
SULL’ASSIOMA DI COMPLETEZZA

G. DI MEGLIO

Introduzione

In questi fogli discutiamo due questioni.
La prima è l’equivalenza delle formulazioni dell’Assioma di Completezza date a
lezione e presenti sul testo di riferimento.
La seconda, più fine, riguarda l’esistenza di insiemi numerici che soddisfano gli
assiomi (A.1) – (A.6) ed (O.1) – (O.3) ma sono distinti dal campo reale poiché non
soddisfano l’Assioma di Completezza. In tal modo apparirà chiaramente che gli
assiomi dell’algebra (Gruppo 1) e dell’ordine (Gruppo 2) non bastano da soli ad
individuare R.

1. Formulazioni dell’Assioma di Completezza e loro equivalenza

Come detto a lezione, vale in R lo:

Assioma di Completezza
L’insieme dei maggioranti di ogni sottoinsieme X ⊆ R non vuoto e limitato supe-
riormente ha minimo,

che abbiamo denotato con il simbolo (C); abbiamo altresì accennato, senza scendere
nel dettaglio, al fatto che tale assioma si può formulare equivalentemente come
segue:

Assioma di Completezza (Versione Duale)
L’insieme dei minoranti di ogni sottoinsieme X ⊆ R non vuoto e limitato inferior-
mente ha massimo

denotando quest’ultima affermazione con (C′). Sul testo [MS] sono presenti due
ulteriori versioni del medesimo assioma, cioè:

Assioma di Completezza (Esistenza di Numeri Separatori)
Se A,B ⊆ R sono sottoinsiemi non vuoti e separati, ossia tali che:

∀a ∈ A, ∀b ∈ B, a ≤ b ,
esiste almeno un c ∈ R tale che:

∀a ∈ A, ∀b ∈ B, a ≤ c ≤ b .1

Assioma di Completezza (Proprietà di Dedekind2)
Se A,B ⊆ R sono sottoinsiemi non vuoti, separati e tali che:

A ∩B = ∅ e A ∪B = R , 3

Date: 28 dicembre 2017.
1Un tale elemento c è detto elemento separatore di A e B.
2Julius Wilhelm Richard Dedekind (1831 - 1916), matematico tedesco.
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esiste un unico numero c ∈ R tale che:

∀a ∈ A, ∀b ∈ B, a ≤ c ≤ b .

Osservazione 1: Tutte le versioni dell’Assioma di Completezza fin qui enun-
ciate possono essere interpretate geometricamente sfruttando la solita rappresenta-
zione dei reali sulla retta numerica.
Ad esempio, la (C) equivale al fatto che la semiretta destra che contiene tutti i mag-
gioranti di un dato insieme limitato superiormente ha un punto d’origine sull’asse
reale.
La Proprietà di Dedekind, invece, equivale a dire che spezzando l’asse reale in due
semirette con verso opposto, esse hanno l’origine in comune in un punto dell’asse.�

Nonostante le differenze formali, le quattro formulazioni dell’Assioma di Com-
pletezza sono sostanzialmente equivalenti per la costruzione del campo reale, poi-
ché ognuna di esse vale se e solo se vale una qualsiasi delle altre. In altri termini,
sussiste il seguente risultato:

Teorema 1
Le formulazioni dell’Assioma di Completezza sono equivalenti.

Dimostrazione. La (C) implica la (C′). Si veda [DM, Oss. 5].

La (C′) implica l’Esistenza di Numeri Separatori. Siano A,B ⊆ R non vuoti e
separati, con B insieme dei maggioranti. Dato che B è limitato inferiormente ed
evidentemente risulta A ⊆ L(B). Ma allora il massimo di L(B), cioè inf B, è un
numero separatore di A e B.

L’Esistenza di Numeri Separatori implica la Proprietà di Dedekind. Siano A,B ⊆ R
non vuoti, separati e tali che A ∪B = R e A ∩B = ∅; supponiamo, come al solito,
che B sia l’insieme dei maggioranti.
Per ipotesi, esiste qualche numero c separatore di A e B: rimane da provare che di
numero separatore ce n’è uno solo. Per fare ciò, come al solito, scegliamo un altro
c′ separatore di A e B e mostriamo che c′ = c. Per assurdo, supponiamo che c < c′:
per le proprietà di A e B, o si ha c′ ∈ A oppure c′ ∈ B; ma se fosse c′ ∈ A, il numero
c non potrebbe separare A e B, quindi è necessariamente c′ ∈ B; analogamente,
deve essere c ∈ A. Consideriamo allora il numero 1

2 (c + c′): esso, evidentemente,
soddisfa c < 1

2 (c+ c′) < c′ e però non può appartenere né ad A (poiché altrimenti
c non separerebbe A e B) né a B (poiché altrimenti c′ non separerebbe A e B).
Ma ciò è assurdo, poiché A∪B = R cosicché 1

2 (c+ c′) appartiene ad almeno uno
degli insiemi A o B. Dunque non può essere c < c′; analogamente si esclude il caso
c′ < c, quindi è necessariamente c′ = c.

La Proprietà di Dedekind implica (C). Sia X ⊆ R un sottoinsieme non vuoto e li-
mitato superiormente. ChiamiamoM(X) l’insieme dei suoi maggioranti e poniamo
M′ := R −M(X). Chiaramente gli insiemi M′ ed M(X) sono separati e risulta
M′ ∪ M(X) = R e M′ ∩ M(X) = ∅, cosicché M′ ed M(X) costituiscono una
sezione del campo reale. Per la Proprietà di Dedekind, esiste un unico numero c
separatore di M′ ed M(X): vogliamo provare che c = minM(X). Per fare ciò
basta mostrare che c ∈ M(X), poiché la disuguaglianza c ≤ b per ogni b ∈ M(X)
è soddisfatta per costruzione.

3Una coppia di sottoinsiemi separati che gode di questa proprietà viene usualmente detta
sezione del campo reale.
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Supponiamo, per assurdo, che c non sia un maggiorante di X: in tal caso, esiste un
x ∈ X tale che c < x e perciò risulta c < 1

2 (c + x) < x; allora il numero 1
2 (c + x)

non è un maggiorante di X, ossia 1
2 (c+x) ∈M′. Ma ciò è assurdo, poiché c non

sarebbe un numero separatore diM′ e diM(X). �

Osservazione 2: Un’ulteriore formulazione dell’Assioma di Completezza, equiva-
lente alle precedenti, è la seguente:

Assioma di Completezza (Proprietà di Cantor4)
Se In = (an, bn), con n ∈ N, sono intervalli non vuoti, inscatolati, cioè tali che:

∀n ∈ N, In+1 ⊆ In ,

e tali che:

inf {bn − an, con n ∈ N} = 0 ,

allora esiste un unico elemento c ∈ R che appartiene ad ognuno degli intervalli In,
ossia tale che:

∀n ∈ N, c ∈ In .

Tale proprietà esprime un fatto geometrico intuitivo: se si ha una famiglia di
segmenti dell’asse reale, ognuno dei quali contenuto nel precedente, le cui ampiezze
divengono via via più prossime a zero, c’è un unico punto sulla retta che appartiene
ad ogni segmento. �

2. Il Campo Razionale Q

Consideriamo l’insieme dei numeri razionali Q.
Come noto, esso ha per elementi le frazioni n

m , con numeratore n ∈ Z e deno-
minatore m ∈ N − {0}, identificate mediante l’usuale relazione di uguaglianza tra
frazioni5:

(1)
n

m
=
p

q

def⇔ n · q = p ·m

(l’uguaglianza al secondo membro essendo quella usuale tra numeri interi).
Ponendo:

+ : Q×Q→ Q(2) (
n

m
,
p

q

)
7→ nq + pm

mq

· : Q×Q→ Q(3) (
n

m
,
p

q

)
7→ np

mq

4Georg Ferdinand Ludwig Philipp Cantor (1845 – 1918), matematico tedesco iniziatore della
Teoria degli Insiemi.

5Lo studioso lettore farà un utile esercizio verificando che la relazione d’uguaglianza tra frazioni
è una relazione d’equivalenza, i.e. che essa gode delle proprietà riflessiva, simmetrica e transitiva.
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rimangono definite le usuali operazioni di somma e prodotto tra frazioni6, le quali
(come noto dalle scuole e come dimostrabile con un po’ di pazienza) godono di tutte
le proprietà richieste dagli assiomi del Gruppo 1.

Osservazione 3: L’insieme Q contiene un sottoinsieme Z “identificabile” con l’in-
sieme dei numeri interi Z, cioè l’insieme delle frazioni (equivalenti a quelle) aventi
denominatore m = 1.
Pertanto, d’ora in avanti riterremo (come d’uso comune) Z ⊆ Q. �

D’altra parte, ponendo:

(4)
n

m
≤ p

q

def⇔ n · q ≤ p ·m

(la disuguaglianza al secondo membro essendo quella usuale tra numeri interi) rima-
ne definita una relazione d’ordine in Q la quale gode (come noto e come dimostrabile
con un po’ di pazienza) di tutte le proprietà richieste dal Gruppo 2.7

Pertanto gli assiomi dei primi due gruppi individuano, oltre ad R, anche il campo
dei numeri razionali Q.

Osservazione 4: Vale la pena di osservare che tutte le usuali regole di calcolo
valide per i numeri reali valgono anche per le frazioni, giacché esse possono essere
dedotte dagli assiomi dei Gruppi 1 e 2, validi in Q come in R.
Inoltre, si trasportano in Q le definizioni di maggiorante, minorante, massimo,
minimo, insieme limitato inferiormente ed insieme limitato superiormente già date
in R. �

Oltre a quelle che sono immediate conseguenze degli assiomi, l’insieme Q condi-
vide con R anche altre proprietà: ad esempio la seguente è di facile verifica:

Proposizione 1 (Densità di Q in sé)
Scelti due numeri razionali n

m < p
q ∈ Q, esiste almeno un a

b ∈ Q tale che:

n

m
<
a

b
<
p

q
.

Dimostrazione. Basta determinare esplicitamente a
b sfruttando p

q ed n
m .

Non è difficile constatare che il numero:

a

b
:=

1
2

(
n

m
+
p

q

)
=
nq + pm

2mq

6Notiamo che le due operazioni sono ben definite, nel senso che se esse vengono calcolate
su coppie di frazioni a due a due equivalenti rispetto all’uguaglianza tra frazioni, allora anche i
risultati sono equivalenti rispetto all’uguaglianza tra frazioni. In altri termini, prese due coppie
di frazioni ( n

m
, p

q
) ed ( n′

m′ , p′

q′ ), se n
m

= n′

m′ e p
q

= p′

q′ nel senso della (1), allora risulta pure
nq+pm

mq
= n′q′+p′m′

m′q′ e np
mq

= n′p′

m′q′ nel senso della (1). Pertanto, il risultato delle operazioni di
somma e prodotto “non dipende” dalla rappresentazione frazionaria scelta per i due addendi o
fattori.

7Notiamo che se n
m

= n′

m′ e p
q

= p′

q′ nel senso della (1), allora si ha n ·q = n′ ·q′ e p ·m = p′ ·m′;
pertanto risulta n

m
≤ p

q
se e solo se n

m
≤ p

q
. In altri termini, la relazione d’ordine tra due numeri

razionali “non dipende” dalla rappresentazione frazionaria scelta.
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gode della proprietà richiesta: infatti, dato che per ipotesi n
m < p

q , abbiamo nq <
pm e dunque:

nq + pm < pm+ pm ⇒ nq + pm < 2mp

⇒ (nq + pm) · q < 2mp · q
⇒ (nq + pm) · q < p · 2mq

⇔ nq + pm

2mq
<
p

q
;

analogo discorso si fa per provare la disuguaglianza n
m < a

b . �

Nel resto di questi fogli ci occuperemo di dimostrare che Q, a differenza di R,
non soddisfa la:

Proprietà di Completezza
L’insieme dei maggioranti di ogni sottoinsieme X ⊆ Q non vuoto limitato superior-
mente è dotato di minimo.

Per fare ciò basta individuare esplicitamente un insieme X ⊆ Q limitato supe-
riormente il cui insieme dei maggioranti non sia dotato di minimo.

3. Esistenza di un Sottoinsieme di Q Limitato Superiormente il cui
Insieme dei Maggioranti non ha Minimo

Consideriamo i tre insiemi:
Q− := {r ∈ Q : r < 0} ,
A :=

{
r ∈ Q : r ≥ 0 e r2 < 2

}
,

B :=
{
r ∈ Q : r ≥ 0 e r2 ≥ 2

}
.

Evidentemente, i tre insiemi sono a due a due disgiunti ed ogni numero razionale
appartiene ad uno ed uno solo di essi; inoltre, si vede che ogni elemento b ∈ B è
maggiore di ogni elemento a ∈ Q− ∪A: infatti, la cosa è banale se a ∈ Q−, mentre
se supponessimo per assurdo che un a ∈ A risultasse a ≥ b, avremmo a2 ≥ b2 ≥ 2,
contro il fatto che a2 < 2.
Posto:

X := Q− ∪A ,

di modo che X contene tutti i razionali negativi e quelli non negativi il cui quadrato
è minore di 2, vogliamo provare la:

Proposizione 2
X è un sottoinsieme limitato superiormente in Q il cui insieme dei maggioranti
M(X) è privo di minimo in Q.

Per fare ciò, dimostriamo preliminarmente alcuni lemmi:

Lemma 1
Non esiste alcun razionale r > 0 tale che r2 = 2.

Dimostrazione. Per assurdo, supponiamo che un tale r = p/q esista. Possiamo
sempre pensare che la frazione p/q sia già ridotta ai minimi termini (poiché se così
non fosse basterebbe semplificare gli eventuali fattori comuni) e con numeratore e
denominatore positivi (altrimenti, bastarebbe cambiare i segni).
Abbiamo:

p2

q2
= 2 ⇔ p2 = 2q2 ,
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di modo che p2 deve essere un numero pari; ma ciò accade solamente se p stesso è
un numero pari, ossia se p = 2n con n ∈ N− {0}. Allora avremmo:

2q2 = 4n2 ⇔ q2 = 2n2 ,

di modo che q2 è pari; ma ciò accade se e solo se q stesso è un numero pari, cioè se
q = 2m con m ∈ N−{0}. Ma ciò è assurdo, poiché p e q avrebbero in comune il
fattore 2, contro l’ipotesi sulla natura della frazione p/q. �

Osservazione 5 (Numeri Irrazionali): Il risultato appena acquisito, già noto a
Pitagora8 ed ai matematici della sua scuola, si esprime usualmente dicendo che il
numero reale

√
2 è irrazionale.

In generale, vengono detti numeri irrazionali tutti quei numeri reali che non possono
essere rappresentati usando frazioni. Esempi importanti di numeri irrazionali sono
π, e e la costante γ di Eulero-Mascheroni. �

Osservazione 6: Il Lemma 1 implica che la disuguaglianza r2 ≥ 2 presente nelle
proprietà caratteristiche degli elementi di B è sempre stretta; in altre parole, si ha
r ∈ B se e solo se r ≥ 0 e r2 > 2. �

Lemma 2
Per ogni x ∈ X è possibile determinare x′ ∈ X tale che:

x < x′ .

Analogamente, per ogni b ∈ B è possibile determinare b′ ∈ B tale che:

b′ < b .

Dimostrazione. Fissiamo x ∈ X.
Se x è negativo, basta prendere x′ = 0; quindi possiamo supporre x ≥ 0, di modo
che x2 < 2.
In tale ipotesi, consideriamo il numero x′ = x+1/n, con n ∈ N−{0}, che è maggiore
di x e domandiamoci se è possibile determinare n in modo che x′ ∈ X. Chiaramente
è x′ > 0, dunque affinché x′ ∈ X occorre e basta verificare che (x′)2 < 2: essendo:

(x′)2 =
(
x+

1
n

)2

= x2 + 2x · 1
n

+
1
n2

≤ x2 + 2x · 1
n

+
1
n

= x2 + (2x+ 1) · 1
n

si ha (x′)2 < 2 non appena si scelga n > 2x+1
2−x2 ; dato che N non è limitato superior-

mente, questa scelta è sempre possibile, e ciò importa x′ ∈ X.

La dimostrazione nel caso di B si fa allo stesso modo, ma ricercando il numero b′
nella forma b − 1/n, con n ∈ N − {0}. Chiaramente b′ < b per ogni n e perciò
basta capire se è possibile scegliere n in modo che siano soddisfatte entrambe le
condizioni di appartenenza a B, i.e. b− 1/n ≥ 0 e (b− 1/n)2 ≥ 2.

8Pitagora da Samo (circa 575 a.C. – 495 a.C.), filosofo e matematico greco.
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Affinché sia soddisfatta la prima c’è bisogno che n ≥ 1/b;9 d’altra parte, abbiamo:(
b− 1

n

)2

= b2 − 2b · 1
n

+
1
n2

> b2 − 2b · 1
n
,

cosicché (b − 1/n)2 > 2 non appena b2 − 2b · 1/n ≥ 2, cioè non appena si scel-
ga n ≥ 2b

b2−2 ;
10 conseguentemente per avere b − 1/n ∈ B basta scegliere n >

max{1/b, 2b/(b2 − 2)}, cosa che si può sempre fare per il solito motivo. �

Lemma 3
L’insieme X è privo di massimo e l’insieme B è privo di minimo.

Dimostrazione. Cominciamo col dimostrare che non esiste alcun elemento M ∈ X
tale che x ≤M per ogni x ∈ X.
Per assurdo, supponiamo che M sia il massimo di X, di modo che M ∈ X e x ≤M
per ogni x ∈ X. Considerato l’elemento M ∈ X, per il Lemma precedente, esiste
un elemento M ′ ∈ X tale che M < M ′; ma ciò è assurdo, poiché dovrebbe
risultare pure M ′ ≤M per definizione di massimo, e dunque M < M per proprietà
transitiva.
Il discorso per provare che B è privo di minimo è del tutto analogo. �

Lemma 4
X è limitato superiormente ed M(X) = B, ossia l’insieme dei maggioranti di X
coincide con B.

Dimostrazione. Osserviamo innanzitutto che, per quanto detto all’inizio sugli in-
siemi Q−, A e B, ogni elemento b ∈ B è un maggiorante di X; quindi X è limitato
superiormente e B ⊆M(X).
D’altra parte, dato che X ∩B = ∅ e X ∪B = Q, l’unico maggiorante di X che può
non cadere in B è l’eventuale massimo di X; dato che X è privo di massimo, si ha
M(X) ⊆ B e dunqueM(X) = B. �

Concludiamo fornendo la:

Dimostrazione della Proposizione 2. Per il Lemma 4 l’insieme X è limitato su-
periormente e B è l’insieme dei suoi maggioranti; d’altra parte, per il Lemma 3
l’insieme B è privo di minimo in Q. �

Esercizi

Esercizio 1: Sia p ∈ N un numero primo.

1. Provare che non esiste alcun numero r ∈ Q tale che r2 = p.

2. Generalizzare il punto 1. Dimostrare che per ogni indice n ∈ N maggiore di 1
non esiste alcun numero r ∈ Q tale che rn = p.

3. Generalizzare il punto 1. Mostrare che per ogni m ∈ N che non è quadrato
perfetto non esiste alcun r ∈ Q tale che r2 = m.

9Si noti che ogni b ∈ B è strettamente positivo, poiché 02 = 0 < 2 dunque 0 /∈ B.
10Si noti che b2 > 2, cosicché è lecito dividere per b2 − 2.
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4. Generalizzare ulteriormente. Provare che per ogni n ∈ N maggiore di 1 e per
ogni m ∈ N che non è una potenza n-esima perfetta, non esiste alcun r ∈ Q tale che
rn = m.

Esercizio 2: Siano n,m ∈ N.
Mostrare che se

√
m è un numero reale irrazionale (i.e., se non esiste alcun r ∈ Q

tale che r2 = m), allora il numero
√
m+

√
n è anch’esso irrazionale.

[Suggerimento: Per assurdo, supporre che esista r ∈ Q tale che r =
√
m +

√
n;

allora r2 = m+ 2
√
m
√
n+ n = m− n+ 2r

√
n; ma ciò è assurdo, perché. . . ]
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