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Introduzione

In questi fogli sono proposti alcuni esercizi sul calcolo dei limiti di successione
con gli strumenti visti a lezione. Nelle ultime due sezioni sono presentati alcuni
esercizi “di teoria” ed alcune applicazioni delle successioni a problemi di interesse
fisico, biologico ed ingegneristico.

1. Esercizi

Esercizio 1: Utilizzando l’appropriata definizione di limite, dimostrare che val-
gono le seguenti relazioni:

lim
n→+∞

1
n− 2

= 0 lim
n→+∞

n2

(n− 2)2
= 1 lim

n→+∞
log
(
n+ 1
n2

)
= −∞

(1)

lim
n→+∞

log(n2 + 1) = +∞ lim
n→+∞

e−
√
n = 0 lim

n→+∞

2n4

n4 + n2 + 1
= 2

(2)

lim
n→+∞

e
1
n = 1 lim

n→+∞
e−n − n = −∞ lim

n→+∞

1
cos 1

n − 1
= −∞ .

(3)

Esercizio 2: Usando i Teoremi sui Limiti (i.e., Confronto, Carabinieri, Regolarità
delle Successioni Monotòne), le regole viste a lezione, i Teoremi sulle Operazioni coi
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2 G. DI MEGLIO

Limiti ed i limiti fondamentali delle Tabelle 3 & 4, calcolare i seguenti limiti:

lim
n→+∞

n2 + cos 2n lim
n→+∞

1
n2

sinn(4)

lim
n→+∞

e4n−n2
lim

n→+∞
tan

(
9

5n+2
5n−1 − 2 · 3 2n−1

2n − 3

3
n+1

n

)
(5)

lim
n→+∞

arctan
n2 +

√
n− 1

n− e−n
lim

n→+∞
tan

1− πn
2n+ 1

+ cos
1− πn
2n+ 1

(6)

lim
n→+∞

cos(π − n)
log4 |1− n|

lim
n→+∞

sin 1
n

log3
1
n

(7)

lim
n→+∞

en

arctann
lim

n→+∞

n3 − n
(2n+ 1)3

(8)

lim
n→+∞

√
2n3 − n

3
√
n4 + 3n

lim
n→+∞

√
8−n + 3 · 2−n

3
√

16−n + 2 · 4−n
(9)

lim
n→+∞

log
(

1 + 100n− n2

π − n2

)
lim

n→+∞
5432

−n

(10)

lim
n→+∞

n
√

2n + n20 lim
n→+∞

n
√

4n − 3n(11)

lim
n→+∞

√
n+ 10−

√
n+ 3 lim

n→+∞

√
n
(√
n+ 10−

√
n+ 3

)
(12)

lim
n→+∞

−2n3 + n+ 2√
n6 − 3

lim
n→+∞

arctan e
1
n + arctan

e
1
n

1− e
1
n

(13)

lim
n→+∞

e
3−2−n

2−n lim
n→+∞

log2(3n + 1)
log3(2n + 1)

(14)

lim
n→+∞

log2 n+ log4 n

log3 n+ log27 n
.(15)

Esercizio 3: Calcolare i seguenti limiti individuando gli infiniti d’ordine superio-
re, utilizzando la gerarchia degli infiniti1 ed applicando i Teoremi sui Limiti e sulle

1Si chiama usualmente gerarchia degli infiniti lo schema (già stabilito a lezione) che riassume
le relazioni di dominanza tra le funzioni elementari che tendono ad infinito per n→ +∞, cioè:

loga n ≺ nα ≺ bn ≺ n! ≺ nn

in cui a, b, α ∈ R soddisfano le condizioni a > 0, a 6= 1, α > 0 e b > 1. Alla precedente si possono
inoltre aggiungere:

nα ≺ nβ se e solo se 0 < α < β

bn ≺ cn se e solo se 1 < b < c

che riassumono la relazione di dominanza tra coppie di potenze e coppie di esponenziali.
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Operazioni coi Limiti:

lim
n→+∞

n4 − 2n2 +
√
n4 + 1

sinn− 3n4
lim

n→+∞

en + n2

n5 − 1

(16)

lim
n→+∞

3n+ log3 n

3−n + 1√
3
n

lim
n→+∞

1
n2 log100 n

en
(17)

lim
n→+∞

n100 log27
3 (n2 + 1) e−n lim

n→+∞

n+ en − 4−n

4n + e−n + n2

(18)

lim
n→+∞

log2(n3 + 2) + log4(n2 + 4) + log8(n+ 8)
log3(n3 − 3) + log9(n2 − 9) + log27(n− 27)

(19)

lim
n→+∞

n2 + πn+
√
n

3
√
n− 2n2 +

√
en

lim
n→+∞

n2 − e−n − log2 |1− n|
2n + n12 + log3 |2− n|

.

(20)

Esercizio 4: Dopo aver constatato che si presentano in forma indeterminata, cal-
colare i limiti seguenti usando i Limiti Notevoli delle Tabelle 5 & 6 ed i Teoremi
sui Limiti:

lim
n→+∞

sin π
n

arctan 3
n

lim
n→+∞

n2 sin
1
n2

(21)

lim
n→+∞

log(1 + sin(e1/n − 1))
3

√
cos 1√

n
− 1

lim
x→1

x− 1
sin(x2 − 1)

(22)

lim
n→+∞

5
√

1 + e−2n − 1
log2(1 + e−2n)

lim
n→+∞

−n log
(
n+ 1
n− 1

)
(23)

lim
n→+∞

1
n(cos 1

n − 1)
lim

n→+∞

(n!)2

(2n)!
(24)

lim
n→+∞

sin(e−n)
1− e1/n

lim
n→+∞

arctan
√

1
n

e1/n2 − 1
(25)

lim
n→+∞

1− cos(− 1
n )

arcsin 1
n3

lim
n→+∞

√
cosπ−n + 3 log(1 + 2

n2 )
1
n arctan 1

n e1+1/n5(26)

lim
n→+∞

(
1 +

1
n2

) 1
sin2(1/n)

lim
n→+∞

sin2 2
n

sin
(

2
n

)2(27)

lim
n→+∞

n
(

1− e
1+3n

n2

)
lim

n→+∞

log(1 + arcsin(23−n − 1))
sin(
√

1 + arctan 31−n − 1)
(28)

lim
n→+∞

(
1 + e−n

)2en

lim
n→0

(cos
3
3
√
n

)
1

sin2 2
3√n(29)

lim
n→+∞

log(n!)
n log n

lim
n→+∞

n!
(n+ 1)!

(n+ 1)n+1

nn
.(30)
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Esercizio 5: Calcolare o stimare gli ordini di infinito od infinitesimo delle succes-
sioni di termine generale:

sin
1√
n

arctan 2−n(31)

π

2
− arctann 1− cos

1
n3

(32)

log(1 + en−3
√
n) log(1 + e1−logn)(33)

en n!
nn

(2n)!
nn

(34)

arcsin( 3

√
n+1
n − 1)

√
n

n log
(

n

n+ 1

)
+ 2n−

1
3(35)

log2(1 + 2n)− log4(1 + 2n) + log8(1 + 2n) (

√
cos

1
n2
− 1)e

1
n4 .(36)

2. Limiti di Successione

Esercizio 6: Sia (an) una successione.

1. Provare che se lim
n→+∞

an = +∞, allora (an) è limitata inferiormente e dotata di
minimo.

2. Provare che se lim
n→+∞

an = −∞, allora (an) è limitata superiormente e dotata
di massimo.

3. Esibendo due controesempi, mostrare che i risultati precedenti non si invertono;
in altre parole, determinare esplicitamente una successione dotata di minimo [risp.
di massimo] che non diverge positivamente [risp. negativamente].

Esercizio 7: In generale, i teoremi sulle operazioni coi limiti non possono essere
usati per ricavare informazioni sulla non regolarità di somme, differenze, prodotti
e quozienti di successioni non regolari.
Mostrare ciò esibendo qualche controesempio alle seguenti congetture:

(1) se (an) e (bn) non sono regolari, allora nemmeno (an + bn) è regolare;

(2) se (an) e (bn) non sono regolari, allora nemmeno (an − bn) è regolare;

(3) se (an) e (bn) non sono regolari, allora nemmeno (an · bn) è regolare;

(4) se (an) e (bn) non sono regolari e bn 6= 0, allora nemmeno (an

bn
) è regolare.

Esercizio 8 (Estensioni dei Teoremi sulle Operazioni coi Limiti): I teo-
remi sulle operazioni coi limiti possono essere estesi in molti modi: alcuni di essi
sono proposti in questo esercizio.

Siano (an) e (bn) successioni reali.

1. Provare che se (an) è limitata inferiormente e lim
n→+∞

bn = +∞, allora lim
n→+∞

an+

bn = +∞.
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2. Mostrare che se (an) è limitata superiormente e lim
n→+∞

bn = −∞, allora lim
n→+∞

an+

bn = −∞.

3. Dimostrare che se (an) ha un minorante positivo e lim
n→+∞

bn = +∞ [risp. −∞],

allora lim
n→+∞

an · bn = +∞ [risp. −∞].

4. Provare che se (an) ha un maggiorante negativo e lim
n→+∞

bn = +∞ [risp. −∞],

allora lim
n→+∞

an · bn = −∞ [risp. +∞].

5. Dimostrare che se (an) è limitata e se lim
n→+∞

bn = 0, allora lim
n→+∞

an · bn = 0.

6. Mostrare che se (an) è limitata e se lim
n→+∞

|bn| = +∞, allora lim
n→+∞

an
bn

= 0.

7. Provare che se lim
n→+∞

an = a, allora la successione di termine generale |an| è
regolare ed ha lim

n→+∞
|an| = |a|.

8. Mostrare che il viceversa del punto 7 non vale; in altri termini, trovare un
controesempio per rendere evidente che, in generale, l’esistenza del lim

n→+∞
|an| non

implica l’esistenza di lim
n→+∞

an.

9. Dimostrare che risulta lim
n→+∞

an = 0 se e solo se lim
n→+∞

|an| = 0.

Esercizio 9 (Teorema della Permanenza del Segno Generalizzato): Sia (an)
una successione regolare di numeri reali.

1. Provare che se:
lim

n→+∞
an > α ,

con α ∈ R, allora esiste un indice ν ∈ N tale che:

∀n > ν, an > α .

2. Analogamente, mostrare che se:

lim
n→+∞

an < A ,

con A ∈ R, allora esiste un indice ν ∈ N tale che:

∀n > ν, an < A .

3. I risultati 1 & 2 si invertono con le solite accortezze, cioè indebolendo le disu-
guaglianze che vi figurano.
Enunciare e dimostrare tali teoremi inversi.

Esercizio 10: Siano (an) e (bn) due successioni tali che:

lim
n→+∞

an = +∞ = lim
n→+∞

bn .

1. Se risulta:
lim

n→+∞

an
bn

= 1 ,

è vero che si ha pure:

lim
n→+∞

ean

ebn
= 1 ?

In caso affermativo, motivare la risposta; altrimenti, esibire qualche controesempio.
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2 Se, viceversa, si ha:

lim
n→+∞

ean

ebn
= 1 ,

è vero che risulta anche:
lim

n→+∞

an
bn

= 1 ?

In caso affermativo, motivare la risposta; altrimenti, esibire qualche controesempio.

Esercizio 11 (Successioni e Topologia): Siano X ⊆ R non vuoto e c ∈ R.

1. Provare che c è un punto di accumulazione per X se e solo se esiste una succes-
sione (xn) ⊆ X − {c} tale che xn → c.

2. Mostrare che c è un punto di accumulazione per X da sinistra [risp. da de-
stra]2 se e solo se esiste una successione strettamente crescente [risp. decrescente]
(xn) ⊆ X − {c} tale che xn → c.

3. Mostrare che c è un punto isolato di X se e solo se le uniche successioni (xn) ⊆ X
che convergono verso c sono quelle che godono della proprietà:

∃n0 ∈ N : ∀n ≥ n0, xn = c

(le quali vengono chiamate successioni definitivamente costanti).

4. Provare che un insieme X non limitato inferiormente [risp. superiormente]
contiene una successione (xn) negativamente divergente [risp. positivamente diver-
gente].

[Suggerimento: Per costruire la successione (xn) sfruttare opportunamente la de-
finizione di insieme non limitato inferiormente/superiormente.]

5. Mostrare che se X non è chiuso allora esiste una successione di punti di X
convergente verso un punto c /∈ X.

[Suggerimento: Dato che X non è chiuso, esiste c ∈ R−X che è di accumulazione
per X; per concludere, usare il punto 1.]

Usualmente, si conviene di dire che un sottoinsieme non vuoto X ⊆ R è sequen-
zialmente compatto (o compatto per successioni) se da ogni successione (xn) ⊆ X è
possibile estrarre una successione (xnk

) convergente verso un punto c ∈ X.
Adottata tale terminologia, il Teorema di Heine3 - Pincherle4 - Borel5 stabilisce che
un insieme X è compatto (cioè chiuso e limitato) se e solo se esso è sequenzialmente
compatto.

6. Mostrare che la compattezza sequenziale implica la compattezza.

[Suggerimento: Sia X sequenzialmente compatto e, per assurdo, si supponga che X
non sia compatto, cosicché esso o non è limitato o non è chiuso; sfruttare i risultati
4 & 5 per mostrare che ciò conduce ad un assurdo.]

2Si ricordi che c è detto punto di accumulazione per X da sinistra [risp. destra] se e solo se
esso è di accumulazione per l’insieme X∩]−∞, c[ [risp. per X∩]c,+∞[].

3Heinrich Eduard Heine (1821 – 1881), matematico tedesco.
4Salvatore Pincherle (1853 – 1936), matematico italiano fondatore dell’Unione Matematica

Italiana.
5Félix Eduard Justin Èmile Borel (1871 – 1956), matematico francese.
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Esercizio 12 (Successioni Monotòne di Numeri Naturali): Sia (nk) una suc-
cessione di numeri naturali.

1. Provare che se (nk) è strettamente crescente, allora risulta:

∀k ∈ N, nk ≥ k .

[Suggerimento: Fare induzione su k.]

2. Esistono successioni di numeri naturali strettamente decrescenti?

Esercizio 13 (Criterio della Radice per Successioni): Sia (an) una suc-
cessione di numeri reali ≥ 0 tale che:

(37) lim
n→+∞

n
√
an = l ∈ [0,+∞] .

1. Provare che se l > 1 allora lim
n→+∞

an = +∞.

[Suggerimento: Nella definizione di limite per la successione di termine generale
n
√
an si può scegliere ε = l−1

2 ; in tal modo si vede che (an) è minorata, da un certo
indice in poi, dai termini di una successione positivamente divergente.]

2. Dimostrare che se 0 ≤ l < 1 allora lim
n→+∞

an = 0.

[Suggerimento: Come sopra, ma ponendo ε = 1−l
2 e maggiorando con una succes-

sione infinitesima.]

3. Considerare le tre successioni di termini generali:

xn :=
n+ 1
n2

yn :=
n+ 1
n

zn :=
n2

n+ 1
;

provare che risulta:

lim
n→+∞

n
√
xn = lim

n→+∞
n
√
yn = lim

n→+∞
n
√
zn = 1

e calcolare i limiti lim
n→+∞

xn, lim
n→+∞

yn e lim
n→+∞

zn.
Conforntare i risultati e poi rispondere alla domanda seguente: cosa si può dire, in
generale, se l = 1 in (37)?

Esercizio 14 (Criterio della Rapporto per Successioni): Sia (an) una suc-
cessione di numeri reali > 0 tale che:

(38) lim
n→+∞

an+1

an
= l ∈ [0,+∞] .

1. Provare che se l > 1 allora lim
n→+∞

an = +∞.

[Suggerimento: Nella definizione di limite per la successione di termine generale
an+1/an si può scegliere ε = l−1

2 ; in tal modo si vede che (an) è minorata, da un
certo indice in poi, dai termini di una successione positivamente divergente. Occor-
re ragionare per ricorrenza!]

2. Dimostrare che se 0 ≤ l < 1 allora lim
n→+∞

an = 0.

[Suggerimento: Come sopra, ma ponendo ε = 1−l
2 e maggiorando con una succes-

sione infinitesima.]
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3. Considerare le tre successioni di termini generali:

xn :=
n+ 1
n2

yn :=
n+ 1
n

zn :=
n2

n+ 1
;

provare che risulta:

lim
n→+∞

xn+1

xn
= lim
n→+∞

yn+1

yn
= lim
n→+∞

zn+1

zn
= 1

e calcolare i limiti lim
n→+∞

xn, lim
n→+∞

yn e lim
n→+∞

zn.
Confrontare i risultati ottenuti e poi rispondere alla domanda seguente: cosa si può
dire, in generale, se l = 1 in (38)?

4. Sfruttando il Criterio del Rapporto ed i Limiti Notevoli di Tabella 5, dimo-
strare che:

lim
n→+∞

nα

an
= 0

lim
n→+∞

an

n!
= 0

lim
n→+∞

n!
nn

= 0

per ogni α > 0 ed a > 1.

Esercizio 15 (Successioni Definitivamente Nulle): Si dice che una succes-
sione (an) è definitivamente nulla se e solo se a partire da un certo indice in poi i
suoi elementi sono tutti nulli, cioè se:

∃n0 ∈ N : ∀n ≥ n0, an = 0 .

L’insieme delle successioni definitivamente nulle si denota col simbolo c00(R).

1. Provare che se (an), (bn) ∈ R e α, β ∈ R, allora le successioni di termini generali
αan + βbn ed an · bn sono definitivamente nulle.

2. Mostrare che c00(R) ⊂ c0(R), l’insieme c0(R) essendo quello costituito dalle
successioni infinitesime.

3. Fissate (an), (bn) ∈ c00(R), si costruisca la successione (cn) (detta prodotto
secondo Cauchy di (an) e (bn)) ponendo:

cn :=
n∑
k=0

ak · bn−k .

Dimostrare che (cn) ∈ c00(R).

4 (Facoltativo). Provare che esiste una biiezione tra l’insieme c00(R) e l’insieme dei
polinomi a coefficienti reali.

Esercizio 16: Sia (an) una successione reale.
Per ogni p ∈ N consideriamo la successione estratta da (an) dagli indici nk := p+k,
i.e. (ap+k).6

6Tale successione si ottiene da (an) considerandone solo i termini da ap in poi, i.e. selezionando
i termini ap, ap+1, ap+2, ap+3, . . . , ap+k, . . .
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Detti λp,Λp ∈ R̂, rispettivamente, l’estremo inferiore e l’estremo superiore di
(ap+k), cioè:

λp := inf
k∈N

ap+k

Λp := sup
k∈N

ap+k ,

è evidente che se (an) non è limitata inferiormente [risp. superiormente] allora
λp = −∞ [risp. Λp = +∞] per ogni indice p; d’altra parte, se (an) è limitata
inferiormente [risp. superiormente] allora λp ∈ R [risp. Λp ∈ R] per ogni indice p.

1. Supposto che (an) sia limitata inferiormente [risp. superiormente], mostrare che
la successione di numeri reali (λp) [risp. (Λp)] è crescente [risp. decrescente].

[Suggerimento: Per provare che λp ≤ λp+1 basta notare il sostegno della succes-
sione (ap+1+k) è un sottoinsieme del sostegno di (ap+k) e che l’estremo inferiore è
decrescente rispetto all’inclusione7; un ragionamento del tutto analogo mostra che
Λp+1 ≤ Λp.]

2. Supposto che (an) sia limitata, provare che entrambe le successioni (λp) e (Λp)
sono convergenti.

[Suggerimento: Si noti che risulta λ0 ≤ λp ≤ Λp ≤ Λ0 per ogni indice p e si sfrutti
il Teorema sulla Regolarità delle Successioni Monotòne.]

3. Mostrare che se (λp) e (Λp) convergono allo stesso limite a ∈ R, allora anche
(an) converge verso a.

[Suggerimento: Osservare che se n,m > p allora i termini an ed am sono contenuti
nella successione (ap+k) e che |an − am| ≤ Λp − λp; da ciò dedurre che (an) è una
successione di Cauchy e che converge verso un α ∈ R. Per mostrare che α = a si
tenga presente che ap − λp ≤ Λp − λp e che Λp − ap ≤ Λp − λp e da ciò, con un
opportuno passaggio al limite, si deduca che 0 ≤ a− α ≤ 0.]

Osservazione 1 (Minimo e Massimo Limite di una Successione): Gli elementi di
R̂ definiti ponendo:

minlimn→+∞ an :=

{
−∞ , se (an) non è limitata inferiormente
limp→+∞ λp , se (an) è limitata inferiormente

maxlimn→+∞ an :=

{
+∞ , se (an) non è limitata superiormente
limp→+∞ Λp , se (an) è limitata superiormente

vengono, rispettivamente, detti minimo limite e massimo limite di (an) e sono
coinvolti nella dimostrazione di alcune questioni (piuttosto fini) di Analisi Reale.
Si dimostra che per ogni successione (ank

) estratta da (an) e regolare, risulta sempre:

minlimn→+∞ an ≤ lim
k→+∞

ank
≤ minlimn→+∞ an

e che esistono successioni (ank
) ed (anh

) estratte da (an) tali che:

lim
k→+∞

ank
= minlimn→+∞ an

lim
h→+∞

anh
= maxlimn→+∞ an ;

7Ciò significa che, per ogni A,B ⊆ R non vuoti, se A ⊆ B allora inf A ≥ inf B.
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ciò giustifica il nome delle due quantità, poiché esse sono effettivamente il minimo
ed il massimo tra i limiti possibili per le successioni regolari estratte da (an).
Inoltre, si prova che una successione (an) è regolare se e solo se minlimn→+∞ an =
maxlimn→+∞ an e che, in tal caso, il limite di (an) coincide col comune valore di
minimo e massimo limite. �

Esercizio 17 (Dimostrazione di un Limite Notevole): Si vuole dimostrare
che lim

n→+∞
n
√
n = 1.

Seguire lo schema seguente:

(1) porre an :=
√

n
√
n = n

√√
n ed osservare che an > 1 e a2

n = n
√
n per ogni

N− {0, 1};

(2) posto xn := an − 1, notare che xn > 0 e che an = 1 + xn cosicché:

(1 + xn)n =
√
n

per ogni n ∈ N− {0, 1};

(3) usare la disuguaglianza di Bernoulli, i.e. (1 + x)n ≥ 1 + nx con x ≥ −1,
per stabilire che la disuguaglianza:

√
n ≥ 1 + nxn

vale per ogni n ∈ N− {0, 1};

(4) dedurne che:

xn ≤
√
n− 1
n

e calcolare il lim
n→+∞

xn;

(5) concludere calcolando il lim
n→+∞

an e il lim
n→+∞

a2
n = lim

n→+∞
n
√
n.

Esercizio 18 (Proprietà delle Successioni di Cauchy): Sia (an) una suc-
cessione di numeri reali che gode della proprietà di Cauchy, cioè tale che:

(C) ∀ε > 0, ∃ν ∈ N : ∀n,m > ν, |an − am| < ε .

1. Dimostrare direttamente8 che (an) è limitata.

[Suggerimento: Sfruttare la (C) in modo analogo a come si è usata la definizione
di limite nel dimostrare che ogni successione convergente è limitata.]

2. Provare direttamente9 che se da (an) si può estrarre una successione (ank
) con-

vergente verso a ∈ R, allora (an) converge verso a.

[Suggerimento: Bisogna usare il risultato di cui all’Esercizio 12.]

Esercizio 19 (Alcune Ricorrenze del Primo Ordine Lineari): Siano a, b, c, α ∈
R ed a 6= 0.

8Cioè, usando la (C) e non il noto Teorema che garantisce la convergenza di ogni successione
di Cauchy.

9Cioè, usando la (C) e non i noti risultati sulle successioni estratte e sulla convergenza delle
successioni di Cauchy.
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1. Determinare l’espressione esplicita della successione definita per ricorrenza
ponendo: {

a an+1 = b an , per ogni n ∈ N
a0 = α

e provare che essa converge se e solo se |b| < |a|. Cosa accade negli altri casi?

[Suggerimento: Usando la ricorrenza a ritroso si ha an+1 = b
aan = ( ba )2an−1 =

( ba )3an−2 etc. . . Da cui non è difficile indovinare un’espressione esplicita per an; ra-
gionando per induzione, dimostrare che l’espressione individuata è corretta.]

2. Determinare l’espressione esplicita della successione definita per ricorrenza
ponendo: {

a an+1 = b an + c , per ogni n ∈ N
a0 = α

e studiare il suo comportamento al limite.

[Suggerimento: Usando la ricorrenza a ritroso si ha an+1 = b
aan + c

a = ( ba )2an−1 +
c
a (1 + b

a ) = ( ba )3an−2 + c
a (1 + b

a + ( ba )2) etc. . . Da cui non è difficile indovinare un’e-
spressione esplicita per an; ragionando per induzione, dimostrare che l’espressione
individuata è corretta.]

Esercizio 20: Sia (an) la successione definita per ricorrenza ponendo:{
an+1 = a2

n , per ogni n ∈ N
a0 = α

con α ∈ R.

1. Provare che se α = 0 oppure α = 1, la (an) è costante e calcolarne il limite.

2. Mostrare che se 0 < α < 1 allora risulta:

(i) 0 < an < 1 per ogni n ∈ N;

(ii) (an) è strettamente decrescente;

(iii) lim
n→+∞

an = 0.

[Suggerimento: Per dimostrare (i) & (ii), ragionare per induzione. Per (iii), sfrut-
tare il Teorema sulla Regolarità delle Successioni Monotòne, la relazione an+1 = a2

n,
il Teorema sulle Successioni Estratte ed i Limiti Fondamentali.]

3. Provare che se α > 1 allora si ha:
(i) an > 1 per ogni n ∈ N;

(ii) (an) è strettamente crescente;

(iii) lim
n→+∞

an = +∞.

[Suggerimento: Procedere come per il punto 2.]
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4. Cosa succede per α < 0?

Esercizio 21: Sia (an) la successione definita per ricorrenza ponendo:{
an+1 = a3

n , per ogni n ∈ N
a0 = α

con α ∈ R.

1. Provare che se α = 0, α = 1 oppure α = −1, la (an) è costante e calcolarne il
limite.

2. Mostrare che se 0 < α < 1 allora risulta:

(i) 0 < an < 1 per ogni n ∈ N;

(ii) (an) è strettamente decrescente;

(iii) lim
n→+∞

an = 0.

[Suggerimento: Per dimostrare (i) & (ii), ragionare per induzione. Per (iii), sfrut-
tare il Teorema sulla Regolarità delle Successioni Monotòne, la relazione an+1 = a3

n,
il Teorema sulle Successioni Estratte ed i Limiti Fondamentali.]

3. Provare che se α > 1 allora si ha:
(i) an > 1 per ogni n ∈ N;

(ii) (an) è strettamente crescente;

(iii) lim
n→+∞

an = +∞.

[Suggerimento: Procedere come per il punto 2.]

4. Cosa succede per α < 0?

Esercizio 22: Sia (an) la successione definita per ricorrenza da:{
an+1 = 8

a2
n

, per ogni n ∈ N
a0 = α

con α ∈ R− {0}.

1. Provare che (an) è costante se e solo se α = 2 e calcolarne il limite.

2. Dimostrare che, comunque si scelga α 6= 0, risulta an > 0 per ogni indice n ≥ 1.

3. Mostrare che, comunque si scelga α 6= 0, i termini della successione risultano
alternativamente maggiori e minori di 2.
Per fare ciò, posto bk := a2k e ch := a2h+1 (di modo che (bk) e (ch) sono le estratte
da (an) contenenti i termini di posto pari e quelli di posto dispari), verificare che
le successioni (bk) e (ch) sono definite dalle ricorrenze:{

bk+1 = b2k
8 , per ogni k ∈ N

b0 = α
e

{
ch+1 = c2h

8 , per ogni h ∈ N
c0 = 8

α2
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e provare che per ogni coppia di indici h, k ∈ N risulta bk < 2 < ch se α < 2 e
ck < 2 < bh se α > 2.

4. Provare che (an) non è regolare.
Per fare ciò, mostrare che le successioni estratte (bk) e (ch) hanno limiti diversi per
h, k → +∞ ed invocare il Teorema sulle Successioni Estratte.

Esercizio 23: Siano f : R → R una funzione continua, α ∈ R ed (xn) la succes-
sione definita per ricorrenza ponendo:{

xn+1 = f(xn) , per ogni n ∈ N
x0 = α .

1. Provare che se (xn) è convergente, allora il limite l di (xn) è una soluzione
dell’equazione dei punti uniti di f :

x = f(x) ,

cioè risulta l = f(l).

2. Mostrare che se f è crescente, allora (xn) è strettamente crescente se α < f(α),
strettamente decrescente se α > f(α) e costante se α = f(α).
Cosa accade se f è decrescente?

Esercizio 24 (Soluzione Generale di una Ricorrenza Lineare del Secondo
Ordine): Fissata una successione (un) e dei numeri α, β, a, b, c ∈ R con a 6= 0,
consideriamo la ricorrenza lineare non omogenea del secondo ordine:

(RL)


axn+2 + bxn+1 + cxn = un , per ogni n ∈ N
x0 = α

x1 = β

,

la quale consente di definire almeno una successione (xn) detta soluzione della ri-
correnza; i numeri a, b, c vengono detti coefficienti della ricorrenza, la successione
(un) termine noto ed i numeri α, β condizioni iniziali. Ora ci occuperemo di stabi-
lire alcune proprietà delle ricorrenze lineari del secondo ordine, come l’unicità della
soluzione e la possibilità di una sua rappresentazione esplicita.

1. Dimostrare che la ricorrenza omogenea con condizioni iniziali nulle associata ad
(RL), i.e. il problema:

(RLO)


axn+2 + bxn+1 + cxn = 0 , per ogni n ∈ N
x0 = 0
x1 = 0

(che ha il termine noto identicamente nullo e nulle anche le condizioni iniziali), ha
come unica soluzione la successione identicamente nulla.

[Suggerimento: Si vede facilmente che la successione identicamente nulla risolve la
(RLO); perciò basta provare che se (xn) è una qualsiasi altra soluzione di (RLO)
allora si ha xn = 0 per ogni indice n. Fare induzione su n, sfruttando la ricorrenza.]

2 [Unicità della Soluzione di (RL)]. Provare che se (xn) ed (yn) sono due
soluzioni di (RL), allora risulta xn = yn per ogni indice n.
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[Suggerimento: Mostrare che la successione di termine generale wn := xn − yn
soddisfa la (RLO) e concludere.]

3. Mostrare che comunque si scelgano (x̄n) soluzione di:

(39)


axn+2 + bxn+1 + cxn = 0 , per ogni n ∈ N
x0 = α

x1 = β

e (ξn) soluzione di:

(40)


axn+2 + bxn+1 + cxn = un , per ogni n ∈ N
x0 = 0
x1 = 0 ,

allora la successione di termine generale xn := ξn + x̄n è una soluzione di (RL).

4. Viceversa, mostrare che per ogni soluzione (xn) di (RL) esistono un’unica solu-
zione (xn) di (39) ed un’unica soluzione (ξn) di (40) tali che xn = ξn + x̄n per ogni
indice n.

[Suggerimento: La prima delle due ricorrenze ha unica soluzione (xn); posto
ξn := xn − xn, provare che (ξn) soddisfa la seconda ricorrenza.]

5 [Rappresentazione delle Soluzioni di (RL)]. Confrontando i risultati 2,
3 & 4, dedurre che l’unica soluzione di (RL) si rappresenta sommando l’unica
soluzione di (39) ed (40).

Esercizio 25 (Ricorrenze Lineari Omogenee del Secondo Ordine): Siano a,
b, c, α, β ∈ R con a 6= 0 e si consideri la ricorrenza:

(41)


a xn+2 + b xn+1 + c xn = 0 , per ogni n ∈ N
x0 = α

x1 = β

.

1. Provare che una successione del tipo xn = λn, con λ 6= 0, soddisfa una relazione
del tipo axn+2 +bxn+1 +cxn = 0 se e solo se λ è soluzione dell’equazione di secondo
grado aλ2 + bλ+ c = 0, detta equazione caratteristica.

2. Se il discriminante ∆ = b2 − 4ac dell’equazione caratteristica è positivo, allora
l’equazione ha due soluzioni reali e distinte λ1 < λ2.
In tal caso, provare che ogni successione del tipo xn = C1λ

n
1 +C2λ

n
2 , con C1, C2 ∈ R

arbitrarie, soddisfa la relazione axn+2 + bxn+1 + cxn = 0.

3. Se ∆ = 0, allora l’equazione caratteristica ha un’unica soluzione reale λ1 (di
molteplicità 2).
In tal caso, mostrare che ogni successione del tipo xn = C1λ

n
1 + C2nλ

n
1 , con

C1, C2 ∈ R arbitrarie, soddisfa la relazione axn+2 + bxn+1 + cxn = 0.

4 (Facoltativo). Se ∆ < 0, allora l’equazione caratteristica ha due soluzioni com-

plesse coniugate λ1,2 = − b
2a ± i

√
|∆|

2a . In tal caso, posto:

r :=
√
c

a
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e detto ϑ l’unico angolo in ]− π, π] tale che:{
cosϑ = − b

2a

√
a
c

sinϑ =
√
|∆|

2a

√
a
c

,

far vedere che ogni successione del tipo xn := C1r
n cos(nϑ) +C2r

n sin(nϑ) soddisfa
la ricorrenza axn+2 + bxn+1 + cxn = 0.

5. Provare che in ogni caso, è sempre possibile determinare le costanti C1, C2 ∈ R
in modo che ognuna delle successioni determinate ai punti 2 – 4 soddisfi anche le
condizioni iniziali x0 = α ed x1 = β.

[Suggerimento: Imponendo le condizioni iniziali si ottiene un sistema lineare di
due equazioni nelle incognite C1 e C2; tale sistema ha sempre unica soluzione, in
quanto è di Cramer.]

6. Risolvere esplicitamente:
xn+2 − xn+1 − xn = 0
x0 = 1
x1 = 1

, 10


xn+2 − 2xn+1 + xn = 0
x0 = 2
x1 = −1

,


xn+2 + xn+1 + xn = 0
x0 = 0
x1 = 1

.

3. Applicazioni

Esercizio 26 (Legge di Raffreddamento di Newton): Supponiamo di avere un
oggetto E ad una temperatura iniziale T0 = α assegnata, posto in una stanza man-
tenuta a temperatura costantemente uguale a β, e di misurare la temperatura di E
ad intervalli regolari, ricavandone le temperature T1, T2, T3, etc. . .
La Legge di Raffreddamento di Newton stabilisce che la differenza tra la n+1-esima
temperatura misurata di E e la temperatura n-esima è direttamente proporzionale
alla differenza tra la temperatura n-esima e la temperatura ambiente β, con la co-
stante di proporzionalità k che dipende unicamente dalle caratteristiche del corpo E .

1. Scrivere la ricorrenza che rappresenta la Legge di Raffreddamento di Newton.

2. Mostrare che se α = β allora la successione delle temperature di E è costante.

3. Mostrare che se α > β e k < 0, allora la successione delle temperature di E è
strettamente decrescente e calcolarne il limite.

4. Viceversa, provare che se α < β e k > 0, allora la successione delle temperature
di E è strettamente crescente e calcolarne il limite.

10Questa è la cosiddetta successione di Fibonacci, che prende il nome da Leonardo Pisano
(1175 ca. – 1235), matematico italiano che introdusse in Europa il sistema di numerazione arabo
tuttora in uso.
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In tal caso, è corretto parlare di raffreddamento?

5 (Facoltativo). I casi presentati ai punti 3 e 4 sono quelli fisicamente interessanti,
ma altre alternative sono possibili. Analizzarle.

In moti casi, avendo a disposizione una piccola quantità di dati parziali (e.g., i primi
due valori della temperatura di E e la temperatura ambiente, oppure i primi tre
valori della temperatura di E), è possibile scrivere esplicitamente la ricorrenza che
descrive il raffreddamento di E e determinare le sue temperature future.
In quest’ottica, si risolvano i seguenti problemi:

6. Una tazza di tè a temperatura iniziale T0 = 82◦C è posta in una stanza a tem-
peratura 27◦C; dopo un minuto, la sua temperatura è scesa a 80◦C. Quale sarà la
temperatura del tè dopo 20 minuti?

7. Un bicchiere di Cola a 4◦C è dimenticato sul tavolo della cucina, in una giornata
molto calda. Se la temperatura della stanza è di 26◦C e dopo 2.5 minuti la sua
temperatura è di 10◦C. Dopo quanti minuti la Cola raggiunge la temperatura di
25.5◦C?

8. Durante una partita del Napoli, una pinta di birra a temperatura 7◦C è lasciata
sul bancone di un pub. Dopo un minuto, la birra è a 11◦C e dopo due minuti è a
14◦C. Qual è la temperatura del pub?

Esercizio 27 (Decadimento Radioattivo): Il Radio è un elemento radioattivo
che decade con un tasso dello 1% ogni 25 anni: ciò significa che la massa rimanente
all’inizio di un periodo di 25 anni è uguale a quella che ce n’era all’inizio dei 25
anni precedenti diminuita dello 1%.

1. Detta M0 = m la massa di Radio sotto osservazione, scrivere la ricorrenza che
ne descrive il decadimento di 25 anni in 25 anni.

È detto tempo di dimezzamento del Radio il numero totale di anni necessari affinché
decada almeno metà della massa iniziale osservata o, detto altrimenti, il numero
di anni dopo i quali la massa osservata è minore od uguale alla metà della massa
iniziale.

2. Si calcoli il tempo di dimezzamento del Radio.

3. Più in generale, ogni elemento chimico radioattivo decade con tasso percentuale
k ogni N anni. Se la massa iniziale è M0 = m, si scriva la ricorrenza che descrive il
decadimento e se ne calcoli il tempo di dimezzamento in termini dei parametri k,
m ed N .

Esercizio 28 (Evoluzione di Popolazioni): Supponiamo di voler studiare l’e-
voluzione della popolazione di una data specie S, osservandone il numero di indivi-
dui ad intervalli di tempo sempre della stessa ampiezza (e.g., ogni anno, ogni mese,
ogni decennio, etc. . . ).
Detti ν e µ i cosiddetti tassi di natalità e di mortalità di S (i.e., il rapporto tra gli
individui nati e quelli deceduti e la popolazione osservata), detta x0 = x la popo-
lazione iniziale e detto xn il numero di individui presenti alla n-esima osservazione,



ESERCIZI SUI LIMITI 17

la ricorrenza che descrive l’andamento della popolazione è:{
xn+1 = xn + ν xn − µ xn , per ogni n ∈ N
x0 = x

.

1. Studiare l’andamento della successione (xn) al variare dei parametri ν, µ ed x.

Nella ricorrenza precedente, i tassi di natalità e mortalità ν e µ sono supposti
costanti, cosa che non si verifica quasi mai nelle applicazioni reali poiché contrasta
con la limitatezza delle risorse disponibili per lo sviluppo di S.
Una descrizione un po’ più sensata del fenomeno si ottiene supponendo che ν e
µ varino durante i periodi di osservazione, cioè che ν = νn e µ = µn: in alcune
applicazioni si suppone che:

νn = ν0 − a xn
µn = µ0 + b xn ,

in cui ν0, µ0 > 0 misurano i tassi di natalità e mortalità “assoluti” e le costanti
a, b > 0 misurano, in un certo senso, il grado di competizione per le risorse all’in-
terno della specie S.11

2. Scrivere la ricorrenza che descrive l’andamento della popolazione con νn e µn
dati dalle precedenti relazioni.
Mostrare che se xn è regolare, allora:

lim
n→+∞

xn =
ν0 − µ0

a+ b
=: x∞ .

3. Provare che se xn ≥ 0 risulta anche:

xn ≤
1 + ν0 − µ0

a+ b
=: xmax ,

e che xmax > x∞.
Quanto trovato, sempre nell’ipotesi di convergenza, si può interpretare come segue:
la popolazione S, nella fase transitoria (cioè prima di stabilizzarsi attorno al valore
x∞), può assumere valori superiori al valore limite x∞.

Esercizio 29 (Resistenza Equivalente d’Infiniti Resistori in Parallelo):
Supponiamo di avere a disposizione un generatore con d.d.p. V > 0 ed un’infinità
numerabile di resistori, ognuno dei quali con resistenza rn > 0.
Cominciamo a collegare il primo resistore al generatore, ottenendo un circuito con
resistenza R0 = r0; in parallelo al primo resistore colleghiamo quello con resistenza
r1, in modo da ottenere un circuito con resistenza equivalente R1 data dalla nota
formula:

R1 =
1

1
r0

+ 1
r1

;

colleghiamo, in parallelo coi due resistori già presenti, il resistore con resistenza r2

in modo che la resistenza equivalente del circuito diviene:

R2 =
1

1
r0

+ 1
r1

+ 1
r2

. . .

11In particolare, si nota che la presenza di un numero di individui “grande” influenza negativa-
mente il tasso di natalità e positivamente quello di mortalità in S. Ciò è abbastanza ragionevole
nell’ottica di risorse limitate, in quanto maggiore è la popolazione, minore è la quantità di risor-
se pro capite disponibili: questo causa una maggiore probabilità di decesso degli individui (per
carenza di accesso alle risorse, e.g. a quelle alimentari) ed una minore natalità.



18 G. DI MEGLIO

Procediamo per ricorrenza: supponendo di aver già connesso in parallelo i resistori
con resistenze r0, r1, r2, . . . , rn, in parallelo ad essi colleghiamo quello di resistenza
rn+1, ottenendo un circuito con resistenza equivalente data da:

Rn+1 =
1

1
r0

+ 1
r1

+ 1
r2

+ · · ·+ 1
rn

+ 1
rn+1

;

ed immaginiamo di procedere oltre.

1. Scrivere la ricorrenza che descrive l’andamento della successione di resistenze
equivalenti Rn.

2. Provare che la successione (Rn) ha tutti i termini positivi ed è strettamente
decrescente.

3. Supporre che rn → r ∈]0,+∞[. Mostrare che (Rn) è convergente e calcolarne il
limite.



ESERCIZI SUI LIMITI 19

Appendice A. Regole di Calcolo e Forme Indeterminate

Tabella 1. Regole di Calcolo (valide quando i secondi membri
non si presentano in forma indeterminata).

Operazione Regola

Prodotto per costante lim
n→+∞

c · an = c · lim
n→+∞

an

Somma lim
n→+∞

an + bn = lim
n→+∞

an + lim
n→+∞

bn

Prodotto lim
n→+∞

an · bn = lim
n→+∞

an · lim
n→+∞

bn

Quoziente lim
n→+∞

an
bn

=
limn→+∞ an
limn→+∞ bn

Elevamento a potenza lim
n→+∞

(an)bn =
(

lim
n→+∞

an

)limn→+∞ bn

Tabella 2. Forme Indeterminate.

Operazione Forma Indeterminata

Somma ∞−∞

Prodotto 0 · ∞

Quoziente
0
0
,
∞
∞

Elevamento a potenza 00 , 1∞ , ∞0
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Appendice B. Tabelle di Limiti Fondamentali e Notevoli

Tabella 3. Limiti Fondamentali.

Limite Risultato

lim
n→+∞

c = c

lim
n→+∞

nα =


+∞ , se α > 0
1 , se α = 0
0 , se α < 0

lim
n→+∞

an =


+∞ , se a > 1
1 , se a = 1
0 , se 0 ≤ a < 1

lim
n→+∞

logb n =

{
+∞ , se b > 1
−∞ , se 0 < b < 1

lim
n→+∞

n! = +∞

lim
n→+∞

nn = +∞

lim
n→+∞

n
√
a =

{
1 , se a > 0
0 , se a = 0
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Tabella 4. Limiti Fondamentali con le Funzioni Elementari “di Base”.

Se Allora Condizioni

lim
n→+∞

an = a ∈ R lim
n→+∞

akn = ak (k ∈ N− {0})

lim
n→+∞

a−kn = a−k (k ∈ N− {0}, a 6= 0)

lim
n→+∞

k
√
an = k

√
a (k ∈ N− {0}, a ≥ 0)

lim
n→+∞

apn = ap (p > 0 ed a ≥ 0 opp.

p < 0 ed a > 0)

lim
n→+∞

ban = ba (b > 0 e b 6= 1)

lim
n→+∞

logb an = logb a (b > 0 e b 6= 1, a > 0)

lim
n→+∞

sin an = sin a

lim
n→+∞

cos an = cos a

lim
n→+∞

tan an = tan a (a 6= π
2 + kπ, k ∈ Z)

lim
n→+∞

arcsin an = arcsin a (−1 ≤ a ≤ 1)

lim
n→+∞

arccos an = arccos a (−1 ≤ a ≤ 1)

lim
n→+∞

arctan an = arctan a

lim
n→+∞

an = +∞ lim
n→+∞

akn = +∞ (k ∈ N− {0})

lim
n→+∞

a−kn = 0 (k ∈ N− {0})

lim
n→+∞

k
√
an = +∞ (k ∈ N− {0})

lim
n→+∞

apn =

{
+∞ , se p > 0
0 , se p < 0

lim
n→+∞

ban =

{
+∞ , se b > 1
0 , se 0 < b < 1

lim
n→+∞

logb an =

{
+∞ , se b > 1
−∞ , se 0 < b < 1

lim
n→+∞

arctan an =
π

2

lim
n→+∞

an = −∞ lim
n→+∞

akn =

{
+∞ , se k è pari
−∞ , se k è dispari

(k ∈ N− {0})

lim
n→+∞

a−kn = 0 (k ∈ N− {0})

lim
n→+∞

k
√
an = −∞ (k ∈ N− {0} dispari)

lim
n→+∞

ban =

{
0 , se b > 1
+∞ , se 0 < b < 1

lim
n→+∞

arctan an = −π
2



22 G. DI MEGLIO

Tabella 5. Limiti Notevoli per le Successioni.

Limite Risultato

lim
n→+∞

n
√
n = 1

lim
n→+∞

(
1 +

1
n

)n
= e

lim
n→+∞

(1 + n)
1
n = e

lim
n→+∞

nα

nβ
=


0 , se α < β

1 , se α = β

+∞ , se α > β

lim
n→+∞

an

bn
=


0 , se 0 < a < b

1 , se 0 < a = b

+∞ , se a > b > 0

lim
n→+∞

logb n
logc n

=
log c
log b

= logb c =
1

logc b

lim
n→+∞

logb n
nα

=


0 , se α > 0
+∞ , se α ≤ 0 e b > 1
−∞ , se α ≤ 0 e 0 < b < 1

lim
n→+∞

nα

an
=


0 , se a > 1 opp. se a = 1 ed α < 0
1 , se a = 1 ed α = 0
+∞ , se 0 < a < 1 opp. se a = 1 ed α > 0

lim
n→+∞

an

n!
= 0

lim
n→+∞

n!
nn

= 0

lim
n→+∞

n!
nn+ 1

2 e−n
=
√

2π (Formula di Stirling)
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Tabella 6. Limiti Notevoli per le Funzioni. Possono essere uti-
lizzati per calcolare i limiti di successione sfruttandoli insieme al
Teorema sul Limite della Funzione Composta.

Limite Risultato Condizioni

lim
x→0

sinx
x

= 1

lim
x→0

tanx
x

= 1

lim
x→0

arcsinx
x

= 1

lim
x→0

arctanx
x

= 1

lim
x→0

ex − 1
x

= 1

lim
x→0

ax − 1
x

= log a (a > 0)

lim
x→0

log(1 + x)
x

= 1

lim
x→0

loga(1 + x)
x

= loga e =
1

log a
(a > 0 e a 6= 1)

lim
x→0

(1 + x)α − 1
x

= α (α ∈ R)

lim
x→+∞

(
1 +

1
x

)x
= e

lim
x→0

(1 + x)
1
x = e
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