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Introduzione

In queste note propongo alcuni complementi alla teoria dell’integrazione definita
ed impropria proposta in aula ed in [MS].

Il primo paragrafo è dedicato alla generalizzazione della condizione di integrabi-
lità di una funzione limitata in un compatto ed alla sua interpretazione euristica.
Il secondo paragrafo è dedicato alla questione dell’estensione della nozione di inte-
grale definito ad alcuni casi non previsti dalla teoria di Riemann, i.e. alle funzioni
limitate su intervalli non compatti e alle funzioni non limitate. In tale paragrafo
sviluppiamo il cosiddetto integrale improprio, mettendone in luce le affinità e le dif-
ferenze con l’integrale di Riemann, ed accenniamo all’integrale a valor principale.
Nel terzo paragrafo definiamo il concetto di funzione sommabile, mostriamo che
funzioni sommabili sono anche impropriamente integrabili e forniamo dei semplici
criteri di sommabilità (basati su tecniche di confronto).

1. Condizioni di Integrabilità ed Interpretazione Geometrica
dell’Integrale Definito

1.1. Condizioni di Integrabilità e loro Interpretazione Euristica. Come
fatto in aula, scelta una decomposizione D = {a = x0 < x1 < · · · < xN−1 < xN =
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b} di un intervallo compatto [a, b], poniamo:
ampD := max

n=1,...,N
xn − xn−1

= max {x1 − x0, x2 − x1, . . . , xN − xN−1} .
Tale numero non negativo si chiama ampiezza della decomposizione D e rappre-
senta la lunghezza del più ampio intervallo tra quelli in cui punti consecutivi di D
suddividono [a, b].
Riguardando le dimostrazioni dei teoremi sull’integrabilità delle funzioni continue
e delle funzioni monotòne, ci accorgiamo che abbiamo provato molto più di quanto
ci aspettassimo: infatti, in entrambi i casi abbiamo mostrato che:

∀ε > 0, ∃δ > 0 : ∀D decomposizione di [a, b] con ampD < δ,

Sf (D)− sf (D) < ε
(1)

(in cui δ era fornito dal Teorema di Cantor sulla Continuità Uniforme oppure
δ = ε

|f(b)−f(a)|+1 ), mentre a rigore1 necessitassimo solo di affermare che:

∀ε > 0, ∃D decomposizione di [a, b] : Sf (D)− sf (D) < ε .

Ciò non è affatto strano, in quanto è possibile provare che la (1) è condizione
necessaria e sufficiente per l’integrabilità di una funzione limitata in un intervallo
compatto; in altri termini risulta:

Proposizione 1 (Condizione di Integrabilità)
Sia f : [a, b]→ R limitata in [a, b].
La f è integrabile secondo Riemann in [a, b] se e solo se vale la (1).

Per ottenere un’ulteriore condizione di integrabilità, al posto delle somme inte-
grali superiori ed inferiori possiamo considerare alcune somme integrali “intermedie”.
In particolare, scelta una decomposizione D = {a = x0 < x1 < · · · < xN−1 < xN =
b} e fissati arbitrariamente N punti ξ1, . . . , ξN ∈ [a, b] in guisa che:

(2) ∀n = 1, . . . , N, ξn ∈ [xn−1, xn] ,

poniamo:

σf (D; ξ1, . . . , ξN ) :=
N∑
n=1

f(ξn) · (xn − xn−1)

e chiamiamo tale quantità somma integrale di Riemann relativa ad f rispetto alla
decomposizione D ed ai punti ξ1, . . . , ξN . Dato che:

∀n = 1, . . . , N, mn := inf
[xn−1,xn]

f ≤ f(ξn) ≤ sup
[xn−1,xn]

f =: Mn ,

risulta evidente che sussistono le disuguaglianze:

sf (D) ≤ σf (D; ξ1, . . . , ξN ) ≤ Sf (D)

per ogni scelta di punti ξ1, . . . ξN che rispettino la (2); d’altro canto, se f è in-
tegrabile secondo Riemann in [a, b], anche il numero λ :=

∫ b
a
f(x) dx soddisfa le

disuguaglianze:
sf (D) ≤ λ ≤ Sf (D) .

Con manipolazioni algebriche immediate perveniamo facilmente a:

sf (D)− Sf (D) ≤ σf (D; ξ1, . . . , ξN )− λ ≤ Sf (D)− sf (D) ,

di modo che la disuguaglianza:

(3) |σf (D; ξ1, . . . , ξN )− λ| ≤ Sf (D)− sf (D)

1Cfr. con la definizione di funzione integrabile in [MS].
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vale per ogni decomposizione D ed ogni scelta dei punti ξ1, . . . , ξN che soddisfano
(2).
Dalla (3) e dalla Proposizione 1 ricaviamo immediatamente la prima parte della
dimostrazione del seguente:

Teorema 1 (Condizione di Integrabilità)
Sia f : [a, b]→ R limitata in [a, b].
La f è integrabile in [a, b] se e solo se esiste un numero λ ∈ R tale che:

∀ε > 0, ∃δ > 0 : ∀D decomposizione di [a, b] con ampD < δ

e ∀ξn ∈ [xn−1, xn] (n = 1, . . . , N), |σf (D; ξ1, . . . , ξN )− λ| < ε .

(4)

In tal caso, risulta: ∫ b

a

f(x) dx = λ .

Dimostrazione. Rimangono da provare l’implicazione ⇐, ossia che dalla (4) con-
segue l’integrabilità di f in [a, b], e l’uguaglianza tra λ e l’integrale di f esteso ad
[a, b].
Cominciamo dall’implicazione ⇐.
Occorre e basta dimostrare che in corrispondenza di ε > 0 è possibile determinare
una decomposizione D tale che:

Sf (D)− sf (D) < ε .

Fissiamo ε > 0: in corrispondenza di ε/4 > 0 esiste un δ > 0 tale che:

|σf (D; ξ1, . . . , ξN )− λ| < ε

4
per ogni decomposizione D con ampiezza minore di δ e per ogni scelta dei punti
ξn; fissata una siffatta decomposizione D e scelte due n-uple di punti ξ′1, . . . , ξ′N e
ξ′′1 , . . . , ξ

′′
N , per disuguaglianza triangolare abbiamo:

|σf (D; ξ′1, . . . , ξ
′
N )− σf (D; ξ′′1 , . . . , ξ

′′
N )| ≤ |σf (D; ξ′1, . . . , ξ

′
N )− λ|

+ |σf (D; ξ′′1 , . . . , ξ
′′
N )− λ|

<
ε

4
+
ε

4
=
ε

2
.

Per proprietà degli estremi superiore ed inferiore possiamo scegliere i punti ξ′n in
modo che Mn − ε

4(b−a) < f(ξ′n) ≤ Mn ed i punti ξ′′n in guisa che mn ≤ f(ξ′′n) <
mn + ε

4(b−a) ; conseguentemente, abbiamo:

σf (D; ξ′1, . . . , ξ
′
N ) =

N∑
n=1

f(ξn) · (xn − xn−1)

>

N∑
n=1

Mn · (xn − xn−1)− ε

4(b− a)

N∑
n=1

(xn − xn−1)

= Sf (D)− ε

4(b− a)
· (xN − x0)

= Sf (D)− ε

4
σf (D; ξ′′1 , . . . , ξ

′′
N ) < sf (D) +

ε

4
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da cui traiamo:

Sf (D)− sf (D) < σf (D; ξ′1, . . . , ξ
′
N )− σf (D; ξ′′1 , . . . , ξ

′′
N ) +

ε

2
.

Ne consegue:

Sf (D)− sf (D) < σf (D; ξ′1, . . . , ξ
′
N )− σf (D; ξ′′1 , . . . , ξ

′′
N )︸ ︷︷ ︸

< ε
2

+
ε

2

= ε ,

come volevamo.

Infine, proviamo l’uguaglianza λ =
∫ b
a
f(x) dx. Sfruttando la disuguaglianza trian-

golare troviamo:∣∣∣∣∣λ−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ |σf (D; ξ1, . . . , ξN )− λ|+

∣∣∣∣∣σf (D; ξ1, . . . , ξN )−
∫ b

a

f(x) dx

∣∣∣∣∣
per ogni decomposizione D ed ogni scelta di punti ξn soddisfacenti al (2).
Fissato ε > 0, in corrispondenza del numero positivo ε/2 esiste un δ > 0 tale che
per ogni decomposizione D con ampiezza minore di δ e per ogni scelta di punti
ξn scelti in conformità alla (2) valgono le (3) e (4); pertanto, possiamo fissare due
decomposizioni D′ e D′′ con ampiezza minore di δ in modo che:

|σf (D′; ξ′1, . . . , ξ
′
N )− λ| < ε

2∣∣∣∣∣σf (D′′; ξ′′1 , . . . , ξ
′′
N )−

∫ b

a

f(x) dx

∣∣∣∣∣ < ε

2
;

considerata la decomposizione D = D′ ∪D′′, anch’essa ha ampiezza minore di δ e
perciò, scelti ξn che soddisfano la (2) negli intervallini di D, risulta:

|σf (D; ξ1, . . . , ξN )− λ| < ε

2∣∣∣∣∣σf (D; ξ1, . . . , ξN )−
∫ b

a

f(x) dx

∣∣∣∣∣ < ε

2
;

conseguentemente risulta:∣∣∣∣∣λ−
∫ b

a

f(x) dx

∣∣∣∣∣ < ε

2
+
ε

2
= ε

per ogni ε > 0 e da ciò segue l’asserto. �

Il precedente Teorema ha un’interpretazione euristica2 particolarmente utile in
ambito fisico ed ingegneristico:

Osservazione 1: La (4) si può euristicamente interpretare come una relazione di
limite, cioè:

lim
ampD→0+

σf (D; ξ1, . . . , ξN ) =
∫ b

a

f(x) dx ,

la quale vale indipendentemente dalla scelta di punti ξn ∈ [xn−1, xn] (per n =
1, . . . , N).
Ciò significa che l’integrale di Riemann può essere approssimato arbitrariamente
bene usando una qualsiasi somma di Riemann σf (D; ξ1, . . . , ξN ) relativa ad una
decomposizione D con ampD sufficientemente piccola.

2Avvertiamo il lettore che essa può essere resa rigorosa generalizzando opportunamente la
nozione di limite; a tale proposito si può consultare [P].
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Questo rende più o meno lecito il passaggio dal discreto al continuo (nel gergo
dei Fisici) nell’analisi, ad esempio, del comportamento di sistemi meccanici: a tal
proposito si può vedere l’esempio riportato di seguito. �

Esempio 1: Consideriamo un’asta sottile A di lunghezza L > 0 formata da mate-
riale non necessariamente omogeneo.
Possiamo schematizzare l’asta come un intervallo [0, L] dell’asse reale, il cui mate-
riale si presenta con una densità lineare puntuale λ(x) > 0.
Consideriamo il problema di calcolare l’ascissa x̄A del centro di massa di A.
Scelta una decomposizione D dell’intervallo [0, L] con d := ampD “piccola”, pos-
siamo pensare gli intervallini [x0, x1], . . . , [xN−1, xN ] come “piccoli” tratti dell’asta
A; visto che d è “sufficientemente piccola”, possiamo approssimare ognuno dei tratti
[xn−1, xn] con un punto materiale Pn avente ascissa ξn ∈ [xn−1, xn] nel quale è
concentrata una massa µn; in tal modo, stiamo approssimando il sistema continuo
A con il sistema discreto S = {(ξn, µn), n = 1, . . . , N}.
Per noti fatti, il centro di massa del sistema discreto S ha ascissa che soddisfa la
seguente relazione:

(5) x̄S ·
N∑
n=1

µn =
N∑
n=1

µn · ξn ,

in cui la somma
∑N
n=1 µn rappresenta la massa totale µ del sistema.

Dato che i tratti in cui è divisa l’asta sono “sufficientemente piccoli”, possiamo
ritenere che la densità dello n-esimo tratto sia pressoché costante ed uguale alla
densità λ(ξn) calcolata nel punto ξn: in tal modo, la massa µn coincide col prodotto
λ(ξn)(xn − xn−1) e abbiamo:

µ ≈
N∑
n=1

λ(ξn) · (xn − xn−1)

= σλ(D; ξ1, . . . , ξN )

cioè µ si approssima con un’opportuna somma di Riemann relativa alla funzione
λ(x).
Analogamente, ogni addendo di

∑N
n=1 µn · ξn si può approssimare con λ(ξn)ξn ·

(xn − xn−1) e perciò:

N∑
n=1

µn · ξn ≈
N∑
n=1

λ(ξn) ξn · (xn − xn−1)

= σϕ(D; ξ1, . . . ξN )

cioè il secondo membro della (5) coincide con una somma di Riemann relativa alla
funzione ϕ(x) = xλ(x).
Infittendo sempre più la decomposizione D, i.e. mandando ampD → 0+, il sistema
discreto S approssima sempre meglio il sistema continuo A e possiamo ritenere che
il suo centro di massa x̄S approssimi sempre meglio il centro di massa x̄A; d’altro
canto, entrambe le somme σλ(D; ξ1, . . . , ξN ) e σϕ(D; ξ1, . . . ξN ) approssimano gli
integrali

∫ L
0
λ(x) dx ed

∫ L
0
ϕ(x) dx =

∫ L
0
xλ(x) dx.

Mettendo insieme i due comportamenti possiamo affermare che il centro di massa
di A soddisfa la relazione:

x̄A ·
∫ L

0

λ(x) dx =
∫ L

0

x λ(x) dx ,
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formalemente ottenuta passando al limite la (5) per ampD → 0+, da cui la regola:

x̄A =
1∫ L

0
λ(x) dx

·
∫ L

0

x λ(x) dx

che si usa nella pratica. ♦

Osservazione 2: L’ascissa del centro di massa di un sistema lineare esteso coincide
con la media integrale della funzione x sull’intervallo [0, L] pesata rispetto alla
densità lineare λ. �

1.2. Interpretazione Geometrica dell’Integrale Definito. Le considerazioni
che proponiamo qui di seguito sono puramente euristiche e non verranno sistemate
in un quadro teorico generale.
Tuttavia, con un po’ di sforzo, è possibile elaborare una teoria (la cosiddetta Teoria
della Misura di Peano3 – Jordan4) nell’ambito della quale tali considerazioni sono
del tutto lecite. Il lettore interessato ad approfondire questo tema può leggere [AT,
cap. XI].

Consideriamo una funzione f : [a, b] → R limitata ed integrabile secondo Rie-
mann su [a, b].
Abbiamo osservato a lezione che, se f(x) ≥ 0 ovunque in [a, b], le somme integra-
li inferiori sf (D) e le somme integrali superiori Sf (D) coincidono con l’area (nel
senso della Geometria Elementare) di alcuni insiemi piani detti plurirettangoli5: in
particolare, sf (D) coincide con l’area di un plurirettangolo P∗(D) “inscritto” nella
regione:

Rf =
{

(x, y) ∈ R2 : a ≤ x ≤ b e 0 ≤ y ≤ f(x)
}

(detta rettangoloide -o trapezoide- di base [a, b] relativo ad f) ed Sf (D) coincide
con l’area di un plurirettangolo P ∗(D) “circoscritto” a tale regione.
Abbiamo altresì osservato che tali misure approssimano (le Sf (D) per eccesso, le
sf (D) per difetto) quella che può essere a ragione chiamata l’area del rettangoloide
Rf e che all’infittirsi della decomposizione D deve perciò aversi:

lim
ampD→0

sf (D) = area(Rf ) = lim
ampD→0

Sf (D) .

Ora, dato che lim
ampD→0

sf (D) =
∫ b

a

f(x) dx = lim
ampD→0

Sf (D) e visto che ci aspet-

tiamo una sorta di unicità del limite anche (e soprattutto!) in questi ragionamenti
euristici, è evidente che: ∫ b

a

f(x) dx = areaRf ,

ossia l’integrale definito esteso ad [a, b] della funzione non negativa f restituisce
l’area del rettangoloide relativo ad f di base [a, b] (cfr. Fig. 1).

Cosa succede se f(x) ≤ 0 ovunque in [a, b]? Innanzitutto, notiamo che in tal caso
l’integrale definito

∫ b
a
f(x) dx è non positivo, dunque esso non può coincidere con

la misura di un’area6. . . Tuttavia, geometricamente la cosa sembra andare a posto

3Giuseppe Peano (1858 – 1932), matematico e logico italiano che ha fornito l’assiomatizzazione
completa dei numeri naturali. A lui è intitolato il Dipartimento di Matematica dell’Università di
Torino.

4Marie Ennemond Camille Jordan (1838 – 1922), matematico francese.
5Si chiama plurirettangolo ogni sottoinsieme del piano R2 che si ottiene giustapponendo un

numero finito di rettangoli coi lati paralleli agli assi.
6Perchè le aree nel senso della Geometria Elementare sono quantità ≥ 0.
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x

y

Rf

a b

Figura 1. Rettangoloide Rf di una funzione non negativa in [a, b].

come nel caso precedente a patto di cambiare qualche segno. Invero, sfruttando le
proprietà degli estremi inferiore e superiore, stavolta le quantità −Sf (D) = s−f (D)
e −sf (D) = S−f (D) approssimano l’area della regione:

R−f =
{

(x, y) ∈ R2 : a ≤ x ≤ b e 0 ≤ y ≤ −f(x)
}

cioè risulta lim
ampD→0

−sf (D) = area(R−f ) = lim
ampD→0

−Sf (D); dunque:∫ b

a

f(x) dx = − areaR−f .

Inoltre, se conveniamo di chiamare rettangoloide generalizzato la regione:

Rf =
{

(x, y) ∈ R2 : a ≤ x ≤ b e f(x) ≤ y ≤ 0
}

la regione compresa tra le rette di equazione x = a ed x = b, l’asse delle ascisse ed
il grafico di f (la quale stavolta è situata nel semipiano delle ordinate negative!), si
vede che Rf è simmetrico di R−f rispetto all’asse delle ascisse e dunque conserva
la stessa area di Rf ; da ciò segue che:∫ b

a

f(x) dx = − areaRf ,

cioè che l’integrale fornisce un’area con segno del rettangoloide generalizzato (cfr.
Fig. 2).

Consideriamo, infine, il caso in cui f può cambiare segno in [a, b].
Introduciamo le funzioni f± : [a, b] → R, dette rispettivamente parte positiva e
parte negativa di f ponendo:

f+(x) := max{0, f(x)} e f−(x) = min{0, f(x)} .

Distinguendo un po’ di casi si vede che:

• f+(x) = f(x) se e solo se f(x) ≥ 0 ed f+(x) = 0 se e solo se f(x) ≤ 0,

• f−(x) = f(x) se e solo se f(x) ≤ 0 ed f−(x) = 0 se e solo se f(x) ≥ 0,

• f(x) = f+(x) + f−(x) ovunque in [a, b],
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x

y

Rf

a b

Figura 2. Rettangoloide generalizzato Rf di una funzione non positiva in [a, b].

• |f(x)| = f+(x)− f−(x) ovunque in [a, b],

• f± sono limitate ed integrabili secondo Riemann in [a, b] se e solo se f lo è;

inoltre, il rettangoloide generalizzato di f , i.e. l’insieme:

Rf = {(x, y) ∈ R2 : f−(x) ≤ y ≤ f+(x)} ,
coincide con l’unione insiemistica dei due rettangoloidi Rf+ ed Rf− , i quali non si
sovrappongono (se non in alcuni tratti del bordo, che hanno area nulla).
Dato che: ∫ b

a

f+(x) dx = areaRf+∫ b

a

f−(x) dx = − areaRf−

abbiamo: ∫ b

a

f(x) dx =
∫ b

a

f+(x) dx+
∫ b

a

f−(x) dx

= areaRf+ − areaRf− ,
cosicché nel caso f cambi segno il suo integrale coincide con la somma algebrica di
due aree con segno, l’una (quella positiva) relativa al rettangoloide di f+, l’altra
(quella negativa) relativa a f− (cfr. Fig. 3).

Osservazione 3: Osserviamo esplicitamente che, anche nel caso generale in cui f
cambia segno in [a, b], l’integrale

∫ b
a
f(x) dx non coincide con la misura dell’area

del rettangoloide generalizzato di f .
Per lumeggiare tale circostanza, analizziamo il seguente esempio.
Sia f(x) := sinx definita in [0, 2π]. Il rettangoloide generalizzato di f è:

Rf = {(x, y) ∈ R2 : 0 ≤ x ≤ π e 0 ≤ y ≤ sinx}
∪ {(x, y) ∈ R2 : 2π ≤ x ≤ 2π e sinx ≤ y ≤ 0}

e si vede che esso ha area > 0. D’altra parte, risulta:∫ 2π

0

sinx dx = [− cosx]2π0 = −1 + 1 = 0 ,
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x

y

Rf−

Rf+

a b

Figura 3. Rettangoloide generalizzato Rf di una funzione che cambia
segno in [a, b].

cosicchè non è possibile risalire all’area di Rf sfruttando semplicemente l’integrale
di f . �

Osservazione 4: In generale, però, è possibile calcolare l’area di Rf sfruttando un
altro integrale.
Infatti, si ha: ∫ b

a

|f(x)| dx =
∫ b

a

f+(x) dx−
∫ b

a

f−(x) dx

= areaRf+ + areaRf−
= areaRf ,

cosicché l’area del rettangoloide generalizzato Rf coincide con l’integrale del valore
assoluto di f esteso ad [a, b], cioè areaRf = areaR|f |.
Ciò importa che nel caso precedente, i.e. f(x) := sinx con 0 ≤ x ≤ 2π, risulta:

areaRf =
∫ 2π

0

| sinx| dx

=
∫ π

0

sinx dx+
∫ 2π

π

− sinx dx

= [− cosx]π0 + [cosx]2ππ
= (1 + 1) + (1 + 1)
= 4 .

�

2. Integrali Impropri ed a Valore Principale

Nella pratica matematica pura ed applicata occorre spesso considerare integrali
definiti che non ricadono nell’ambito di applicabilità della teoria di Riemann.
Valgano i seguenti esempi:

Esempio 2: La probabilità che una misura con media m e deviazione standard
σ > 0 assuma valore maggiore di un dato M ∈ R si può esprimere mediante
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l’integrale: ∫ +∞

M

1
σ
√

2π
e−

(x−m)2

2σ2 dx

in cui l’integrando è continuo, ma è definito in un intervallo non compatto. ♦

Esempio 3: Gli integrali: ∫ 1

0

1√
x

dx ,
∫ 1/2

0

1
x log x

dx

sono di funzioni continue, ma esse né sono definite ovunque negli intervalli d’in-
tegrazione (perché non sono definite in 0) né rimangono limitate in essi (perché
divergono in 0). ♦

Esempio 4: L’integrale: ∫ +∞

−∞
arctanx dx

è l’integrale di una funzione continua e limitata, ma l’intervallo di integrazione non
è compatto. ♦

In questo paragrafo ci occupiamo del problema dell’estensione dei risultati sul-
l’integrazione definita in modo da comprendere anche i casi presentati negli esempi.

2.1. L’Integrale Improprio. Cominciamo a dare alcune definizioni:

Definizione 1
Sia f : [a, b[→ R (qui può essere anche b = +∞).
Si dice che f è impropriamente integrabile su [a, b[ se essa è integrabile secondo
Riemann su ogni compatto [α, β] ⊂ [a, b[ e se esiste finito il:

lim
x→b−

∫ x

a

f(t) d t .

In tal caso, si pone per definizione:∫ b

a

f(x) dx := lim
x→b−

∫ x

a

f(t) d t

e la quantità al primo membro si chiama integrale improprio di f esteso all’intervallo
[a, b[.

Definizione 2
Sia f :]a, b]→ R (in cui può essere pure a = −∞).
Si dice che f è impropriamente integrabile su ]a, b] se essa è integrabile secondo
Riemann su ogni compatto [α, β] ⊂]a, b] e se esiste finito il:

lim
x→a+

∫ b

x

f(t) d t .

In tal caso, si pone per definizione:∫ b

a

f(x) dx := lim
x→a+

∫ b

x

f(t) d t

e la quantità al primo membro si chiama integrale improprio di f esteso all’intervallo
]a, b].
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Osservazione 5: Notiamo esplicitamente che l’ipotesi di integrabilità sui compatti
[α, β] contenuti nel dominio assicura che f è limitata in ogni intervallo del tipo
[α, β]. Tuttavia, ciò non assicura in alcun modo che f sia limitata in tutto il suo
insieme di definizione.
Tale comportamento, ad esempio, è quello esibito dalle funzioni 1/x in ]0, 1] ed
1/(x log x) in ]0, 1/2]. �

Le precedenti due definizioni si possono combinare tra loro ottenendo variazioni
sufficienti a coprire ulteriori casi di interesse:

Definizione 3
Sia f :]a, b[→ R (in cui può aversi anche a = −∞ e b = +∞).
Si dice che f è impropriamente integrabile in ]a, b[ se esiste un punto ξ ∈]a, b[ tale
che f è impropriamente integrabile in ognuno dei sottointervalli ]a, ξ] e [ξ, b[.
In tal caso si pone:

∫ b

a

f(x) dx :=
∫ ξ

a

f(x) dx+
∫ b

ξ

f(x) dx

= lim
x→a+

∫ ξ

x

f(t) d t+ lim
y→b−

∫ y

ξ

f(t) d t

e la quantità al primo membro si chiama integrale improprio di f esteso ad ]a, b[.

Osservazione 6: L’esistenza di un punto ξ ∈]a, b[ in modo che f risulti impro-
priamente integrabile in ]a, ξ] ed in [ξ, b[ implica che per ogni punto x0 ∈]a, b[ la f
risulta impropriamente integrabile in ]a, x0] ed in [x0, b[.
Scelto arbitrariamente x0 ∈]a, b[ con x0 6= ξ (perché se x0 = ξ non c’è nulla da di-
mostrare!), allora o a < x0 < ξ oppure ξ < x0 < b; per fissare le idee, supponiamo
che x0 cada tra ξ e b. Per ipotesi, f è certamente integrabile in [ξ, x0] e dunque per
ogni x < ξ ed ogni y > x0 si ha:

∫ x0

x

f(t) d t =
∫ ξ

x

f(t) d t+
∫ x0

ξ

f(t) d t∫ y

x0

f(t) d t =
∫ y

ξ

f(t) d t−
∫ x0

ξ

f(t) d t

per proprietà additiva; quindi, il fatto che limiti lim
x→a+

∫ ξ

x

f(t) d t e lim
y→b−

∫ y

ξ

f(t) d t

esistano entrambi finiti implica l’esistenza e la finitezza di lim
x→a+

∫ x0

x

f(t) d t e

lim
y→b−

∫ y

x0

f(t) d t. Ciò importa che f è impropriamente integrabile in ]a, x0] ed in

[x0, b[. �

Osservazione 7: Osserviamo esplicitamente che se f è impropriamente integrabile
in ]a, b[, il valore dell’integrale improprio

∫ b
a
f(x) dx non dipende in alcun modo
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dalla scelta del punto x0: infatti, per proprietà additiva si ha:

lim
x→a+

∫ x0

x

f(t) d t+ lim
y→b−

∫ y

x0

f(t) d t = lim
x→a+

∫ ξ

x

f(t) d t+
∫ x0

ξ

f(t) d t

+ lim
y→b−

∫ y

ξ

f(t) d t−
∫ x0

ξ

f(t) d t

= lim
x→a+

∫ ξ

x

f(t) d t+ lim
y→b−

∫ y

ξ

f(t) d t .

�

Definizione 4
Siano c ∈ (a, b) ed f : (a, b)− {c} → R.7

Si dice che f è impropriamente integrabile in (a, b) se essa è impropriamente inte-
grabile in ognuno dei due sottointervalli (a, c[ e ]c, b).
In tal caso, si pone per definizione:∫ b

a

f(x) dx :=
∫ c

a

f(x) dx+
∫ b

c

f(x) dx

e la quantità al primo membro è detta integrale improprio di f esteso all’intervallo
(a, b).

Osservazione 8: La definizione precedente si generalizza in maniera del tutto ovvia
al caso in cui nell’intervallo (a, b) ci sia più di un punto c in cui f non è definita (o
attorno al quale f non è limitata).
Ad esempio, se f è definita in (a, b) − {c1, c2} (con a < c1 < c2 < b), allora f è
detta impropriamente integrabile in (a, b) se essa è impropriamente integrabile in
ogni sottointervallo (a, c1[, ]c1, c2[ e ]c2, b) ed in tal caso si pone:∫ b

a

f(x) dx =
∫ c1

a

f(x) dx+
∫ c2

c1

f(x) dx+
∫ b

c2

f(x) dx

con l’integrale al primo membro detto integrale improprio di f esteso ad (a, b). �

Ragionando come nell’Osservazione precedente, cioè combinando opportuna-
mente le definizioni appena date, si riesce a dare significato al simbolo di integrale
in una pletora di casi non coperti dalla teoria standard dell’integrale di Riemann.
Inoltre, si vede che l’integrale improprio gode anch’esso di alcune buone proprietà
algebriche: ad esempio, la proprietà additiva, la linearità ed i risultati di confron-
to rimangono valide anche nel caso di integrali impropri. Ciò, fondamentalmente,
discende dalle proprietà dei limiti e dalla seguente:

Osservazione 9: Consideriamo, a mo’ di modello, il caso dell’integrale improprio
di una funzione f impropriamente integrabile in [a, b[.
Detta F : [a, b[→ R la funzione integrale di f con piede in a, cioè quella definita in
[a, b[ ponendo:

F (x) :=
∫ x

a

f(t) d t , 8

l’integrabilità in senso improprio di f in [a, b[ equivale alla convergenza di F per
x→ b−; infatti, per definizione si ha:∫ b

a

f(x) dx = lim
x→b−

∫ x

a

f(t) d t = lim
x→b−

F (x) .

7Ricordo che col simbolo (a, b) si denota un qualsiasi intervallo di estremi a, b ∈ R̂.
8Si noti che la f è integrabile sul compatto [a, x], dunque la funzione integrale F è ben definita.
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Invece, la non integrabilità in senso improprio di f in [a, b[ equivale alla non rego-
larità od alla divergenza della funzione F per x→ b−.
Per questi motivi, si dice talvolta che f ha integrale convergente, oppure divergente
ovvero non regolare in b. �

È poi immediato provare la:

Proposizione 2
Siano a < b ∈ R ed f : [a, b[→ R integrabile impropriamente su [a, b[.
Se f si può prolungare su b in modo che il suo prolungamento f∗ sia limitato ed
integrabile secondo Riemann su [a, b], allora l’integrale di f∗ esteso ad [a, b] coincide
con l’integrale improprio di f esteso ad [a, b[, cioè risulta:∫ b

a

f∗(x) dx =
∫ b

a

f(x) dx .

Dimostrazione. Dato che f∗(x) = f(x) per ogni x ∈ [a, b[, dette F ∗ ed F le funzioni
integrali di f∗ ed f con piede in a, risulta:

F ∗(x) =
∫ x

a

f∗(t) d t =
∫ x

a

f(t) d t = F (x)

per ogni x ∈ [a, b[; visto che f∗ è limitata ed integrabile su [a, b], il Teorema
Fondamentale del Calcolo Integrale implica che F ∗ è continua in [a, b] e perciò:∫ b

a

f∗(x) dx = F ∗(b) = lim
x→b−

F ∗(x) = lim
x→b−

F (x) =
∫ b

a

f(x) dx ,

come volevamo. �

Mutatis mutandis, lo stesso argomento della dimostrazione precedente mostra
che in tutti gli altri casi si verifica la medesima cosa. Possiamo dunque affermare,
del tutto in generale, che vale il seguente fatto:

Teorema 2
Se una funzione f , definita in (a, b) con a < b ∈ R eccezion fatta al più per un
numero finito di punti, si può prolungare ad [a, b] ottenendo una funzione f∗ limitata
ed integrabile secondo Riemann in [a, b], allora l’integrale di Riemann di f∗ esteso
ad [a, b] coincide con l’integrale improprio di f esteso ad (a, b), cioè:∫ b

a

f∗(x) dx =
∫ b

a

f(x) dx .

Osservazione 10: Dal Teorema precedente consegue immediatamente che l’in-
tegrale improprio è una generalizzazione dell’integrale di Riemann.
Tuttavia, per alcuni motivi che presto vedremo, l’integrale improprio è una gene-
ralizzazione imperfetta dell’integrale di Riemann. �

2.2. Esempi Significativi.

Esempio 5: Consideriamo l’integrale:∫ 1

0

1
xα

dx

con α > 0, il quale è improprio perché l’integrando è definito in ]0, 1] e non si
mantiene limitato intorno a 0.
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Un semplice calcolo mostra che:∫ 1

x

1
tα

d t =
[

1
1− α

t1−α
]1
x

=
1

1− α
·
(
1− x1−α)

se α 6= 1, e che: ∫ 1

x

1
t

d t = [log |t|]1x = − log x

se α = 1; pertanto risulta:

lim
x→0+

∫ 1

x

1
tα

d t =

{
1

1−α , se 0 < α < 1
+∞ , se α ≥ 1

e perciò la funzione 1/xα è impropriamente integrabile in ]0, 1] se e solo se 0 < α < 1
ed il suo integrale vale: ∫ 1

0

1
xα

dx =
1

1− α
.

♦

Osservazione 11: Osserviamo esplicitamente che l’Esempio precedente si può usa-
re per stabilire la somabilità di funzioni potenze del tipo:

f(x) :=
1

|x− x0|α
,

con x0 ∈ R, in intervalli impropri che abbiano x0 come estremo.
Ad esempio, per studiare se f è integrabile in [x1, x0[ (con x1 < x0) possiamo
sfruttare l’integrazione per sostituzione per stabilire:∫ x0

x1

1
|x− x0|α

dx = lim
x→x−0

∫ x

x1

1
|t− x0|α

d t

τ=x0−t= lim
x→x−0

∫ x0−x

x0−x1

−1
| − τ |α

d τ

= lim
x→x−0

∫ x0−x1

x0−x

1
τα

d τ

y=x0−x= lim
y→0+

∫ x0−x1

y

1
τα

d τ

=
∫ x0−x1

0

1
τα

d τ

cosicché le funzioni potenza 1/|x − x0|α sono sempre integrabili intorno ad x0 se
0 < α < 1 e non lo sono per α ≥ 1. �

Esempio 6: Consideriamo l’integrale:∫ +∞

1

1
xα

dx

con α > 0, il quale è improprio perché l’integrando è definito in [1,+∞[, che non è
compatto.
Un semplice calcolo mostra che:∫ x

1

1
tα

d t =
[

1
1− α

t1−α
]x
1

=
1

1− α
·
(
x1−α − 1

)
se α 6= 1, e che: ∫ x

1

1
t

d t = [log |t|]x1 = log x
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se α = 1; pertanto risulta:

lim
x→+∞

∫ x

1

1
tα

d t =

{
1

α−1 , se α > 1
+∞ , se 0 < α ≤ 1

e perciò la funzione 1/xα è impropriamente integrabile in [1,+∞[ se e solo se α > 1
ed il suo integrale vale: ∫ +∞

1

1
xα

dx =
1

α− 1
.

♦

Esempio 7: Consideriamo l’integrale:∫ +∞

e

1
x logβ x

dx

improprio in quanto l’intervallo d’integrazione non è compatto.
Fissato un punto x > e, calcoliamo:∫ x

e

1
t logβ t

d t
u=log t

=
∫ log x

1

1
uβ

du

=
1

1− β
[
u1−β]log x

1

=
1

1− β

(
log1−β x− 1

)
se β 6= 1 e: ∫ ξ

x

1
t log t

d t
u=log t

=
∫ log x

1

1
u

du

= [log |u|]log x1

= log log x

se β = 1; dunque:

lim
x→+∞

∫ x

e

1
t logβ t

d t =

{
1

β−1 , se β > 1
+∞ , se 0 < β ≤ 1

;

conseguentemente, la funzione 1/(x logβ x) è impropriamente integrabile in [e,+∞[
solo se β > 1 e: ∫ +∞

e

1
x logβ x

dx =
1

β − 1
.

♦

Esempio 8: Consideriamo l’integrale:∫ e

1

1
x logβ x

dx

con β > 0, il quale è improprio perché l’integrando è definito in ]1, e] non compatto
e non si mantiene limitato intorno a 1.
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Fissato un punto 1 < x < e, calcoliamo:∫ e

x

1
t logβ t

d t
u=log t

=
∫ 1

log x

1
uβ

du

=
1

1− β
[
u1−β]1

log x

=
1

1− β

(
1− log1−β x

)
se β 6= 1 e: ∫ e

x

1
t log t

d t
u=log t

=
∫ 1

log x

1
u

du

= [log |u|]1log x
= − log | log x|

se β = 1; dunque:

lim
x→1+

∫ e

x

1
t logβ t

d t =

{
1

1−β , se 0 < β < 1
+∞ , se β ≥ 1

.

Conseguentemente, la funzione 1/(x logβ x) è impropriamente integrabile in ]1, e]
solo se 0 < β < 1 ed in tal caso si ha:∫ e

1

1
x logβ x

dx =
1

1− β
.

♦

Esempio 9: Consideriamo l’integrale:∫ +∞

1

1
x logβ x

dx

che è improprio perché l’integrando è definito in ]1,+∞[ non compatto e non è
limitato intorno ad 1. Per quanto detto più sopra, gli integrali impropri:∫ e

1

1
x logβ x

dx e
∫ +∞

e

1
x logβ x

dx

esistono, rispettivamente, solo se 0 < β < 1 e solo se β > 1; dunque, poiché
non esiste alcun valore di β per il quale esistano contemporaneamente entrambi gli
integrali impropri, concludiamo che 1/(x logβ x) non è impropriamente integrabile
in ]1,+∞[. ♦

Esempio 10: Consideriamo l’integrale:∫ +∞

−∞
arctanx dx ,

il quale è improprio perché la funzione integranda è definita in un intervallo non
compatto.
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Fissato per comodità ξ = 0, per x < 0 < y abbiamo:∫ 0

x

arctan t d t = [t arctan t]0x −
∫ 0

x

t

1 + t2
d t

=
[
t arctan t− 1

2
log(1 + t2)

]0
x

=
1
2

log(1 + x2)− x arctanx ,∫ y

0

arctan t d t = [t arctan t]y0 −
∫ y

0

t

1 + t2
d t

=
[
t arctan t− 1

2
log(1 + t2)

]y
0

= y arctan y − 1
2

log(1 + y2) ,

cosicché:

lim
x→−∞

∫ 0

x

arctan t d t = −∞

lim
y→+∞

∫ y

0

arctan t d t = +∞

e perciò la funzione arctanx non è impropriamente integrabile in R. ♦

2.3. L’Integrale a Valore Principale di Cauchy *. Un’ulteriore generalizzazio-
ne dell’integrale di Riemann si ottiene considerando quello che si chiama integrale
“a valore principale” (o integrale “di Cauchy”):

Definizione 5
Siano a < b ∈ R, c ∈]a, b[ ed f : [a, b]− {c} → R.
Si dice che f è integrabile in [a, b] nel senso del valore principale (o nel senso di
Cauchy) se e solo se essa è integrabile secondo Riemann in ogni intervallo del tipo
[a, c− r] e [c+ r, b] (con r > 0 “piccolo”) e se esiste finito il:

lim
r→0+

∫ c−r

a

f(x) dx+
∫ b

c+r

f(x) dx .

In tal caso si pone:

v.p.
∫ b

a

f(x) dx = lim
r→0+

∫ c−r

a

f(x) dx+
∫ b

c+r

f(x) dx

ed il primo membro si chiama integrale a valore principale di f esteso all’intervallo
[a, b].

Definizione 6
Siano a < b ∈ R ed f :]a, b[→ R.
Si dice che f è integrabile in ]a, b[ nel senso del valore principale (o nel senso di
Cauchy) se essa è integrabile secondo Riemann in ogni intervallo [a+ r, b− r] (con
r > 0 “piccolo”) e se esiste finito il:

lim
r→0+

∫ b−r

a+r

f(x) dx .

In tal caso si pone:

v.p.
∫ b

a

f(x) dx = lim
r→0+

∫ b−r

a+r

f(x) dx ,
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ed il primo membro si chiama integrale a valore principale di f esteso ad ]a, b[.

Definizione 7
Sia f : R→ R.
Si dice che f è integrabile in R nel senso del valore principale (o nel senso di
Cauchy) se essa è integrabile secondo Riemann in ogni intervallo del tipo [−R,R]
(con R > 0) e se esiste finito il:

lim
R→+∞

∫ R

−R
f(x) dx .

In tal caso, si pone:

v.p.
∫ +∞

−∞
f(x) dx = lim

R→+∞

∫ R

−R
f(x) dx

ed il primo membro si chiama integrale a valore principale di f esteso ad R.

Osservazione 12: Come nei casi precedenti, anche le Definizioni 5 – 7 possono
essere combinate per ottenere la definizione dell’integrale a valore principale in casi
non coperti dalle stesse.
Ad esempio, l’integrale a valore principale della funzione 1/(x2 − 1) esteso ad R si
definisce ponendo:

v.p.
∫ +∞

−∞

1
x2 − 1

dx

= lim
R→+∞,r→0+

∫ −1−r

−R
f(x) dx+

∫ 1−r

−1+r

f(x) dx+
∫ R

1+r

f(x) dx .

�

Osservazione 13: La differenza principale tra l’integrale improprio e l’integrale a
valore principale è che per il calcolo di quest’ultimo si omettono dal calcolo o si
utilizzano per il calcolo intervalli con un certo grado di simmetria.
Per chiarire tale affermazione, soffermiamoci dapprima sul caso di una funzione
f : R → R integrabile secondo Riemann su ogni compatto contenuto in R. Nel
calcolo dell’integrale improprio di f si considera, in fin dei conti, l’integrale di f
esteso ad un qualsiasi intervallo [x, y], i.e.:∫ y

x

f(t) d t ,

e poi si mandano indipendentemente x→ −∞ e y → +∞; d’altra parte, nel calcolo
dell’integrale a valore principale di f si considera l’integrale di Riemann di f esteso
ad intervalli simmetrici [−R,R], cioè:∫ R

−R
f(t) d t

e poi si manda R→ +∞.
Analogamente, consideriamo una funzione f : [a, b] − {c} → R limitata ed inte-
grabile secondo Riemann sui compatti contenuti in [a, c[ ed in ]c, b]. Nel calcolo
dell’integrale improprio di f si considera la somma:∫ x

a

f(t) d t+
∫ b

y

f(t) d t ,

il che equivale ad escludere dal computo dell’integrale il generico intervallo ]x, y[⊆
[a, b] contenente il punto “singolare” c, e successivamente si mandano indipendente-
mente x→ c− ed y → c+; invece, nel calcolo dell’integrale a valore principale di f



COMPLEMENTI SULL’INTEGRAZIONE DEFINITA 19

si considera la somma: ∫ c−r

a

f(t) d t+
∫ b

c+r

f(t) d t ,

il che equivale ad escludere dal computo dell’integrale il generico intorno simmetrico
]c − r, c + r[⊆ [a, b] contenente il punto “singolare” c, e successivamente si manda
r → 0+.
Considerazioni del tutto simili valgono nel caso di f :]a, b[→ R, in cui si usa per
calcolare l’integrale a valore principale l’intervallo [a+ r, b− r] simetrico rispetto al
punto medio a+b

2 .
Quindi, in generale, nei casi base possiamo affermare che l’integrale a valore prin-
cipale di f si calcola come quello improprio, ma aggirando i “punti singolari” od
avvicinandosi ad essi in maniera simmetrica. �

L’Osservazione precedente mostra che l’integrale a valore principale può essere
considerato come un caso particolare di integrale improprio; ciò è vero in generale
ed il risultato che segue getta luce sul legame tra i due tipi di integrali:

Proposizione 3
Se f è integrabile in senso improprio in (a, b) allora essa è integrabile anche nel
senso del valore principale ed i due integrali coincidono, i.e.:

v.p.
∫ b

a

f(x) dx =
∫ b

a

f(x) dx .

Dimostrazione. Facciamo la dimostrazione nel caso coperto dalla Definizione 5.
Supponiamo che f : [a, b] − {c} → R sia impropriamente integrabile in [a, b]: ciò,
per definizione significa che esistono i due integrali impropri:∫ c

a

f(x) dx = lim
x→c−

∫ x

a

f(t) d t e
∫ b

c

f(x) dx = lim
y→c+

∫ b

y

f(t) d t ;

facendo nei due limiti i cambiamenti di variabile x = c− r ed y = c+ r, si ottiene:∫ c

a

f(x) dx = lim
r→0+

∫ c−r

a

f(t) d t∫ b

c

f(x) dx = lim
r→0+

∫ b

c+r

f(t) d t ,

onde, visti i teoremi sulle operazioni coi limiti, traiamo:

v.p.
∫ b

a

f(x) dx = lim
r→0+

∫ c−r

a

f(x) dx+
∫ b

c+r

f(x) dx

=
∫ c

a

f(x) +
∫ b

c

f(x)

=
∫ b

a

f(x) dx

che è la tesi. �

Il viceversa, in generale, non vale; in altre parole, esistono funzioni integrabili nel
senso del valore principale che non sono dotate di integrale improprio. Gli esempi
che seguono illustrano il verificarsi di tale circostanza.

Esempio 11: Abbiamo già mostrato che arctanx non è impropriamente integrabile
in R.
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D’altra parte, la disparità dell’integrando rende di banale verifica l’uguaglianza:

v.p.
∫ +∞

−∞
arctanx dx = lim

R→+∞

∫ R

−R
arctanx dx = 0 ,

cosicché arctanx è integrabile su R nel senso del valore principale. ♦

Esempio 12: Abbiamo già osservato che la funzione 1/x non è impropriamente
integrabile in ]0, 1] e ciò importa che essa non è integrabile in senso improprio
nemmeno sull’intervallo [−1, 1].
D’altra parte, la disparità dell’integrando rende di banale verifica l’uguaglianza:

v.p.
∫ 1

−1

1
x

dx = lim
r→0+

∫ −r
−1

1
x

dx+
∫ 1

r

1
x

dx = 0 ,

cosicché 1/x è integrabile su [−1, 1] nel senso del valore principale. ♦

3. Criteri d’Integrabilità Impropria

3.1. Criterio di Convergenza di Cauchy. Una volta capito che l’integrabilità in
senso improprio equivale alla convergenza di opportune funzioni integrali, possiamo
stabilire un criterio di integrabilità basato sul criterio di convergenza di Cauchy.
Prendiamo ad esempio un caso modello, potendosi il discorso generalizzare in
maniera abbastanza immediata:

Teorema 3 (Criterio di Cauchy per l’Integrale Improprio)
Sia f : [a, b[→ R (qui può essere anche b = +∞) una funzione integrabile secondo
Riemann sui compatti [α, β] ⊂ [a, b[.
La f è impropriamente integrabile in [a, b[ se e solo se è soddisfatta la seguente
proprietà:

(6) ∀ε > 0, ∃I intorno di b : ∀x1, x2 ∈ [a, b[∩I,
∣∣∣∣∫ x2

x1

f(t) d t
∣∣∣∣ < ε .

Dimostrazione. Abbiamo già osservato che f è impropriamente integrabile su [a, b[
se e solo se la funzione integrale F con piede in a è convergente in b (da sinistra
ovviamente); d’altra parte, tale funzione è convergente in b se e solo se essa soddisfa
la proprietà di Cauchy:

∀ε > 0 : ∃I intorno di b : ∀x1, x2 ∈ [a, b[∩I, |F (x2)− F (x1)| < ε ,

la quale coincide con la (6) per la proprietà additiva dell’integrale, che assicura:

F (x2)− F (x1) =
∫ x2

x1

f(t) d t .

�

Il Criterio di Cauchy è difficilmente applicabile nella pratica ma le sue conse-
guenze, come vedremo, sono di vasta portata. Una delle prime conseguenze è quella
riportata nella seguente:

Osservazione 14: Dal Criterio di Cauchy segue immediatamente che se b ∈ R ed
f : [a, b[→ R è limitata intorno a b, allora f è impropriamente integrabile in [a, b[.
Infatti, se esistono M ≥ 0 e δ′ > 0 tale che |f(x)| ≤ M in [a, b[∩]b − δ′, b + δ′[, a
patto di prendere x1 < x2 ∈ [a, b[∩]b − δ′, b + δ′[ per disuguaglianza triangolare e
proprietà di confronto abbiamo:∣∣∣∣∫ x2

x1

f(x) dx
∣∣∣∣ ≤ ∫ x2

x1

|f(x)| dx ≤M(x2 − x1) ;
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in corrispondenza di ε > 0 è possibile determinare δ = min{δ′, ε
M+1} > 0 in modo

che per ogni x1 < x2 ∈ [a, b[∩]b− δ, b+ δ[ si ha:∣∣∣∣∫ x2

x1

f(x) dx
∣∣∣∣ ≤ M

M + 1
ε < ε ,

perciò f soddisfa il Criterio di Cauchy per l’Integrale ed è impropriamente integra-
bile in [a, b[. �

3.2. Criteri di Integrabilità per Funzioni non negative. Una delle classi di
funzioni che maggiormente ci interessano è quella costituita dalle funzioni non nega-
tive nel proprio intervallo di definizione. L’interesse in tali funzioni risiede nel fatto
che esse godono di numerose buone proprietà rispetto all’integrazione impropria.
Ciò è, a ben vedere, conseguenza del seguente e semplicissimo:

Lemma 1 (Monotònia delle Funzioni Integrali)
Siano f : (a, b) → R una funzione limitata ed integrabile sui compatti contenuti in
(a, b) ed x0 ∈ (a, b).
Posto:

F (x) :=
∫ x

x0

f(t) d t

per x ∈ (a, b), se f(x) ≥ 0 [risp. ≤ 0] ovunque in (a, b) allora F è crescente [risp.
decrescente] in (a, b).

Dimostrazione. Facciamo la dimostrazione nel caso f(x) ≥ 0 ovunque.
Scelti x1 < x2 ∈ (a, b), per proprietà additiva e per confronto abbiamo:

F (x2)− F (x1) =
∫ x2

x0

f(t) d t−
∫ x1

x0

f(t) d t

=
∫ x2

x1

f(t)︸︷︷︸
≥0

d t

≥ 0

sicché F (x1) ≤ F (x2). �

Il Lemma 1 implica che la funzione integrale:

F (x) :=
∫ x

a

f(t) d t

è monotòna, dunque regolare in b; pertanto, l’integrale improprio
∫ b
a
f(x) dx o è

convergente, cosicché f è impropriamente integrabile in [a, b[, oppure è divergente,
ed f non è impropriamente integrabile in [a, b[.

Un’altra conseguenza del Lemma 1 è il fondamentale:

Teorema 4 (Criterio del Confronto)
Siano f, g : [a, b[→ R funzioni integrabili sui compatti contenuti in [a, b[, ivi non
negative e tali che f(x) ≤ g(x) in [a, b[.
Valgono i seguenti fatti:

i) se g è impropriamente integrabile in [a, b[, tale è anche f e risulta:∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

ii) se f non è impropriamente integrabile in [a, b[, allora anche g non lo è.
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Dimostrazione. Dette F e G, rispettivamente, le funzioni integrali di f e g con
piede in a, F e G sono crescenti in [a, b[ e perciò sono entrambe regolari in b e
tendono al proprio estremo superiore.
Proviamo la i. Per ogni x ∈ [a, b[ si ha:

F (x) ≤ G(x) ≤ lim
x→b−

∫ x

a

g(t) d t =
∫ b

a

g(x) dx ,

quindi l’integrale improprio di g è un maggiorante di F ; ciò importa che F converge
in b e che: ∫ b

a

f(x) dx = lim
x→b−

F (x) ≤
∫ b

a

g(x) dx ,

come volevamo.
Proviamo la ii. Per confronto, abbiamo:

F (x) =
∫ x

a

f(t) d t ≤
∫ x

a

g(t) d t = G(x)

in [a, b[; per monotònia, se f non è impropriamente integrabile in [a, b[, risulta
F (x)→ +∞ per x→ b− e ciò implica, per confronto, G(x)→ +∞; dunque g non
è impropriamente integrabile in [a, b[. �

Osservazione 15: L’ipotesi f(x) ≤ g(x) in [a, b[ può essere leggermente indeboli-
ta, richiedendo che la disuguaglianza sia soddisfatta solo in un opportuno intorno
sinistro [b− δ, b[. Infatti, fissato x ∈]b− δ, b[ troviamo:

F (x) =
∫ x

a

f(t) d t

=
∫ b−δ

a

f(t) d t+
∫ x

b−δ
f(t)︸︷︷︸
≤g(t)

d t

≤
∫ b−δ

a

f(t) d t+
∫ x

b−δ
g(t) d t

=
∫ b−δ

a

f(t) d t−
∫ b−δ

a

g(t) d t︸ ︷︷ ︸
=:C

∫ x

a

g(t) d t

= C +G(x) ,

cosicché se G converge in b anche F vi converge, dunque f è impropriamente inte-
grabile in [a, b[, e viceversa se F diverge in b anche G vi diverge, cosicché g non è
impropriamente integrabile in [a, b[. �

Il Criterio del Confronto ha una versione asintotica, la quale risulta molto utile
nelle applicazioni:

Proposizione 4 (Criterio del Confronto Asintotico)
Siano f, g : [a, b[→ R funzioni integrabili sui compatti contenuti in [a, b[, ivi non
negative e tali che:

lim
x→b−

f(x)
g(x)

= l ∈]0,+∞[ .

allora o f e g sono entrambe integrabili impropriamente in [a, b[ oppure entrambe
non lo sono.
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Dimostrazione. Dalla definizione di limite con ε = l
2 > 0 segue immediatamente

che esiste un δ > 0 tale che:∣∣∣∣f(x)
g(x)

− l
∣∣∣∣ < l

2
⇒ l

2
g(x) < f(x) <

3l
2
g(x)

per ogni x ∈ [a, b[∩]b− δ, b+ δ[; detto ξ un punto di [a, b[∩]b− δ, b+ δ[, le disugua-
glianze l

2 g(x) < f(x) < 3l
2 g(x) valgono in [ξ, b[ e ciò, per il Criterio del Confronto,

implica la contemporanea convergenza o divergenza dei due integrali impropri:∫ b

ξ

f(x) dx e
∫ b

ξ

g(x) dx.

La tesi segue per proprietà additiva dell’integrale. �

Osservazione 16: Nelle ipotesi del Criterio del Confronto Asintotico abbiamo sup-
posto tacitamente che g(x) > 0 almeno in un opportuno intorno sinistro di b (altri-
menti, la funzione f(x)/g(x) non sarebbe ben definita intorno a b).
Volendo ovviare a questo fatto, è possibile sostituire l’ipotesi:

lim
x→b−

f(x)
g(x)

= l ∈]0,+∞[ .

con la relazione f(x) = lg(x) + o
(
g(x)

)
per x→ b. �

Il Criterio del Confronto Asintotico ha come pressoché immediata conseguenza
due criteri di integrabilità basati sull’ordine di infinito/infinitesimo.

Proposizione 5 (Criterio dell’Ordine di Infinito)
Siano a < b ∈ R ed f : [a, b[→ R una funzione non negativa in [a, b[ ed integrabile
sugli intervalli [α, β] ⊆ [a, b[.
Se f è un infinito in b d’ordine p > 0, i.e.:

lim
x→b−

|x− b|p f(x) = l ∈]0,+∞[ ,

allora:

(1) se p < 1, allora f è impropriamente integrabile in [a, b[;

(2) se p ≥ 1, allora f non è impropriamente integrabile in [a, b[.

Proposizione 6 (Criterio dell’Ordine di Infinitesimo)
Siano a ∈ R ed f : [a,+∞[→ R una funzione non negativa in [a,+∞[ ed integrabile
sugli intervalli [α, β] ⊆ [a,+∞[.
Se f è un infinitesimo in +∞ d’ordine p > 0, i.e.:

lim
x→+∞

xp f(x) = l ∈]0,+∞[ ,

allora:

(1) se p > 1, allora f è impropriamente integrabile in [a,+∞[;

(2) se p ≤ 1, allora f non è impropriamente integrabile in [a,+∞[.

Proviamo il primo dei due, potendosi ragionare analogamente per l’altro.
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Dimostrazione. Supponiamo che |x− b|pf(x)→ l > 0 per x→ b−.
Per definizione di limite, in corrispondenza di ε = l/2 esiste δ > 0 tale che per ogni
x ∈ [b− δ, b[ risulta:

||x− b|pf(x)− l| < l

2
⇒ l

2(b− x)p
≤ f(x) ≤ 3l

2(b− x)p
.

Se p < 1, dalla disuguaglianza superiore segue che f è maggiorata da una funzione
potenza impropriamente integrabile in [b− δ, b[ (cfr. Esempio 5 ed Osservazione
11) e tanto basta per concludere l’integrabilità di f in [a, b[ via il Criterio del
Confronto.
Analogamente, se p ≥ 1, dalla disuguaglianza inferiore segue che f è minorata da
una funzione potenza non impropriamente integrabile in [b − δ, b[ (cfr. Esempio 5
ed Osservazione 11) e tanto basta per concludere la non integrabilità di f in [a, b[
per confronto. �

Le ipotesi delle Proposizioni precedenti si possono limare un po’ per includere
qualche caso d’interesse; infatti, vale il:

Teorema 5 (Criterio dell’Ordine di Infinito Migliorato)
Siano a < b ∈ R ed f : [a, b[→ R una funzione non negativa in [a, b[ ed integrabile
in ogni [α, β] ⊆ [a, b[.
Se f è un infinito d’ordine inferiore ad un p < 1 in b, allora f è impropriamente
integrabile in [a, b[.
Se f è un infinito d’ordine non inferiore ad 1 in b, allora f non è impropriamente
integrabile in [a, b[.

Teorema 6 (Criterio dell’Ordine di Infinitesimo Migliorato)
Sia f : [a,+∞[→ R una funzione non negativa in [a,+∞[ ed integrabile in ogni
[α, β] ⊆ [a,+∞[.
Se f è un infinitesimo d’ordine superiore ad un p > 1 in +∞, allora f è impro-
priamente integrabile in [a,+∞[.
Se f è un infinitesimo d’ordine non superiore ad 1 in +∞, allora f non è impro-
priamente integrabile in [a,+∞[.

Osservazione 17: Ricordiamo che una funzione non negativa f è un infinito d’or-
dine non inferiore ad 1 in b se e solo se una minorazione del tipo

|x− b| f(x) ≥ m
con m > 0 sussiste in un opportuno intorno sinistro di b.
Analogamente, una funzione non negativa f è un infinitesimo d’ordine non superiore
ad 1 in +∞ se e solo se una minorazione del tipo:

|x| f(x) ≥ m
con m > 0 sussiste in un opportuno intorno sinistro di +∞. �

Proviamo di nuovo il primo, potendosi ragionare analogamente per l’altro.

Dimostrazione. Supponiamo f sia un infinito d’ordine inferiore ad 1/|x − b|p con
p < 1 per x→ b−, ossia che:

lim
x→b−

|x− b|pf(x) = 0 .

In corrispondenza di ε = 1 possiamo determinare un intorno sinistro di b in cui
risulta:

|x− b|p f(x) < 1 ⇒ f(x) <
1

|x− b|p
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con p < 1; da ciò e dal Criterio del Confronto si trae l’integrabilità di f in [a, b[.
Analogamente, supponiamo che f sia un infinito d’ordine non inferiore ad 1 in b:
ciò accade quando esiste un intorno sinistro di b in cui risulta:

|x− b| f(x) ≥ m ⇒ f(x) ≥ m

|x− b|
;

da ciò e dal Criterio del Confronto si trae che f non è integrabile in [a, b[. �

Esempio 13: Il Criterio dell’Ordine di Infinitesimo Migliorato si può applicare, ad
esempio, per stabilire che le funzioni:

| sinx|
x2

e
| cosx|
x2

sono impropriamente integrabili su [a,+∞[ (con a > 0).
Infatti, entrambe le funzioni sono continue (e dunque integrabili sugli intervalli
compatti contenuti in [a,+∞[) ed infinitesime all’infinito d’ordine superiore a 3/2 >
1. ♦

Esempio 14: Più in generale, le funzioni:

| sinx|
xα

e
| cosx|
xα

sono impropriamente integrabili su [a,+∞[ (con a > 0) se α > 1 e non lo sono se
α < 1.
Infatti, entrambe le funzioni sono continue (e dunque integrabili sugli intervalli com-
patti contenuti in [a,+∞[) ed infinitesime all’infinito d’ordine superiore a α+1

2 > 1
se α > 1; mentre sono infinitesime d’ordine non superiore ad 1 se α < 1. ♦

Osservazione 18: Per α = 1 si dimostra che entrambe le funzioni dell’Esempio
precedente non sono impropriamente integrabili su intervalli del tipo [a,+∞[ (con
a > 0).
Proviamo, a titolo d’esempio, che | sin x|x non è integrabile in senso improprio su
[π/2,+∞[.
Innanzitutto, osserviamo che, essendo | sin x|x ≥ 0 ovunque in [π/2,+∞[, l’integrale
improprio di tale funzione è regolare in +∞ e che il suo valore può, a norma del
Teorema Ponte, essere calcolato scegliendo un’arbitraria successione Rn → +∞ e
passando la successione di termine generale

∫ Rn
π/2

| sin x|
x dx al limite per n→ +∞.

Consideriamo Rn = nπ con n ∈ N− {0} e la successione di termine generale:

In :=
∫ nπ

π/2

| sinx|
x

dx .
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Tenendo presente che la funzione 1/x è decrescente, abbiamo:

In =
∫ π

π/2

| sinx|
x

dx︸ ︷︷ ︸
=:C

+
n−1∑
k=1

∫ (k+1)π

kπ

| sinx|
x

dx

≥ C +
n−1∑
k=1

∫ (k+1)π

kπ

| sinx|
(k + 1)π

dx

= C +
n−1∑
k=1

1
(k + 1)π

∫ (k+1)π

kπ

| sinx| dx

= C +
n−1∑
k=1

1
(k + 1)π

∫ (k+1)π

kπ

(−1)k sinx dx

= C +
n−1∑
k=1

1
(k + 1)π

(−1)k
[

cos(kπ)− cos
(
(k + 1)π

)]
= C +

n−1∑
k=1

1
(k + 1)π

(−1)k
[
(−1)k2

]
= C +

n−1∑
k=1

2
(k + 1)π

= C +
2
π

n−1∑
k=1

1
k + 1

h=k+1= C +
2
π

n∑
h=2

1
h

= C − 2
π︸ ︷︷ ︸

=C′

+
2
π

n∑
h=1

1
h

;

ne consegue che In ≥ C ′ + 2
π sn, in cui C ′ è una costante ed sn è la somma

parziale n-esima della serie armonica [DM, § 1.4]. Dato che la serie armonica
diverge positivamente, da In ≥ C ′ + 2

π sn per confronto segue In → +∞; dunque:

lim
x→+∞

∫ x

π/2

| sin t|
t

d t x=nπ= lim
n→+∞

∫ nπ

π/2

| sin t|
t

d t

= lim
n→+∞

In

= +∞ ;

e perciò la funzione | sin x|x non è impropriamente integrabile in [a,+∞[. �

3.3. Funzioni Sommabili e Criteri di Sommabilità. La seguente definizione
è fondamentale:

Definizione 8 (Funzioni Sommabili)
Si dice che una funzione f è sommabile in (a, b) se e solo se la funzione |f | è
impropriamente integrabile in (a, b).

L’importanza della precedente definizione risiede nel seguente:
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Teorema 7 (Criterio di Integrabilità per Funzioni Sommabili)
Se f è sommabile in (a, b), allora essa è pure impropriamente integrabile in (a, b)
e risulta: ∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

∣∣f(x)
∣∣ dx .

Dimostrazione. Consideriamo, come modello, il caso di una funzione f : [a, b[→ R.
Dato che |f | è sommabile in [a, b[, per il Criterio di Cauchy per l’integrale improprio
abbiamo:

∀ε > 0, ∃I intorno di b : ∀x1, x2 ∈ [a, b[∩I,
∣∣∣∣∫ x2

x1

∣∣f(t)
∣∣ d t

∣∣∣∣ < ε

e dalla disuguaglianza triangolare per l’integrale di Riemann:∣∣∣∣∫ x2

x1

f(t) d t
∣∣∣∣ ≤ ∣∣∣∣∫ x2

x1

∣∣f(t)
∣∣ d t

∣∣∣∣
segue immediatamente che per l’integrale di f vale il Criterio di Cauchy ; dunque
f è impropriamente integrabile in [a, b[.
Per mostrare la disuguaglianza, basta ricordare che:∣∣∣∣∫ x

a

f(t) d t
∣∣∣∣ ≤ ∫ x

a

∣∣f(t)
∣∣ d t

e l’asserto segue passando al limite per x→ b−. �

Osservazione 19 (Funzioni Integrabili ma non Sommabili): Notiamo esplicita-
mente che si possono costruire esempi di funzioni impropriamente integrabili su un
intervallo ma ivi non sommabili. Pertanto il Teorema esprime una condizione
sufficiente, ma nient’affatto necessaria, all’integrabilità impropria.
Per lumeggiare tale circostanza, consideriamo l’integrale improprio:∫ +∞

π/2

sinx
x

dx .

Sfruttando la definizione con il limite ed integrando per parti con fattore differen-
ziale sinx, troviamo:∫ +∞

π/2

sinx
x

dx = lim
R→+∞

∫ R

π/2

sinx
x

dx

= lim
R→+∞

[
−cosx

x

]R
π/2
−
∫ R

π/2

cosx
x2

dx

= lim
R→+∞

−cosR
R
−
∫ R

π/2

cosx
x2

dx .

Il primo addendo nel limite all’ultimo membro è infinitesimo per R→ +∞; d’altro
canto, si ha: ∣∣∣cosx

x2

∣∣∣ ≤ 1
x2

per x ∈ [π/2,+∞[, con la funzione maggiorante impropriamente integrabile in
tale intervallo, cosicché l’integrale improprio di

∣∣ cos x
x2

∣∣ esiste finito (per Criterio
del Confronto) e la funzione cos x

x2 è sommabile per il Criterio di Sommabilità; ne
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consegue: ∫ +∞

π/2

sinx
x

dx = lim
R→+∞

−cosR
R
−
∫ R

π/2

cosx
x2

dx

= −
∫ +∞

π/2

cosx
x2

dx ∈ R

cosicché la funzione sin x
x è impropriamente integrabile.

D’altra parte, sin x
x non è una funzione sommabile, poiché l’integrale improprio di

| sin x|
x non converge. �

Osservazione 20: Il Teorema 7 aiuta a convincersi che l’integrale improprio è
una generalizzazione imperfetta dell’integrale di Riemann, poiché per l’integrale di
Riemann vale esattamente la proprietà opposta (cioè, se f è integrabile secondo
Riemann in [a, b] tale è pure |f |).
Per convincersi che, in generale, la proprietà enunciata nel Teorema 7 non valga
per l’integrale di Riemann basta meditare sul seguente semplice esempio.
Sappiamo che la funzione d di Dirichlet (la quale assume valore 1 sugli irrazionali e 0
sui razionali) non è integrabile secondo Riemann su [0, 1]. Consideriamo la funzione
f : [0, 1]→ R definita ponendo f(x) := d(x)− 1/2: tale funzione assume valore 1/2
[risp. −1/2] sugli irrazionali [risp. sui razionali] e non è integrabile secondo Riemann
in [0, 1] (poiché se lo fosse risulterebbe integrabile anche d(x) = f(x) + 1/2).
D’altra parte, però, abbiamo |f(x)| = 1/2 identicamente in [0, 1] cosicché |f | è
costante ed integrabile secondo Riemann in [0, 1]. �

Tutti i criteri di convergenza stabiliti per gli integrali impropri di funzioni non
negative si trasformano in criteri di sommabilità, semplicemente considerando al
posto di una generica funzione non negativa il valore assoluto |f | della funzione f
della quale si vuole provare la sommabilità.
Ad esempio, molto utili nella pratica sono i criteri di somabilità per ordine di
infinito/infinitesimo che riportiamo qui di seguito:

Proposizione 7 (Sommabilità per Ordine di Infinito)
Siano a < b ∈ R ed f : [a, b[→ R una funzione integrabile sugli intervalli [α, β] ⊆
[a, b[.
Se |f | è un infinito in b d’ordine p > 0, i.e.:

lim
x→b−

|x− b|p |f(x)| = l ∈]0,+∞[ ,

allora:

(1) se p < 1, allora f è sommabile in [a, b[;

(2) se p ≥ 1, allora f non è sommabile in [a, b[.

Teorema 8 (Sommabilità per Ordine di Infinito Migliorato)
Siano a < b ∈ R ed f : [a, b[→ R una funzione integrabile in ogni [α, β] ⊆ [a, b[.
Se |f | è un infinito d’ordine inferiore ad un p < 1 in b, allora f è sommabile in
[a, b[.
Se |f | è un infinito d’ordine non inferiore ad 1 in b, allora f non è sommabile in
[a, b[.

Proposizione 8 (Sommabilità per Ordine di Infinitesimo)
Siano a ∈ R ed f : [a,+∞[→ R una funzione integrabile sugli intervalli [α, β] ⊆
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[a,+∞[.
Se |f | è un infinitesimo in +∞ d’ordine p > 0, i.e.:

lim
x→+∞

xp |f(x)| = l ∈]0,+∞[ ,

allora:

(1) se p > 1, allora f è sommabile in [a,+∞[;

(2) se p ≤ 1, allora f non è sommabile in [a,+∞[.

Teorema 9 (Sommabilità per Ordine di Infinitesimo Migliorato)
Sia f : [a,+∞[→ R una funzione integrabile in ogni [α, β] ⊆ [a,+∞[.
Se |f | è un infinitesimo d’ordine superiore ad un p > 1 in +∞, allora f è somma-
bile in [a,+∞[.
Se |f | è un infinitesimo d’ordine non superiore ad 1 in +∞, allora f non è som-
mabile in [a,+∞[.
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