

The p53-deficient mouse: a model for basic and applied cancer studies

Lawrence A. Donehower

Inactivation of the p53 gene in the germline of mice by gene targeting has provided researchers with a model similar in many respects to the analogous human inherited cancer predisposition Li-Fraumeni syndrome. The viability of p53 null mice has allowed unexpected opportunities to study the role of p53 in many different in-vivo and in-vitro contexts. Null (p53^{-/-}) mice have an average time to tumor development of 4.5 months, while half of the heterozygous (p53^{+/-}) mice develop tumors by 18 months. The p53-deficient mice have been particularly valuable in examining the effects of p53 loss on tumor progression. In addition, the mice hold significant promise as tools to assess carcinogens, teratogens, chemopreventative agents, and cancer therapeutic regimens.

Key words: gene targeting / knockout / Li-Fraumeni syndrome / mouse / p53 / tumor model / tumor suppressor

©1996 Academic Press Ltd

THE RECENT DEVELOPMENT of gene targeting in embryonic stem cells has provided researchers with a powerful tool to inactivate genes in the germ line of the mouse.^{1,2} This approach has been particularly useful in the targeting of tumor suppressor genes, whose inactivation in germ cells and somatic cells of humans is a recurring theme in human cancer development. Currently, the most intensively studied tumor suppressor gene is the p53 gene. Close to half of all human cancers have p53 mutations, indicating that loss of its function is a critical event in tumor progression.³ Given the attention paid to p53, it was not surprising that the p53-deficient mouse was the first reported mouse with a tumor suppressor gene knockout.⁴ Since the first report of this mouse in 1992, scores of papers have been published which utilize p53-deficient mice or cells derived from them. The aim of this short review will be to describe the characteristics of the p53-deficient mice as well as to

From the Division of Molecular Virology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

©1996 Academic Press Ltd

1044-579X/96/050269 + 10\$25.00/0

outline some of the conceptual insights derived from experiments using them. Finally, I will summarize some of the cancer and non-cancer-related applications for which these mice may be useful.

The role of p53 in cancer prevention

In 1989, the p53 gene was conclusively demonstrated to be a tumor suppressor gene,^{5,6} though mutant forms of the gene can exhibit oncogenic activity, perhaps due to the ability of mutant p53 to complex with wild type p53 and functionally inactivate it.^{7,8} Cellular p53 levels are greatly increased by radiation and other DNA damaging agents and this increase in p53 is accompanied by an arrest in late G1 of the cell cycle.^{9,10} Wild type p53 can also mediate apoptosis in some contexts when overexpressed.¹¹ It was hypothesized that a critical role for wild type p53 is to respond to various forms of DNA damage by either arresting the cell to allow adequate DNA repair or to kill the cell via apoptosis.¹² In either case, the effect would be to prevent propagation of DNA-damage induced mutations, some of which were likely to be oncogenic. In the absence of p53, apoptotic and cell cycle arrest functions would be lost and genomic instability and cell survival would be increased, thereby accelerating oncogenesis.

Such a model was consistent with the very high percentage of spontaneously arising human tumors which exhibited mutation and loss of p53. A wide variety of human tumor types incur p53 loss, sometimes at late stages of tumor progression and sometimes at earlier stages.³ In addition, germ line p53 mutations have been identified in affected individuals of Li-Fraumeni syndrome families.^{13,14} Li-Fraumeni syndrome is a familial cancer predisposition whose affected members have a 50% likelihood of developing cancer by age 30 in contrast to a 1% incidence by age 30 in the general population. The frequent association of p53 mutation with both spontaneous and inherited human tumors provided a powerful

impetus to develop a representative animal model for p53-associated cancers.

Generation of p53-deficient mice

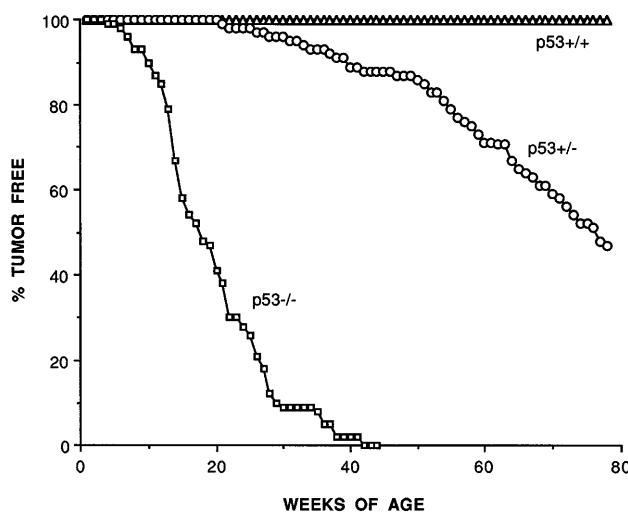
At least five different groups have reported the development of p53-deficient or 'knockout' mice.^{4,15-18} In four of the studies,^{4,15-17} similar gene targeting approaches were utilized, with the primary differences relating to how much of the endogenous p53 gene was deleted during the targeting process. Since the different targeted mice showed remarkably similar phenotypes, it is likely that all have p53 null alleles. This was confirmed by the apparent absence of intact p53 protein in cells derived from p53 null animals in three of the models.^{4,15,17} All targeting approaches resulted in germ line p53 null mice which were developmentally viable, yet susceptible to early spontaneous tumors. As will be seen, the ability to generate apparently normal p53 null animals has provided a number of opportunities to study various cellular processes in the complete absence of wild type p53.

Developmental abnormalities in p53 null mice

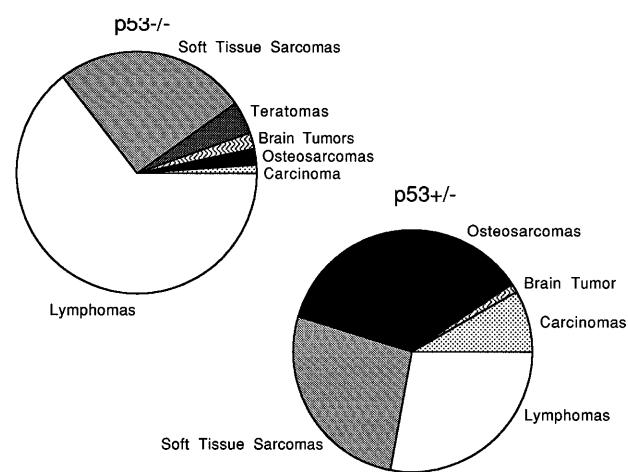
We reported that the crossing of the heterozygous p53-deficient mice yielded 23% null offspring, roughly in line with the expected Mendelian ratio of 25%.⁴ However, Jacks *et al*¹⁵ reported 16.6% null offspring following heterozygous crosses, suggesting the possibility that a fraction of null animals may have died during embryogenesis. In fact, subsequent studies by Sah *et al*¹⁹ and Armstrong *et al*²⁰ have shown that a fraction of female null embryos die during embryogenesis due to a neural tube closure defect called exencephaly. In these embryos there was an overgrowth of neural tissue, usually confined to the region of the forebrain and midbrain, which precluded normal formation of the cranium and resulting in protrusion of the brain above the skull.¹⁹ Sah *et al*¹⁹ reported that 8-16% of total p53-/- midgestation embryos exhibited this exencephalic phenotype, and differences in frequency were apparently strain-dependent. Armstrong *et al*²⁰ reported that 23% of female p53-/- embryos displayed exencephaly in an outbred genetic background. We have also observed exencephaly in our p53-/- mice though at levels below that reported by Sah *et al* and Armstrong *et al* (roughly 5% of p53-/- embryos) (M. Harvey and L.

Donehower, unpublished data). This exencephaly is rarely observed in null males or in p53 +/- and p53 +/+ littermates of the p53-/- exencephalic embryos. These results suggest either that p53 does play a role in development, particularly during neural tube closure, or that increased mutation rates possibly associated with chromosomal events may occur more frequently in the p53 null gametes and embryos.²⁰

Interestingly, treatment of males prior to mating with whole body ionizing radiation resulted in a much increased incidence of exencephaly in p53-/- female embryos.²⁰ We have shown that reduction of folic acid in the diet of mating females increases the incidence of exencephaly in the p53-/- embryos (A. Sands, L. Donehower and A. Bradley, unpublished data), suggesting that the environmental impact of DNA damaging agents or altered diet may interact with the genetics of these animals to affect the incidence of developmental abnormalities.


Aside from these developmental abnormalities, we have observed that fertility is reduced in the p53-/- mice, particularly the females (L. Donehower, unpublished data). Null females have significantly smaller litter sizes than their p53 +/- and p53 +/+ littermates. These reduced litter sizes are not only due to exencephaly in the embryos, since even p53-/- females bearing only p53 +/- embryos have reduced litter sizes. In addition, the pregnant females sometimes fail to deliver their full term embryos and subsequently sicken and die (L. Donehower, unpublished observations).

Tumor susceptibility


Tumor susceptibility in p53-deficient mice is greatly enhanced. In our colony, all p53-/- mice develop tumors by 10 months of age (mean tumor time is 4.5 months), while p53 +/- mice have a comparative delay in the appearance of tumors.^{4,21,22} Roughly 50% of heterozygous mice develop tumors by 18 months (Figure 1),^{21,22} with over 90% incidence by two years of age (L. Donehower, unpublished observations). Wild type littermate controls of the p53-deficient mice do not develop tumors before 18 months and less than 25% succumb to tumors by the age of two years (L. Donehower, unpublished data). Interestingly, while tumors in null mice have been observed as early as six weeks of age, the heterozygotes have a relatively long tumor-free period. Less than 8% of p53 +/- animals develop tumors before nine months of age.²² The tumor incidences reported by the Jacks¹⁵ and

Clarke¹⁶ groups are very similar to ours, though survival times for the Clarke null mice are even shorter (all p53^{-/-} mice die by six months of age),¹⁶ probably due to the fact that their mice were of a different genetic background (129/Ola) than the Jacks mice and our mice (mixed C57BL/6 and 129/Sv).

The types of tumors observed in the p53-deficient mice are quite varied, though certain types tend to

Figure 1. Tumor incidence in p53-deficient mice (p53^{-/-} and p53^{+/-}) and wild type (p53^{+/+}) mice of mixed inbred C57BL/6 × 129/Sv genetic background. 72 p53^{-/-}, 150 p53^{+/-}, and 91 p53^{+/+} mice were monitored for tumor formation. Tumor-free survival is plotted up to 78 weeks (18 months) for each group.

Figure 2. Tumor spectra of p53^{-/-} and p53^{+/-} mice. Relative frequency of each major tumor type is indicated by the size of the pie slice.

predominate (Figure 2). For example, the p53^{-/-} mice have a very high incidence of lymphomas, usually of the T-cell type.^{4,15,16,21,22} Soft tissue sarcomas and osteosarcomas appear at a lower frequency. Malignant carcinomas are rarely observed in the null mice. In contrast, the heterozygous mice develop osteosarcomas, soft tissue sarcomas, and lymphomas in roughly equal proportion (Figure 2).^{15,21,22} Carcinomas and other types of tumors remain rare, though less so than in the null mice.

The issue of genetic background modulating tumor incidence and spectrum in the p53-deficient mice has been addressed by us in a preliminary way.^{22,23} Our first studies were done with mice with an average of 75% C57BL/6 and 25% 129/Sv genetic background. We have also placed the null p53 allele into a pure 129/Sv background and have found some interesting differences in tumor susceptibility between mice with different genetic backgrounds. The 129/Sv p53^{+/-} and p53^{-/-} mice develop tumors significantly sooner than their counterparts of mixed background. Moreover, about half of the 129/Sv p53^{-/-} males develop testicular teratomas, a tumor type infrequently observed in the C57BL/6 × 129/Sv null mice. Interestingly, the 129 strains of mice have previously been shown to be predisposed to testicular tumors, though at a much more modest rate than that observed in the p53^{-/-} males.²⁴ The absence of p53 in the 129/Sv mice clearly exacerbates this prior cancer predisposition.

Given the tumor incidences and spectra cited above, one important issue is whether the p53-deficient mice generated thus far are a reasonable model for the Li-Fraumeni syndrome. The similarities in some respects between p53^{+/-} mice and affected Li-Fraumeni families are quite striking (Table 1). For example, many of the tumor types frequently observed in Li-Fraumeni families (e.g. osteosarcomas, soft tissue sarcomas, leukemias, and lymphomas) are also observed in p53^{+/-} mice. An exception is breast cancer, frequently seen in Li-Fraumeni females but rarely in p53^{+/-} mice. In addition, the tumor incidence is roughly comparable on a lifespan basis, with 50% of Li-Fraumeni individuals developing cancer by age 30, while 50% of p53^{+/-} mice become cancerous by age 18 months, about half their normal lifespan.^{13,21,22} The p53 genetic lesions (deletions) introduced into the mice do not resemble the point mutations usually observed in humans, but a fraction of the human mutations do introduce frameshifts or premature truncations which would prevent expression of a full length protein^{25,26} and these mutations

Table 1. Comparison of Li-Fraumeni syndrome families and p53^{+/−} mice

Characteristic	Li-Fraumeni syndrome	p53 ^{+/−} mice
p53 Germ line lesion	Point mutations. Primarily missense Also premature stop codons and frameshifts leading to truncated protein	Deletions leading to no protein or severely truncated protein
Tumor incidence	50% by age 30 90% by age 70	50% by 18 months 90% by 24 months (average mouse life span is 30–36 months)
Common tumors	Breast cancer Osteosarcomas Soft tissue sarcomas Brain tumors Leukemia/lymphomas	Mammary tumors (rare) Osteosarcomas Soft tissue sarcomas Brain tumors (rare) Lymphomas
Loss of heterozygosity in tumor?	Roughly half lose wild type allele*	Roughly half lose wild type allele

*Jenny Varley, personal communication.

would have results functionally equivalent to the knockout allele in mice. Thus, while the p53^{+/−} mice cannot be said to perfectly mimic the cognate human syndrome, they have a number of similarities which should make them useful as a cancer predisposition model.

Genetic interactions and tumorigenic co-operativity

In an attempt to assess the cooperativity of the p53 gene with other cancer-associated genes, we and others have crossed the p53-deficient mice to other strains of tumor-susceptible transgenic and knockout mice. In such crosses, if the offspring containing both parental oncogenic alleles develop cancer faster than either tumor-susceptible parent, then cooperativity is said to have occurred. Presumably, the identification of cooperating oncogenes and tumor suppressor genes which synergize with p53 loss can provide important new mechanistic insights into p53-associated tumorigenesis pathways. Table 2 describes the results from some representative crosses performed to date. Note that a number of the crosses do result in accelerated tumorigenesis in the bitransgenic offspring compared to either parent. For example, mice deficient in both Rb and p53 not only show accelerated tumorigenesis, but also exhibit novel tumor types (e.g. pancreatic islet cell carcinomas and pinealoblastomas) not seen in the parental singly deficient mice.^{62, 63}

In another cross between p53-deficient mice and mutant p53 transgenic mice (carrying a codon 135 point mutation which is oncogenic),²⁷ we were able to show that mice inheriting the mutant p53 transgene

showed accelerated tumorigenesis over their non-transgenic counterparts, but only in the presence of one or both wild type p53 alleles.²⁸ Null p53 transgenic mice showed no increased tumor incidence compared to p53 null nontransgenic mice, suggesting that the primary role of this mutant p53 was to accelerate tumorigenesis through inactivation of endogenous wild type p53.

As a final example of the unexpected insights which can be obtained through such crosses, mdm2 null mice generated by us²⁹ and Montes de Oca Luna *et al*³⁰ were found to result in early embryonic lethality. Surprisingly, when mice heterozygous for both mdm2 and p53 are crossed, viable and normal double null mdm2/p53 offspring result, suggesting that the lethality characteristic of mdm2 null embryos can be rescued in the absence of p53.^{29,30} This result led us to hypothesize that the primary role of mdm2 in development is to interact with p53 and inactivate it to allow proper cell cycle progression at critical points in embryogenesis.

Insights into tumor progression

Our understanding of how p53 loss contributes to tumor initiation and progression remains incomplete. However, in the last few years, the use of p53-deficient mice has significantly complemented the insights gained from human tumor studies. We and others have characterized the p53-deficient mouse tumors in an attempt to identify relevant biological mechanisms and molecular pathways affected by p53 loss. A number of exciting and novel approaches have been taken with these mice and some of these will be described.

Table 2. Oncogenic cooperativity between p53-deficiency and other genes *in vivo*

Cooperating gene	Nature of transgene	Site of expression	Tumor type(s)	Synergy with p53-/-?*	Synergy with p53+/-?*	Novel tumors?†	Ref
Rb	Knockout	Global	Pituitary adenomas	Yes	Yes	Yes Pancreatic, pinealoblastomas No	62,63
Truncated large T antigen E7	Transgene	Choroid plexus	Choroid plexus tumors	Yes	Yes	No	39
Mutant p53	Transgene	Eye	Retinal tumors	Yes	No	No	38
	Transgene	Global	Lymphomas	No	Yes	No	28
myc (1)	Transgene	Mammary gland	Lung tumors	ND	No	No	64
myc (2)	Transgene	T-cells	Osteosarcomas	Yes	Yes	No	65
bcl-2	Transgene	B-cells	Lymphomas	No	ND	No	66
mdm-2	Knockout	Global	None	No	In progress	No	29,30 S. Jones (unpublished)
SCID	Natural mutation	Lymphoid cells	Lymphomas	Yes	ND	No	67,68
APC	Chemically induced mutation	Global	Intestinal tumors	No	No	Yes Pancreatic	69
Wnt-1	Transgene	Mammary gland	Mammary tumors	Yes	No	No	40
NF-1	Knockout	Global	Pheochromocytomas Myeloid leukemia		Yes	Yes Rhabdomyosarcomas	T. Jacks (personal comm.)

*Indicates that bitransgenic offspring develop tumors sooner on average than either transgenic parent.

†Indicates that bitransgenic offspring develop tumor types not seen in either transgenic parent.

One initial question has been with regard to the fate of the remaining wild type p53 allele in the p53+/- tumors. According to Knudson's 'two hit' hypothesis, inactivation of both relevant tumor suppressor alleles is generally considered to be an important prerequisite for tumor formation.³¹ However, in our laboratory, Southern blot hybridization has revealed that roughly half of the p53+/- tumors retain their wild type allele while the other half delete the wild type allele. We have found that tumors which appear to retain the wild type p53 allele (i) appear at a later time (on average), (ii) have five-fold less genomic instability, (iii) retain wild type sequence and expression levels, and (iv) exhibit much higher levels of apoptosis in response to ionizing radiation than p53+/- tumors which lose their wild type allele (L. Donehower, A. Bradley and D. Pinkel, manuscript in preparation). Such results raise the possibility that mere reduction of p53 gene dosage is sufficient to predispose the animal to accelerated cancer formation. Loss of the second allele may be optional rather than necessary, but if it does occur may accelerate tumor progression. This result contrasts with those

observed for other tumor suppressors such as the retinoblastoma gene. Rb+/- mice and Rb+/- humans invariably show loss of both alleles in their tumors.³²⁻³⁴

While the analysis of tumorigenesis in the p53-deficient mice has yielded a number of interesting insights, the study of spontaneous tumor formation in these animals has certain limitations if one wants to examine mechanistic questions in an efficient, well controlled manner. For example, the p53-deficient mice develop a wide array of tumors with a relatively long latency (particularly the p53+/- mice). Moreover, since p53+/- mice rarely develop tumors, control tumors which develop in a p53-independent manner are difficult to obtain. To circumvent these disadvantages, investigators have taken two general approaches, either treating the p53-deficient mice with a tissue-specific carcinogen or crossing the p53-deficient mice to a tumor-susceptible transgenic mouse genetically programmed to develop a single tumor type. The resulting models usually develop a single tumor type in a relatively short amount of time and control p53+/- tumors are available to compare

to the p53-deficient tumors. Representative examples of these approaches and the novel insights obtained from them will be discussed below.

The first carcinogen-based study on the p53-deficient mice was performed by Kemp *et al*³⁵ in a classic two-stage skin carcinogenesis assay. They found that DMBA initiation and TPA promotion accelerated carcinoma formation in the absence of p53. Not only did the carcinogen-induced p53^{-/-} skin carcinomas form earlier, but they showed higher indices of malignancy as measured by histopathology, confirming the importance of p53 loss in acceleration of tumor progression. In another interesting skin-related study, Ziegler *et al*³⁶ showed that UV-induced sunburn cells in humans often had p53 mutations. They exposed the skin of p53 null and wild type animals to UV irradiation and found that UV light induced more sunburn cells in wild type animals than p53^{-/-} animals. These sunburn cells were associated with increased apoptosis, suggesting that loss of p53 provides a survival advantage to UV damaged cells, clones of which may ultimately develop to skin carcinomas.

Several models utilizing p53-deficient mice have now shown the critical importance of p53-mediated apoptosis in tumor progression.³⁷⁻³⁹ In one typical study, Symonds *et al*³⁹ crossed transgenic mice expressing a fragment of T antigen which inactivates Rb (but not p53) with the p53-deficient mice. In the presence of p53 the offspring developed slow growing choroid plexus tumors. In its absence, the choroid plexus tumors appeared much more rapidly. Most interesting was the rapid outgrowth of tumor nodules in the truncated T antigen mice that were p53^{+/-}. These tumor nodules were found to have lost their remaining wild type p53 and also displayed much lower levels of apoptosis than the surrounding slow growing regions of the tumor with intact p53. Thus, loss of p53 was correlated with attenuated apoptosis and accelerated tumor growth, supporting the idea that loss of p53-mediated apoptosis is the rate limiting step in tumor progression.

Is apoptotic function the primary mechanism by which p53 regulates tumor progression or are there other mechanisms? Other models employing p53-deficient mice suggest that p53 loss may promote tumor progression through non-apoptotic means. One such model is the *Wnt-1* transgenic/p53-deficient model developed by us.⁴⁰ These mice, because of ectopic expression of the *Wnt-1* oncogene in the mammary gland develop early onset mammary adenocarcinomas.⁴¹ In the absence of the p53 the mammary tumors

developed sooner and grew more rapidly than tumors which had wild type p53. However, apoptosis in the preneoplastic mammary glands and mammary tumors was invariably low and not appreciably different between both p53⁺ and p53⁻ tissues and tumors (T. Jacks and J. Jones, unpublished data). However, cell proliferation in the tumors missing p53 was consistently higher than in tumors containing wild type p53 (J. Jones and L. Donehower, manuscript in preparation). In addition, tumors without p53 showed significantly higher levels of genomic instability.⁴⁰ Thus, increased cell proliferation rates (perhaps driven in part by increased genomic instability) may provide an alternative mechanism by which p53 loss may promote accelerated growth. The above results suggest that the roles of p53 in cancer prevention may be relatively complex and utilize multiple pathways. Further studies of these and other models are certainly warranted.

Cells derived from p53-deficient mice

Another useful feature of the p53-deficient mice is that primary cells and established cell lines can be readily derived from their tissues. Prior to the availability of these mice, cells missing p53 were often derived from immortalized lines or tumors and during this lengthy process they were likely to have acquired other genetic lesions which could complicate the interpretation of experimental results. Primary cells obtained from p53 null mice would presumably differ from wild type cells only in the absence of p53. Aside from their experimental usefulness, p53-deficient cells have been found to have their own intrinsically interesting properties. We have found in short-term culture assays that early passage p53 null embryo fibroblasts (i) divide more rapidly, (ii) have a shorter average cell cycle time, and (iii) grow more readily in unfavorable conditions.⁴² Under long term culture conditions, p53^{-/-} embryo fibroblasts (i) more consistently and rapidly immortalize, (ii) spontaneously transform more often, and (iii) show dramatically higher levels of genomic instability than wild type embryo fibroblasts.^{17,42-44} Others have shown that primary cells from p53^{-/-} animals show lack of G1 and G2/M checkpoint control,^{9,10,44-51} increased capacity to amplify genes in the presence of cell cycle inhibitors,^{44,45} increased levels of centrosome instability compared to their wild type counterparts,⁴⁹ and decreased ability to undergo apoptosis following exposure to DNA damaging

Table 3. Comparative effects of genotoxic carcinogens on p53-deficient mice

Agent	Target	Tumor type	Accelerated tumors in p53-deficient mice?	Ref
DMBA/TPA	Skin	Skin carcinoma	Yes (p53 ^{-/-}), no (p53 ^{+/+})*	35
X rays	Global	Lymphoma	Yes (p53 ^{-/-}), yes (p53 ^{+/+})	70
Dimethyl nitrosamine	Liver	Liver hemangiosarcoma	Yes (p53 ^{+/+})	21
pCresidine	Bladder, liver	Bladder carcinoma	Yes (p53 ^{+/+})	53
Benzene	Multiple sites	Histiocytic sarcomas	Yes (p53 ^{+/+})	J. French (personal comm.)
4-Vinyl-1-cyclohexene diepoxyde	Skin, ovary	Skin carcinomas	Yes (p53 ^{+/+})	J. French (personal comm.)
N-Methyl-N-nitrosourea	Lymphoid	Lymphoma	Yes (p53 ^{+/+})	S. Hursting (personal comm.)
Diethyl nitrosamine	Liver	Liver adenoma	No (p53 ^{+/+})	71
DMBA	Mammary gland	Mammary adenocarcinoma	No (p53 ^{+/+})	72
NNK	Lung	Lung adenoma	No (p53 ^{+/+})	73

*Papilloma number was three-fold greater in p53^{+/+} mice compared to p53^{+/+} mice.

agents,^{50,51} oncogene-induced cell proliferation^{52,53} and hypoxia.⁵⁴ Cell types normally refractive to significant growth in culture, such as neonatal astrocytes, have also been shown not only to grow quite successfully in the absence of p53, but to spontaneously immortalize and transform in a stepwise fashion after continued culturing.⁵⁵ Thus, the potential to develop *in vitro* transformation models from virtually any tissue of the null p53 mouse is a particularly exciting prospect.

Other applications for p53-deficient mice

Aside from basic studies into the mechanisms of cancer formation and p53 function, it soon became clear that the p53-deficient mice might be suitable for other applications. One such application is as a more sensitive rodent model for testing known or suspected carcinogens.⁵⁶ The high expense and long time-frame of current rodent bioassays are prohibitive for many companies developing new pharmaceuticals. Theoretically, the p53-deficient mice may be more sensitive to carcinogens than normal mice. Thus, rodent bioassays for carcinogens might require fewer animals and less time to perform. Currently, the p53^{+/+} are envisioned as useful animals for testing primarily because they have a low incidence of tumors until nine months of age, thus allowing sufficient time for carcinogen testing without background spontaneous cancers. In addition, the p53-deficient mice may be preferable to other transgenic models in that they mimic a known

human cancer predisposition syndrome and develop tumors in a variety of tissues.

Investigators have treated the p53-deficient mice with various physical and chemical carcinogens and compared tumor formation in these mice with wild type control mice (Table 3). In most instances treatment of p53^{+/+} with carcinogens resulted in significant accelerated tumorigenesis over that seen in carcinogen-treated normal mice and untreated p53^{+/+} mice. In three studies acceleration of tumor formation in carcinogen-treated p53^{+/+} animals did not occur, but two of these studies only assessed early stage tumor formation (adenomas). The p53-deficient mice may be more likely to accelerate tumorigenesis in carcinogen models which develop late stage malignant tumors. Several groups have now undertaken multiple carcinogen studies to determine the efficacy and sensitivity of the p53^{+/+} mice in carcinogen assessment (J. French and R. Tice, personal communications).

Another interesting application of the p53-deficient mice has been in cancer prevention studies. The first study of this type was performed by Hursting *et al*⁵⁷ who subjected p53 null mice to caloric restriction. Caloric restriction has historically been an inhibitor of tumors in several species. The calorie restricted p53^{-/-} mice demonstrated significantly longer tumor-free survival time (25 weeks median) than control p53^{-/-} mice not restricted in their caloric intake (16 weeks median). In a follow-up study, Hursting and colleagues⁵⁸ have shown that the treatment of p53^{-/-} with the chemopreventative

agent dehydroepiandrosterone (DHEA) significantly delayed tumor formation compared to untreated p53^{-/-} mice.

Finally, the susceptibility of p53-deficient embryos to teratogenic agents has been investigated by at least four groups.^{20,59-61} Nicol *et al*⁶⁰ demonstrated that treatment of p53-deficient embryos with the environmental teratogen benzo[a]pyrene resulted in 2-4 fold higher levels of teratogenicity than similarly treated p53^{+/+} embryos. The authors argued that p53, in addition to its tumor suppressor function, may also serve as a teratological suppressor gene. More support for this idea has come from a study by Norimura *et al*⁶⁰ who showed that the incidence of malformations in radiation-treated p53^{-/-} embryos was 70% compared with 20% malformations in radiated p53^{+/+} embryos. Interestingly, the percentage of in-utero deaths was actually much higher in the p53^{+/+} embryos, suggesting that the presence of p53 may in some instances induce abortion in order to prevent malformations. However, a study by Wubah *et al*⁶¹ demonstrated dramatically *decreased* 2-chloro-2'-deoxyadenosine-induced eye defects in the absence of p53, suggesting that in some instances teratogens may cause malformations directly through p53-mediated apoptosis. The potential of the p53-deficient mouse as a model for the testing of suspected teratogens should clearly be explored further.

Future prospects

The p53-deficient mice have been useful for a variety of basic and applied research purposes. Both the mice and cells derived from their various tissues should provide valuable tools in the future for new insights into the role of p53 in cell cycle checkpoint control, apoptosis, DNA damage response and cancer prevention. In addition, new p53 mouse models (e.g. mice with germ line p53 point mutations or tissue specific p53 gene inactivations) should further supplement the first generation knockout models. The application of the p53-deficient mice in testing of teratogens, carcinogens, cancer preventative agents and cancer therapeutic agents should occur with increasing frequency as the recognition of their usefulness spreads.

Acknowledgements

I thank Steve Hursting, Jeff Jones, Jene Choi and Jeff Rosen

for comments on the manuscript. This work has been supported by the National Cancer Institute, the U.S. Army Breast Cancer Program, and the Council for Tobacco Research.

References

1. Capecchi MR (1989) Altering the genome by homologous recombination. *Science* 244:1288-1292
2. Frohman MA, Martin GR (1989) Cut, paste, and save: new approaches to altering specific genes in mice. *Cell* 56:145-147
3. Greenblatt MS, Bennett W, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. *Cancer Res* 54:4855-4878
4. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. *Nature* 356:215-221
5. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. *Cell* 57:1083-1093
6. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M (1989) Wild-type p53 can inhibit oncogene-mediated focus formation. *Proc Natl Acad Sci USA* 86:8763-8767
7. Hinds P, Finlay C, Levine AJ (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. *J Virol* 63:739-746
8. Milner J, Medcalf EA (1991) Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. *Cell* 65:765-774
9. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. *Proc Natl Acad Sci USA* 89:7491-7495
10. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia telangiectasia. *Cell* 71:587-597
11. Yonish-Rouach, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. *Nature* 352:345-347
12. Lane DP (1992) p53, guardian of the genome. *Nature* 358:15-16
13. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassell J, Cryka MA, Bischoff FZ, Tainsky MA, Friend SH (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. *Science* 250:1233-1238
14. Srivastava S, Zou Z, Pirolo K, Blattner W, Chang EH (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. *Nature* 348:747-749
15. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. *Curr Biol* 4:1-7
16. Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SEM, Salter DM, Bird CC, Wyllie AH, Hooper ML, Clarke AR (1994) Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. *Oncogene* 9:603-609
17. Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S (1993) Enhanced proliferative potential in culture of cells from p53-deficient mice. *Oncogene* 8:3313-3322

18. Gondo Y, Nakamura K, Nakao K, Sasaoka T, Ito K, Kimura M, Katsuki M (1994) Gene replacement of the p53 gene with the lacZ gene in mouse embryonic stem cells and mice by using two steps of homologous recombination. *Biochem Biophys Res Commun* 202:830-837

19. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. *Nature Genet* 10:175-180

20. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. *Curr Biol* 5:931-936

21. Harvey M, McArthur MJ, Montgomery CA, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. *Nature Genet* 5:225-229

22. Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA Jr, Park SH, Thompson T, Ford RJ, Bradley A (1995) Effects of genetic background on tumorigenesis in p53-deficient mice. *Mol Carcinogen* 14:16-22

23. Harvey M, McArthur MJ, Montgomery CA, Bradley A, Donehower LA (1993) Genetic background alters the spectrum of tumors that develop in p53-deficient mice. *FASEB J* 7:938-943

24. Stevens LC, Little CC (1954) Spontaneous testicular teratomas in an inbred strain of mice. *Proc Natl Acad Sci USA* 40:1080-1087

25. Toguchida J, Tamaguchi T, Dayton SH, Beauchamp RL, Herrera GE, Ishizaki K, Yamamoto T, Meyers PA, Little JB, Sasaki MS, Weichselbaum RR, Yandell DW (1992) Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. *NEJM* 326:1301-1308

26. Frebourg T, Barbier N, Yan Y-X, Garber JE, Dreyfus M, Fraumeni J Jr, Li FP, Friend SH (1995) Germ-line p53 mutations in 5 families with Li-Fraumeni syndrome. *Am J Hum Genet* 56:608-615

27. Lavigne A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A (1989) High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. *Mol Cell Biol* 9:3982-3991

28. Harvey M, Vogel H, Morris D, Bradley A, Bernstein A, Donehower LA (1995) A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. *Nature Genet* 9:305-311

29. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Embryonic lethality in Mdm2-deficient mice by absence of p53. *Nature* 378:206-208

30. Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. *Nature* 378:203-206

31. Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. *Proc Natl Acad Sci USA* 68:820-823

32. Cavenee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, Squire JA, Phillips RA, Gallie BL (1985) Genetic origin of mutations predisposing to retinoblastoma. *Science* 228:501-503

33. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Doodell MA, Weinberg RA (1992) Effects of an *Rb* mutation in the mouse. *Nature* 359:295-300

34. Hu N, Gutzmann A, Herbert DC, Bradley A, Lee WH, Lee EYHP (1994) Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with nearly completed penetrance. *Oncogene* 9:1021-1027

35. Kemp CJ, Donehower LA, Bradley A, Balmain A (1993) Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. *Cell* 74:813-822

36. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. *Nature* 372:773-776

37. Pan HC, Griep AE (1994) Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice — implications for tumor suppressor gene function in development. *Genes Dev* 8:1285-1299

38. Howes KA, Ransom N, Papermaster DS, Lasudry JGH, Albert DM, Windle JJ (1994) Apoptosis or retinoblastoma — alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. *Genes Dev* 8:1300-1310

39. Symonds H, Krail L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. *Cell* 78:703-711

40. Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi Y-P, Pinkel D, Gray J, Bradley A, Medina D, Varmus HE (1995) Deficiency of p53 accelerates mammary tumorigenesis in *Wnt-1* transgenic mice and promotes chromosomal instability. *Genes Dev* 9:882-895

41. Tsukamoto AS, Grosschedl R, Guman RC, Parslow T, Varmus HE (1988) Expression of the *int-1* gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. *Cell* 55:619-625

42. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA (1993) In-vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. *Oncogene* 8:2457-2467

43. Rong S, Donehower LA, Hansen M, Strong L, Tainsky M, Jeffers M, Resau JH, Resau JH, Hudson E, Tsarfati I, Vande Woude GF (1995) Met protooncogene product is overexpressed in tumors of p53-deficient mice and tumors of Li-Fraumeni patients. *Cancer Res* 55:1963-1970

44. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild type p53. *Cell* 70:605-620

45. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. *Cell* 70:937-948

46. Stewart N, Hicks GG, Paraskevas F, Mowat M (1995) Evidence for a second cell cycle block at G2/M by p53. *Oncogene* 10:109-115

47. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. *Proc Natl Acad Sci USA* 92:8493-8497

48. Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzler RL, Raskind WH, Reid BJ (1995) A p53-dependent mouse spindle checkpoint. *Science* 267:1353-1356

49. Fukasawa K, Choi T, Kuriyama R, Rulon S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. *Science* 271:1744-1747

50. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. *Nature* 362:849-852

51. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. *Nature* 362:847-849

52. Lowe SW, Jacks T, Housman DE, Ruley HE (1994) Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. *Proc Natl Acad Sci USA* 91:2026-2030

53. Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. *Science* 265:2091-2093

54. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. *Nature* 379:88-91

55. Yahanda A, Bruner J, Donehower LA, Morrison R (1995) p53-deficient neonatal astrocytes as an in vitro model for glioblastoma development. *Mol Cell Biol* 15:4249-4259

56. Tennant RW, French JE, Spalding JW (1995) Identifying chemical carcinogens and assessing potential risk in short-term

bioassays using transgenic mouse models. *Environ Health Perspect* 103:942-950

57. Hursting S, Perkins SN, Phang JM (1994) Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. *Proc Natl Acad Sci USA* 91:7036-7040

58. Hursting SD, Perkins SN, Haines DC, Ward JM, Phang JM (1995) Chemoprevention of spontaneous tumorigenesis in p53-knockout mice. *Cancer Res* 55:3949-3953

59. Nicol CJ, Harrison ML, Laposia RR, Gimelstein IL, Wells PG (1995) A teratologic suppressor role for p53 in benzo[a]pyrene-treated transgenic p53-deficient mice. *Nature Genet* 10:181-187

60. Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S (1996) p53-dependent apoptosis suppresses radiation-induced teratogenesis. *Nature Med* 2:577-580

61. Wubah JA, Ibrahim MM, Gao X, Nguyen D, Pisano MM, Knudsen TB (1996) Teratogen-induced eye defects mediated by p53-dependent apoptosis. *Curr Biol* 6:60-69

62. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T (1994) Cooperative tumorigenic effects of germline mutations in Rb and p53. *Nature Genet* 7:480-484

63. Harvey M, Vogel H, Lee EYH-P, Bradley A, Donehower LA (1995) Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. *Cancer Res* 55:1146-1151

64. Elson A, Deng C, Campos-Torres J, Donehower LA, Leder P (1995) The MMTV/c-myc transgene and p53 null alleles collaborate to induce T-cell lymphomas, but not mammary carcinomas in transgenic mice. *Oncogene* 11:181-190

65. Blyth K, Terry A, O'Hara M, Baxter EW, Campbell M, Stewart M, Donehower LA, Onions DE, Neil JC, Cameron ER (1995) Synergy between a human c-myc transgene and p53 null genotype in murine thymic lymphomas: early and late effects of p53 loss. *Oncogene* 10:1717-1723

66. Marin MC, Hsu B, Meyn R, Donehower LA, El-Naggar AK, McDonnell TJ (1994) Evidence that p53 and bcl-2 are regulators of a common cell death pathway important for in vivo lymphomagenesis. *Oncogene* 9:3107-3112

67. Guido CJ, Williams CJ, Grandal I, Knowles G, Huang MTF, Danska JS (1996) V(D)J recombination activates a p53-dependent damage checkpoint in scid lymphocyte precursors. *Genes Dev* 10:2038-2054

68. Nacht M, Strasser A, Chan YR, Harris AW, Schlissel M, Bronson RT, Jacks T (1996) Mutations in the p53 and SCID genes cooperate in tumorigenesis. *Genes Dev* 10:2055-2066

69. Clarke AR, Cummings MC, Harrison DJ (1995) Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy. *Oncogene* 11:1913-1920

70. Kemp CJ, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. *Nature Genet* 8:66-69

71. Kemp CJ (1995) Hepatocarcinogenesis in p53-deficient mice. *Mol Carcinogen* 12:132-136

72. Jerry DJ, Butel JS, Donehower LA, Paulson EJ, Cochran C, Wiseman RW, Medina D (1994) Infrequent p53 mutations in 7,12-dimethylbenz[a]anthracene-induced mammary tumors in BALB/c and p53 hemizygous mice. *Mol Carcinogen* 9:175-183

73. Matzinger SA, Crist KA, Stoner GD, Anderson MW, Pereira MA, Steele VE, Kelloff GJ, Lubet RA, You M (1995) K-ras mutations in lung tumors from A/J and A/J \times TSG-p53 F1 mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and phenethyl isothiocyanate. *Carcinogenesis* 16:2487-2492