dui ad intervalli di tempo sempre della stessa ampiezza (e.g., ogni anno, ogni mese,
ogni decennio, etc... ).

Detti v e p 1 cosiddetti tassi di natalita e di mortalita di S (i.e., il rapporto tra gli
individui nati e quelli deceduti e la popolazione osservata), detta xo = T la popo-
lazione iniziale e detto x,, il numero di individui presenti alla n-esima osservazione,
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la ricorrenza che descrive ’andamento della popolazione é:

Tpy1 =Xp +V Ty —px, ,perognineN

To =2

1. Studiare 'andamento della successione (z,,) al variare dei parametri v, 1 ed .

Nella ricorrenza precedente, i tassi di natalitd e mortalitd v e p sono supposti
costanti, cosa che non si verifica quasi mai nelle applicazioni reali poiché contrasta
con la limitatezza delle risorse disponibili per lo sviluppo di S.

Una descrizione un po’ piu sensata del fenomeno si ottiene supponendo che v e
w1 varino durante i periodi di osservazione, cioé che v = v, e u = pu,: in alcune
applicazioni si suppone che:

Up = Vg —a T

Mn:MO+bxn7

g ¢

in cui vy, pp > 0 misurano i tassi di natalitd e mortalitd “assoluti” e le costanti
a,b > 0 misurano, in un certo senso, il grado di competizione per le risorse all’in-
terno della specie S.!!

2. Scrivere la ricorrenza che descrive I'andamento della popolazione con v, e u,
dati dalle precedenti relazioni.
Mostrare che se x,, é regolare, allora:

lim =z, = Yo~ Ho _ T
n—too " a+b o
3. Provare che se z,, > 0 risulta anche:
1+vp — o
Ty < ——— =i
n = a + b max »

e che Tmax > Too-

Quanto trovato, sempre nell’ipotesi di convergenza, si pud interpretare come segue:
la popolazione S, nella fase transitoria (cioé¢ prima di stabilizzarsi attorno al valore
Zoo), PUO assumere valori superiori al valore limite .

Esercizio 29 (Resistenza Equivalente d’Infiniti Resistori in Parallelo):
Supponiamo di avere a disposizione un generatore con d.d.p. V' > 0 ed un’infinita
numerabile di resistori, ognuno dei quali con resistenza 7, > 0.
Cominciamo a collegare il primo resistore al generatore, ottenendo un circuito con
resistenza Ry = rg; in parallelo al primo resistore colleghiamo quello con resistenza
r1, in modo da ottenere un circuito con resistenza equivalente R; data dalla nota
formula:

Fo=g_71;

T0 ™1

colleghiamo, in parallelo coi due resistori gia presenti, il resistore con resistenza 7o
in modo che la resistenza equivalente del circuito diviene:

1
Ry =5 1 1
ittt

Hip particolare, si nota che la presenza di un numero di individui “grande” influenza negativa-
mente il tasso di natalita e positivamente quello di mortalita in S. Cid ¢ abbastanza ragionevole
nell’ottica di risorse limitate, in quanto maggiore ¢ la popolazione, minore ¢ la quantita di risor-
se pro capite disponibili: questo causa una maggiore probabilita di decesso degli individui (per
carenza di accesso alle risorse, e.g. a quelle alimentari) ed una minore natalita.
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Procediamo per ricorrenza: supponendo di aver gia connesso in parallelo i resistori

con resistenze rg, 71, T2, - .., I'n, in parallelo ad essi colleghiamo quello di resistenza
Tn+1, ottenendo un circuito con resistenza equivalente data da:
R 1
ntl = 71 1 1 1 1
TR T A

ed immaginiamo di procedere oltre.

1. Scrivere la ricorrenza che descrive 'andamento della successione di resistenze

equivalenti R,,.

2. Provare che la successione (R,) ha tutti i termini positivi ed & strettamente

decrescente.

3. Supporre che r,, — r €]0, +00[. Mostrare che (R;,) & convergente e calcolarne il

limite.
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APPENDICE A. REGOLE DI CALCOLO E FORME INDETERMINATE

TABELLA 1. Regole di Calcolo (valide quando i secondi membri
non si presentano in forma indeterminata).

Operazione Regola
Prodotto per costante lim ¢-a, = c¢- lim a,
n—-+oo n—-+oo
Somma lim a,+b, = lim a,+ lim b,
n—-+o0o n—-+o0o n—-+4oo
Prodotto lim a,-b, = lim a, lim b,
n—-+oo n—-+o0o n——+oo
. . 29 limy, 4 o0 Gn
Quoziente lm — = ——M—
n—-+oo b, lim, 400 b
limg, 4 oo by
Elevamento a potenza lim (an)b" = ( lim an)
n—-4oo n—-+4oo

TABELLA 2. Forme Indeterminate.

Operazione Forma Indeterminata
Somma 00 — 00
Prodotto 000

0 oo
Quoziente e

0" o0

Elevamento a potenza
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APPENDICE B. TABELLE DI LIMITI FONDAMENTALI E NOTEVOLI

TABELLA 3. Limiti Fondamentali.

Limite Risultato
lim ¢ = ¢
n—-+o0o
400 ,sea>0
lim n% = 1 ,sea=0
n—-+oo
0 ,se a < 0
400 ,sea>1
lim " = 1 ,sea=1
n—-+oo
0 ,se0<ax<x1
. 400 ,seb>1
lim log,n =
n—+o00 —x ,sel0<b<1
lim n! = 4o
n—-+4oo
lim n" = 4o
n—-+4oo

1 sea >0
lim {a = ’
nH+<>°f 0 ,sea=0
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TABELLA 4. Limiti Fondamentali con le Funzioni Elementari “di Base”.

Se Allora Condizioni
nli}}»loo ap =a €R nli}}}oo a = o (ke N—{0})
nEr_&Q a,® = a* (ke N—{0}, a #0)
nEkaan = {a (ke N—-{0},a>0)
HEI}BOC ab = ad” (p>0eda>0opp.
p<0eda>0)
nEToo b = b (b>0eb#1)
n,EI}rloo log,a, = log,a (b>0eb#1,a>0)
nﬂr}rloc sina, = sina
ngrfm cosa, = cosa
nli‘r_*r_loo tana, = tana (a# 5 +km keZ)
n,EToc arcsina,, = arcsina (-1<a<1)
HEIEDO arccosa, = arccosa (-1<a<1)
nEIfoo arctana, = arctana
HEIJIrIM an = +00 "EIJIrloo ab = 4o (ke N—{0})
nETao a¥ =0 (ke N—{0})
nll)l_*r_lw Ya, = +oo (ke N—-{0})
lim o = {+oo ,sep >0
n—+oo " 0 ,sep <0
o = e
e, = {7
HEIEOC arctana, = g
D . T s TR C)
ngrfma;k =0 (ke N—{0})
nlig—loc YVa, = —oo (k € N— {0} dispari)
e = {0
nlig_loo arctana, = 7%
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TABELLA 5. Limiti Notevoli per le Successioni.

Limite Risultato
li Y = 1
L, Y
1 n
lim (1 + ) = e
n—-+oo n
1
1 1 noo=
SRR = e
N 0 ,sea<f
nErJrrloo vl 1 ,sea=[
4o ,sea>pf
n 0 ,se0<a<b
lim @ 1 ,se 0<a=0b
n—-4oo hn
400 ,sea>b>0
) log, n log c 1
1 2 = =1 -
oo log.n logd 85 ¢ log. b
1 0 ,se >0
og, N
lim —8b = 4o ,sea<0eb>1

-0 ,sea<0el<b<1

0 ,sea>1lopp.sea=1leda<0
,sea=leda=0

400 ,se0<a<lopp.sea=1leda>0
a[?L

lim — = 0
n—+oo n!

lim ———— = V27 (Formula di Stirling)
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TABELLA 6. Limiti Notevoli per le Funzioni. Possono essere uti-
lizzati per calcolare i limiti di successione sfruttandoli insieme al

Teorema sul Limite della Funzione Composta.

Limite Risultato

sinx

lim =1
r—0 X
lim tanx 1
z—0 X
im arcsin x _
x—0 x
t
lim arctanx 1
x—0 x
xT
-1
lim ¢ =1
x—0 x
x
-1
lim & =loga
x—0 x
log(1
lim 128042
x—0 €T
i 108a(1 +2)
x—0 €T 1 g
1 “—1
oy A2 =1
r—0 x
xT
lim <1 + ) —e
r——+0o0 X
1
lim (14+x)* =e

1
=1 = — 0 1
0g,€ = - — (a>0ea#1)
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