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Introduzione

In questi fogli ho raccolto alcuni esercizi sulle serie.
Al solito, nel primo paragrafo sono proposti alcuni esercizi di calcolo mentre nel
secondo alcuni esercizi di teoria.

1. Esercizi

Esercizio 1: Sia x > −1.
Provare che la serie: ∑ 1

(x+ n)(x+ n+ 1)
è convergente e che ha come somma il numero 1

x+1 .

Esercizio 2: Calcolare:

lim
n

1
n

n∑
k=1

1
k
.

[Suggerimento: Usare opportunamente le stime [DM2, § 3.5, (2)].]

Esercizio 3: Determinare per quali valori del parametro q ∈ R la serie
∑
an con

addendi:
an :=

1
1 + q + q2 + · · ·+ qn−1

è convergente.

Esercizio 4: Studiare la convergenza della serie:∑ 1
n log n logγ(log n)

(in cui γ ∈ R) usando il Criterio di Condensazione.

Esercizio 5: Stabilire che la serie:∑ 1
n logβ n

(in cui β ≥ 0) converge se e solo se β > 1 usando il Criterio dell’Integrale.
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Esercizio 6: Usando opportunamente i criteri di convergenza noti, studiare il
carattere delle seguenti serie:

∞∑
n=1

3nn!
nn

,

∞∑
n=1

( n
√
n− 1)n,

∞∑
n=1

1− cos
1
n
,

∞∑
n=1

n

(n+ 1)3
,

∞∑
n=1

1
n
√
n
,

∞∑
n=2

1
logn n

,

∞∑
n=1

sin4 1
3
√
n
,

∞∑
n=1

n!
nn
,

∞∑
n=1

log(2 + en)
n
√
n

∞∑
n=0

2 + (−1)n

3n
,

∞∑
n=1

(−1)n sin
1√
n
,

∞∑
n=1

(−1)n
(

n∑
k=1

1
k(n− k)

)
∞∑
n=1

(−1)n√
n(n+ 1)

,

∞∑
n=2

cosnπ√
n(n2 − 1)

,

∞∑
n=1

cos nπ2
n+ 3
√
n

∞∑
n=2

(−1)n√
n+ (−1)n

,
∞∑
n=2

sinn
n log2 n

,
∞∑
n=1

(−1)n
(π

2
− arctann

)
.

Esercizio 7: Dire per quali valori reali del parametro x le seguenti serie conver-
gono determinandone, quando possibile, la somma:∑ xn

2n−2
,

∑ 1
arctann x

,
∑

(2 sin2 x)n,∑√
1− 1

nx
,

∑
(−1)nnx,

∑ 1
n+ 1

(
2 cosx+ 2 sinx+

√
3
)n

.

Esercizio 8: Siano α, β ∈ R.

1. Dire per quali valori dei parametri α e β la serie:∑ 1
nα
− 1

(n+ nβ)α

risulta convergente.

2. Per quali valori di α > 0 la serie: ∑ αnn!
nn

converge?

[Suggerimento: Valutare l’ordine di infinitesimo della successione degli addendi
usando la formula di Stirling, cioè n! =

√
2π · nn+1/2e−n(1 + o(1)).]

3. Provare che per ogni 0 < α < 1 esiste un valore β > 0 tale che il:

lim
n→+∞

1
nβ

n∑
k=1

1
kα

esiste finito e non nullo. Calcolare tale limite.
Cosa si può dire per α = 0? E per α = 1?

[Suggerimento: Sfruttare le stime [DM2, § 3.5, (2)].]
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Esercizio 9: Provare che la serie:∑
log
(

1 +
(−1)n

n

)
è a segni alterni e studiarne la convergenza col Criterio di Leibniz.
La serie è assolutamente convergente?
È possibile calcolare esplicitamente le somme parziali della serie?

Esercizio 10: Si supponga di avere a disposizione una striscia di carta molto “lun-
ga” e con uno spessore positivo ε� 1.
Si cominci a piegare la striscia a metà sul lato lungo, poi la si pieghi di nuovo a
metà, poi ancora, e così via. . .

1. Calcolare lo spessore della striscia così ripiegata dopo un certo numero n di
pieghe.

2. Dopo quante pieghe la striscia ripiegata avrà uno spessore superiore ad 1?

Esercizio 11 (Serie ed Espansioni Decimali): 1. Sia (an) una qualsiasi suc-
cessione a valori in {0, 1, . . . , 8, 9}.
Provare che la serie:

∞∑
n=1

an
10n

converge ed ha per somma il numero decimale 0, a1a2 · · · an · · · .

2. Siano N un numero naturale ed a1, . . . , aN ∈ {0, 1, . . . , 8, 9}.
Si provi che il numero decimale periodico 0, a1a2 · · · aN di periodo N si può espri-
mere come un numero razionale, ritrovando la seguente regola (nota dalle scuole
medie):

“Il numero decimale periodico 0, a1 · · · aN di periodo N si può scri-
vere come una frazione che ha al numeratore il numero di N ci-
fre a1 . . . aN (ossia a110N + a210N−1 + · · · + aN−110 + aN ) ed al
denominatore il numero con N cifre tutte uguali a 9, cioè:

0, a1 · · · aN =

N cifre︷ ︸︸ ︷
a1 · · · aN
9 · · · 9︸ ︷︷ ︸
N cifre

”.

Ad esempio:

0, 321 =
321
999

.

3. Siano N, p numeri naturali e a1, . . . , ap, ap+1, . . . , ap+N{0, 1, . . . , 8, 9}.
Provare che il numero decimale 0, a1 · · · apap+1 · · · ap+N periodico di periodo N
avente antiperiodo a1 · · · ap di lunghezza p si può esprimere come numero razionale,
ritrovando la regola (nota dalle scuole medie):

“Il numero decimale 0, a1 · · · apap+1 · · · ap+N di periodo N ed anti-
periodo a1 · · · ap di lunghezza p si può scrivere come una frazione
che ha al numeratore il numero che si ottiene sottraendo dal nu-
mero di N + p cifre a1 · · · ap+N il numero formato con le p cifre
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dell’antiperiodo a1 · · · ap ed al denominatore il numero di N + p
cifre con le prime N uguali a 9 e le ultime p uguali a zero, cioè:

0, a1 · · · apap+1 · · · ap+N =

N+p cifre︷ ︸︸ ︷
a1 · · · ap+N −

p cifre︷ ︸︸ ︷
a1 · · · ap

99 · · · 99︸ ︷︷ ︸
N cifre

0 · · · 0︸ ︷︷ ︸
p cifre

”.

Ad esempio:

0, 19321 =
19321− 19

99900
=

19302
99900

.

4. Cosa succede se si tenta di scrivere come frazione i numeri periodici 0, 9 e 0.49?
Che conseguenze ha ciò sull’unicità della rappresentazione decimale dei numeri
razionali?

Esercizio 12: Provare che le serie
∑

sinn
n e

∑
cosn
n sono entrambe convergenti.

[Suggerimento: Usare il trucco seguente per passare in campo complesso. Dato
che ein = cosn+ i sinn, si ha cosn

n + i sinn
n = 1

nein; dette xn ed yn le somme parziali
delle serie

∑
cosn
n e

∑
sinn
n , risulta xn + iyn =

∑n
k=1

1
nein, cioè sn = xn + iyn è

la somma parziale della serie con addendi complessi zn = 1
nein. La serie complessa∑

zn ha gli addendi che ricadono nella tipologia del Criterio di Dirichlet, in quanto
sono il prodotto di una successione an = 1

n (reale, non negativa, infinitesima e
decrescente) e di bn = ein. Dato che

∑
ein =

∑
ei · (ei)n−1 si può riguardare

come serie geometrica complessa di ragione q = ei (complessa!), le sue somme
parziali si esprimono come Bn = ei · 1−ein

1−ei ; per disuguaglianza triangolare si ha

|Bn| ≤ |ei| · 1+|ei|n
|1−ei| = 2

|1−ei| , cosicché (Bn) è una successione complessa limitata.
Applicando Dirichlet, troviamo che sn è una successione complessa convergente
verso un numero complesso s = x+ iy. Conseguentemente anche la successione dei
coniugati sn = xn − iyn è convergente e converge verso s = x− iy. Dunque anche
xn = sn+sn

2 ed yn = sn−sn
2i sono successioni convergenti, rispettivamente, verso

x = Re(s) ≈ 0.042 ed y = Im(s) ≈ 1.071.]

2. Serie Numeriche

Esercizio 13: Sia
∑
an una serie a termini non negativi convergente.

Per λ > 0 si ponga:
Aλ := {n ∈ N : an ≥ λ} .

Dimostrare che il numero di elementi di An è minore od uguale a 1
λ

∑∞
n=0 an.

[Suggerimento: Osservare che
∑∞
n=0 an ≥

∑
n∈Aλ an e concludere.]

Esercizio 14 (Criterio del Rapporto “Migliorato”): Siano
∑
an e

∑
bn se-

rie a termini positivi.

1. Provare che se risulta:
an+1

an
≤ bn+1

bn

per ogni indice n (o anche per n “sufficientemente grande”), allora:

i. se
∑
bn converge, allora anche

∑
an converge;
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ii. se
∑
an diverge, allora anche

∑
bn diverge.

[Suggerimento: Dalle ipotesi consegue che la successione an
bn

è decrescente e limi-
tata dal basso; detto l ≥ 0 il suo limite, mostrare che si può applicare il Criterio
del Confronto Asintotico.]

2. Usare il Criterio del Rapporto “Migliorato” 1 per provare che se
∑
an è una serie

a termini positivi tale che:

n

(
an
an+1

− 1
)
≤ 1

per ogni indice n ∈ N (o anche per n “sufficientemente grande”), allora
∑
an diverge.

Esercizio 15 (Criteri di Kummer): Sia
∑
an una serie a termini positivi.

1 (Critero di Convergenza di Kummer). Dimostrare che se esistono una succes-
sione (tn) a termini positivi ed un numero τ > 0 tali che:

tn
an
an+1

− tn+1 ≥ τ

per ogni indice n ∈ N, allora
∑
an converge.

[Suggerimento: Sfruttare l’ipotesi per mostrare che la serie
∑
τan+1 si può mag-

giorare con una serie telescopica convergente; concludere.]

2 (Criterio di Divergenza di Kummer). Dimostrare che se esiste una succes-
sione (tn) a termini positivi e tale che:

tn
an
an+1

− tn+1 ≤ 0

per ogni indice n ∈ N e tale che
∑

1
tn

è divergente, allora la serie
∑
an è divergente.

[Suggerimento: Sfruttare l’ipotesi per provare che i rapporti an+1
an

sono minorati
dai corrispondenti rapporti di una serie divergente; concludere invocando il Criterio
del Rapporto “Migliorato”.]

Esercizio 16: Sia
∑
an una serie a termini positivi tale che:

lim
n→+∞

log 1
an

log n
= λ ∈ R̂ .

1. Provare che se λ > 1, allora la serie
∑
an converge.

2. Dimostrare che se λ < 1, allora la serie
∑
an è divergente.

[Suggerimento: Sfruttare il Criterio del Confronto e la serie armonica generaliz-
zata.]

3. Cosa succede se λ = 1?
Analizzare il comportamento delle serie con addendi

∑
1/(n log n) e

∑
1/(n log2 n).

Esercizio 17: Sia (an) una successione a termini non negativi.

1. Provare che se
∑
an converge allora anche la serie

∑
a2
n converge.

È vero il viceversa? Dimostrarlo od esibire un controesempio.
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2. Più in generale, provare che se
∑
an converge allora, comunque si scelga p > 1,

pure la serie
∑
apn è convergente.

È vero il viceversa? Dimostrarlo od esibire un controesempio.

3. Dimostrare che la serie
∑
an converge se e solo se converge la serie

∑ an
1+an

.

4. Sia f : [0,+∞[→ [0,+∞[ una funzione:

(1) continua in [0,+∞[,
(2) derivabile in ]0,+∞[,
(3) tale che f(0) = 0,
(4) per la quale esistono due costanti 0 < c ≤ C tali che c ≤ f ′(x) ≤ C in

]0,+∞[.

Mostrare che
∑
an converge se e solo se

∑
f(an) converge.

Esercizio 18: Siano
∑
an e

∑
bn due serie a termini non negativi.

1. Provare che se
∑
an è convergente e se (bn) è limitata, allora

∑
anbn è conver-

gente.

2. Provare che se
∑
a2
n e

∑
b2n convergono, allora la serie

∑
anbn converge.

[Suggerimento: Usare la disuguaglianza (a− b)2 ≥ 0.]

3. Provare che, più in generale, se esiste un p > 1 tale che
∑
apn e

∑
b

p
p−1
n conver-

gono, allora
∑
anbn pure converge.

[Suggerimento: Usare la disuguaglianza di Young ab ≤ 1
pa

p+ p−1
p bp [DM1, § 5.3].]

Esercizio 19: Sia
∑
an una serie a termini non negativi con successione degli

addendi decrescente.
Provare che non solo si ha lim

n→+∞
an = 0 ma anche lim

n→+∞
n an = 0.

[Suggerimento: Basta provare che le successioni estratte (2ka2k) e ((2h+1)a2h+1)
tendono a zero; osservare che 2ka2k ≤ 2

∑2k
j=k aj e concludere usando il Criterio di

Cauchy ; lo stesso per l’altra sottosuccessione.]

Esercizio 20: Sia (an) una successione crescente di numeri positivi.

Provare che se la serie
∑ 1

n+ an
converge allora converge pure

∑
1
an

.

[Suggerimento: Sfruttare l’Esercizio 19.]

Esercizio 21 (Serie di Taylor): Siano I ⊆ R un intervallo non banale, f :
I → R una funzione indefinitamente derivabile in I ed x0 un punto interno ad I.

1. Provare che se le derivate di f sono equilimitate intorno ad x0, cioè se esistono
un δ > 0 ed un M ≥ 0 tale che risulti:

|f (n)(x)| ≤M

in ]x0 − δ, x0 + δ[ per ogni indice n ∈ N, allora intorno ad x0 la f coincide con la
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somma della sua serie di Taylor centrata in x0, ossia si ha:

f(x) =
+∞∑
n=0

1
n!
f (n)(x0) · (x− x0)n

per ogni x ∈]x0 − δ, x0 + δ[.

[Suggerimento: Osservare che, la somma parziale n-esima della serie di Taylor
coincide con il polinomio di Taylor d’ordine n; mettere il resto della formula di
Taylor nella forma di Lagange, maggiorare usando M e δ e concludere passando al
limite su n.]

2. Determinare gli sviluppi in serie di Taylor delle funzioni elementari.
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