
TEOREMI SUI LIMITI DI FUNZIONI COME CONSEGUENZA
DEL TEOREMA FONDAMENTALE SULLA REGOLARITÀ

G. DI MEGLIO

Introduzione

Il seguente risultato:

Teorema 1 (Teorema Fondamentale sulla Regolarità in un Punto)
Siano X ⊆ R non vuoto, f : X → R, x0 ∈ R̂ un punto di accumulazione per X ed
l ∈ R̂.
Si ha lim

x→x0
f(x) = l se e solo se per ogni successione (xn) ⊆ X − {x0} e tale che

xn → x0 risulta lim
n→∞

f(xn) = l.

noto anche come Teorema Ponte (la cui dimostrazione è stata data in aula) è fon-
damentale sotto svariati aspetti.
Innanzitutto, esso consente di riconoscere che l’operazione di passaggio al limite
rispetto alla variabile “continua” x è completamente caratterizzato dal passaggio al
limite rispetto alla variabile “discreta” n (il quale è teoricamente più semplice da
definire).
In seconda battuta, esso consente di “trasferire” ai limiti di funzioni i risultati già
provati per i limiti di successioni e, viceversa, di “trasferire” ai limiti di successioni
alcuni risultati importanti della teoria del Calcolo che coinvolgono i limiti con fun-
zioni elementari.
Infine, il Teorema fornisce un criterio per dimostrare la non esistenza del limite per
funzioni (elementari e non) ed, in tale ottica, gioca un ruolo tanto importante per le
funzioni reali quanto quello del Teorema sulle Successioni Estratte per le successioni.

In questi fogli vedremo quali risultati circa i limiti di funzioni è possibile dimostrare
usando massicciamente il Teorema 1 ed quanto già provato per le successioni.
Inoltre, useremo il Teorema Fondamentale per dimostrare che alcune funzioni ele-
mentari non sono regolari.

1. Teoremi sui Limiti

Innanzitutto, proviamo il:

Teorema 2 (Unicità del Limite)
Se una funzione f ha limite per x che tende ad x0, allora tale limite è unico.

Dimostrazione. Per assurdo, supponiamo che f abbia due limiti distinti per x che
tende ad x0, cioè che esistano l 6= λ ∈ R̂ tali che:

lim
x→x0

f(x) = l e lim
x→x0

f(x) = λ .
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Per il Teorema Fondamentale, fissata una successione (xn) ⊆ X − {x0} tale che
xn → x0, la successione numerica di termine generale f(xn) ha da avere:

lim
n→∞

f(xn) = l e lim
n→∞

f(xn) = λ ;

ma ciò è assurdo, poiché la successione
(
f(xn)

)
non può avere due limiti distinti.

�

Un altro risultato importante che può essere “trasferito” dalle successioni alle
funzioni attraverso il Teorema Fondamentale è il:

Teorema 3 (della Permanenza del Segno)
Siano X ⊆ R non vuoto, x0 un punto di accumulazione per X ed f : X → R una
funzione regolare in x0 con lim

x→x0
f(x) = l ∈ R̂.

Se l > 0 [risp. l < 0], allora esiste un intorno I ∈ I(x0)1 tale che:

(1) ∀x ∈ X ∩ I − {x0}, f(x) > 0 [risp. f(x) < 0] .

La dimostrazione che proponiamo si basa sull’idea (già usata per la dimostrazione
del Teorema Fondamentale) di sfruttare particolari intorni del p.d.acc. x0 per
costruire una successione xn con opportune proprietà.

Dimostrazione. Facciamo la dimostrazione nel caso l < 0, analogamente ragionan-
dosi nell’altro caso.
Per assurdo, supponiamo che non esista alcun intorno di x0 soddisfacente la (1) e
questo equivale a dire che:

∀I ∈ I(x0), ∃x ∈ X ∩ I − {x0} : f(x) ≥ 0 .

Da tale ipotesi segue che per ognuno degli intorni di x0 del tipo:

In :=
]
x0 −

1
n
, x0 +

1
n

[
,

cioè per ogni numero n ∈ N, è possibile determinare un xn ∈ X∩In−{x0} in modo
che:

f(xn) ≥ 0 ;
osserviamo che la successione (xn) così costruita è tale che:

xn ∈ X
xn 6= x0

x0 −
1
n
< xn < x0 +

1
n
⇒ xn → xn

(l’ultima implicazione valida per il Teorema dei Carabinieri per Successioni); con-
seguentemente, per il Teorema Fondamentale, la successione di termine generale
f(xn) ha limite uguale ad l.
Dato che f(xn) > 0 per ogni indice n, il Teorema Inverso della Permanenza del
Segno per Successioni implica l ≥ 0; ma ciò è assurdo, in quanto per ipotesi
risulta l < 0. �

Osservazione 1: Come già osservato nel caso delle successioni, l’implicazione in-
versa in generale non vale; in altre parole, non è detto che una funzione positiva
(o negativa) intorno ad un punto di accumulazione del suo dominio ed ivi regolare
abbia limite positivo (o negativo).

1Qui e nel seguito, il simbolo I(x0) denota l’insieme di tutti gli intorni aperti del punto x0.
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Basti pensare alla funzione f :]1,+∞[→ R definita ponendo f(x) := 1/x: tale fun-
zione è positiva ovunque nel suo insieme di definizione, che è un intorno di +∞, e
però ha limite nullo per x che tende a +∞. �

Tuttavia, come nel caso delle successioni, indebolendo le disuguaglianze è possi-
bile dimostrare il:

Teorema 4 (Inverso della Permanenza del Segno)
Siano X ⊆ R non vuoto, f : X → R ed x0 un punto di accumulazione per X.
Se esiste un intorno I ∈ I(x0) tale che:

(2) ∀x ∈ X ∩ I − {x0}, f(x) ≥ 0

e se lim
x→x0

f(x) = l ∈ R̂, allora risulta l ≥ 0.

Dimostrazione. Fissiamo una successione (xn) ⊆ X − {x0} tale che xn → x0.
Per il Teorema Fondamentale, la successione di termine generale f(xn) è regolare
ed ha lim

n→∞
f(xn) = l.

Dato che xn → x0, per definizione di limite, in corrispondenza dell’intorno I di x0

in cui è soddisfatta la (2) è possibile determinare un ν ∈ R tale che:

∀n ∈ N, n > ν ⇒ xn ∈ I ,

cosicché dalla (2) segue che:

∀n ∈ N, n > ν ⇒ f(xn) ≥ 0 ;

conseguentemente, i termini di
(
f(xn)

)
corrispondenti ad indici “sufficientemente

grandi” sono tutti ≥ 0 ed il Teorema Inverso della Permanenza del Segno per
Successioni implica:

lim
n→∞

f(xn) = l ≥ 0 ,

come volevamo. �

Inoltre, vale il seguente:

Teorema 5 (Limitatezza Locale delle Funzioni Convergenti)
Siano X ⊆ R non vuoto, x0 un punto di accumulazione per X ed f : X → R.
Se f è convergente in x0, allora esiste un intorno I ∈ I(x0) tale che f è limitata
in X ∩ I − {x0}; in altre parole vale l’implicazione:

lim
x→x0

f(x) = l ∈ R ⇒

⇒ ∃I ∈ I(x0), ∃m ≤M ∈ R : ∀x ∈ X ∩ I − {x0}, m ≤ f(x) ≤M .
(3)

Dimostrazione. Supponiamo, tanto per fissare le idee, che x0 ∈ R; negli altri casi,
cambiando ciò che va cambiato, si ragiona in maniera del tutto analoga.
Per assurdo, supponiamo che la (3) non sia vera; ciò significa che vale la sua
negazione, ossia che:

∀I ∈ I(x0), ∀m ≤M ∈ R, ∃xI ∈ X ∩ I − {x0} : f(xI) < m oppure f(xI) > M .

Scegliendo come intorni quelli di semiampiezza δn := 1
n ed m := l−1 < l+1 =: M ,

dalla precedente segue che per ogni n ∈ N è possibile determinare un valore xn ∈
X∩]x0 − 1/n, x0 + 1/n[−{x0} tale che risulti :

f(xn) < l − 1 oppure f(xn) > l + 1 .
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D’altra parte, dalla relazione xn ∈ X∩]x0 − 1/n, x0 + 1/n[−{x0} segue che (xn) ⊆
X − {x0} è tale che xn → x0 (cfr. la dimostrazione del Teorema 3), dunque per
il Teorema Fondamentale risulta:

lim
n→∞

f(xn) = l .

Ma ciò è assurdo, poiché in corrispondenza di ε = 1 è possibile determinare ν ∈ R
tale che per ogni n ∈ N risulti:

n > ν ⇒ l − 1 < f(xn) < l + 1 ,

in palese contrasto con quanto trovato in precedenza. �

Altri teoremi che si dimostrano usando il Teorema Fondamentale sono i risultati
di confronto, cioè:

Teorema 6 (del Confronto)
Siano X ⊆ R non vuoto, x0 un punto di accumulazione per X ed f, g : X → R.
Se esiste un intorno I ∈ I(x0) tale che:

(4) ∀x ∈ X ∩ I − {x0}, f(x) ≤ g(x) ,
allora valgono le seguenti implicazioni:

i. lim
x→x0

f(x) = +∞ ⇒ lim
x→x0

g(x) = +∞;

ii. lim
x→x0

g(x) = −∞ ⇒ lim
x→x0

f(x) = −∞.

Dimostrazione. Dimostriamo la i, analogamente ragionandosi per la ii.
Fissiamo arbitrariamente una successione (xn) ⊆ X − {x0} tale che xn → x0.
Per il Teorema Fondamentale la successione di termine generale f(xn) è positiva-
mente divergente, cioè ha:

lim
n→∞

f(xn) = +∞ .

Dato che xn → x0, in corrispondenza dell’intorno I di x0 in cui è soddisfatta la (4)
è possibile determinare un ν ∈ R in guisa che:

∀n ∈ N, n > ν ⇒ xn ∈ I ,
cosicché dalla (4) segue che:

∀n ∈ N, n > ν ⇒ f(xn) ≤ g(xn) ;

quindi, per il Teorema del Confronto per le Successioni, la successione di termine
generale g(xn) è positivamente divergente, cioè ha:

lim
n→∞

g(xn) = +∞ .

Visto che la (xn) era scelta in maniera del tutto arbitraria tra quelle in X − {x0}
che tendono ad x0, possiamo concludere che per ogni successione (xn) ⊆ X appros-
simante x0 vale la relazione lim

n→∞
g(xn) = +∞; e ciò, per il Teorema Fondamentale,

consente di affermare che:
lim
x→x0

g(x) = +∞ ,

come volevamo. �

Teorema 7 (dei Carabinieri)
Siano x ⊆ R non vuoto, x0 un punto di accumulazione per X ed f, g, h : X → R.
Se esiste un intorno I ∈ I(x0) tale che:

(5) ∀x ∈ X ∩ I − {x0}, f(x) ≤ g(x) ≤ h(x) ,
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e se lim
x→x0

f(x) = lim
x→x0

h(x) = l ∈ R, allora g è regolare in x0 ed ha lo stesso limite

di f ed h, cioè risulta:
lim
x→x0

g(x) = l .

Dimostrazione. Fissiamo arbitrariamente una successione (xn) ⊆ X approssimante
x0.
Per il Teorema Fondamentale le successioni di termini generali f(xn) e h(xn) sono
regolari ed hanno entrambe limite l, cioè:

lim
n→∞

f(xn) = l e lim
n→∞

h(xn) = l .

Dato che xn → x0, in corrispondenza dell’intorno I di x0 in cui è soddisfatta la (5)
possiamo individuare un ν ∈ R tale che:

∀n ∈ N, n > ν ⇒ f(xn) ≤ g(xn) ≤ h(xn) ;

dunque, per il Teorema dei Carabinieri per Successioni, la successione di termine
generale g(xn) è regolare ed ha:

lim
n→∞

g(xn) = l .

Visto che la (xn) era scelta in maniera del tutto arbitraria tra quelle approssimanti
x0, possiamo concludere che per ogni successione (xn) ⊆ X − {x0} con xn → x0

vale la relazione lim
n→∞

g(xn) = l; e ciò, per il Teorema Fondamentale, consente di
affermare che:

lim
x→x0

g(x) = l .

�

2. Operazioni coi Limiti

Oltre ai teoremi sui limiti, il Teorema Fondamentale consente di “trasferire” ai
limiti di funzioni i risultati sulle operazioni già dimostrati per le successioni.
Enunciamo il risultato in maniera concisa, lasciando allo studioso lettore il compito
di completare l’enunciato (eventualmente consultando il libro di testo):

Teorema 8 (Operazioni coi Limiti)
Siano X ⊆ R non vuoto, x0 un punto di accumulazione per X ed f, g : X → R.
Se f e g sono regolari in x0 e se i secondi membri non si presentano in forma
indeterminata2, valgono le seguenti uguaglianze:

lim
x→x0

f(x)± g(x) = lim
x→x0

f(x)± lim
x→x0

g(x) ,(6)

lim
x→x0

f(x) · g(x) = lim
x→x0

f(x) · lim
x→x0

g(x) .(7)

Inoltre, se esiste un intorno I ∈ I(x0) tale che:

(8) ∀x ∈ X ∩ I − {x0}, g(x) 6= 0 ,

allora:

(9) lim
x→x0

f(x)
g(x)

=
limx→x0 f(x)
limx→x0 g(x)

.

La tecnica dimostrativa è del tutto analoga a quella presentata nel paragrafo
precedente; pertanto forniamo unicamente la dimostrazione della (9).

2Per convenienza del lettore ricordiamo che si chiamano forme indeterminate quelle operazioni
non consentite in R̂, cioè ±∞ + (∓∞), ±∞ − (±∞) (denotate usualmente coll’unico simbolo
∞−∞), 0 · ±∞ (denotate con l’unico simbolo 0 · ∞), 0/0 e (±∞)/(±∞) (denotate col simbolo
∞/∞)
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Dimostrazione della (9). Fissiamo arbitrariamente una successione (xn) ⊆ X −
{x0} tale che xn → x0.
Dal Teorema Fondamentale segue che le successioni di temini generali f(xn) e g(xn)
sono regolari ed hanno, rispettivamente, limite coincidente con quello di f e con
quello di g in x0, cioè che:

lim
n→∞

f(xn) = l e lim
n→∞

g(xn) = λ .

Dato che xn → x0, in corrispondenza dell’intorno I di x0 in cui è soddisfatta la (8)
è possibile determinare un ν ∈ R in guisa che:

∀n ∈ N, n > ν ⇒ xn ∈ I ,

dunque dalla stessa (8) segue immediatamente che:

∀n ∈ N, n > ν ⇒ g(xn) 6= 0 .

Conseguentemente, la successione di termine generale g(xn) ha termini non nulli
per n “sufficientemente grande” ed ha senso considerare la successione rapporto
f(xn)/g(xn) almeno per indici “grandi”.
Per il Teorema sul Limite del Rapporto per Successioni risulta:

lim
n→∞

f(xn)
g(xn)

=
limn→∞ f(xn)
limn→∞ g(xn)

poiché per ipotesi il rapporto l/λ non si presenta in forma indeterminata (i.e., non
si ha né l = 0 = λ né l = ±∞ e λ = ±∞).
Visto che la (xn) era scelta in maniera del tutto arbitraria tra quelle approssimanti
x0, possiamo concludere che per ogni successione (xn) ⊆ X approssimante x0 sussi-

ste la relazione lim
n→∞

f(xn)
g(xn)

=
limn→∞ f(xn)
limn→∞ g(xn)

; e ciò, per il Teorema Fondamentale,

consente di affermare la validità di (9). �

Osservazione 2: Si possono estendere ai limiti di funzione anche tutte le possibili
generalizzazioni dei teoremi sui limiti di successione presentati come esercizio in
[DM].
Le modifiche sono del tutto ovvie ed è lasciato allo studioso lettore il compito di
enunciare e dimostrare tali risultati. �

3. Sulla Irregolarità di Alcune Funzioni Elementari

In questo paragrafo vogliamo fornire alcuni esempi che chiariscano come impiega-
re il Teorema Fondamentale per stabilire che alcune funzioni elementari non hanno
limite.

Esempio 1: La funzione sin non ha limite né per x→ +∞ né per x→ −∞.
Infatti, considerate le due successioni di termini generali:

xn := 2nπ

yn :=
π

2
+ 2nπ ,

si trova:
sinxn = 0
sin yn = 1 ;

dato che (xn) ed (yn) sono successioni approssimanti +∞ e che:

lim
n→∞

sinxn = 0 6= 1 = lim
n→∞

sin yn ,
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la funzione sin non può avere limite in +∞.
La dimostrazione dell’analogo asserto circa la non regolarità in −∞ è lasciata al
lettore. ♦

Osservazione 3: Analogamente si dimostra che nemmeno la funzione cos ha limite
per x→ ±∞. �

Esempio 2: La funzione tan non è regolare in ±∞.
Infatti, considerate le successioni di termini generali:

xn := nπ

yn :=
π

4
+ nπ ,

si trova:
tanxn = 0
tan yn = 1 ;

dato che (xn) ed (yn) sono successioni approssimanti +∞ e che:

lim
n→∞

tanxn = 0 6= 1 = lim
n→∞

tan yn ,

la funzione tan non può avere limite in +∞.
La dimostrazione dell’analogo asserto circa la non regolarità in −∞ è lasciata al
lettore. ♦

Esempio 3: Ancora più interessante è il fatto che la funzione tan non è regolare in
π
2 .
Consideriamo le successioni di termine generale:

xn := arctann e yn := π − arctann ;

evidentemente abbiamo:
0 < xn <

π

2
< yn < π

ed anche:
lim
n→∞

xn =
π

2
= lim
n→∞

yn ,

cosicché entrambe (xn) ed (yn) sono successioni in Dom tan convergenti verso π/2;
d’altra parte, abbiamo:

tanxn = tan(arctann) = n

tan yn = tan(π − arctann)

= − tan(arctann) = −n ,

dunque:
lim
n→∞

tanxn = +∞ 6= −∞ = lim
n→∞

tan yn

quindi tan non può essere regolare in π/2. ♦

Osservazione 4: Dalla periodicità della funzione tan segue che essa non è regolare
in nessuno dei punti del tipo π

2 + kπ con k ∈ Z. �

Esempio 4: La funzione f : R− {0} → R definita ponendo:

f(x) := cos
1
x
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non è regolare in 0.
Infatti, dato che le equazioni cos 1

x = 1 e cos 1
x = −1 hanno infinite soluzioni del

tipo:

x =
1

2kπ
(k ∈ Z− {0})

ed

x =
1

π + 2kπ
(k ∈ Z) ,

le due successioni di termini generali:

xn :=
1

2nπ

yn :=
1

π + 2nπ
approssimano entrambe lo 0 e sono tali che:

lim
n→∞

f(xn) = lim
n→∞

cos 2nπ = 1 6= −1 = lim
n→∞

cos(π + 2nπ) = lim
n→∞

f(yn) ,

cosicché f non può essere regolare in 0. ♦

Osservazione 5: Con la stessa tecnica usata nell’esempio precedente, si può dimo-
strare che comunque si scelga α ∈ [−1, 1] esistono una successione

(
xn(α)

)
a termini

positivi ed una successione
(
yn(α)

)
a termini negativi, entrambe infinitesime e tali

che:

cos
1

xn(α)
= α = cos

1
yn(α)

per ogni indice n ∈ N.
Per rendersi conto di ciò basta risolvere, limitatamente ai valori positivi ed ai valori
negativi di x, l’equazione cos 1

x = α. �

Esempio 5: La funzione f : R − {0} → R definita ponendo f(x) := 1
x cos 1

x non è
regolare in 0.
Infatti, scelto α ∈ [−1, 1], per l’Osservazione precedente esiste una successione(
xn(α)

)
a termini positivi, infinitesima e tale che cos 1

xn(α) = α per ogni indice n;
ma allora risulta:

f
(
xn(α)

)
=

1
xn(α)

cos
1

xn(α)
=

α

xn(α)

e dunque:

lim
n→∞

f
(
xn(α)

)
=


+∞ , se 0 < α ≤ 1
0 , se α = 0
−∞ , se − 1 ≤ α < 0

.

Quanto ora trovato implica che è sempre possibile determinare due successioni di
R−{0} che tendono a 0 e lungo le quali f esibisce comportamenti diversi al limite;
pertanto, f non può essere regolare in 0. ♦

Osservazione 6: A voler essere precisi, il ragionamento appena concluso mostra
che il limite destro:

lim
x→0+

f(x) = lim
x→0+

1
x

cos
1
x

non esiste, in quanto le successioni usate per testare la validità del Teorema Fon-
damentale sono fatte da numeri positivi.
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Non è difficile rendersi conto del fatto che non esiste nemmeno il limite sinistro:

lim
x→0−

f(x) = lim
x→0−

1
x

cos
1
x

:

infatti, ciò si dimostra in maniera del tutto analoga, ma sfruttando successioni del
tipo

(
yn(α)

)
che sono a termini negativi. �

Osservazione 7: Entrambe le funzioni di cui agli Esempi 4 & 5 oscillano selvag-
giamente intorno a 0; tuttavia, la prima lo fa mantenendosi limitata (tra −1 ed 1)
intorno a 0, mentre la seconda assume intorno a 0 tutti i valori reali possibili. �

Esempio 6: Consideriamo la funzione f : R−{0} → R definita ponendo f(x) := e
1
x

e proviamo che essa non è regolare in 0.
Le successioni di termine generale:

xn :=
1
n

e yn := − 1
n

approssimano entrambe 0 e sono tali che:
lim
n
f(xn) = lim

n
en = +∞

lim
n
f(yn) = lim

n
e−n = 0 ;

pertanto f non può avere limite per x→ 0. ♦
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Figura 1. Sally Brown: un esempio da non imitare. . .
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