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Introduzione

In questi fogli è raccolta, con numerose aggiunte, la presentazione della conves-
sità come svolta a lezione.
L’idea è quella di presentare l’argomento partendo dalla “definizione analitica” di
funzione convessa, data mediante la disuguaglianza di convessità, e dimostrare ogni
altra caratterizzazione a partire da questa.
Particolare attenzione è posta nello studio delle proprietà dei rapporti incrementa-
li e delle loro conseguenze a livello di derivabilità e di localizzazione dei punti di
estremo assoluto di funzioni convesse o concave.
Nell’ultimo paragrafo sono illustrate alcune applicazioni “classiche” della convessità,
cioè le dimostrazioni di disuguaglianze utili in diversi settori della Matematica pura
ed applicata.

Avvertenza: Nei paragrafi e nelle osservazioni contrassegnati con * sono usate
nozioni base del Calcolo Integrale.

Date: 18 luglio 2018.
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1. Convessità e Concavità delle Funzioni Reali

1.1. Funzioni Convesse e Concave. La seguente definizione è fondamentale:

Definizione 1 (Definizione Analitica di Funzioni Convesse e Concave)
Siano I un intervallo non banale ed f : I → R.
La funzione f si dice convessa in I se e solo se l’implicazione:

(1) 0 < t < 1 ⇒ f
(
(1− t)x0 + tx1

)
≤ (1− t)f(x0) + tf(x1)

vale per ogni scelta di x0 < x1 ∈ I.
Invece, la f si dice concava in I se e solo se la funzione −f è convessa in I, cioè se
l’implicazione:

(2) 0 < t < 1 ⇒ f
(
(1− t)x0 + tx1

)
≥ (1− t)f(x0) + tf(x1)

vale per ogni scelta di x0 < x1 ∈ I.

Vale la pena fare alcune importanti osservazioni circa la Definizione 1.

Osservazione 1 (Significato Geometrico della Convessità): Supponiamo che f sod-
disfi la (1).
Osserviamo innanzitutto che per ogni t ∈]0, 1[, il punto xt := (1 − t)x0 + tx1

appartiene all’intervallo ]x0, x1[, poiché:

xt > (1− t)x0 + tx0 = x0

xt < (1− t)x1 + tx1 = x1 ;

viceversa, per ogni punto x ∈]x0, x1[ è possibile determinare un unico t ∈]0, 1[ tale
che xt = x: infatti, risolvendo l’equazione (1−t)x0 +tx1 = x rispetto a t otteniamo:

t =
x− x0

x1 − x0

ed è evidentissimo che tale t appartenga a ]0, 1[.
Da quanto appena detto segue che la (1) può riscriversi come segue:

x0 < x < x1 ⇒ f(x) ≤ f(x1)− f(x0)
x1 − x0

(x− x0) + f(x0) ,

la quale ha un’immediata interpretazione geometrica: infatti, tale disuguaglianza
asserisce che il generico punto P = (x, f(x)) del grafico di f ottenuto prendendo
x ∈ [x0, x1] ⊆ I non si trova mai “al disopra” del punto appartenente al segmento
(di secante al grafico) congiungente i punti P0 = (x0, f(x0)) e P1 = (x1, f(x1)) che
ha la stessa ascissa (vedi Figura 1).

Analogamente ragionando, se f è concava in I otteniamo che la (2) può riscriversi:

x0 < x < x1 ⇒ f(x) ≥ f(x1)− f(x0)
x1 − x0

(x− x0) + f(x0) ,

la quale ha un ovvia interpretazione geometrica, poiché asserisce che il generico
punto P = (x, f(x)) del grafico di f ottenuto prendendo x ∈ [x0, x1] ⊆ I non si
trova mai “al disotto” del punto Q appartenente al segmento (di secante al grafico)
congiungente i punti P0 = (x0, f(x0)) e P1 = (x1, f(x1)) che ha la stessa ascissa. �

Osservazione 2 (Sul Dominio delle Funzioni Convesse e Concave): Quanto os-
servato sopra ci aiuta a mostrare che l’insieme di definizione X di una funzione
convessa o concava f è necessariamente un intervallo.
Fissati due punti x0 < x1 in X, affinché sia possibile calcolare il valore di f in
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Figura 1. Interpretazione geometrica della Definizione 1.

xt := (1− t)x0 + tx1 per ogni t ∈]0, 1[ come indicato dalle (1) o (2) è necessario che
risulti xt ∈ X.
Poiché, come già osservato, i punti del tipo xt descrivono al variare di t ∈]0, 1[
tutti i punti dell’intervallo ]x0, x1[, da quanto detto sopra segue che [x0, x1] ⊆ X.
Dall’arbitrarietà nella scelta di x0 < x1 ∈ X segue che il dominio X di f deve
necessariamente soddisfare la proprietà di connessione:

∀x0 < x1 ∈ X, [x0, x1] ⊆ X ,

la quale individua tutti e soli gli intervalli della retta reale; pertanto X è un
intervallo. �

Osservazione 3 (Disuguaglianza di Convessità di Jensen1): Notiamo esplicitamen-
te che le disuguaglianze (1) ed (2) possono essere estese ad un numero qualsiasi di
punti di I usando il Principio d’Induzione.
Il lettore non avrà difficoltà a dimostrare che, in generale, una funzione f : I → R

1Johan Ludwig William Valdemar Jensen (1859 – 1925), matematico ed ingegnere danese.
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è convessa [risp. concava] in I se e solo se:

0 < t0, . . . , tn < 1,
n∑
k=0

tk = 1 ⇒(1’)

⇒ f

(
n∑
k=0

tkxk

)
≤

n∑
k=0

tkf(xk)

[risp. 0 < t0, . . . , tn < 1,
n∑
k=0

tk = 1 ⇒(2’)

⇒ f

(
n∑
k=0

tkxk

)
≥

n∑
k=0

tkf(xk)]

vale per ogni scelta di x0 < . . . < xn ∈ I (con n ≥ 1).
La disuguaglianza (2’), che generalizza la (1), è usualmente detta disuguaglianza di
convessità di Jensen. ♦

Prima di enunciare alcune notevoli proprietà delle funzioni convesse o concave,
riportiamo alcuni esempi.

Esempio 1 (Funzioni Affini): Scelti m, q ∈ R, la funzione f : R → R definita
ponendo f(x) := mx+ q è sia convessa sia concava in R.
Infatti, abbiamo:

f
(
(1− t)x0 + tx1

)
= m

(
(1− t)x0 + tx1

)
+ q

= m
(
(1− t)x0 + tx1

)
+
(
(1− t) + t

)
q

= (1− t)(mx0 + q) + t(mx1 + q)

= (1− t)f(x0) + tf(x1) .

per ogni scelta di x0 < x1 ∈ R e di t ∈]0, 1[, cosicché sono contemporaneamente
soddisfatte sia la (1) sia la (2). ♦

Esempio 2 (Valore Assoluto): La funzione f : R → R definita da f(x) := |x| è
convessa.
Infatti, per disuguaglianza triangolare abbiamo:

f
(
(1− t)x0 + tx1

)
=
∣∣(1− t)x0 + tx1

∣∣
≤
∣∣(1− t)x0

∣∣− ∣∣tx1

∣∣
= (1− t)|x0|+ t− t|x1|
= (1− t)f(x0) + tf(x1)

per ogni x0 < x1 ∈ R e t ∈]0, 1[, come volevamo. ♦

Esempio 3: La funzione f : R→ R definita da f(x) := 1− |x| è concava.
Infatti, per la disuguaglianza triangolare abbiamo:

f
(
(1− t)x0 + tx1

)
= 1−

∣∣(1− t)x0 + tx1

∣∣︸ ︷︷ ︸
≤
∣∣(1−t)x0

∣∣+∣∣tx1

∣∣
≥ 1−

∣∣(1− t)x0

∣∣− ∣∣tx1

∣∣
= (1− t)− (1− t)|x0|+ t− t|x1|
= (1− t)

(
1− |x0|

)
+ t
(
1− |x1|

)
= (1− t)f(x0) + tf(x1)
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per ogni x0 < x1 ∈ R e t ∈]0, 1[, come volevamo. ♦

Osservazione 4 (Presenza di Tratti Rettilinei nei Grafici di Funzioni Convesse):
Notiamo esplicitamente che nei grafici delle funzioni proposte negli Esempi prece-
denti sono presenti dei tratti rettilinei.
Il fatto che il grafico di una funzione convessa o concava non sia sempre “ben curvo”
è, in un certo senso, nella natura delle cose: infatti, non è difficile provare che se esi-
stono x0 < x1 ∈ I tali che nelle disuguaglianze (1) e (2) è soddisfatta l’uguaglianza
per almeno un valore ϑ ∈]0, 1[, ossia tali che:

f
(
(1− ϑ)x0 + ϑx1

)
= (1− ϑ)f(x0) + ϑf(x1) ,

allora l’uguaglianza:

f
(
(1− t)x0 + tx1

)
= (1− t)f(x0) + tf(x1)

è soddisfatta per ogni t ∈]0, 1[; ciò, geometricamente, equivale a dire che il tratto
del grafico di f che si ottiene in corrispondenza dell’intervallo [x0, x1] coincide con
il segmento (di secante al grafico) di estremi P0 e P1. �

Esempio 4: La funzione f : R → R definita ponendo f(x) := x2 è una funzione
convessa.
Invero, scelti x0 < x1 ∈ R, comunque si fissi t ∈]0, 1[ abbiamo:

f
(
(1− t)x0 + tx1

)
− (1− t)f(x0)− tf(x1)

=
(
(1− t)x0 + tx1

)2 − (1− t)x2
0 − tx2

1

=
(
(1− t)2 − (1− t)

)
x2

0 + 2t(1− t)x0x1 +
(
t2 − t

)
x2

1

= −t(1− t)x2
0 + 2t(1− t)x0x1 − t(1− t)x2

1

= − t(1− t)︸ ︷︷ ︸
>0

(x0 − x1)2︸ ︷︷ ︸
>0

< 0

cosicché risulta addirittura f
(
(1− t)x0 + tx1

)
< (1− t)f(x0) + tf(x1). ♦

1.2. Funzioni Strettamente Convesse o Concave. La definizione che segue
individua due sottoclassi delle funzioni convesse e delle funzioni concave, le quali
sono particolarmente interessanti dal punto di vista delle applicazioni:

Definizione 2 (Funzioni Strettamente Convesse o Concave)
Siano I un intervallo non banale ed f : I → R.
La f è detta strettamente convessa in I se e solo se la disuguaglianza:

(3) 0 < t < 1 ⇒ f
(
(1− t)x0 + tx1

)
< (1− t)f(x0) + tf(x1)

vale per ogni x0 < x1 ∈ I.
Invece, la f è detta strettamente convessa in I se solo se la disuguaglianza:

(4) 0 < t < 1 ⇒ f
(
(1− t)x0 + tx1

)
> (1− t)f(x0) + tf(x1)

vale per ogni x0 < x1 ∈ I.

Osservazione 5: L’unica differenza tra (1) e (3) e tra (2) e (4) è la disuguaglianza
stretta. �

Osservazione 6 (Interpretazione Geometrica della Stretta Convessità): Ragionan-
do come nell’Osservazione 1, possiamo capire che anche la Definizione 2 ha un
importante contenuto geometrico.
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Invero, se f è strettamente convessa, il generico punto P = (x, f(x)) del grafico di
f ottenuto prendendo x ∈]x0, x1[⊆ I si trova sempre “al disotto” del punto appar-
tenente al segmento (di secante al grafico) congiungente i punti P0 = (x0, f(x0)) e
P1 = (x1, f(x1)) avente la stessa ascissa.

Analogamente, se f è strettamente concava, il generico punto P = (x, f(x)) del
grafico di f ottenuto prendendo x ∈]x0, x1[⊆ I si trova sempre “al disopra” del
punto appartenente al segmento (di secante al grafico) congiungente i punti P0 =
(x0, f(x0)) e P1 = (x1, f(x1)) avente la stessa ascissa. �

Osservazione 7 (Assenza di Tratti Rettilinei nel Grafico di una Funzione Stret-
tamente Convessa): Notiamo esplicitamente che la disuguaglianza (3) [risp. (4)]
si può enunciare anche dicendo che vale la disuguaglianza di convessità (1) [risp.
disuguaglianza di concavità (2)] e che non esistono né punti x0 < x1 né valori di
t ∈]0, 1[ tali che risulti f

(
(1− t)x0 + tx1

)
= (1− t)f(x0) + tf(x1).

Ciò implica che il grafico di una funzione strettamente convessa, così come quello
di una funzione strettamente concava, non può contenere segmenti ossia che esso è
sempre “ben curvo”. �

Esempio 5: La funzione f : R → R definita ponendo f(x) := x2 è strettamente
convessa poiché, come visto nell’Esempio 4, essa soddisfa la (1) sempre col segno
di disuguaglianza stretta. ♦

Esempio 6: La funzione f :]0,+∞[→ R definita ponendo f(x) := 1/x è stretta-
mente convessa in ]0,+∞[.
Invero, scelti 0 < x0 < x1 e 0 < t < 1 abbiamo:

f
(
(1− t)x0 + tx1

)
− (1− t)f(x0)− tf(x1) =

1
(1− t)x0 + tx1

− 1− t
x0
− t

x1

= (t2 − t)︸ ︷︷ ︸
<0

· (x1 − x0)2(
(1− t)x0 + tx1

)
x0x1︸ ︷︷ ︸

>0

< 0

cosicché è soddisfatta la (3).
Analogamente si prova che la funzione g :] −∞, 0[→ R definita da g(x) := 1/x è
strettamente concava in ]−∞, 0[. ♦

Altri esempi di funzioni strettamente convesse o strettamente concave li incon-
treremo più avanti.

Osservazione 8: La disuguaglianza di convessità di Jensen (1’) [risp. l’analoga
disuguaglianza di concavità (2’)] vale col segno di disuguaglianza stretta per le
funzioni strettamente convesse [risp. strettamente concave]. �

1.3. Alcune Proprietà Algebriche delle Funzioni Convesse. Concludiamo
questo paragrafo iniziale con alcune proprietà di tipo algebrico, cioè riguardanti il
comportamento delle funzioni convesse rispetto alle usuali operazioni.
Per semplicità, gli enunciati riguardano solamente le funzioni convesse e stretta-
mente convesse; lasciamo al lettore il compito di convincersi che essi sussistono, con
le modifiche del caso, anche per le funzioni concave.

Proposizione 1
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Siano I un intervallo non banale ed f, g : I → R.

i. Se f e g sono entrambe convesse in I, allora αf + βg è convessa in I per ogni
α, β ≥ 0.

ii. Se f è strettamente convessa e g è convessa in I, allora αf+βg è strettamente
convessa in I per ogni α > 0 e β ≥ 0.

iii. Se f è convessa [risp. strettamente convessa] in I, allora αf è concava [risp.
strettamente concava] in I per ogni α < 0.

Dimostrazione. Le i - iii sono immediate conseguenze delle definizioni e delle pro-
prietà della relazione d’ordine. �

Proposizione 2
Siano I, J intervalli non banali, f : I → J e g : J → R.

i. Se f è convessa in I e g è crescente e convessa [risp. strettamente convessa]
in J , allora la funzione composta g ◦f è convessa [risp. strettamente convessa]
in I.

ii. Se f è convessa in I e g è decrescente e concava [risp. strettamente concava]
in J , allora la funzione composta g ◦ f è concava in I.

iii. Se f è strettamente convessa in I e g è strettamente crescente e convessa in
J , allora la funzione composta g ◦ f è strettamente convessa in I.

iv. Se f è strettamente convessa in I e g è strettamente decrescente e concava in
J , allora la funzione composta g ◦ f è concava in I.

Dimostrazione. Proviamo la iii, analogamente ragionandosi negli altri casi.
Fissati che siano x0 < x1 ∈ I e t ∈]0, 1[ abbiamo:

f(xt) < (1− t)f(x0) + tf(x1) ⇒ g
(
f(xt)

)
< g
(
(1− t)f(x0) + tf(x1)

)
≤ (1− t)g

(
f(x0)

)
+ tg

(
f(x1)

)
da cui segue la stretta convessità di g ◦ f . �

Proposizione 3
Siano I un intervallo non banale ed f : I → R una funzione invertibile con inversa
f−1 : f(I)→ R.

i. Se f è crescente e convessa [risp. strettamente convessa] in I, allora f−1 è
crescente e concava [risp. strettamente concava] in f(I).

ii. Se f è decrescente e convessa [risp. strettamente convessa] in I, allora f−1 è
decrescente e convessa [risp. strettamente convessa] in f(I).

Dimostrazione. Dimostriamo la ii, analogamente ragionandosi per la i.
Supponiamo che f sia invertibile, decrescente e convessa; in tal caso, per noti fatti,
f è strettamente decrescente e così pure f−1 e perciò dobbiamo provare solo che
f−1 è convessa.
A tal uopo, fissiamo y0 < y1 ∈ f(I) ed osserviamo che esistono due punti x0, x1 ∈ I
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tali che f(x0) = y0 ed f(x1) = y1; inoltre, data la stretta monotònia di f , si ha
x0 > x1. Scelto ora un t ∈]0, 1[ e posto τ = 1− t ∈]0, 1[ abbiamo:

f
(
(1− τ)x1 + τx0

)
≤ (1− τ)f(x1) + τf(x0) ⇒

⇒ (1− τ)x1 + τx0 ≥ f−1
(

(1− τ)f(x1) + τf(x0)
)

⇒ (1− τ)f−1(y1) + τf−1(y0) ≥ f−1
(

(1− τ)y1 + τy0

)
⇒ f−1

(
(1− t)y0 + ty1

)
≤ (1− t)f−1(y0) + tf−1(y1) ,

come volevamo.
Osserviamo esplicitamente che se f è strettamente convessa, la prima delle disu-
guaglianze precedenti è stretta e tale rimane (seppure con verso opposto) anche
applicando ad ambo i suoi membri la funzione strettamente decrescente f−1; da ciò
segue che f−1 è strettamente convessa. �

2. Rapporti Incrementali di Funzioni Convesse

Da qui in avanti, per pura semplicità, il discorso verterà sulle funzioni convesse,
strettamente e no.
Avvisiamo il lettore che quanto diremo vale anche per le funzioni concave, a patto
di invertire il verso di qualche disuguaglianza.

Come notato nell’Osservazione 1, una funzione f : I → R è convessa se e solo
se risulta:

x0 < x < x1 ⇒ f(x) ≤ f(x1)− f(x0)
x1 − x0

(x− x0) + f(x0)

e ciò evidentemente importa:

x0 < x < x1 ⇒ f(x)− f(x0)
x− x0

≤ f(x1)− f(x0)
x1 − x0

;

dato che la prima implicazione può scriversi pure come:

x0 < x < x1 ⇒ f(x) ≤ f(x1)− f(x0)
x1 − x0

(x− x1) + f(x1)

(poiché il secondo membro è una riscrittura del secondo membro dell’equazione
della retta secante il grafico di f in P0 e P1) è chiaro che da essa segue anche:

x0 < x < x1 ⇒ f(x)− f(x1)
x− x1

≥ f(x1)− f(x0)
x1 − x0

.

Altrettanto evidente è il fatto che da ognuna delle implicazioni:

x0 < x < x1 ⇒ f(x)− f(x0)
x− x0

≤ f(x1)− f(x0)
x1 − x0

x0 < x < x1 ⇒ f(x)− f(x1)
x− x1

≥ f(x1)− f(x0)
x1 − x0

si può ricavare la disuguaglianza di convessità (1).
Abbiamo così dimostrato un’importante caratterizzazione della convessità, espressa
di solito nel seguente:

Lemma 1 (Convessità e Rapporti Incrementali)
Siano I un intervallo non banale ed f : I → R.
La f è convessa in I se e solo se per ogni terna di punti x0 < x < x1 ∈ I risulta:

(5)
f(x)− f(x0)

x− x0
≤ f(x1)− f(x0)

x1 − x0
≤ f(x)− f(x1)

x− x1
.
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Figura 2. Interpretazione geometrica del Lemma 1.

Osservazione 9 (Interpretazione Geometrica del Lemma): Il Lemma 1 asserisce
una semplice proprietà geometrica del grafico di una funzione convessa, cioè il fatto
che, comunque si fissino tre punti P0 = (x0, f(x0)), P = (x, f(x)) e P1 = (x1, f(x1))
con ascisse x0 < x < x1, le retta secante il grafico in P0 e P ha pendenza non
superiore di quella condotta per P0 e P1, la quale a sua volta ha pendenza non
superiore a quella passante per P e P1 (cfr. Figura 2). �

Osservazione 10: Ribadiamo una cosa già evidenziata nella dimostrazione del
Lemma, ossia che per dimostrare la convessità di f basta la sola disuguaglianza tra
i membri esterni di (5), cioè basta che:

f(x)− f(x0)
x− x0

≤ f(x)− f(x1)
x− x1

per ogni terna di punti x0 < x < x1 ∈ I. �

Osservazione 11: Le (5) valgono col segno di disuguaglianza stretta se e solo se
la f è strettamente convessa in I. �

Il Lemma 1 ha numerose semplici conseguenze le quali consentono di stabilire
utilissime proprietà delle funzioni convesse: qui di seguito ne proponiamo alcune
molto importanti.
Abbiamo:

Proposizione 4 (Monotònia del Rapporto Incrementale)
Siano I ⊆ R un intervallo non banale ed f : I → R.
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La f è convessa in I se e solo se, per ogni x0 ∈ I, la funzione rapporto incrementale
centrato in x0, cioè r(x;x0) := f(x)−f(x0)

x−x0
, è crescente in I − {x0}.

Dimostrazione. ⇒) Se f è convessa, allora r(x;x0) è crescente per ogni x0 ∈ I.
Fissiamo x1 < x2 ∈ I − {x0} e distinguiamo i casi:

se x0 < x1 < x2: sfruttando la prima disuguaglianza delle (5) otteniamo:

r(x1;x0) =
f(x1)− f(x0)

x1 − x0
≤ f(x2)− f(x0)

x2 − x0
= r(x2;x0) ;

se x1 < x0 < x2: sfruttando entrambe le disuguaglianze (5) troviamo:

r(x1;x0) =
f(x0)− f(x1)

x0 − x1
≤ f(x2)− f(x1)

x2 − x1
≤ f(x0)− f(x2)

x0 − x2
= r(x2;x0) ;

se x1 < x2x0: sfruttando la seconda disuguaglianza delle (5) otteniamo:

r(x1;x0) =
f(x1)− f(x0)

x1 − x0
≤ f(x2)− f(x0)

x2 − x0
= r(x2;x0) ;

pertanto si ha sempre r(x1;x0) ≤ r(x2;x0).

⇐) Se r(x;x0) è crescente per ogni x0 ∈ I, allora f è convessa.
Scelti x0 < x < x1 ∈ I per monotònia di r(·;x0) abbiamo:

r(x;x0) ≤ r(x1;x0) ,

mentre per monotònia di r(·;x1) abbiamo:

r(x1;x0) = r(x0;x1) ≤ r(x;x1) ;

dunque è:
f(x)− f(x0)

x− x0
≤ f(x1)− f(x0)

x1 − x0
≤ f(x)− f(x1)

x− x1

e per il Lemma 1 f è convessa. �

Osservazione 12: Se f è strettamente convessa, ogni rapporto incrementale r(·;x0)
è strettamente crescente in I − {x0}. �

Proposizione 5 (Esistenza delle Derivate Destra e Sinistra nei Punti Interni)
Siano I ⊆ R intervallo non banale ed f : I → R.
Se f è convessa in I, i limiti:

lim
x→x±0

f(x)− f(x0)
x− x0

esistono per ogni scelta di x0 ∈ I.2
In particolare, se x0 è interno ad I, entrambi i limiti precedenti esistono finiti, nel
senso che esistono due numeri l− ≤ l+ ∈ R tali che:

lim
x→x−0

f(x)− f(x0)
x− x0

= l− lim
x→x+

0

f(x)− f(x0)
x− x0

= l+ ,

cosicché f è derivabile da sinistra e da destra in ogni punto interno al suo intervallo
di definizione e f ′±(x0) = l±.

2Chiaramente, se x0 è un estremo di I esiste l’unico tra i due limiti delle restrizioni che ha
senso calcolare.
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Dimostrazione. Visto che r(x;x0) è crescente in I − {x0}, per il Teorema sulla
Regolarità delle Funzioni Monotòne troviamo:

lim
x→x−0

f(x)− f(x0)
x− x0

=

= sup
x<x0

r(x;x0) =


l− ∈ R , se r(x;x0) ha qualche maggiorante per

x < x0 intorno a x0

+∞ , altrimenti

lim
x→x+

0

f(x)− f(x0)
x− x0

=

= inf
x>x0

r(x;x0) =


l+ ∈ R , se r(x;x0) ha qualche minorante per

x > x0 intorno a x0

−∞ , altrimenti
,

cosicché i due limiti esistono sempre.
D’altra parte, se x0 è interno ad I esistono certamente due punti x1, x2 ∈ I tali che
x1 < x0 < x2; per il Lemma 1, comunque si scelga x < x0 abbiamo:

r(x;x0) ≤ r(x0;x2) ,

di modo che r(x0;x2) è un maggiorante dei rapporti incrementali r(x;x0) per x < x0

e dunque:

lim
x→x−0

f(x)− f(x0)
x− x0

= l− ∈ R ;

del tutto analogamente, fissato x0 < x dal Lemma 1 traiamo:

r(x1;x0) ≤ r(x;x0) ,

dunque r(x1;x0) è un minorante dei rapporti incrementali r(x;x0) per x > x0 e
dunque:

lim
x→x+

0

f(x)− f(x0)
x− x0

= l+ ∈ R .

Infine, sempre dal Lemma 1 si desume che gli insiemi:

L =
{

r(x;x0), con x < x0

}
U =

{
r(x;x0), con x > x0

}
sono separati e che U è l’insieme dei maggioranti; pertanto l− = supL ≤ inf U =
l+. �

Da quanto appena acquisito consegue immediatamente il:

Teorema 1 (Continuità nei Punti Interni)
Siano I ⊆ R non banale ed f : I → R.
Se f è convessa in I, allora f è continua in ogni punto x0 interno ad I.

Dimostrazione. La dimostrazione ricalca quella fornita per provare che una funzione
derivabile in un punto è ivi continua.
Fissiamo x0 interno ad I. Visto che x0 è di accumulazione sia da sinistra sia da
destra per I, provare che f è continua in x0 equivale a provare che:

lim
x→x−0

f(x) = f(x0) = lim
x→x+

0

f(x) .
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Per quanto asserito nella Proposizione 5, abbiamo:

lim
x→x±0

f(x) = lim
x→x±0

f(x)− f(x0)
x− x0

· (x− x0) + f(x0)

= l± · 0 + f(x0)

= f(x0) .

�

Osservazione 13 (Comportamento nei Punti Interni): Geometricamente, la Pro-
posizione 5 ed il Teorema 1 assicurano che il grafico di una funzione convessa f
presenta unicamente punti angolosi con ascisse interne all’intervallo di definizione
e che le eventuali discontinuità di f (ovviamente di prima specie) possono essere
localizzate unicamente negli estremi dell’intervallo di definizione. �

Osservazione 14 (Comportamento negli Estremi – I): A norma della Proposi-

zione 5, gli unici punti in cui i limiti delle restrizioni lim
x→x±0

f(x)− f(x0)
x− x0

possono

uguagliare ±∞ sono gli estremi dell’intervallo I.
Detti a < b tali estremi, osserviamo esplicitamente che affinché ciò avvenga c’è
bisogno che a 6= −∞ [risp. b 6= +∞] e che f sia definita in a [risp. b], altrimenti i
rapporti incrementali r(x; a) [risp. r(x; b)] non possono essere calcolati.

In tal caso, il lim
x→a+

f(x)− f(a)
x− a

può essere uguale a −∞ per due motivi:

f non è continua in a: in tal caso da:

lim
x→a+

f(x)− f(a)
x− a

= −∞

segue (per permanenza del segno) che f(x) < f(a) intorno ad a ed inoltre
si può dimostrare che deve necessariamente risultare limx→a+ f(x) = l ∈ R,
di modo che a è un punti di discontinuità eliminabile;

f è continua in a: allora il grafico di f ha tangente verticale in (a, f(a)).

Lo stesso tipo di distinzione si può fare per illustrare il comportamento di f
nell’estremo superiore b, qualora f sia definita in b. �

Osservazione 15 (Comportamento negli Estremi – II): Quando f non è definita
in a ed a ∈ R, si può comunque dimostrare che il limite limx→a+ f(x) esiste sempre
ed è un valore l ∈ R ∪ {+∞}. Pertanto, quando f non è definita nell’estremo
inferiore a di I, o il grafico di f presenta un asintoto verticale da destra verso l’alto
d’equazione x = a oppure f è prolungabile con continuità su a ponendo f(a) = l
(a seconda che l = +∞ oppure l ∈ R).
Infine, se a = −∞ allora il limite limx→−∞ f(x) esiste sempre, ma può prendere
ogni valore appartenente ad R̂. In tal caso, il grafico di f può avere un asintoto
orizzontale a sinistra o meno (a seconda che limx→−∞ f(x) sia finito o no), può
avere un asintoto obliquo o no.
Lo stesso tipo di considerazioni si può fare per l’estremo b quando f non vi è definita
e le casistiche che si ritrovano sono le medesime del caso precedente. �

Dal Teorema 1 e dalla Proposizione 5 traiamo immediatamente il seguente
risultato che illustra un proprietà geometrica interessante dei grafici delle funzioni
convesse:
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Figura 3. Interpretazione geometrica della Proposizione 6.

Proposizione 6 (Esistenza di Rette di Supporto al Grafico)
Siano I = (a, b) ⊆ R intervallo non banale, f : I → R convessa in I ed x0 ∈ I.
Se x0 è un punto interno ad I, allora per ogni m ∈ [f ′−(x0), f ′+(x0)] risulta:

(6) ∀x ∈ I, f(x) ≥ m(x− x0) + f(x0) .

Se x0 = a [risp. x0 = b] e se esiste (finita) f ′+(a) [risp. f ′−(b)], allora la (6) vale
per ogni m ∈]−∞, f ′+(a)] [risp. m ∈ [f ′−(b),+∞[].

Osservazione 16 (Interpretazione Geometrica della Proposizione 6): La Propo-
sizione 6 asserisce che, fissato x0 interno ad I, il grafico della funzione f si trova
tutto nel semipiano “al disopra” della retta di equazione y = m(x − x0) + f(x0),
condotta per P0 = (x0, f(x0)) ed avente per coefficiente angolare un qualsiasi
m ∈ [f ′−(x0), f ′+(x0)].
Analogamente, se è possibile prendere x0 = a [risp. x0 = b] e se esiste la derivata
f ′+(a) [risp. f ′−(x0)], allora il grafico di f si trova tutto nel semipiano “al disopra”
della retta di equazione y = m(x−a)+f(a) [risp. y = m(x−b)+f(b)], passante per
A = (a, f(a)) [risp. B = (b, f(b))] ed avente come coefficiente angolare un qualsiasi
m ≤ f ′+(a) [risp. m ≥ f ′−(b)].
Geometricamente, accade ciò che è illustrato in Figura 3.
Le rette del tipo ora detto si chiamano usualmente rette di supporto (o rette radenti)
al grafico di f in P0. �

Osservazione 17 (Sottodifferenziale di una Funzione Convessa): Fissato un punto
x0 nell’intervallo di definizione I, l’insieme degli m ∈ R per cui vale la (6) si chiama
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sottodifferenziale di f in x0 e si denota col simbolo ∂f(x0).
La Proposizione 6 assicura che:

• ∂f(x0) = [f ′−(x0), f ′+(x0)], se x0 è interno all’intervallo I,

• ∂f(a) =]−∞, f ′+(a)], se a ∈ I ed f è derivabile in a da destra,

• ∂f(a) = [f ′−(b),+∞[, se b ∈ I ed f è derivabile in b da sinistra. �

Osservazione 18: Evidentemente, se f è derivabile nel punto interno x0, l’insieme
∂f(x0) = [f ′−(x0), f ′+(x0)] si riduce ad un solo punto, cioè risulta ∂f(x0) = {f ′(x0)};
in tal caso, la famiglia delle rette di supporto si riduce ad un’unica retta, quella di
equazione y = f ′(x0)(x−x0)+f(x0) ossia la tangente al grafico in P0 = (x0, f(x0)).
Geometricamente, quando è possibile tracciare la retta tangente al grafico di una
funzione convessa, il grafico stesso si trova sempre “al disopra” di tale retta. �

Dimostrazione. Facciamo la dimostrazione per x0 interno, ragionandosi analoga-
mente negli altri due casi.
Dato che:

m ≤ f ′+(x0) = inf
x>x0

f(x)− f(x0)
x− x0

,

per ogni x > x0 abbiamo:

f(x) ≥ m(x− x0) + f(x0) ;

analogamente, visto che:

m ≥ f ′−(x0) = inf
x<x0

f(x)− f(x0)
x− x0

,

per ogni x < x0 abbiamo:

f(x) ≥ m(x− x0) + f(x0) .

Quindi, la(6) vale per per x 6= x0, ma ovviamente vale anche per x = x0 e perciò
vale in tutto I. �

Osservazione 19 (Rette di Supporto e Punti di Contatto): Notiamo esplicitamente
che, in generale, una retta di supporto al grafico in P0 = (x0, f(x0)) può contenere
tutto un tratto di grafico oltre al punto P0: ciò accade, essenzialmente, quando f è
convessa senza esserlo strettamente.
Infatti, come già osservato in precedenza, quando f è strettamente convessa il
grafico non può contenere tre punti allineati, dunque nessun suo tratto può giacere
su una retta. �

3. Derivate e Funzioni Convesse

Abbiamo visto che una funzione convessa non è necessariamente derivabile in ogni
punto del suo intervallo di definizione (cfr. Esempio 2); tuttavia, si può dimostrare
(cfr. Appendice A) che una funzione convessa è derivabile in “quasi ogni punto”3

del proprio intervallo di definizione.
Pertanto ha qualche importanza lo studio delle derivate delle funzioni convesse che
proponiamo in questa sezione.

3Questa dicitura viene resa precisa nell’ambito della Teoria della Misura; qui ci limitiamo a
segnalare che il suo significato in questo contesto è quello fornito nell’enunciato del Teorema 9
in Appendice A.
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3.1. Convessità e Derivata Prima. Il primo risultato utile in tal senso è il
seguente:

Teorema 2 (Monotònia della Derivata Prima)
Siano I ⊆ R un intervallo non banale ed f : I → R una funzione derivabile inter-
namente ad I.
La f è convessa in I se e solo se f ′ è una funzione crescente in I.

Dimostrazione. ⇒) Se f è convessa, allora f ′ è crescente.
Scegliamo x0 < x1 interni ad I. Scelto un qualsiasi x ∈]x0, x1[, per il Lemma 1 e
le Proposizioni 4 & 5 troviamo:

f ′+(x0) ≤ f(x)− f(x0)
x− x0

≤ f(x)− f(x1)
x− x1

≤ f ′−(x1)

e, visto che f ′+(x0) = f ′(x0) ed f ′−(x1) = f ′(x1), da ciò segue f ′(x0) ≤ f ′(x1), come
volevamo.

⇐) Se f ′ è crescente, allora f è convessa.
A norma della Lemma 1 e dell’Osservazione 10 basta provare che, per ogni scelta
di x0 < x <1∈ I, risulta r(x;x0) ≤ r(x;x1).
Fissiamo x0 < x < x1 ∈ I; per il Teorema di Lagrange esistono due punti ξ ∈]x0, x[
ed η ∈]x, x1[ tali che:

f(x)− f(x0)
x− x0

= f ′(ξ) ≤ f ′(η) =
f(x1)− f(x)

x1 − x
=
f(x)− f(x1)

x− x1
,

come volevamo. �

Osservazione 20: Ovviamente, una funzione derivabile f è strettamente convessa
in I se e solo se la funzione f ′ è strettamente crescente in I. �

Quanto finora detto ci consente di determinare facilmente la concavità o conves-
sità di alcune funzioni elementari “di base”.

Esempio 7 (Potenze ad Esponente Reale): Fissato α ∈ R diverso da 0, la fun-
zione potenza f(x) := xα è derivabile in ]0,+∞[ ed ha derivata:

f ′(x) = αxα−1 .

Se α > 1, f ′ è strettamente crescente ed f è strettamente convessa; se 0 < α < 1, f ′
è strettamente decrescente ed f è strettamente concava; se α < 0, f ′ è strettamente
crescente e dunque f è strettamente convessa; infine, se α = 1, la f è convessa ma
non strettamente. ♦

Osservazione 21 (Potenze ad Esponente Naturale ed Intero): Lo stesso tipo di
considerazioni ora svolte si può fare per studiare la concavità delle funzioni potenza
ad esponente naturale ed intero.
In particolare, si trova che f(x) := xn (con n ∈ N ed n ≥ 2) è strettamente convessa
in R se n è pari, mentre è strettamente convessa in [0,+∞[ e strettamente concava
in ]−∞, 0] se n è dispari.
Analogamente, f(x) := x−n = 1

xn (con n ∈ N ed n ≥ 1) è strettamente convessa
in ] − ∞, 0[ ed in ]0,+∞[ se n è pari ed è strettamente convessa in ]0,+∞[ e
strettamente concava in ]−∞, 0[ se n è dispari. �
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Esempio 8 (L’Esponenziale è Strettamente Convesso): Fissato che sia a > 0
e 6= 1, la funzione esponenziale f(x) := ax è derivabile in tutto R ed ha derivata:

f ′(x) = log a · ax = log a · f(x) .

Se a > 1, log a > 0 ed f è strettamente crescente, dunque f ′ è strettamente cre-
scente; invece, se 0 < a < 1, log a < 0 ed f è strettamente decrescente, dunque f ′
è strettamente crescente.
Ne consegue che la funzione esponenziale è sempre strettamente convessa. ♦

Esempio 9 (Logaritmi): Fissato a > 0 e 6= 1, la funzione f(x) := loga x è
derivabile in ]0,+∞[ ed ha derivata:

f ′(x) =
1

x · log a
.

Se a > 1 risulta log a > 0, dunque f ′ è strettamente decrescente ed f è strettamente
concava; mentre se 0 < a < 1 risulta log a < 0, dunque f ′ è strettamente crescente
ed f è strettamente convessa.
Conseguentemente, il logaritmo è strettamente concavo se ha base > 1 ed è stret-
tamente convesso se ha base > 1. ♦

Esempio 10 (Coseno e Seno): La funzione f(x) := cosx è derivabile in R ed
ha f ′(x) = − sinx; pertanto essa risulta strettamente convessa in ogni intervallo
in cui il seno è funzione decrescente, i.e. [π/2 + 2kπ, 3/2π + 2kπ] (k ∈ Z), e
strettamente concava in ogni intervallo in cui il seno è funzione crescente, cioè
[−π/2 + 2kπ, π/2 + 2kπ] (k ∈ Z).
Analogamente, f(x) := sinx è derivabile in R con f ′(x) = cosx; dunque essa è
strettamente convessa in ogni intervallo [−π + 2kπ, 2kπ] (k ∈ Z), in cui il coseno è
strettamente crescente, ed è strettamente concava in ogni intervallo [2kπ, π + 2kπ]
(k ∈ Z), in cui il coseno è strettamente decrescente. ♦

Come già osservato in precedenza (cfr. Osservazione 18), se f è una funzione
convessa in I, allora in ogni punto P0 del grafico di f con ascissa x0 interna all’in-
tervallo di definizione I esiste un’unica retta di supporto al grafico, che coincide con
la retta tangente in P0. Abbastanza sorprendentemente, questa proprietà si inverte
e perciò sussiste il seguente:

Teorema 3
Siano I un intervallo non banale ed f : I → R derivabile internamente ad I.
La f è convessa in I se e solo se, comunque si scelga un punto x0 interno ad I,
risulta:

(7) ∀x ∈ I, f(x) ≥ f ′(x0) · (x− x0) + f(x0) .

Dimostrazione. Visto che l’implicazione⇒ è già stata acquisita nell’Osservazione
18, dimostriamo unicamente l’implicazione inversa.
Supponiamo che la (7) valga per ogni punto interno ad I e scegliamo due punti
x0 < x1 interni ad I.
Abbiamo:

f(x1) ≥ f ′(x0)(x1 − x0) + f(x0)

f(x0) ≥ f ′(x1)(x0 − x1) + f(x1) ,

da cui:

f(x1) + f(x0) ≥ f ′(x0)(x1 − x0) + f ′(x1)(x0 − x1) + f(x0) + f(x1)
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cioè: (
f ′(x0)− f ′(x1)

)
(x1 − x0) ≤ 0 ;

dato che x0 < x1, la precedente implica f ′(x0)− f ′(x1) ≤ 0, ossia f ′(x0) ≤ f ′(x1).
Per l’arbitrarietà nella scelta di x0 ed x1 la funzione f ′ è crescente nell’interno di
I, dunque f è convessa per il Teorema 2. �

Osservazione 22: Non è difficile intuire che se nella (7) l’uguaglianza vale solo per
x = x0, allora f è strettamente convessa in I.
Infatti, lo stesso ragionamento usato nella dimostrazione mostra che in tal caso si
ha f ′(x0) < f ′(x1) quando x0 < x1, sicché f ′ è strettamente crescente in I. �

Osservazione 23: Limitatamente alle funzioni derivabili, la disuguaglianza (7) è
del tutto equivalente alla definizione di convessità.
Per questo motivo, nei manuali in cui viene posta maggiore attenzione alle proprietà
delle funzioni derivabili, la (7) viene usata al posto della (1) per definire la nozione
di funzione convessa (cfr. [MS]). �

3.2. Convessità e Derivata Seconda. Dal Teorema 2 e dai Criteri di Mono-
tònia e di Stretta Monotònia traiamo in maniera diretta il seguente:

Teorema 4 (Convessità e Segno della Derivata Seconda)
Siano I ⊆ R un intervallo non banale, f : I → R derivabile due volte internamente
ad I.
La f è convessa in I se e solo se f ′′(x) ≥ 0 per ogni x interno ad I.
La f è strettamente convessa in I se e solo se f ′′(x) ≥ 0 per ogni x interno ad I e
se f ′′ non si annulla su alcun intervallo [a, b] ⊆ I.

Dimostrazione. Abbiamo f convessa in I se e solo se f ′ è crescente in I e ciò, stante
l’ipotesi di derivabilità posta su f , si verifica se e solo se f ′′(x) ≥ 0 internamente
ad I.
Analogamente f è strettamente convessa se e solo se f ′ è strettamente crescente,
cioè se e solo se f ′′ è non negativa nell’interno di I e non si annulla su alcun
sottointervallo contenuto in I. �

4. Estremi di Funzioni Convesse

In questo paragrafo mostriamo che gli estremi delle funzioni convesse, quando
esistono, sono “facilmente” individuabili.

4.1. Minimi Assoluti e Relativi. Iniziamo il discorso osservando esplicitamente
che una funzione convessa non è tenuta a presentare punti di minimo né assoluto
né relativo: per lumeggiare tale circostanza forniamo il seguente:

Esempio 11: La funzione f : [0, 1]→ R definita ponendo:

f(x) :=

{
1 , se x = 0
x , se 0 < x ≤ 1

è convessa (non strettamente) in [0, 1], in quanto ha f ′(x) = 1 crescente (non
strettamente) nei punti di ]0, 1[.
La f non è dotata di minimo in [0, 1], in quanto infI f = 0 e però in ogni punto
x ∈ I risulta f(x) > 0. �

Il seguente risultato è molto semplice da dimostrare e fornisce informazioni
preziose sui punti di minimo assoluto di una funzione convessa:
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Proposizione 7 (Minimi di Funzioni Convesse)
Siano I ⊆ R un intervallo non banale, f : I → R ed x0 < x1 ∈ I.
Se f è convessa ed x0 ed x1 sono punti di minimo assoluto, allora ogni altro punto
x appartenente all’intervallo di estremi ]x0, x1[ è un punto di minimo assoluto per
f .

Osservazione 24: Il succo di questa Proposizione si può esprimere come segue:

“Se una funzione convessa prende il suo minimo, lo prende o in un
solo punto oppure in infiniti punti”. �

Dimostrazione. Per comodità poniamo m := minx∈I f(x), di modo che f(x0) =
m = f(x1).
Come sappiamo, scelto x ∈]x0, x1[, possiamo determinare un unico t ∈]0, 1[ tale che
x = (1 − t)x0 + tx1 (cioè t = x−x0

x1−x0
); usando la disuguaglianza di convessità (1)

troviamo:
f(x) ≤ (1− t)f(x0) + tf(x1)

= (1− t)m+ tm

= m ,

e, confrontando tale disuguaglianza con la più evidentem ≤ f(x), otteniamo f(x) =
m. Dall’arbitrarietà nella scelta di x ∈]x0, x1[ segue la tesi. �

Proposizione 8 (Unicità del Minimo per Funzioni Strettamente Convesse)
Siano I ⊆ R un intervallo non banale, f : I → R ed x0 ∈ I.
Se f è strettamente convessa e prende minimo in x0, non esiste alcun altro punto
x1 6= x0 in cui f prende il suo minimo.

Osservazione 25: Il succo di questa Proposizione si può esprimere come segue:

“Se una funzione strettamente convessa prende il suo minimo, lo
prende in un solo punto”. �

Dimostrazione. Per comodità, poniamo m := minx∈I f(x).
Per assurdo, supponiamo che f abbia due punti di minimo distinti x0 < x1 ∈ I, di
modo che f(x0) = m = f(x1).
Comunque fissiamo x ∈]x0, x1[ riusciamo a determinare un t ∈]0, 1[ tale che x =
(1− t)x0 + tx1, sicché per stretta convessità avremmo:

f(x) < (1− t)f(x0) + tf(x1) = (1− t)m+ tm ,

cioè f(x) < m. Ma ciò è assurdo, in quanto per ogni x ∈ I risulta m ≤ f(x) e
dunque sarebbe violato il Principio di Tricotomia. �

Osserviamo esplicitamente che nelle due Proposizioni precedenti non si è esclu-
sa la possibilità che il punto di minimo x0 possa cadere negli estremi dell’intervallo
I: ciò è dovuto al fatto che tale caso si presenta piuttosto naturalmente.

Esempio 12: La funzione f(x) := x2 è strettamente convessa in I = [0, 1] e prende
il suo minimo nel punto x0 = 0, estremo di I. �

Occupiamoci ora della localizzazione dei punti di estremo interni all’intervallo di
definizione.
Una conseguenza notevole dell’esistenza di rette di supporto è la seguente:
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Teorema 5 (Localizzazione dei Minimi di Funzioni Convesse)
Siano I ⊆ R un intervallo non banale, x0 ∈ I ed f : I → R una funzione convessa.
Il punto x0 è di minimo assoluto per f in I se e solo se 0 ∈ ∂f(x0).

Osservazione 26: Per quanto detto nella Osservazione 17, la condizione 0 ∈
∂f(x0) equivale a f ′−(x0) ≤ 0 ≤ f ′+(x0) se x0 è un punto interno ad I, o ad
f ′+(a) ≥ 0 ovvero a f ′−(b) ≤ 0 nel caso in cui x0 coincida con uno degli estremi di
I (in cui f è definita e derivabile da destra o da sinistra). �

Dimostrazione. ⇒) Supponiamo che x0 sia un punto di minimo assoluto per f in
I, i.e. che risulti:

f(x) ≥ f(x0)

per ogni x ∈ I. Scelto x 6= x0, allora si ha:

x < x0 ⇒ r(x;x0) ≤ 0

x > x0 ⇒ r(x;x0) ≥ 0

cosicché, per il Teorema di Permanenza del Segno Inverso, risulta:

f ′−(x) = lim
x→x−0

r(x;x0) ≤ 0 ≤ lim
x→x+

0

r(x;x0) = f ′+(x0) ,

cioè 0 ∈ ∂f(x0).
Nel caso in cui x0 coincida con uno degli estremi di I si ragiona in maniera analoga.

⇐) Poiché 0 ∈ ∂f(x0), la retta orizzontale di equazione y = f(x0) è una retta di
supporto al grafico di f in P0 = (x0, f(x0)); da ciò segue immediatamente che:

f(x) ≥ f(x0)

per ogni x ∈ I, per cui x0 è un punto di minimo assoluto. �

Osservazione 27: Se f è convessa e se valgono le disuguaglianze strette f ′−(x0) <
0 < f ′+(x0) (nel caso x0 ∈ int I), f ′+(a) > 0 (se x0 = a) ovvero f ′−(b) < 0 (qualora
x0 = b), allora il punto x0 è l’unico punto di minimo.
Infatti, in tali ipotesi, si possono fissare f ′−(x0) ≤ m < 0 e 0 < M ≤ f ′+(x0) ed
ottenere:

x < x0 ⇒ f(x)− f(x0) ≥ m(x− x0) > 0

x > x0 ⇒ f(x)− f(x0) ≥M(x− x0) > 0 ,

cosicché f(x) > f(x0) per ogni x 6= x0. �

Più interessante, ancorché più restrittivo del Teorema 5, è il fatto che per le
funzioni convesse vale un inverso del Teorema di Fermat :

Proposizione 9 (Inverso del Teorema di Fermat per Funzioni Convesse)
Siano I ⊆ R un intervallo non banale, f : I → R ed x0 ∈ I un punto interno.
Se f è convessa in I e se f è derivabile in x0 e risulta f ′(x0) = 0, allora x0 è un
punto di minimo assoluto per f .

La dimostrazione è essenzialmente identica a quella del Teorema 5 ed è lasciata
al lettore.

Osservazione 28: Se f è strettamente convessa e se f ′(x0) = 0, allora x0 è l’unico
punto di minimo per f in I. �
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Osserviamo, invece, esplicitamente che ogni punto di minimo relativo di una
funzione convessa è ipso facto un punto di minimo assoluto: vale infatti la:

Proposizione 10 (I Minimi Relativi di Funzioni Convesse sono Minimi Assoluti)
Siano I ⊆ R un intervallo non banale ed f : I → R convessa.
Se x0 ∈ I è un punto di minimo relativo per f , allora x0 è un punto di minimo
assoluto.

Dimostrazione. Supponiamo che x0 sia un punto interno, ragionandosi in maniera
analoga quando esso coincida con uno degli estremi di I.
Se x0 ∈ I è di minimo relativo si ha:

f(x) ≥ f(x0)

in un conveniente intorno [x0− δ, x0 + δ] ⊆ I; ragionando come nella dimostrazione
del Teorema 5 otteniamo nuovamente:

f ′−(x0) = lim
x→x−0

r(x;x0) ≤ 0 ≤ lim
x→x+

0

r(x;x0) = f ′+(x0)

ossia 0 ∈ ∂f(x0) e ciò, per il Teorema 5, equivale a dire che x0 è un punto di
minimo assoluto per f . �

4.2. Massimi Assoluti e Relativi. Iniziamo il paragrafo osservando che una
funzione convessa non è tenuta a prendere massimo assoluto nel proprio intervallo
di definizione, come mostrano i seguenti esempi:

Esempio 13: La funzione f :] − 1, 1[→ R definita ponendo f(x) := 1
1−x2 è pari,

positiva, continua e derivabile quante volte si vuole in ]− 1, 1[; inoltre, risultando:

f ′(x) =
2x

(1− x2)2

= 2x f2(x)

f ′′(x) = 2f2(x) + 4x f(x) · f ′(x)

= 2f2(x) ·
(

4x2 f(x) + 1
)

> 0

per ogni x ∈]− 1, 1[, la f è anche strettamente convessa in ]− 1, 1[.
Evidentemente, però, f non può avere massimo assoluto in ]−1, 1[ poiché, essendo:

lim
x→−1+

f(x) = +∞ = lim
x→1−

f(x) ,

f non è limitata superiormente. ♦

Esempio 14: La funzione convessa f(x) := |x| non ha massimo assoluto in ]−1, 1[,
pur essendo limitata superiormente. ♦

Per quanto riguarda i massimi delle funzioni convesse (quando esistono) possia-
mo dire certamente che essi non possono essere assunti in punti interni, se non nei
casi banali.
Infatti, la caratterizzazione della convessità in termini di rapporti incrementali
implica il seguente:

Teorema 6 (Principio Forte del Massimo)
Siano I ⊆ R un intervallo non banale ed f : I → R una funzione convessa.
La f prende massimo assoluto in un punto interno ad I se e solo se f è costante
in I.
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Dimostrazione. La dimostrazione dell’implicazione ⇐ è banalissima, perciò prove-
remo solo la ⇒.

⇒) Supponiamo che f prenda massimo assoluto in un punto x0 interno ad I. Per
definizione di massimo, abbiamo:

f(x)− f(x0) ≤ 0

ovunque in I; pertanto, scelti arbitrariamente x, y ∈ I − {x0} in modo che sia
x < x0 < y troviamo:

r(y;x0) =
f(y)− f(x0)

y − x0
≤ 0 ≤ f(x)− f(x0)

x− x0
= r(x;x0) .

La convessità di f implica che r(·;x0) è crescente in I − {x0}, cosicché r(x;x0) ≤
r(y;x0); confrontando questa relazione con la precedente troviamo:

r(y;x0) ≤ 0 ≤ r(x;x0) ≤ r(y;x0)

che implica r(x;x0) = 0 = r(y;x0), ossia f(x) = f(x0) = f(y). Ciò, stante
l’arbitrarietà nella scelta di x ed y in I − {x0}, significa che f è costante in I. �

Osservazione 29: Notiamo esplicitamente che la presenza di un massimo assoluto
interno implica la costanza di f in tutto I, estremi inclusi (se I non è aperto).
Perciò la presenza di un massimo interno assicura che f è continua in tutto I, contro
il fatto che, di norma, la continuità di una funzione convessa è assicurata solo nei
punti interni. �

Osservazione 30: Il Principio Forte del Massimo non vale per i massimi relativi.
Infatti, nel caso f prenda un massimo relativo interno, ragionando come nella dimo-
strazione precedente riusciamo solo a concludere che f è costante in un opportuno
intorno di x0. . .Ma su ciò che accade fuori da tale intorno non riusciamo a dir nulla!
Ad esempio, la funzione f : [−2, 2]→ R definita ponendo:

f(x) :=


−x , se − 2 ≤ x ≤ −1
1 , se − 1 ≤ x ≤ 1
x , se 1 ≤ x ≤ 2

è convessa in [−2, 2], ha un massimo relativo in x0 = 0 (poiché f è costante intorno
a 0) ma non è ovunque costante in [−2, 2].
Questo esempio, tuttavia, illustra molto bene ciò che in realtà accade: i punti di
massimo relativo interni all’intervallo di definizione di una funzione convessa sono
“falsi” massimi, poiché essi riescono ad essere punti di estremo solo su sottointervalli
in cui la funzione assume sempre lo stesso valore (i.e., è costante). �

Per il Principio Forte del Massimo, gli eventuali punti di massimo assoluto
di una funzione convessa non costante non possono andar ricercati nell’interno
dell’intervallo di definizione, perciò possiamo affermare il:

Teorema 7 (Principio del Massimo)
Siano I ⊆ R un intervallo non banale ed f : I → R convessa in I.
Se f prende massimo in I, allora o f è costante in I oppure il massimo è preso
negli estremi di I.

Dimostrazione. Se I è aperto, allora il massimo è preso necessariamente in un punto
interno ad I e, per il Principio Forte del Massimo, f è costante in I.
Se I non è aperto, allora o il massimo è preso sulla frontiera oppure è preso in un
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punto interno. Nel primo caso siamo a posto, perché la frontiera di I è costituita
dagli estremi di I che appartengono ad I; mentre nel secondo caso f è costante in
tutto I, sempre per il Principio Forte del Massimo. �

Osservazione 31: Per le funzioni concave valgono analoghi risultati, detti Prin-
cipio Forte del Minimo e Principio del Minimo: lasciamo al lettore il compito di
enunciarli e di dimostrarli basandosi sui risultati appena acquisiti. �

5. Disuguaglianze Convesse

5.1. Disuguaglianze tra Medie. Abbiamo già osservato che la funzione esponen-
ziale è strettamente convessa su R. Pertanto, la disuguaglianza di Jensen scritta
per la funzione f(x) := ex in corrispondenza di n + 1 numeri reali x0, . . . , xn ed
altrettanti scalari t0, . . . , tn ∈ [0, 1] tali che

∑n
k=0 tk = 1 fornisce:

e
∑n

k=0 tkxk ≤
n∑
k=0

tkexk ,

con uguaglianza se e solo se x0 = x1 = · · · = xn.
Ponendo ak := exk , dalla precedente segue la disuguaglianza:

(8) at00 · a
t1
1 · · · atnn ≤

n∑
k=0

tkak ,

nota come disuguaglianza tra media geometrica e media aritmetica pesate, in cui
vale l’uguaglianza solo se a0 = a1 = · · · = an.
La (8) generalizza l’elementare disuguaglianza tra media geometrica e media arit-
metica di due numeri reali positivi, cioè:

√
a0a1 ≤

a0 + a1

2
,

che dovrebbe esser già nota al lettore.4

Analogamente, la funzione potenza con esponente α > 1 è strettamente con-
vessa in [0,+∞[. Pertanto la disuguaglianza di Jensen scritta per la funzione
f(x) := xα in corrispondenza di n + 1 numeri positivi x0, . . . , xn ed altrettanti
scalari t0, . . . , tn ∈ [0, 1] tali che

∑n
k=0 tk = 1 fornisce:(

n∑
k=0

tkxk

)α
≤

n∑
k=0

tkx
α
k ,

con uguaglianza se e solo se x0 = x1 = · · · = xn.
Prendendo α = q

p , con q > p > 0, ed xk = apk, con ak ≥ 0, dalla precedente
otteniamo la disuguaglianza:

(9)

(
n∑
k=0

tka
p
k

) 1
p

≤

(
n∑
k=0

tka
q
k

) 1
q

,

detta disuguaglianza tra p-media e q-media pesate, in cui vale l’uguaglianza se e
solo se a0 = a1 = · · · = an.
La (9) generalizza l’elementare disuguaglianza tra media aritmetica e media qua-
dratica di due numeri reali positivi, ossia:

a0 + a1

2
≤
√
a2
0 + a2

1

2
,

di semplice dimostrazione.

4Se il lettore non la conosce, si diletti a dimostrarla usando il calcolo letterale.
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5.2. Disuguaglianza di Cauchy con ε. Vogliamo provare che per ogni valore
ε > 0 esistono delle costanti C > 0 tali che la disuguaglianza:

(10) a0a1 ≤
ε

2
a2
0 + C a2

1

valga per ogni paio di numeri reali a0 ed a1.

In realtà è evidente che se a0 ed a1 hanno segno opposto o se uno dei due numeri
è uguale a 0, la disuguaglianza (10) è certamente valida; d’altra parte, se a0, a1 < 0,
la disuguaglianza (10) vale se e solo se essa è valida per i numeri positivi −a0 e
−a1.
Da quanto appena osservato discende che per acquisire la tesi basta dimostrare l’e-
sistenza di costanti C > 0 tali che la (10) valga per ogni paio di numeri a0, a1 > 0.

Dividendo membro a membro la (10) per a1 ed introducendo la variabile ausiliaria
x = a0

a1
> 0 otteniamo:

x ≤ ε

2
x2 + C ;

dunque dimostrare l’esistenza di C > 0 per cui vale la (10) equivale a provare
l’esistenza di costanti C > 0 tali che la funzione ϕ :]0,+∞[→ R definita ponendo
ϕ(x) := ε

2x
2 − x+ C ha estremo inferiore ≥ 0.

La ϕ è continua e derivabile quanto si vuole in ]0,+∞[ ed in più risulta:

ϕ′(x) = ε x− 1

ϕ′′ = ε > 0 ,

cosicché ϕ è strettamente convessa in ]0,+∞[ e, per la Proposizione 9, essa prende
minimo assoluto nell’unico punto in cui è nulla la derivata prima, i.e. xε = 1

ε ;
conseguentemente, abbiamo:

inf
x>0

ϕ(x) = min
x>0

ϕ(x) = ϕ(xε) = C − 1
2ε

e tale estremo inferiore è non negativo non appena si scelga C ≥ 1
2ε =: c(ε). Il

numero c(ε) è anche detto costante ottimale per la (10).
Chiaramente, se scegliamo di scrivere la (10) con C > c(ε), essa sarà sempre
soddisfatta col segno di disuguaglianza stretta a meno del caso banale, cioè avremo:

a0a1 <
ε

2
a2
0 + C a2

1

per ogni a0, a1 ∈ R non contemporaneamente nulli; invece, scegliendo C = c(ε),
l’uguaglianza in (10) sarà verificata, oltre al caso banale a0 = 0 = a1, anche quando
a0
a1

= xε = 1
ε , ossia per a1 = εa0.

Abbiamo così dimostrato la:

Proposizione 11 (Disuguaglianza di Cauchy con ε)
Per ogni ε > 0 esistono costanti C > 0 tali che la disuguaglianza (10) è valida per
ogni a0, a1 ∈ R.
Per la precisione, le costanti C che soddisfano la precedente sono tutte e sole quelle
maggiori od uguali a c(ε) = 1

2ε .
L’uguaglianza è soddisfatta in (10) se e solo se a0 = 0 = a1 quando C > c(ε) oppure
se a1 = εa0 quando C = c(ε).

Osservazione 32 (Disuguaglianza Integrale di Cauchy *): La (10) può essere ap-
plicata per ottenere un’analoga disuguaglianza tra integrali definiti.
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Prese due funzioni continue f, g : [a, b] → R, per ogni x ∈ [a, b] possiamo porre
a0 = |f(x)| e a1 = |g(x)| in (10) e ricavare:

|f(x)| |g(x)| ≤ ε

2
f2(x) + C g2(x)

da cui, integrando membro a membro, ricaviamo la relazione:∫ b

a

∣∣f(x)g(x)
∣∣ dx ≤ ε

2

∫ b

a

f2(x) dx+ C

∫ b

a

g2(x) dx

detta disuguaglianza integrale di Cauchy con ε.
L’uguaglianza, evidentemente, si verifica solo se f(x) = 0 = g(x) quando la costante
C non è ottimale, oppure se g(x) = εf(x) nel caso C = c(ε). �

5.3. Disuguaglianza di Young. Scelti x0, x1 ∈ R e t ∈]0, 1[, la stretta convessità
dell’esponenziale implica:

e(1−t)x0+tx1 ≤ (1− t)ex0 + tex1 ,

con uguaglianza solo se x0 = x1.
Scegliendo x0 = log ap0, x1 = log a

p
p−1
1 e t = p−1

p con a0, a1 > 0 e p > 1, dalla
precedente traiamo:

e
1
p log ap

0+ p−1
p log a

p
p−1
1 ≤ 1

p
elog ap

0 +
p− 1
p

elog a
p

p−1
1

cioè:

(dY) a0a1 ≤
1
p
ap0 +

p− 1
p

a
p

p−1
1 ,

che è detta disuguaglianza di Young5. Notiamo che essa rimane valida anche se
a0, a1 = 0 e che l’uguaglianza è soddisfatta solo se a1 = ap−1

0 .

Osservazione 33 (Disuguaglianza integrale di Young *): Prese due funzioni conti-
nue f, g : [a, b]→ R, possiamo porre a0 = |f(x)| e a1 = |g(x)| nella disuguaglianza
(dY); integrando ambo i membri otteniamo la relazione:∫ b

a

∣∣f(x)g(x)
∣∣ dx ≤ 1

p

∫
a

|f(x)|p dx+
p

p− 1

∫ b

a

|g(x)|
p

p−1 dx

detta disuguaglianza integrale di Young.
L’uguaglianza vale, ovviamente, quando |g(x)| = |f(x)|p−1 ovunque in [a, b]. �

5.4. Il Problema dello N-gono Inscritto con Perimetro Massimo. Fissiamo
N ≥ 3.
Chiamiamo N -gono un poligono convesso avente N lati, N vertici ed N angoli
interni.6

Diciamo che un N -gono è inscritto in una circonferenza di raggio r se esso ha come
vertici N punti di tale circonferenza.
Con semplici considerazioni geometriche si può vedere che un N -gono inscritto
in una circonferenza individua N angoli al centro ϑ0, . . . , ϑN−1, le cui ampiezze
sommano a 2π, rispetto ai quali è molto semplice descrivere il perimetro dello N -
gono.

5William Henry Young (1863 – 1942), matematico inglese.
6Per N = 3, otteniamo un triangolo; per N = 4, un quadrilatero; per N = 5, un pentagono; per

N = 6, un esagono; per N = 7, un eptagono; per N = 8, un ottagono; per N = 9, un ennagono;
per N = 10, un decagono; etc. . .
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Infatti, il lato che sottende l’angolo al centro ϑk ha lunghezza:

lk = r sin
ϑk
2

cosicché il perimetro dello N -gono si può esprimere come funzione degli angoli al
centro ϑ0, . . . ϑN−1 come:

P (ϑ0, . . . , ϑN−1) =
N−1∑
k=0

lk = r

N−1∑
k=0

sin
ϑk
2
.

Ci domandiamo se tra tutti gli N -goni inscritti in una circonferenza di raggio r ce
n’è qualcuno con perimetro massimo.

Per rispondere a tale domanda, notiamo che l’essere ϑk ∈ [0, 2π] implica ϑk

2 ∈
[0, π] e che la funzione f(x) := sinx è strettamente concava in [0, π] (cfr. Esempio
10); pertanto la disuguaglianza di Jensen con xk = ϑk

2 e tk = 1
N per ogni k =

0, . . . , N − 1 implica:

sin

(
N−1∑
k=0

1
N

ϑk
2

)
≥
N−1∑
k=0

1
N

sin
ϑk
2

ossia:

N sin
2π
2N
≥
N−1∑
k=0

sin
ϑk
2
,

con uguaglianza solo se ϑ0 = · · · = ϑN−1 = 2π
N .

Da ciò segue immediatamente che:

P (ϑ0, . . . , ϑN−1) ≤ rN sin
2π
2N

= P

(
2π
N
, . . . ,

2π
N

)
,

con uguaglianza solo se ϑ0 = · · · = ϑN−1 = 2π
N .

Ciò significa che gli N -goni regolari7 hanno perimetro strettamente più grande di
tutti gli altri N -goni inscritti nella medesima circonferenza.

5.5. Disuguaglianza Integrale di Jensen *. Consideriamo una funzione conti-
nua ϕ : [a, b]→]A,B[ ed una funzione convessa f :]A,B[→ R.
Per il Teorema della Media Integrale abbiamo:

A <
1

b− a

∫ b

a

ϕ(t) d t < B ,

cosicché il punto x0 = 1
b−a

∫
ϕ(t) d t è interno all’intervallo di definizione di f .

Scelto un m ∈ [f ′−(x0), f ′+(x0)], la retta d’equazione y = m(x − x0) + f(x0) è una
retta di supporto per il grafico di f , sicché risulta:

f(x) ≥ m(x− x0) + f(x0)

per ogni x ∈]A,B[; in particolare la disuguaglianza vale per x = ϕ(t) ed in tal caso
si riscrive:

f(ϕ(t)) ≥ m (ϕ(t)− x0) + f(x0) .

7Un N -gono è detto regolare se esso ha tutti i lati congruenti. In tal caso gli angoli al centro
sottesi dai suoi lati hanno tutti ugual misura, pari a 2π

N
.
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Integrando ambo i membri su [a, b] e dividendo per b− a otteniamo:

1
b− a

∫ b

a

f (ϕ(t)) d t ≥ m
( 1
b− a

∫ b

a

ϕ(t) d t︸ ︷︷ ︸
=x0

−x0

)
+ f(x0)

= m(x0 − x0) + f(x0)

= f

(
1

b− a

∫ b

a

ϕ(t) d t

)
.

Abbiamo così provato la disuguaglianza:

(dJ) f

(
1

b− a

∫ b

a

ϕ(t) d t

)
≤ 1
b− a

∫ b

a

f (ϕ(t)) d t

nota come disuguaglianza integrale di Jensen.
Ovviamente, se ϕ è concava, la disuguaglianza di Jensen ha verso opposto.

Si può inoltre dimostrare una disuguaglianza integrale di Jensen “pesata”. Per
fare ciò, notiamo che la (dJ) può essere riscritta come:

f

(
1∫ b

a
1 d t

∫ b

a

ϕ(t) · 1 d t

)
≤ 1∫ b

a
1 d t

∫ b

a

f (ϕ(t)) · 1 d t

e che, sostituendo la funzione identicamente uguale ad 1 con un’arbitraria funzione
continua w : [a, b] → [0,+∞[ e non identicamente nulla, la precedente assume la
forma:

(dJw) f

(
1∫ b

a
w(t) d t

∫ b

a

ϕ(t) · w(t) d t

)
≤ 1∫ b

a
w(t) d t

∫ b

a

f (ϕ(t)) · w(t) d t .

La (dJw) è detta disuguaglianza integrale di Jensen pesata e la sua dimostrazione,
analoga a quella proposta più sopra, è lasciata come esercizio al lettore.

Osservazione 34: Notiamo che, posto W :=
∫ b
a
w(τ) d τ e t(x) = w(x)

W , la disugua-
glianza integrale di Jensen può essere riscritta:

f

(∫ b

a

ϕ(x) t(x) dx

)
≤
∫ b

a

f (ϕ(x)) t(x) dx

e che la funzione t(·) è continua e gode della proprietà:∫ b

a

t(x) dx = 1 ,

del tutto analoga a quella dei coefficienti t1, . . . , tn nella disuguaglianza di convessità
di Jensen.
Posto ϕ(t) = t, la precedente fornisce:

f

(∫ b

a

t(x)xdx

)
≤
∫ b

a

t(x)f(x) dx

la quale può essere euristicamente interpretata come una “versione continua” del-
la disuguaglianza di convessità di Jensen (2’), nella quale le somme

∑n
k=1 tkxk e∑n

k=1 tkf(xk) sono sostituite dagli integrali
∫ b
a
t(x)xdx e

∫ b
a
t(x)f(x) dx. �
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Osservazione 35 (Caso d’Uguaglianza): Se f è strettamente convessa, l’uguaglian-
za in (dJ) vale se e solo se ϕ è costante.
Ripercorrendo a ritroso la dimostrazione, ci accorgiamo che, se f

(
1
b−a

∫ b
a
ϕ(t) d t

)
=

1
b−a

∫ b
a
f (ϕ(t)) d t, si ha uguaglianza in f(ϕ(t)) ≥ m(ϕ(t) − x0) + f(x0) per ogni

possibile t ∈ [a, b]; ciò significa che ϕ(t) coincide con l’ascissa x0 dell’unico punto
di contatto tra il grafico della funzione strettamente convessa f e la sua retta di
supporto y = m(x − x0) + f(x0). Dunque ϕ(t) = x0 = 1

b−a
∫ b
a
ϕ(t) d t ovunque in

[a, b]. �

5.6. Perimetro e Simmetrizzazione di Steiner di Alcuni Insiemi Piani *.
Informalmente parlando, la cosiddetta simmetrizzazione di Steiner8 è un metodo
che consente di modificare una figura geometrica piana F in modo da ottenere una
nuova figura Fs (detta simmetrizzata di Steiner di F) dotata di simmetria assiale
ed avente la stessa area di F .
In questo paragrafo ci occuperemo di mostrare come ottenere la simmetrizzata di
Steiner di alcune particolari figure piane, i.e. quelle delimitate da grafici di funzioni
di classe C1, e mostreremo che il perimetro di tali figure decresce quando esse siano
sottoposte a tale operazione. Tale risultato può essere ampiamente generalizzato e
le sue generalizzazioni sono molto utili quando si vogliano analizzare i rapporti tra
quantità ingegneristicamente rilevanti e caratteristiche geometriche di varie tipolo-
gie di sistemi.9

Consideriamo due funzioni f1, f2 : [a, b]→ R continue in [a, b], derivabili in ]a, b[
con derivata continua fin negli estremi e tali che f1(x) ≤ f2(x) per ogni x ∈ [a, b].
Chiamiamo F la porzione di piano compresa tra le rette verticali di equazioni x = a
ed x = b ed i diagrammi dei grafici di f1 ed f2, i.e. poniamo:

F :=
{

(x, y) ∈ R2 : a ≤ x ≤ b e f1(x) ≤ y ≤ f2(x)
}
.

Inoltre, fissiamo come asse di simmetrizzazione l’asse delle x.
La simmetrizzata di Steiner di F è la figura Fs che si ottiene col procedimento
descritto qui di seguito:

(1) si sceglie un punto a ≤ ξ ≤ b e si traccia la retta verticale di equazione x = ξ;

(2) dalla definizione di F segue che l’intersezione Fξ tra la retta x = ξ e la
figura F è un segmento parallelo all’asse y (o, eventualmente, un punto),
precisamente Fξ = {ξ} × [f1(ξ), f2(ξ)];

(3) si muove il segmento Fξ lungo la retta su cui esso giace fino a far coincidere
il suo punto medio con il punto (ξ, 0) (d’intersezione tra la retta x = ξ e
l’asse delle x);

(4) detto Fsξ il segmento ottenuto al passo precedente, la simmetrizzata di Stei-
ner di F coincide con l’unione di tutti i segmenti Fsξ ottenuti al variare di

8Jakob Steiner (1796 – 1863), matematico svizzero, noto per i suoi numerosi contributi alla
Geometria.

9Ad esempio, usando la simmetrizzazione di Steiner è possibile mostrare che, a parità di ca-
ratteristiche fisiche, tra le membrane aventi la stessa area quella che emette la nota principale più
grave è quella circolare. Analogamente, usando tecniche simili a quella di Steiner si può dimostrare
che, a parità di caratteristiche fisiche, le travi che presentano la maggiore rigidità alla torsione
sono quelle a sezione circolare.



28 G. DI MEGLIO

x

y

A2 B2

A1

B1

As2

Bs2

As1

Bs1

a b

F

y = f2(x)

y = f1(x)

Fs

y = fs2 (x)

y = fs1 (x)

Figura 4. Simmetrizzazione di Steiner di una figura F delimitata dai grafici
di due funzioni derivabili. Si noti che i segmenti Fsa = As1As2 ed Fsb = Bs1Bs2
sono ottenuti dai segmenti Fa = A1A2 ed Fb = B1B2 come indicato nella
costruzione.

ξ ∈ [a, b], i.e. Fs := ∪a≤ξ≤bFsξ .

La Figura 4 mostra la simmetrizzata di Steiner della figura F costituita dai pun-
ti compresi tra le rette di equazione x = 1 ed x = 5 ed i grafici delle funzioni
f1(x) := 1

8 (x− 1)2 + 3 ed f2(x) := 8− 1
2 (x− 1)2.

Non è difficile dimostrare che Fs è ancora una figura delimitata da grafici di funzioni
definite in [a, b] e che, precisamente, si ha:

Fs =
{

(x, y) ∈ R2 : a ≤ x ≤ b e − f2(x)− f1(x)
2

≤ y ≤ f2(x)− f1(x)
2

}
.

Conseguentemente, dato che f1 ed f2 sono continue in [a, b] e derivabili in ]a, b[,
anche le funzioni:

fs2 (x) :=
f2(x)− f1(x)

2

fs1 (x) := −f2(x)− f1(x)
2

= −fs2 (x) ,
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i cui grafici delimitano Fs, godono delle stesse proprietà.

Osservazione 36 (La Simmetrizzazione non Cambia l’Area): Osserviamo esplici-
tamente che, come detto sopra, le figure F e la sua simmetrizzata di Steiner Fs
hanno la stessa area: infatti, per noti risultati sull’integrazione definita [DM14, §
3, Osservazione 6], abbiamo:

area (Fs) =
∫ b

a

∣∣∣fs2 (x)− fs1 (x)
∣∣∣ dx

=
∫ b

a

2 fs2 (x) dx

=
∫ b

a

(
f2(x)− f1(x)

)
dx

= area (F) .

�

Il perimetro della figura F è la somma delle lunghezze dei segmenti verticali
di estremi A1 := (a, f1(a)), A2 := (a, f2(a)) e B1 := (b, f1(b)), B2 := (b, f2(b)) e
delle lunghezze delle curve grafico di f1 ed f2: per quanto provato in [DM14, § 2],
dunque, risulta:

per (F) =
(
f2(a)− f1(a)

)
+
(
f2(b)− f1(b)

)
+
∫ b

a

√
1 +

(
f ′1(x)

)2

dx

+
∫ b

a

√
1 +

(
f ′2(x)

)2

dx ;

analogamente il perimetro di Fs è dato da:

per (Fs) =
(
fs2 (a)− fs1 (a)

)
+
(
fs2 (b)− fs1 (b)

)
+
∫ b

a

√
1 +

(
(fs1 )′(x)

)2

dx

+
∫ b

a

√
1 +

(
(fs2 )′(x)

)2

dx

= 2fs2 (a) + 2fs2 (b) + 2
∫ b

a

√
1 +

(
(fs2 )′(x)

)2

dx .

Vogliamo provare il:

Teorema 8 (Il Perimetro Decresce per Simmetrizzazione)
Sia F una figura delimitata dai grafici di due funzioni f1, f2 : [a, b]→ R continue e
derivabili in [a, b] con derivate continue fin negli estremi.
Detta Fs la simmetrizzata di Steiner di F , risulta:

(11) per (Fs) ≤ per (F) .

Dimostrazione. Dato che:

2fs2 (a) = f2(a)− f1(a)

2fs2 (b) = f2(b)− f1(b) ,
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è chiaro che per provare la disuguaglianza (11) occorre e basta provare che:

2
∫ b

a

√
1 +

(
(fs2 )′(x)

)2

dx ≤
∫ b

a

√
1 +

(
f ′1(x)

)2

dx

+
∫ b

a

√
1 +

(
f ′2(x)

)2

dx .

(12)

Consideriamo la funzione ϕ : R → R definita ponendo ϕ(u) :=
√

1 + u2: eviden-
temente ϕ è pari, positiva, continua e derivabile quante volte si vuole in R ed
ha:

ϕ′(u) =
u√

1 + u2

=
u

ϕ(u)

ϕ′′(u) =
ϕ(u)− uϕ′(u)

ϕ2(u)

=
ϕ(u)− u2

ϕ(u)

ϕ2(u)

=
ϕ2(u)− u2

ϕ3(u)

=
1

ϕ3(u)
> 0 ,

cosicché ϕ è strettamente convessa in R. Conseguentemente, per ogni x ∈ [a, b] si
ha:

ϕ
(
fs2 (x)

)
= ϕ

(
f2(x)− f1(x)

2

)
= ϕ

(
1
2
f2(x) +

1
2

(
− f1(x)

))
(1)
≤ 1

2
ϕ
(
f2(x)

)
+

1
2
ϕ
(
− f1(x)

)
=

1
2
ϕ
(
f2(x)

)
+

1
2
ϕ
(
f1(x)

)
e perciò integrando il primo e l’ultimo membro su [a, b] si trova:∫ b

a

√
1 +

(
(fs2 )′(x)

)2

dx ≤ 1
2

∫ b

a

√
1 +

(
f ′1(x)

)2

dx+
1
2

∫ b

a

√
1 +

(
f ′2(x)

)2

dx ,

che è la (12). �

Esercizi

Esercizio 1 (Disuguaglianza di Convessità Ciclica): Siano I ⊆ R un in-
tervallo non banale ed f : I → R.
Provare che f è convessa in I se e solo se per ogni terna di punti ordinati x0 < x1 <
x2 ∈ I risulta:

f(x0) · (x1 − x2) + f(x1) · (x2 − x0) + f(x2) · (x0 − x1) ≤ 0 .

Esercizio 2 (1/2-Convessità): Siano I ⊆ R un intervallo non banale ed f :
I → R.
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Si dice che f è 1/2-convessa (o convessa nel punto medio) in I se e solo se risulta:

f

(
y1 + y2

2

)
≤ f(y1) + f(y2)

2

per ogni y1 < y2 ∈ I.
Vogliamo dimostrare che, se f è continua ed 1/2-convessa in I, allora f è convessa
in I.

0. Dimostrare che i numeri diadici, cioè i numeri razionali del tipo m
2n (m,n ∈ N

ed m ≤ 2n), sono densi in [0, 1], i.e. che per ogni t ∈ [0, 1] è vera la seguente
proposizione:

∀ε > 0, ∃m,n ∈ N : m ≤ 2n e
∣∣∣t− m

2n

∣∣∣ < ε .

Mostrare che la precedente equivale ad affermare che per ogni t ∈ [0, 1] esiste una
successione (tk) di numeri diadici che converge verso λ.

[Suggerimento: Mostrare che, fissato ε > 0, si può scegliere n ∈ N in modo che
1/2n < ε; scelto t ∈ [0, 1], si può porre m := b2ntc (in cui b·c denota la parte
intera); osservare che, per le proprietà della parte intera, risulta m ≤ 2nt < m+ 1
e concludere.]

1. Provare che la disuguaglianza di 1/2-convessità implica:

f

(
y1 + y2 + · · ·+ y2n

2n

)
≤ f(y1) + f(y2) + · · ·+ f(y2n)

2n

per ogni n ∈ N ed ogni scelta di 2n punti y1 < y2 < · · · < y2n ∈ I.

[Suggerimento: Fare induzione su n.]

2. Mostrare che la disuguaglianza precedente implica che risulta:

f
((

1− m

2n
)
x0 +

m

2n
x1

)
≤
(

1− m

2n
)
f(x0) +

m

2n
f(x1)

per ogni x0 < x1 ∈ I ed ogni numero diadico m
2n con m ≤ 2n, cosicché f soddisfa

la (1) quando t = m
2n ∈ [0, 1].

[Suggerimento: Scelto n ∈ N, se m = 0, 2n, la cosa è banale; se 0 < m < 2n, scri-
vere la disuguaglianza del punto 1 per y1 = · · · ym = x1 e ym+1 = · · · = y2n = x0.]

3. Usare la continuità di f e la densità dei numeri diadici in [0, 1] per mostrare che
la (1) è soddisfatta per ogni t ∈ [0, 1].

[Suggerimento: Fissato t ∈ [0, 1], è possibile scegliere un successione di numeri
diadici (tk) ⊆ [0, 1] tale che tk → t; scelti x0 < x1 ∈ I, si ha f((1 − t)x0 + tx1) =
limk f((1− tk)x0 + tkx1) ≤ . . .]

Esercizio 3: Sia I ⊆ R un intervallo non banale.

1. Provare che se f, g : I → R sono entrambe convesse in I, allora pure la funzione
h : I → R definita ponendo:

h(x) := max
{
f(x), g(x)

}
è convessa in I.
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2. Più in generale, provare che se le funzioni f1, . . . , fn : I → R sono convesse in I,
allora pure la funzione h : I → R definita ponendo:

h(x) := max
{
f1(x), . . . , fn(x)

}
è convessa in I.

Esercizio 4 (Entropia): Sia f : [0,+∞[→ R la funzione definita ponendo:

f(x) :=

{
x log x , se x > 0
0 , se x = 0

.

1. Provare che f è continua e strettamente convessa in [0,+∞[.

2. Per ogni fissata N -upla p = (p1, . . . , pN ) di numeri tali che p1, . . . , pN ≥ 0 e
N∑
n=1

pn = 1, si chiama entropia di p la quantità:

H(p) := −
N∑
n=1

f(pn) = −
N∑
n=1

pn log pn .

Dimostrare che H(p) ≥ 0 e che H(p) = 0 se e solo se esiste un indice ν ∈ {1, . . . , N}
tale che pν = 1 e pn = 0 per n 6= ν.

[Suggerimento: Osservare preliminarmente che le condizioni pn ≥ 0 e
∑N
n=1 pn =

1 implicano 0 ≤ pn ≤ 1. L’implicazione ⇐ è banale; per provare la ⇒, ragionare
per assurdo.]

3. Mostrare che H(p) è massima se e solo se pn = 1
N per ogni n = 1, . . . , N .

[Suggerimento: Moltiplicare e dividere
∑N
n=1 pn log pn per N ed usare la disu-

guaglianza di convessità di Jensen (1’).]

Esercizio 5 (Unicità degli Zeri di Funzioni Convesse): Siano a < b ∈ R
ed f : [a, b]→ R una funzione continua e convessa in [a, b].
Provare che se f(a)·f(b) < 0, allora esiste un unico punto ξ ∈]a, b[ tale che f(ξ) = 0.

Esercizio 6 (Teorema di Lagrange Approssimato): Siano a < b ∈ R ed f :
[a, b]→ R convessa in [a, b].
Provare che esiste un punto ξ ∈]a, b[ tale che:

f ′−(ξ) ≤ f(b)− f(a)
b− a

≤ f ′+(ξ) .

Esercizio 7: Siano I ⊆ R un intervallo non banale, ϕ : I → R una funzione
crescente ed c ∈ I.
Dimostrare che la funzione f : I → R definita ponendo:

f(x) :=
∫ x

c

ϕ(t) d t

è convessa in I (strettamente se ϕ è strettamente crescente).

[Suggerimento: Se ϕ è continua, la dimostrazione è semplice (basta usare il T.F.C.I.);
altrimenti, si dimostri che f è 1/2-convessa (cfr. Esercizio 2) valutando le diffe-
renze f(x1)−f(x0+x1

2 ) ed f(x0+x1
2 )−f(x0); si usi la continuità di f per concludere.]
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Esercizio 8 (Assoluta Continuità delle Funzioni Convesse): Siano I ⊆ R
un intervallo non banale ed f : I → R.
Si dice che f è assolutamente continua in I se e solo se in corrispondenza di ogni
ε > 0 esiste un δ > 0 tale che per ogni N ∈ N e per famiglia finita d’intervalli a due
a due disgiunti [a1, b1], [a2, b2], . . . , [aN , bN ] ⊆ I risulta:

(AC)
N∑
n=1

bn − an < δ ⇒
N∑
n=1

∣∣f(bn)− f(an)
∣∣ < ε .

Dimostrare che se f : I → R è convessa (o concava) in I, allora f è assolutamente
continua in I.

Esercizio 9: Sia f : R→ R la funzione esponenziale f(x) := ax con a > 1.
Provare che per ogni m ≥ 0 esiste un unico valore f∗(m) ∈ R tale che:

(13) ∀x ∈ R, mx ≤ f(x) + f∗(m) .

Cosa succede per 0 < a < 1?

[Suggerimento: Chiaramente f∗(m) coincide con l’estremo superiore della funzione
mx− f(x); determinare tale valore con le tecniche del Calcolo Differenziale.]

Esercizio 10: Sia f : R→ R la funzione definita ponendo f(x) := ε
2x

2 con ε > 0.
Provare che per ogni m ∈ R esiste un unico valore f∗(m) ∈ R per cui valga la (13).
Mostrare che la (13) coincide con la disuguaglianza di Cauchy con ε.

Esercizio 11 (Disuguaglianze di Hermite10–Hadamard11): Siano a < b ∈ R
ed f : [a, b]→ R continua e convessa in [a, b].
Provar che:

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)
2

.

[Suggerimento: Per la prima disuguaglianza, usare la (dJ) con ϕ(t) := t; per la
seconda, fare la sostituzione t = a+ (b− a)x nell’integrale ed usare la convessità di
f .]

Esercizio 12: Siano a > 0 ed f1, f2 : [−a, a] → R continue, pari e tali che
f1(x) ≤ f2(x) in [−a, a].

1. Provare che la figura F compresa tra le rette di equazione x = ±a ed i grafici di
f1 ed f2 è simmetrica rispetto all’asse y.

[Suggerimento: Si deve dimostrare che (x, y) ∈ F implica (−x, y) ∈ F . Sfruttare
le proprietà di f1 ed f2.]

2. Dimostrare che la simmetrizzata di Steiner Fs è simmetrica rispetto ad entrambi
gli assi, ossia che essa è simmetrica rispetto all’origine degli assi O.

[Suggerimento: Si deve provare che (x, y) ∈ Fs implica (−x, y), (x,−y) ∈ Fs
oppure (−x,−y) ∈ Fs.]

10Charles Hermite (1822–1901), matematico francese.
11Jacques Hadamard (1865–1963), matematico francese.



34 G. DI MEGLIO

Appendice A. Derivabilità “Quasi Ovunque” delle Funzioni Convesse

Abbiamo visto che una funzione convessa non è necessariamente derivabile in
ogni punto del suo intervallo di definizione (cfr. Esempio 2); tuttavia, in generale,
la derivabilità è assicurata in tutto l’interno dell’intervallo di definizione a meno dei
punti di una successione:

Teorema 9 (Derivabilità “Quasi Ovunque” delle Funzioni Convesse)
Siano I ⊆ R un intervallo non banale ed f : I → R.
Se f è convessa, allora essa è derivabile nell’interno di I ad eccezione al più di
un’infinità numerabile di punti.

Alla dimostrazione di tale risultato fondamentale, premettiamo un lemma tecnico
sulle funzioni derivata destra e sinistra di una funzione convessa:

Lemma 2 (Monotònia delle Derivate Destra e Sinistra)
Siano I un intervallo non banale ed f : I → R.
Se f è convessa in I, allora le funzioni f ′+ ed f ′− sono crescenti nell’interno di I.

Dimostrazione. Fissiamo x0 < x1 interni ad I e scegliamo tre punti x, y e z interni
ad I e tali che x < x0 < y < x1 < z. La monotònia dei rapporti incrementali di f
assicura che:

r(x;x0) ≤ r(y;x0) = r(x0; y) ≤ r(x1; y) = r(y;x1)

r(y;x0) = r(x0; y) ≤ r(x1; y) = r(y;x1) ≤ r(z;x1)

dunque:

f ′−(x0) = lim
x→x−0

r(x;x0) ≤ lim
y→x−1

r(y;x1) = f ′−(x1)

f ′+(x0) = lim
y→x+

0

r(y;x0) ≤ lim
z→x+

1

r(z;x1) = f ′+(x1) ,

come volevamo. �

Dimostrazione del Teorema 9. Consideriamo la funzione Φ definita nell’interno
di I ponendo:

Φ(x) := f ′+(x)− f ′−(x) ;

tale funzione è ovunque ≥ 0 ed è uguale a zero in tutti e soli i punti interni in cui f
è derivabile. Conseguentemente, l’asserto rimane provato se riusciamo a mostrare
che l’insieme ∆ := {x ∈ int I : Φ(x) > 0} è al più numerabile.

Passo 1. Fissati x0 < x1 interni ad I, dalla Proposizione 5 segue che:

f ′−(x0) ≤ f ′+(x0) ≤ f ′−(x1) ≤ f ′+(x1) ,

e, ragionando induttivamente, si vede che comunque si scelgano n + 1 punti x0 <
x1 < x2 < · · · < xn interni ad I risulta:

f ′−(x0) ≤ f ′+(x0) ≤ f ′−(x1) ≤ f ′+(x1) ≤ f ′−(x2) ≤ f ′+(x2) ≤ · · · ≤ f ′−(xn) ≤ f ′+(xn) ;

conseguentemente, gli intervalli [f ′−(xk), f ′+(xk)] con k = 0, 1, 2, . . . , n formano una
famiglia di sottoinsiemi di [f ′−(x0), f ′+(xn)] costituita da intervalli aventi al più un
estremo in comune e ciò implica che la somma delle loro ampiezze non supera
l’ampiezza dell’intervallo in cui essi sono contenuti, i.e. che:

(14)
n∑
k=0

Φ(xk) =
n∑
k=0

f ′+(xk)− f ′−(xk) ≤ f ′+(xn)− f ′−(x0).
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Passo 2. Fissiamo un intervallo [α, β] ⊂ int I e, scelti arbitrariamente n+ 1 punti
x0 < x1 < x2 < · · · < xn ∈ [α, β], per la (14) e per il Lemma 2 abbiamo:

(15)
n∑
k=0

Φ(xk) ≤ f ′+(xn)− f ′−(x0) ≤ f ′+(β)− f ′−(α) ;

evidentemente, l’arbitrarietà nella scelta di x0, . . . , xn implica che la maggiorazione
(15) vale per qualsiasi famiglia di n+ 1 punti appartenenti ad [α, β].
Proviamo che la (15) assicura che l’insieme ∆[α,β] := {x ∈ [α, β] : Φ(x) > 0} è
al più numerabile. Invero, per la (15) esistono al più un numero finito di punti
x

(0)
0 < x

(0)
1 < · · · < x

(0)
n0−1 in cui risulta Φ(x) ≥ 1 ed il loro numero n0 non può

superare la parte intera di f ′+(β)− f ′−(α), poiché altrimenti si avrebbe:

n0−1∑
k=0

Φ(x(0)
k ) ≥

n0−1∑
k=0

1 = n0 ≥ bf ′+(β)− f ′−(α)c+ 1 > f ′+(β)− f ′−(α)

contro la (15); analogamente, esistono al più un numero finito di punti x(1)
0 < x

(1)
1 <

· · · < x
(1)
n1−1 in cui risulta 1

10 ≤ Φ(x) < 1 ed il loro numero n1 non può superare la
parte intera di 10

(
f ′+(β)− f ′−(α)

)
, poiché altrimenti si avrebbe12:

n1−1∑
k=0

Φ(x(1)
k ) ≥

n1−1∑
k=0

1
10

=
1
10
n1 ≥

1
10
b10

(
f ′+(β)− f ′−(α)

)
c+

1
10

> f ′+(β)− f ′−(α)

contro la (15);. . . Ragionando per ricorrenza, fissato h ∈ N con h ≥ 1, esistono al
più un numero finito di punti x(h)

0 < x
(h)
1 < · · · < x

(h)
nh−1 in cui risulta 1

10h ≤ Φ(x) <
1

10h−1 ed il loro numero nh non può superare la parte intera di 10h
(
f ′+(β)−f ′−(α)

)
,

poiché altrimenti si avrebbe:
nh−1∑
k=0

Φ(x(h)
k ) ≥

nh−1∑
k=0

1
10h

=
1

10h
nh ≥

1
10h
b10h

(
f ′+(β)− f ′−(α)

)
c+ 1

10h
> f ′+(β)−f ′−(α)

contro la (15). Dato che ogni x ∈ ∆[α,β] appartiene ad uno ed uno soltanto de-
gli insiemi {x ∈ [α, β] : Φ(x) ≥ 1} od

{
x ∈ [α, β] : 1

10h ≤ Φ(x) < 1
10h−1

}
con

h ∈ N e che, viceversa, ogni elemento degli insiemi {x ∈ [α, β] : Φ(x) ≥ 1} od{
x ∈ [α, β] : 1

10h ≤ Φ(x) < 1
10h−1

}
con h ∈ N è certamente in ∆[α,β], si ha:

∆[α,β] = {x ∈ [α, β] : Φ(x) ≥ 1} ∪

( ∞⋃
h=1

{
x ∈ [α, β] :

1
10h
≤ Φ(x) <

1
10h−1

})
;

e, visto che gli insiemi {x ∈ [α, β] : Φ(x) ≥ 1} ed
{
x ∈ [α, β] : 1

10h ≤ Φ(x) < 1
10h−1

}
con h ∈ N sono finiti e visto che l’unione numerabile di insiemi finiti è al più nume-
rabile, è evidente che ∆[α,β] è al più numerabile.

Passo 3. Detti a < b gli estremi dell’intervallo I, abbiamo int I =]a, b[. Per noti
fatti, possiamo determinare due successioni (αn) e (βn) di punti interni ad I tali che:

(1) αn+1 < αn e βn < βn+1 per ogni indice n ∈ N,

(2) αn → a e βn → b,

12Si tenga presente che per ogni x > 0 risulta bxc ≤ x < bxc + 1, dunque si ha anche
b10hxc ≤ 10hx < b10hxc+ 1 per ogni h ∈ N.
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e ciò implica che risulta:

]a, b[=
∞⋃
n=0

[αn, βn] .

Infatti, è evidente che
⋃∞
n=0[αn, βn] ⊆]a, b[; d’altra parte, fissato arbitrariamente

x ∈]a, b[ esiste certamente (per definizione di limite) un indice ν ∈ N tale che
a < αn < x < βn < b per ogni n > ν, cosicché x ∈

⋃∞
n=0[αn, βn] e perciò vale anche

l’inclusione inversa ]a, b[⊆
⋃∞
n=0[αn, βn].

Quanto appena trovato implica che:

∆ =
∞⋃
n=0

∆[αn,βn] ,

cosicché ∆ è al più numerabile, poiché unione numerabile di insiemi al più nume-
rabili. �

Un’altra curiosa conseguenza del Lemma 2 è che le derivate sinistra e destra
di una funzione convessa sono integrabili nel senso di Riemann su ogni intervallo
compatto contenuto in I, in quanto monotòne.
Ciò ha una gradevolissima conseguenza, cioè che f si può “ricostruire” usando una
qualsiasi funzione integrale di tali derivate, ovvero (nel caso f sia derivabile) usando
una qualsiasi funzione integrale della derivata prima. Vale infatti il seguente:

Teorema 10 (Teorema Fondamentale del Calcolo Integrale per Funzioni Convesse)
Siano I ⊆ R non banale ed f : I → R una funzione convessa in I.
Le funzioni f ′± : int I → R sono integrabili sugli intervalli compatti contenuti in I
e, per ogni x0 ∈ I, risulta:

f(x) = f(x0) +
∫ x

x0

f ′+(t) d t = f(x0) +
∫ x

x0

f ′−(t) d t

per ogni x ∈ I.
Dunque, se f è derivabile internamente ad I, l’uguaglianza:

(16) f(x) = f(x0) +
∫ x

x0

f ′(t) d t

vale per ogni x ∈ I.

La dimostrazione è reperibile in [R, § 24].

Osservazione 37 (Maggiore Generalità della (16)): L’uguaglianza (16):

f(x) = f(x0) +
∫ x

x0

f ′(t) d t

ha validità più generale, poiché essa si estende anche alle funzioni convesse che non
sono ovunque derivabili nel proprio intervallo di definizione (pur essendolo “quasi
ovunque”, cioè nel senso del Teorema 9).
Tale estensione si basa su proprietà più o meno fini dell’integrale di Riemann e delle
funzioni di variabile reale (come la (AC) dell’Esercizio 8) che non sono affrontate
nei corsi di base. Pertanto, non potendo entrare nel dettaglio della dimostrazione,
in questa sede dobbiamo accontentarci di avere accennato a tale proprietà.
Il lettore interessato allo studio della questione può fare riferimento a testi speciali-
stici, come [R, W] (in cui la teoria di base della convessità è affrontata globalmente,
anche sotto l’aspetto geometrico e computazionale) oppure [L]. �
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