TEOREMI SUI LIMITI DI FUNZIONI COME CONSEGUENZA
DEL TEOREMA FONDAMENTALE SULLA REGOLARITA

G. DI MEGLIO

INTRODUZIONE

Il seguente risultato:

TEOREMA 1 (Teorema Fondamentale sulla Regolarita in un Punto)
Siano X C R non vuoto, f: X - R, zy € R un punto di accumulazione per X ed
leR.
Si ha »Lhril f(x) =1 se e solo se per ogni successione (x,) C X — {xo} e tale che

sl
Tp — To Tisulta lim f(x,) =1.

n—oo

noto anche come Teorema Ponte (la cui dimostrazione ¢ stata data in aula) ¢ fon-
damentale sotto svariati aspetti.
Innanzitutto, esso consente di riconoscere che 'operazione di passaggio al limite
rispetto alla variabile “continua” x ¢ completamente caratterizzato dal passaggio al
limite rispetto alla variabile “discreta” n (il quale & teoricamente pit semplice da
definire).
In seconda battuta, esso consente di “trasferire” ai limiti di funzioni i risultati gia
provati per i limiti di successioni e, viceversa, di “trasferire” ai limiti di successioni
alcuni risultati importanti della teoria del Calcolo che coinvolgono i limiti con fun-
zioni elementari.
Infine, il Teorema fornisce un criterio per dimostrare la non esistenza del limite per
funzioni (elementari e non) ed, in tale ottica, gioca un ruolo tanto importante per le
funzioni reali quanto quello del Teorema sulle Successioni Estratte per le successioni.

In questi fogli vedremo quali risultati circa i limiti di funzioni € possibile dimostrare
usando massicciamente il Teorema 1 ed quanto gia provato per le successioni.
Inoltre, useremo il Teorema Fondamentale per dimostrare che alcune funzioni ele-
mentari non sono regolari.

1. TEOREMI SUI LIMITI

Innanzitutto, proviamo il:

TEOREMA 2 (Unicita del Limite)
Se una funzione f ha limite per x che tende ad xg, allora tale limite é unico.

Dimostrazione. Per assurdo, supponiamo che f abbia due limiti distinti per x che
tende ad g, cioé che esistano [ # A € R tali che:
lim f(z)=1 e lim f(z)=X.

T—xT0 T—x0

Date: 28 dicembre 2017.



2 G. DI MEGLIO

Per il Teorema Fondamentale, fissata una successione (x,,) € X — {xo} tale che
X, — g, la successione numerica di termine generale f(z,) ha da avere:

lim f(z,) =1 e lim f(z,)=X;

ma cio é assurdo, poiché la successione ( f (xn)> non puo avere due limiti distinti.
O

Un altro risultato importante che puo essere “trasferito” dalle successioni alle
funzioni attraverso il Teorema Fondamentale é il:

TEOREMA 3 (della Permanenza del Segno)
Siano X C R non vuoto, xg un punto di accumulazione per X ed f: X — R una
funzione regolare in xy con lim f(x)=1€R.

r—Xo

Se l >0 [risp. 1 < 0/, allora esiste un intorno I € I(xo)* tale che:
(1) Vee XNI—{xo}, f(z)>0 [risp. f(z) <0/.

La dimostrazione che proponiamo si basa sull’idea (gia usata per la dimostrazione
del Teorema Fondamentale) di sfruttare particolari intorni del p.d.acc. z¢ per
costruire una successione x,, con opportune proprieta.

Dimostrazione. Facciamo la dimostrazione nel caso [ < 0, analogamente ragionan-
dosi nell’altro caso.

Per assurdo, supponiamo che non esista alcun intorno di zy soddisfacente la (1) e
questo equivale a dire che:

VIeTI(xg), IreXNI—{xo}: flz)>0.

Da tale ipotesi segue che per ognuno degli intorni di z del tipo:
1 1

In Z::|.7,‘0—,J}0—|-|: )
n n

cioé per ogni numero n € N, é possibile determinare un z,, € X NI, —{z¢} in modo
che:

f(zn) > 0;
osserviamo che la successione (x,,) cosl costruita é tale che:
T, € X
Tn 7& To

1 1
Tog— —<Tp <o+ — = Tp — ITh
n n

(I'ultima implicazione valida per il Teorema dei Carabinieri per Successioni); con-
seguentemente, per il Teorema Fondamentale, la successione di termine generale
f(x,) ha limite uguale ad .

Dato che f(z,) > 0 per ogni indice n, il Teorema Inverso della Permanenza del
Segno per Successioni implica [ > 0; ma cidé & assurdo, in quanto per ipotesi
risulta [ < 0. O

Osservazione 1: Come gia osservato nel caso delle successioni, 'implicazione in-
versa in generale non vale; in altre parole, non é detto che una funzione positiva
(o negativa) intorno ad un punto di accumulazione del suo dominio ed ivi regolare
abbia limite positivo (o negativo).

1Qui e nel seguito, il simbolo Z(zg) denota I'insieme di tutti gli intorni aperti del punto zo.
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Basti pensare alla funzione f :]1,4+o0o[— R definita ponendo f(x) := 1/x: tale fun-
zione é positiva ovunque nel suo insieme di definizione, che & un intorno di +o0, e
perd ha limite nullo per x che tende a +oo. ¢

Tuttavia, come nel caso delle successioni, indebolendo le disuguaglianze é possi-
bile dimostrare il:

TEOREMA 4 (Inverso della Permanenza del Segno)
Siano X C R non vuoto, f: X — R ed x¢ un punto di accumulazione per X.
Se esiste un intorno I € I(xq) tale che:

(2) Vee XNI—{xo}, f(z)>0

e se lim f(z)=1¢€R, allora risulta | > 0.

T—XT0

Dimostrazione. Fissiamo una successione (z,,) C X — {z¢} tale che x,, — zo.
Per il Teorema Fondamentale, la successione di termine generale f(z,) & regolare
ed ha lim f(z,) =1

n—oo
Dato che z,, — z(, per definizione di limite, in corrispondenza dell’intorno I di xg
in cui & soddisfatta la (2) ¢ possibile determinare un v € R tale che:

VvneN, n>v = z,€1,
cosicché dalla (2) segue che:

VneN, n>v = f(z,) >0;

conseguentemente, i termini di ( f (xn)) corrispondenti ad indici “sufficientemente

grandi” sono tutti > 0 ed il Teorema Inverso della Permanenza del Segno per
Successioni implica:

lim f(z,)=1>0,

n—oo

come volevamo. O
Inoltre, vale il seguente:

TEOREMA 5 (Limitatezza Locale delle Funzioni Convergenti)

Siano X C R non vuoto, oy un punto di accumulazione per X ed f: X — R.

Se f & convergente in xq, allora esiste un intorno I € I(xg) tale che f & limitata
in X NI —{xo}; in altre parole vale 'implicazione:

lim f(z)=1eR =
3)
= dleZ(xg), IM<MeR: VeeXNI—{x}, m< f(z)<M.

Dimostrazione. Supponiamo, tanto per fissare le idee, che zy € R; negli altri casi,
cambiando cid che va cambiato, si ragiona in maniera del tutto analoga.

Per assurdo, supponiamo che la (3) non sia vera; cio significa che vale la sua
negazione, ossia che:

VIe€ZI(xg), Vm<MeR, Jzy € XNI—{zo}: f(zr) <m oppure f(zx;) > M .

Scegliendo come intorni quelli di semiampiezza 4, := % edm:=1-1<l+1=M,

dalla precedente segue che per ogni n € N ¢é possibile determinare un valore z,, €
XN]zg — 1/n, 20 + 1/n[—{xo} tale che risulti :

f(zn) <1—1oppure f(z,) >1+1.
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D’altra parte, dalla relazione x,, € XN]zg — 1/n, 29 + 1/n[—{x0} segue che (z,) C
X — {zo} ¢ tale che x,, — x¢ (cfr. la dimostrazione del TEOREMA 3), dunque per
il Teorema Fondamentale risulta:

lim f(z,)=1.

n—oo
Ma cio é assurdo, poiché in corrispondenza di € = 1 é possibile determinare v € R
tale che per ogni n € N risulti:

n>v = 1-1<f(z,) <l+1,

in palese contrasto con quanto trovato in precedenza. U

Altri teoremi che si dimostrano usando il Teorema Fondamentale sono i risultati
di confronto, cioé:

TEOREMA 6 (del Confronto)
Siano X C R non vuoto, oy un punto di accumulazione per X ed f,g: X — R.
Se esiste un intorno I € I(xq) tale che:

(4) Vee XNI—{xo}, f(z)<g(z),

allora valgono le sequenti implicazioni:

i. lim f(z) =400 = lim g(x) = 4o0;

T—xo T—T0
. lim g(x)=-0c0 = lim f(z) = —o0.
Tr—x0 T—To

Dimostrazione. Dimostriamo la 4, analogamente ragionandosi per la .
Fissiamo arbitrariamente una successione (z,) C X — {zo} tale che z,, — x.
Per il Teorema Fondamentale la successione di termine generale f(z,) ¢ positiva-
mente divergente, cioé ha:
lim f(z,)=4o00.

n—oo
Dato che z,, — x¢, in corrispondenza dell'intorno I di z in cui é soddisfatta la (4)
é possibile determinare un v € R in guisa che:

VvneN, n>v = z,€1,
cosicché dalla (4) segue che:
VneN, n>v = f(z,) <g(z,);

quindi, per il Teorema del Confronto per le Successioni, la successione di termine
generale g(z,) & positivamente divergente, cioé ha:

lim g(x,) =400 .

n—
Visto che la (z,,) era scelta in maniera del tutto arbitraria tra quelle in X — {z¢}
che tendono ad x¢, possiamo concludere che per ogni successione (x,,) C X appros-
simante z( vale la relazione lim g(z,) = +00; e cio, per il Teorema Fondamentale,
n—oo
consente di affermare che:
lim g(z) = +o0,

T—T0

come volevamo. O

TEOREMA 7 (dei Carabinieri)
Siano x C R non vuoto, xg un punto di accumulazione per X ed f,g,h: X — R.
Se esiste un intorno I € I(xq) tale che:

(5) Vee X NI —{xg}, f(z)<g(z)<h(x),
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e se lim f(z)= lim h(z) =1€R, allora g & regolare in xy ed ha lo stesso limite
T—To rT—Xo

di f ed h, cioé risulta:

lim g(x)=1.

r—Xo
Dimostrazione. Fissiamo arbitrariamente una successione (x,,) C X approssimante
Zo-
Per il Teorema Fondamentale le successioni di termini generali f(x,) e h(z,) sono
regolari ed hanno entrambe limite [, cioé:

lim f(z,) =1 e lim h(z,)=1.

n—o0 n—o0

Dato che x,, — x¢, in corrispondenza dell'intorno I di z in cui & soddisfatta la (5)
possiamo individuare un v € R tale che:

VneN, n>v = f(z,) < g(zn) < h(zy) ;

dunque, per il Teorema dei Carabinieri per Successioni, la successione di termine
generale g(z,) & regolare ed ha:

lim g(x,) =1.

n—oo
Visto che la (x,,) era scelta in maniera del tutto arbitraria tra quelle approssimanti
Zo, possiamo concludere che per ogni successione (z,) C X — {xo} con z,, — x¢
vale la relazione nlirr;o g(zn) = I; e cio, per il Teorema Fondamentale, consente di

affermare che:
lim g(x)=1.

r—Xo

2. OPERAZIONI COI LIMITI

Oltre ai teoremi sui limiti, il Teorema Fondamentale consente di “trasferire” ai
limiti di funzioni i risultati sulle operazioni gia dimostrati per le successioni.
Enunciamo il risultato in maniera concisa, lasciando allo studioso lettore il compito
di completare ’enunciato (eventualmente consultando il libro di testo):

TEOREMA 8 (Operazioni coi Limiti)

Siano X C R non vuoto, xg un punto di accumulazione per X ed f,g: X — R.
Se f e g sono regolari in xo e se i secondi membri non si presentano in forma
indeterminata?, valgono le sequenti uguaglianze:

(6) nggo flz)x£g(x) = }Ln;lo flz)+ lli)IIJ,lo g(x),
(7) Jim f(z) - g(a) = lim f(x)- lim g(x).
Inoltre, se esiste un intorno I € I(xg) tale che:

(8) Vee XNI—{xg}, glz)#£0,
allora:

. flx) | lim,_g, f(2)
(9) :vligvlo g(x) n hmx—mo g(l‘) .

La tecnica dimostrativa ¢ del tutto analoga a quella presentata nel paragrafo
precedente; pertanto forniamo unicamente la dimostrazione della (9).

2Per convenienza del lettore ricordiamo che si chiamano forme indeterminate quelle operazioni
non consentite in R, cioé +oo + (Foo), oo — (£oo) (denotate usualmente coll’unico simbolo
00 — 00), 0+ oo (denotate con I'unico simbolo 0+ c0), 0/0 e (£o0)/(+oo) (denotate col simbolo
00/00)
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Dimostrazione della (9). Fissiamo arbitrariamente una successione (z,) C X —
{zo} tale che z, — xo.
Dal Teorema Fondamentale segue che le successioni di temini generali f(z,,) e g(x,,)
sono regolari ed hanno, rispettivamente, limite coincidente con quello di f e con
quello di g in xg, cioé che:

lim f(z,)=1 e lim g(z,) =A.

n—0oo n—oo

Dato che x,, — x¢, in corrispondenza dell'intorno I di z in cui & soddisfatta la (8)
é possibile determinare un v € R in guisa che:

VvneN, n>v = x,€1,
dunque dalla stessa (8) segue immediatamente che:
VneN, n>v = g(z,) #0.

Conseguentemente, la successione di termine generale g(x,) ha termini non nulli
per n “sufficientemente grande” ed ha senso considerare la successione rapporto
f(xn)/g(xy) almeno per indici “grandi”.

Per il Teorema sul Limite del Rapporto per Successioni risulta:

. f(wn)  lmy, oo f(20)
nlLH;o g(q;n) a lim,, g(fvn)

poiché per ipotesi il rapporto I/ non si presenta in forma indeterminata (i.e., non

sithanel=0=Anél==2o00e\==100).

Visto che la (x,,) era scelta in maniera del tutto arbitraria tra quelle approssimanti

Zo, possiamo concludere che per ogni successione (z,,) C X approssimante xy sussi-
. . [(zn) _ limy oo f(xn)

ste la relazione lim

n—o0 g(xn) B lim, o g(2n)
consente di affermare la validita di (9). O

; e cio, per il Teorema Fondamentale,

Osservazione 2: Si possono estendere ai limiti di funzione anche tutte le possibili
generalizzazioni dei teoremi sui limiti di successione presentati come esercizio in

[DM]

Le modifiche sono del tutto ovvie ed ¢ lasciato allo studioso lettore il compito di
enunciare e dimostrare tali risultati. ¢

3. SULLA IRREGOLARITA DI ALCUNE FUNZIONI ELEMENTARI

In questo paragrafo vogliamo fornire alcuni esempi che chiariscano come impiega-
re il Teorema Fondamentale per stabilire che alcune funzioni elementari non hanno
limite.

Esempio 1: La funzione sin non ha limite né per z — 400 né per x — —oo.

Infatti, considerate le due successioni di termini generali:

Ty = 2NnT

7r
Yn ::§+2n7r,

si trova:
sinx, =0
siny, =1;
dato che (x,,) ed (y,) sono successioni approssimanti +oo e che:

lim sinx, =0# 1= lim siny, ,
n—oo n—oo
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la funzione sin non pud avere limite in +oo.
La dimostrazione dell’analogo asserto circa la non regolarita in —oo ¢é lasciata al
lettore. &

Osservazione 3: Analogamente si dimostra che nemmeno la funzione cos ha limite
per x — +oo. ¢

Esempio 2: La funzione tan non é regolare in +oo.
Infatti, considerate le successioni di termini generali:

Ty (=N

™
Yp = — +nm,

4
si trova:
tanx, =0
tany, =1;

dato che (x,) ed (y,) sono successioni approssimanti +oo e che:

lim tanz, =0# 1= lim tany, ,
n—oo n—oo

la funzione tan non puo avere limite in +oc.
La dimostrazione dell’analogo asserto circa la non regolarita in —oo ¢é lasciata al
lettore. &

Esempio 3: Ancora pil interessante ¢ il fatto che la funzione tan non é regolare in
™

5 -
Consideriamo le successioni di termine generale:
x, := arctann e Yp 1= T — arctann ;

evidentemente abbiamo:

T
O<:L'n<§<yn<7r

ed anche:

. Q .
lim z, = - = lim y,,
n—oo 2 n—oo

cosicché entrambe (z,,) ed (y,) sono successioni in Dom tan convergenti verso m/2;
d’altra parte, abbiamo:

tanz, = tan(arctann) = n

tany, = tan(m — arctann)

= —tan(arctann) = —n ,
dunque:
lim tanz, = 400 # —oco = lim tany,
n—oo n—oo
quindi tan non pud essere regolare in /2. O

Osservazione 4: Dalla periodicita della funzione tan segue che essa non ¢é regolare
in nessuno dei punti del tipo § + k7 con k € Z. ¢

Esempio 4: La funzione f: R — {0} — R definita ponendo:

f(x) := cos %
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non é regolare in 0.
Infatti, dato che le equazioni COS% =1 e cos4

x

= —1 hanno infinite soluzioni del

tipo:
P (keZ—{0})
2km
ed
1
T T 2k (keZ),
le due successioni di termini generali:
1
Tn =5
. 1
Y = T+ 2nm

approssimano entrambe lo 0 e sono tali che:

lim f(z,)= lim cos2nm =1# —1= lim cos(m + 2n7) = lim f(yn),
n—0oo n—oo n—oo n—oo

cosicché f non puo essere regolare in 0. &

Osservazione 5: Con la stessa tecnica usata nell’esempio precedente, si pud dimo-
strare che comunque si scelga o € [—1, 1] esistono una successione (mn(a)) a termini
positivi ed una successione (yn (a)) a termini negativi, entrambe infinitesime e tali
che:

1 1

zy () Yn ()

per ogni indice n € N.

Per rendersi conto di cio basta risolvere, limitatamente ai valori positivi ed ai valori

negativi di z, I’equazione cos% =a. ¢

Esempio 5: La funzione f : R — {0} — R definita ponendo f(x) := < cos L non ¢
regolare in 0.

Infatti, scelto a € [—1,1], per 'Osservazione precedente esiste una successione
(xn(a)) a termini positivi, infinitesima e tale che cos %@4) = « per ogni indice n;

ma allora risulta:

f(zn(@) = ! cos I __ o«

T () Ty () Ty ()

e dunque:
400 ,sel0<a<l
lim f(zn(a)) =140 ,se =0
= —o00 ,se —1<a<0

Quanto ora trovato implica che & sempre possibile determinare due successioni di
R — {0} che tendono a 0 e lungo le quali f esibisce comportamenti diversi al limite;
pertanto, f non puo essere regolare in 0. &

Osservazione 6: A voler essere precisi, il ragionamento appena concluso mostra

che il limite destro:
1 1
lim f(z)= lim — cos—
r—0Tt f( ) r—0t X x
non esiste, in quanto le successioni usate per testare la validita del Teorema Fon-

damentale sono fatte da numeri positivi.
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Non ¢ difficile rendersi conto del fatto che non esiste nemmeno il limite sinistro:

A )

. 1
lim — cos—
rx—0— T xr

infatti, cio si dimostra in maniera del tutto analoga, ma sfruttando successioni del

tipo (yn(c)) che sono a termini negativi.

Osservazione 7: Entrambe le funzioni di cui agli Esempi 4 & 5 oscillano selvag-
giamente intorno a 0; tuttavia, la prima lo fa mantenendosi limitata (tra —1 ed 1)
intorno a 0, mentre la seconda assume intorno a 0 tutti i valori reali possibili.

Esempio 6: Consideriamo la funzione f : R—{0} — R definita ponendo f(z) :=e
e proviamo che essa non é regolare in 0.

Le successioni di termine generale:

1
o

Ty :

approssimano entrambe 0 e sono tali che:

pertanto f non puo avere limite per x — 0.

[DM]| Di Meglio, G. (2017), Qualche Esercizio sui Limiti di Successione.

lim f(z,) = lime™ = 400

lim f(y,) = lime™
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