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Introduzione

In questi fogli presento, con qualche aggiunta, la definizione e le proprietà del
differenziale primo e la formula di Taylor.
Nel primo paragrafo, le nozioni di differenziabilità e di differenziale primo sono da-
te in maniera indipendente da quelle di derivabilità e di derivata prima (cioé à la
Fréchet), in modo da renderle immediatamente generalizzabile al caso di funzioni
di più variabili; successivamente sono esplorati i rapporti che intercorrono tra la
differenziabilità e la derivabilità.
Nel secondo paragrafo, la formula di Taylor è dimostrata anzitutto nei casi parti-
colari n = 1, n = 2 ed n = 3 e solo dopo viene dimostrato il teorema nella sua
completa generalità (cioé col polinomio d’ordine n). Inoltre, sono elencate a parte
alcune notevoli proprietà del polinomio di Taylor tralasciate in [MS] ed un sotto-
paragrafo è completamente dedicato alle varie forme in cui si può mettere il resto
ed al loro uso nei calcoli approssimati.
Il documento si chiude con un’applicazione della formula di Taylor col resto nella
forma di Lagrange ad un risultato che generalizza il cosiddetto Teorema di Carat-
terizzazione delle Funzioni Costanti in un Intervallo.
Alcuni esercizi sul materiale qui raccolto sono reperibili in [DM1, DM2].

1. Funzioni Differenziabili e Differenziale Primo

Cominciamo con la seguente:

Definizione 1 (Funzione Differenziabile in un Punto1)
Siano I un intervallo non banale, f : I → R ed x0 ∈ I un punto interno.

Date: 28 dicembre 2017.
1La definizione presentata qui, dovuta a M. Fréchet (1878 – 1973), si estende a casi molto

generali.
1
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Si dice che f è differenziabile in x0 se e solo se esiste un numero l = lx0 ∈ R tale
che:

(1) lim
x→x0

f(x)− f(x0)− l · (x− x0)
x− x0

= 0 .

In tal caso, l’applicazione d f(·;x0) : R→ R, definita ponendo:

d f(∆x;x0) := lx0 ·∆x

per ogni h ∈ R, si chiama differenziale (primo) di f nel punto x0.

Osservazione 1 (Sulla Notazione per il Differenziale - I): Notiamo esplicitamente
che, il più delle volte (e soprattutto nelle applicazioni), il differenziale di una fun-
zione f viene denotato semplicemente con il simbolo d f , in cui non vengono messi
in evidenza né il punto in cui il differenziale è calcolato (cioè x0) né la variabile da
cui il differenziale dipende (cioè la ∆x).
Ciò snellisce la notazione, rendendola manipolabile con estrema facilità. �

Osservazione 2: È appena il caso di notare che se una funzione f è differenziabile
in x0, allora il numero l la cui esistenza è predicata nella definizione è unico.
Invero, se λ è un secondo numero reale tale che:

lim
x→x0

f(x)− f(x0)− λ · (x− x0)
x− x0

= 0 ,

abbiamo:

l − λ = lim
x→x0

(l − λ) · (x− x0)
x− x0

= lim
x→x0

(
f(x0) + l · (x− x0)

)
+
(
− f(x0)− λ · (x− x0)

)
x− x0

= lim
x→x0

−
(
f(x)− f(x0)− l · (x− x0)

)
+
(
f(x)− f(x0)− λ · (x− x0)

)
x− x0

= lim
x→x0

−f(x)− f(x0)− l · (x− x0)
x− x0

+
f(x)− f(x0)− λ · (x− x0)

x− x0

= 0 ,

ossia λ = l. �

La proprietà di differenziabilità è strettamente connessa alla proprietà di deriva-
bilità, come mostra la:

Proposizione 1
Siano I un intervallo non banale, f : I → R ed x0 ∈ I un punto interno.
La f è differenziabile in x0 se e solo se f è derivabile in x0; inoltre, il numero l
che gode della (1) è uguale a f ′(x0).

Dimostrazione. Se f è differenziabile, allora f è derivabile ed f ′(x0) = l.
Dalla (1) segue che:

lim
x→x0

f(x)− f(x0)
x− x0

− l = 0

da cui:

lim
x→x0

f(x)− f(x0)
x− x0

= l ,

che è la tesi in quanto l ∈ R.
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Se f è derivabile, allora f è differenziabile ed l = f ′(x0).
Dalla definizione di derivata segue che:

lim
x→x0

f(x)− f(x0)
x− x0

− f ′(x0) = 0

da cui:

lim
x→x0

f(x)− f(x0)− f ′(x0) · (x− x0)
x− x0

= 0 ,

che è la tesi. �

Conseguentemente, possiamo scrivere la legge di assegnazione del differenziale
primo di una funzione differenziabile in x0 come:

d f = f ′(x0) ·∆x

e la relazione di limite (1) come:

lim
∆x→0

f(x0 + ∆x)− f(x0)− f ′(x0) ·∆x
∆x

= 0 .

Quest’ultima relazione mostra che l’incremento ∆f := f(x0 + ∆x)− f(x0), subìto
dalla funzione f in corrispondenza dell’incremento ∆x della variabile, si può ap-
prossimare per ∆x “piccoli” con d f = f ′(x0)·∆x a meno di un infinitesimo d’ordine
superiore al primo; in altri termini, abbiamo:

∆f = d f + o(∆x) per ∆x→ 0

= f ′(x0) ·∆x+ o(∆x) per ∆x→ 0 ,

e ciò mostra che, se f ′(x0) 6= 0, il differenziale primo f ′(x0) ·∆x è la parte principale
dell’infinitesimo ∆f quando l’incremento ∆x tende a 0.

Osservazione 3 (Sulla Notazione per il Differenziale - II): Considerata la funzione
identità i : R→ R definita da i(x) := x, abbiamo i′(x) = 1 ovunque e perciò:

d i = ∆x .

Se scegliamo, commettendo un abuso di notazione, di denotare semplicemente con
x la funzione i, l’uguaglianza precedente si legge:

dx = ∆x

(tale uguaglianza viene talora interpretata dicendo che “il differenziale dx della
variabile x coincide con l’incremento ∆x”). Ne consegue che la definizione di dif-
ferenziale può essere riscritta come d f = f ′(x0) dx o, se si sceglie di omettere
totalmente la dipendenza dal punto x0 al secondo membro, addirittura come:

d f = f ′ dx ,

la quale è molto comune nelle applicazioni (poiché consente di ricavare formalmente
la derivata prima come rapporto degli “incrementi infinitesimi” d f e dx). �

Dal discorso precedente ricaviamo senza sforzo che:

f(x) = f(x0) + f ′(x0) · (x− x0) + o(x− x0) per x→ x0 ,

cosicché la f può essere approssimata da un polinomio di grado (al più) uguale ad
1 quando x tende ad x0.
Questo è un fatto della massima importanza e può essere generalizzato, come mo-
streremo nel possimo paragrafo; ora ci preme segnalare il significato geometrico
insito in tale risultato:
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Osservazione 4 (Differenziabilità e Definizione di Retta Tangente al Grafico): In
aula abbiamo definito la retta tangente al grafico di una funzione f nel punto di
ascissa x0 formalizzando la nozione intuitiva di “posizione limite” delle rette secanti
al grafico condotte per P0 = (x0, f(x0)). Tuttavia, tale definizione si presta poco ad
essere generalizzata e perciò è necessario riformularla in termini più manipolabili.
In particolare, si dà la seguente definizione, formulata in termini analitici:

Definizione 2 (Retta Tangente al Grafico di una Funzione)
Siano I ⊆ R un intervallo non banale, f : I → R ed x0 ∈ I un punto interno.
Si dice che la retta non verticale di equazione y = m(x−x0) + f(x0), appartenente
al facio proprio di centro P0 = (x0, f(x0)), è tangente al grafico di f nel punto di
ascissa x0 se e solo se:

lim
x→x0

f(x)−m · (x− x0)− f(x0)
x− x0

= 0 .

Confrontando la Definizione 2 con la Definizione 1 e tenendo presente l’Osservazione
2, vediamo che il grafico di una funzione f è dotato di retta tangente non verticale
nel punto di ascissa x0 interna ad I se e solo se f è differenziabile in x0; in tal caso,
quindi, per la Proposizione 1 risulta m = l = f ′(x0). �

2. La Formula di Taylor

D’ora in avanti supporremo sempre (a meno che non sia specificato diversamente)
che I sia un intervallo non banale, f : I → R ed x0 ∈ I sia un punto interno.2

2.1. Formula di Taylor al Primo Ordine. Supponendo che f sia derivabile in
x0, per quanto detto nel paragrafo precedente abbiamo:

f(x) = f(x0) + f ′(x0) · (x− x0) + o(x− x0) per x→ x0 .

Posto:
p1(x;x0) := f(x0) + f ′(x0) · (x− x0)

per ogni x ∈ I, la funzione p1(·;x0) è un polinomio di grado (al più) ugugale ad 1
e gode della proprietà:

(2) f(x) = p1(x;x0) + o(x− x0) per x→ x0 .

Inoltre, il polinomio p1(·;x0) gode di un’ulteriore interessante proprietà, cioè quella
di avere in x0 lo stesso valore e la stessa derivata di f : infatti, p1(x0;x0) = f(x0)
ed è molto semplice constatare che l’uguaglianza:

p′1(x;x0) = f ′(x0)

vale ovunque in I quindi, in particolare, vale in x0.
Abbiamo così provato validi i seguenti fatti:

Proposizione 2 (Formula di Taylor al Primo Ordine col Resto nella Forma di
Peano)
Siano I un intervallo non banale, f : I → R ed x0 ∈ I un punto interno.
Se f è derivabile un volta in x0, esiste un polinomio p1(·;x0) di grado (al più)
uguale ad 1 tale che:

(3) f(x) = p1(x;x0) + o(x− x0) per x→ x0 ;

In particolare:
p1(x;x0) = f(x0) + f ′(x0) · (x− x0) .

2Quest’ultima ipotesi non è strettamente necessaria; qui e nel seguito la usiamo solo per
comodità.
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La (3) è usualmente detta formula di Taylor al primo ordine (col resto nella
forma di Peano) ed il polinomio p1(·;x0) è detto polinomio di Taylor del primo
ordine relativo ad f centrato in x0.
In particolare, il cosiddetto resto di Peano è la quantità r1(x;x0) := f(x)−p1(x;x0),
infinitesima d’ordine superiore al primo in x0.

Proposizione 3 (Proprietà del Polinomio di Taylor del Primo Ordine)
Il polinomio p1(·;x0) gode della seguente proprietà:

(4)

{
p1(x0;x0) = f(x0)

p′1(x0;x0) = f ′(x0)
,

cioè esso assume in x0 lo stesso valore di f ed ha ivi derivata prima coincidente
con quella di f .

Osservazione 5: Ricordata l’interpretazione geometrica della derivata, il polino-
mio p1(·;x0) ha come grafico la retta tangente alla curva-grafico di f nel punto di
coordinate

(
x0, f(x0)

)
. �

Ci proponiamo ora di completare gli enunciati precedenti in due direzioni: in-
nanzitutto, mostrando che il polinomio p1(·;x0) è univocamente determinato dalla
condizione (3); poi, mostrando che se una funzione f , continua in x0, è approssi-
mata intorno ad x0 da un polinomio di grado (al più) uguale ad 1 a meno di un
infinitesimo d’ordine superiore, allora f è derivabile in x0.

Osservazione 6 (Unicità del Polinomio Approssimante): Fatte salve le ipotesi su
f ed x0, supponiamo che p sia un polinomio di grado (al più) uguale ad 1 che goda
della (3), cioè tale che:

f(x) = p(x) + o(x− x0) per x→ x0 ,

e mostriamo che si ha necessariamente p(x) = p1(x;x0).
Detti a0, a1 ∈ R i coefficienti di p, ossia i numeri tali che:

p(x) = a0 + a1x ,

il verificarsi dell’uguaglianza precedente, unito alla continuità di p ed f in x0,
implica:

f(x0) = lim
x→x0

f(x)

= lim
x→x0

a0 + a1x+ o(x− x0)

= a0 + a1x0 ,

cioè:

(5) a0 = f(x0)− a1x0 ;

d’altra parte, per definizione di “o piccolo”, abbiamo pure:

lim
x→x0

f(x)− a0 − a1x

x− x0
= 0

da cui, per la (5), segue:

lim
x→x0

f(x)− f(x0)− a1(x− x0)
x− x0

= 0

ossia:
lim
x→x0

f(x)− f(x0)
x− x0

= a1 ,
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cioè:

(6) f ′(x0) = a1 ;

conseguentemente, per (5) e (6) abbiamo:

p(x) =
(
f(x0)− f ′(x0)x0

)
+ f ′(x0)x = p1(x;x0) ,

come volevamo. �

Osservazione 7 (Derivabilità di una Funzione Approssimabile con un Polinomio):
Supponiamo, infine, che f sia continua in x0 e che valga la relazione:

f(x) = p(x) + o(x− x0) per x→ x0

con p(x) = a0 + a1x polinomio di grado (al più) uguale ad 1, e mostriamo che f è
derivabile in x0.
Per continuità abbiamo:

f(x0) = lim
x→x0

f(x)

= lim
x→x0

a0 + a1x+ o(x− x0)

= a0 + a1x0

da cui p(x) = f(x0) + a1(x− x0); per definizione di o, abbiamo inoltre:

lim
x→x0

f(x)− f(x0)
x− x0

= lim
x→x0

p(x)− f(x0) + o(x− x0)
x− x0

= lim
x→x0

a1(x− x0) + o(x− x0)
x− x0

= a1

cosicché f è derivabile in x0 (e la derivata coincide con il coefficiente a1). �

2.2. Formula di Taylor al Secondo Ordine. Supponiamo, ora, che f sia deri-
vabile una volta intorno ad x0 e due volte in x0.
In tal caso la funzione derivata prima f ′ è ben definita intorno ad x0 ed è derivabile
in tale punto, la sua derivata essendo uguale a f ′′(x0).
Proviamo che ciò è sufficiente a dire che la funzione f si può approssimare intorno
ad x0 con un polinomio p di grado (al più) uguale a 2 a meno di un infinitesimo
d’ordine superiore a 2 in x0, il quale gode di qualche interessante proprietà.
Abbiamo:

Proposizione 4 (Formula di Taylor al Secondo Ordine col Resto nella forma di
Peano)
Siano I un intervallo non banale, f : I → R derivabile nell’interno di I ed x0 ∈ I
un punto interno.
Se f è derivabile due volte in x0, esiste un polinomio p2(·;x0) di grado (al più)
uguale a due tale che:

(7) f(x) = p2(x;x0) + o
(
(x− x0)2

)
per x→ x0 .

In particolare:

p2(x;x0) = f(x0) + f ′(x0) +
1
2
f ′′(x0) · (x− x0)2 .

La (7) è usualmente detta formula di Taylor al secondo ordine (col resto nella
forma di Peano) ed il polinomio p2(·;x0) è detto polinomio di Taylor del secondo
ordine relativo ad f centrato in x0.
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In particolare, il cosiddetto resto è la quantità r2(x;x0) := f(x)− p2(x;x0), infini-
tesima d’ordine superiore al secondo in x0.

Dimostrazione. Dimostriamo che il polinomio p2(·;x0) definito nell’enunciato gode
della proprietà (7). Applicando il teorema di de l’Hôpital otteniamo:

lim
x→x0

f(x)− f(x0)− f ′(x0) · (x− x0)− 1
2f
′′(x0) · (x− x0)2

(x− x0)2

H= lim
x→x0

f ′(x)− f ′(x0)− f ′′(x0) · (x− x0)
2(x− x0)

=
1
2

(
lim
x→x0

f ′(x)− f ′(x0)
x− x0

− f ′′(x0)
)

= 0

cosicché f(x) = p2(x;x0) + o((x− x0)2) per x→ x0. �

Proposizione 5 (Proprietà del Polinomio di Taylor del Secondo Ordine)
Il polinomio p2(·;x0) gode della proprietà:

(8)


p2(x0;x0) = f(x0)

p′2(x0;x0) = f ′(x0)

p′′2(x0;x0) = f ′′(x0)

,

cioè esso assume in x0 lo stesso valore di f ed ha in tal punto la medesima derivata
prima e seconda di f .

Osservazione 8: Se f ′′(x0) 6= 0, il polinomio p2 ha come grafico una parabola, la
quale interseca la curva-grafico di f nel punto di coordinate

(
x0, f(x0)

)
ed ha come

tangente in tale punto la retta tangente al grafico di f nel medesimo punto; inoltre,
tale parabola è concava o convessa a seconda che f ′prime(x0) < 0 o > 0. �

Dimostrazione. Per dimostrare che il polinomio p2 gode delle (8) è sufficiente un
semplice calcolo. Abbiamo:

p2(x;x0) = f(x0) + f ′(x0) +
1
2
f ′′(x0) · (x− x0)2

p′2(x;x0) = f ′(x0) + f ′′(x0) · (x− x0)

p′′2(x;x0) = f ′′(x0)

e basta sostituire x = x0 per concludere. �

Osservazione 9 (Unicità del Polinomio Approssimante): Ci proponiamo di com-
pletare l’enunciato della proposizione precedente come già fatto nel caso precedente,
ossia mostrando che il polinomio di Taylor è univocamente individuato dalla (7).
Supponiamo che un polinomio di grado (al più) uguale a 2, diciamo p(x) = a0 +
a1x+ a2x

2, goda della (7) e mostriamo che esso coincide con il polinomio di Taylor
p2(·;x0).
Abbiamo:

f(x0) = lim
x→x0

f(x)

= lim
x→x0

p(x) + o
(
(x− x0)2

)
= lim
x→x0

a0 + a1x+ a2x
2 + o

(
(x− x0)2

)
= a0 + a1x0 + a2x

2
0 ,
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perciò deve essere necessariamente:

(9) a0 + a1x0 + a2x
2
0 = f(x0) .

D’altra parte, usando la (9), troviamo:

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

= lim
x→x0

(
a0 + a1x+ a2x

2 + o
(
(x− x0)2

))
− f(x0)

x− x0

= lim
x→x0

(a0 − f(x0)) + a1x+ a2x
2 + o

(
(x− x0)2

)
x− x0

= lim
x→x0

(
−a1x0 − a2x

2
0

)
+ a1x+ a2x

2 + o
(
(x− x0)2

)
x− x0

= lim
x→x0

a1(x− x0) + a2(x2 − x2
0) + o

(
(x− x0)2

)
x− x0

= lim
x→x0

a1 + a2(x+ x0) +
o
(
(x− x0)2

)
x− x0

= a1 + 2a2x0

da cui segue che deve necessariamente essere:

(10) a1 + 2a2x0 = f ′(x0) .

Mettendo insieme le (9) ed (10) otteniamo il sistema:{
a0 + a1x0 + a2x

2
0 = f(x0)

a1 + 2a2x0 = f ′(x0)

dal quale ricaviamo: {
a0 = f(x0)− f ′(x0) · x0 + a2x

2
0

a1 = f ′(x0)− 2a2x0 ,

cosicché possiamo scrivere:

p(x) = f(x0)− f ′(x0) · x0 + a2x
2
0 + (f ′(x0)− 2a2x0)x+ a2x

2

= f(x0) + f ′(x0) · (x− x0) + a2(x− x0)2 .

Infine, applicando il teorema di de l’Hôpital troviamo:

lim
x→x0

f(x)− f(x0)− f ′(x0) · (x− x0)− a2(x− x0)2

(x− x0)2

H= lim
x→x0

f ′(x)− f ′(x0)− 2a2(x− x0)
2(x− x0)

= lim
x→x0

f ′(x)− f ′(x0)
2(x− x0)

− a2

=
1
2
f ′′(x0)− a2

e, confrontando tale risultato con la (7), otteniamo a2 = 1
2f
′′(x0); pertanto risulta:

p(x) = f(x0) + f ′(x0) · (x− x0) +
1
2
f ′′(x0) · (x− x0)2 = p2(x;x0)

come volevamo. �
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Osservazione 10: A differenza del paragrafo precedente, dal sussistere di un’ap-
prossimazione polinomiale simile alla (7) non possiamo trarre alcuna conclusione
circa l’esistenza della derivata seconda di f nel punto x0.
Per lumeggiare tale circostanza, proponiamo il seguente controesempio.
Fissiamo α > 0 e consideriamo la funzione f : R→ R definita ponendo:

f(x) :=

{
xα sin 1

x , se x > 0
0 , se x ≤ 0 .

Evidentemente f è continua in R−{0}; però, essa è continua anche in 0, dato che:

lim
x→0+

f(x) = f(0) = lim
x→0−

f(x) .

Analogamente, f è derivabile in R− {0} ed, avendosi:

lim
x→0−

f(x)− f(0)
x− 0

= 0

lim
x→0+

f(x)− f(0)
x− 0

= lim
x→0

xα−1 sin
1
x
,

la f risulta derivabile anche in 0, con derivata ivi nulla, solo se α > 1.
Supponendo di aver scelto α > 1, la derivata di f è:

f ′(x) =

{
αxα−1 sin 1

x − x
α−2 cos 1

x , se x > 0
0 , se x ≤ 0

ed f ′ è continua in 0 solo se risulta α − 2 > 0, ossia α > 2; se α > 2, la f ′ (che
certamente è derivabile in R− {0}) ha:

lim
x→0−

f ′(x)− f ′(0)
x− 0

= 0

lim
x→0+

f ′(x)− f ′(0)
x− 0

= lim
x→0

αxα−2 sin
1
x
− xα−3 cos

1
x
,

sicché f ′ è derivabile in 0, con derivata nulla, solo se:{
α− 2 > 0
α− 3 > 0 ,

ossia se α > 3.
Scegliamo un qualsiasi esponente 2 < α ≤ 3: in tale ipotesi, abbiamo:

lim
x→0

f(x)
x2

= lim
x→0

xα−2 sin
1
x

= 0 ,

cosicché f(x) = 0 + o(x2) per x → 0, cioè f è approssimabile intorno a 0 con un
polinomio3 avente grado (al più) uguale a 2 a meno di un infinitesimo d’ordine
superiore a 2; ma, d’altra parte, f è derivabile una sola volta in 0 (ed ha derivata
prima nulla). �

2.3. Formula di Taylor al Terzo Ordine. Supponiamo che f sia derivabile due
volte intorno ad x0 tre volte in x0.
Tanto basta per concludere che la funzione f può essere approssimata a meno di
un infinitesimo d’ordine superiore a 3 in x0, come mostra la:

Proposizione 6 (Formula di Taylor al Terzo Ordine col Resto nella Forma di
Peano)
Siano I un intervallo non banale, f : I → R derivabile due volte in I e x0 ∈ I un
punto interno.

3Quello nullo.
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Se f è derivabile tre volte in x0, allora esiste un polinomio p3(·;x0) di grado (al
più) uguale a 3 tale che:

(11) f(x) = p3(x;x0) + o
(
(x− x0)3

)
per x→ x0 .

In particolare:

p3(x;x0) = f(x0) + f ′(x0) · (x− x0) +
1
2
f ′′(x0) · (x− x0)2 +

1
6
f ′′′(x0) · (x− x0)3 ,

L’uguaglianza (11) si chiama formula di Taylor al terzo ordine (col resto nella
forma di Peano) ed il polinomio p3(·;x0) si chiama polinomio di Taylor del terzo
ordine relativo ad f centrato in x0.
In particolare, il cosiddetto resto è la quantità r3(x;x0) := f(x)− p3(x;x0), infini-
tesima d’ordine superiore al terzo in x0.

Osservazione 11: Se f ′′′(x0) 6= 0, il grafico di p3(·;x0) è una curva cubica, la
quale interseca la curva-grafico di f nel punto di coordinate

(
x0, f(x0)

)
, avendovi

la medesima retta tangente e la stessa concavità. �

Osservazione 12: Notiamo esplicitamente che i coefficienti moltiplicativi 1, 1
2 ed

1
6 che precedono, rispettivamente, le derivate f ′(x0), f ′′(x0) ed f ′′′(x0) nella defi-
nizione del polinomio di Taylor p3(·;x0) sono i reciproci dei numeri 1, 2 = 2 · 1 e
6 = 3 · 2 · 1.
Ciò dà un’indicazione sulla forma “generale” dei coefficienti moltiplicativi nella
definizione del polinomio di Taylor, che tornerà utile nel paragrafo seguente. �

Dimostrazione. La dimostrazione è analoga alla precedente.
Applicando due volte il teorema di de l’Hôpital otteniamo:

lim
x→x0

f(x)− f(x0)− f ′(x0) · (x− x0)− 1
2f
′′(x0) · (x− x0)2 − 1

6f
′′′(x0) · (x− x0)3

(x− x0)3

H= lim
x→x0

f ′(x)− f ′(x0)− f ′′(x0) · (x− x0)− 1
2f
′′′(x0) · (x− x0)2

3(x− x0)2

H= lim
x→x0

f ′′(x)− f ′′(x0)− f ′′′(x0) · (x− x0)
6(x− x0)

=
1
6

(
lim
x→x0

f ′′(x)− f ′′(x0)
x− x0

− f ′′′(x0)
)

= 0

cosicché vale la (11). �

Proposizione 7 (Proprietà del Polinomio di Taylor del Terzo Ordine)
Il polinomio p3(·;x0) gode della proprietà:

(12)


p3(x0;x0) = f(x0)

p′3(x0;x0) = f ′(x0)

p′′3(x0;x0) = f ′′(x0)

p′′′3 (x0;x0) = f ′′′(x0) ,

cioè esso assume in x0 lo stesso valore di f ed in tal punto le sue derivate prima,
seconda e terza coincidono con le rispettive derivate di f .
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Dimostrazione. Per dimostrare le (12) basta calcolare:

p3(x;x0) = f(x0) + f ′(x0) · (x− x0) +
1
2
f ′′(x0) · (x− x0)2 +

1
6
f ′′′(x0) · (x− x0)3

p′3(x;x0) = f ′(x0) + f ′′(x0) · (x− x0) +
1
2
f ′′′(x0) · (x− x0)2

p′′3(x;x0) = f ′′(x0) + f ′′′(x0) · (x− x0)

p′′′3 (x;x0) = f ′′′(x0)

e sostituire x = x0. �

Osservazione 13 (Unicità del Polinomio Approssimante): Anche in questo caso
potremmo completare l’enunciato asserendo l’unicità del polinomio che gode della
(11): lasciamo allo studioso lettore il compito di dimostrare questa affermazione.�

Osservazione 14: Notiamo che, anche in questo caso, il sussistere della (11) non
fornisce alcuna informazione sull’esistenza della derivata terza di f in x0: per
illustrare tale circostanza basta elaborare un controesempio del tipo fornito in
precedenza. �

2.4. Formula di Taylor d’Ordine n. Supponiamo, del tutto in generale, che la
funzione f sia derivabile n− 1 volte in I ed n volte in x0.
Tanto basta per affermare che la funzione f si può approssimare intorno ad x0 con
un polinomio di grado (al più) uguale ad n, a meno di un infinitesimo d’ordine
superiore ad n in x0. Infatti vale la:

Teorema 1 (Formula di Taylor di Ordine n col Resto nella Forma di Peano)
Siano I un intervallo non banale, f : I → R derivabile n − 1 volte in I ed x0 ∈ I
un punto interno.
Se f è derivabile n volte in x0, allora esiste un polinomio pn(·;x0) di grado (al più)
uguale ad n tale che:

(13) f(x) = pn(x;x0) + o ((x− x0)n) per x→ x0 .

In particolare:

pn(x;x0) = f(x0)+f ′(x0)·(x−x0)+
1
2
f ′′(x0)·(x−x0)2+· · ·+ 1

n!
f (n)(x0)·(x−x0)n .

L’uguaglianza (13) si chiama formula di Taylor di ordine n (col resto nella for-
ma di Peano) ed il polinomio pn(·;x0) si chiama polinomio di Taylor di ordine n
relativo ad f centrato in x0.
In particolare, il cosiddetto resto è la quantità rn(x;x0) := f(x)− pn(x;x0), infini-
tesima d’ordine superiore ad n in x0.
Il simbolo n! (si legge “enne fattoriale”) denota il prodotto di tutti i numeri naturali
≤ n, ossia:

n! := n · (n− 1) · (n− 2) · · · 3 · 2 · 1 .

Dimostrazione. La dimostrazione è analoga alle precedenti due.
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Applicando n− 1 volte il teorema di de l’Hôpital otteniamo:

lim
x→x0

f(x)− pn(x;x0)
(x− x0)n

H= lim
x→x0

f ′(x)− f ′(x0)− f ′′(x0) · (x− x0)− · · · − 1
(n−1)!f

(n)(x0) · (x− x0)n−1

n(x− x0)n−1

H= lim
x→x0

f ′′(x)− f ′′(x0)− · · · − 1
(n−2)!f

(n)(x0) · (x− x0)n−2

n(n− 1)(x− x0)n−2

H= · · ·

H= lim
x→x0

f (n−1)(x)− f (n−1)(x0)− f (n)(x0) · (x− x0)
n!(x− x0)

=
1
n!

(
lim
x→x0

f (n−1)(x)− f (n−1)(x0)
x− x0

− f (n)(x0)
)

= 0

cosicché vale la (13). �

Proposizione 8 (Proprietà del Polinomio di Taylor di Ordine n)
Il polinomio pn(·;x0) gode della proprietà:

(14)



pn(x0;x0) = f(x0)

p′n(x0;x0) = f ′(x0)

p′′n(x0;x0) = f ′′(x0)
...

p(n)
n (x0;x0) = f (n)(x0) ,

cioè esso assume in x0 lo stesso valore di f ed in tal punto le sue derivate fino a
quella d’ordine n coincidono con le corrispondenti derivate di f .

Dimostrazione. Per dimostrare le (14) basta calcolare:

pn(x;x0) = f(x0) + f ′(x0) · (x− x0) +
1
2
f ′′(x0) · (x− x0)2 + · · ·

+
1
n!
f (n)(x0) · (x− x0)n

p′n(x;x0) = f ′(x0) + f ′′(x0) · (x− x0) + · · ·+ 1
(n− 1)!

f (n)(x0) · (x− x0)n−1

p′′n(x;x0) = f ′′(x0) + · · ·+ 1
(n− 2)!

f (n)(x0) · (x− x0)n−2

...

p(n−1)
n (x;x0) = f (n−1)(x0) + f (n) · (x− x0)

p(n)
n (x;x0) = f (n)(x0)

e sostituire x = x0. �

Osservazione 15 (Unicità del Polinomio Approssimante): Anche nel caso gene-
rale, il polinomio che approssima f intorno ad x0 come nella (13) è univocamente
determinato e coincide col polinomio di Taylor. �
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Osservazione 16: Valgono considerazioni analoghe a quelle già proposte per i casi
precedenti circa l’impossibilità di concludere l’esistenza della derivata n-esima in
x0 di una funzione approssimabile come detto nella (13). �

2.5. Il Resto della Formula di Taylor d’Ordine n. Il cosiddetto resto della
formula di Taylor d’ordine n, cioè la quantità rn(x;x0) := f(x) − pn(x;x0), può
essere espresso in diversi modi: in questo paragrafo ne elencheremo alcuni, riman-
dando la dimostrazione di tali risultati agli Esercizi.

Innanzitutto, osserviamo che la relazione acquisita col Teorema 1:

(15) rn(x;x0) = o
(
(x− x0)n

)
per x→ x0 ,

la quale restituisce il resto nella forma di Peano, equivale ad asserire che:

lim
x→x0

rn(x;x0)
(x− x0)n

= 0 ;

la continuità di rn(x;x0) in I ci consente di affermare che la funzione ωn(·;x0) :
I → R definita ponendo:

ωn(x;x0) :=

{
rn(x;x0)
(x−x0)n , se x 6= x0

0 , se x = x0

è continua in I, nulla in x0 e tale che:

(16) rn(x;x0) = ωn(x;x0) · (x− x0)n .

La (16) è un’altra forma in cui si può mettere il resto di Peano.

Osservazione 17: La forma di Peano (15) evidenzia una proprietà locale della
funzione rn, cioè quella di essere infinitesima d’ordine superiore ad n in x0.
Invece, la forma di Peano (16) fornisce un’espressione esplicita globale per la fun-
zione resto rn(·;x0) : I → R: il resto si esprime ovunque, in ogni punto di I, come
prodotto di una funzione continua e nulla in x0 (la ωn(·;x0)) e della potenza n-esima
del binomio x− x0. �

Un’espressione esplicita globale per il resto della formula di Taylor si può otte-
nere, sotto opportune ipotesi, anche usando un integrale definito. Invero, si può
dimostrare (cfr. [DM2, Esercizio 29]) che se f è dotata di derivata n + 1-esima
continua in I, allora:

(17) rn(x;x0) =
∫ x

x0

f (n+1)(t)
(x− t)n

n!
d t .

L’espressione (17) è nota come forma integrale del resto rn.

Altre espressioni del resto non forniscono informazioni globali, bensì informazioni
collegate al particolare valore x ∈ I in cui il resto viene valutato; perciò, d’ora in
avanti, riteniamo che x sia un fissato elemento di I.
Richiedendo qualche ipotesi in più sulla funzione f , il resto rn(x;x0) della formula di
Taylor si può esprimere nella forma di Lagrange. In particolare, è possibile provare
il:

Teorema 2 (Formula di Taylor col Resto nella Forma di Lagrange)
Siano I ⊆ R un intervallo non banale, f : I → R ed x0 ∈ I un punto interno.
Se la f è derivabile n + 1 volte in tutto l’intervallo I, allora per ogni punto x ∈
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I − {x0} esiste un punto ξ = ξx interno all’intervallo d’estremi x0 ed x tale che
valga l’uguaglianza:

f(x) = pn(x;x0) +
1

(n+ 1)!
f (n+1)(ξ) (x− x0)n+1 ,

dunque:

(18) rn(x;x0) =
1

(n+ 1)!
f (n+1)(ξ) (x− x0)n+1 .

Di questo teorema forniamo una dimostrazione alternativa a quella proposta in
[MS, §101], la quale non fa uso del resto nella forma integrale ed è simile nello
spirito alla Dimostrazione (secondo metodo) riportata nel testo.

Dimostrazione. Senza ledere la generalità, supponiamo x0 < x, potendosi ragionare
in maniera identica nell’altro caso.
Osserviamo che il Teorema 1 assicura che rn(x;x0) = o

(
(x − x0)n

)
, dunque è

abbastanza naturale cercare rn nella forma:

rn(x;x0) = ψn(x) · (x− x0)n+1

in cui ψn è una funzione limitata intorno ad x0.
Consideriamo la funzione ausiliaria phi : [x0, x]→ R definita ponendo:

ϕ(t) := pn(x; t) + rn(x; t)

= f(t) + f ′(t) (x− t) +
1
2
f ′′(t) (x− t)2

+ · · ·+ 1
n!
f (n)(t) (x− t)n + ψn(x) · (x− t)n+1 ,

la cui legge di assegnazione si ottiene rimpiazzando con la variabile t il valore x0

nella formula di Taylor col resto rn.
Dato che f è derivabile n + 1 volte in I, la ϕ è continua in [x0, x] e derivabile in
]x0, x[; inoltre, abbiamo:

ϕ(x0) = pn(x;x0) + rn(x;x0) = f(x)

ϕ(x) = f(x) + 0 = f(x) ,

cosicché ϕ assume lo stesso valore negli estremi del suo intervallo di definizione.
Il Teorema di Rolle assicura che esiste un punto ξ ∈]x0, x[ tale che ϕ′(ξ) = 0; un
calcolo esplicito mostra che:

ϕ′(t) = f ′(t)− f ′(t) + f ′′(t) (x− t)

− f ′′(t) (x− t) +
1
2
f ′′′(t) (x− t)2

− 1
2
f ′′′(t) (x− t)2 + · · ·

+
1

(n− 1)!
f (n)(t) (x− t)n − 1

(n− 1)!
f (n)(t) (x− t)n +

1
n!
f (n+1)(t) (x− t)n

− ψn(x) (n+ 1)(x− t)n

=
1
n!
f (n+1)(t) (x− t)n − ψn(x) (n+ 1)(x− t)n

dunque, tenendo presente che ξ 6= x, dalla condizione ϕ′(ξ) = 0 ricaviamo imme-
diatamente:

ψn(x) =
1

(n+ 1)!
f (n+1)(ξ) .



COMPLEMENTI SULLA FORMULA DI TAYLOR 15

Conseguentemente risulta:

rn(x;x0) =
1

(n+ 1)!
f (n+1)(ξ) (x− x0)n+1 ,

come volevamo. �

Osservazione 18: In generale, la forma di Lagrange (18) non ci dà alcuna infor-
mazione globale sulla funzione resto resto né restituisce alcuna sua proprietà locale:
ciò è dovuto al fatto che la quantità f (n+1)(ξ) dipende da x (perché ξ dipende da
x) in una maniera difficilmente predicibile.
Tuttavia, essa consente di stimare, in modo sufficientemente preciso per parecchie
applicazioni pratiche, quanto sia grande l’errore assoluto che si commette appros-
simando il numero f(x) col valore pn(x;x0): vediamo come.
Per la (18), l’errore assoluto che si commette approssimando f(x) con pn(x;x0) è
dato da:

|f(x)− pn(x;x0)| = |rn(x;x0)| = 1
(n+ 1)!

∣∣∣f (n+1)(ξx)
∣∣∣ |x− x0|n+1 ;

se la derivata f (n+1) si mantiene limitata nell’intervallo di estremi x ed x0 (cosa
che certamente accade quando f (n+1) è continua), detto Mn+1 un maggiorante di
|f (n+1)| tra x ed x0 risulta:

|f(x)− pn(x;x0)| ≤ Mn+1

(n+ 1)!
|x− x0|n+1

e tale disuguaglianza asserisce che l’errore assoluto non supera una certa soglia
dipendente unicamente da n.
Gli esempi che seguono illustrano dei casi d’interesse pratico in cui si applica una
stima del tipo precedente. �

Esempio 1: Consideriamo la funzione esponenziale f(x) := ex e usiamo il polino-
mio di Taylor per trovare un valore approssimato di e = f(1).
Chiaramente f è indefinitamente derivabile in R, cosicché le derivate di f sono tutte
continue in R ed ha senso considerare il polinomio di Taylor di f centrato in x0 = 0
per ogni ordine n ∈ N.
Dato che f (n)(x) = ex identicamente in R, risulta f (n)(x0) = e0 = 1 e perciò il
polinomio di Taylor di f d’ordine n centrato in 0 è:

pn(x; 0) = 1 + x+
1
2
x2 +

1
6
x3 + ·+ 1

n!
xn

e la formula di Taylor col resto nella forma di Lagrange per f in x = 1 si scrive:

f(1) = pn(1; 0) +
1

(n+ 1)!
f (n+1)(ξ) (1− 0)n+1

ossia:

e = 1 + 1 +
1
2

+
1
6

+ ·+ 1
n!

+
1

(n+ 1)!
eξ

=
n∑
k=0

1
k!

+
1

(n+ 1)!
eξ .

Dato che l’esponenziale è positiva e strettamente crescente, nell’intervallo di estremi
0 ed 1, cioé in [0, 1], la derivata f (n+1) si mantiene limitata superiormente da e1 = e;
quindi si può prendere Mn+1 = 3 e stimare l’errore assoluto di approssimazione nel
modo che segue: ∣∣∣∣∣e−

n∑
k=0

1
k!

∣∣∣∣∣ ≤ 3
(n+ 1)!

.
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Conseguentemente, l’errore assoluto di approssimazione non eccede la quantità
3

(n+1)! .

Dato che la successione di termine generale 3/(n+ 1)! è decrescente ed infinitesima
per n→∞, è chiaro che l’approssimazione fornita dal polinomio di Taylor migliora
via via che si prendono ordini sempre maggiori.
Ad esempio, se si vuole un’approssimazione di e con un errore assoluto minore di
10−3, allora basta prendere il polinomio di Taylor d’ordine uguale al più piccolo
numero naturale che soddisfa la disuguaglianza:

3
(n+ 1)!

< 10−3 ⇔ (n+ 1)! > 3000 ;

con l’ausilio di un calcolatore si vede che basta scegliere n = 6, poiché 6! = 720 e
7! = 5040, dunque:

e ≈ 1 + 1 +
1
2

+
1
6

+
1
24

+
1

120
+

1
720

=
1957
720

= 2.71806 .

Questo è il metodo usato dal Eulero per ottenere ottime approssimazioni di e. ♦

Esempio 2: Se vogliamo valutare in maniera approssimata le quantità cos 1 e sin 1,
possiamo seguire un procedimento analogo al precedente.
Infatti, dato che entrambe le funzioni cos e sin sono indefinitamente derivabili in R,
possiamo scrivere i loro polinomi di Taylor centrati in 0 d’ordine qualsiasi n: essi
sono, rispettivamente:

p′n(x; 0) = 1− 1
2
x2 +

1
24

x4 − 1
720

x6 + · · ·+ (−1)n
1

(2n)!
x2n

p′′n(x; 0) = x− 1
6
x3 +

1
120

x5 − 1
5040

x7 + · · ·+ (−1)(n+1) 1
(2n− 1)!

x2n−1 .

Conseguentemente, la formula di Taylor col resto nella forma di Lagrange, rispet-
tivamente, d’ordine 2n e 2n− 1 calcolata in x = 1 fornisce:

cos 1 = 1− 1
2

+
1
24
− 1

720
+ · · ·+ (−1)n

1
(2n)!

+
(−1)n sin ξ′

(2n+ 1)!

sin 1 = 1− 1
6

+
1

120
− 1

5040
+ · · ·+ (−1)(n+1) 1

(2n− 1)!
+

(−1)n sin ξ′′

(2n)!

e sfruttando la limitatezza del seno otteniamo le stime:

| cos 1− p′n(1; 0)| ≤ 1
(2n+ 1)!

(19)

| sin 1− p′′n(1; 0)| ≤ 1
(2n)!

.(20)

Le (19) e (20) implicano che per ottenere un’approssimazione di cos 1 e sin 1 a meno
di 10−3 basta prendere n uguale al più piccolo naturale tale che:

1
(2n+ 1)!

< 10−3

1
(2n)!

< 10−3 ,

cioè, rispettivamente, n′ = 3 ed n′′ = 4. Dunque:

cos 1 ≈ 1− 1
2

+
1
24
− 1

720
=

389
720
≈ 0.540278

sin 1 ≈ 1− 1
6

+
1

120
− 1

5040
=

4241
5040

= 0.841468 . ♦
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Un’espressione del resto analoga alla forma di Lagrange è la cosiddetta forma di
Cauchy. Nelle stesse ipotesi richiamate più sopra, si può dimostrare (cfr. [DM1,
Esercizio 40]) che esiste un punto η nell’intervallo di estremi x ed x0 tale che:

f(x) = pn(x;x0) +
1
n!

f (n+1)(η) (x− η)n (x− x0) ,

quindi:

(21) rn(x;x0) =
1
n!

f (n+1)(η) (x− η)n (x− x0) .

Più in generale, è possibile mettere il resto in una forma “intermedia” tra quella di
Lagrange (in cui compare solo una potenza di x − x0) e quella di Cauchy (in cui
compare anche una potenza di x − η, con η appartenente all’intervallo di estremi
x ed x0); tale forma è la cosiddetta forma di Schlömilch. Si può dimostrare (cfr.
[DM1, Esercizio 40]) che, nelle stesse ipotesi già richiamate, per ogni m ∈ N esiste
almeno un numero ϑ nell’intervallo d’estremi x ed x0 tale che:

(22) rn(x;x0) =
1

n! m
f (n+1)(ϑ) (x− ϑ)n−m+1 (x− x0)m .

Osservazione 19: Prendendo m = 1 ed m = n+ 1 dalla forma di Schlömilch (22)
si ricavano rispettivamente la forma di Cauchy (21) e quella di Lagrange (18). �

3. Funzioni con Derivata n-esima Nulla

È noto che il Teorema di Lagrange consente di stabilire che le funzioni costanti
in un intervallo I sono le uniche funzioni derivabili aventi derivata identicamente
nulla in I.
Dato che le funzioni costanti sono polinomi di grado al più uguale a 0, il risultato
appena ricordato può essere riformulato dicendo che i polinomi di grado ≤ 0 sono
le uniche funzioni aventi derivata prima identicamente nulla in un intervallo.
Consideriamo allora una funzione polinomiale di grado superiore, ad esempio il
polinomio di primo grado:

p(x) = a0 + a1x

(con a1 6= 0), definita in un intervallo I non banale. Evidentemente p′(x) = a1 e
p′′(x) = 0 identicamente nell’interno di I; pertanto i polinomi di grado ≤ 1 hanno
derivata seconda identicamente nulla all’interno di I.
Analogamente, consideriamo la funzione polinomiale di secondo grado:

p(x) := a0 + a1x+ a2x
2

(con a2 6= 0), definita nel solito intervallo I. Abbiamo p′(x) = a1 + 2a2x, p′′(x) =
2a2 e finalmente p′′′(x) = 0 ovunque nell’interno di I; conseguentemente, i polinomi
di grado ≤ 2 hanno derivata terza identicamente nulla dentro I.
Non è difficile provare, ed è lasciato come esercizio per il lettore, che una funzione
polinomiale di grado n− 1:

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−2x

n−2 + an−1x
n−1

(con an−1 6= 0) ha derivata n-esima identicamente nulla nell’interno di I.
La formula di Taylor con il resto di Lagrange del Teorema 2 consente di invertire
tale risultato nella maniera che segue:

Proposizione 9
Siano I un intervallo non banale ed f : I → R una funzione continua in I e
derivabile n volte nell’interno di I.
Se f (n)(x) = 0 per ogni x interno ad I, allora f è un polinomio di grado ≤ n− 1.
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Dimostrazione. Le ipotesi poste su f assicurano che, fissato arbitrariamente x0

internamente ad I, è possibile scrivere la formula di Taylor d’ordine n− 1 centrata
in x0 col resto nella forma di Lagrange, i.e.:

f(x) = pn−1(x;x0) +
1
n!

f (n)(ξ) · (x− x0)n ,

valida per ogni x ∈ I con un appropriato ξ = ξx,x0 appartenente all’intervallo d’e-
stremi x ed x0.
Dato che f (n) è identicamente nulla internamente ad I, il resto di Lagrange 1

n! f
(n)(ξ)·

(x− x0)n è nullo per ogni x, cosicché abbiamo:

f(x) = pn−1(x;x0) .

Conseguentemente, la f coincide col proprio polinomio di Taylor d’ordine n − 1
ovunque internamente ad I e, per continuità, anche negli eventuali punti del bordo
di I; questa è la tesi, perché p(·;x0) è un polinomio di grado ≤ n− 1. �

Osservazione 20: La dimostrazione della Proposizione precedente può esser fatta
anche in altra maniera, ad esempio per induzione.

Dimostrazione. Se n = 1 la cosa è vera per il Teorema di Caratteriz-
zazione delle Funzioni a Derivata Nulla richiamato ad inizio paragrafo.
Questa è una buona base per l’induzione.
Supponiamo allora che la Proposizione sia vera per n e dimostriamo che
essa vale anche per n + 1. Consideriamo una funzione f continua in I e
derivabile n+1 volte dentro I avente derivata n+1-esima identicamente
nulla in I.
La funzione ϕ := f ′ è una funzione continua e derivabile n volte nell’in-
terno di I, la cui derivata n-esima è:

ϕ(n)(x) =
dn

d xn
f ′(x) = f (n+1)(x) = 0

per ogni x interno ad I. Per l’ipotesi induttiva, ϕ è un polinomio di
grado ≤ n− 1 e dunque esistono n costanti b0, b1, . . . bn−1 tali che:

ϕ(x) = b0 + b1x + · · ·+ bn−1x
n−1 .

Detta Φ una primitiva di ϕ (che determineremo più avanti), si ha:

d

d x

[
f(x)− Φ(x)

]
= f ′(x)− ϕ(x) = 0

dunque f −Φ è una funzione costante in I per il Teorema di Caratteriz-
zazione; detta a0 tale costante, abbiamo:

f(x) = a0 + Φ(x)

ovunque dentro I.
Notato che una primitiva di ϕ è la funzione:

Φ(x) = b0x +
b1

2
x2 + · · ·+ bn−1

n
xn

(basta derivare Φ per verificare la correttezza dell’affermazione), possia-
mo dunque scrivere:

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn ,

con a1 = b0, a2 = b1
2
, . . . , an =

bn−1
n

, per ogni punto x interno ad I.
Ma tale uguaglianza si conserva, per la continuità dei suoi due membri,
anche nei punti del bordo di I; dunque f è un polinomio di grado ≤ n
in I e ciò conclude la dimostrazione per induzione. �
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Osservazione 21: Notiamo esplicitamente che il grado di f è proprio n−1 se e solo
se esiste almeno un punto x0 interno ad I nel quale la derivata f (n−1) assume valore
non nullo. Infatti, in tal caso, il polinomio di Taylor pn−1(·;x0) ha il coefficiente
della potenza di grado massimo uguale a 1

(n−1)!f
(n−1)(x0) 6= 0. �

Quanto ora acquisito si può riassumere nel seguente:

Teorema 3 (Caratterizzazione delle Funzioni con Derivata n-esima Nulla in un
Intervallo)
Siano I un intervallo non banale ed f : I → R una funzione continua in I.
La f è un polinomio di grado ≤ n− 1 se e solo se essa è derivabile almeno n volte
dentro I ed ha derivata n-esima identicamente nulla.
In particolare f è un polinomio di grado = n−1 se e solo se esiste almeno un punto
interno ad I in cui f (n−1) assume valore non nullo.

In altri termini, il Teorema appena enunciato afferma che i polinomi sono le
uniche funzioni che hanno derivate di ordine “elevato” identicamente nulle.
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