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INTRODUZIONE

In questi fogli presento, con qualche aggiunta, la definizione e le proprieta del
differenziale primo e la formula di Taylor.
Nel primo paragrafo, le nozioni di differenziabilita e di differenziale primo sono da-
te in maniera indipendente da quelle di derivabilita e di derivata prima (cioé ¢ la
Fréchet), in modo da renderle immediatamente generalizzabile al caso di funzioni
di piu variabili; successivamente sono esplorati i rapporti che intercorrono tra la
differenziabilita e la derivabilita.
Nel secondo paragrafo, la formula di Taylor ¢ dimostrata anzitutto nei casi parti-
colari n = 1, n = 2 ed n = 3 e solo dopo viene dimostrato il teorema nella sua
completa generalita (cioé col polinomio d’ordine n). Inoltre, sono elencate a parte
alcune notevoli proprieta del polinomio di Taylor tralasciate in [MS] ed un sotto-
paragrafo é completamente dedicato alle varie forme in cui si pud mettere il resto
ed al loro uso nei calcoli approssimati.
Il documento si chiude con un’applicazione della formula di Taylor col resto nella
forma di Lagrange ad un risultato che generalizza il cosiddetto Teorema di Carat-
terizzazione delle Funzioni Costanti in un Intervallo.
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Alcuni esercizi sul materiale qui raccolto sono reperibili in |
1. FUNZIONI DIFFERENZIABILI E DIFFERENZIALE PRIMO
Cominciamo con la seguente:

DEFINIZIONE 1 (Funzione Differenziabile in un Punto')
Siano I un intervallo non banale, f : I — R ed 2y € I un punto interno.

Date: 28 dicembre 2017.
ILa definizione presentata qui, dovuta a M. Fréchet (1878 — 1973), si estende a casi molto
generali.
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Si dice che f ¢ differenziabile in xo se e solo se esiste un numero [ = [, € R tale
che:

=0.

(1) i 4 @) = f(wo) =1 (z — o)

T—To Tr — X9
In tal caso, lapplicazione d f(;x¢) : R — R, definita ponendo:
d f(Az;xg) := 1y, - Ax

per ogni h € R, si chiama differenziale (primo) di f nel punto xy.

Osservazione 1 (Sulla Notazione per il Differenziale - I): Notiamo esplicitamente
che, il piu delle volte (e soprattutto nelle applicazioni), il differenziale di una fun-
zione f viene denotato semplicemente con il simbolo d f, in cui non vengono messi
in evidenza né il punto in cui il differenziale & calcolato (cioé zg) né la variabile da
cui il differenziale dipende (cio¢ la Az).

Cio snellisce la notazione, rendendola manipolabile con estrema facilita. ¢

Osservazione 2: E appena il caso di notare che se una funzione f é differenziabile
in xg, allora il numero [ la cui esistenza ¢ predicata nella definizione ¢ unico.
Invero, se A & un secondo numero reale tale che:

f(@) = f(xo) = A~ (& — o)

lim -0,
r—xg xr — xo
abbiamo:
I—\= lim (1=A) - (x — )
T—x0 T — Tg
= lim (f(zo) +1- (x —@0)) + (= flwo) = A~ (x — @0))
B T—XT0 T — wo
o (@) = flao) ~ 1 (@ w0)) + (£(@) — fwo) = A+ (x — w0)
T—T0 T — o
i @) = f@o) =1 (@ —=0) | f(@) = fwo) =\~ (@ = 0)
T—T0 Tr — X T — T
=0,
ossia A = [. .

La proprieta di differenziabilita é strettamente connessa alla proprieta di deriva-
bilita, come mostra la:

PROPOSIZIONE 1

Siano I un intervallo non banale, f : I — R ed xg € I un punto interno.

La f ¢ differenziabile in xo se e solo se f & derivabile in xo; inoltre, il numero I
che gode della (1) ¢ uguale a f'(x¢).

Dimostrazione. Se f é differenziabile, allora f é derivabile ed f'(z¢) = 1.
Dalla (1) segue che:

J@) = fw)

lim =0
T—Io Tr — X
da cui:
i @) = Fa)
T—To T — T

che é la tesi in quanto [ € R.
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Se f é derivabile, allora f é differenziabile ed | = f'(xg).
Dalla definizione di derivata segue che:

f(z) — f(zo)

lim — f(x9) =0
T—xT0 T — X9
da cui:
lim f(@) = f(zo) — f'(w0) - (z — 20) -0,
Tr—x0 xr — ;CO
che ¢ la tesi. 0

Conseguentemente, possiamo scrivere la legge di assegnazione del differenziale
primo di una funzione differenziabile in xy come:

df=f'(z) Az
e la relazione di limite (1) come:

lim flxo + Ax) — f(xo) — f'(x0) - Az

Az—0 Ax =0

Quest’ultima relazione mostra che incremento Af := f(xg + Ax) — f(z), subito
dalla funzione f in corrispondenza dell’incremento Az della variabile, si pud ap-
prossimare per Ax “piccoli” con d f = f/(xp)-Ax a meno di un infinitesimo d’ordine
superiore al primo; in altri termini, abbiamo:

Af=df+o(Ax) per Az — 0
= f(zo) - Az + o(Ax) per Az — 0,

e cido mostra che, se f'(xq) # 0, il differenziale primo f’(x¢)-Ax & la parte principale
dell’infinitesimo A f quando l'incremento Ax tende a 0.

Osservazione 3 (Sulla Notazione per il Differenziale - IT): Considerata la funzione
identita i : R — R definita da i(z) := x, abbiamo '(z) = 1 ovunque e percio:

di=Ax.

Se scegliamo, commettendo un abuso di notazione, di denotare semplicemente con
x la funzione ¢, 'uguaglianza precedente si legge:

dez = Az

(tale uguaglianza viene talora interpretata dicendo che “il differenziale dx della
variabile x coincide con I'incremento Axz”). Ne consegue che la definizione di dif-
ferenziale puod essere riscritta come d f = f'(xg)dz o, se si sceglie di omettere
totalmente la dipendenza dal punto zg al secondo membro, addirittura come:

df=fdaz,

la quale ¢ molto comune nelle applicazioni (poiché consente di ricavare formalmente
la derivata prima come rapporto degli “incrementi infinitesimi” d f e d ). ¢

Dal discorso precedente ricaviamo senza sforzo che:

f(x) = f(xo) + f'(wo) - (x — wg) + o(x — ) per x — I ,

cosicché la f puo essere approssimata da un polinomio di grado (al pit) uguale ad
1 quando z tende ad xg.

Questo ¢ un fatto della massima importanza e puod essere generalizzato, come mo-
streremo nel possimo paragrafo; ora ci preme segnalare il significato geometrico
insito in tale risultato:
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Osservazione 4 (Differenziabilita e Definizione di Retta Tangente al Grafico): In
aula abbiamo definito la retta tangente al grafico di una funzione f nel punto di
ascissa xg formalizzando la nozione intuitiva di “posizione limite” delle rette secanti
al grafico condotte per Py = (zg, f(xo)). Tuttavia, tale definizione si presta poco ad
essere generalizzata e percio € necessario riformularla in termini pitt manipolabili.
In particolare, si da la seguente definizione, formulata in termini analitici:

DEFINIZIONE 2 (Retta Tangente al Grafico di una Funzione)

Siano I C R un intervallo non banale, f : I — R ed 2y € I un punto interno.

Si dice che la retta non verticale di equazione y = m(x — z¢) + f(z¢), appartenente
al facio proprio di centro Py = (xo, f(z9)), & tangente al grafico di f nel punto di
ascissa xg se e solo se:

lim f(x) —m-(x —x0) — f(x0)

T—xTo r — X

=0.

Confrontando la DEFINIZIONE 2 con la DEFINIZIONE 1 e tenendo presente ’Osservazione
2, vediamo che il grafico di una funzione f é dotato di retta tangente non verticale
nel punto di ascissa xg interna ad I se e solo se f & differenziabile in xq; in tal caso,
quindi, per la PROPOSIZIONE 1 risulta m =1 = f'(xg). ¢

2. LA FORMULA DI TAYLOR

D’ora in avanti supporremo sempre (a meno che non sia specificato diversamente)
che I sia un intervallo non banale, f : I — R ed zo € I sia un punto interno.?

2.1. Formula di Taylor al Primo Ordine. Supponendo che f sia derivabile in
Zo, per quanto detto nel paragrafo precedente abbiamo:

F(2) = f(zo) + f(w0) - (v — w0) + ol —x0)  pera — o .
Posto:

p1(z;20) == f(x0) + f'(20) - (x — 20)

per ogni z € I, la funzione p;(+;xp) € un polinomio di grado (al pit) ugugale ad 1
e gode della proprieta:
(2) f(z) = p1(z;20) + o(x — x9) per z — xp .

Inoltre, il polinomio p; (+; xo) gode di un’ulteriore interessante proprieta, cioé¢ quella
di avere in xq lo stesso valore e la stessa derivata di f: infatti, pi(xo;x0) = f(x0)
ed é molto semplice constatare che I'uguaglianza:

Ph(w520) = f'(20)
vale ovunque in I quindi, in particolare, vale in xy.
Abbiamo cosi provato validi i seguenti fatti:

PROPOSIZIONE 2 (Formula di Taylor al Primo Ordine col Resto nella Forma di
Peano)

Siano I un intervallo non banale, f : I — R ed xg € I un punto interno.

Se f ¢ derivabile un wvolta in xq, esiste un polinomio p1(-;x0) di grado (al pia)
uguale ad 1 tale che:

(3) f(x) =pi(x;20) +o(x —x0)  perz — xo;
In particolare:

p1(;20) = f(x0) + f'(w0) - (. — w0) -

2Quest’ultirna ipotesi non é strettamente necessaria; qui e nel seguito la usiamo solo per
comodita.
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La (3) ¢ usualmente detta formula di Taylor al primo ordine (col resto nella
forma di Peano) ed il polinomio py(-;x9) ¢ detto polinomio di Taylor del primo
ordine relativo ad f centrato in xg.

In particolare, il cosiddetto resto di Peano & la quantita r (z; o) := f(x)—p1(z; x0),
infinitesima d’ordine superiore al primo in zg.

PROPOSIZIONE 3 (Proprieta del Polinomio di Taylor del Primo Ordine)
1l polinomio p1(-;xo) gode della sequente proprieta:

p1(wo; o) = f(x0)

Pi(zo; x0) = f'(w0)

cioé esso assume in xg lo stesso valore di f ed ha ivi derivata prima coincidente
con quella di f.

(4)

Osservazione 5: Ricordata l'interpretazione geometrica della derivata, il polino-
mio p1(+;x0) ha come grafico la retta tangente alla curva-grafico di f nel punto di
coordinate (zg, f(zo)). ¢

Ci proponiamo ora di completare gli enunciati precedenti in due direzioni: in-
nanzitutto, mostrando che il polinomio p;(+;xp) ¢ univocamente determinato dalla
condizione (3); poi, mostrando che se una funzione f, continua in xg, ¢ approssi-
mata intorno ad zp da un polinomio di grado (al pi) uguale ad 1 a meno di un
infinitesimo d’ordine superiore, allora f € derivabile in zg.

Osservazione 6 (Unicita del Polinomio Approssimante): Fatte salve le ipotesi su
f ed zp, supponiamo che p sia un polinomio di grado (al pitt) uguale ad 1 che goda
della (3), cioé tale che:

f(x) = p(x) +o(r —xo)  perz—uo,

e mostriamo che si ha necessariamente p(x) = p1(z; o).
Detti ag,a; € R i coefficienti di p, ossia i numeri tali che:

p(z) =ao + a1,
il verificarsi dell’uguaglianza precedente, unito alla continuita di p ed f in xg,
implica:

f(zo) = lim f(x)

T—T

= lim ag+ a1z + o(x — xq)

T—x0
=ap+ai1xo,
cioé:
(5) ag = f(xo) — ar1xo ;

d’altra parte, per definizione di “o piccolo”, abbiamo pure:

lim %) 00—z
T—xTQ r — X

=0

da cui, per la (5), segue:

lim f(z) = f(xo) — ar(z — x0)

T—To T — Xo

=0

ossia:
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cioé:
(6) f'(xo) = a1 ;

conseguentemente, per (5) e (6) abbiamo:

p(x) = (f(x0) — f'(x0)wo) + f'(x0)x = pu(a;x0) ,

come volevamo. ¢

Osservazione 7 (Derivabilita di una Funzione Approssimabile con un Polinomio):
Supponiamo, infine, che f sia continua in xg e che valga la relazione:

f(@) =p(x) + oz — o) per x — Tg

con p(x) = ag + a1z polinomio di grado (al piu) uguale ad 1, e mostriamo che f &
derivabile in zg.
Per continuita abbiamo:

f(zo) = lim f(x)

T—xg
= lim ag + a1z + o(x — x¢)
r—Xo
= Qo + a1
da cui p(z) = f(xo) + a1(z — x); per definizione di o, abbiamo inoltre:

f(x) — f(xo) — lim p(z) — f(xo) + o(x — x0)

lim
T—Zo Tr — X T—To r — X9
. a1(xr —xg9) + olx — xg
@ ao) +o(r — )
T—T0 Tr — X
cosicché f @ derivabile in zq (e la derivata coincide con il coefficiente aq). ¢

2.2. Formula di Taylor al Secondo Ordine. Supponiamo, ora, che f sia deri-
vabile una volta intorno ad zg e due volte in xg.

In tal caso la funzione derivata prima f’ & ben definita intorno ad xo ed & derivabile
in tale punto, la sua derivata essendo uguale a f”(zg).

Proviamo che cio ¢ sufficiente a dire che la funzione f si pud approssimare intorno
ad z¢ con un polinomio p di grado (al pit) uguale a 2 a meno di un infinitesimo
d’ordine superiore a 2 in xq, il quale gode di qualche interessante proprieta.
Abbiamo:

PROPOSIZIONE 4 (Formula di Taylor al Secondo Ordine col Resto nella forma di
Peano)

Siano I un intervallo non banale, f : I — R derivabile nell’interno di I ed xg € T
un punto interno.

Se f ¢ derivabile due volte in xq, esiste un polinomio pa(-;xzo) di grado (al piu)
uguale a due tale che:

(7) f(z) = p2(x;20) +0((m—x0)2) per r — xgq .
In particolare:

pa(as0) = (o) + f'(a0) + 5 " (w0) - (& — o)

La (7) ¢ usualmente detta formula di Taylor al secondo ordine (col resto nella
forma di Peano) ed il polinomio pa(-;x9) & detto polinomio di Taylor del secondo
ordine relativo ad f centrato in xg.
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In particolare, il cosiddetto resto & la quantita ro(z; x0) := f(x) — p2(x; x0), infini-
tesima d’ordine superiore al secondo in zg.

Dimostrazione. Dimostriamo che il polinomio ps(-; z¢) definito nell’enunciato gode
della proprieta (7). Applicando il teorema di de I’Hoépital otteniamo:

f(@) = f(xo) = f'(z0) - (x — 20) — 5" (20) - (x — 20)?

lim

T—Ig (J? — 3’)0)2
Ho o f1(@) = fzo) = f(o) - (& — 20)
T—To 2(33 - Io)
B % (TILH,}U f (3’2 : ;];O(xO) _ f”(l‘o))
=0
cosicché f(x) = pa(x;w0) + o (z — 20)?) per x — 2. O

PROPOSIZIONE 5 (Proprieta del Polinomio di Taylor del Secondo Ordine)
1l polinomio pa(-;xo) gode della proprieta:

p2(z0;20) = f(20)
(8) ph(zo; o) = f'(x0)
Pa(w0;20) = f"(x0)

cioé esso assume in xq lo stesso valore di f ed ha in tal punto la medesima derivata
prima e seconda di f.

Osservazione 8: Se f”(zg) # 0, il polinomio p, ha come grafico una parabola, la
quale interseca la curva-grafico di f nel punto di coordinate (gco7 f (xo)) ed ha come
tangente in tale punto la retta tangente al grafico di f nel medesimo punto; inoltre,
tale parabola ¢ concava o convessa a seconda che fP7¢(z4) < 0 0 > 0. ¢

Dimostrazione. Per dimostrare che il polinomio py gode delle (8) ¢é sufficiente un
semplice calcolo. Abbiamo:

pal; 7o) = f(wo) + f'(wo) + 3 f(z0) - (& — 70)’
ph(a;w0) = f'(x0) + £ (0) - (x — w0)
Plzl(f;ffo) = f”(ffo)

e basta sostituire x = xg per concludere. O

Osservazione 9 (Unicita del Polinomio Approssimante): Ci proponiamo di com-
pletare ’enunciato della proposizione precedente come gia fatto nel caso precedente,
ossia mostrando che il polinomio di Taylor ¢ univocamente individuato dalla (7).
Supponiamo che un polinomio di grado (al pit) uguale a 2, diciamo p(z) = ag +
a1x + axz?, goda della (7) e mostriamo che esso coincide con il polinomio di Taylor
p2(+1%0).

Abbiamo:

flzo) = lim f(x)

T—T0

= lim p(z)+ o ((z — 20)?)

r—x0

= lim ag + a1z + asa® + o ((m — xo)Q)

T—x0

2
=ag + a1xp + a2z ,
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percio deve essere necessariamente:
2
(9) agp + a1z + agzy = f(xg) .

D’altra parte, usando la (9), troviamo:

fl(l'o) — lim f(l‘) — f(xo)

T—xg T — X9
(a0 + a1z + aza”® + o ((z — 20)?)) — f(z0)

= lim
T—To r — X

~ lim (ao — f(wo)) + a1z + aox? + o ((z — 0)?)
T—Io Tr — X

_ lim (falxo - agx(z)) + a1z + asx® + o ((:E - x0)2)
=0 T — T

_ lim ai(z — o) + ag(2? — 23) + o ((x - xo)g)
T—To T — X0

2

= lim a; +a2($ +l‘0) + M
T—To T — X9

= a1 + 2a27p

da cui segue che deve necessariamente essere:
(10) ai + 2azxg = f'(z0) .
Mettendo insieme le (9) ed (10) otteniamo il sistema:
ap + arzo + azxd = f(wo)

{ ay + 2azx0 = f'(x0)
dal quale ricaviamo:

ag = f(xo) = f'(w0) - w0 + agay

{ a1 = f'(x0) — 2a20 ,
cosicché possiamo scrivere:
p(x) = f(zo) — f'(x0) - mo + agaf + (f'(z0) — 2a9w0) x + aga’
= f(z0) + ['(x0) - (x — m0) + as(z — mo)?

Infine, applicando il teorema di de I’Hépital troviamo:

f(x) = f(wo) — f'(xo) - (x — w0) — ag(x — 20)?

lim

=20 (x — x0)?
oo f(@) = f'(=o) — 2a2(z — 20)
B J«li’nﬂ«lo 2(x — xo)
o F@ =P

a—zo  2(z — x0)
1
=9 [ (o) — az
e, confrontando tale risultato con la (7), otteniamo ag = § f”'(x¢); pertanto risulta:

p(x) = fzo) + f'(z0) - (x — x0) + %f”(ﬂvo) (z — x0)? = pa(7;20)

come volevamo. ¢
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Osservazione 10: A differenza del paragrafo precedente, dal sussistere di un’ap-
prossimazione polinomiale simile alla (7) non possiamo trarre alcuna conclusione
circa l’esistenza della derivata seconda di f nel punto zg.

Per lumeggiare tale circostanza, proponiamo il seguente controesempio.

Fissiamo a > 0 e consideriamo la funzione f : R — R definita ponendo:

% sin 1 se x>0
x) = z 7
/(@) {O ,sex < 0.
Evidentemente f & continua in R — {0}; pero, essa & continua anche in 0, dato che:
li =f(0)= 1 .
Jim f(2) = f(0) = lim f(z)
Analogamente, f ¢ derivabile in R — {0} ed, avendosi:

i 1@ = £(0)

=0
z—0— z—0
lim M = lim 2“ 'sin 1 ,
z—0+ x—0 z—0 T

la f risulta derivabile anche in 0, con derivata ivi nulla, solo se a > 1.
Supponendo di aver scelto a > 1, la derivata di f é:
, ar®lsint — 2% 2cost [sex >0
'@ = . :
0 ,sex <0
ed f' & continua in 0 solo se risulta @ — 2 > 0, ossia @ > 2; se @ > 2, la f’ (che
certamente ¢ derivabile in R — {0}) ha:

f'(z) = 1'(0)

li =0
wi%l— xr — O
! — f(0 1 1
lim M = lim az® %sin = — 2 3 cos = ,
z—0+ z—0 z—0 T T

sicché f’ & derivabile in 0, con derivata nulla, solo se:

a—2>0
{a—3>0,
ossia se o > 3.

Scegliamo un qualsiasi esponente 2 < a < 3: in tale ipotesi, abbiamo:

x 1
lim Lz) = lim 2 %sin— =0,
z—0 X x—0 x
cosicché f(z) = 0 + o(z?) per x — 0, cioé f & approssimabile intorno a 0 con un
polinomio® avente grado (al pit1) uguale a 2 a meno di un infinitesimo d’ordine
superiore a 2; ma, d’altra parte, f é derivabile una sola volta in 0 (ed ha derivata

prima nulla). ¢

2.3. Formula di Taylor al Terzo Ordine. Supponiamo che f sia derivabile due
volte intorno ad xq tre volte in zg.

Tanto basta per concludere che la funzione f pud essere approssimata a meno di
un infinitesimo d’ordine superiore a 3 in xg, come mostra la:

PROPOSIZIONE 6 (Formula di Taylor al Terzo Ordine col Resto nella Forma di
Peano)

Siano I un intervallo non banale, f : I — R derivabile due volte in I e xo € I un
punto interno.

3Quello nullo.
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Se f & deriwabile tre volte in xg, allora esiste un polinomio p3(-;xo) di grado (al
pit) uguale a 3 tale che:

(11) f(x) = ps(z;x0) —l—o((w—xo)?’) per x — Tg .

In particolare:

palas0) = f(ao) + f/(an) - (& —a0) + 38" o) (2 = 20)* 4 55" ) (2 = 20)"

L’uguaglianza (11) si chiama formula di Taylor al terzo ordine (col resto nella
forma di Peano) ed il polinomio ps(; o) si chiama polinomio di Taylor del terzo
ordine relativo ad f centrato in xg.

In particolare, il cosiddetto resto & la quantita rs(z; xo) := f(z) — p3(x; x0), infini-
tesima d’ordine superiore al terzo in z.

Osservazione 11: Se f"'(xg) # 0, il grafico di ps3(:;x0) ¢ una curva cubica, la
quale interseca la curva-grafico di f nel punto di coordinate (;vo, f (mo)), avendovi
la medesima retta tangente e la stessa concavita.

Osservazione 12: Notiamo esplicitamente che i coefficienti moltiplicativi 1, % ed
% che precedono, rispettivamente, le derivate f'(z¢), f”(z0) ed f"”(zo) nella defi-
nizione del polinomio di Taylor ps(-;x¢) sono i reciproci dei numeri 1, 2 =2-1e
6=3-2-1.

Cio da un’indicazione sulla forma “generale” dei coefficienti moltiplicativi nella
definizione del polinomio di Taylor, che tornera utile nel paragrafo seguente. ¢

Dimostrazione. La dimostrazione ¢ analoga alla precedente.
Applicando due volte il teorema di de I’Hépital otteniamo:

f@) = flwo) = f'(x0) - (& — o) — 3 f"(w0) - (¥ — w0)* — 5" (w0) - (x — wp)®

lim

T—To (.’17 _ 370)3
H i f'(@) = f(wo) — f"(z0) - (x — o) — 2" (20) - (x — 20)?
= T—T0 3($ _ !Eo)2
= lim fll(x) — f”(xo) — f”/(xo) (z — xp)

o 6(x — o)

1 (=) = (o)
"6 (JLH;O I (fco))
=0

cosicché vale la (11). .

PROPOSIZIONE 7 (Proprieta del Polinomio di Taylor del Terzo Ordine)
Il polinomio ps(-;x) gode della proprieta:

p3(zo; o) = f(2o)

( ) 0
p3(xo; o) = f'(20)
(12) pg(ﬂﬁo;xo) = f”(l”o)
Py (zo; o) = " (20) ,

cioé esso assume in xg lo stesso valore di f ed in tal punto le sue derivate prima,
seconda e terza coincidono con le rispettive derivate di f.



COMPLEMENTI SULLA FORMULA DI TAYLOR 11

Dimostrazione. Per dimostrare le (12) basta calcolare:

palasa0) = F(r0) + f'(a0) - (& =) + 38" (0) - (¢ —~a0)? + " (20) - (o — o)

py(x;w0) = f'(w0) + f"(x0) - (x — 20) + %f’”(xo) (z —20)?
P (x;20) = " (20) + " (w0) - (2 — 20)
Py (x320) = " (20)

e sostituire © = xg. O

Osservazione 13 (Unicita del Polinomio Approssimante): Anche in questo caso
potremmo completare I’enunciato asserendo 'unicita del polinomio che gode della
(11): lasciamo allo studioso lettore il compito di dimostrare questa affermazione. 4

Osservazione 14: Notiamo che, anche in questo caso, il sussistere della (11) non
fornisce alcuna informazione sull’esistenza della derivata terza di f in xy: per
illustrare tale circostanza basta elaborare un controesempio del tipo fornito in
precedenza. ¢

2.4. Formula di Taylor d’Ordine n. Supponiamo, del tutto in generale, che la
funzione f sia derivabile n — 1 volte in I ed n volte in x.

Tanto basta per affermare che la funzione f si pud approssimare intorno ad zy con
un polinomio di grado (al piu) uguale ad n, a meno di un infinitesimo d’ordine
superiore ad n in xg. Infatti vale la:

TEOREMA 1 (Formula di Taylor di Ordine n col Resto nella Forma di Peano)
Siano I un intervallo non banale, f : I — R derivabile n — 1 volte in I ed g € I
un punto interno.

Se [ e derivabile n volte in xq, allora esiste un polinomio p,(-; o) di grado (al pia)
uguale ad n tale che:

(13) f(x) = pn(z;20) + 0 ((2 —20)") per x — xg .

In particolare:

3 20) = Fw0)+ £ o) (r=0)+ 31" (o) (=204 ++ = f ) o) (—0)"

L’uguaglianza (13) si chiama formula di Taylor di ordine n (col resto nella for-
ma di Peano) ed il polinomio p,(-; o) si chiama polinomio di Taylor di ordine n
relativo ad f centrato in xq.

In particolare, il cosiddetto resto & la quantita r, (x; zo) := f(x) — pn(x; o), infini-
tesima d’ordine superiore ad n in xg.

11 simbolo n! (si legge “enne fattoriale”) denota il prodotto di tutti i numeri naturali
< n, ossia:

nl:=n-(n—1)-(n—2)---3-2-1.

Dimostrazione. La dimostrazione é analoga alle precedenti due.
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Applicando n — 1 volte il teorema di de I’Hopital otteniamo:

f(x) — pn(x;20)

xlggo (x — x0)™
H o f(@) = f(@o) = f"(xo) - (x — o) — -+ — ﬁf(”)(xo) (@)™ !
- T—xo n(x _ Io)"71
W 1) = £ ) = = g ) e) - o — o)
e n(n = 1)(w — w0)" 2
1.
H o FO (@) = FOD (o) — ) (20) - (2 — 20)
e nl(x — xo)
n: \r—zo r — X
=0
cosicché vale la (13). O

PROPOSIZIONE 8 (Proprieta del Polinomio di Taylor di Ordine n)
Il polinomio p,(-;z0) gode della proprieta:

pn(z0; o) = f(xo)

P (@o; 20) = f'(20)

(14) P (@03 z0) = f"(x0)

P (w05 20) = T (20) ,

cioé esso assume in xg lo stesso valore di f ed in tal punto le sue derivate fino a
quella d’ordine n coincidono con le corrispondenti derivate di f.

Dimostrazione. Per dimostrare le (14) basta calcolare:
1
Pa(w;20) = f(wo) + f'(20) - (x = w0) + 5 f"(w0) - (= w0) + - -

4 f ) a0) - (2 w0

(@3 30) = f'(w0) + f(w0) - (¥ — 20) + - +

1

@) @)

(@3 m0) = f(w0) + - +

P (@ wo) = £ (o) + £ - (2 — o)
Py (w;.20) = f1) ()

e sostituire © = xg. O

Osservazione 15 (Unicita del Polinomio Approssimante): Anche nel caso gene-
rale, il polinomio che approssima f intorno ad zy come nella (13) é univocamente
determinato e coincide col polinomio di Taylor. ¢
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Osservazione 16: Valgono considerazioni analoghe a quelle gia proposte per i casi
precedenti circa 'impossibilita di concludere 'esistenza della derivata m-esima in
xo di una funzione approssimabile come detto nella (13). ¢

2.5. Il Resto della Formula di Taylor d’Ordine n. Il cosiddetto resto della
formula di Taylor d’ordine n, cioé la quantita r,(z;x¢) = f(x) — pn(z; o), Pud
essere espresso in diversi modi: in questo paragrafo ne elencheremo alcuni, riman-
dando la dimostrazione di tali risultati agli Esercizi.

Innanzitutto, osserviamo che la relazione acquisita col TEOREMA 1:
(15) rn(x;20) =0 ((m — xo)") per T — xq ,
la quale restituisce il resto nella forma di Peano, equivale ad asserire che:

lim n(®i%0) _

T—x0 (;L' — xo)” B

la continuita di r,(x;x0) in I ci consente di affermare che la funzione w,(-;x0) :
I — R definita ponendo:

rn(T;20)
L sex Fx
wn (x5 20) = {(w—wO) 7 o
0 ,8e X =T
é continua in I, nulla in zg e tale che:
(16) rn(x;20) = wn(x;20) - (x — 20)" .

La (16) & un’altra forma in cui si pud mettere il resto di Peano.

Osservazione 17: La forma di Peano (15) evidenzia una proprieta locale della
funzione r,,, cioé quella di essere infinitesima d’ordine superiore ad n in .

Invece, la forma di Peano (16) fornisce un’espressione esplicita globale per la fun-
zione resto r,(+;xg) : I — R: il resto si esprime ovunque, in ogni punto di I, come
prodotto di una funzione continua e nulla in g (la w,(+; zo)) e della potenza n-esima
del binomio x — zo. ¢

Un’espressione esplicita globale per il resto della formula di Taylor si puo otte-
nere, sotto opportune ipotesi, anche usando un integrale definito. Invero, si puo
dimostrare (cfr. | , Esercizio 29|) che se f & dotata di derivata n + l-esima
continua in I, allora:

(17) rol@; 20) = /I FOHD (4 (z—t)"

dt.
n!

L’espressione (17) & nota come forma integrale del resto r,.

Altre espressioni del resto non forniscono informazioni globali, bensi informazioni
collegate al particolare valore z € I in cui il resto viene valutato; percio, d’ora in
avanti, riteniamo che x sia un fissato elemento di I.

Richiedendo qualche ipotesi in pit sulla funzione f, il resto 7, (x; zo) della formula di
Taylor si puo esprimere nella forma di Lagrange. In particolare, & possibile provare
il:

TEOREMA 2 (Formula di Taylor col Resto nella Forma di Lagrange)
Siano I C R un intervallo non banale, f : I — R ed xg € I un punto interno.
Se la f e derivabile n + 1 wvolte in tutto lintervallo I, allora per ogni punto x €
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I — {zo} esiste un punto & = &, interno all’intervallo d’estremi xo ed x tale che
valga luguaglianza:

@) = palaian) + ooy 17O (@ 0)"
dunque:
(18) ru(aia0) = gy 16 (0= a0

Di questo teorema forniamo una dimostrazione alternativa a quella proposta in
[MS, §101], la quale non fa uso del resto nella forma integrale ed & simile nello
spirito alla Dimostrazione (secondo metodo) riportata nel testo.

Dimostrazione. Senza ledere la generalita, supponiamo xy < x, potendosi ragionare
in maniera identica nell’altro caso.

Osserviamo che il TEOREMA 1 assicura che r,(z;29) = o ((x - xo)"), dunque &
abbastanza naturale cercare r, nella forma:

Tn($§ 370) = lﬁn(x) . (.T _ (L‘())n+1

in cui ¢, € una funzione limitata intorno ad xg.
Consideriamo la funzione ausiliaria phi : [zg, 2] — R definita ponendo:

o(t) = pn(x;t) + rp(z;t)
= FO)+ (1) (2 = 1)+ 547(0) (2~ )
o fO0) (= )" 4 () (- B

la cui legge di assegnazione si ottiene rimpiazzando con la variabile ¢ il valore zg
nella formula di Taylor col resto r,,.
Dato che f ¢ derivabile n + 1 volte in I, la ¢ & continua in [zg,z] e derivabile in
Jxo, z[; inoltre, abbiamo:
p(x0) = pn(a;20) + ro(2;20) = f(2)
p(r) = f(z)+0=f(z),
cosicché ¢ assume lo stesso valore negli estremi del suo intervallo di definizione.

Il Teorema di Rolle assicura che esiste un punto £ €]xo, [ tale che ¢’(§) = 0; un
calcolo esplicito mostra che:

P = 1) = £ + (1) (o~ 1)
ST (1) ) ()

I 0

~ tala) (o (e )"

dunque, tenendo presente che £ # x, dalla condizione ¢’(£) = 0 ricaviamo imme-

diatamente:
1

(n+1)!

P (z) = Fot(g)
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Conseguentemente risulta:

o £

come volevamo. O

(2 x0) =

Osservazione 18: In generale, la forma di Lagrange (18) non ci da alcuna infor-
magzione globale sulla funzione resto resto né restituisce alcuna sua proprieta locale:
cio ¢ dovuto al fatto che la quantita f(*+1)(¢) dipende da z (perché ¢ dipende da
x) in una maniera difficilmente predicibile.
Tuttavia, essa consente di stimare, in modo sufficientemente preciso per parecchie
applicazioni pratiche, quanto sia grande ’errore assoluto che si commette appros-
simando il numero f(z) col valore p,(x;2p): vediamo come.
Per la (18), l'errore assoluto che si commette approssimando f(x) con p,(z;zg) &
dato da:
1
£() = pu(sa)] = Ira(es w0l = = [0+ 6)

|z — D

se la derivata f(™*1) si mantiene limitata nell'intervallo di estremi z ed zo (cosa
che certamente accade quando f(**+1) & continua), detto M, 1 un maggiorante di
| D] tra z ed xq risulta:

Mn+1
|f(x) = pp(x;20)| < et 1)l |z — o[}

e tale disuguaglianza asserisce che l’errore assoluto non supera una certa soglia
dipendente unicamente da n.

Gli esempi che seguono illustrano dei casi d’interesse pratico in cui si applica una
stima del tipo precedente. ¢

Esempio 1: Consideriamo la funzione esponenziale f(x) := e” e usiamo il polino-
mio di Taylor per trovare un valore approssimato di e = f(1).
Chiaramente f ¢ indefinitamente derivabile in R, cosicché le derivate di f sono tutte
continue in R ed ha senso considerare il polinomio di Taylor di f centrato in o =0
per ogni ordine n € N.
Dato che f("(z) = e” identicamente in R, risulta f(™(z) = € = 1 e percio il
polinomio di Taylor di f d’ordine n centrato in 0 é:

pn(x;O)zl—kx—i—%xQ—i—é 1:3—1—-—1—%35”
e la formula di Taylor col resto nella forma di Lagrange per f in x = 1 si scrive:

F(1) = pa(1;0) + FOrIE (1—0)m !

(n+1)!
ossia:
1 1 1 1
T T T T SN
e=1+ +2+6++n!+(n+1)!e

Zk' n+1 ot

Dato che I'esponenziale & positiva e strettamente crescente, nell’intervallo di estremi
0 ed 1, cioé in [0, 1], la derivata f(»*+1) si mantiene limitata superiormente da e' = e;
quindi si puo prendere M, 1 = 3 e stimare l’errore assoluto di approssimazione nel
modo che segue:

€= Z k!

n+1)
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Conseguentemente, ’errore assoluto di approssimazione non eccede la quantita

_3
(n4+1)!"

Dato che la successione di termine generale 3/(n + 1)! ¢ decrescente ed infinitesima
per n — oo, é chiaro che 'approssimazione fornita dal polinomio di Taylor migliora
via via che si prendono ordini sempre maggiori.
Ad esempio, se si vuole un’approssimazione di e con un errore assoluto minore di
103, allora basta prendere il polinomio di Taylor d’ordine uguale al piil piccolo
numero naturale che soddisfa la disuguaglianza:

——<107? & 1)! > 3000 ;
1) < (n+1)!> ;
con lausilio di un calcolatore si vede che basta scegliere n = 6, poiché 6! = 720 e
7! = 5040, dunque:

1 1 1 1 1957

1
Rl+l4+ -+ —+ == =271 .
© * +2+6+24+120+720 720 71806

Questo ¢ il metodo usato dal Eulero per ottenere ottime approssimazioni di e.

Esempio 2: Se vogliamo valutare in maniera approssimata le quantita cos1 e sin 1,
possiamo seguire un procedimento analogo al precedente.

Infatti, dato che entrambe le funzioni cos e sin sono indefinitamente derivabili in R,
possiamo scrivere i loro polinomi di Taylor centrati in 0 d’ordine qualsiasi n: essi
sono, rispettivamente:

1 1 1
/ 0)=1-= 2 4 6 —1)" 2n
Pn(@;0) 2T T Tt o ) g

1 1 1 1
Dp0) = 7 — = 23 4~ 2P — AT (—1)n D) on—1
Po(@i0) =@ =G et o5 @ m g & F e F DT g Ty

Conseguentemente, la formula di Taylor col resto nella forma di Lagrange, rispet-
tivamente, d’ordine 2n e 2n — 1 calcolata in & = 1 fornisce:

111 1 (=1 sing’
=1 —f o — e (=1)"
o8 * ot e T e,
) 1 (—1)"sin&”
1=1-= - 4.
S 6 " 120 5040 T 1)l T (@)

e sfruttando la limitatezza del seno otteniamo le stime:

1 1 1

4 (=1)( D)

(19) |cos1 —p),(1;0)] < @n+ 1)
. 1/ 1
(20) |sin1 — py,(1;0)] < (2n)

Le (19) e (20) implicano che per ottenere un’approssimazione di cos 1 e sin 1 a meno
di 1073 basta prendere n uguale al piti piccolo naturale tale che:

cio¢, rispettivamente, n’ = 3 ed n” = 4. Dunque:

1 1 1 389
COSl~1*§+ﬂ*%f%NO540278

11 1 4241
mlmle—-t+— ——— =222 _ (841468 .
st 6 T 120 5040  5oq0 054468 ©
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Un’espressione del resto analoga alla forma di Lagrange é la cosiddetta forma di
Cauchy. Nelle stesse ipotesi richiamate pit sopra, si pud dimostrare (cfr. | ,
Esercizio 40]) che esiste un punto 7 nell’intervallo di estremi x ed xg tale che:

£(&) = pals zo) + — ST (0= )" (&= 20)
quindi:
(21) a(520) = = [0) (@ =) (= 20).

Piu in generale, & possibile mettere il resto in una forma “intermedia’ tra quella di
Lagrange (in cui compare solo una potenza di z — zg) e quella di Cauchy (in cui
compare anche una potenza di x — 7, con 7 appartenente all’intervallo di estremi
x ed xg); tale forma & la cosiddetta forma di Schiomilch. Si pud dimostrare (cfr.

[ , Esercizio 40]) che, nelle stesse ipotesi gia richiamate, per ogni m € N esiste
almeno un numero ¥ nell’intervallo d’estremi x ed z( tale che:

1 _
(22) u30) = —— [UD(@) (2= )" (@ — o)™

Osservazione 19: Prendendo m =1 ed m = n + 1 dalla forma di Schlémilch (22)
si ricavano rispettivamente la forma di Cauchy (21) e quella di Lagrange (18). ¢

3. FUNZIONI CON DERIVATA n-ESIMA NULLA

E noto che il Teorema di Lagrange consente di stabilire che le funzioni costanti
in un intervallo I sono le uniche funzioni derivabili aventi derivata identicamente
nulla in 1.

Dato che le funzioni costanti sono polinomi di grado al pit uguale a 0, il risultato
appena ricordato puo essere riformulato dicendo che i polinomi di grado < 0 sono
le uniche funzioni aventi derivata prima identicamente nulla in un intervallo.
Consideriamo allora una funzione polinomiale di grado superiore, ad esempio il
polinomio di primo grado:

p(z) = ap + a1z
(con ay # 0), definita in un intervallo I non banale. Evidentemente p'(z) = a; e
p’'(z) = 0 identicamente nell’interno di I; pertanto i polinomi di grado < 1 hanno
derivata seconda identicamente nulla all’interno di I.
Analogamente, consideriamo la funzione polinomiale di secondo grado:

p(z) == ag + a1z + asa?

(con ag # 0), definita nel solito intervallo I. Abbiamo p'(z) = a1 + 2aqz, p’(z) =
2as e finalmente p”’(x) = 0 ovunque nell’interno di I; conseguentemente, i polinomi
di grado < 2 hanno derivata terza identicamente nulla dentro I.
Non ¢ difficile provare, ed & lasciato come esercizio per il lettore, che una funzione
polinomiale di grado n — 1:

p(x) =ao + a1z + a2z’ + - + ap_02™ 2 + ap_12" !
(con a,—1 # 0) ha derivata n-esima identicamente nulla nell’interno di I.
La formula di Taylor con il resto di Lagrange del TEOREMA 2 consente di invertire
tale risultato nella maniera che segue:

PROPOSIZIONE 9

Siano I un intervallo non banale ed f : I — R una funzione continua in I e
derivabile n volte nell’interno di I.

Se f(m) (x) = 0 per ogni x interno ad I, allora f ¢ un polinomio di grado < n — 1.
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Dimostrazione. Le ipotesi poste su f assicurano che, fissato arbitrariamente g
internamente ad I, é possibile scrivere la formula di Taylor d’ordine n — 1 centrata
in xg col resto nella forma di Lagrange, i.e.:

F(@) = pa-(as00) + o O (= wo)"

valida per ogni « € I con un appropriato £ = &, ., appartenente all'intervallo d’e-
stremi x ed xg.

Dato che f(™ ¢ identicamente nulla internamente ad I, il resto di Lagrange % F(&)-
(x — x0)™ & nullo per ogni z, cosicché abbiamo:

f(@) = pna(z520) -

Conseguentemente, la f coincide col proprio polinomio di Taylor d’ordine n — 1
ovunque internamente ad I e, per continuita, anche negli eventuali punti del bordo
di T; questa é la tesi, perché p(-;xp) & un polinomio di grado < n — 1. O

Osservazione 20: La dimostrazione della Proposizione precedente puo esser fatta
anche in altra maniera, ad esempio per induzione.

Dimostrazione. Se n = 1 la cosa & vera per il Teorema di Caratteriz-
zazione delle Funzioni a Derivata Nulla richiamato ad inizio paragrafo.
Questa é una buona base per I'induzione.
Supponiamo allora che la Proposizione sia vera per n e dimostriamo che
essa vale anche per n 4 1. Consideriamo una funzione f continua in I e
derivabile n+1 volte dentro I avente derivata n+ 1-esima identicamente
nulla in 1.
La funzione ¢ := f’ & una funzione continua e derivabile n volte nell’in-
terno di I, la cui derivata n-esima é:

gy = 4y ey

P @) = < (@) = [ (@) =0

per ogni = interno ad I. Per l'ipotesi induttiva, ¢ € un polinomio di
grado < n — 1 e dunque esistono n costanti bg, b1, ...b,—1 tali che:

p@)=bo+biz+---+ b_1z" L.
Detta ® una primitiva di ¢ (che determineremo pit avanti), si ha:

L [F@) - o)) = £/ @)~ o) =0

dunque f — ® ¢ una funzione costante in I per il Teorema di Caratteriz-
zazione; detta aop tale costante, abbiamo:

f(@) = ao + &(x)

ovunque dentro I.
Notato che una primitiva di ¢ ¢ la funzione:

bn—l n
T
n

@(m):box+%x2+~--+

(basta derivare @ per verificare la correttezza dell’affermazione), possia-
mo dunque scrivere:

f(w):a0+a1$+a2x2+...+anmn7

bp_1

con ai; = by, az = %1, ey A = , per ogni punto x interno ad I.

Ma tale uguaglianza si conserva, per la continuita dei suoi due membri,
anche nei punti del bordo di I; dunque f é un polinomio di grado < n
in I e cio conclude la dimostrazione per induzione. O
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Osservazione 21: Notiamo esplicitamente che il grado di f & proprio n—1 se e solo
se esiste almeno un punto o interno ad I nel quale la derivata f("~1) assume valore
non nullo. Infatti, in tal caso, il polinomio di Taylor p,_1(-;x¢) ha il coefficiente
della potenza di grado massimo uguale a (nil)!f(”_l)(xo) # 0. ¢

Quanto ora acquisito si puo riassumere nel seguente:

TEOREMA 3 (Caratterizzazione delle Funzioni con Derivata n-esima Nulla in un
Intervallo)

Siano I un intervallo non banale ed f: I — R una funzione continua in I.

La f & un polinomio di grado < n — 1 se e solo se essa é derivabile almeno n volte
dentro I ed ha derivata n-esima identicamente nulla.

In particolare f & un polinomio di grado = n—1 se e solo se esiste almeno un punto
interno ad I in cui {1 assume valore non nullo.

In altri termini, il Teorema appena enunciato afferma che i polinomi sono le
uniche funzioni che hanno derivate di ordine “elevato” identicamente nulle.
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