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INTRODUZIONE

In queste note propongo alcuni complementi alla teoria dell’integrazione definita
ed impropria proposta in aula ed in [MS].

Il primo paragrafo ¢ dedicato alla generalizzazione della condizione di integrabi-
lita di una funzione limitata in un compatto ed alla sua interpretazione euristica.
Il secondo paragrafo ¢ dedicato alla questione dell’estensione della nozione di inte-
grale definito ad alcuni casi non previsti dalla teoria di Riemann, i.e. alle funzioni
limitate su intervalli non compatti e alle funzioni non limitate. In tale paragrafo
sviluppiamo il cosiddetto integrale improprio, mettendone in luce le affinita e le dif-
ferenze con lintegrale di Riemann, ed accenniamo all’integrale a valor principale.
Nel terzo paragrafo definiamo il concetto di funzione sommabile, mostriamo che
funzioni sommabili sono anche impropriamente integrabili e forniamo dei semplici
criteri di sommabilita (basati su tecniche di confronto).

1. CONDIZIONI DI INTEGRABILITA ED INTERPRETAZIONE (GEOMETRICA
DELL' INTEGRALE DEFINITO

1.1. Condizioni di Integrabilita e loro Interpretazione Euristica. Come
fatto in aula, scelta una decomposizione D = {a =z¢ <21 < - < xy_1 < Ty =

Date: 11 luglio 2018.
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b} di un intervallo compatto [a, b], poniamo:

amp D := max x, — Tp_1
n=1,...,
=max {r1 — X0, T2 — T1,..., LN — TN—_1} -

Tale numero non negativo si chiama ampiezza della decomposizione D e rappre-
senta la lunghezza del pitt ampio intervallo tra quelli in cui punti consecutivi di D
suddividono [a, b].

Riguardando le dimostrazioni dei teoremi sull’integrabilita delle funzioni continue
e delle funzioni monotone, ci accorgiamo che abbiamo provato molto piu di quanto
ci aspettassimo: infatti, in entrambi i casi abbiamo mostrato che:

(1)

Ve >0, 30 >0: VD decomposizione di [a,b] con amp D < ¢,
Sp(D) —sp(D) <e

(in cui § era fornito dal Teorema di Cantor sulla Continuita Uniforme oppure
0= m), mentre a rigore! necessitassimo solo di affermare che:

Ve > 0, 3D decomposizione di [a,b] :  S¢(D) —s¢(D) <e.
Cio non & affatto strano, in quanto & possibile provare che la (1) é condizione

necessaria e sufficiente per U'integrabilitd di una funzione limitata in un intervallo
compatto; in altri termini risulta:

PRrOPOSIZIONE 1 (Condizione di Integrabilita)
Sia f : [a,b] — R limitata in [a, b].
La f & integrabile secondo Riemann in [a,b] se e solo se vale la (1).

Per ottenere un’ulteriore condizione di integrabilita, al posto delle somme inte-
grali superiori ed inferiori possiamo considerare alcune somme integrali “intermedie”.
In particolare, scelta una decomposizione D = {a =zp < z1 < -+ < Zy_1 < Ty =

b} e fissati arbitrariamente N punti &1, ...,&N € [a,b] in guisa che:
(2) vn:l""va fne[l‘n—lvxn],
poniamo:

N
of(Dirs o €n) =Y f(&n) - (@0 — Tp1)
n=1

e chiamiamo tale quantita somma integrale di Riemann relativa ad f rispetto alla

decomposizione D ed ai punti &1, ...,&n. Dato che:
Vn=1,...,N, my:= inf f<f(&)< sup f=M,,
Tn—1,Tn] [Zn_1,2n]

risulta evidente che sussistono le disuguaglianze:
sf(D) < op(Di&, ..., &n) < S5(D)
per ogni scelta di punti &;,...&x che rispettino la (2); d’altro canto, se f ¢ in-
tegrabile secondo Riemann in [a,b], anche il numero A := f; f(z) dx soddisfa le
disuguaglianze:
s1(D) <A < S;(D) .
Con manipolazioni algebriche immediate perveniamo facilmente a:
sy(D) = S¢(D) < 0¢(D;&,....&n) = A < S§(D) — s¢(D)
di modo che la disuguaglianza:

(3) 04 (D31, €n) = Al < Sp(D) — s5(D)

LCfr. con la definizione di funzione integrabile in [MS].
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vale per ogni decomposizione D ed ogni scelta dei punti &7,...,&n che soddisfano

(2)-
Dalla (3) e dalla PROPOSIZIONE 1 ricaviamo immediatamente la prima parte della
dimostrazione del seguente:

TEOREMA 1 (Condizione di Integrabilita)
Sia f : [a,b] — R limitata in [a, b].
La f ¢ integrabile in [a,b] se e solo se esiste un numero X\ € R tale che:
(4)
Ve >0, 30 >0: VD decomposizione di [a,b] con amp D < &
eV, € [tp—1,2,] (n=1,...,N), los(D;&,....6n) — A <e.

In tal caso, risulta:
b
/ flz) dez=X.

Dimostrazione. Rimangono da provare l'implicazione <, ossia che dalla (4) con-
segue l'integrabilita di f in [a, b], e 'uguaglianza tra X e l'integrale di f esteso ad
[a, b].

Cominciamo dall’implicazione <.

Occorre e basta dimostrare che in corrispondenza di € > 0 & possibile determinare
una decomposizione D tale che:

Sf(D) — Sf(D) <eg.

Fissiamo € > 0: in corrispondenza di €/4 > 0 esiste un § > 0 tale che:

5
|0-f(D;£1a"'7£N) 7>“ < Z
per ogni decomposizione D con ampiezza minore di § e per ogni scelta dei punti
&n; fissata una siffatta decomposizione D e scelte due n-uple di punti &f,...,&y e

Y, &%, per disuguaglianza triangolare abbiamo:

|Uf(D;§i,...,£§V)—O’f(D;gil7..., K])| < |Uf(D;§i7"'7§§V)_)‘|
+‘Uf(D§€¥7"" Kf)_)“

<E.E
4 4
_¢
- <

Per proprieta degli estremi superiore ed inferiore possiamo scegliere i punti &/, in
modo che M, — 550 < f(§) < M, ed i punti & in guisa che m, < f(£;) <

S N 3 .
Mn + 15=ay; conseguentemente, abbiamo:

N
o (D&l EN) = Zf(gn) (Tn — Tn-1)
n=1

N c N
> Zan : (!Un - 1n—1) - m Z(xn - xn—l)

n=1

— 5;(D) — 74(;_ o oy = o)

Jf(D5§¥v"'7 K’) <Sf(D)+
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da cui traiamo:

! ! €

Ne consegue:
€
Sf(D)_sf(D)<0-f(D7£:ll7?£§V)_0’f(D7€IIL/av Kf)—i_i

<

ML)

257

come volevamo.

Infine, proviamo 'uguaglianza A = f: f(z)da. Sfruttando la disuguaglianza trian-
golare troviamo:

)\—/abf(x) dzx

per ogni decomposizione D ed ogni scelta di punti &, soddisfacenti al (2).

Fissato € > 0, in corrispondenza del numero positivo /2 esiste un § > 0 tale che
per ogni decomposizione D con ampiezza minore di § e per ogni scelta di punti
& scelti in conformita alla (2) valgono le (3) e (4); pertanto, possiamo fissare due
decomposizioni D’ e D" con ampiezza minore di § in modo che:

b
<lop(Diér,. .. en) — Al + of(D;a,...,gN)—/ @) de

£
D¢ ny b d €.
o (D"l )~ [ gt dn| < S

considerata la decomposizione D = D’ U D", anch’essa ha ampiezza minore di § e
percio, scelti &, che soddisfano la (2) negli intervallini di D, risulta:

Iof(D;&,...,sN)—A|<g

b
€
7(Digae&w) ~ [ f) da|< 5
conseguentemente risulta:
b
E €
A— d —+-=
/a fz) dz| < > + 5 =¢
per ogni € > 0 e da cid segue 'asserto. O

Il precedente TEOREMA ha un’interpretazione euristica® particolarmente utile in
ambito fisico ed ingegneristico:

Osservazione 1: La (4) si puo euristicamente interpretare come una relazione di

limite, cioé: ,
ampthl>O+o-f(D;£1"“7£N):/a f(I) dl’,

la quale vale indipendentemente dalla scelta di punti &, € [z,—1,z,] (per n =

1,...,N).

Cio significa che I'integrale di Riemann pud essere approssimato arbitrariamente

bene usando una qualsiasi somma di Riemann o(D;&,...,&N) relativa ad una

decomposizione D con amp D sufficientemente piccola.

2Avvertiamo il lettore che essa puod essere resa rigorosa generalizzando opportunamente la
nozione di limite; a tale proposito si pud consultare [P].
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Questo rende pitt o meno lecito il passaggio dal discreto al continuo (nel gergo
dei Fisici) nell’analisi, ad esempio, del comportamento di sistemi meccanici: a tal
proposito si puod vedere ’esempio riportato di seguito. ¢

Esempio 1: Consideriamo un’asta sottile A di lunghezza L > 0 formata da mate-
riale non necessariamente omogeneo.

Possiamo schematizzare I’asta come un intervallo [0, L] dell’asse reale, il cui mate-
riale si presenta con una densita lineare puntuale A(zx) > 0.

Consideriamo il problema di calcolare 'ascissa T4 del centro di massa di A.
Scelta una decomposizione D dell’intervallo [0, L] con d := amp D “piccola”, pos-
siamo pensare gli intervallini [zg, 1], ..., [£n—1,Zn] come “piccoli” tratti dell’asta
A; visto che d ¢ “sufficientemente piccola”, possiamo approssimare ognuno dei tratti
[€n—1,2n] con un punto materiale P, avente ascissa &, € [r,_1,2y] nel quale &
concentrata una massa fi,; in tal modo, stiamo approssimando il sistema continuo
A con il sistema discreto S = {(&n, pin),n=1,...,N}.

Per noti fatti, il centro di massa del sistema discreto S ha ascissa che soddisfa la
seguente relazione:

N N
(5) jS'ZMn:ZNn'gnv
n=1 n=1

in cui la somma Zﬁ;l [, Tappresenta la massa totale p del sistema.

Dato che i tratti in cui é divisa ’asta sono “sufficientemente piccoli”, possiamo
ritenere che la densita dello n-esimo tratto sia pressoché costante ed uguale alla
densita A(&,) calcolata nel punto &,: in tal modo, la massa u,, coincide col prodotto
A&n)(zy — 2p—1) e abbiamo:

N
pR Y M) (@ = wni)

n=1

X D7€177€N)

cioé p si approssima con un’opportuna somma di Riemann relativa alla funzione
A(z).

Analogamente, ogni addendo di 227:1 fin - &, si puod approssimare con A(&,)&n
(xn, — Zp—1) € percio:

N
Zun gn ~
n=1

] =

A(ﬁn) §n - (ajn - mnfl)

I
—

n

—~

Di&,...¢n)

Op

cio¢ il secondo membro della (5) coincide con una somma di Riemann relativa alla
funzione ¢(x) = z\(x).

Infittendo sempre piit la decomposizione D, i.e. mandando amp D — 07T, il sistema
discreto S approssima sempre meglio il sistema continuo A e possiamo ritenere che
il suo centro di massa Ts approssimi sempre meglio il centro di massa T 4; d’altro
canto, entrambe le somme ox(D;&1,...,&n) € 0,(D;&1,...En) approssimano gli
integrali fOL AMz)dz ed fOL o(r)dz = fOL zA(z)dz.

Mettendo insieme i due comportamenti possiamo affermare che il centro di massa
di A soddisfa la relazione:

xA~/OL/\(a:) da:z/OLx Mz) dzx,
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formalemente ottenuta passando al limite la (5) per amp D — 0%, da cui la regola:

Tp = T

L
fo/\(a:)dx./o xz Mz) dz

che si usa nella pratica. O

Osservazione 2: L’ascissa del centro di massa di un sistema lineare esteso coincide
con la media integrale della funzione z sull’intervallo [0, L] pesata rispetto alla
densita lineare \. ¢

1.2. Interpretazione Geometrica dell’Integrale Definito. Le considerazioni
che proponiamo qui di seguito sono puramente euristiche e non verranno sistemate
in un quadro teorico generale.

Tuttavia, con un po’ di sforzo, ¢ possibile elaborare una teoria (la cosiddetta Teoria
della Misura di Peano® — Jordan®) nell’ambito della quale tali considerazioni sono
del tutto lecite. Il lettore interessato ad approfondire questo tema pud leggere [AT),
cap. XIJ.

Consideriamo una funzione f : [a,b] — R limitata ed integrabile secondo Rie-
mann su [a, b].
Abbiamo osservato a lezione che, se f(z) > 0 ovunque in [a,b], le somme integra-
li inferiori s;(D) e le somme integrali superiori Sy(D) coincidono con area (nel
senso della Geometria Elementare) di alcuni insiemi piani detti plurirettangoli®: in
particolare, sy(D) coincide con l'area di un plurirettangolo P, (D) “inscritto” nella
regione:

Ry={(z,y) eR*: a<az<be0<y< f(z)}

(detta rettangoloide -o trapezoide- di base [a,b] relativo ad f) ed S¢(D) coincide
con l'area di un plurirettangolo P*(D) “circoscritto” a tale regione.
Abbiamo altresi osservato che tali misure approssimano (le S¢(D) per eccesso, le
sp(D) per difetto) quella che puo essere a ragione chiamata ’area del rettangoloide
R+ e che all'infittirsi della decomposizione D deve percié aversi:

lim sy(D)=area(Ry) = lim S¢(D).
amp D—0

amp D—0
b
Ora, dato che lim s¢(D) = / f(x)de = lim S¢(D) e visto che ci aspet-
amp D—0 amp D—0

a
tiamo una sorta di unicita del limite anche (e soprattutto!) in questi ragionamenti
euristici, é evidente che:

b
/ f(z) doz =areaRy,

ossia 'integrale definito esteso ad [a,b] della funzione non negativa f restituisce
larea del rettangoloide relativo ad f di base [a,b] (cfr. F1G. 1).

Cosa succede se f(z) < 0 ovunque in [a,b]? Innanzitutto, notiamo che in tal caso
. . b . " e
Iintegrale definito [’ f(x)d ¢ non positivo, dunque esso non puo coincidere con
a
la misura di un’area®. .. Tuttavia, geometricamente la cosa sembra andare a posto

?’Giuseppe Peano (1858 — 1932), matematico e logico italiano che ha fornito 1’assiomatizzazione
completa dei numeri naturali. A lui ¢ intitolato il Dipartimento di Matematica dell’Universita di
Torino.

4Marie Ennemond Camille Jordan (1838 — 1922), matematico francese.

5Si chiama plurirettangolo ogni sottoinsieme del piano R? che si ottiene giustapponendo un
numero finito di rettangoli coi lati paralleli agli assi.

6Percheé le aree nel senso della Geometria Elementare sono quantita > 0.
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Y

FIGURA 1. Rettangoloide Ry di una funzione non negativa in [a, b].

come nel caso precedente a patto di cambiare qualche segno. Invero, sfruttando le
proprieta degli estremi inferiore e superiore, stavolta le quantita —S¢(D) = s_¢(D)
e —sy(D) = S_;(D) approssimano l'area della regione:

R_f:{(x,y)eRQ: anSbeOSyS—f(a:)}
cioé risulta  lim —sy(D) =area(R_f) = lim o —S;(D); dunque:

amp D—0 amp D—

b
/ flz) de=—areaR_j .
a
Inoltre, se conveniamo di chiamare rettangoloide generalizzato la regione:
Ry={(z,y) €R*: a<x<be f(x) <y <0}

la regione compresa tra le rette di equazione x = a ed x = b, 'asse delle ascisse ed
il grafico di f (la quale stavolta ¢ situata nel semipiano delle ordinate negative!), si
vede che R é simmetrico di R_; rispetto all’asse delle ascisse e dunque conserva
la stessa area di Ry; da cio segue che:

b
/ f(z) de = —areaRy ,

cioé che 'integrale fornisce un’area con segno del rettangoloide generalizzato (cfr.
Fia. 2).

Consideriamo, infine, il caso in cui f pud cambiare segno in [a, b].

Introduciamo le funzioni f* : [a,b] — R, dette rispettivamente parte positiva e
parte negativa di f ponendo:

@) =max{0,f(x)} e  f (z)=min{0, f(2)}.

Distinguendo un po’ di casi si vede che:
o fT(x)= f(x) seesolose f(x) >0ed fT(x) =0 seesolose f(z) <0,
o f~(x)= f(x)seesolose f(x) <0ed f~(z) =0 se e solo se f(xz) >0,

 f(x) = f"(x) + f~(z) ovunque in [a, b],
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FIGURA 2. Rettangoloide generalizzato R di una funzione non positiva in [a, b].

o |f(x)| = f*(z) — f~(x) ovunque in [a, b],

e f* sono limitate ed integrabili secondo Riemann in [a, b] se e solo se f lo &;

inoltre, il rettangoloide generalizzato di f, i.e. I'insieme:
Rp={(z,y) eR*: f~(x) <y < fH(a)},
coincide con 'unione insiemistica dei due rettangoloidi R+ ed R, i quali non si

sovrappongono (se non in alcuni tratti del bordo, che hanno area nulla).
Dato che:

b
/ [T(z) do = areaR+

b
/ [ (z) do = —areaR -

/abf(x) dx:/abﬁ(x) da:+/abf_(x) da

=areaRy+ —areaRy-

abbiamo:

cosicché nel caso f cambi segno il suo integrale coincide con la somma algebrica di
due aree con segno, I'una (quella positiva) relativa al rettangoloide di fT, laltra
(quella negativa) relativa a f~ (cfr. Fia. 3).

Osservazione 3: Osserviamo esplicitamente che, anche nel caso generale in cui f
cambia segno in [a,b], integrale f: f(@)dzx non coincide con la misura dell’area
del rettangoloide generalizzato di f.

Per lumeggiare tale circostanza, analizziamo il seguente esempio.

Sia f(x) := sinz definita in [0, 27]. Il rettangoloide generalizzato di f é:

Ry={(z,y) €R*: 0<aw<mel<y<sinz}
U{(z,y) €ER?*: 2n <z <2me sinz <y <0}

e si vede che esso ha area > 0. D’altra parte, risulta:

2m
/ sinz do = [—cosz])" = —-1+1=0,
0
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Y

FIGURA 3. Rettangoloide generalizzato Ry di una funzione che cambia

segno in [a, b].

cosicché non é possibile risalire all’area di R¢ sfruttando semplicemente I'integrale

di f. ¢

Osservazione 4: In generale, perd, ¢ possibile calcolare ’area di R sfruttando un

altro integrale.
Infatti, si ha:
b b b
[ls@lde= [ @ do- [ 1@ da
=areaR ¢+ +area Ry

=areaRy ,

cosicché I'area del rettangoloide generalizzato Ry coincide con 'integrale del valore
assoluto di f esteso ad [a, b], cioé area Ry = areaRy|.
Cio importa che nel caso precedente, i.e. f(z) :=sinz con 0 < z < 27, risulta:

27
areaR ¢ = sinz| dz
!
0

T 27
:/ sin x da:—l—/ —sinx dz
0 T

27

= [~ cosz|] + [cosx]

=(1+1)+(1+1)
4.

2. INTEGRALI IMPROPRI ED A VALORE PRINCIPALE

Nella pratica matematica pura ed applicata occorre spesso considerare integrali
definiti che non ricadono nell’ambito di applicabilita della teoria di Riemann.
Valgano i seguenti esempi:

Esempio 2: La probabilitd che una misura con media m e deviazione standard
o > 0 assuma valore maggiore di un dato M € R si pud esprimere mediante
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Iintegrale:

oo 1 (z—m)?
——— e 2?2 dz
/M oV2r

in cui l'integrando é continuo, ma ¢ definito in un intervallo non compatto. &

1 /2
— d d
/0 VT o /0 xlogx v

sono di funzioni continue, ma esse né sono definite ovunque negli intervalli d’in-
tegrazione (perché non sono definite in 0) né rimangono limitate in essi (perché
divergono in 0). &

Esempio 3: Gli integrali:

Esempio 4: L’integrale:

+oo
/ arctanz dx

— 00
é l'integrale di una funzione continua e limitata, ma l'intervallo di integrazione non
& compatto. &

In questo paragrafo ci occupiamo del problema dell’estensione dei risultati sul-
I'integrazione definita in modo da comprendere anche i casi presentati negli esempi.

2.1. I’Integrale Improprio. Cominciamo a dare alcune definizioni:

DEFINIZIONE 1

Sia f : [a,b[— R (qui puo essere anche b = +00).

Si dice che f & impropriamente integrabile su [a,b| se essa € integrabile secondo
Riemann su ogni compatto [, 5] C [a,b] e se esiste finito il:

lim / f(t) dt.
z—b~ [,
In tal caso, si pone per definizione:
b T
/ f(z) dz = hr? / f() dt
a =07 Ja

e la quantita al primo membro si chiama integrale improprio di f esteso all’intervallo

[a, b].

DEFINIZIONE 2

Sia f :]a,b] — R (in cui puo essere pure ¢ = —0).

Si dice che f ¢ impropriamente integrabile su ]a,b] se essa ¢ integrabile secondo
Riemann su ogni compatto [, 5] Cla,b] e se esiste finito il:

z—at

lim /bf(t) dt .

In tal caso, si pone per definizione:
b b
/ f(z) da = 1im+/ f) dt
a T—=at Jy

e la quantita al primo membro si chiama integrale improprio di f esteso all’intervallo
Ja,b].
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Osservazione 5: Notiamo esplicitamente che l'ipotesi di integrabilita sui compatti
[, B] contenuti nel dominio assicura che f ¢ limitata in ogni intervallo del tipo
[, B]. Tuttavia, cio non assicura in alcun modo che f sia limitata in tutto il suo
insieme di definizione.

Tale comportamento, ad esempio, & quello esibito dalle funzioni 1/z in ]0,1] ed
1/(zlogx) in ]0,1/2]. ¢

Le precedenti due definizioni si possono combinare tra loro ottenendo variazioni
sufficienti a coprire ulteriori casi di interesse:

DEFINIZIONE 3

Sia f :]a,b[— R (in cui pud aversi anche a = —oo e b = +00).

Si dice che f & impropriamente integrabile in |a, b[ se esiste un punto & €]a, b[ tale
che f & impropriamente integrabile in ognuno dei sottointervalli Ja, ] e [€, b].

In tal caso si pone:

/abf(x) A= /jf(a:) dz+/;f(5c) dz

3
~ lim / £(6) dt + lim /yf(t) dt
z 3

rz—at y—b—

e la quantita al primo membro si chiama integrale improprio di f esteso ad la,b|.

Osservazione 6: L’esistenza di un punto & €]a,b[ in modo che f risulti impro-
priamente integrabile in ]a, &] ed in [€, b implica che per ogni punto xy €a,b] la f
risulta impropriamente integrabile in ]a, z¢] ed in [z, b].

Scelto arbitrariamente xo €la, b[ con xg # £ (perché se g = £ non c¢’¢ nulla da di-
mostrare!), allora 0 a < xg < £ oppure £ < xg < b; per fissare le idee, supponiamo
che z( cada tra £ e b. Per ipotesi, f & certamente integrabile in [, 2] e dunque per
ogni ¢ < & ed ogni y > xg si ha:

/:Of(t) dt:/;f(t) dt+/;0 £(t) dt
/g:f(t) dt_/:f(t) dt/jof(t) dt

3 y
per proprieta additiva; quindi, il fatto che limiti lirn+ f(t) dte lim f(t) dt

T—a z y—b— I3
Zo
esistano entrambi finiti implica l'esistenza e la finitezza di lim+ ft) dt e
r—a €T

Y
lim / f(t) dt. Cido importa che f ¢ impropriamente integrabile in Ja, o] ed in
y—»b7 o

[l‘o, b[ ’

Osservazione 7: Osserviamo esplicitamente che se f ¢ impropriamente integrabile
in |a, b[, il valore dell’integrale improprio f; f(z) dx non dipende in alcun modo
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dalla scelta del punto zg: infatti, per proprieta additiva si ha:

. o . Y
lim f(@) dt+yli,1?_ f(®) dt = lim f dt+/ f(t)

+
r—a x To r—a

i [

= hm f() dt+ lim f()

z—at [, y—b— 13

DEFINIZIONE 4

Siano ¢ € (a,b) ed f: (a,b) — {c} = R.7

Si dice che f ¢ impropriamente integrabile in (a,b) se essa ¢ impropriamente inte-
grabile in ognuno dei due sottointervalli (a, c[ e ], b).

In tal caso, si pone per definizione:

/abf(x) dz = /:f(x) dx—l—/cbf(m) dz

e la quantita al primo membro é detta integrale improprio di f esteso all’intervallo
(a,b).

Osservazione 8: La definizione precedente si generalizza in maniera del tutto ovvia
al caso in cui nell’intervallo (a,b) ci sia piu di un punto ¢ in cui f non é definita (o
attorno al quale f non é limitata).

Ad esempio, se f & definita in (a,b) — {c1,¢c2} (con a < ¢; < ¢o < b), allora f &
detta impropriamente integrabile in (a,b) se essa & impropriamente integrabile in
ogni sottointervallo (a, c1[, |1, cof € Jea,b) ed in tal caso si pone:

/f dx—/f dx+/f dx—i—/f

con l'integrale al primo membro detto integrale improprio di f esteso ad (a,b). ¢

Ragionando come nell’Osservazione precedente, cioé combinando opportuna-
mente le definizioni appena date, si riesce a dare significato al simbolo di integrale
in una pletora di casi non coperti dalla teoria standard dell’integrale di Riemann.
Inoltre, si vede che I'integrale improprio gode anch’esso di alcune buone proprieta
algebriche: ad esempio, la proprieta additiva, la linearita ed i risultati di confron-
to rimangono valide anche nel caso di integrali impropri. Cio, fondamentalmente,
discende dalle proprieta dei limiti e dalla seguente:

Osservazione 9: Consideriamo, a mo’ di modello, il caso dell’integrale improprio
di una funzione f impropriamente integrabile in [a, b].
Detta F : [a,b[— R la funzione integrale di f con piede in a, cioé quella definita in

[a, b] ponendo:
— [ s aes

I'integrabilita in senso improprio di f in [a, b] equivale alla convergenza di F per
x — b~ ; infatti, per definizione si ha:

b T
/ f) de=tim [ j4) dt= lim ().

z—b~

"Ricordo che col simbolo (a,b) si denota un qualsiasi intervallo di estremi a, b € R.
8Si noti che la f ¢ integrabile sul compatto [a, ], dunque la funzione integrale F' & ben definita.
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Invece, la non integrabilita in senso improprio di f in [a, b] equivale alla non rego-
larita od alla divergenza della funzione F per z — b™.

Per questi motivi, si dice talvolta che f ha integrale convergente, oppure divergente
ovvero non regolare in b. ¢

E poi immediato provare la:

PROPOSIZIONE 2

Siano a <b e R ed f : [a,b[— R integrabile impropriamente su [a,b|.

Se f si puo prolungare su b in modo che il suo prolungamento f* sia limitato ed
integrabile secondo Riemann su [a,b], allora Uintegrale di f* esteso ad [a,b] coincide
con Uintegrale improprio di f esteso ad [a,b], cioé risulta:

@ de= [ fG
/ [ e

Dimostrazione. Dato che f*(x) = f(x) per ogni x € [a, b[, dette F** ed F le funzioni
integrali di f* ed f con piede in a, risulta:

:/;f*(t) dt:/:f(t) dt = F(z)

per ogni x € [a,b[; visto che f* ¢ limitata ed integrabile su [a,b], il Teorema
Fondamentale del Calcolo Integrale implica che F* & continua in [a, b] e percio:

/abf*(m) de=F*(0b)= lim F*(z) = lim F(z / f(z

r—b~ r—b~

come volevamo. O

Mutatis mutandis, lo stesso argomento della dimostrazione precedente mostra
che in tutti gli altri casi si verifica la medesima cosa. Possiamo dunque affermare,
del tutto in generale, che vale il seguente fatto:

TEOREMA 2

Se una funzione f, definita in (a,b) con a < b € R eccezion falta al pit per un
numero finito di punti, si puo prolungare ad [a, b] ottenendo una funzione f* limitata
ed integrabile secondo Riemann in [a,b], allora Uintegrale di Riemann di f* esteso
ad [a,b] coincide con Uintegrale improprio di f esteso ad (a,b), cioe:

/abf*(x) dx:/abf(x) dzx

Osservazione 10: Dal TEOREMA precedente consegue immediatamente che 'in-
tegrale improprio é una generalizzazione dell’integrale di Riemann.

Tuttavia, per alcuni motivi che presto vedremo, l'integrale improprio &€ una gene-
ralizzazione imperfetta dell’integrale di Riemann. ¢

2.2. Esempi Significativi.

Esempio 5: Consideriamo l'integrale:

/—%x

con « > 0, il quale & improprio perché l'integrando ¢ definito in ]0,1] e non si
mantiene limitato intorno a 0.
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Un semplice calcolo mostra che:
1

11 1 11—« 1 11—«
[ de= ] = e

se a # 1, e che:

"1
/ . dt = [log|t|]glc =—logzx

se a = 1; pertanto risulta:

1 1
lim idt: T »sel<a<l
x—>0+xta +OO 7sea21

e percio la funzione 1/z® & impropriamente integrabile in ]0, 1] se e solose 0 < o < 1

ed il suo integrale vale:
! 1
/ — dz = .
0o ¢ l1-a

Osservazione 11: Osserviamo esplicitamente che ’Esempio precedente si pud usa-
re per stabilire la somabilita di funzioni potenze del tipo:

fla) = —

o — x|’
con g € R, in intervalli impropri che abbiano xy come estremo.
Ad esempio, per studiare se f & integrabile in [z, 2] (con 21 < zp) possiamo
sfruttare l'integrazione per sostituzione per stabilire:

o xr 1
/ —— dz = lim — dt
o 1T — 20l w—ay Juy |t — T0|®

¢

To—x 1
T=x0—1 ;. -
:0 hm T dT
B P
0 0—1
To—T1 1
= lim — dT
_ T
z—zg Jag—z
y=ro—1 romm 1
= lim — dr
y—0+ y T

ro—T1 1
= / — dr
0 T

cosicché le funzioni potenza 1/|x — xo|® sono sempre integrabili intorno ad xg se
0 < a <1 enon losono per a > 1. ¢

Esempio 6: Consideriamo l'integrale:

con « > 0, il quale & improprio perché I'integrando & definito in [1, 00|, che non &
compatto.
Un semplice calcolo mostra che:

1 1 * 1
/—dt: — ] = (2t —1)
1 t¢ 1l-« 1 11—«

se a # 1, e che:
1
/ » it = llog 1]} = log.r
1
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se a = 1; pertanto risulta:

1
i widt: a1 ,sea>1
z—+oo [y 1¢ +o0 ,sel0<a<l1

e percio la funzione 1/2® ¢ impropriamente integrabile in [1, +00[ se e solo se v > 1
ed il suo integrale vale:

Esempio 7: Consideriamo l'integrale:

—+oo
1
/ N S P
e x logﬁx

improprio in quanto l'intervallo d’integrazione non é compatto.
Fissato un punto = > e, calcoliamo:

T 1 _ log x 1
/ —— dt” Egt/ — du
e tlog’t 1 U

AN

=1_ <log1_5m — 1)

—
e
@

)

se B#1e:

£ 1 - logz 1
/ dt“‘i’gt/ = du
. t logt 1 u

logz
= [log [ul];*

= loglog x

se B = 1; dunque:

lim 3
z—+o0 Jo t log”t

)

z 1 df — ﬁ ,se 0>1
4o ,se0<p<1

conseguentemente, la funzione 1/(xlog” x) ¢ impropriamente integrabile in [e, +00]
solose B >1e:

+oo
1 1
e zlog” x p-1

Esempio 8: Consideriamo l'integrale:

e
1
/ - TooB 7 dz
1 x log”x
con 3 > 0, il quale & improprio perché l'integrando & definito in ]1, €] non compatto
e non si mantiene limitato intorno a 1.
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Fissato un punto 1 < z < e, calcoliamo:

e 1 - |
/ 5 dt" Egt/ ~ du
x t log t log z ug

1 _p571
= [ul B]logm

(1 — long x)

—_

-
@

—
@

se B#£1e:

[t

¢ 1 u=logt !
dt = — du
. tlogt logz U

= [logulliy,

= —log | log z|

se 0 = 1; dunque:

lim 3
z—1*+ J, t log”t

€ 1 dt = ﬁ ,se0< <1
4o ,se>1 '

Conseguentemente, la funzione 1/(zlog” z) & impropriamente integrabile in |1, €]
solo se 0 < B < 1 ed in tal caso si ha:

/e 1 d 1
——— dax=—+—.
1 xlogﬁm 1-p

Esempio 9: Consideriamo l'integrale:

+o0 1
=
1 xlogﬁz

che & improprio perché U'integrando & definito in ]1,4o0c[ non compatto e non &
limitato intorno ad 1. Per quanto detto piu sopra, gli integrali impropri:

e 1 +oo 1
/ —5 dx e / — dx
1 zlog’zx e zlog” x

esistono, rispettivamente, solo se 0 < § < 1 e solo se # > 1; dunque, poiché
non esiste alcun valore di § per il quale esistano contemporaneamente entrambi gli
integrali impropri, concludiamo che 1/(z logﬂ x) non é impropriamente integrabile
in |1, +o0l. &

Esempio 10: Consideriamo l'integrale:
+o0
/ arctanz dz ,
—0o0

il quale é improprio perché la funzione integranda é definita in un intervallo non
compatto.
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Fissato per comodita & = 0, per x < 0 < y abbiamo:

0
arctant dt = [tarctant]® — —_—
/g,» [ Je /I 142

0
dt

0

1
[t arctant — 3 log(1 + t2)]

. @
=3 log(1 4 2%) — zarctanz ,

Y Y t
/ arctant dt = [tarctant]j —/ —— dt
0 o 1+1¢2

1 Yy
= [t arctant — B log(1 + tQ)]
0

1
= yarctany — 3 log(1 +4?),

cosicché:
0
lim arctant dt = —oo
Tr——00 T
y
lim arctant dt = +oo
y—+00 0
e percio la funzione arctan x non € impropriamente integrabile in R. &

2.3. L’Integrale a Valore Principale di Cauchy *. Un’ulteriore generalizzazio-
ne dell’integrale di Riemann si ottiene considerando quello che si chiama integrale
“a valore principale” (o integrale “di Cauchy”):

DEFINIZIONE 5

Siano a < b € R, ¢ €la,b[ ed f : [a,b] — {c} — R.

Si dice che f ¢ integrabile in [a,b] nel senso del valore principale (o nel senso di
Cauchy) se e solo se essa ¢ integrabile secondo Riemann in ogni intervallo del tipo
[a,c — 1] e [c+7,b] (con r > 0 “piccolo”) e se esiste finito il:

c—r b
lim fz) de+ f(z) dz .
r—0% Jq ctr
In tal caso si pone:
b c—r b
v.p./ f(z) dz = lim flx) de+ flz) dz
a r—0t J, c+r

ed il primo membro si chiama integrale a valore principale di f esteso all’intervallo

[a, b].

DEFINIZIONE 6
Siano a < b€ Red f :]a,b[— R.
Si dice che f & integrabile in |a,b] nel senso del valore principale (o nel senso di
Cauchy) se essa ¢ integrabile secondo Riemann in ogni intervallo [a + r,b — 7] (con
r > 0 “piccolo”) e se esiste finito il:
b—r
lim flz) da .

r—=0% Joir

In tal caso si pone:

b b—r
V.p./ f(z) dz = lim flz) da

r—0% Jotr
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ed il primo membro si chiama integrale a valore principale di f esteso ad ]a,b].

DEFINIZIONE 7

Sia f: R — R.

Si dice che f & integrabile in R nel senso del valore principale (o nel senso di
Cauchy) se essa ¢ integrabile secondo Riemann in ogni intervallo del tipo [ R, R]
(con R > 0) e se esiste finito il:

R
REIEDO/_Rf(x) dx .
In tal caso, si pone:
+00 R
V.p./ﬁOo f(x) dx:RETmLRf(x) dz

ed il primo membro si chiama integrale a valore principale di f esteso ad R.

Osservazione 12: Come nei casi precedenti, anche le DEFINIZIONI 5 — 7 possono
essere combinate per ottenere la definizione dell’integrale a valore principale in casi
non coperti dalle stesse.

Ad esempio, I'integrale a valore principale della funzione 1/(x? — 1) esteso ad R si
definisce ponendo:

+oo 1
V.p./_ o dx

~  lim /_I_Tf(m) dx+/1_r o) dot [ f@) do.

R—+oo,r—0t J_p —14r 147

¢

Osservazione 13: La differenza principale tra l'integrale improprio e 'integrale a
valore principale & che per il calcolo di quest’ultimo si omettono dal calcolo o si
utilizzano per il calcolo intervalli con un certo grado di simmetria.

Per chiarire tale affermazione, soffermiamoci dapprima sul caso di una funzione
f : R — R integrabile secondo Riemann su ogni compatto contenuto in R. Nel
calcolo dell’integrale improprio di f si considera, in fin dei conti, I'integrale di f
esteso ad un qualsiasi intervallo [z, y], i.e.:

/:f(t) a,

e poi si mandano indipendentemente xr — —oo e y — +00; d’altra parte, nel calcolo
dell’integrale a valore principale di f si considera l'integrale di Riemann di f esteso
ad intervalli simmetrici [—R, R], cioé:

R
| s a
-R
e poi si manda R — +oo.

Analogamente, consideriamo una funzione f : [a,b] — {¢} — R limitata ed inte-
grabile secondo Riemann sui compatti contenuti in [a,c[ ed in ]e,b]. Nel calcolo
dell’integrale improprio di f si considera la somma:

R dt+[f<t> at .

il che equivale ad escludere dal computo dell’integrale il generico intervallo |z, y[C
[a, b] contenente il punto “singolare” ¢, e successivamente si mandano indipendente-
mente x — ¢~ ed y — c¢T; invece, nel calcolo dell'integrale a valore principale di f
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si considera la somma:

c—r b
/ ft) dt+ f@t) dt,
a c+r

il che equivale ad escludere dal computo dell’integrale il generico intorno simmetrico
le = r,e + 7[C [a,b] contenente il punto “singolare” ¢, e successivamente si manda
r—0t.

Considerazioni del tutto simili valgono nel caso di f :]Ja,b[— R, in cui si usa per
calcolare l'integrale a valore principale l'intervallo [a + r, b — r] simetrico rispetto al
punto medio 2.

Quindi, in generale, nei casi base possiamo affermare che 'integrale a valore prin-
cipale di f si calcola come quello improprio, ma aggirando i “punti singolari” od
avvicinandosi ad essi in maniera simmetrica. ¢

L’Osservazione precedente mostra che l'integrale a valore principale puo essere
considerato come un caso particolare di integrale improprio; cid & vero in generale
ed il risultato che segue getta luce sul legame tra i due tipi di integrali:

PROPOSIZIONE 3
Se f ¢ integrabile in senso improprio in (a,b) allora essa ¢ integrabile anche nel
senso del valore principale ed i due integrali coincidono, i.e.:

v.p./abf(x) dz/abf(:z:) do .

Dimostrazione. Facciamo la dimostrazione nel caso coperto dalla DEFINIZIONE 5.
Supponiamo che f : [a,b] — {¢} — R sia impropriamente integrabile in [a,b]: cio,
per definizione significa che esistono i due integrali impropri:

c x b b
/ f(x) dz = lim f() dt e / f(z) dz = lim / f() dt;
a z—c” Jq c y—et Jy
facendo nei due limiti i cambiamenti di variabile = ¢ —r ed y = ¢+ 7, si ottiene:

/Cf(:t) dz = lim C_rf(t) dt

r—0t J,

b b
/ f@) do= tim [ f(t) dt,
c r—0F c+r
onde, visti i teoremi sulle operazioni coi limiti, traiamo:

b c—r b
V.p./ f(z) dz = lim flz) de+ f(z) dx

r—0%t Jq ctr

/acf(wH/cbf(x)

:/abf(x) dz

che ¢ la tesi. O

Il viceversa, in generale, non vale; in altre parole, esistono funzioni integrabili nel
senso del valore principale che non sono dotate di integrale improprio. Gli esempi
che seguono illustrano il verificarsi di tale circostanza.

Esempio 11: Abbiamo giad mostrato che arctan x non é impropriamente integrabile
in R.
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D’altra parte, la disparita dell’integrando rende di banale verifica I'uguaglianza:

“+o0 R
V. p. arctanx dz = lim arctanx dz =0,
oo R—+4oc0 R
cosicché arctan x é integrabile su R nel senso del valore principale. &

Esempio 12: Abbiamo gia osservato che la funzione 1/x non & impropriamente
integrabile in ]0,1] e cio importa che essa non ¢ integrabile in senso improprio
nemmeno sull’intervallo [—1,1].

D’altra parte, la disparita dell’integrando rende di banale verifica 'uguaglianza:

1 —r 1
1 1 1
V.p./ — dx = lim fdx—i—/gdx:O,

1 r—0t ) 1 T

cosicché 1/x ¢ integrabile su [—1, 1] nel senso del valore principale. &

3. CRITERI D'INTEGRABILITA IMPROPRIA

3.1. Criterio di Convergenza di Cauchy. Una volta capito che l'integrabilita in
senso improprio equivale alla convergenza di opportune funzioni integrali, possiamo
stabilire un criterio di integrabilita basato sul criterio di convergenza di Cauchy.
Prendiamo ad esempio un caso modello, potendosi il discorso generalizzare in
maniera abbastanza immediata:

TEOREMA 3 (Criterio di Cauchy per I'Integrale Improprio)

Sia f : [a,b[— R (qui puo essere anche b = +00) una funzione integrabile secondo
Riemann sui compatti [, 8] C [a, b].

La f & impropriamente integrabile in [a,b] se e solo se & soddisfatta la sequente
proprieta:

(6) Ve >0, 31 intorno dib: Vaxi,x9 € [a,b]N],

lfoa)dt‘<e.

Dimostrazione. Abbiamo gia osservato che f ¢ impropriamente integrabile su [a, b[
se e solo se la funzione integrale F' con piede in a ¢ convergente in b (da sinistra
ovviamente); d’altra parte, tale funzione é convergente in b se e solo se essa soddisfa
la proprieta di Cauchy:

Ve >0: 37 intornodi b: Vai,zo € [a,b[NI, |F(z2) — F(z1)| <e,

la quale coincide con la (6) per la proprieta additiva dell’integrale, che assicura:

Fug—F@Q:/mﬂﬂdt
O

Il Criterio di Cauchy é difficilmente applicabile nella pratica ma le sue conse-
guenze, come vedremo, sono di vasta portata. Una delle prime conseguenze & quella
riportata nella seguente:

Osservazione 14: Dal Criterio di Cauchy segue immediatamente che se b € R ed
f :]a,b[— R ¢é limitata intorno a b, allora f & impropriamente integrabile in [a, b[.
Infatti, se esistono M > 0 e ¢’ > 0 tale che |f(z)] < M in [a,b[N]b — &b+ d'[, a
patto di prendere z1 < 3 € [a,b[N]b — 0’,b + 0'[ per disuguaglianza triangolare e
proprieta di confronto abbiamo:

Lfﬂ@dx

s/ @) Az < M(zs— 1) ;

1
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in corrispondenza di € > 0 ¢ possibile determinare = min{¢’, 757} > 0 in modo
che per ogni 21 < 2 € [a,b[N])b — §,b+ [ si ha:

" flx) dz| <

<e,

» M+1°

percio f soddisfa il Criterio di Cauchy per I’Integrale ed é impropriamente integra-
bile in [a, b[. ¢

3.2. Criteri di Integrabilitid per Funzioni non negative. Una delle classi di
funzioni che maggiormente ci interessano € quella costituita dalle funzioni non nega-
tive nel proprio intervallo di definizione. L’interesse in tali funzioni risiede nel fatto
che esse godono di numerose buone proprieta rispetto all’integrazione impropria.
Cio ¢é, a ben vedere, conseguenza del seguente e semplicissimo:

LEMMA 1 (Monotonia delle Funzioni Integrali)

Siano f : (a,b) — R una funzione limitata ed integrabile sui compatti contenuti in
(a,b) ed zo € (a,b).

Posto:

F(x) :z/ f@) dt
o
per x € (a,b), se f(z) >0 [risp. <0/ ovunque in (a,b) allora F & crescente [risp.

decrescente] in (a,b).

Dimostrazione. Facciamo la dimostrazione nel caso f(x) > 0 ovunque.
Scelti 1 < z2 € (a,b), per proprieta additiva e per confronto abbiamo:

F(zy) — F(x1) = - f(®) dt—/w1 ft) dt
:/I2 f(t) dt
1 =~~~
>0
>0
sicché F(z1) < F(x2). O

Il LEMMA 1 implica che la funzione integrale:
F(zx):= / ft) dt

¢ monotona, dunque regolare in b; pertanto, l'integrale improprio ff f(z) dzoe
convergente, cosicché f ¢ impropriamente integrabile in [a, b[, oppure ¢ divergente,
ed f non é impropriamente integrabile in [a, b[.

Un’altra conseguenza del LEMMA 1 é il fondamentale:
TEOREMA 4 (Criterio del Confronto)
Siano f,g : [a,b]— R funzioni integrabili sui compatti contenuti in [a,b[, wi non

negative e tali che f(z) < g(z) in [a,b].
Valgono i sequenti fatti:

i) se g ¢ impropriamente integrabile in [a,b[, tale & anche f e risulta:

/abf(m dxg/jg(x) da.

ii) se f mon & impropriamente integrabile in [a, b, allora anche g non lo é.
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Dimostrazione. Dette F' e G, rispettivamente, le funzioni integrali di f e ¢ con
piede in a, F' e G sono crescenti in [a,b[ e percido sono entrambe regolari in b e
tendono al proprio estremo superiore.

Proviamo la 4. Per ogni x € [a, [ si ha:

xT

b
P() <G < tim [ gt) dt= [ gla) da.
z—b~ J, a
quindi 'integrale improprio di g ¢ un maggiorante di F'; cido importa che F' converge
in b e che:
b b
/ fz) da = hril— F(z) < / g(x) dzx,

come volevamo.
Proviamo la 7. Per confronto, abbiamo:

)= [ s ar< [Col) at=6t

in [a,b[; per monotonia, se f non é impropriamente integrabile in [a,b], risulta
F(x) — +o0 per x — b~ e cio implica, per confronto, G(z) — 400; dunque g non
¢ impropriamente integrabile in [a, 0. O

Osservazione 15: L’ipotesi f(z) < g(x) in [a, b[ puo essere leggermente indeboli-
ta, richiedendo che la disuguaglianza sia soddisfatta solo in un opportuno intorno
sinistro [b — §, b[. Infatti, fissato z €]b — ¢, b[ troviamo:

Flz) = /xf(t) dt
b—6 T

:/ F@o dt+ [ ) de
a b—8 ~~~
<g(t)

b—§ T
<[ rwars [ o a

=C+G(x),

cosicché se G converge in b anche F' vi converge, dunque f ¢ impropriamente inte-
grabile in [a, b[, e viceversa se F' diverge in b anche G vi diverge, cosicché g non ¢
impropriamente integrabile in [a, b]. ¢

Il Criterio del Confronto ha una versione asintotica, la quale risulta molto utile
nelle applicazioni:

PROPOSIZIONE 4 (Criterio del Confronto Asintotico)
Siano f,g : [a,b]— R funzioni integrabili sui compatti contenuti in [a,b[, i non
negative e tali che:
lim 7f(:c)
z—b— g(x)

allora o f e g sono entrambe integrabili impropriamente in [a,b] oppure entrambe
non lo sono.

=1¢€]0,4o00] .
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l

Dimostrazione. Dalla definizione di limite con ¢ = 3

che esiste un 6 > 0 tale che:
flz) l‘ l l

<5 5 3@ <f@) < 9@

> 0 segue immediatamente

g(x)
per ogni x € [a,b[N]b— J,b+ 0[; detto £ un punto di [a, b[N]b — J,b + 4], le disugua-
glianze é g(x) < f(x) < %l g(x) valgono in [, b] e cio, per il Criterio del Confronto,
implica la contemporanea convergenza o divergenza dei due integrali impropri:

/:f(a:) dz e /:g(x) daz.

La tesi segue per proprieta additiva dell’integrale. O

Osservazione 16: Nelle ipotesi del Criterio del Confronto Asintotico abbiamo sup-
posto tacitamente che g(x) > 0 almeno in un opportuno intorno sinistro di b (altri-
menti, la funzione f(z)/g(z) non sarebbe ben definita intorno a b).

Volendo ovviare a questo fatto, é possibile sostituire I'ipotesi:

im M =
be* g(z) L€]0, Fo0 -
con la relazione f(z) = lg(z) + o(g(z)) per z — b. ¢

Il Criterio del Confronto Asintotico ha come pressoché immediata conseguenza
due criteri di integrabilita basati sull’ordine di infinito/infinitesimo.

PROPOSIZIONE 5 (Criterio dell’Ordine di Infinito)

Siano a < b € R ed f : [a,b]— R una funzione non negativa in [a,b[ ed integrabile
sugli intervalli [, B] C [a, b].

Se f & un infinito in b d’ordine p > 0, i.e.:

lim o= b f(w) =1 €]0,+00]

allora:

(1) se p <1, allora f & impropriamente integrabile in [a, b[;
(2) se p > 1, allora f non & impropriamente integrabile in [a, b|.

PROPOSIZIONE 6 (Criterio dell’Ordine di Infinitesimo)

Siano a € R ed f : [a,+oo[— R una funzione non negativa in [a,+00[ ed integrabile
sugli intervalli (o, B] C [a, +00].

Se f é un infinitesimo in +oo d’ordine p > 0, i.e.:

lim P f(x) =1¢€]0,+o0[,

T— 00

allora:
(1) se p>1, allora f & impropriamente integrabile in [a, +0o];

(2) sep <1, allora f non & impropriamente integrabile in [a, +o0].

Proviamo il primo dei due, potendosi ragionare analogamente per l’altro.
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Dimostrazione. Supponiamo che |z — b|Pf(z) — 1 > 0 per x — b™.
Per definizione di limite, in corrispondenza di € = /2 esiste 6 > 0 tale che per ogni
x € [b— 0, b[ risulta:

b ) — 1 < - L L
le=tPf@ ~ll <5 = g <@ < gt

Se p < 1, dalla disuguaglianza superiore segue che f é maggiorata da una funzione
potenza impropriamente integrabile in [b — §,b[ (cfr. Esempio 5 ed Osservazione
11) e tanto basta per concludere lintegrabilita di f in [a,b] via il Criterio del
Confronto.

Analogamente, se p > 1, dalla disuguaglianza inferiore segue che f & minorata da
una funzione potenza non impropriamente integrabile in [b — §, [ (cfr. Esempio 5
ed Osservazione 11) e tanto basta per concludere la non integrabilita di f in [a, b]
per confronto. O

Le ipotesi delle PROPOSIZIONI precedenti si possono limare un po’ per includere
qualche caso d’interesse; infatti, vale il:

TEOREMA 5 (Criterio dell’Ordine di Infinito Migliorato)

Siano a < b € R ed f : [a,b[— R una funzione non negativa in [a,b] ed integrabile
in ogni [a, B] C [a,b].

Se f & un infinito d’ordine inferiore ad un p < 1 in b, allora f & impropriamente
integrabile in [a, b[.

Se f & un infinito d’ordine non inferiore ad 1 in b, allora f mon & impropriamente
integrabile in [a, b|.

TEOREMA 6 (Criterio dell’Ordine di Infinitesimo Migliorato)

Sia f : |a,+oo[— R una funzione non negativa in [a,+oo| ed integrabile in ogni
[, B] € [a, +oo].

Se f & un infinitesimo d’ordine superiore ad un p > 1 in +oo, allora f & impro-
priamente integrabile in [a, +00].

Se f & un infinitesimo d’ordine non superiore ad 1 in +oo, allora f non é impro-
priamente integrabile in [a,+00]|.

Osservazione 17: Ricordiamo che una funzione non negativa f € un infinito d’or-
dine non inferiore ad 1 in b se e solo se una minorazione del tipo

|z —b] f(z) 2m
con m > 0 sussiste in un opportuno intorno sinistro di b.
Analogamente, una funzione non negativa f & un infinitesimo d’ordine non superiore
ad 1 in 400 se e solo se una minorazione del tipo:
|lz| f(z) = m

con m > 0 sussiste in un opportuno intorno sinistro di +oc. ¢

Proviamo di nuovo il primo, potendosi ragionare analogamente per l’altro.

Dimostrazione. Supponiamo f sia un infinito d’ordine inferiore ad 1/|x — bJ? con
p < 1 per x — b~ , ossia che:

lirg |z —bPf(x)=0.

In corrispondenza di € = 1 possiamo determinare un intorno sinistro di b in cui
risulta:

1
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con p < 1; da cio e dal Criterio del Confronto si trae I'integrabilita di f in [a, b].
Analogamente, supponiamo che f sia un infinito d’ordine non inferiore ad 1 in b:
cio accade quando esiste un intorno sinistro di b in cui risulta:

b f@)zm = f) 2

da cio e dal Criterio del Confronto si trae che f non é integrabile in [a, b[. O

Esempio 13: Il Criterio dell’Ordine di Infinitesimo Migliorato si pud applicare, ad
esempio, per stabilire che le funzioni:

| sin z| | cos z|
e

2 2

sono impropriamente integrabili su [a, +00[ (con a > 0).
Infatti, entrambe le funzioni sono continue (e dunque integrabili sugli intervalli
compatti contenuti in [a, +00[) ed infinitesime all’infinito d’ordine superiore a 3/2 >

1. &

Esempio 14: Piu in generale, le funzioni:

| sin x| | cos x|
e

sono impropriamente integrabili su [a, +oo[ (con a > 0) se & > 1 e non lo sono se
a <1

Infatti, entrambe le funzioni sono continue (e dunque integrabili sugli intervalli com-
patti contenuti in [a, +o0|) ed infinitesime all’infinito d’ordine superiore a O‘TH >1
se « > 1; mentre sono infinitesime d’ordine non superiore ad 1 se o < 1. &

Osservazione 18: Per a = 1 si dimostra che entrambe le funzioni dell’Esempio
precedente non sono impropriamente integrabili su intervalli del tipo [a, +oo[ (con
a > 0).

Proviamo, a titolo d’esempio, che
[7/2,+0o0].

Innanzitutto, osserviamo che, essendo ‘Slwﬁ > 0 ovunque in [7/2, 4+o00[, I'integrale
improprio di tale funzione é regolare in +oco e che il suo valore puo, a norma del
Teorema Ponte, essere calcolato scegliendo un’arbitraria successione R,, — +o0 e

| sin z| < s s . .
===l non ¢ integrabile in senso improprio su
x

. . . R, |si o
passando la successione di termine generale [ / @ dz al limite per n — +oo.

Consideriamo R,, = nm con n € N — {0} e la successione di termine generale:

I - /mT | sin x| do
/2 €z
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Tenendo presente che la funzione 1/x & decrescente, abbiamo:

LL:/ﬂ |sinel dCC—FTf/(’HDW |sina] do
™ k

/2t k=1"k7T :c
=:C
Ll ke | sin x|
>C+ / — d=z

-1

n 1 (k+1)m
C+kz(k+1)ﬂ/k |sinz| dz

=1 ™

n—1 1 (k+1)m .
= —_— —1 5
C+kz_;(k+1)7r/kﬂ (=1)*sinz dzx

n—1

1
=0+ 3 Gy (0 Toothn) —con ()

n—1

=C+ ; ﬁ (—1)F[(~1)*2]
n—1

ne consegue che I,, > C’ + % Sn, in cui C' & una costante ed s, ¢ la somma
parziale n-esima della serie armonica [DM, § 1.4]. Dato che la serie armonica
diverge positivamente, da I,, > C’ + 2

™

xr : t _ nm : t
lim [sintl g ozmm i / [sinfl o,
us

sp per confronto segue I, — +00; dunque:

z——+00 x/2 n—-+4oo0 /2 t
= lim I,
n—-+oo
e percio la funzione % non é impropriamente integrabile in [a, +00]. ¢

3.3. Funzioni Sommabili e Criteri di Sommabilita. La seguente definizione
é fondamentale:

DEFINIZIONE 8 (Funzioni Sommabili)
Si dice che una funzione f ¢ sommabile in (a,b) se e solo se la funzione |f| &

impropriamente integrabile in (a, ).

L’importanza della precedente definizione risiede nel seguente:
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TEOREMA 7 (Criterio di Integrabilita per Funzioni Sommabili)
Se f & sommabile in (a,b), allora essa & pure impropriamente integrabile in (a,b)

e risulta:
b
[ @) aa

Dimostrazione. Consideriamo, come modello, il caso di una funzione f : [a,b[— R.
Dato che | f| & sommabile in [a, b], per il Criterio di Cauchy per U'integrale improprio
abbiamo:

g/ab|f(x)| dz .

Ve >0, 3T intorno di b:  Vay,z9 € [a,b[N],

/:2 |f ()] dt‘ <e

1

e dalla disuguaglianza triangolare per I'integrale di Riemann:

/ 0 dt’ < / )| dt’

segue immediatamente che per l'integrale di f vale il Criterio di Cauchy; dunque
f & impropriamente integrabile in [a, b[.
Per mostrare la disuguaglianza, basta ricordare che:

[ s dt' < ["lro) at

e l'asserto segue passando al limite per x — b™. O

Osservazione 19 (Funzioni Integrabili ma non Sommabili): Notiamo esplicita-
mente che si possono costruire esempi di funzioni impropriamente integrabili su un
intervallo ma ivi non sommabili. Pertanto il TEOREMA esprime una condizione
sufficiente, ma nient’affatto necessaria, all’integrabilita impropria.

Per lumeggiare tale circostanza, consideriamo l’integrale improprio:

+oo s
simx
/ dz .
w/2 €T

Sfruttando la definizione con il limite ed integrando per parti con fattore differen-
ziale sin x, troviamo:

400 - R -
sin x . sin x
/ dx = lim dzx
/2 T R—+o00 /2 T
. cosx1h R cosx
= lim |— — 5 dzx
R—+o00 X 7r/2 7'r/2 X
. cos R R cosx
= lim - — — dz
R—+00 R rj2 T

Il primo addendo nel limite all’ultimo membro ¢é infinitesimo per R — +o00; d’altro
canto, si ha:

‘cosx‘ < 1
2 | — 22

per z € [r/2,+00[, con la funzione maggiorante impropriamente integrabile in
tale intervallo, cosicché l'integrale improprio di ‘%| esiste finito (per Criterio

del Confronto) e la funzione “%3* ¢ sommabile per il Criterio di Sommabilita; ne
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consegue:

T gsina . cos R R cosz
dz= lim - — — dz
T T

/2 X R—+oc0 /2 1‘2
—+oo
COS T
= —/ 5 dz eR
/2 T

cosicché la funzione

& impropriamente integrabile.
non € una funzione sommabile, poiché 'integrale improprio di

sinx
T

sinx

D’altra parte,
Isinel on converge. ¢
x
Osservazione 20: Il TEOREMA 7 aiuta a convincersi che 'integrale improprio &
una generalizzazione imperfetta dell’integrale di Riemann, poiché per 'integrale di
Riemann vale esattamente la proprieta opposta (ciog, se f & integrabile secondo
Riemann in [a, b] tale é pure |f]).
Per convincersi che, in generale, la proprieta enunciata nel TEOREMA 7 non valga
per Uintegrale di Riemann basta meditare sul seguente semplice esempio.
Sappiamo che la funzione d di Dirichlet (la quale assume valore 1 sugli irrazionali e 0
sui razionali) non ¢ integrabile secondo Riemann su [0, 1]. Consideriamo la funzione
f:10,1] — R definita ponendo f(x) := d(x) — 1/2: tale funzione assume valore 1/2
[risp. —1/2] sugli irrazionali [risp. sui razionali] e non ¢ integrabile secondo Riemann
in [0,1] (poiché se lo fosse risulterebbe integrabile anche d(z) = f(z) + 1/2).
D’altra parte, pero, abbiamo |f(x)| = 1/2 identicamente in [0, 1] cosicché |f| &
costante ed integrabile secondo Riemann in [0, 1].

Tutti i criteri di convergenza stabiliti per gli integrali impropri di funzioni non
negative si trasformano in criteri di sommabilita, semplicemente considerando al
posto di una generica funzione non negativa il valore assoluto |f| della funzione f
della quale si vuole provare la sommabilita.

Ad esempio, molto utili nella pratica sono i criteri di somabilita per ordine di
infinito/infinitesimo che riportiamo qui di seguito:

PROPOSIZIONE 7 (Sommabilita per Ordine di Infinito)

Siano a < b € R ed f : [a,b]— R una funzione integrabile sugli intervalli [, 3] C
[a, b].
Se |f| & un infinito in b d’ordine p > 0, i.e.:

111217 |z — 0P |f(z)| =1 €]0,+o0],

allora:
(1) sep <1, allora f ¢ sommabile in [a,b[;
(2) sep>1, allora f non e sommabile in [a,b].

TEOREMA 8 (Sommabilita per Ordine di Infinito Migliorato)

Siano a < b €R ed f: [a,b]— R una funzione integrabile in ogni [a, 8] C [a, b].

Se |f| e un infinito d’ordine inferiore ad un p < 1 in b, allora f & sommabile in
[a, b].

Se |f| & un infinito d’ordine non inferiore ad 1 in b, allora f non & sommabile in

[a, b].

PROPOSIZIONE 8 (Sommabilita per Ordine di Infinitesimo)
Siano a € R ed f : [a,+oo[— R una funzione integrabile sugli intervalli o, 5] C
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[a, +00].
Se |f| & un infinitesimo in +oo d’ordine p > 0, i.e.:
lim P |f(z)| =1 €]0,+o0[,
T—+00
allora:

(1) se p>1, allora f & sommabile in [a,+oo[;
(2) sep <1, allora f non & sommabile in [a,+o0].

TEOREMA 9 (Sommabilita per Ordine di Infinitesimo Migliorato)

Sia f : [a,+0o[— R una funzione integrabile in ogni [, 3] C [a, +00].

Se | f| & un infinitesimo d’ordine superiore ad un p > 1 in +o00, allora f ¢ somma-
bile in [a,+00].

Se |f| & un infinitesimo d’ordine non superiore ad 1 in +oo, allora f non & som-
mabile in [a, +00].
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